
ORIGINAL RESEARCH
published: 27 May 2020

doi: 10.3389/fvets.2020.00281

Frontiers in Veterinary Science | www.frontiersin.org 1 May 2020 | Volume 7 | Article 281

Edited by:

Victoria J. Brookes,

Charles Sturt University, Australia

Reviewed by:

Annemarie Kaesbohrer,

University of Veterinary Medicine

Vienna, Austria

Gianluigi Rossi,

University of Edinburgh,

United Kingdom

*Correspondence:

Hartmut H. K. Lentz

hartmut.lentz@fli.de

Specialty section:

This article was submitted to

Veterinary Epidemiology and

Economics,

a section of the journal

Frontiers in Veterinary Science

Received: 27 November 2019

Accepted: 27 April 2020

Published: 27 May 2020

Citation:

Brzoska L, Fischer M and Lentz HHK

(2020) Hierarchical Structures in

Livestock Trade Networks—A

Stochastic Block Model of the

German Cattle Trade Network.

Front. Vet. Sci. 7:281.

doi: 10.3389/fvets.2020.00281

Hierarchical Structures in Livestock
Trade Networks—A Stochastic Block
Model of the German Cattle Trade
Network
Laura Brzoska 1,2, Mareike Fischer 1 and Hartmut H. K. Lentz 2*

1 Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany, 2 Institute of Epidemiology,

Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany

Trade of cattle between farms forms a complex trade network. We investigate partitions

of this network for cattle trade in Germany. These partitions are groups of farms with

similar properties and they are inferred directly from the trade pattern between farms.

We make use of a rather new method known as stochastic block modeling (SBM) in

order to divide the network into smaller units. SBM turns out to outperform the more

established community detection method in the context of disease control in terms of

trade restriction. Moreover, SBM is also superior to geographical based trade restrictions

and could be a promising approach for disease control.
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1. INTRODUCTION

The trade with living animals poses a major risk for the spread of infectious diseases. The latter
include foot-and-mouth disease (1–3) and bovine virus diarrhea (4, 5), as well as zoonotic diseases,
such as bovine tuberculosis (6, 7). Cattle farmers typically sell and/or purchase animals at a
relatively high frequency and to different trading partners. Therefore, the trade between all involved
farmers forms a complex network, where in case of an outbreak many farms can be infected within
a short period of time.

In order to understand the structure of these trade connections as well as to quantify the risk
of infection spread, the trade data can be represented as a complex network that can be analyzed
mathematically (8, 9). Concerning trade data, all EU member states are obliged to report any cattle
movement to a central database (10). The usage of this data is, however, typically restricted to
competent authorities. Once the data is available, common network analyses focus on ranking the
involved farms – nodes in the network with edges, i.e., trade connections, between them – according
to their suitability for disease containment and surveillance. Highly ranked farms are then called
central nodes. It has been shown that node rankings can be helpful for efficiently implementing
countermeasures such as targeted vaccination (11–15). The second common goal of network
analyses is understanding the large scale structure of the studied system. Typically, livestock trade
networks in developed countries consist of up to 105 farms (15–19). Therefore, finding inherent
structures that allow to partition a network into small subsets of nodes that are in the best case
independent from each other, is a promising way to gain an understanding of the system as a whole.
In addition, partitioning the network has another advantage: epidemics can be fought considerably
better in systems consisting of smaller units. Moreover, a trade network could be constructed out
of many small independent subunits on purpose. This is known as compartmentalization and can
be considered as a method for passive disease protection.
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The simplest example of such a partitioning is the component
structure. It determines which pairs of farms can potentially
infect each other at all via trade, directly or indirectly. In other
words, the component structure describes whether the network
consists of a large continent or a number of small disconnected
islands. The component structure of a large network such as
livestock trade typically yields very large structures that can be
used to assign nodes to two disjoint risk classes (13, 15, 20–23).
First, nodes that can reach a large number of other nodes through
trade and second, nodes that can only reach a small number of
others through trade.

Although partitioning nodes according to the component
structure is a useful tool for risk assessment, the component
structure of livestock trade networks is typically dominated by a
so-called giant component (15–19, 24). That is, these networks
consist of continents instead of small islands. Consequently,
partitioning the network according to components does in
general not yield practicable groups for disease control.

