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Introduction

In the 215t century the world needs to reconsider its energy production
mix. In its recent energy study [1], the Federal Institute for Geosciences
and Natural Resources estimated an annual world energy consumption of
609 EJ in 2017, which reflects the primary energy used globally. It consisted
of 77% fossil fuels, 5% nuclear fuels and 18% renewables. They estimate the
combined global reserves and resources to be 580 769 EJ of fossil fuels, and
9651 EJ of nuclear fission fuels. Thus, assuming a constant energy consump-
tion, the world could sustain its energy needs approximately 1000 (16) years
relying on fossil fuels (nuclear fuels) only, but the rising effects of climate
change ought to prohibit the further use of fossil fuels and the danger and
unimaginable long lifetime of nuclear fission waste questions the economical
and safety aspects of fission energy production. Renewable energy produc-
tion is on the rise, but the distribution of hydro and geothermal resources
is sparse and the weather dependent fluctuations of wind and solar energy
unavoidably limit their practicability [2]. It is important to understand that
any possible energy crisis of the 215 century will not be caused by the lack
of resources, but rather by their excessive use on one side and the lack of
efficient energy storage systems on the other. Nuclear fusion has the poten-
tial to solve this dilemma thanks to its base load capability, unlimited fuel
resources and near environmental perfection [3]. A promising candidate for
such a future fusion reactor is the stellarator, but its design and construction
are very challenging. The path to the first fusion power plant consists of
even more challenging science and engineering problems, but the technique
of stochastic stellarator design, where the first tools are described in this
thesis, has the potential to solve two of them explained hereinafter.
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Figure 1.1.: Experimentally measured cross sections for the DT, DD, TT,
DHe?, He®He?, pLi®, pB!!, and pp fusion reactions as a function of the
center of mass energy of the two particles. The y-axis is broken to fit
the mentioned cross sections onto one coordinate system. The pD cross
section is not shown because it is on the order of 1 x 10732 m?. Source [4].

Nuclear Fusion has the potential to be the energy source of the future.
In a fusion reaction, two light nuclei merge and release on the order of
one million times more energy per elementary particle than any chemical
reaction. Instead of using the potential energy of electrons within the atomic
structure, a nuclear reaction releases nuclear binding energy by decreasing
the final mass of the nuclei, which is transformed into their kinetic energy.
Mass and energy are related by Einstein’s famous formula

E =mc?. (1.1)

The sun converts the energy of nuclear fusion into a useful societal applic-
ation already for billions of years by fusing hydrogen to helium according
to the following reaction chain [5]

pp — Detv,; Dp — Hely; He’He? — ppHe4.

The probability that any of these two nuclei will overcome the repelling
Coulomb force and undergo a nuclear fusion reaction is defined by their
reaction cross section (see figure 1.1). The very low reaction rate of the pp
reaction makes the fusion reaction of the Sun impractical on Earth, but by
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defining the life-time of the Sun it made life on Earth possible. Figure 1.1
shows the reaction cross section of many possible fusion reactions, of which
the deuterium-tritium (two hydrogen isotopes with one and two neutrons)
reaction has the most favorable reaction cross section, which peaks at a
center of mass energy of 100 keV. Its reaction follows

DT — n(14.1MeV)He* (3.5 MeV), (1.2)

producing a neutron and a helium nucleus. Realizing many of these reactions
simultaneously requires a shift from the single particle description to a
thermodynamic description of gases. At these temperatures, a DT-gas will
be a plasma consisting of charged particles in which Coulomb collisions lead
to a Maxwellian distribution. Fusion ignition is reached when the energy of
the 3.5 MeV a-particles is sufficient to sustain the temperature of the plasma
by transfer of its energy to the DT-plasma through binary collisions. The
optimal temperature is about 15keV [3] and most of the fusion reactions
occur for particles on the high energy tail of the distribution function. The
remaining values for the density n and energy confinement time 75 required
for fusion ignition can be derived from the triple product criterion [6]

nTimg > 3 x 102 keVsm™3. (1.3)

It requires, in addition to a temperature of 15keV, a combined density and
energy confinement time of nrg > 2 x 10?°sm~3. The ignition requirement
assumes that the DT-plasma is stationary and confined by electromagnetic
fields. In a future fusion reactor the power for electricity is obtained from
the 14.1 MeV neutrons which are not affected by the electromagnetic fields
and can leave the inner vessel of the fusion reactor. The neutrons will be,
additionally, used to breed tritium from lithium, since tritium does not occur
naturally on earth.

1.1. Plasma Physics

Plasma is defined as a quasi-neutral gas of charged (and neutral) particles
that exhibits collective behavior [7]. The term appeared first in a study
of gas discharges by Tonks and Langmuir in 1929 [8]. It is an electrically
conducting gas that strongly responds to electromagnetic fields such that
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its motion depends not only on local conditions but on the state of the
plasma in remote regions as well [7]. The necessity to describe a plasma as
an electromagnetic fluid is primarily the reason to refer to it as the fourth
state of matter, distinct from ordinary gases [9].

1.1.1. Plasma Description

Any plasma description starts with Maxwell’s equations, the set of four
coupled partial differential equations that constitute the foundation of elec-
tromagnetism:

0

V- E=— (Gauss’s law) (1.4)
o
V-B =0, (Gauss’s law for magnetism) (1.5)
0B
VXxE= —E, (Maxwell-Faraday equation) (1.6)
OE
VxB=pug|J+ EOE . (Ampere’s law). (1.7)

They describe the divergence and curl of the electric E and magnetic field B
in terms of their mutual time evolution, the charge density o, and the current
density J. Here, ¢ and pq denote the electric vacuum permittivity and
magnetic vacuum permeability. An additional connection to Boltzmann’s
kinetic model and a subsequent derivation of the mass, momentum and
energy moments leads to the theory of magnetohydrodynamics (MHD) that
describes the plasma as a single, electrically conducting, but uncharged fluid
with density o, flow velocity v and pressure p. The first and second moment
lead to the conservation of mass relation and the MHD equation of motion:

0
a—i +V-(ov) =0, (Continuity equation) (1.8)
dv
o— —JxB+Vp=0. (MHD equation of motion) (1.9)

dt
The equation of motion (eq. 1.9) uses the convective derivative, i.e.

1.9, v (1.10)
a ot VY '
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which is taken w.r.t. a moving frame. The equation of motion (eq. 1.9),
additionally, assumes a vanishing resistivity related to ideal MHD that
transforms the plasma into a perfect conductor. Thus, the electric field
vanishes in a frame moving with the fluid:

E+vxB=0. (Ideal Ohm’s law) (1.11)

The third momentum leads to the energy equation, which states that entropy
is a convective invariant in ideal MHD

d /p - .
T (W) = 0. (Adiabatic energy equation) (1.12)
The assumptions underlying the MHD equations are valid for fusion plas-
mas except that the collisionality is low, which however does not play an
important role in most MHD stability and equilibrium phenomena.

The time-independent static form (v = 0) of the MHD equations are the
the equilibrium equations:

JxB=Vp, (Force balance) (1.13)
V x B = pgd, (Reduced Ampeére’s law) (1.14)
V-B=0. (Divergence constraint) (1.15)

The magnetic force J x B is balanced by the pressure gradient force Vp,
leading to surfaces of constant pressure

B-Vp=0. (1.16)

The "hairy ball” theorem states that such a non-vanishing tangential vector
field can only be realized on the torus [10]. Hence, nested toroidal surfaces
are traced out by magnetic field lines, which degenerate in the center to the
single magnetic line of maximum pressure called the magnetic axis.

It follows from the ideal Ohm’s law (eq. 1.11) that field lines are "frozen
in” the magnetic field which prevents it from changing their topology within
the description of ideal MHD. Consequently, the toroidal and poloidal flux

P = / B -dS, (Toroidal flux) (1.17)
S‘P

X:/ B-dS (Poloidal flux) (1.18)
S

9
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Figure 1.2.: Field lines generating nested magnetic flux surfaces. Source [4].

are conserved on surfaces of constant pressure, leading to the term fluz
surfaces. The surfaces of constant pressure S, and Sy keep the toroidal
angle ¢ and the poloidal angle ¥ constant, respectively. Extending the two
angles by a minor radius leads to a toroidal coordinate system as visualized
in figure 1.2. The minor radius can be measured in terms of the toroidal flux,
which is denoted by s when normalized to the toroidal flux of the outermost
flux surface. Taking the squared root of s defines the normalized minor
radius p := /s, which is frequently used throughout the attached Article
I, IT and III. If the minor radius is not normalized, we denote it with . The
ratio of the major radius Ry, (distance from the origin to the magnetic axis)
to the minor radius of the outermost flux surface r, defines the aspect ratio
A = R/ry. An equivalent coordinate system is the cylindrical coordinate
system related via

R = Ry+ pcos? (1.19)
Z = psind. (1.20)

Using the properties of the magnetic field, one can transform an arbitrary
toroidal coordinate system (p,d, ) into magnetic coordinates in Clebsch
form

B =Vy xV0+Vp x Vy, (1.21)

that keep ¥ and x constant on flux surfaces while the magnetic field lines
are straight in terms of the other coordinates [11]. Here 8 = ¥+, where -y is
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some arbitrary function divided by the derivative of the toroidal flux ¢)”. This
version of magnetic coordinates, where the toroidal angle ¢ does not change
during the coordinate transformation, are referred to as PEST coordin-
ates [12]. Other important magnetic coordinates are Boozer coordinates [13],
where the field lines are never perpendicular to B, but always tangential to
flux surfaces 1, and Hamada coordinates [14], where the streamlines of B
and J are straight.

1.1.2. Magnetic Field Properties

The change of the poloidal flux with respect to the toroidal flux defines the
rotational transform

)= =2,
P dy
which quantifies how many times a field line turns poloidally within one
toroidal turn around the flux surface. If ¢ is rational, i.e. ¢ € Q, then the field
line exactly closes on itself after a finite number of toroidal turns. At these
rational surfaces, closed magnetic flux tubes may emerge that are called
magnetic islands. If ¢ is irrational, i.e. ¢ € R/Q, then the field line covers the
whole flux surface by going around it ergodically. When magnetic surfaces
break up, stochastic regions emerge where the field lines fill a finite volume.
From eq. (1.16) it follows that p is constant over the whole stochastic volume,
which implies that the transport is infinitely large [15].
The change of ¢ across the toroidal domain is captured by its radial
gradient

(1.22)

rde
___ 1.23
° vdr ( )

and is called the magnetic shear. The total toroidal volume of the magnetic
domain is defined as

///\/_dd;dego, (1.24)

where /g = r,, - Ty X T4 is the Jacobian. One can define the derivative of
the volume Vw.r.t ¥

,_dv
V== /\/§d6’dg0, (1.25)
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called the specific magnetic volume as the average line integral normalized
by the magnetic field strength [16]

, di
V= lim — . (1.26)

Naturally, the contained volume increases in radial direction, V' (s) > 0, and
the magnetic field has a magnetic well when the rate of increase decreases
with radius [17], i.e

v’ dV/ // 5 Jd6dyp < 0. (1.27)

Using the maximum (minimum) magnetic field strength along a field line [

Bmax T malX|B( >| (128>
S

Bmin = HH?’B(.CE)’, (129)
xEe

one is able to define the magnetic mirror

L Bmax - Bmin (1 30)
e Bmax + Bmin. '

Continuous Symmetry of the magnetic domain in toroidal direction is
called axisymmetry and reduces the magnetic field of interest to a function
of two dimensions. Poloidal or helical symmetry are absent in toroidal geo-
metry and can only occur in unbounded magnetic fields. Toroidal magnetic
fields without axisymmetry are functions of three dimensions. They are able
to possess so-called quasisymmetry, i.e. quasi-axisymmetry, quasi-helical
symmetry or quasi-poloidal symmetry. Among many equivalent definitions,
quasi-symmetry is achieved when B -V B is a function that only depends on
the flux ¢ and the magnetic field strength B [18], such that the guiding center
particle trajectories behave exactly as if they were in a truly symmetric mag-
netic field. Unfortunately, it is not possible to achieve exact quasi-symmetry
in the whole magnetic domain, only on isolated surfaces [19].
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High quality of vacuum magnetic field surfaces is desired to properly
confine the plasma. In low-shear configurations, low-order rational values
of the rotational transform ¢ should be avoided, since it is most likely that
islands arise at these rational surfaces, that reduce the confinement. Also,
stochastic regions are undesirable due to poor confinement. A low order
rational value at the boundary of the confinement region will guarantee
good magnetic surfaces and may establish an outer island chain that can
eventually be used for a particle exhaust.

1.1.3. Equilibrium Properties

We describe the properties of a plasma that is confined by a toroidal magnetic
field B and is in equilibrium according to eq. (1.13), (1.14), and (1.15). The
space between the plasma and the outer wall is characterized by very low
density and can be approximated by a vacuum. In the MHD equations, the
system is mathematically described by the vector field B and the scalar
function p.

The total energy of the system in equilibrium is defined by the thermal
and magnetic energy

W= /V(% +p> av. (1.31)

The MHD equilibrium can be computed by minimizing eq. (1.31) in a tor-
oidal domain under certain constraints as done by the variational moments
equilibrium code (VMEC) [20]. In its first version, VMEC described the
plasma as contained within a fixed boundary, but was later extended to
include an exterior vacuum region [21], essentially solving a free boundary
problem. The ratio of average thermal to average magnetic energy

- 320
(B?/2p0)
is used as an economic measure of the underlying reactor concept. The
higher the thermal pressure for a given magnetic pressure, the higher is the
triple product (eq. 1.3), which can be reformulated to

pTE > 3 X 10 keVsm ™3, (1.33)

where the confinement time 75 oc B%® (see 1SS04 scaling [22]) depends
among other things on the magnetic field strength B.

(1.32)
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Good finite-5 Equilibrium Properties are present when the rotational
transform ¢, the shear, and the position of the magnetic axis are only mar-
ginally affected by an increase of 8. The shift of the magnetic axis is called
Shafranov shift and occurs, when 8 < 1, linearly with the increase of (/).
The origin of the deformation of the magnetic field can be explained by
the force balance (eq. 1.13). An increase in pressure p leads to an increase
of the internal plasma currents J that are not equally distributed due to
the toroidal shape of the equilibrium. A stronger poloidal field contribu-
tion from the current on the inboard side compared to the outboard side
shifts the magnetic field radially outward and changes its interior. Thus,
good finite-( equilibrium properties can be achieved by reducing the parallel
current density [23]

J2/32 <51 (1.34)

The subscripts || and ;| denote the component parallel and perpendicular to
the magnetic field B.

Stability Theory perturbs the MHD equilibrium and analyzes the growing,
oscillating or damped behavior. Perturbations that destabilize the plasma
become more severe at high values of 3, the stability limit of a configuration
being the threshold [-value between stable and unstable MHD properties.
An MHD equilibrium is said to be stable if the sum of the magnetic and
thermal plasma energy increases as a result of any admissable displacements,
or unstable if a perturbation exists for which the energy decreases [24], re-
spectively. Admissable perturbations are those with bounded kinetic energy
that satisfy the boundary conditions of the equilibrium and the other con-
straints of ideal MHD. It is assumed that plasma perturbations are small
enough that only the linear terms of the perturbations need to be considered.
The linearized equations of ideal MHD can be cast into a second-order in
time differential equation for the displacement employing the ideal MHD
force operator with time-independent coefficients. Separating temporal and
spatial dependence leads to an eigenvalue problem for the force operator.
The so-called mode analysis answers the stability question by evaluating the
sign of the lowest eigenvalue [25]. In addition to the global assessment of
ideal MHD, local criteria are available that evaluate the stability on flux sur-
faces (for example, Mercier criterion [26] or resistive interchange [27]), along

10
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Figure 1.3.: Motion of charged particles in a magnetic field. Source [30].

field lines in flux tubes (local field line ballooning), or localized at the edge
(peeling modes [28]). Ballooning modes are driven by the pressure gradient
Vp. Global ballooning stability can be calculated numerically by the Code
for the Analysis of the MHD Stability of 3D Equilibria (CAS3D) which uses
features of the perturbation function and the stellarator symmetry to make
the problem tractable and facilitate their description.

For stellarators with flat rotational transform profile and vanishing net
toroidal current (eq. 1.34), the vacuum-field magnetic well can be considered
as a sufficient stability criterion according to the following relation

J2
p'V” —// |V;/|g déde > 0, (1.35)

which is a good approximation of the stability criterion [29]. Since the
pressure usually decreases radially outward, p” < 0, and the integral is
negative due to the negative sign in front of the positive definite integral,
inequality (1.35) holds if V” < 0, which is the definition of the vacuum-field
magnetic well.

