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Abstract
A successful colonization of different compartments of the 
human host requires multifactorial contacts between bacte-
rial surface proteins and host factors. Extracellular matrix 
proteins and matricellular proteins such as thrombospon-
din-1 play a pivotal role as adhesive substrates to ensure a 
strong interaction with pathobionts like the Gram-positive 
Streptococcus pneumoniae and Staphylococcus aureus. The 
human glycoprotein thrombospondin-1 is a component of 
the extracellular matrix and is highly abundant in the blood-
stream during bacteremia. Human platelets secrete throm-
bospondin-1, which is then acquired by invading pathogens 
to facilitate colonization and immune evasion. Gram-posi-
tive bacteria express a broad spectrum of surface-exposed 
proteins, some of which also recognize thrombospondin-1. 
This review highlights the importance of thrombospondin-1 
as an adhesion substrate to facilitate colonization, and we 
summarize the variety of thrombospondin-1-binding pro-
teins of S. pneumoniae and S. aureus.

© 2019 The Author(s) 
Published by S. Karger AG, Basel

Introduction

Streptococcus pneumoniae (the pneumococcus) and 
Staphylococcus aureus are commensals of the human 
upper respiratory tract. At least once in a lifetime, every 
human being is asymptomatically colonized with both 
bacteria. These facultative pathogens can affect other or-
gans and invade deeper tissues. The occupation of nor-
mally sterile niches of the human body with the bacteria 
leads to local infections such as sinusitis, otitis media, 
and abscesses, or to life-threatening diseases like pneu-
monia, meningitis, or sepsis. A strong interaction be-
tween the bacterium and respiratory epithelial cells is a 
prerequisite for a successful colonization. Bacterial 
binding to the epithelial lineage occurs predominantly 
indirectly via components of the extracellular matrix 
(ECM), but also directly to cellular receptors. Thus, the 
multifaceted interactions are ensured mostly by bacte-
rial surface proteins. These proteins can act as adhesins 
and are often referred to as microbial surface compo-
nents recognizing adhesive matrix molecules 
(MSCRAMMs) of the host. Besides colonization, sev-
eral MSCRAMMs of S. pneumoniae and S. aureus exert 
multiple other functions, including immune evasion or 
immune modulation of the host to facilitate the dissem-
ination of the pathogen [1–4].
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Human thrombospondin-1 (hTSP-1 or THBS-1) is a 
high-molecular-mass glycosylated protein. As a matri-
cellular protein, it does not contribute to the structural 
integrity of the ECM but regulates ECM function by in-
teracting with multiple ligands including proteins, cyto-
kines, proteases, and cells. This homotrimeric protein 
was first isolated from activated platelets as a thrombin-
sensitive protein in 1971 [5]. It is synthesized by the pro-
genitor cells megakaryocytes and is mainly stored in 
high amounts in α-granules of platelets, with an esti-
mated copy number of 101.000 hTSP-1 molecules per 
platelet [6]. Due to platelet activation, hTSP-1 gets re-
leased subsequently and is found in its soluble form or 
bound to the platelet membrane. The plasma concentra-
tion of hTSP-1 in healthy individuals commonly ranges 
between 20 and 300 ng/mL, but it achieves its maximum 
level of 30 µg/ml at sites of platelet clot formation [7]. 
Human TSP-1 is reported to also be synthesized and se-
creted by a variety of other cell types including endothe-
lial cells, monocytes, macrophages, fibroblasts, smooth 
muscle cells, dendritic cells, and B cells, and it gets in-
corporated into the ECM [8–12].

Human TSP-1 is a member of the family of oligomer-
ic glycoproteins, which is divided into 2 subgroups de-
pending on the oligomerization status and size. Sub-
group A contains the homotrimeric TSP-1 and TSP-2, 
and subgroup B includes the much smaller homopenta-
meric TSP-3, TSP-4, and TSP-5/COMP. The THBS-1 
gene is located on the human chromosome 15: 39.58–
39.6 and is encoded in 22 exons with a size of about 20 
kb. The mature homotrimer has a size of 420 kDa. Each 
monomeric polypeptide chain contains 1,152 amino ac-
ids, and has a modular organization formed by: a globu-
lar N-terminus followed by a coiled-coil oligomeriza-
tion domain, a von Willebrand factor C module, 3 pro-
perdin-like type-I repeats, 3 epidermal growth factor-like 
type-II repeats, 8 calcium-binding type-III repeats, and 
a globular C-terminal domain (Fig. 1) [13]. The amino-
terminal region is composed of groups of basic amino 
acids and is characterized by its function to bind heparin 
and various other ligands. This fraction of hTSP-1, 
which comprises the globular domain up to and includ-
ing the type-I repeats, varies within the TSP family. The 
carboxy-terminal part, referred to as the signature do-
main, contains the type-II repeats, the type-III repeats, 
and the globular C-terminal domain. This part is con-
served among proteins of the thrombospondin family 
with an identity of 53–82% [14].