In order to find groups in networks that are applicable
for disease control, the detection of so-called communities or
modules has gained considerable attention in veterinary science
in the last years (25–30). Modules are similar to components, but
allow disjoint groups to be loosely connected. More precisely, a
module is a group of nodes that are densely connected to each
other, while they have only few connections to other modules.

Finding modules is a promising way to define compartments
in networks that can in the best case be isolated from each other
in case of an outbreak. Moreover, by now a number of methods
is available to find modules even in large networks (31–34).
Interestingly, it has been shown that in many cases the modules
found for livestock trade networks also show a high spatial
clustering, despite the fact that no spatial information is used to
infer them [cf. Lentz et al. (26, 27, 29, 30)]. This makes modules
potentially interesting for disease control (35, 36). On the other
hand, it is well-known that module detection has a resolution
limit, i.e., the detected modules cannot be arbitrarily small (34,
37). As an example, the modules found for pig trade in Germany
have a scale of federal states (26). Therefore, partitioning such
networks into modules is in most cases not feasible for disease
control.

Here we use a relatively new method, Bayesian stochastic
blockmodeling or simply stochastic blockmodeling (SBM) (38),
to partition the cattle trade network in Germany into relatively
small groups. The SBM method can detect smaller groups than
community detection and can even find other structures than
densely connected groups of nodes (38). Moreover, stochastic
blockmodeling is able to find hierarchically structured groups.
Therefore, we can analyze node groups of smaller sizes than those
of the classical modules. In order to be applicable to disease
control, these groups should (1) show geographical clustering
and (2) have a resolution of at least district size, i.e., roughly 30
km (mean district diameter in Germany).

In this work, for the first time we analyze cattle trade
in Germany as a complex network. We thereby put a focus
on the detection of inherent groups in the network and
evaluate the feasibility of different partition methods for disease
control. These are community detection for finding modules,

a stochastic block model, and a nested stochastic block model
with hierarchical structure. Since stochastic blockmodeling is a
rather novel method in veterinary applications, we also provide a
detailed explanation of the method.

In order to assess the eligibility of modules and block models
for animal disease control, we simulate epidemic outbreaks on
the network and evaluate different control strategies based on
trade restrictions according to different network partitionings.
The trade restrictions are realized using targeted edge removal
in the network. To compare our results to established methods
for disease control, we also simulate trade restrictions based on
the geographic closeness of nodes.

This article is organized as follows: We first perform a
network analysis of the trade data. Then, we give an explanation
of different methods for structure inference, i.e., community
detection and the stochastic block model. Finally, we simulate
outbreaks on the network and apply different control strategies.
The results are integrated into the respective sections.

2. PROPERTIES OF THE NETWORK

2.1. Data
In this work we analyze an excerpt of the HI-Tier Database
(39). The dataset contains cattle movements between farms in
Germany from 2010-01-01 until 2014-12-31. Each trade item
contains the source farm, target farm and the time of movement.
Source and target farms are represented as nodes in the network
and item as described above is a trade link. In this work, trade
links are aggregated over time so that two nodes are connected
by a directed edge whenever there is at least one trade link
between them. Overall the network consists of 209,336 nodes
and 1,822,373 edges. Using the trade link data without time
aggregation yields a temporal network with the same number of
nodes, but with 15,416,850 trade links and an observation period
of 1,825 days.

2.2. Network Analysis
In this section we perform a network analysis of the cattle trade
data. A summary of the network measures is given in Table 1.
The network is represented by a graph G = (V ,E), where V is
the set of nodes and E is the set of (directed) edges, where each
edge connects a node pair.

The network can be represented by an adjacency matrix A,
where an entry (A)ij = 1, if there is an edge from node i to
node j, and 0 otherwise. The degree ki of a node i is the total
number of its neighbors (ingoing and outgoing), i.e., the number
of its trade partners. Since we consider a directed network, we
also distinguish between in-degree and out-degree for each node.

Indirect connections between nodes, traversing an arbitrary
number of edges and no edges or nodes more than once, are
called paths. If a path between two nodes i and j exists, we can
write i → j, and otherwise i 6→ j. A shortest path between
two nodes is a path between them with a minimum number
of edges. For the cattle trade network the average shortest path
length is 4.4 meaning that a potential disease would take only
4.4 steps on average to infect any node in the network. The
maximum shortest path length is called diameter and has a value
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TABLE 1 | Properties of the static network.