Particle Drifts are essential to understand the transport of particles and
energy. Electrically charged particles gyrate in the presence of a magnetic
field due to the Lorentz force. The corresponding gyromotion consist of a
circular motion at constant speed around the guiding center perpendicular to
the magnetic field B. The corresponding gyrofrequency and Larmor radius

11
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(gyroradius) are

lq|B

W, = , (1.36)
m
v

pp = —. (1.37)
w

C

In the presence of an electric field E, a drift of the particles emerges per-
pendicular to B referred to as E x B-drift

ExB
Vg = B2

(1.38)

The drift is independent of the charge leading to the same motion for ions
and electrons such that no current is produced. If B is nonuniform, e.g. bent
to a torus, then two drifts emerge. Once a particle moves into a stronger
magnetic field its Larmor radius reduces, eventually leading to a cycloid
motion caused by the V B-drift

mv? B x VB

= ——= 1.39
VVvB 2B B2 ( )

The curvature of the magnetic field B leads to a drift velocity out of the
magnetic surface against the centripetal force called the curvature-drift

mvﬁ R, xB (1.40)
Vp= ———. :
R~ 4B R2B?
Here, R, is the radius of the corresponding magnetic field line curvature
pointing outwards. Particle drifts are the reason why a plasma cannot be
confined in a purely toroidal magnetic field and the rotational transform is,
therefore, necessary for toroidal confinement.

Transport of energy from the center of the plasma to the wall is character-
ized by the confinement times 75 which is desired to be large. In an optimal
situation, the particle transport time to the wall is short and the kinetic
energy of the particle is transferred to the plasma before it reaches the wall.
This way, impurities can leave the plasma confinement quickly. Unfortu-
nately, very fast particles such as fusion-produced a-particles tend to leave

12
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the plasma without transferring their entire kinetic energy to the plasma.
Thus, fast particles must transfer their kinetic energy to the background
plasma so that that the burning of the plasma can be sustained by fusion
reactions. This process is characterized by the slowing-down time 7,.

Classical Transport Theory assumes a random walk of the plasma particles
in which the step size is the Larmor radius. The particles change their path
due to Coulomb collisions and eventually leave the confinement volume. The
rate of diffusion is given by v,.p? , where v, is the collision frequency. Hence,
classical transport is far too slow to be of concern.

Neoclassical Transport Theory follows the particles along their guiding
center by averaging over the gyroradius and takes the magnetic field geo-
metry into account. Except on isolated flux surfaces, three-dimensional
magnetic fields lack an ignorable coordinate such that their nonuniformity
strongly modifies the orbits of a class of trapped particles in form of radi-
ally outward drifts, leading to a transport much higher than predicted by
classical transport theory. A derivation of the neoclassical transport model
starts from the Vlasov equation and reduces the system by assuming a small
Larmor radius and a large gyrofrequency. Collisions are taken into account.
The corresponding system reduces to the Drift-Kinetic Equation (DKE) [31]

0 B

%—F <V|E+VD> 'Vfa :Ca(foz)7 (141)
where « is the corresponding particle species, f,, is the distribution function,
v| is the parallel velocity, vp is the drift velocity, and C,(f,) is the colli-
sion operator. The Drift-Kinetic Equation Solver (DKES) solves a simplified
version of eq. (1.41) by reducing the phase-space to only the toroidal angle
¢, the poloidal angle 6 and the pitch angle A = v /v. It only considers
small deviations from the equilibrium distribution while the background
equilibrium is assumed to be Maxwellian. The result is a linearized and ra-
dially local kinetic equation that is largely independent of |v|. The solution
to this equation leads to transport predictions that may be conventionally
expressed in terms of mono-energetic transport coefficients. These describe
the neoclassical transport with three dimensionless parameters, namely the

13
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Figure 1.4.: The mono-energetic diffusion coefficient versus collisionality v*.
The transport of the Wendelstein 7-X (W7-X) standard configuration
(solid) is compared to a tokamak (dashed) with similar aspect ratio
(Ro/a = 5.527/0.255) and an elongation of 1.5. The asymptotic transport
regimes are the \/v-regime, the 1/v-regime, the plateau regime, and the
Pfirsch—Schliiter regime. They are highlighted by dotted straight lines.
The radial electric field has been chosen as E,./|v|B = 3 x 107°, and
the diffusivity has been normalized to the plateau value in a circular
tokamak. Source [18].

toroidal magnetic flux ¢, the collisionality v* = vR/|v|c and the normal-
ized E x B drift velocity vy, = E,/|v|By, where By is the magnetic field
strength on the axis. The effective thermal transport coefficients used to de-
scribe the neoclassical transport are derived by an energy convolution of the
corresponding mono-energetic transport coefficient with the local Maxwell
distribution. This transport model depends on the collisionality regimes and
the particle species. The collisionality regimes are visualized in figure 1.4.
In the core, where the plasma is hot, the collisionality is low and the elec-
trons are in the 1/v-regime described by the corresponding mono-energetic
diffusion coefficient

3/2 9
eeﬁ Up

Ve

D. ~

(&

(1.42)

14
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It thus scales as

3/2 T 7/2

€eﬁ e
De X m, (143)

which is highly temperature-dependent D, o T Y /2, Applying the same dif-
fusion coefficient to the ions leads to a much higher diffusion rate violating
ambipolarity. Thus, their transport is reduced to the electron level by an
arising inward-pointing (depends on signs of n” and T"”) radial electric field
E, < 0. The radial electric field shifts the ions into the even lower colli-
sionality +/7-regime leading in total to the following diffusion coefficient

Vv vt
D; ~ F?’/l; (1.44)
Here 25 ~ E,/rB is the E x B poloidal precession frequency. The ambi-
polarity equation is highly nonlinear and may have multiple solutions. One
is the "ion root” (E, < 0) which is the scenario just described where the
electrons are the rate-determing species [32], one is always unstable, and
the "electron root” (E, > 0) which is only realized when the electrons are
much hotter than the ions.

Bootstrap Current is the terminology applied to the net parallel current
flow per unit time arising in toroidal devices due to particle drifts perpendic-
ular to the device’s flux surfaces. It appears "naturally” from the solutions
of the drift kinetic equation (eq. 1.41), but is entirely absent in a fluid
(or MHD) description. The drift-kinetic formulation can be found in the
equation for I3 on page 3 of [32]. The bootstrap current is driven by all
off-diagonal thermodynamic forces, i.e. density and temperature gradients
as well as the radial electric field. Hence, a description of the bootstrap
current lies beyond the scope of this thesis. An extensive description of the
bootstrap current in a stellarator can be found in [32].

Turbulent Transport is believed to be the main driver of anomalous trans-
port, a measured transport that cannot be explained with the classical or
neoclassical model. Plasma turbulence is driven by micro-instabilities that

15
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dynamically interact with the background field and take advantage of the
free energy in the plasma available from the relaxation of density and tem-
perature gradients [33]. These instabilities cause fluctuations to grow in the
plasma, which is therefore not in a quiescent state, but the plasma remains
in a state close to local thermodynamic equilibrium. Small fluctuations lead
to charge separations that are amplified by the corresponding gradients and
result in turbulent eddies. There exist a plethora of such instabilities which
are generated by different gradients and geometric effects that interact with
each other. The most common ones are lon Temperature Gradient (ITG),
Electron Temperature Gradient (ETG) and Trapped Electron Mode (TEM).

A tractable numerical model that is able to globally describe the turbu-
lence of 3D equilibria proceeds from the six-dimensional Vlasov equation, but
makes important simplifications. The assumptions that the microinstabilit-
ies are anisotropic, have low frequency compared to the gyrofrequency, and
only involve small fluctuations is referred to as the gyrokinetic ordering and
are used to simplify the equation. Gyrating particles are effectively replaced
by charged rings which are subject to forces created by plasma inhomogen-
ities and electromagnetic fluctuations. The loss of the gyrophase inform-
ation finally reduces the model to a five-dimensional gyrokinetic Vlasov
equation. The current state of the Gyrokinetic Electromagnetic Numerical
Experiment-3D (GENE-3D) [34] solves the collisionless gyrokinetic Vlasov
equation profiting from allowed larger time steps and lower resolution re-
quirements compared with those pertaining to the six-dimensional Vlasov
equation.

GENE-3D is able to solve the gyrokinetic Vlasov equation linearly, so
that the dominant instabilities (modes) can be studied. In nonlinear simu-
lations, the modes interact with each other and exchange energy such that
the time averages of the saturated state of the turbulence lead to particle
and heat transport. Multiple particle species can be simulated. An invest-
igation usually starts by assuming an adiabatic response for the electrons,
i.e. neglecting electron inertia and can then subsequently be extended to
kinetic electrons.

Confinement of Fast Particles is a necessary requirement in a future
fusion reactor, since fast a-particles need to be confined long enough that
their kinetic energy is transferred to the background plasma. This energy

16



1.2. Stellarator

is necessary to maintain the burn condition of the fusion reaction, in order
that external heating is only necessary for start-up and plasma control.
Losing trapped particles before they transfer their kinetic energy reduces
the efficiency of the fusion reactor, but more importantly, they have the
potential to damage vessel components, especially when these losses are
concentrated in "hot spots”. The confinement of fast particles, which needs to
be comparable to the slowing down time 7, has to be considered separately
from the rest of the transport since the kinetic energy of the particles is
so high that they are not affected by the ambipolar radial electric field
E, and can only be confined by the magnetic field B alone. Axisymmetric
magnetic fields adequately confine collionless orbits, but in three-dimensional
magnetic fields the situation is not as simple and it was long believed that
any reflected particles will quickly leave the confinement region [35]. In
so-called quasi-symmetric fields, the majority of the trapped particles are
confined, but in other types of fields the deeply trapped particles are usually
carried out of the plasma by the VB and curvature drifts. Such losses can be
reduced by avoiding a stagnation point in the poloidal precession frequency
of the particles advected by the V B-drift. This can be accomplished by
establishing a minimum-B configuration, where

dBmin
> 0, (1.45)
dr

holds over the confinement region. As 6 2—B, all trapped particles will
precess in the same direction. The magnetic "mirror is used as a tool to
produce vacuum configurations where B,;, only slightly decreases radially
outward such that the diamagnetic effects of finite-8 equilibria can then
transform the magnetic field into a minimum-B configuration.

1.2. Stellarator

The stellarator concept was invented by Lyman Spitzer in 1951 who real-
ized that two fundamentally different ways exist to produce the rotational
transform necessary for toroidal confinement [36]. Starting with a toroidal
magnetic field, the tokamak produces the poloidal field component by an
internal plasma current such that the magnetic field is axisymmetric and
can thus be described in a two-dimensional poloidal plane. The stellarator,
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Helical Coil System Modular Coil System

Topview

Figure 1.5.: The relation between classic and modular stellarator coil sys-
tem. The helical coil system is compared with its modular version from
the top.

on the other hand, uses three-dimensional shaping of the magnetic field and
creates the poloidal field component solely by external currents. By design,
the plasma boundary of a stellarator possesses a discrete symmetry in form
of N, identical field periods each being mirror symmetric. This introduces
so-called stellarator symmetry defined in cylindrical coordinates as

w(R7307Z> = w(Ra —p, _Z>' (1'46)

A classical stellarator produces the toroidal and poloidal field components
with two independent sets of magnetic field coils. The toroidal field coils are
accompanied by a set of helically wound coils, which lie between the toroidal
field coils and the plasma. The helical coils are arranged in pairs with current
flowing in opposite direction in adjacent coils, so that the field cancels out at
the magnetic axis but yields a twist of the field lines off-axis. The advantage
of the classic design is the experimental flexibility achieved by being able to
vary the toroidal and poloidal field components independently. Difficulties
arise during the construction since the helical coils are interlocked and need
to be wound ’in-situ’. Additionally, forces emerge between the toroidal and
helical field coils, which increase with the magnetic field strength. In 1972,
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Figure 1.6.: The relation between classic and modular stellarator coil sys-
tem. The helical coil system and the toroidal coil system are compared
with its modular version in the 2-D representation.

the stellarator design of Wendelstein 7 (W7) was presented at a conference
in Vienna [37], where exactly these forces were underestimated, leading to a
redesign of the machine in form of a reduced minor radius and a name-change
to Wendelstein 7-A (W7-A) [38]. Interestingly, during the same conference
in 1972, Wobig and Rehker already presented the solution to the problem,
a modular stellarator without helical windings [39] (Russian scientists had
originally invented the modular coil system [40]). One coil system produces
the whole magnetic field such that each coil is poloidally closed, nonplanar,
can be manufactured separately, and, in theory, be replaced separately. The
inhomogeneous forces on the coils that complicate the support structure
are its only major disadvantage. The modular coil system was used to
upgrade WT7-A to Wendelstein 7-AS (WT7-AS) [41] reaching the original
machine parameters of W7. The connection between the classic and modular
stellarator coil system is shown in figure 1.5 and figure 1.6.

The greatest advantage of the modular coil system is the possibility to
think about the plasma and its properties first and then about the design
of the corresponding coil configuration in a second step. Designing the equi-
librium w.r.t. finite-3 effects introduced the field of stellarator optimization,
which led to the design of W7-AS being the first optimized stellarator.
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Chapter 1. Introduction

1.3. Stellarator Optimization

Stellarator optimization is used to find an equilibrium that is most suitable
for a future fusion reactor. The key requirements for such an equilibrium are
MHD stability at high values of 3, good energy confinement and a sufficient
confinement of fast particles. All of these properties are described in more
detail in section 1.1.3 and are referred to as finite-f3 effects or performance
criteria throughout this thesis. Stellarator optimization essentially exploits
the stellarator configuration space to find an equilibrium that complies best
with the aforementioned requirements. The object of interest is the plasma
boundary OM since it largely defines the magnetic field B in its interior.
Once the corresponding pressure p and current density J are also known, an
equilibrium is uniquely defined and its fitness w.r.t the performance criteria
can be calculated. The magnetic field in turn defines the coil configuration,
which can be derived using the boundary condition B - n = 0 on M. Here,
n is the corresponding normal on the plasma boundary.

The plasma boundary and the corresponding magnetic field are described
by harmonic functions and the stellarator symmetry simplifies the descrip-
tion. During the design of W7-AS, Dommaschk potentials [42] were used
that facilitated the design of the coil system by extending the magnetic
field into the outer domain. The optimization principle was demonstrated
in WT7-AS, a configuration where the parallel current density was reduced
which led to good equilibrium properties including a reduced Shafranov shift
and improved stability properties [43].

The emerging technology of mainframe computers facilitated the design
process of new optimized stellarator concepts and allowed the optimization
targets to be extended and ultimately led to the design of W7-X, the first
fully optimized stellarator. During the design process, the plasma boundary
is described by a Fourier representation in cylindrical coordinates

R(u,v) = Z Ty COS(27 (MU + nv)), (1.47)
Z(u,v) = Z Zm p SIN(27 (MU + 1)), (1.48)
¢(v) = 2mv/N,, (1.49)

yielding a natural discretization in form of Fourier harmonics. Here u, v are
poloidal and toroidal coordinates, each ranging from 0 to 1 in one period of
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1.3. Stellarator Optimization

the machine. From this representation, coils can be easily computed on a
surface outside the plasma boundary with the NESCOIL [44] algorithm.

The discovery of stellarator configurations that are quasi-helically sym-
metric (QH) in 1986 [45] was a breakthrough in stellarator optimization
due to its capability of drastically reducing the neoclassical transport. The
concept was first realized in the Helical Symmetric Experiment (HSX) in
Wisconsin, which went into operation in 1999 [46]. The bootstrap current,
which generally occurs in toroidal devices, is a source of free energy in the
plasma that facilitates instabilities. Thus, its minimization was the main
target after a form of quasi-symmetry could be obtained. The bootstrap
current is negative in QH configurations and positive in quasi-axisymmetric
(QA) configurations [47], but in absolute values, the bootstrap current was
reduced in QH configurations compared to QA configurations. A further
reduction was obtained by introducing linked mirror configurations, which
in some sense combine aspects of QH and QA configurations [48]. The reduc-
tion of the bootstrap current aligned the drift surfaces with the magnetic
surfaces and was later referred to as quasi-isodynamicity [49]. In this type
of configuration, the contours of constant magnetic field B close poloidally
and not toroidally. Similarly to quasi-symmetry, it is impossible to achieve
exact quasi-isodynamicity in the whole confinement domain [50]. W7-X is
essentially a quasi-isodynamic (QI) stellarator. Its optimization targets were
later summarized in the W7-X objectives:

1. Good quality of the vacuum magnetic field in form of nested magnetic
flux surfaces. The design omits low-order values of the rotational
transform and avoids stochastic regions due to their poor confinement
properties.