The Biological Functions of Matricellular 
Thrombospondin-1

The distribution of hTSP-1 is more important in em-
bryonic tissue than in adult tissue [15]. In general, the 
expression of hTSP-1 is enhanced in proliferating cells 
rather than in quiescent cells and is induced during tissue 
remodeling and lesion formation [15, 16]. Of > 80 hTSP-1 
ligands, 35 have been identified along with their binding 
sites within the hTSP-1 molecule (Fig. 1). The interacting 
components are a heterogeneous group of proteinaceous 
and nonproteinaceous nature. Due to the multidomain 
organization of hTSP-1, the glycoprotein is involved in 
multiple and partly opposing biological processes, 
amongst others, hemostasis, angiogenesis, focal adhe-
sion, the proliferation and migration of cells, immune 
regulation, endocytosis, and apoptosis. 

Human TSP-1 affects angiogenesis, which is exerted by 
different domains of the glycoprotein. The interaction of 
the type-I repeats with CD36 is considered an important 
negative regulator of angiogenesis, and also induces the 
apoptosis of endothelial cells [17–19]. The antiangiogenic 
activity of hTSP-1 is avoided by the interaction with the 
histidine-rich glycoprotein within the CD36-binding re-
gion [20]. The major antiangiogenic site of TSP-1 was 
thought to be localized within the type-I repeats. However, 
the type-III repeats also diminish angiogenesis by prevent-
ing the binding of fibroblast growth factor 2 (FGF2) to the 
endothelial cells [21]. The interaction of hTSP-1 with 
growth factors has opposite effects on cell proliferation. 
Binding of the hepatocyte growth factor (HGF) results in 
the inhibition of angiogenesis [22]. In contrast, hTSP-1 is 
the major activator of latent transforming growth factor β 
(TGF-β), which stimulates angiogenesis [23, 24]. Addition-
ally, activated TGF-β mediates the formation of the ECM 
and the immune response. The opposite functions of hTSP-
1 in proliferation and angiogenesis can be partly explained 
by its conformational state in the secreted form or ECM-
incorporated form [25, 26]. Furthermore, existing discrep-
ancies are dependent on the cell type and tissue studied.

Cell adhesion to the ECM is crucial to maintain the 
integrity of tissues. Human TSP-1 mediates the adhesion 
and chemotaxis of different cell types via the N-terminal 
domain by binding to sulfatides, proteoglycans, and the 
integrins α3β1, α4β1, and α6β1 [27–30]. The interaction 
with proteoglycans leads to endocytosis of soluble hTSP-
1, which is triggered by binding to the low-density lipo-
protein receptor-related protein (LRP) [31]. The N-ter-
minal binding of calreticulin results in focal adhesion dis-
assembly and further to cell migration [32].
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Overall, many of these interactions are dependent on 
the conformational state of hTSP-1, which is regulated by 
calcium-ions, heparin, and heparan-sulfate [26]. Further-
more, the binding of various hTSP-1 ligands is inhibited 

by heparin and is highly susceptible to calcium concen-
tration [33]. For example, the type-III repeats contain a 
cryptic binding motif for cathepsin G and neutrophil 
elastase, which becomes exposed after a drastic structural 

Fig. 1. Functional domains of hTSP-1 with interacting ligands. Adapted from Bonnefoy et al. [130]. The asterisk 
represents the coiled-coil oligomerization domain of hTSP-1.
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change within hTSP-1 induced by a low calcium concen-
tration [34].

As a matricellular glycoprotein, hTSP-1 is involved in 
the organization of the ECM which is continuously pro-
cessed by proteases. Based on the multiple biological 
functions of hTSP-1, its extracellular and intracellular 
proteolytic degradation is also tightly controlled. The 
sensitivity of hTSP-1 towards the proteolytic activity of 
the proteases differs, depending on the origin of the gly-
coprotein. Endothelial cell-derived hTSP-1 has been 
shown to be degraded by plasmin, cathepsin G, and leu-
kocyte elastase [35]. In contrast, platelet-derived hTSP-1 
is known to inhibit the activity of several proteases, in-
cluding plasmin, neutrophil elastase, cathepsin G, and 
matrix metalloproteinases (MMP-2 and MMP-9) [34, 
36–38]. After secretion of hTSP-1 by platelets, the gly-
coprotein becomes a substrate for thrombin and factor  
XIIIa [26]. The intracellular degradation of hTSP-1 oc-
curs in the lysosome after endocytosis [39].