Property Value

Number of nodes 209,336

Number of edges 1,822,373

Mean degree 17.4

Mean shortest path length 4.4

Diameter 17

GWCC size 0.99

GSCC size 0.69

GIC size 0.21

GOC size 0.07

Path density 0.54

of 17 for the studied network. Considering the set of all shortest
paths between all nodes in the network, the path density ρp
is the number of such paths normalized by the number of all
possible paths. The path density represents the probability that
a randomly chosen node pair is connected in the network. In
other words, ρp increases with the overall network connectivity,
such that ρp → 1 implies that all node pairs are connected via
paths and ρp → 0 implies that the network is fragmented. For
our network we have ρp = 0.54.

A concept very related to paths are connected components,
which are subsets of nodes C ⊂ V such that there is a
path between all node pairs in this subset. It is a well-known
feature of large networks that they possess a so-called giant
component, which means that the largest connected component
dominates the network and is much larger than the second
largest one (9). Giant components form the backbone of
complex networks, since they guarantee for the most important
feature: connecting nodes. Ignoring the edge directions, the
resulting giant component is called giant weakly connected
component (GWCC). It contains about 99% of the nodes in
our network, i.e., almost all nodes are connected ignoring
edge directions. If edge directions are explicitly considered, the
resulting giant component is called giant strongly connected
component (GSCC), and it only contains nodes that can reach
each other on directed paths. The GSCC of the German cattle
trade network has a size of 69% of the network nodes. Nodes that
are not part of the GSCC, but can reach the latter by a path, form
the giant in-component (GIC). This component consist of 21%
of the network nodes. In addition, the giant out-component is
formed by nodes that can be reached from the GSCC, but do not
belong to it. It contains 7% of the network nodes.

3. STRUCTURE INFERENCE IN THE
NETWORK

In order to efficiently implement disease control in the network
based on its topology, the network has to be partitioned into
groups that can be easily isolated from each other. It seems
natural for this purpose to utilize components as discussed above.
However, components are not practicable for disease control due

to the existence of the giant component. The latter implies that
most nodes belong to a single group and most other groups are
irrelevant for disease spread.

On the other hand, the cattle trade network should be
comprised of natural substructures—e.g., densely connected
node groups or production chains. Merging these subgroups
yields the observed network. They are not known from the data
set and it is the aim of this section to infer these structures.
We first use the well-established method of community
detection, and then infer structures using the stochastic block
model approach.

3.1. Community Detection
A community or module is a set of nodes, where the nodes have
significantly more edges within their community than to other
communities. Partitioning the network into communities in an
optimal way is known to be an intractable problem for large
networks (33). One way to obtain an appropriate partitioning
of the network into modules is to optimize the modularity
function (40, 41)

Q = fraction of edges within modules

− expected fraction of these edges. (1)

The modularity function maps a given partitioning of the
network onto a single number. Optimizing Equation (1)means to
find the node partition that gives the highest possible value of Q.
A systematic method to find an optimal partitioning maximizing
the modularity function has been proposed in Newman (25).
However, the latter method is rather slow and faster methods that
perform better even on larger networks have been developed (31,
42). For this work we used the Infomap algorithm introduced in
Rosvall and Bergstrom (32), which showed a good performance
in our network. It can be applied to directed networks and allows
for module detection in linear time, that is, the computation time
scales linearly with the number of nodes (43).

After applying the community detection algorithm to the
cattle trade dataset, we find modules of sizes between 1 and
73,024. However, 99.89% of nodes are in the 10 largest modules.
A map with the 10 largest modules is shown in Figure 1. We
note that the detected modules show a high degree of spatial
clustering, even though no geographical information has been
used for the computation. Some of the found modules reflect
borders of federal states (e.g., Rhineland-Palatinate or Hesse).
Module 1 represents a whole region of Germany (Northern
Germany). In addition, the modules show geographical overlap,
which is more pronounced for modules 2 and 3.