2. Good equilibrium properties including a small Shafranov shift. The
plasma configuration essentially remains close to the optimized va-

cuum configuration when a plasma pressure is applied.

3. Good MHD stability properties up to an average plasma-S value of
5%.

4. Small neoclassical transport in the 1/v-regime leading to good energy
confinement properties.
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5. Small bootstrap current that, besides the isodynamic properties, re-
duces the availability of free energy in the plasma.

6. Good a-particle confinement at reactor relevant regimes of (8) = 5%.

7. Good modular coil feasibility that facilitates the manufacturing and
assembly process.

The project W7-X began officially with a design study that was presented
in 1988 at the IAEA conference in Nice [23], in which the name "Wendelstein
VII-X” appeared for the first time. The ’X’ was originally used as a place-
holder without ever being replaced. In this study, many configurations were
presented as a candidate for a possible follow-on of the W7-AS experiment,
including the newly developed QH and QI concepts. A QI configuration
was eventually chosen, since its reduced bootstrap current made the config-
uration similar to W7-AS and one intended to use synergistic effects. The
disadvantage of the design of W7-AS was its initial lack of experimental
flexibility caused by the modular coil system. An increased flexibility could
later be established, which influenced the design process of W7-X and lead
to an extended configuration space [51]. The primary coil system, consist-
ing only of nonplanar coils, was extended by a secondary coil system in
the form of planar coils. The final design possesses 5 different nonplanar
and 2 different planar coil types. The original W7-X plasma boundary was
slightly changed and named the "High-Mirror’ configuration. The ability to
set different currents for each coil type led to a total of 9 canonical mag-
netic configurations where the rotational transform, the magnetic mirror,
the magnetic shear and the position of the magnetic field was varied. Since
its first introduction in [51], the W7-X configuration space changed multiple
times to comply with the evolving requirements of the support structure
and the port designs. This last step of the design process is similar to the
first design step since the performance criteria are again optimized, but now
the coil configuration is modified to comply with the updated geometric
constraints. Consequently, the "High-mirror’ configuration available in the
as-built design of W7-X has no target magnetic field and is different from
the original W7-X plasma boundary, which is best described in [52].
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1.4. Stellarator Coil Optimization

1.4. Stellarator Coil Optimization

Stellarator coil optimization is the second step in the design process of
a stellarator, after an optimal plasma boundary M has been found that
uniquely describes the target magnetic field B. Deriving external currents
on a surface outside the plasma boundary W that produce the given target
magnetic field is an ill-posed inverse problem, which can be described as a
3D Neumann boundary value problem [53] requiring B-n = 0 on M. Here,

B=B,+B, (1.50)

is the superposition of the vacuum magnetic field B, and the magnetic
field produced by internal plasma currents B, and n is the normal on
the plasma boundary. The boundary condition can be translated into the
following minimization problem

min/ (B-n)?dS, (1.51)
oM

which aims to find an optimal current distribution on a "winding” surface
W surrounding the plasma. Historically, this problem was first solved by
extending the target magnetic field into the vacuum region in such a way
that the external field can be represented by a superposition of harmonic
functions [42]. This technique was used to design the coil configuration of
WT7-AS, the first modular stellarator. In general, coil optimization is based
on the following theorem:

“Any harmonic vector field can be written in terms of its boundary values
on a surface”[53].

The minimization problem (eq. 1.51) can be approached directly when
the target magnetic field produced by the current distribution is described
by the Biot-Savart formula

B(r) = 1o /JW x ﬁ v, (1.52)
1%

and the surface current Jy;; on the winding surface is expressed by a current
potential @:

Jyw=nx Vo. (1.53)
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The NESCOIL code [44] describes @ by a finite set of Fourier harmonics
and after differentiating eq. (1.51) it solves the corresponding least squares
problem. The result is a continuous and smooth current distribution on
the winding surface W, which, in the absence of local minima of @, can be
discretized into a finite set of poloidally closed filaments when a vanishing net
toroidal current is assumed. NESCOIL was used to design the coil system of
W7-X and its method was later extended by REGCOIL [54], which uses an
additional regularization constraint on the current distribution to produce
more practical coils in the sense that their average curvature is reduced.

Once a starting coil configuration in the Euclidean space is given, its
shape and approximation of the target magnetic field can be further im-
proved using nonlinear coil optimization as done with code suites such as
optimizatiON of heterogeneouS magnET systems (ONSET) [55], COIL-
OPT [56], COILOPT** [57] and Flexible Optimized Coils Using Space
curves (FOCUS) [58]. They translate the original problem, “Approximation
of a given magnetic field with a finite set of constructable coils”, into the
minimization of a nonlinear objective function f

mip f(x). (1.54)
The structure of the objective function is visualized in figure 1.7. The input
to the objective function f is a set of parameters x € X C R" describing
the coil set in the parameter space X. The output is the penalty value
y € R describing the fitness of the configuration based on several quality
criteria. Using the stellarator symmetry (eq. 1.46), one can reduce the full
coil configuration to its unique building block, which is a half-module in
W7-X, i.e. 1/10 of the torus. This reduction of the parameter space is
extensively used by ONSET. FOCUS, on the other hand, uses the full coil
configuration and consequently minimizes in the full parameter space.

The objective function f consists of a parametrization h that unfolds
the coil configuration to a filament representation in Euclidean space from
which the penalty function g calculates its fitness. The penalty function
g computes the magnetic field B produced by the coils and subsequently
calculates the quality criteria {g;(x)},—; _j that measure the differences
between the magnetic field produced by the coils and the target magnetic
field defined by the plasma boundary. Additionally, geometric properties
that describe the shape of the coil set are included. The last part in the
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Figure 1.7.: The structure of the objective function f is visualized. It
consists of the parametrization h and the penalty function g.
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calculation of the penalty function is the x?(x) function that summarizes

all the information in the following form

k ot 2
esign

X3 (x) = sz‘ : (%(1') —q; ¢ ) . (1.55)

=1

(3

The value of the quality criterion g;(x) is subtracted by its design value
q? 8% (obtained from the target magnet field) and yields, factorized by its
weight constant w;, the specific contribution to the penalty function.

The coil design process consists of a design sequence which describes the
focus of each optimization run in form of weight constants {w;};—; ; and
thresholds. In other words, the weight constants are constant within each
optimization but may change throughout the design process, essentially
defining the design sequence. The design sequence is divided into phases
in which general aspects of the coil optimization problem are targeted.
The coil design process is structured in such a way that the result of the
previous optimization is used as a new starting coil configuration of the next
optimization.

A specific order exists in which one ought to apply the quality criteria.
This hierarchy is defined by their dominance and their effect on the para-
meter space. The most dominant quality criterion is the field error. FOCUS
concentrates on the average squared error (eq. 1.51) while ONSET quantifies
it with two different values, the maximum local field error

B - |

max ¢, () = max , (1.56)
B
and the average global field error
f die dA
Que(¥) = F——, (1.57)

where A is the area of the plasma boundary. The hierarchy means that one
is still able to optimize the other quality criteria, once the field error arrives
at an acceptable value.

The filament structure of the coil configuration unfolded in 3D Euclidean
space needs to comply with certain geometric properties that guarantee
possible construction of the stellarator. The material that is used for the coils
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in combination with the design current of the machine defines the lateral
width of the coils, which in turn defines the required clearance between
adjacent coils. The clearance must always be larger than the lateral width
and needs to include the deformation during usage. There is a minimum
distance between the coils and the plasma that needs to be met since the
coils have to be sufficiently shielded from fusion-produced neutrons and a
blanket has to be present in which tritium can be bred. This can be achieved
by a constraint on the coil-to-plasma separation or by defining two limiting
surfaces, which guarantee that the coils do not get too close or too far away
from the plasma boundary. The material used for the coils, additionally,
defines current density and thus the maximal allowed coil curvature. It is
defined as

K=—, (1.58)

Te

where r. is the radius of the smallest circle defined by 3 points of two
consecutive coil segments. In addition to the maximal curvature, unnecessary
undulations need to be avoided, which is enforced by a second measure of
curvature in ONSET. It is a weighted integral of x over the coil length L

1

T on

K / c(k)k(s)ds. (1.59)

The curvature weight c is defined as
i e > Fomin

C(/{;) = Kmax—Hmin . (160)
0 otherwise

It is desired to keep the weighted curvature of the coil as small as possible.
In the design process documented in Article I & III the parameters k.,
and ki, were set to the following values

Kmax = 4/3m™! (1.61)
Kmin = 1/3m™L. (1.62)

The weighted curvature was originally described in [59]. All of these geomet-
ric properties can simultaneously be targeted when penalizing the length of
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Figure 1.8.: The half-module of W7-X is visualized with the quality criteria.

the coil L. It is a geometric constraint that is simple to implement, but not
as effective as the use of the individual geometric constraints (see Article
I11).

After the field error is reduced to an acceptable level and the coil config-
uration meets the geometric restrictions, properties of the vacuum magnetic
field can be optimized. They are necessary for the performance of the mag-
netic field and facilitate a further field error reduction. The properties of the
magnetic field are described in section 1.1.2 and can be calculated by fol-
lowing magnetic field lines allowing the existence and shape of the magnetic
flux surfaces to be determined. The calculation in ONSET uses a magnetic
field that is reduced to one half-module. The beginning of the half-module
is sometimes referred to as the bean-shaped cross section and the end as
the triangular cross section (see figure 1.8). The magnetic field properties
are characterized by seven quality criteria used during the design process of
Article I & III:

e The field line map has a fixed point at the inner limit of the nested
magnetic flux surface called the magnetic axis. The position at the
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beginning and at the end of the half-module of the magnetic axis are
evaluated.

The difference between the magnetic field strength B on the axis at
the beginning and at the end of the half-module is referred to as the
magnetic mirror

Byeoin — B
m — begin end . (163)
Bbegin + Bend

The magnetic mirror is important for the confinement of fast particles.

The value of the rotational transform ¢ on the axis is derived by
following the magnetic axis over one half-period.

The ¢ value on the axis together with a second ¢ value off axis allows
an approximation of the magnetic shear to be derived.

The magnetic well is defined in terms of how quickly the volume
enclosed by the magnetic field increases with radius. Similarly to the
magnetic mirror, the magnetic well is computed as the difference
between two distinct volume increases evaluated in radial direction.
The magnetic well is indicative of global MHD stability [17].

Apart from the field error that quantifies the alignment of the surfaces,
the latter can be characterized in Fourier space by computing the
Fourier coefficients of inner flux surfaces. They are optimized towards
the coefficients of the corresponding surfaces of the target magnetic
field. The derivation in ONSET uses PEST coordinates [12].

During the design process, the objective function f is minimized by an
optimizer that uses derivative information of f. The studies in Article I &
ITT use Brent’s PRinxipal AXIS method [60] in ONSET, which approximates
the Hessian of f in an iterative process and optimizes along its principal
axes. FOCUS uses analytically derived derivatives of its objective function,
and in Article ITI we employed the conjugate gradient method to minimize
the objective function.
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1.5. Construction of Stellarators

The challenges in construction of stellarators lie primarily in the manufac-
turing of the coils and the assembly of the central coil system. The magnetic
field defined by the coil system is the crucial part of a stellarator because it
largely defines its performance. During construction, coil shape and position
errors occur that can be either systematic or stochastic. What we mean
by systematic errors are errors that are equal for the same construction
process such that they are equal for the coils of the same type during the
manufacturing and are equal for the assembly of the same half-module and
module. Stochastic errors do not follow a predictable pattern. They break
stellarator symmetry, since they are unique for the corresponding part of the
coil system. Depending on the construction step, systematic errors either
maintain or break stellarator symmetry. During the manufacturing process,
systematic errors maintain stellarator symmetry whereas they can break it
during the assembly process. The construction of W7-X was dominated by
systematic errors in the manufacturing process and by stochastic errors in
the assembly process [61]. The construction tolerances for the individual
parts of the coil system are deduced by analyzing the individual effect of
the displacement on the allowed magnetic field error which in turn is de-
duced from a perturbation analysis after the final coil system has been
designed. Construction tolerances define the precision requirements during
the manufacturing process and the engineering requirements during the as-
sembly. Dividing the average allowed displacement per coil by the average
coil diameter yields the relative construction tolerance.

1.5.1. Construction of Wendelstein 7-X

W7-X is a magnetic fusion experiment at the Greifswald site of the Max-
Planck Institute for Plasma Physics (IPP) in Germany. It is the largest
stellarator in the world (by major radius) and was put successfully into
operation in 2015 with a remarkable confirmation of its magnetic field
topology [62]. W7-X aims to investigate major physics and engineering
issues for future fusion power plants, including 30 min continuous plasma
discharges at 10 MW of heating power. It is equipped with superconducting
coils allowing for steady-state operation. W7-X is a QI stellarator (see
section 1.3) with a five period symmetry and an aspect ratio Ry/rq of 10.
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The construction of W7-X required relative coil tolerances between 0.1% -
0.17% [61]. These strict tolerances led to precision requirements necessary
for the construction of the central coil system that were a major challenge
and affected both cost and schedule negatively, as stated in [63]: “The
assembly process which took about 1000000 man-hours up to March 2014,
was essentially dominated by the high demands on tolerances for the position
of the superconducting coils”.

1.5.2. Construction of NCSX

The National Compact Stellarator Experiment (NCSX) [64] is a compact
stellarator experiment designed by the Princeton Plasma Physics Laporatory
(PPPL) in New Jersey, USA. It is a QA device (see section 1.3) with a three-
period symmetry and a low aspect ratio of 4.4. Its plasma boundary was
designed with STELLOPT [65] and the corresponding magnetic field was
produced by 18 modular nonplanar coils designed with COILOPT [56]. Both
design steps used massively parallel computers. NCSX was difficult to build
and required tight manufacturing and assembly tolerances leading to relative
constructions tolerances of around 0.08%. The associated difficulty and
risk "was recognized but under-appreciated at the project outset”. [66] The
construction, which began in 2003, could not meet the required tolerances.
Fixes were worked out but the project repeatedly exceeded its budget and
time limits, which eventually resulted in the cancellation of the whole project
on May 22" 2008 [67].

1.5.3. Construction of CNT

The Columbia Non-neutral Torus (CNT) is a plasma experiment that began
operation in 2004 and concentrated on the investigation of non-neutral
plasmas confined on magnetic surfaces. It is unique in its simple design
consisting of only four circular coils: two interlocked coils inside the vacuum
chamber and a pair of Helmholtz coils outside. CNT has an aspect ratio of
1.9, the lowest of any stellarator ever built. During the design of CNT, a
Monte-Carlo type perturbation analysis was performed to determine the coil
currents and the angle between the interlocked coils [68]. It is essentially a
simpler version of stochastic stellarator coil optimization described in section
1.6. Instead of selecting the configuration with the largest magnetic volume,
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the configuration most resilient to coil displacements and current variations
was chosen. This led to an increase of the relative coil tolerances to values
between 0.5% and 1%. [69], i.e. about an order of magnitude higher than
W7-X and NCSX. This allowed a swift and inexpensive construction where
several discrepancies could be accepted. The coil displacements were later
confirmed [70] together with the robustness of the magnetic surfaces [71].
This proves that the chosen configuration was indeed robust against coil
manufacturing and installation errors. The Hessian approach that determ-
ined the error fields of CNT [72] as well confirmed the resilience.

1.5.4. Final Remarks

During the construction, deviations of the central coil system in form of coil
shape or position errors cannot be avoided. They can only be reduced which
is highly complicated and thus expensive and time consuming. A reliable
method that increases construction tolerances without compromising the
performance of the magnetic field would be highly beneficial.

1.6. Stochastic Stellarator Coil Optimization

Stochastic stellarator coil optimization uses random numbers to model uncer-
tainties that are absent in traditional deterministic coil optimization. These
uncertainties describe deviations during the construction that are unknown
at the time of the design process. The procedure is wrapped around the
deterministic version of coil optimization (see figure 1.7) and begins with
the generation of pseudo-random numbers [73] with a Gaussian distribution.
A normal distribution is chosen to model the deviations in a way naturally
occurring during subsequent construction. The random numbers are used
to change the input parameters z € X of the objective function f that
describe the coil set in the parameter space X. In order to reduce the com-
putational cost, the optimization in ONSET concentrates on the coils of one
half-module. The Monte-Carlo type perturbation of the parameters z € X
then leads to coil displacements that are stellarator symmetric. The coil
displacements in Euclidean space include changes of the shape and position
of the coil configuration such that the stochastic approach covers systematic
errors in the coil manufacturing process. The perturbation process creates
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Figure 1.9.: Schematic drawing of the sample cloud moving through the
parameter space X during the optimization. The red dots are the unper-
turbed coil configuration and each cloud is an independent evaluation of

FNS (.I‘)

N, samples that can be described as a sample cloud {§;(x)};—o,. n_ covering
an n—dimensional region of the parameter space around the unperturbed
configuration x € X (see figure 1.9). It holds for i € {0, ..., N}

&(z)=x+¢ with || < |zl (1.64)

Subsequently, each element of the sample cloud is analyzed by the objective
function f yielding N, penalty values. The average of the set of penalty
values {f(&;(z))}i0,..n, defines the fitness of the coil configuration in the
stochastic sense by taking information about the vicinity of the coil set in the
parameter space into account. This risk-averse objective function yields the
penalty value y € R and ends the stochastic part of the optimization. The
described optimization loop visualized in figure 1.10 arrives at the optimizer,
which uses the information of the penalty value to chose the next point in
parameter space such that the optimization loop can start over.