For more than 2 decades, the role of hTSP-1 during the 
pathogenesis of Gram-positive bacteria has been investi-
gated. So far, several surface-exposed proteins of S. pneu-
moniae and S. aureus have been identified to interact di-
rectly with hTSP-1 to promote adhesion and colonization 
[40–43]. Furthermore, these staphylococcal proteins are 
able to activate human platelets, the main source of hTSP-1  
[44, 45].

S. pneumoniae and S. aureus Target Matricellular 
hTSP-1

The contact of S. pneumoniae and S. aureus to host tis-
sue, predominantly to components of the ECM, is a pre-
requisite for the establishment of a stable colonization. 
The initial loose attachment occurs via glycoconjugates 
on the host surface, while the adhesion requires stronger 
and specific interactions to host proteins [46]. Pneumo-
cocci and S. aureus can bind directly to host cellular re-
ceptors, or, in most cases, the pathogens utilize matrix 
proteins as molecular bridges.

S. pneumoniae has been shown to exploit cell-bound 
hTSP-1 to promote in vitro adherence to and invasion 
into different host cells [47]. Pneumococcal adhesion to 
epithelial and endothelial cells was diminished by addi-
tion of the glycosaminoglycans heparin and heparan-sul-
fate as inhibitors. Likewise, hTSP-1-mediated pneumo-
coccal adhesion to epithelial cells was reduced after hepa-
ritinase treatment. In addition, blocking of hTSP-1- 
binding integrins had no effect on pneumococcal adher-

ence, suggesting that cell-bound glycosaminoglycans and 
proteoglycans function as hTSP-1 receptors. The hTSP-
1-binding component on the pneumococcal surface was 
thought to involve peptidoglycan [47]. However, in sub-
sequent studies, Binsker et al. [40, 41] identified 3 pneu-
mococcal proteinaceous virulence factors with hTSP-
1-binding activity (Table 1). One of the candidates, the 
pneumococcal adhesion and virulence factor B (PavB), is 
covalently incorporated into the peptidoglycan due to ex-
pression of an LPNTG motif. PavB is distributed in 100% 
of all tested pneumococcal isolates [48, 49]. The protein 
consists of a 42-amino acid (aa) signal peptide followed 
by repetitive sequences, designated as SSURE (Strepto-
coccal SUrface REpeat) domains, whose number varies 
from 5 to 9 repeats, depending on the pneumococcal 
strain [48, 50]. The SSURE domains vary in length and 
sequence and can be separated into 3 groups. The first 
repeat consists of 150 aa and differs from the remaining 
repeats but shows a high interstrain conservation. The 
core repeats exhibit a high intrastrain- and interstrain-
specific conservation and contain 152 aa residues. The 
last repeat is truncated, thereby consisting of 136 aa resi-
dues, and is conserved in different pneumococcal strains 
[48]. A flexible linker region is situated between the 
SSURE domains and the anchoring motif and is com-
posed of proline-rich repeats. The SSURE units harbor 
fibronectin- and plasminogen-binding activity, and 
PavB-binding strength positively correlates with the 
number of its repeats (Table 1) [48, 51]. 

The second identified hTSP-1-binding protein is the 
pneumococcal surface protein C (PspC, also known as 
CbpA or SpsA), which is a highly abundant virulence fac-
tor and encoded by > 75% of all analyzed pneumococcal 
strains [52–56]. The different names reflect the numerous 
biological functions of the surface protein, which arose 
from the different allelic forms of PspC. Sequence com-
parison of the pspC gene in 43 pneumococcal strains re-
vealed the expression of a modular protein, composed 
differentially in each strain [57]. The polymorphic PspC 
variants are classified into 2 groups, depending on the 
surface anchoring in the cell envelope of S. pneumoniae, 
and into 11 further subgroups based on the organization 
of functional and structural domains [57]. The classical 
PspC proteins (group I; subgroups 1–6) harbor a C-ter-
minal choline-binding module (CBM) responsible for the 
noncovalent attachment to phosphorylcholine moieties 
within cell wall-associated teichoic acids. In contrast, the 
PspC-like proteins (group II; subgroups 7–11) contain an 
LPXTG sortase A-motif required for the covalent anchor-
ing to peptidoglycan. The N-terminal α-helical region of 
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PspC is characterized by high variability with regard to 
size and sequence among the PspC proteins. Classical 
PspC proteins are composed of a 37-aa leader peptide, 
followed by the factor H-recognition sequence (aa 38–
158) and either 1 or 2 separate repeat domains (R1 and R2) 
[58]. The proline-rich region, which precedes the CBM, 
is highly homologous among the different PspC groups 
with an identity of the aa sequence of 80–100% [57]. In 
the N-terminal part, instead of distinct repeat domains, 
PspC-like proteins contain regions of predicted α-helical 
conformation.