3.2. Bayesian Stochastic Block Model
The idea behind a block model of a network is to find groups of
nodes belonging together in some way and these groups look like
dense blocks in the adjacency matrix A (44, 45). These blocks are
also called building blocks of the network. As an example, if a
network has a community structure as explained in the previous
section, the adjacency matrix can be reordered such that nodes
of the same module have neighboring indices (say module 1 has
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FIGURE 1 | Spatial distribution of the detected groups after modularity

maximization. The ten biggest modules are shown. They show high spatial

correlation.

nodes 1, . . . , 100, module 2 has nodes 101, . . . , 234, and to forth),
see Figures 2A,B. Then, the matrix has dense blocks (many
edges within communities) along the diagonal, while the rest is
almost empty (few edges between different communities). The
reason for this shape is that by definition node pairs of the same
module have many links, while links to other modules are rare.
As opposed to modules, a block model can have a more general
structure, e.g., blocks far from the diagonal and no blocks on the
latter. An example is shown in Figure 2C. Besides the fact that a
block model can resolve more complex network structures than
modules, dividing blocks iteratively yields a so-called hierarchical
block model. As a consequence, a stochastic block model can
resolve relatively small groups in a given network. In fact, it
does not suffer from the resolution limit known for community
detection (37).

The aim of this section is to infer the underlying block
structure from a given network. We now give a brief
mathematical sketch of block model inference following
Peixoto (45).

At first, we consider the case where the block membership
of each node is known in the first place. The network has B
blocks and the block membership of the nodes is stored in a

vector b, where the entry bi is the block membership of node
i. Furthermore, the number of edges between blocks r and s is
stored in a matrix E with entries (E)rs. If we assume that nodes
of the same block are statistically indistinguishable, the matrix
E defines a set of all possible networks with the same topology.
Such a set is called ensemble. This ensemble is the set of all virtual
copies of the network with the same number of edges between
blocks, i.e., the same E. The number of nodes is also constant.

Within this ensemble, each possible network can be
represented by an adjacency matrix A. Recalling that the node
partition b is known, the probability distribution of the possible
networks is

P(A|b). (2)

Note that this distribution is a mapping from each virtually
possible network to a probability. Due to the large number
of possible network configurations, Equation (2) is in general
a complicated function. One way to obtain the form of
the distribution Equation (2) is to maximize the entropy
(or equivalently minimize the information), under certain
constraints. The entropy is given by

S = −
∑

A

P(A|b) lnP(A|b), (3)

and the constraints are first, the matrix E containing the edges
between groups, and second the normalization of the probability
distribution of the networks in the ensemble. Using the method
of Lagrange multipliers yields an equation for the desired
probability distribution (45).

So far, we have considered the case where the node
partitioning was known in the first place. Of course, the problem
setting here is exactly the opposite: we have an observed network
and want to infer a plausible partition of it. The central idea of
the inference algorithm used here is to reverse the distribution
Equation 2 using the Bayes formula

P(b|A) =
P(A|b)P(b)

P(A)
, (4)

where P(b|A) is the posterior distribution of network partitions
given an observed network and P(b) is the prior distribution, i.e.,
the distribution of network partitions in the absence of data. If
we make no other assumptions, then each partition is equally
likely, say P(b) = 1/Np, where Np is the number of possible
partitions. The term P(A|b) is called evidence and describes the
impact of the network data on the prior information, and P(A) is
a normalization constant.

This way we obtain a probability distribution of network
partitions (b) given an observed network (A). The task of
finding the optimal partition is equivalent to finding the partition
maximizing the posterior distribution, i.e., the left-hand side of
Equation (4).

Although formal solutions for this equation exist, these
solutions are too complex to find their maxima or even sample
from them. Note that, similar to the modularity function
Equation (1), Equation (4) maps each possible partition onto
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FIGURE 2 | Three different representations of the same adjacency matrix. Through ordering the nodes in various ways we obtain different patterns. Panel (A) displays

a random order of nodes. Panel (B) shows a modular structure, whereas in (C) a block structure is observed.

FIGURE 3 | Partition after a block model with 382 blocks. The sizes of blocks

roughly correspond to sizes of districts.

a probability. The combinatorial number of such partitions Np

(known as the bell number) is extremely large, and finding the
optimal partition of a network is an NP-hard problem, i.e.,
it is intractable for large networks. For this reason, we utilize
a Markov Chain Monte Carlo (MCMC) approach. The idea
behind this approach is to start with an arbitrary partition b0

TABLE 2 | Block sizes of the hierarchical model.