The sample cloud {&;(z)};— N, is characterized by the number of
samples N, their distribution around the unperturbed configuration, and

33



Chapter 1. Introduction

Risk-Averse Objective Function

E Cloud of Samples

5 {&hew ——————|  Fy:XxN-R
% / | P o) = 5 S pE) |

Perturbation ///

& X — X Objective Function

E Displacement,
: f X—=R

Penalty Value |,
y €R |

Coil Configuration |

I reXCR"

Optimizer

Figure 1.10.: The optimization loop of coil optimization is visualized which
highlights the differences between the classic deterministic optimization
and the newly introduced stochastic non-deterministic approach.

the extent of the cloud. The latter is quantified by the average perturbation
amplitude

| A
T=NN, > D pibl (1.65)

i=1 j=1

where m is the distance between the perturbed p;; and unperturbed p;;
filament point. The sum is taken over all the filament points N that describe
the coil set, and over all the coil sets in the cloud except the unperturbed
one.

Stochastic coil optimization shifts the optimization of a single coil config-
uration (see eq. 1.54) to the optimization of a cloud of coil configurations
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géi§ Fy (x), (1.66)
with
1 & 1 &
Fy,(2) = N, +1 ;fi@?) = N.+1 ;f@z(f‘?)) (1.67)

For a given coil configuration x € X the value Fiy_(z) is the sample average
of f(z) which is an unbiased and consistent estimator [74] of the expected
value

E(f@) = [ dwf(e—u)du=[f +d(o). (1.68)

The integral is taken over the whole parameter space X such that the per-
turbation function & is replaced by a density function d : X — [0, 1]. In our
case, it is the n-dimensional Gaussian distribution around the point x € X.
The expected value E (f(x)) yields the average fitness of the coil configur-
ation when every possible perturbation is considered and is essentially the
convolution of the objective function with the chosen density function.

A coil configuration is more robust than a reference configuration, when
under perturbation the quality of its magnetic field decreases less on average
than the quality of the magnetic field of the reference configuration. The
robustness is investigated by a perturbation analysis. The quality of the
corresponding magnetic field is measured by the quality criteria leading
to the penalty value y € R describing the fitness of the coil configuration.
The penalty value distribution obtained by multiple perturbations yields
the robustness information of the coil configuration w.r.t. fin terms of its
height and width.

The stochastic optimization model (eq. 1.67) optimizes the objective
function f on average without having a direct penalty on the robustness
of the outcome. This is achieved by a weight w, that is multiplied with
the standard deviation o of the distribution, and added to the objective
function Fy ()

=
NS,O'(x) - N.+1 Zfz(x) + WO (169)
s =0
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The penalty on the standard deviation that targets the width of the penalty
distribution is a tool of risk-averse programming that aims to optimize

worst-case scenarios.
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Summary of Articles

We tested the stochastic stellarator coil optimization approach in Article
I & III following a compact design sequence for the original W7-X plasma
boundary. The design sequence concentrates on three general targets:

e Field Error,
e Geometric Properties,
« Properties of the Magnetic Field.

The main difference between the design sequence in Article I & III are
the phases which divide the aforementioned targets and define their order.
Coil configurations that were optimized stochastically differ by the

o number of samples N,
o average perturbation amplitude 7,
e degree of coil displacement used during the perturbations.

The degree of coil displacement describes the structure of the manifold
on which the displacements occur and its corresponding dimension. We
differentiate between

« two-dimensional displacements of the coils along the winding surface,

o first stage of three-dimensional displacements, where additionally the
winding surface is perturbed,
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Chapter 2. Summary of Articles

o extended three-dimensional perturbation, where each coil is independ-
ently interpolated between the two limiting surfaces.

All perturbations preserve the five-period symmetry of the magnetic field
defined by the original W7-X plasma boundary. The results of the stochastic
coil optimization are compared to the single sample version of ONSET and
FOCUS. Their average perturbation amplitude is essentially 0 mm and the
optimization is deterministic. All optimizations with the deterministic or
non-deterministic version of ONSET agree on the same starting coil config-
uration and use Brent’s principal axis method to minimize their individual
objective function. The optimizations with FOCUS started with circular
coils and its objective function was minimized by the conjugate gradient
method.

In Article IT we used the coil configurations optimized in Article I
and extended the investigation of their fitness. We computed their magnetic
fields and derived () = 5% equilibria with VMEC [20], in which the density
and temperature profiles are in agreement with the results of the latest
experimental campaign of the W7-X eperiment (OP1.2a and OP1.2b [75—
77] ). Then, we analyzed their fitness w.r.t. to the performance criteria
(W7-X objectives, see section 1.3) that originally led to the shape of the
target magnetic field used during the optimization process. Additionally, we
analyzed the gyrokinetic behavior of a subset of three cases.

2.1. Article I: Stellarator coil optimization
towards higher engineering tolerances

The first stochastic stellarator coil design study used two-dimensional per-
turbations, where each coil was independently displaced along the winding
surface. The perturbations of the coil configuration used an average per-
turbation amplitude of approximately 2 mm. The test included six different
sample sizes N = 1,100, 1000, 2000, 4000, 8000. The case with one sample
reduces to the deterministic stellarator coil optimization case called the ref-
erence case. We refer to the rest as stochastic case N. The design sequence
used in this study divides the general targets into two phases. The 15 phase
concentrates on the field error while simultaneously implementing the geo-
metric properties. The 2" phase focuses on the properties of the vacuum
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2.1. Article I: Stellarator coil optimization towards higher engineering
tolerances

magnetic field.

We evaluated the fitness of the coil configurations after the first optim-
ization run, where the majority of the penalty value is reduced. We then
concluded the design process and analyzed their final robustness w.r.t. the
objective function fin a perturbation analysis that perturbed the coil con-
figurations 100 000 times with the same technique and average perturbation
amplitude as used during the optimization. The results are presented in form
of penalty value histograms that are extended by the fitness of the unper-
turbed coil configuration in form of a straight line. To capture the change in
robustness when the average perturbation amplitude is increased, we meas-
ured the change of the histograms with four percentiles that correspond to
the 90%, 95%, 98% and 99% confidence interval.

The coil design study in Article I demonstrated the advantage of sto-
chastic stellarator coil optimization compared to the classic deterministic
coil optimization. Following the same design sequence, we could increase
the performance of the design process by lowering the penalty value by 20%
while simultaneously increasing the robustness w.r.t. the objective function
f. The new optimization technique found differently shaped minima with
higher peaks and smaller widths that showed better performance at an
average perturbation amplitude of 2mm and beyond. Comparing the beha-
vior of the stochastic case 8000 directly to the reference case at the 99%
confidence interval, we could relax the average perturbation amplitude by
more than a factor of two for the same risk taken. The same comparison
yields nearly a factor of three at the 90% confidence interval. We point out
that the increased robustness w.r.t. the objective function f was obtained
without a penalty on the penalty value distribution, e.g. on the standard
deviation, only by using stochastic optimization. The technique of stochas-
tic optimization changes the parameter space, which has a beneficial effect
when the sample size is large. The optimization space is smoothed, which
prevents the optimizer from getting stuck in local minima. The stochastic
optimization loses the ability to capture the general structure of the original
optimization space f(X) when the sample size is low. This means that the
parameter space of the stochastic optimization Fy (X) is flattened out too
much, which halts the optimization process.
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Chapter 2. Summary of Articles

2.2. Article Il: Physics analysis of results of
stochastic and classic stellarator coil
optimization

During conventional coil design, the fitness of the coil configurations is set
by the objective function f that measures it by means of chosen quality
criteria. They quantify the difference between the target magnetic field
and the magnetic field produced by the coil configuration, and additionally
restrict the shape of the coil configuration in such a way that it is feasible for
a subsequent construction. Hence, the quality of the underlying magnetic
field is only measured w.r.t the target magnetic field. The actual fitness
of the underlying magnetic field is unknown during the coil design process.
Therefore, we changed the perspective in Article 1T and analyzed the fitness
of magnetic fields produced by the coil configurations optimized in Article
I, by means of the performance criteria that led to the shape of the original
W7-X plasma boundary. The results are ranked by the target magnetic
field. The magnetic fields are used to calculate (8) = 5% equilibria with
VMEC [20]. The (5) = 5% equilibrium is one of the design goals of W7-X
and a reactor-relevant regime. The analysis of the W7-X objectives includes
an investigation of the Shafranov shift, global MHD stability, neoclassical
transport and confinement of fast particles. We extended this list by an
investigation of gyrokinetic behavior.

All candidates have quite good agreement on the values of the quality
criteria used during the optimization. This guarantees that they are all
valid approximations of the target magnetic field. The performance differ-
ence between the stochastic case 8000 and the reference case remains when
analyzing the finite- effects of the two magnetic fields. Hence, the situation
is well captured by the penalty function. We found a surprisingly good
performance of the stochastic cases N = 100, 1000, which have a higher
penalty value than the reference case. Especially the fitness of the stochastic
case 100 is not well represented by its large penalty value. We conclude that
stochastic coil optimization outperforms deterministic coil optimization ir-
respectively of the number of samples (N > 100). The investigation shows
that the penalty function does not represent the physics performance of the
optimum perfectly and that better proxies for MHD stability are necessary.
The investigation of gyrokinetic behavior showed no significant difference
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optimization

between the stochastic case 8000, the reference case and the target magnetic
field, suggesting that the differences in the magnetic field are too small to
capture any turbulent transport differences.

2.3. Article Ill: Improved performance of
stellarator coil design optimization

We extended the first stochastic stellarator coil design study (Article I)
by switching to thee-dimensional perturbations, increasing the number of
samples NV to 20000, and using a risk-averse penalty on the standard de-
viation. We additionally changed the focus of the design sequence to con-
centrate on each general target separately by dividing it into three phases.
The 1% phase solely concentrates on the reduction of the field error, the 24
phase aims to fix the geometric properties of the coil configuration, while
the 34 phase focuses on optimizing the properties of the vacuum magnetic
field. We chose three candidates with varying average perturbation amp-
litude: 0 mm, 2mm, and 5mm. The case with 0 mm again reduces to the
deterministic coil optimization case called the reference case ONSET. With
the aim to put our results into a broader perspective, an additional reference
case HYBRID uses the FOCUS suite to reduce the field error in phase I
and concludes the design phase II and IIT with the deterministic version of
ONSET.

The stochastic cases use the simple three-dimensional perturbation in
phase I and II, which compared to the deviation technique used in Article
I additionally perturbs the winding surface. Unfortunately, it was not pos-
sible to fix the geometric properties of the reference case in phase II. The
geometric penalties used in ONSET were not able to rectify the kink in
one of the coils. All other cases concluded the design process. In phase III,
the parametrization of the stochastic cases is changed in such a way that
each coil is individually interpolated between the two limiting surfaces. This
change of parametrization increases the three-dimensional flexibility of the
coil configuration and makes a comparison with the coil flexibility in FOCUS
possible. The reference case HYBRID uses the extended three-dimensional
parametrisation throughout phase II and III.

The investigation concentrated on the development of the field error
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throughout the three phases of the design sequence. A direct comparison to
the results of the coil optimization study in Article I shows a significant
reduction of the field error. This is caused by the increase of the number
of samples, the additional perturbation of the winding surface, and most
importantly by omitting the geometric constraints in the first phase of the
design sequence. Similarly to the robustness increase in the previous study
(Article I), where no penalty on the penalty value distribution was used,
stochastic coil optimization reduces the maximal and average coil curvature
when no geometric constraints are present in the penalty function. In this
situation, the stochastic approach prevents the optimizer from getting stuck
in local, non-optimal, minima in contrast to the situation of the reference
case ONSET. Hence, geometric constraints are necessary to avoid local min-
ima, but if chosen too tight, they can just as well halt the optimization. The
final fitness of the coil configurations could be significantly increased with
the stochastic version of ONSET, which is closely followed by the fitness of
the reference case HYBRID. In the final perturbation analysis the number
of samples is increased to N = 200000 and the extended three-dimensional
displacement is used while the average perturbation amplitude is kept again
fixed at 2 mm. The stochastic coil optimization showed, similarly to the first
study (Article I), an increased robustness compared to the reference case
HYBRID. The robustness increase is caused partly by the risk-averse tool
and the stochastic technique itself. The comparison with FOCUS demon-
strated the advantage of optimizing with derivatives while the comparison
between the two stochastic cases showed that fewer evaluations are neces-
sary to converge to a minimum when the average perturbation amplitude
is higher.
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Near Term Objectives

A natural way to extent the investigation of stochastic stellarator coil op-
timization is to refine the various aspects of the optimization procedure
while applying it to new state-of-the-art optimization problems. Emerging
coil optimization problems are a new quasi-axisymmetric configuration [78]
that has the potential in becoming the predecessor to the ASDEX Upgrade
(AUG) project at IPP Garching, and the present stellarator DEMOnstration
power plant (DEMO) design developed by M. Drevlak at IPP Greifswald.
The refinement should concentrate on the three main aspects used in the
stochastic stellarator coil optimization loop (see figure 1.10):

e Perturbation,
« Evaluation,
e Optimizer.

Additionally, one can improve the objective function f of deterministic coil
optimization (in particular the quality criteria) and refine the mathematical
description of this special type of stochastic optimization.

The perturbation of the coil configuration is the crucial element of sto-
chastic stellarator coil optimization, since by defining the variations of the
coil configuration it dictates what the latter is optimized for. A shift of the
perturbation from parameter space to Euclidean space allows the coil shape
and coil position uncertainties be optimized separately. By extending the
perturbations to half-modules and modules, including perturbations that
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break the symmetry of the device, one is able to model the whole construc-
tion process of a stellarator. The question if one can optimize for stellarator
asymmetric perturbations is unanswered, but highly desired, since they were
the dominant errors during the assembly of W7-X [61]. Ultimately, different
random number generators should be tested, e.g. Quasi-Monte Carlo. They
have the potential to better cover the vicinity of the coil configuration in the
sense that clustering, which naturally occurs in pure random distributions,
can be diminished. Also a change of the distribution function should be
tested to better understand their effect on the minimization process and the
subsequent perturbation analysis.

The evaluation of the penalty values of the sample cloud {f;()};—0, ~,
summarizes the information into a single penalty value y € R. For a given
coil set z € X the evaluation can be refined by switching from an Arith-
metic Mean (AM) applied to the sample cloud {f;(x)};—o _ n, during the
optimizations in Article I & III to a Geometric Mean (GM)

N, O\ W
=0

or to a Harmonic Mean (HM)

_ Ns q -
f:M«§:7> . (32)

i=0
They are related via the following inequality

AM > GM > HM, (3.3)

and the GM and HM concentrate more on the lower part of the distribution
function. This may have an effect on the final robustness of the configuration
and the performance of the optimization. Fitting functions to the penalty
value distributions can lead to a deeper understanding of the various forms
of robustness and could lead to a better distinction between coils optimized
stochastically or deterministically. Risk-averse programming was already
used in Article ITI, but the method used penalized the standard deviation,
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which includes a penalty on the worse performing as well as the better per-
forming coil configurations. In the future, different segments of the penalty
value distribution should be constrained with the aim to increase the final
robustness of the coil configurations w.r.t. the objective function f.

The optimizer used during the stochastic optimization study is Brent’s
PRincipal AXIS method called PRAXIS [60]. It uses the given points in
the parameter space to approximate the Hessian of the objective function
and optimizes along its principal axes. Optimization without derivatives
needs in general many more function evaluations to converge compared to
optimizations with derivative information (see Article III). The penalty
values of the sample cloud {f;(x)},—o, . n, can additionally be used to de-
rive derivative information of the objectix}e function f that can be used to
facilitate the optimization process.