The factor H-binding inhibitor of complement (Hic; 
PspC 11.4) is a representative of the PspC-like proteins 
and has been identified as the third pneumococcal hTSP-
1-binding protein. So far, 8 allelic variants of the PspC 
subgroup 11 (PspCs 11.1–8) are characterized by a 100% 
DNA and protein sequence homology among their N- 
and C-terminal domains. However, a high variation in 
length and aa composition of the proline-rich region be-

tween the PspC 11 variants has been determined [57, 59]. 
Hic is a 68.3-kDa protein that includes a 37-aa signal pep-
tide, followed by a stretch of 6 predicted α-helical regions, 
25 proline-rich repeats, and an LPSTG motif required for 
the covalent anchorage to peptidoglycan [41, 57].

PspC and Hic were shown to bind the fluid-phase 
components Factor H and vitronectin, whereas classical 
PspC proteins interact additionally with the complement 
component C4b-binding protein, the free secretory com-
ponent (SC), the SC of secretory IgA or polymeric Ig re-
ceptors, and the laminin receptor of endothelial cells (Ta-
ble 1) [54, 58–63].

It has been identified that the hTSP-1-binding pro-
teins PavB and PspC contribute to pneumococcal adher-
ence to human lung epithelial cells in an hTSP-1-depen-
dent manner [40]. Pneumococci deficient in both adhes-
ins are significantly impaired in adherence compared to 
the isogenic parent strain. In vitro binding studies under 
static and flow conditions confirmed a direct interaction 

Table 1. Pneumococcal and staphylococcal hTSP-1-binding proteins

Protein Platelet activation 
(hTSP-1 secretion)

Interaction with 
other host receptors

Pathogenic function

S. pneumoniae
PavB No [40] Fibronectin

Plasminogen
Involved in adherence / colonization [48, 50, 51]
ECM degradation and transmigration [48]

PspC (CbpA, SpsA) No [40] Vitronectin
Secretory component
Factor H
C4bBP
Laminin receptor

Inhibition of complement cascade [60]
Transcytosis across epithelial lineage [54, 61]
Adhesion to and invasion into host cells; 
Inhibition of complement cascade [58, 131, 132]
Inhibition of complement cascade [62]
Invasion of the cerebrospinal fluid [63]

Hic (PspC 11.4) No [41] Vitronectin Inhibition of complement cascade [59]
Factor H

S. aureus
AtlA Yes [45] Vitronectin Adherence to extracellular matrix/

plasma proteins [43,133]Fibronectin

Fibrinogen
Hsc70

Binding to host cell integrin α5β1 [133]
Adherence to extracellular matrix [133]
Invasion into endothelial cells [133]

Eap Yes [44, 45] Vitronectin Adherence to extracellular matrix/
plasma proteins [42]Collagen I

Fibronectin
Fibrinogen
C4b
ICAM-1

Inhibition of complement cascade [134]
Inhibition of neutrophil recruitment [135]

S. epidermidis
AtlE Yes [45] Vitronectin

Hsc70
Invasion into endothelial cells [43, 133]
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between recombinant PavB or PspC with immobilized 
hTSP-1. The use of truncated PavB and PspC constructs 
allowed the identification of the hTSP-1-binding site 
within the pneumococcal surface proteins. The strength 
of the interaction between the human glycoprotein and 
PavB correlated with the number of the SSURE units 
present in the recombinant protein fragment [40]. This 
observation is in accordance with the known interaction 
between PavB and human fibronectin [48, 51]. It has been 
suggested that the binding site for hTSP-1 in different 
PspC proteins is within the R domains and is most effi-
cient when 2 R domains are present [40].