Level Number of blocks

j 1

i 2

h 4

g 12

f 39

e 84

d 180

c 370

b 974

a 2,956

The block size is measured as the number of blocks in the subjacent level.

and change this partition to b1. This can be realized changing
the group membership of a single node. Such a change is
accepted, if the resulting partition b1 increases the posterior
distribution (left-hand side of Equation 4). Even if it decreases
the latter, it is still accepted with a certain probability. In the
long term this procedure results in a random walk in the space
of possible partitions and defines a way to sample from the
posterior distribution. For the above procedure to converge to the
maximum of the distribution, one can slowly reduce the mobility
of the random walk, until it remains at the most probable
position. This is known as simulated annealing (46).

Although the algorithm above is applicable to the partition
problem, it has been shown that convergence can be slow on large
networks. For this reason, an optimizedMCMCmethod has been
proposed in Peixoto (47). This method is a greedy agglomerative
heuristic, i.e., we start with each node being one block and
then group nodes together successively. In contrast, in a divisive
algorithm, one would start with the whole network as one block
and divide until only nodes are left. Divisive algorithms, however,
are computationally expensive and agglomerative algorithms are
commonly used for large datasets.

The purpose of this section is to give an intuitive
understanding of the method of inferring block structures. For
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FIGURE 4 | Distributions of block sizes on the different levels. The lower levels

have smaller block sizes, while the upper levels are larger.

a far more comprehensive explanation the reader is referred to
Peixoto (38, 45). An implementation of block model inference
including the hierarchical version is provided in the software
package graph-tool (48).

Using this software package, we infer a block partition
of the German cattle trade network and obtain a partition
into 382 blocks. The sizes of blocks are between 1 and
2,887. A map with the block membership of the farms is
shown in Figure 3. Similar to the modules, we note that
the found blocks show a high degree of spatial clustering,
although no geographical information has been used
to compute them. Some of the detected blocks reflect
borders of districts. Furthermore, some blocks show a
geographical overlap.

In addition to this partitioning technique, a block model
partition can be inferred for each detected block iteratively
(38). The result is called hierarchical or nested model. It
has the following properties: First, the outcome is a block
model where each block is divided into smaller sub-blocks.
Second, the resolution of the detected blocks can be increased
this way, i.e., blocks found in the lowest hierarchy should
have a smaller size than the blocks found using the non-
hierarchical method.

Using a nested block model to resolve the hierarchical
structure of the network, we obtain a hierarchy of ten levels,
which are labeled from a to j. Table 2 contains the number of
blocks in each level, while Figure 4 displays the distributions
of the block sizes. We consider the highest three levels g, h
and i in the hierarchy. Level j represents the whole country
and is therefore trivial. Figures 5A–C shows the various levels.

As above the blocks show a high geographical correlation. The
blocks of level i strictly divide the country into north (red)
and south (blue) Germany. The subjacent level h divides the
farms by the borders of the regions north (red), central (yellow),
and south Germany (blue). Blocks of level g (Figure 5C) still
reflect larger geographical regions. The north-eastern block
(light green points in Figure 5C) contains large parts of
federal states like Mecklenburg-Western Pomerania, Schleswig-
Holstein, Brandenburg and parts of Lower Saxony. Some
blocks reflect borders of federal states (e.g., Bavaria, Baden-
Wuerttemberg) (blue points in Figure 5C). The red block spans
over several federal states (e.g., Lower Saxony and North Rhine-
Westphalia and others). It also shows a large geographical
overlap with the light green block. Figure 6 shows the trade
links (network edges) between all blocks. The hierarchy is
represented by the blue tree, where the root node represents level
j (whole Germany), its neighbors are level i and so on. In the
center the dominant branch separating northern from southern
Germany is clearly visible. Although the trade structure appears
to be complicated, Figure 6 demonstrates that trade links are
distributed rather homogeneously between the blocks.

Finally, we check to what extent the nested block model
gives a similar result as the non-nested version. Therefore, we
choose level c (Figure 7), since the number of blocks here is
similar to the non-nested version. The figure shows qualitative
similarities to the non-nested model (Figure 3). In addition, the
SBM on level c has similarities with the detected modules (see
Supplementary Material).