Unfortunately, it is not possible to obtain analytic derivatives from the
part of the objective function f that calculates properties of the magnetic
field by field line tracing such that derivative-based optimizers cannot be
used in ONSET. A possible solution are surrogate models that use a set
of expensive function evaluations to model the objective function f. The
surrogate framework directly quantifies the uncertainties and noise between
its model and the image of the parameter space mapped by the objective
function, and can direct the optimization into areas were the system needs
to be improved. The surrogate model may yield derivative information and
makes it less expensive to evaluate the objective function. The relative
advantage of the surrogate model depends on its accuracy, which in turn
depends on the number of points used to build it.

The objective function f used in coil optimization measures the difference
between the magnetic field produced by the coil configuration and the target
magnetic field, and additionally ensures certain geometric properties of the
coil structure. General coil optimization can be refined by developing faster
and more reliable proxies for the MHD stability and the confinement of fast
particles as suggested in Article I1.

New parametrizations from discrete differential geometry could lead to a
discrete description (not based on Fourier harmonics) that relate the coil
configuration more easily to the plasma boundary. The idea is to discretize
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the underlying differential equations such that, instead of describing the
magnetic field with smooth curves and surfaces, one would use polygons,
meshes and simplicial complexes. The discrete points are then chosen in a
specific way yielding an exact solution of the discrete difference equations
which mimic properties of the governing differential equations, but with less
computational cost.

The mathematical formulation of stochastic stellarator coil optimization
was briefly introduced in section 1.6. From the minimization of the analytic
description of the expected value (eq. 1.68) one should be able to extract
a penalty of the curvature as well as a penalty on the standard deviation.
Both constraints were found numerically in the finite version of stochastic
stellarator coil optimization, documented in the studies in Article I & III.

3.1. Stochastic Version of FOCUS

The FOCUS suite [58] was used in Article IIT to optimize coils for the
original plasma boundary of W7-X. The results were compared to the results
of ONSET [55] and its stochastic version [79]. Its speed measured by the
number of function evaluations was significantly higher than both versions
of ONSET, whereas its final coil configuration was slightly worse than
the final coil configuration of the stochastic version of ONSET. Applying
stochastic optimization to the coil optimization process in FOCUS allows
a direct comparison between the two stochastic coil optimization tools on
the basis of fitness and robustness of the resulting coil configurations and
might demonstrate once again that stochastic coil optimization gives better
results than its deterministic counterpart [79].

The FOCUS suite considers the full coil set during the optimization so
that perturbations that break the stellarator symmetry (eq. 1.46) can be
studied. We mention again that the question if stellarators can be optimized
to be robust against asymmetric errors is of great interest since the errors
during the assembly of W7-X were mostly stochastic [61].

In FOCUS, the objective function is minimized using derivative inform-
ation in the form of the Jacobian and Hessian of f. The corresponding
eigenspectrum of the Hessian yields, together with the eigenvectors, the
deformations of the coil configuration with the severest effect on its fitness.
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A perturbation analysis that visualizes the development of these deforma-
tions gives information valuable for the optimizer such that the robustness
can be targeted in more detail. The coils are parametrized using a Fourier
description in FOCUS. The deformations obtained from the Hessian are
consequently in the fourier space and not in the Euclidean space. A switch
to a spline representation (used in ONSET) would yield robustness inform-
ation that is more practical and can describe the construction tolerances
more realistically.

3.2. Stochastic Stellarator Optimization

Article T & III showed that stochastic stellarator coil optimization in-
creases the resilience of the coil configuration w.r.t. the objective function f.
The objective function in turn measures the difference between the magnetic
field produced by the coil configuration and the target magnetic field. Con-
sequently, stochastic stellarator coil optimization can only achieve resilience
w.r.t. to the approximation of the target magnetic field. When building a
fusion reactor in form of a stellarator, one is interested in a resilience coil
configuration w.r.t finite-5 effects, so that deviations during the construction
only inconsiderably affect the performance of the reactor. Therefore, it is
natural to apply stochastic optimization directly to stellarator optimization
as suggested in Article II. Unfortunately, the computationional cost of
the objective function in stellarator optimization is much higher than that
for stellarator coil optimization due to the necessity of calculating MHD
equilibria and target values. This situation requires a careful choice of the
stellarator optimization problem and the corresponding design sequence.
This includes an investigation of the hierarchy of performance criteria used
during the optimization.

3.3. United Stochastic Stellarator and Coil
Optimization
Once the stochastic approach is successfully tested in stellarator optimiz-

ation in the sense that it reduces the computational time by using fewer
function evaluations until the process converges, one is able to go one step
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further and combine coil optimization with stellarator optimization. Thus,
the equilibrium is designed by changing the coil configuration instead of
the plasma boundary. This design process is already used in the 3'¢ step
of the stellarator design process where the coil configuration is adjusted
to design and engineering requirements that were unknown at the outset.
The only difference is that the optimization starts at the beginning, but
similarly eliminates the need for a plasma boundary that connects stellar-
ator optimization with stellarator coil optimization. The advantage of this
approach is that one only considers magnetic fields that can be realized
by reasonable coils and that the quality of the magnetic field is measured
directly by performance criteria.
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Abstract. Recently designed optimized stellarator experiments have suffered from
very tight construction tolerances, but some level of deviation of the coil system is
unavoidable during fabrication of the coils and assembly of the coil system. In this
paper, we present a new approach that incorporates reduced sensitivity to construction
tolerances of the coil system into the optimization sequence. The approach was tested
within the framework of the existing coil optimization scheme for Wendelstein 7-X. The
results are compared with those of a coil set obtained by the original optimization.
The result is a more optimal coil system with less stringent tolerances, such that
small deviations cause reduced deterioration of the properties important for fusion
performance.
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1. Introduction

Stellarators confine plasma in a 'magnetic cage’, which is produced by a set of external
coils. These coil systems need to be optimized to fit both the physics requirements of the
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corresponding vacuum field and the engineering requirements of the coil structure. The
accuracy of the constructed coil system is crucial for the performance of the stellarator
and is a cost and schedule driver as exemplified below.

The Wendelstein 7-X (W7-X) project required relative coil tolerances (defined as the
allowed tolerance divided by the average coil radius) between 0.1% - 0.17% [1] . These
strict tolerances were kept, and the device was put successfully in operation with a
remarkable precision of its magnetic field topology [2]. However, precision requirements
for the magnets were a major challenge and affected both cost and schedule negatively, as
stated in [3]: " The assembly process which took about 1000 000 man-hours up to March
2014, was essentially dominated by the high demands on tolerances for the position
of the superconducting coils”. The construction of the National Compact Stellarator
Experiment (NCSX), which started in 2003, required relative coil deviation tolerances of
about 0.08%. The associated difficulty and risk ”was recognized but underappreciated
at the project outset” [4]. Unfortunately, ”the budget increases, schedule delays and
continuing uncertainties of the NCSX construction project necessitate its closure” [5] in
2008.

For the design of the Columbia Nonneutral Torus (CNT), whose design started around
2001, well after the coil designs of W7-X and NCSX had started, the issue of tight coil
tolerances was addressed from the beginning of the coil design. A Monte-Carlo-type
perturbation analysis was performed as an integral part of determining the coil currents
and coil locations [6]. A configuration was chosen that exhibited large flux surfaces
even in the presence of minor coil displacements, over others that nominally had larger
confinement volumes but were much more sensitive to coil placement inaccuracies. The
chosen configuration had assembly tolerances of 0.5% - 1% for deviations in coil location
and orientation [7], ie. about an order of magnitude looser than W7-X and NCSX.
The resilience against error fields allowed the acceptance of several discrepancies. The
robustness of the volume of the magnetic surfaces was directly verified experimentally [8],
and significant coil displacements were later confirmed with state-of-the-art metrology
[9], proving that the device was not accurately built but rather that its design point
indeed was robust against coil manufacturing and installation errors.

Those results were promising, and very important for the successful construction of
CNT, but the optimization goals for CN'T were simple: to maximize the volume of good
flux surfaces for a stellarator with only four circular coils. It was until now not clear if
the approach taken would be effective for the much more complicated and multi-faceted
optimization goals for stellarators designed for fusion energy research, and for the much
more complicated coils that result from state-of-the-art coil design codes. The approach
itself, described in more detail in [6], is one that optimizes a cloud of coil sets in the near
vicinity of a particular configuration that is being optimized. This configuration will
be referred to as the leading configuration and is in the center of the multidimensional
cloud of other configurations, a Monte-Carlo sample of the coil configurations that
could be realized within the uncertainties associated with construction and assembly of
an actual device. The average performance of this cloud of coil sets is ascribed to the
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leading configuration. By sampling neighboring states in this way, a penalty is given to
configurations whose performance could be well below that of the leading configuration.
In particular, this sample average avoids that a search ends up in a narrow ”peak”
(if maximizing) or trough (if minimizing) which is then, due to the narrowness, not
robust against errors in the range that is to be expected. This technique also effectively
smoothens the optimization landscape, as illustrated for a toy model in Figure 1. In
this case, the non-robust optimum for z ~ 0.42 vanishes and the most stable optimum
emerges as the global optimum at =~ 0.3 in both locally averaged parameter spaces.
For the one using a broad Gaussian distribution, the function to be optimized is now
very smooth, and it even has just one maximum. For the one using a narrower Gaussian,
the smoothening is also evident, and the global maximum is the robust one, but several

other local maxima are still present.

Toy Model of Parameter Spaces

=@ (QOriginal Parameter Space

=@ Locally averaged parameter space (narrow)

.| =@ TLocally averaged parameter space (broad) |....... .............................. ............................ ........................

1.2
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o

Penalty Value

0.4

0.2

1
0.3 0.35
Parameter Space
Figure 1: In stellarator optimization, the target function may be a non-smooth function of
control parameters, and may exhibit a global maximum that is not robustly attainable since
the control parameters (such as coil shapes) have finite tolerances. Taking the average of
normal distributed samples in a small region of control parameters has a smoothening effect
on the parameter space, and avoids getting stuck in non-robust optima. This is illustrated
here for a toy model.

The approach presented in this paper follows the same philosophy but is applied for
a much more fusion relevant problem addressed with state-of-the-art codes. Nonlinear
coil optimization is expanded by an iterative perturbation analysis, which aims to
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achieve higher engineering tolerances through the aforementioned technique. Instead
of optimizing a single coil set, we optimize the sample average of N + 1 coil sets,
where N is the number of additional samples. Its disadvantage, that N + 1 times more
computational resources are needed, is partly offset by the highly efficient parallelization
that is possible for this problem.

In Section 2, we transform the original optimization problem into a stochastic
optimization problem. We then expand upon the sampling technique first performed
for CNT, applying a more sophisticated version of it to a much more complicated
optimization problem, namely that of W7-X. Since the original optimization sequence for
the WT7-X coil system is not available, a new coil optimization sequence was developed.
Additionally, in order to achieve a high amount of experimental flexibility, the W7-X
coil configuration was designed to produce multiple plasma configurations. The various
features resulted in a compromise between different, at times conflicting, optimization
targets. Consequently, the W7-X coil system does not correspond precisely to the
original plasma boundary designed by J. Niihrenberg [10] and hence, we do not use
the present W7-X coil set as a reference case to validate how good our newly optimized
coil sets are. Instead, we compare our results with a coil set that was found with our
most recent standard optimization - one that only optimizes for a single coil set at a time
without averaging over a cloud of perturbed coils. The test is described and analyzed
in Section 3. We conclude in Section 4 and give an outlook on our future projects in
Section 5. More details about the optimization sequence can be found in Appendix A.

2. Stochastic Optimization Problem

In nonlinear coil optimization one starts with an initial coil configuration x € X C R",
where n is the number of parameters describing the coil set, and tries to solve the
optimization problem

min f(z) (1)
with a nonlinear optimizer. The objective function f : X — R yields the fitness of
the corresponding coil set x and is the measure of optimization. It summarizes the

design

differences of the quality criteria ¢;(x) and their design value ¢;

; in a sum of squares:

k
2
design
F@) =3 o (ale) = ) )
i=1
Here, the w; denote the weight constants. Since on the one hand the coil geometry
and installation has a certain precision, and deviations within this precision in general
are not predictable, and on the other hand our goal is to be able to relax precision
requirements with minimal loss of plasma performance, the optimization problem is a
stochastic one, with the following formulation:
min {F(z) := Ep,[f(§(x))]}  &(z) =z +€ with |e] < a]. (3)

zeX
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The expectation is taken with respect to the probability distribution P, of the random
vector . This includes random deviations of a manufactured and installed coil set from
its as-designed geometry and placement. We therefore optimize for uncertainty of the
deformation of the coil set during construction. The probability distribution P, carries
the information of the likelihood of any possible geometric deviation of each particular
coil set x € X. P, is assumed to follow a normal distribution.

We follow the approach taken in [11] and use a Monte Carlo sampling approach
to approximate the expected value Ep [f(£(z))]. Let &4(x),...,&Y(z) be iid.
(independently and identically distributed) samples generated by the n-dimensional
normal distribution AV (z,¥). Here, the mean of the normal distribution is our initial
coil configuration x € X and the standard deviation is equal in every dimension and
chosen appropriately to obtain the desired deviation in the euclidean space. Then by
the Law of Large Numbers, for a given x € X, we have

Fy(z) = (N+1)" Zf(ﬁi(w)) — Ep,[f(£(2))], for N — o0 (4)

almost surely, where () := z is the unperturbed coil set (leading configuration). The
sample average Fly is an unbiased and consistent estimator of F(x) = Ep, [f(£(x))].
The convergence in probability is of order O,(N _%), implying that a ten-fold increase
in accuracy of the estimate of the expectation requires a 100-fold increase in sample size.

3. Results

We test our stochastic optimization technique using a newly developed coil optimization
sequence for the W7-X plasma boundary [12]. The sequence consists of six optimization
runs (cf. Table A1) such that the previous optimization run is used as a new starting
point. The initial coil set is computed with NESCOIL [13] on a winding surface (WS)
located 45 cm beyond the outer plasma surface. The objective function f, which assigns
a penalty value to every coil set, is calculated by ONSET [14]. The evaluation criteria
used in ONSET are shown in Table A1. A coil is defined by 12 periodic spline points
and raised to 13 spline points in optimization run 4. Each spline point is defined by a
poloidal angle u and a toroidal angle v. The 5-fold symmetry of W7-X combined with
the stellarator symmetry reduces the primary coil set to 5 different coils. The WS is
interpolated with 13 parameters between two limiting surfaces and since the auxiliary
coils are not being considered we arrive at n = 133 or rather n = 143 parameters in total.
We have chosen Brent’s PRincipal AXIS algorithm [15] for the nonlinear optimization
without using derivatives.

We modified the objective function from calculating the penalty value f(z) of a
single coil set * € X to generating a cloud of coil sets £!(x),...,&N(x), which are
slight variations of the parameters x € X, computing the corresponding penalty values
f(E(x)), ..., f(€N(x)) and assigning the average value Fiy(z) to the unperturbed leading
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configuration. A deformation of the parameters used for the optimization results in coil
deformations that preserve the 5-fold and stellarator symmetry of W7-X and target
systematic errors that are equal for each coil of the same type during coil fabrication.
The way this stochastic optimization problem is approached, one must provide as input
a relevant scale length over which the coil deviations are distributed. We determined this
as follows: During fabrication of the W7-X winding pack, the average deviation of the
non-planar coils from their Computer-Aided-Design (CAD) shape were approximately
2mm [16]. In the subsequent assembly, reference marks were used to guide and validate
the assembly. ”In total no reference mark co-ordinate deviated more than 5.7 mm from
its manufacture value” [17]. We take these values to define the rough length scale over
which we numerically displace coils in our stochastic optimization, since this was actually
achieved (and therefore achievable), but only achieved with a significant engineering
and metrology effort [3]. Thus, we chose the n-dimensional normal distribution N (z, X))
appropriately to optimize numerically for robustness against deviations that are 2mm
on average, with greater than 6 mm deviations being present in roughly 10% of the
numerically tracked geometric points on the coils in the Euclidean space.

Each time the algorithm computes the modified objective function Fy(z) and
evaluates the fitness of the coil set z, the perturbed coil sets £!(z), ..., &N (z) are defined
anew. Thus, the deviations are not only randomly assigned once at the beginning of
every optimization sequence but continue to be re-randomized for each evaluation of
Fx(x). To provide a comparison basis, the optimization sequence was designed in the
classical way F} = f with N = 1 samples, where only one coil set is evaluated in each
optimization step. We call this the reference coil set with cloud size of 1. We then
increased the sample size N and optimized with a cloud size of 100, 1000, 2000, 4000,
and 8000 perturbed coil sets, so as to determine if there is an optimum cloud size, and
some convergence or saturation of the results at very large cloud size. We restricted the
coil displacements to variations of the parameters that move the circular spline (coil)
along the two-dimensional WS, instead of allowing coil deviations also perpendicular
to this surface. This restriction was done in order to keep the computational effort
moderate for this first study and we expect to be able to lift this restriction in future
studies.