Likewise, it has been found that the binding site for 
human vitronectin and the SC is located in the R domains 
of pneumococcal PspC [60, 61]. Interestingly, interaction 
studies using hSTP-1 and vitronectin simultaneously re-
vealed a competitive behavior of both glycoproteins in 
binding to PspC (unpubl. data). Similarly, a direct inter-
action between hTSP-1 and pneumococcal Hic was 
shown in complementary protein-protein interaction 
studies [41]. The strongest binding between hTSP-1 and 
different recombinant Hic proteins was observed with the 
construct containing the complete α-helical regions (aa 
38–245). This interaction differs from the Hic binding of 
human Factor H and vitronectin, in which the specific 
binding regions are narrowed down to the regions aa 39–
92 and aa 151–201, respectively. The identification of the 
hTSP-1-binding domain for the pneumococcal proteins 
in hTSP-1 has been narrowed down using recombinant 
PavB, PspC, and Hic proteins as competitors. Interest-
ingly, PspC and Hic seem to target the same hTSP-1-do-
main, which is distinct from PavB [41]. The interaction 
of the pneumococcal adhesins with hTSP-1 are charge-
dependent and can be inhibited by the glycosaminogly-
cans heparin and, with the exception of PavB, also chon-
droitin sulfate A. As a result, it is suggested that these 
interactions take place in the N-terminal domain and/or 
type-I repeats of hTSP-1. Remarkably, the heparin-bind-
ing domain of various human glycoproteins such as vit-
ronectin and fibronectin seem to be involved in the inter-
actions with these proteinaceous virulence factors of  
S. pneumoniae and they display a common motif [51, 59, 
60]. 

In 1991, Herrmann et al. [64] showed enhanced bind-
ing of S. aureus to hTSP-1-coated artificial surfaces. 
Staphylococcal binding to hTSP-1 was calcium-depen-
dent, as calcium was shown to change the conformation 
of hTSP-1. Interestingly, the S. aureus-hTSP-1 interac-
tion was almost completely blocked by heparin, suggest-
ing involvement of the heparin-binding domain of hTSP-

1. Furthermore, it was assumed that the hTSP-1 receptor 
on the bacterial surface is not of a proteinaceous nature. 
Comparable to the pneumococcal adherence, S. aureus 
binding to epithelial cells was significantly enhanced after 
hTSP-1 incubation, and peptidoglycan was suggested to 
be involved in hTSP-1-binding [47]. However, ligand 
overlay immunoblots identified 60-kDa and 72-kDa 
staphylococcal surface-associated protein capable of 
binding to hTSP-1 [65].

It was subsequently identified in complementary pro-
tein-protein interaction studies that the secreted surface-
associated protein Eap interacts with hTSP-1 [42]. Eap 
(also referred to as Map, p70) is a member of the se-
cretable expanded repertoire of adhesive molecules  
(SERAM) family of staphylococcal surface proteins and 
is expressed by > 98% of the tested clinical S. aureus iso-
lates [66]. Eap is a modular organized protein consisting 
of 4–6 tandem (EAP) repeats, depending on the S. aureus 
strain. It has been shown that single domains of Eap are 
able to bind hTSP-1. However, at least 2 domains of Eap 
are crucial for staphylococcal adherence to and invasion 
of host endothelial cells. Interestingly, Eap was shown to 
interact with further human matrix proteins such as vit-
ronectin and fibronectin (Table 1) [42].

Kohler et al. [43] identified the major autolysin Atl as 
another hTSP-1-binding protein using 2-dimensional 
SDS-PAGE with isolated surface proteins of S. aureus and 
subsequent hTSP-1 ligand overlay blot. Like Eap, the sur-
face-associated protein Atl belongs to the SERAM family 
and is highly conserved among all S. aureus strains [67]. 
Interestingly, the Atl proteins of S. aureus and S. epider-
midis are identical in their domain organization, share a 
high similarity in protein sequence and, consequently, are 
functionally interchangeable [68]. Atl is defined by a 
modular organization, consisting of a propeptide and an 
N-acetylmuramyl-l-alanine amidase, followed by 3 re-
peating units and an endo-β-N-acetylglucosaminidase. 
Following secretion, Atl associates via its repeats to the 
teichoic acids and peptidoglycan. The protein is cleaved 
proteolytically after the propeptide and after the second 
repeat, which results in the 2 separate biologically active 
enzymes, amidase and glucosaminidase, responsible for 
the cell wall turnover [69–71]. Remarkably, the binding 
site for hTSP-1 was located in the first 2 repeats, R1R2, and 
is distinct from the binding site for the teichoic acids 
based on an increased hTSP-1-binding after preincuba-
tion of staphylococci with the recombinant repeat do-
mains [43]. Complementary protein-protein interaction 
studies revealed that the binding activity of the 2 con-
nected repeats R1R2 to immobilized hTSP-1 is higher than 
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that of the single-repeat domain, R1. It is then plausible to 
suggest that the repeats R1R2 within Atl represent the 
minimum domain necessary for binding to hTSP-1. In-
terestingly, and in accordance with the other hTSP-
1-binding proteins of S. aureus and S. pneumoniae, Atl 
binds human vitronectin via its repeats R1R2. Vitronectin 
and hTSP-1 are able to competitively inhibit each other 
in binding to Atl R1R2 [43].