4. USING THE INFERRED STRUCTURES
FOR DISEASE CONTROL

We evaluate the applicability of the detected modules and
block models on disease control by simulating epidemics on
the network. Thereby, we utilize different control strategies
(see below) based on trade restrictions and compare them to
established methods. The established control strategy is based on
geographical trade restrictions around a certain radius around
the farm where a disease was detected.

The infection process is modeled using a so called SI-model,
where an infected farm (I) contaminates a susceptible farm (S)
upon trade contact with a rate β . Once a farm i is infected, it can
infect its neighbors, i.e., farms being connected to i by a trade
link, with rate β . An infected farm stays infectious during the
whole simulation. In order to guarantee stable results, we have to
choose different initial conditions. Thus, we first sample 10 blocks
and then sample 10 nodes out of each block as starting nodes. If
we modeled the epidemic process as explained, the disease would
infect large fractions of the network within a few steps, since the
network is static and all infectious links are permanently active.
Therefore, we mimic the temporal nature of trade considering
only a fraction of network edges as being present at each step.
This fraction can be estimated considering the time span, where
a farm does not trade. Out of the data, we observe that nodes are
only active every 10 days on average. Figure 8 shows the waiting
time distribution (the time span where a farm does not trade) for
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FIGURE 5 | Hierarchical structure after a nested SBM. The levels i (A), h (B), and g (C) are geographically shown. The blocks show high spatial correlation on all levels

of the hierarchy. Panel (D) shows the hierarchy tree.

all nodes of the network. Since the mean value of the waiting time
distribution is around 10, we mimic the waiting times using the
infection rate, and set β = 0.1.

In order to assess the performance of different control
strategies on the simulated outbreak, we simulate SI dynamics for
the different starting nodes and compare the results of the non-
nested and nested stochastic block model (level c) to the modules
found with community detection and the geographical method
as explained above. We thereby model disease control measures
in terms of trade restrictions. These are realized by removing
edges of the trade network according to different schemes. The

first control strategy is based on geographical trade restrictions
around a 10 km radius of the index farm after detection of the
disease (49). Second, we evaluate the applicability of the found
modules and blocks by applying trade restrictions at the (edge)
boundary of the respective structures. That is, we remove all
edges of the module/block of the index farm that point to other
modules/blocks, respectively. The different strategies are shown
in Figure 9.

Assuming that a disease will spread freely only before it is
detected, we remove the trade contacts regarding the infection
start node after a detection time td. We choose td = 1 day.
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FIGURE 6 | Hierarchy of trade links between blocks of Figure 5. The outer

nodes correspond to blocks on level d. The blue tree shows the hierarchy and

each node of the tree corresponds to a block. The dominant branch in the

center separates the northern from the southern German blocks.

This can be considered a best case scenario. Indeed, the detection
time depends on the incubation period of the considered disease.
However, choosing other values for the detection time does not
change the results qualitatively (see Supplementary Material).
Due to the fact that the infection process is stochastic, we run
the simulation ten times for each starting node.

Figure 10 shows the results of the different control strategies
for the nested and non-nested block model. We determine
for each strategy the mean values of the outbreak size and
the number of edges, which were removed in the simulation.
As a consequence of this result the block model leads to a
slightly higher number of removed edges in comparison to the
geographical method. However, the outbreak size of the block
model is significantly smaller. Both strategies, the non-nested
block model and the geographical method, perform better than
module based trade restrictions in the sense that many edges
have to be removed for the latter case and the outbreak sizes
are still relatively large. This is due to the fact that the size of
the modules is significantly larger than the sizes of the other
two groups. Figure 11 shows the sizes of the different groups on
a map.

Concerning the nested block model (level c), the results are
very similar to the non-nested case (see Figure 10). The only
difference here is that slightly more edges have to be removed for
trade restriction.

An evaluation of different values for the parameters detection
time d, infection rate β , and radius around the index farm for
trade restrictions, is provided in the Supplementary Material.

FIGURE 7 | Spatial distribution of level c of the nested block model. This level

has a block size similar to the non-nested case.

FIGURE 8 | Farm waiting time distribution. The waiting time is the interval in

which a farm is not active, e.g., it does not trade. The mean value is roughly

10, i.e., farms trade every 10-th day on average. Therefore, we choose an

infection rate β = 0.1.