We compare the results of the first optimization run in Section 3.1 by comparing the
penalty values. In Section 3.2 we compare the results after the optimization sequence
has completed, ie. it has come to a stationary value of Fy. The robustness of the newly
optimized coil sets is assessed by plotting the penalty value distributions. They are
obtained by deviating the coil sets multiple times at the aforementioned level (average
deviation 2mm). A narrower histogram gives more confidence in the performance, ie.
it is more robust against coil deviations of the size assumed here. Another important
question arises if the histogram not only narrows (more robust), but also shifts to the
left (lower penalty values) indicating that a better optimum has been found, and that
the device would accordingly perform better than the device optimized with the classical
algorithm. Furthermore, the robustness can also be quantified in terms of relaxed
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tolerances, for a given performance. For that, we compare the classically optimized
coil set to the best coil set obtained with the new optimization technique.

3.1. Comparison after the 1% optimization run

In Table 1 we compare the results of the 15 optimization run quantified by the penalty
value. Since the algorithm is non-deterministic, we assess the results by running the
1% optimization multiple times, as suggested in [11]. Each dot in Figure 2 represents

0

26 Optimization Arun

24 ® Best case

29 --- Reference case Samples # Best [%) g
ERE:
N 1 ~ 928 - ;
B 167 100 5 13.55 19.56 4.56
Tg 14 45 1000 5 T7.56 10.26 2.47
& : 2000 5 691 781 0.69

N RN IO S S BN SRS B 4 4000 5 6.06 7.51 0.86

6 b ° » 8000 5 6.00 721 0.95

0 1000 2000 4000 8000
Amount of samples

Figure 2 & Table 1: Results of the 15 optimization run are listed in form of the best coil
set (Best), the average penalty value (&) and the standard deviation (o)

an independent 1% optimization run. The average penalty value is shown in the
blue line. It declines the more samples are used, as does the best result (red dots
& Best column). Using the stochastic optimization with a sample size less than or
equal to 1000, we observe that the average penalty value is worse than the reference
optimization. It indicates that in the transformed parameter space more local optima
are present when the sample size is low than in the parameter space of the reference
optimization, which causes the optimizer to halt even earlier. Increasing the sample
size leads to the intersection between the blue and dashed line, where both parameter
spaces have a similar landscape such that both optimization techniques show the same
performance. Increasing the sample size further intensifies the smoothing effect and
leads to a reduction of local optima which causes the optimizer to find even better
results than the reference optimization.

The standard deviation shows that the statistical noise of the penalty values after the 1%
optimization run is very high for low sample rates, in addition to the bad performance
of the coil sets. A plausible explanation of both negative behaviours is the combination
of random samples and the discrepancy between the dimension of the parameter space
(n = 133) and a sample size of the same magnitude. In each evaluation of the penalty
function, the chance is high that not every dimension is covered and the optimal path in
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the vicinity of the leading configuration is not visible for the optimizer. The stochastic
behaviour of our sampling technique guarantees that these situation happen, sometimes
more, sometimes less. In addition to the bad convergence rate of the expected value
mentioned in Section 2, this effect leads to an overall poor approximation of the expected
value when the sample size is low.

Unfortunately, we do not fully understand all of the effects and their interplay which
cause the parameter space to contain more local optima than the reference case for low
sample rates but we intend to include a more detailed investigation in our future studies.
In general, all statistical measures converge as the sample size increases.

3.2. Comparison after completion of the optimization sequence

We compare the robustness of the design of the coil sets after their last optimization
run (cf. Table A1) by analyzing the penalty value distribution for clouds of 100000
perturbed coil sets around the newly optimized leading coil sets. The entries of 100 000
provide enough statistics to compute the relevant variables of the histogram. The results
are shown in Figure 3. The coil shapes are parametrized such that the 2mm average
deviation in the Euclidean is not automatically kept, even if the coil shape parameter
deviation is kept fixed. Since the WS is part of the optimization and changes its form, the
perturbation in the Euclidean space slightly increased over the course of the optimization
sequence in the cases with 100, 1000 and 2000 samples. The perturbations in Figure
3 are done with the same technique as described in Section 2 but normalized to reach
again an average deviation of 2mm in the Euclidean space. The coil sets are compared
by their penalty value f(xg) and their robustness, which is seen by an increased height
and decreased width of the distribution function. Additionally, the high-end tails of the
penalty function distributions are analyzed.

In Figure 3 the leading configuration of the optimization with 8000 samples reaches
the best result of f(zp) ~ 5.39, and it is nearly identical to the result for a cloud
size of 4000, indicating a possible convergence of the penalty values. The reference
coil set (using the classical, non-stochastic, optimization) has f(xy) ~ 6.65. Thus, we
observe a systematic improvement of this nonlinear coil optimization - irrespective of
the issue of robustness, and we see that we need a cloud size above 2000 before the new
algorithm outperforms the old one. The width of the distribution is improved already
for the smallest cloud size (100), but then actually begins to get wider again for the
largest cloud sizes - the coil set optimized with a 2000 sample cloud reaches the highest
peak and together with the case of 1000 samples they reach the smallest widths (RMS)
of the distribution function. Therefore, the case with 2000 samples is more "robust”
in the sense of stable quality criteria, but will have poorer performance than the 8000
sample optimization. Overall, both robustness and average performance are significantly
improved over the reference coil set. The double peak of the histogram of the reference
coil set is not understood in any detail at this point, but will be further investigated in
the future.
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Figure 3: The result of all optimizations including the reference coil set (black) are randomly
perturbed 100 000 times and the penalty value distribution is displayed.

The results in Figure 3 are positive, despite this slight broadening of the distribution
function for the 4000 and 8000 sample sets relative to the results obtained with
the sample size of 2000. From an experimental/user perspective, what is desired is
confidence in good performance at tolerances that are relaxed enough that they do not
affect the cost or schedule of construction significantly. It is clear from Figure 3 that
this optimization is a significant win at the 2 mm accuracy level. This can be quantified
further, and put in relation to relaxed engineering tolerances by focusing on the high-end
tail of the histogram - the poorly performing configurations.

We plot in Figure 4 the development of the percentiles 10%, 5%, 2% and 1% of
the penalty function histogram, thereby quantifying what performance is guaranteed
at the 90%, 95%, 98% and 99% confidence level. We compare these percentiles of the
reference coil set (classical optimization) and the optimization with 8000 samples (our
most comprehensive stochastic optimization). For the 2mm accuracy case which was
used for the optimization and achieved in W7-X (left side of graph) it is again clear,
as evident in Figure 3, that the new configuration will outperform the old with better
than 99% likelihood. In Figure 4 we now increase the coil tolerances progressively (x-
axis) and monitor how the penalty value for these percentiles increases (y-axis). At the
99% confidence level, the classical optimization would have led to a penalty value up
to about 8, given the 2mm tolerances achieved in W7-X. For the new optimization,
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the same would be achieved with 99% confidence with coil tolerances of approximately
4.5mm, more than a factor of two relaxation for the same risk taken. If we lower
the degree of confidence (90%, 95%, 98% confidence) the relaxation of tolerances is a
bit larger, approaching a factor of three, eg. 5.8 mm tolerances at the 90% confidence
level. These comparison points are given as stars. The very steep ascents beyond these
values are possibly due to the combination of low statistics and discontinuities in the
penalty function, but should be taken with some caution at this point. Regardless of
this issue, the data fully supports the statement that the stochastic optimization would
give significantly better performance at the same level of engineering tolerances (Fig 3),
and comparable if not better performance with a factor of two relaxed tolerances, for a

variety of confidence standards.
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Figure 4: Percentile development of the reference coil case and the optimization with 8000
samples.

3.3. Remark

The object of optimization in this study is the approximation of the expected value
which aims to represent the most likely realization of a stellarator. The relaxation of
precision requirements is no direct target of the optimization since it is no criterion in
the objective function. It is only indirectly represented in the sample average F but
nevertheless leads to a coil configuration with significantly relaxed tolerances.
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The optimization suite ONSET is capable of optimizing the three-dimensional shape
of the WS within two constraining toroidal surfaces. This offers the possibility to
extend the coil displacements from a non-planar two-dimensional in-surface deviation to
also capture three-dimensional deviations. A first attempt at using this feature, which
demands significantly more computer resources, has been made and will be reported on
in a future publication. Initial results appear consistent with what has been reported
here, but convergence studies have not yet been completed.

4. Discussion and conclusion

A stochastic technique of nonlinear coil optimization for stellarators that includes
engineering tolerances has been developed and tested on a state-of-the-art optimization
problem. The technique shows significant promise. Improved performance is seen -
a 20% decrease in the targeted penalty function. The new optimization shows more
engineering robustness - the results are less sensitive to coil displacements, and one can
relax coil tolerances by at least a factor of two relative to a coil design created using
earlier techniques. The relaxation of engineering tolerances was expected. But it was
not necessarily expected that the algorithm found a better optimum - irrespective of
engineering tolerances. As illustrated in Figure 1, this technique can have a smoothing
effect in the otherwise rather spiky optimization space of stellarators, and this may have
allowed the algorithm to find a better global optimum than that found by the earlier
algorithm. Improved performance and then convergence with sample (cloud) size was
seen, with the results from cloud sizes of 4000 and 8000 being nearly identical.

5. Outlook

This work brings up several questions, some of which can be addressed soon. Coil
deviations in all three dimensions (not just within a prescribed toroidal surface, and
not just stellarator-symmetric) will be addressed next. Additionally, a penalty on the
width of the distribution will be included in the objective function in order to directly
target reduced precision requirements. The reason why the original algorithm got stuck
in a non-global minimum together with the origin of the double peak in the histogram
of the reference coil set will be investigated. The new, more optimal, configuration will
be compared to the configuration found with the earlier algorithm, in particular with
respect to each individual physics target lumped into the penalty function, and the coil
geometry will be investigated. At first glance, the geometry of the coils is somewhat
different for the newly found coil set but does not appear to be more complicated than
what was found with the standard algorithm.
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6. Pictures

We compare the shape of the coil set of the optimization with 8000 samples in blue
with the reference coil optimization in black in Figure 5 & 6. We show 2 perspectives of
one stellarator segment where two half modules are connected at the triangular plane.
Figure 5 visualizes the differences from the inside of the torus towards the outside and
Figure 6 shows the opposite direction from the outside towards the inside. In general,
the two coil sets are quite similar with a certain tendency that the blue coil set is slightly
less windy than the reference coil case in black.

Figure 5: View of two half modules connected at the triangular plane from the inside towards
the outside. The coil set in blue is the optimization with 8000 samples and the coil set in black
is the reference coil optimization.

Figure 6: View of two half modules connected at the triangular plane from the outside
towards the inside. The coil set in blue is the optimization with 8000 samples and the coil set
in black is the reference coil optimization.
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Appendices

Appendix A. Details about the optimization sequence

The optimization sequence is listed in Table A1, which illustrates the change of the
weight constants throughout the six optimization runs. Every entry consists of two
values (design value/ weight constant) which define the objective function f. Exceptions
are the limiting surfaces (inner surface / outer surface), and the number of spline points
which are defined per coil. The optimization sequence is divided into the optimization
of the field error under observance of the geometric restrictions (1-4) followed by the
optimization of the properties of the magnetic field. In the final step we compute
additionally the Fourier coefficients of a magnetic surface inside the plasma boundary.
The difference to the Fourier coefficients obtained from the target magnetic surface
inside the original plasma boundary designed by Niihreberg [10] is then minimized in
the last optimization run. The optimization of the field error took 4 runs. We refer to

[12] for a detailed description of the optimization sequence and the design criteria.

Table A1l: Optimization Sequence

Optimization run: 1 2 3 4 5 6
Maximum Field Error 0/1.0-10°

Mean Field Error 0/1.0-10° :

Clearance 0.35/1 0.3/1  0.27/1

Curvature 3/0.7 .

Distortion 0.3/0.4

Magnetic Axis (bean) - - - - 5.93/4 .
Magnetic Axis (triangle) - - - - 5.17/15 5.17/450
Magnetic Ripple on Axis - - - - 0.11/3

Tota on Axis - - - - 0.88/1.0-10°

Magnetic Shear - - - - 1.56/0.4 1.56/0.8
Magnetic Well - - - - 0.007/1.0 - 103

Fourier Coeff. of inner Surface - - - - - varies/1.0 - 102
Limiting Surfaces +30/+60 +30/465 +30/+70 .
Points per Coil 12 . . 13

Points of WS 13

Description:

- Target not included in objective function.

- Value from the previous run was used.

Field Error Normal magnetic field on the plasma boundary.

Clearance Minimum distance between adjacent coils.

Curvature Maximum coil curvature

s
ds?*



Distortion Weighted curvature defined in [18].

Magnetic Axis Major radius.
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Abstract. In this paper we follow up on the results from our previous publication
[Lobsien J, et al., Nucl. Fus., Vol 58 (2018)106013], where it was found that
stellarator coil design optimization can be substantially improved by using a stochastic
optimisation approach. In that paper performance was quantified by lower (better)
and more narrow (more robust) distributions of the penalty functions at the end of
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the optimisations. Here, we evaluate and compare the various coil sets of the previous
paper but seek a verification and deeper understanding of the physics performance by
replacing the relatively simple penalty function estimate with more accurate ones from
state-of-the-art calculations of MHD stability, neoclassical transport in the 1/v-regime,
fast particle confinement, and gyrokinetic behavior. The investigation shows that
stochastic stellarator coil optimization generally outperforms the earlier non-stochastic
stellarator optimization, also when using these more accurate metrics, generally
confirming and quantifying the better performance. We do find some discrepancies,
indicating that the penalty function does not represent a physics performance optimum
perfectly. For example, as pointed out by others before us, the depth of the magnetic
well is not a sufficiently good proxy for MHD stability, and the neoclassical transport
can be significantly reduced in configurations that have relatively high field errors and
therefore high penalty values. Thus, our work points to areas where better physics
model inside the optimisation loop are needed, than what is currently represented by
our penalty function.

Keywords: Stellarator, Coil Optimization, Engineering Tolerances, Robust Magnetic
Field, Stochastic Optimization, MHD, Neoclassical Transport, Fast-Particle Confine-
ment, Turbulent Transport
Submitted to: Nucl. Fusion

1. Introduction

A stellarator is defined by a set of nested toroidal flux surfaces which may be optimized
to fulfill multiple performance criteria. In the case of Wendelstein 7-X (W7-X) these
criteria were summarized in the W7-X objectives [3], which not only concentrated
on the quality of the vacuum magnetic surfaces but also focused on the properties
of finite-pressure equilibria. Special emphasis was placed on a small Shafranov shift,
good MHD stability properties, a small neoclassical transport, a general reduction of
parallel currents, and good a—particle confinement in fusion-relevant operating regimes.
All these properties are determined by the shape of the plasma boundary, because this
outermost flux surface defines the magnetic field in its interior, which in turn defines the
corresponding behaviour when a plasma pressure is present. The design of a stellarator,
therefore, may begin with the shape of the plasma boundary and continues with the
optimization of a set of finite current-carrying filaments outside the plasma, which is
meant to produce the desired magnetic field. The starting point is usually a first guess
of the coil structure computed with NESCOIL [4] or REGCOIL [5]. Each coil is then
parametrised by either Fourier coefficients or spline points and a penalty function f is
defined which measures the difference between the magnetic field produced by the coils
and the desired vacuum magnetic field of the stellarator called the target magnetic field.
Nonlinear coil optimization, as done with codes like ONSET [1], COILOPT* [7] and
FOCUS [8], then minimizes this nonlinear function f, which takes the coil parameters
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as an input value and summarizes the fitness of the corresponding magnetic field in
a real value y € R. The fitness is characterized by a set of quality criteria of which
the field error is the most dominant one. It is quantified by B - n, where B is the
vector of the magnetic field produced by the coils and n is the normal on the plasma
boundary. In general, B may include internal plasma currents, which were absent in
the optimization of W7-X. The minimization of the field error is one major challenge of
stellarator coil optimization but, from a theoretical point of view, deviations from the
ideal target are unavoidable due to the discrete nature of the coil set which inevitably
produces a corresponding ripple of the magnetic surfaces. Additionally, deviations occur
due to geometric constraints necessary for the manufacturing of the coils and assembly
of the coil set.