The Role of hTSP-1 during Hemostasis

Human TSP-1, accounting for 25% of the protein se-
creted by platelets, is a major protein component of plate-
let α-granules from where it gets rapidly released during 
platelet activation at sites of vascular injury. Human TSP-
1 contributes to platelet aggregation by binding directly 
to the platelet surface in a calcium-dependent manner 
[72, 73]. Platelets express a variety of surface receptors for 
hTSP-1, including CD36, CD47, and several integrins, 
which target different domains of the glycoprotein. Hu-
man TSP-1 further participates in hemostasis by stabiliz-
ing platelet-fibrinogen associates, by binding to platelet-
bound fibrinogen and influencing the structure of the fi-
brin clot [74–76]. Moreover, hTSP-1 increases the 
sensitivity and reactivity of platelets towards agonists 
such as thrombin [77]. Furthermore, the trimer hTSP-1 
acts as endogenous lectin in platelet aggregation and 
thrombus formation by the agglutination of platelets and 
erythrocytes [78–80]. Platelets from a patient with severe 
bleeding disorder were deficient in intact hTSP-1, and the 
aggregation activity of platelets induced by collagen could 
be restored by adding exogenous hTSP-1 [81]. Besides 
von Willebrand factor (vWF), hTSP-1 of the subendothe-
lium might serve as alternative substrate for platelet adhe-
sion under the physiological high-shear rates found in 
stenosed coronary arteries [82].

Pneumococcal and Staphylococcal Interactions with 
Soluble Platelet-Derived hTSP-1

Invasive pneumococcal and staphylococcal strains can 
overcome the epithelial barrier to invade deeper tissues 
and enter the bloodstream. They therefore come into 
contact with platelets, which are the most abundant cells 
after red blood cells, with a concentration ranging from 
150 to 400 × 109 platelets/L in healthy humans [83, 84]. 
The classical physiological function of platelets is the im-
mediate binding to the exposed subendothelium of dam-

aged blood vessels, aggregation, and thrombus formation 
to prevent excessive bleeding [85, 86]. In addition, plate-
lets mediate further cross-talk to the cells of the blood and 
the vessel wall [87]. Due to their high number in the cir-
culatory system and the expression of immune receptors, 
platelets can be considered as the first responding innate 
immune cells towards invading bacteria. Platelet activa-
tion is a common observation in septic patients, and it has 
therefore been suggested as biomarker for the develop-
ment of sepsis [88].

Rennemeier et al. [47] and Kohler et al. [43] uncovered 
that, most probably, only Gram-positive bacteria such as 
S. pneumoniae, S. aureus, or other streptococci like S. pyo-
genes, as well as Listeria monocytogenes, are able to ac-
quire soluble, nonimmobilized hTSP-1 on their surface. 
Hitherto, the surface proteins of S. pyogenes and L. mono-
cytogenes, which interact with hTSP-1, have not been de-
ciphered. It has been established that the pneumococcal 
adhesins PavB, PspC, and Hic that mediate binding to 
immobilized hTSP-1 are also involved in the acquisition 
of soluble hTSP-1 to the bacterial cell surface envelope 
[40, 41]. Different S. pneumoniae strains deficient in 
PavB, PspC, or both, showed an additive loss in their  
hTSP-1-binding capacity. Human TSP-1-binding was re-
duced up to 85% for the double mutants deficient in PavB 
and PspC, suggesting that these adhesins are major hTSP-
1-binding proteins on the pneumococcal surface. Similar 
observations were made using a deletion mutant of the 
PspC-like protein Hic, which is expressed by the clini-
cally relevant serotype 3 pneumococcus. Lack of Hic in 
the cell wall of S. pneumoniae A66 resulted in an impaired 
hTSP-1 acquisition of 40%. Although TSP-1-binding for 
the adhesins PavB, PspC, and Hic was shown, platelet ac-
tivation activity for these virulence factors could not be 
proven by using recombinant proteins or S. pneumoniae 
strains lacking the adhesins [40, 41].