All parameters affect the outbreak sizes and number of removed
edges systematically, but do not alter the qualitative results of
Figure 10.
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FIGURE 9 | An example of applying the different control strategies of a network. The red framed node represents the index node. We remove all edges of the module

or block of the index node that point to other modules or blocks, respectively. Panel (A) shows the whole the network. The geographical strategy is represented in (B).

Nodes which have a small distance to the index node, build a group (red colored) and there are no edges to nodes with a long distance to the index node (gray). In

(C), we see a possible result of the stochastic block model with the blocks. All edges from the block of the index node to the other blocks are removed. A similar result

is shown in (D), which presents the groups of modularity optimization. It should be noted that there the group is still similar to the corresponding block but contains

more nodes.

FIGURE 10 | Outbreak size and number of removed edges for different control

strategies. Geographic based disease control (red) compared with control

based on the block model. Trade restrictions isolating the block of the nested

block model of the index node are shown in black, trade restrictions isolating

the module of the index node are green. Furthermore the average error of the

mean value is shown for each result.

In summary, geographically based trade restrictions are
superior to module based restrictions. However, stochastic block
model based trade restriction outperforms the geographical
method yielding smaller outbreaks at a similar number of
removed edges.

5. DISCUSSION

In this work, we have analyzed the cattle trade network in
Germany for the first time. The focus was to evaluate the
applicability of different partitions of the network for disease
control. As a relatively new method for network partitioning we
have used a stochastic block model to infer densely connected
farm groups. In contrast to the well-established community
detection algorithms, the stochastic block model is capable of
detecting relatively small farm groups and can even be used
to infer a hierarchical structure. We have found that applying
trade restrictions based on a stochastic block model is more
efficient for disease control than geographical, or module based
trade restrictions.

Disease control has been implemented in this work as trade
restrictions, and the disease spread follows a relatively simple
model, i.e., the SI-model. Even though this model oversimplifies
the course of most relevant diseases, the infection mechanism in
the beginning of the outbreak can be approximated by an SI-
process in most cases. We provide a comparison between the
SI-model and the SIR-model (susceptible - infected - recovered),
where farms are removed from the infection process after a
certain period, in the Supplementary Material. The difference
between the two models is marginal for detection times less than
14 days.

In contrast to geographically based trade restrictions network
based restrictions are not guaranteed to be constant over time
since trade patterns might change (15, 18, 24, 50, 51). In
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FIGURE 11 | An example to illustrate the different memberships of the same

farm. The red area describes the ten kilometer radius around the chosen node

and represents the geographical control strategy. Furthermore, the green

colored area represents the block affiliation. The module membership of the

node is shown as the blue surface.

applications trade boundaries could simply be computed using
current trade data so that temporal constancy plays a minor role.
Moreover, it is plausible that particularly larger node groups show
only small fluctuations over time (24).

As we have demonstrated, modules as well as blocks show
a high degree of spatial clustering. Even though this property
is also used in the geographical approach, the trade data offers
still another way of node partition: the underlying production
chains. A stochastic block model should in principle be capable
of finding such structures as well. For example, functional blocks

in the world trade network have been found in Reichardt and
White (52), where the authors could resolve the role of different
countries in global economy. However, this requires a relatively
complex null model (mathematically speaking in the form of
constraints in the optimization) in the inference algorithm. It
would be interesting for future work to validate different null
models in order to resolve production chains. If the production
chains were known, we could implement economically efficient
trade restrictions allowing for redirecting trade channels in the
case of an outbreak.

As our results show, the application of a hierarchical block
model on cattle trade data seems to be a promising approach for
applications in livestock disease control. Moreover, decoupling
trade restrictions from geographical neighborhood protects the
neighborhood of the index farm from being considered false
positive, and thus might contribute to animal welfare. However,
these statements only holds if we neglect current legislation for
disease control, and it is of course beyond the scope of this
paper to change legislation. Nevertheless, the strategy for trade
restriction presented here is technically feasible, i.e., only low
computational power is needed and block structures could be
inferred on the fly, or at least on a regular basis, in order to have
on-time trade groups. We therefore believe that groups in trade
data are useful in application and could improve disease control.
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