Once the coil optimization arrives at the lower boundary of the field error, the
penalty function f is extended by additional quality criteria and the optimization
continues. Each new set of quality criteria describes a more intricate property of the
set of nested toroidal flux surfaces which define the stellarator. But the more intricate
the quality criterion, e.g. effects with finite plasma pressure, the more time it takes
to compute a single evaluation of f. Therefore, it is the challenge of nonlinear coil
optimization to include new elements within the penalty function f step by step, such
that the field error is not increasing while keeping the complexity of the quality criteria
in f moderate so as to avoid excessive computing times.

Traditionally, the coil optimization is completed when the underlying magnetic
field fulfills the same performance criteria, that initially led to the shape of the plasma
boundary. But optimizing them requires a transition of the optimization targets. The
optimization of the quality criteria, which reduces the difference between the magnetic
field from the coils and the magnetic field defined by the plasma boundary, is replaced
by the direct optimization of the performance of the magnetic field produced by the
coils. This last step is similar to the optimization of the target stellarator magnetic field
itself, with the difference that instead of varying the plasma boundary one changes the
coil configuration that defines the plasma boundary.

Once a suitable set of filaments has been found, the focus is changed and the
coil configuration is evaluated in a perturbation analysis. Each deviation leads to a
change of the magnetic field and consequently to a change in the performance criteria.
After performing a statistical ensemble of deviations the perturbation analysis defines a
measure of the change of the quality of the magnetic field w.r.t. deformations of the coil
set. A prescribed lowest acceptable magnetic field quality then leads to coil construction
tolerances which will require more time and resources the lower they are. Unfortunately,
recent major stellarator projects have had the tendency to be negatively influenced by
their own strict tolerance requirements, e.g. Wendelstein 7-X [9] and NCSX [10].

With the aim to ease the construction of future stellarator projects, we established
a stochastic version of stellarator coil optimization that was able to increase the
construction tolerances during the design process of the coil configuration [2]. Nonlinear
coil optimization is combined with an iterative perturbation analysis with the result
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that the target magnetic field is more accurately reproduced and is also more resilient
against coil displacements w.r.t. the penalty function f. The new technique replaces
the optimization of a single coil configuration f; with the optimization of a cloud of
neighboring coil configurations fy. KEach element of the cloud is a perturbation of
the original coil configuration at the cloud’s center. The cloud is characterized by the
number of samples N (number of perturbations) and their Gaussian distribution around
the unperturbed configuration. With the aim to test the stochastic version of stellarator
coil optimization against its classical counterpart, a compact optimization sequence for
the original W7-X plasma boundary [11] was developed, in which the complexity of
the penalty function stayed rather low. The test included 6 different sample sizes
(1, 100, 1000, 2000, 4000 and 8000) and compared the results based on their fitness
and robustness w.r.t. f. Here, f; is the classic, single coil optimization case. The
algorithm together with the optimization sequence is described in more detail in [2].
The 6 optimization runs of the optimization sequence concentrate mainly on the field
error and at the end on properties of the vacuum magnetic field, while adhering the
geometric constraints throughout the optimization. The penalty values at the end of
the optimization sequence resulted in the following ordering of the sample size cases

f8000 < fa000 < fa000 < f1 < fro00 < f100s (1)

where the biggest gap in this order is between the case with 1000 and 100 samples. The
case with 8000 samples has a 20% lower penalty value compared to the coil optimization
that uses just a single sample. In all cases, the penalty on the field error constitutes 85%
of the total penalty value since the design values of the remaining quality criteria are
reached with quite high accuracy. The focus of the first study was to demonstrate the
advantages of stochastic optimization in the context of stellarator coil design, using only
ONSET. The improved results do not necessarily imply that these results are superior
to newer coil design tools (such as FOCUS), only that the stochastic optimization itself
was beneficial.

During the optimization and subsequent perturbation analysis in [2], the fitness of
the coil sets and the corresponding quality of the magnetic fields were measured by the
penalty function f. This perspective is limited and shows only the differences w.r.t. the
target magnetic field and not how these magnetic field differences influence the more
fundamental physics properties of the configuration. In this paper we move beyond
the scope of f and compare the coil sets optimized in [2] by the actual performance
criteria which lead to the shape of the plasma boundary. We shift the perspective, from
investigating properties of magnetic fields to a physics analysis of finite-(3) equilibria.
This way, we make a better assessment of the actual fitness of the coil sets and test
the ordering obtained from the penalty values in equation (1) against the number of
samples used during the optimization. Loosely formulated, we try to assess how much
the lower penalty function has brought us in terms of more fundamental and important
physics properties, assessed with the best tools we have available today. It is at least
in principle possible that the significantly reduced penalty value in the end does not
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translate into significantly improved physics properties. So part of our purpose is also
to make a first assessment of the appropriateness of the penalty function itself, although
admittedly the data presented here are too sparse to give more than a first indication.

In this physics analysis, the single coil optimization with a single sample is the
reference case of classic coil optimization and we refer to the rest of the cases optimized
in [2] as stochastic case N. All the results are ranked with the target magnetic field,
defined by the original W7-X boundary [12]. The origin of all magnetic fields is explained
in more detail in section 2 and their differences w.r.t. the quality criteria used at the
end of the optimization are described in section 3. The performance criteria are chosen
following the list of the W7-X objectives in [3]. We describe the development of the
Shafranov shift in section 4.1 and the global ideal MHD stability properties using the
CAS3D stability code [15] in section 4.2. The neoclassical transport will be discussed
in section 4.3, and the confinement of fast particles using the ANTS code [16] will be
compared in section 4.4. Last but not least, we move beyond the performance criteria
for which the W7-X boundary was optimized and present a mode analysis in section
4.5 showing a glimpse into the gyrokinetic behaviour observable in a selection of three

cases.

2. Origin of the Magnetic Fields

The optimization that led to the design of the actual W7-X coil set can unfortunately not
be reproduced today. That optimization procedure involved iterations and constraints
that are not easily automated and not sufficiently documented. Some of these
are described below. The optimization, which compared traditional and stochastic
stellarator coil optimization used the original W7-X "high-mirror” configuration as the
target magnetic field. The boundary was first introduced in [12] but is better described
in [20]. The coil configuration that reproduced the magnetic fields of the original W7-X
configurational space is no longer available and its shape has repeatedly changed since
its first publication in [17]. The main motivation was the manufacturability at the time
combined with the additional desire of more experimental flexibility. With the change
of the coil configuration the magnetic fields of the W7-X configurational space changed.
Consequently, there is a not fully known difference between the original target magnetic
field and the magnetic field for which the coils in the end were designed.

We computed an analytic current distribution on a surface outside the plasma
boundary with NESCOIL [4], that reproduces the original boundary with acceptable
precision. We used the magnetic field produced by this current sheet to obtain the
target values used for the optimization and therefore, we refer to this magnetic field as
the target magnetic field. Choosing a vanishing net toroidal coil current guarantees that
the magnetic field of the stellarator can be generated from poloidally closed magnets,
and that there is no need for toroidal or helical magnets. This way, a discretization
of the current sheet into poloidally closed modular current filaments is possible. These
provide the starting point of the coil optimization with ONSET [1] and its stochastic
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extension [2]. The optimization ended after 6 runs with the coil sets that produce the
magnetic fields we refer to as the reference case and the stochastic cases.

The finite-(5) MHD equilibria of the 7 magnetic fields are computed with the free
boundary version of VMEC [18] [19], where we use the pressure profile of the stability
analysis [20] of the original W7-X configurational space [11] which is proportional to

p(p) o< 7—11p* +4p* where 0<p<1 (2)

is the minor radius normalized to the minor radius of the last closed flux surface.
VMEC is used with 65 flux surfaces allowing residual forces of the order of 107!, The
resolution of the MGRID files uses 130 points in radial- and z-direction and 62 points
in ¢-direction. Here we denote that the optimization of the finite-(3) effects of the
original W7-X boundary was done using the fixed-boundary VMEC. This means that
the free-boundary VMEC equilibrium of the target magnetic field was never directly
optimized, only indirectly through the fixed-boundary VMEC studies.

3. Quality Criteria

The quality criteria used during the optimization are visualized in figure 1 and the
corresponding values of the stochastic and reference cases together with the target values
are listed in table A1 of the Appendix A. We added the corresponding penalty values to
better assess equation (1). During the optimization, the squared residual of each quality
criterion w.r.t. its corresponding target value was a weighted part in the penalty function
f whose minimization was the main task of the optimization sequence described in [2].

The field error is quantified with two values, the maximum local field error

maxe; = “‘3];', where B is the vector of the magnetic field and n is the normal on
the plasma boundary, and the average global field error e, = La ZdA, where A is the area

of the plasma boundary. They are the most dominant quality criteria in the penalty
function directly quantifying the difference between the target magnetic field and the
magnetic field produced by the coils. The target magnetic field is produced by an
analytic current distribution computed with NESCOIL (12 poloidal and 10 toroidal
modes) on a current-carrying surface 30 cm outside the plasma boundary. Its field error
sets the lower boundary compared to the field errors of the coil optimization study as
can be seen in table 1.
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Figure 1: A W7-X half-module is shown together with the surfaces used during a stellarator
coil optimization with ONSET [1]. Additionally, we present the quality criteria used during
the compact optimization sequence cf.Al.

Table 1: Values of the Field Error

Magnetic Fields: Maximum Local Average Global
Field Error: Field Error:
Target Magnetic Field 3.4 x 1074 9.5 x 107°
Stochastic Case 8000 6.0 x 1072 1.6 x 1072
Stochastic Case 4000 5.7 x 1072 1.66 x 1072
Stochastic Case 2000 6.0 x 1072 1.95 x 1072
Reference Case 7.0 x 1072 1.7 x 1072
Stochastic Case 1000 7.0 x 1072 1.92 x 1072
Stochastic Case 100 8.0 x 1072 2.27 x 1072

The differences in the field error between the optimized coil cases reflect the order of
the penalty values in equation (1) obtained after the optimization and highlights that the
stochastic case 8000 has nearly the same field error as the stochastic case 4000, that the
reference case is somewhere between the stochastic case 2000 and stochastic case 1000
and that the worst values with the largest gap among the coil cases has the stochastic
case 100. The vacuum Poincare plots of all the magnetic fields at the bean-shaped cross
section presented in figure 2 confirm this situation and show that the magnetic field of
the stochastic case 100 deviates most from the target magnetic field. But variations
in the Poincare plots do not necessarily lead to changes in the plasma performance as
stated in [13] and [14]. Table A1 visualizes in numbers that all coil configurations show
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quite good agreement on the properties of the vacuum magnetic field and meet the
geometric constraints such that all coil configurations are valid approximations of the
target magnetic field.

Vacuum Field Poincare Plots

T T
Reference Case

Stochastic Case 100
Stochastic Case 1000
Stochastic Case 2000
Stochastic Case 4000
Stochastic Case 8000
Target Magnetic Field

0.8

Z[m]

4.7 4.9 5.1 53 5.5 5.7 59 6.1

Figure 2: Poincare plots of the vacuum field at the bean-shaped and triangular cross section

The geometric properties of the filament structure guarantee the feasibility of the
stellarator construction. The material used and consequently the extent of the coil
usually defines the maximal allowed coil curvature. It is defined as Kk = %, where R
is the radius of the smallest circle representing a coil segment. Additionally, one tries
to avoid unnecessary undulations, which is enforced by the second curvature. It is a
weighted integral of the first curvature and fully described in [22]. The finite extent of
the coil also defines the required clearance between adjacent coils, and the two limiting
surfaces guarantee that the coils do not get too close or too far away from the plasma
boundary. Besides these properties, coil to plasma separation and coil length ([5], [6],
8], [21]) are often used as design metrics.

The basic properties of the magnetic field are characterized by 7 aspects in the

penalty function:

e The magnetic axis is determined at the beginning and at the end of the half-module.

e The difference between the magnetic field strength on the axis at the start and at the
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end of the half-module is referred to as the magnetic mirror. It is normalized to the
sum of the two magnetic field strength values. It is important for the confinement
of fast particles and will be discussed in section 4.4.

e The value of iota on the axis and the shear is determined. The latter is computed
by taking the difference of iota on axis and iota 0.2m off axis at the beginning of
the half-module at z = 0.

e The change of the magnetic volume along the radial direction is summarized in the
magnetic well, which is necessary for the global MHD stability and will be discussed
in section 4.2.

e The Fourier coefficients of inner flux surfaces can be computed and optimized
towards the coefficients of the corresponding surfaces of the target magnetic field.
They are derived in PEST coordinates [45] and we chose the R,,, and Z,,, of a
flux surface slightly inside the plasma boundary.

3.1. Remark:

We point out, that only the values of first curvature, the clearance and the two axes
positions have physical units.

4. Performance Criteria

4.1. Shafranov Shift

The Shafranov shift measures the deviation of the magnetic axis when a plasma pressure
is applied. The reduction of the Shafranov shift was one of the key objectives in the
design of W7-X [3].

In figure 3 we compare the position of the magnetic axis at both up-down symmetric
plasma cross sections as a function of normalized plasma pressure (($)). The Shafranov
shift between (8) = 0% and (8) = 5% measured at the bean-shaped cross section is
about 1cm lower for the stochastic case 100 compared to the rest of the cases. They
all have almost the same shift with the reference case having the largest one. At the
triangular cross section the stochastic case 100 has again the smallest Shafranov shift,
which is this time 2 cm smaller than the Shafranov shift of the reference case. The rest
of the cases including the target magnetic field have a Shafranov shift in between the
latter two cases, around 1 cm higher than the stochastic case 100 and around 1 cm lower
than the reference case. The Shafranov shift is in general a factor of two lower at the
bean-shaped cross section compared to the triangular cross section due to the different
elongations of the two cross sections. The results yield the following ordering:

fioo < Target =~ fsooo = fa000 = f2000 = fio00 < fi- (3)
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Figure 3: Shift of the magnetic axis from () = 0% up to (5) = 5% measured at both ends
of the half-module.

4.2. Stability

The depth of the magnetic well is a figure of merit in the ideal MHD considerations
[23]. Having a magnetic well means that the rate of increase of the contained magnetic
volume with toroidal flux , V'(s), decreases with radius, i.e. V"(s) < 0 [24]. In ONSET,
the magnetic well is defined as the normalized difference of the specific volume of two
well-separated magnetic surfaces (including the magnetic axis)

/ /
P S @

Vi+Vy
Here V] is the specific volume belonging to the magnetic surface closer to the magnetic
axis and Vj the corresponding specific volume belonging to the magnetic surface closer
to the last closed flux surface. During our optimization we computed V on the magnetic
axis and Vj on the surface at p = 0.2, where p is the normalized minor radius. The
specific magnetic volume is computed as the average line integral along a magnetic field

line normalized by the magnetic field strength and is expressed as the limit of
1 a dv

Nl BT A
The target magnetic field provides the design value of the magnetic well of 7.0 x 1073.

The stochastic cases 4000 & 8000 possess a deeper magnetic well of ~ 8 x 1072 and the

with W — toroidal flux. (5)

reference case has a more shallow magnetic well of 5.4 x 1073, The magnetic well of the
stochastic cases 100 & 1000 & 2000 is more than two times deeper than the magnetic
well of the stochastic cases 4000 & 8000. Having a magnetic well is a necessary condition
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for global ideal MHD stability and the result suggests that the stochastic cases are more
stable than the reference coil case.

Plasma Cross-sections Ideal MHD Eigenvalues

T T T T T I far q
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R[m] Normalized plasma pressure (3)

Figure 4: Left: Cross sections of the equilibria at (5) = 0.048 at the triangular- and bean-
shaped cross section. Right: Ideal MHD eigenvalue calculations versus average plasma-/.

We discuss the global ballooning stability of the reference and stochastic cases and
compare the results with the target magnetic field based on four MHD equilibria each.
The volume-averaged plasma-f is varied in a small range around the W7-X beta stability
limit of about 5%. The rotational transform varies between ¢ = 5/6 near the magnetic
axis and ¢ = 5/5 near the plasma boundary in the reference and the stochastic cases.
Only in the target magnetic field we see ¢+ < 0.8 on the axis. For the equilibria at
(B) = 0.048 two characteristic plasma cross sections of one half-module are shown in
figure 4 (left).

The ideal MHD computations were done using the CAS3D code [15] with
520 Fourier harmonics for the scalar perturbation components and 64 equidistant
flux intervals for the radial discretization. We consider even-parity fixed-boundary
perturbations for which the normal displacement is up-down symmetric on the up-down
symmetric plasma cross sections, i.e. at the bean-shaped and triangular cross sections,
figure 4 (left). The angular resolution is reduced by using a phase-factor transform that
extracts a potentially strongly varying part of the scalar perturbation components.