Only a few studies regarding pneumococci-platelet in-
teraction exist, and they are partly contradictory. In 1971, 
Clawson and White [89] observed, for the first time, in 
vitro platelet aggregation caused by heat-inactivated  
serotype 8 but not serotype 24 pneumococci. In 2010,  
Keane et al. [90] suggested that the aggregation of plate-
lets is independent of the serotype and secreted products 
of S. pneumoniae. Furthermore, pneumococcal platelet 
aggregation is induced by encapsulated and nonencapsu-
lated strains and involves the TLR2 receptor [90]. How-
ever, a further study reported that encapsulated pneumo-
coccal strains failed to aggregate human platelets [91]. 
The same study also indicated that platelet activation by 
encapsulated and nonencapsulated S. pneumoniae strains 
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leads to platelet degranulation, which is independent of 
TLR2. This observation was confirmed using platelets of 
wild-type mice and knockout mice deficient in several 
TLRs, resulting in a comparable response of the platelets 
to S. pneumoniae [91]. Further in vivo animal models 
demonstrated that platelet depletion leads to enhanced 
pneumococcal dissemination and increased mortality, 
and that invasive pneumococcal disease promotes plate-
let activation and platelet hyperreactivity [92, 93]. So far, 
only the secreted pore-forming toxin pneumolysin could 
be identified as a platelet activation agent, which is in con-
trast to the observations made by Keane et al. [90]. Pneu-
molysin (Ply) activated human platelets in vitro via in-
duction of intracellular calcium fluxes and P-selectin ex-
pression at concentrations similar to those found in 
severe pneumococcal infections [94]. However, platelet 
activation was dependent on pore-formation and did not 
involve an agonist-receptor mediated outside-to-inside 
signaling cascade. Likewise, Ply generated the production 
of the platelet-activating factor (PAF) and thromboxane 
A2 (TxA2) in human neutrophils, leading to a protease-
activated receptor 1 (PAR1)-mediated heterotypic neu-
trophil-platelet aggregation [95]. A recent study identi-
fied the binding of the pneumococcal adhesin RrgA to the 
platelet endothelial cell adhesion molecule (PECAM-1) 
on endothelial cells, a receptor that is also present on hu-
man platelets [96].

Although the mechanism by which S. pneumoniae acti-
vates human platelets has not yet been fully deciphered, it 
becomes more evident that platelet activation and subse-
quent release of hTSP-1 occurs during its pathogenesis. In-
terestingly, Niemann et al. [97] showed that S. pneumoniae 
adheres to platelet aggregates and is mediated by fibrin and 
hTSP-1. As a result, the capability of S. pneumoniae to tar-
get platelet-bound hTSP-1 could be an important dissemi-
nation strategy during the manifestation of an invasive dis-
ease during pneumococcal infection (Fig. 2).

Likewise, various S. aureus lab strains as well as clinical 
isolates are able to recruit soluble hTSP-1 to the surface 
[43]. The secreted surface-associated adhesins Atl and Eap 
are involved in this process. Preincubation of S. aureus 
with the recombinant repeat domains R1R2 of Atl resulted 
in increased hTSP-1-acquisition to the cell surface of S. au-
reus. Remarkably, Atl and Eap are also able to induce plate-
let activation and the subsequent release of platelet-derived 
hTSP-1 [45]. The domains of Atl and Eap responsible for 
platelet activation could be identified. The amidase do-
main of Atl, which comprises the enzymatic amidase activ-
ity and the hTSP-1-binding repeats R1R2, was described to 
be crucial for the activation and aggregation of human 
platelets. The platelet activation domain within Eap could 
be narrowed down to the connected Eap repeats 3 and 4 of 
the S. aureus strain Mu50 [45]. Intriguingly, domain 3 of 
Eap encoded in the Newman strain, which shows a high 

a b c

Fig. 2. S. pneumoniae and S. aureus target hTSP-1 in the ECM and 
thrombus. a Pneumococcal surface proteins PavB, PspC, and Hic, 
as well as the staphylococcal surface-associated proteins Eap and 
Atl, interact with immobilized matricellular hTSP-1. The human 
glycoprotein is located underneath the epithelial lineage, which 
becomes exposed due to damage of the epithelial barrier and is 
thereby used as adhesive substrate for bacterial colonization. b In 

the circulation, invading S. aureus is able to activate human plate-
lets via the surface proteins Atl and Eap, leading to release of hTSP-
1 from the platelet α-granules. Likewise, pneumococci induce 
platelet activation, albeit with a yet-unknown mechanism. c hTSP-
1 is incorporated within the forming thrombus, which can be ex-
ploited by S. pneumoniae and S. aureus to mediate further coloni-
zation and dissemination within the host.
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similarity to its ortholog in the staphylococcal Mu50, was 
shown to bind most efficiently to hTSP-1 [42].

The dissemination mechanism suggested for S. pneu-
moniae applies to S. aureus as well. Platelet activation in-
duced by S. aureus is a common complication during bac-
teremia, and a manifestation of disseminated intravascu-
lar coagulopathy (DIC) and infective endocarditis (IE). A 
previous study showed that platelet α-granule protein, 
especially hTSP-1, is required to form S. aureus-platelet 
associates [98]. Therefore, hTSP-1 might function as a 
crucial element in the establishment of DIC and IE, and 
it is targeted by staphylococcal surface proteins (Fig. 2).

Human TSP-1 may serve as a substrate for the pneumo-
coccal and staphylococcal adherence-mediating coloniza-
tion of the ECM of the respiratory epithelium, the suben-
dothelial matrix, or even within the forming thrombus 
during platelet activation (Fig. 2). Besides its physiologic 
occurrence, hTSP-1 has also been found on prosthetic de-
vices, such as catheters entering the bloodstream or the 
cerebrospinal fluid. For example, hTSP-1 was detectable 
on peritoneal dialysis catheters as well as hydrocephalus 
shunts and ventricular catheters [99, 100]. This exposed 
hTSP-1 could serve as an adhesion site for invasive S. pneu-
moniae and S. aureus in patients undergoing surgery.

Concluding Remarks and Future Perspectives

The human pathogens S. pneumoniae and S. aureus 
have evolved manifold strategies to colonize and invade 
the human host. To ensure a successful colonization, ei-
ther on the epithelial layer or in the bloodstream, the bind-
ing of human glycoproteins seems to be the crucial ele-
ment. Thrombospondin-1 is, beside other human glyco-
proteins such as vitronectin or fibronectin, a notable 
substrate for bacterial adhesion. So far, 3 pneumococcal 
and 2 staphylococcal surface proteins have been discov-
ered to interact with hTSP-1. Remarkably, all bacterial ad-
hesins, except Hic, consist of repetitive domains, and the 
number of repeats determines the efficiency of hTSP-1 
binding. The pneumococcal and staphylococcal surface 
proteins do not share homology of their protein sequence 
or secondary structure. However, the bacterial proteins 
seem to bind within the heparin-binding domain and/or 
the type-I repeats of hTSP-1, as seen by inhibition of bind-
ing of the bacterial proteins in the presence of heparin. 
Additionally, these interactions are charge-dependent.

Interestingly, pneumococcal PspC and Hic as well as 
staphylococcal Atl and Eap interact with human vitro-
nectin. Like hTSP-1, vitronectin is part of the ECM, and 

it also functions as a complement inhibitor in the circula-
tory system. Different studies have shown that the inter-
actions between bacterial proteins and hTSP-1 can be di-
minished in the presence of vitronectin. The binding af-
finity of the pneumococcal and staphylococcal surface 
proteins seems to be higher towards vitronectin than to-
wards hTSP-1. Notably, the heparin-binding domain of 
vitronectin is also involved in these interactions, as shown 
for PspC and Hic.

One question arises: Why do the vitronectin-binding 
proteins also interact with hTSP-1? Pneumococci and 
staphylococci are versatile pathogens which can cause a 
broad spectrum of diseases at different sites of the human 
body, ranging from mild local infections such as otitis 
media and skin lesions to severe and life-threatening 
complications like pneumonia, meningitis, and sepsis. In 
all these niches of the human host, glycoproteins are pres-
ent and serve as substrates for bacterial adhesion and col-
onization. Which glycoprotein is preferentially bound is 
a matter of availability at the site of bacterial infection. 
Instead of expressing surface proteins, which recognize 
only 1 human component, the hTSP-1-binding adhesins 
of S. pneumoniae and S. aureus are promiscuous. Thus, 
the surface proteins of the Gram-positive pathogens al-
low recognition of at least 1 human glycoprotein to en-
sure colonization at almost every site of the human body.

Studies regarding the recognition of hTSP-1 by the 
surface proteins of Gram-positive bacteria are still in their 
infancy. The lack of structural data of different hTSP-1 
domains and the difficulty to obtain a heterologous ex-
pression limits the study on hTSP-1/bacterial interac-
tions. Furthermore, hTSP-1 is involved in signal trans-
duction between host cells. However, information con-
cerning altered signaling pathways in different human 
cells, such as epithelial cells or platelets, after bacterial ex-
posure in an hTSP-1-dependent manner is not available 
so far. All recent investigations have been performed in 
vitro and have focused predominantly on the identifica-
tion of binding domains and the impact of hTSP-1 on 
bacterial adhesion. These initial but interesting findings 
must be further expanded under in vitro conditions in cell 
culture and, most importantly, in suitable in vivo animal 
models to explore the role of hTSP-1 in Gram-positive 
bacterial infections. A previous study has analyzed the 
impact of hTSP-1 deficiency in mice on the outcome of 
Escherichia coli sepsis [101]. Interestingly, the absence of 
hTSP-1 was associated with an improved outcome in mu-
rine models of sepsis, explained by the negative regula-
tion of innate immune cells by hTSP-1. As mentioned 
previously, Gram-negative bacteria are most probably 
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not able to interact directly with soluble hTSP-1. This 
highlights the importance of investigating the in vivo role 
of hTSP-1 in murine disease models using Gram-positive 
pathogens, such as S. pneumoniae and S. aureus.
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