Global ballooning stability prevails for the [-values studied of the reference case
and stochastic cases 8000 & 4000 & 2000 as can be seen from their positive eigenvalues in
figure 4 (right). The target magnetic field together with the stochastic cases 100 & 1000
have unstable eigenvalues for the poloidal mode number ~ 100 considered in figure 4.
Here, extrapolation from the stable or unstable side yields points of marginal stability.
Above the marginal plasma-( the equilibrium is predicted to be unstable. Hence looking
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at the modes with poloidal mode number ~ 100, we can derive the stability limit of all
the cases shown in table 2.

Table 2: Stability limit of poloidal mode number 100

Magnetic Fields: Stability Limit:

Stochastic Case 1000 (B)
Stochastic Case 100 (B8)
Target Magnetic Field (8)
Stochastic Case 8000 (B) = 5.6%
Reference Case (B)
Stochastic Case 2000 (B)
Stochastic Case 4000 (B)

Higher mode numbers give more stringent stability limits, but the respective spatial
structure is of very small scale. The wavelength of the poloidal mode number ~ 100 is
only one order of magnitude above the Larmor-radius of gyrating ions moving in the
corresponding magnetic field. Therefore, the spatial structure is close to the point where
physics beyond ideal MHD should be taken into account.

The MHD ballooning stability properties of the reference case and the stochastic
cases 2000 & 4000 & 8000 are almost the same and somehow more stable than the
target magnetic field. Even though the latter cases are mere approximations of its
vacuum magnetic field their rotational transform profile has less shear than that of the
the target magnetic field at finite plasma-(). The stochastic case 100 is as stable as
the target magnetic field and only the stochastic case 1000 is less stable. The maximum
amplitudes of the normal-displacement harmonics are located quite close to the edge in
the stochastic cases 100 & 1000 for which, near the plasma boundary, the local stability
Mercier criterion is violated, too. Therefore, we additionally looked at medium-mode-
number free-boundary perturbations and compared the stability limits of the poloidal
mode number =~ 30. This new perspective does not change the order obtained before
and just decreases the values of the stochastic cases 100 & 1000 while increasing the
values of the rest.

The values of the magnetic well are insufficient indicators, since they indicate a
greater difference between the stochastic and reference cases. Here we point out that
the optimization leading to the W7-X configurational space was based on fixed-boundary
equilibria and that MHD stability properties entered the target function by evaluation of
local stability criteria (Mercier and resistive interchange) or driving terms (local field-
line ballooning) [11]. Nevertheless, both investigations arrive at a similar (3)-limit.
Besides the vacuum-field magnetic well, other equilibrium properties are important in
global ideal MHD stability, e.g. the rotational transform profile. Falling below iota=5/6
in the target magnetic field in part explains why a decrease in vacuum-field magnetic
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well does not result in an increased (f)-stability limit. The final order is:

fa000 < fao00 < f1 < fsooo < Target < fioo < fio00- (6)

4.8. Neoclassical Transport

The neoclassical confinement at low collisionalities in the 1/v-regime can be
characterized by the ’effective helical ripple’ e.s (see [25] and references therein). This
quantity can be determined efficiently from an analytic solution of the bounce-averaged
drift kinetic equation to calculate the neoclassical transport coefficients without using
a simplified model of the magnetic field [26].
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Figure 5: Profile of epsilon effective at (8) = 5%

In figure 5 we illustrate the €. profile of all 7 cases at (5) = 5%. The radial profile
is in all cases quite similar and only differs in the initial value and the ascent towards
the edge. The target magnetic field reaches on average over the whole radial extent the
lowest e.q profile. Its performance is only rivalled by the stochastic cases 100 & 1000
close to the magnetic axis. Their profile, in turn, has a steep ascent towards the edge
which is comparable to the ascent of the reference case which has by far the highest
€of values. The 27 best ez performance has the stochastic case 8000 which is closely
followed by the stochastic cases 2000 & 4000.

The magnetic field in Boozer coordinates can be described by Fourier coefficients
bymn- The Shafranov shift reduces the magnetic mirror term by; when increasing ()
from 0% to 5% which leads in all cases to a decrease of €. close to the axis [27]. The
second consequence of the Shafranov shift is a general increase of the magnitude of the
higher Fourier harmonics which leads to an increased transport gradient at the edge.
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Figure 6: The neoclassical transport is shown for the density and temperature distribution
displayed in the top first and top second picture. From third top to bottom the radial electric
field, particle and energy flux and the bootstrap current is displayed all along the radial
direction.

In figure 6 we present neoclassical transport calculations based on the "Drift Kinetic
Equation Solver’ DKES [28] [29]. In order to reach (8) = 5% we chose a density of
1.46 x 102 m~3 and a temperature of 5keV in the core. The corresponding profiles are
shown in the first and second frame of figure 6. Their shape is chosen similar to profiles
found during the experimental campaign OP1.2 of W7-X while the overall pressure
profile reaches () = 5%. A multiplication of the density and temperature profile yields
the pressure profile defined in (2), which was used for the equilibria calculations with the
free boundary version of VMEC [19]. The radial electric field, the energy and particle
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fluxes together with the bootstrap current along the radial direction are shown in figure
6 (third to bottom frame, respectively). There is almost no difference in the radial
electric field, but the development of the particle and energy flux in the radial direction
reflects that the e.g-profile is highest for the reference case. The stochastic case 8000 and
the target magnetic field have quite similar energy flux development but are noticeably
lower than the reference case. The stochastic cases 100 & 1000 have the same particle
and energy flux as the target magnetic field close to the core but diverge towards the
edge. The particle and energy flux development of the stochastic cases 2000 & 4000 lies
in between the reference case and the stochastic case 8000. A different picture presents
itself regarding the development of the bootstrap current as can be seen in table 3,
where we integrated the bootstrap current density over the cross sectional area.

Table 3: Integrated bootstrap current density over the cross sectional area.

Magnetic Fields: Bootstrap Current
Stochastic Case 8000 17kA
Stochastic Case 2000 22 kA
Reference Case 28 kA
Stochastic Case 100 31kA
Stochastic Case 1000 32kA
Stochastic Case 4000 33kA
Target Magnetic Field 35kA

The stochastic case 8000 has the lowest total bootstrap current, the reference case
is situated in the middle and the highest bootstrap current is found surprisingly in the
target magnetic field. A calculation of the equivalent bootstrap current of an elongated
tokamak (corr. scale found in [31]) with the same volume and aspect ratio with NTSS
[32] yields values around 220kA. The bootstrap current of a more realistic circular
scaled tokamak with the same volume and aspect ratio would yield values around
600kA. Consequently, the bootstrap current is significantly reduced in all 7 cases
considered,which confirms the minimization of the bootstrap current of the HELIAS
line described in [30]. The small differences in total bootstrap current between the cases
can thus be neglected.

In summary, the neoclassical confinement is best in the target magnetic field and
closely followed by the stochastic case 8000 & 1000, which have almost the same
performance. The rest of the stochastic cases have worse neoclassical confinement
although still better than the performance of the reference case, yielding the following
order:

Target < fsoo0 & fi00 < fa000 = f1000 < f2000 < f1. (7)
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4.4. Fast Particle Confinement

In the case of W7-X a magnetic mirror of 10% or higher is a necessary condition
to assure good a-particle confinement [33]. All the stochastic cases with N > 0
ended the optimization sequence with the same magnetic mirror as the target magnetic
field and only the reference case reaches a slightly higher magnetic mirror of ~ 13%.
Unfortunately, the magnetic mirror is not a direct proxy for fast particle confinement
which means that a higher magnetic mirror does not necessarily mean better fast particle
confinement.

Stochastic Cases 0, 100, 1000 Stochastic Cases 2000, 4000, 8000 Target Magnetic Field
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Figure 7: Comparison of the loss fraction of fast particles initiated at different starting
positions along the radial direction. The reference case together with the stochastic cases 100
& 1000 are situated left, the stochastic cases 2000 & 4000 & 8000 are in the middle and the
target magnetic field is placed on the right.

We measure the fast particle confinement of the 7 magnetic fields with ANTS
[16]. Along the radial direction, 7 different starting positions are defined at p =
0.25,0.5,0.7,0.78,0.84,0.9,0.95. At each radial position an ion population of 10000
particles was initiated and the loss fraction was measured as a function of time. The
deuterium ions are initiated with a kinetic energy of 60 keV, which yields about the same
gyroradius-to-system-size ratio as for fusion alpha particles at 3.5 MeV in a HELIAS
reactor [34]. We do not consider collisions while tracing the particles along the field
lines in the magnetic field of a (#) = 5% equilibrium.

In figure 7 we compare the development of the loss fraction as a function of time
starting with the reference case and the stochastic case 100 & 1000 on the left, the
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Figure 8: Zoom into the comparison of the loss fraction of the ion populations starting at
p = 0.25 and p = 0.5. Additionally, the slowing down time in a similar W7-X magnetic field
is indicated.

stochastic cases 2000 & 4000 & 8000 in the middle and the target magnetic field on
the right. The latter exhibits excellent fast particle confinement near the axis, as is
evident by the small loss fraction for t < 2 x 1072s. Details about its optimization,
which focused on the confinement close to the axis only, can be found in [11]. During
the optimization of the magnetic fields of the stochastic and the reference cases no proxy
for the confinement of fast particles was used due to their time-intensive computation.
Therefore, the fast particle confinement was only indirectly optimized through the field
error.

As expected, the target magnetic field has the best confinement of fast particles
at each starting position. If we compare the rest of the cases at p > 0.7, we see
that the reference case has noticeably the worst performance while the stochastic cases
with N > 0 have almost the same performance. At p = 0.7 we find, surprisingly,
the performance ordered by the number of sample used during the optimization
(fsooo < faooo < faooo < Sfiooo < fioo < fi). Looking at the two starting positions
close to the axis (p = 0.25 and p = 0.5), we see the worst performance from the
stochastic case 100 & 2000. A comparison between the remaining 5 cases is shown in
figure 8. Additionally, we added the slowing-down time of 5 x 1073s computed for a
similar W7-X magnetic field stated in [35]. Its magnetic configuration only reaches a
pressure of (3) = 4%, but the density of 1.6 x 10** m~3 is comparable to the one shown
in section 4.3. A comparison at this particular time step shows that at p = 0.25 the
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fast particle confinement is second best for the stochastic case 1000, closely followed
by the stochastic case 8000 and the reference case which have the same performance.
At p = 0.5 the stochastic case 1000 & 8000 have the second best performance after the
target magnetic field with a slightly better performance then the reference case. At both
starting positions, the stochastic case 4000 performs worst among the cases considered
in figure 8.

In summary, the fast particle confinement is best in the target magnetic field,
which is closely followed by the stochastic cases 1000 & 8000 which have almost the
same performance. Their performance is quite similar to the reference case, but only
close to the axis. For p > 0.7 the reference case actually performs worst. Consequently,
the performance of the stochastic case 4000 is still better than the reference case which
is only better than the stochastic case 2000 & 1000 due to their bad performance close
to the axis. The final order is:

Target < fsoo0 & fio00 < faooo < f1 < f2000 = f1o0- (8)

4.5. Turbulent Transport

As neoclassical transport is suppressed, turbulent transport becomes more important
in present day stellarators like W7-X [36]. Therefore, attempts have been made to
develop models to predict turbulent transport in stellarators in order to optimize future
devices [37]. Here, we show simulation results produced by GENE-3D, the radially-
global stellarator version of the grid-based gyrokinetic turbulence code GENE [39, 38, 40]
which was recently developed at IPP Garching [41]. Previous studies of stellarators
with GENE were limited to the flux-tube and flux-surface global version of GENE
[42, 43]. This is one of the first studies performed with the fully global GENE-3D code.
We compare three different equilibria mentioned in section 2 w.r.t. to two different
temperature and density profiles. The first profile type was used in the investigation of
the neoclassical transport of section 4.3 and the second profile type is a standard used
in GENE. Its gradient peaks at p = 0.5 and has a Gaussian like shape (see fig. 9). It
allows GENE simulations to run accurately with relatively low resolution requirements
and hence lower computational cost. The differences of the profiles in location and
height of the peak of the gradients can lead to different mode structures in GENE-3D
simulations which is part of the upcoming investigation.

4.5.1. Linear simulations with adiabatic electrons Figure 10 shows the most unstable
modes drifting in the ion diamagnetic direction in linear simulations assuming
Boltzmann-distributed electrons. Looking at the solid lines which correspond to the
profiles used in the neoclassical transport investigation of section 4.3, the reference case
and the stochastic case 8000 peak at the same toroidal mode number of n = 110 and
the target magnetic field peaks at a slightly smaller mode number of n = 105. A
higher mode number indicates that the underlying mode structure varies on a smaller
scale. Large scale instabilities are however more relevant in nonlinear simulations as
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Figure 9: Density and temperature profiles used in GENE-3D simulations for the mode
analysis. The gradient profiles have very different shape and peak at different positions and
can therefore lead to different dominant modes in the simulations.

they lead to more particle and heat transport. The picture stays the same when looking
at the growth rates, where the target magnetic field has a slightly higher growth rate of
v = 0.146} compared to v = 0.137} for the other two cases. Here, v; is the ion thermal
velocity defined as y/Tjo/m; and a is the minor radius.

Looking at the dashed lines of figure 10 which correspond to the profile type 2 in
figure 9 the reference case and the stochastic case 8000 peak again at the same toroidal
mode number of n = 175 but with slightly different growth rates. This time the target
magnetic field peaks at a slightly higher toroidal mode number of n = 185 and has a
noticeably higher growth rate of v = 0.2023.

As both temperature profiles show similar behavior in respect to differences in the
magnetic field geometry we continue the simulations using the profile type 2 which leads
to lower computational cost of the GENE-3D simulations.
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Figure 10: Most unstable modes in linear simulations of adiabatic electrons. Two different
temperature and density profiles were used.

4.5.2. Linear simulations with kinetic electrons An explicit electron species can change
the outcome of a simulation as the dominant mode can have different characteristics.
Theoretically, the mode can change from ion modes such as ion temperature gradient
(ITG) modes to electron modes such as electron temperature gradient (ETG) modes
or trapped electron modes (TEM). Therefore, we repeated the tests of section 4.5.1 for
kinetic electrons to investigate their effect on the mode structure and small changes in
the geometry. We assume the same density and temperature gradient for the electrons
as for the ions, such that the two linear cases differ only by the additional explicit heavy
electron species in the system with m./m; = 1/100 (m.: electron mass, m;: ion mass).
As can be seen from figure 11, adding kinetic electrons to the simulations shifts
the toroidal mode number to higher values and increases the growth rate. In the
performed simulations with kinetic electrons the dominant mode is still rotating in
the ion diamagnetic drift direction like with adiabatic electrons. The up shift in mode
number due to kinetic electrons is smallest in the target magnetic field and largest in the
reference case. But in general the up shift is smaller than the change of mode number
due to the difference in profiles, which indicates that an explicit electron species in the
simulations does not have a strong effect on the underlying instability. The reference
case again has the lowest growth rate while the target magnetic field has the highest.

4.5.8.  Nonlinear simulations with adiabatic electrons Adding kinetic electrons to
the simulations in the linear scenario did not have a strong effect on the outcome.
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Figure 11: Most unstable modes in linear simulations of kinetic electrons

Therefore, we concentrate on nonlinear simulations of adiabatic electrons to measure
the volume-averaged (electrostatic) ion heat flux. As can be seen from figure 12 the
three equilibria behave almost identically for the first 250 time units. This confirms
the linear results as the first part of virtually uninhibited growth (until ¢ &~ 100) of a
nonlinear simulation is often considered the linear phase until nonlinear effects start to
take over. Hereafter, similarity or equality can only be determined statistically because
two nonlinear simulations will never be exactly the same. Therefore, the qualitative
features of the three equilibria are very similar since they all show the same development.
After the first peak follows a dip and then another peak of heat flux. These fluctuations
persist even on long time scales. Quantitatively, the heat flux averaged over time for
the three equilibria is also very similar as well as their uncertainties. The uncertainty is
computed as one standard deviation of the time trace in the interval used for averaging.

4.5.4. Conclusion Comparing three different free-boundary equilibria representing the
W7-X high-mirror variant we find that the target magnetic field is actually linearly
more unstable than the reference and stochastic case 8000. Between the reference
and stochastic case 8000 we could only find minor differences in terms of mode
structure or linear growth rate. Nonlinearly, the differences between the three equilibria
are negligible. Therefore, considering the performed gyrokinetic simulations small
differences in geometry do not affect the heat flux significantly. As the differences
between the three different equilibria do not have a large impact on the GENE-3D
results such that no additional runs were performed for the rest of the coil cases.
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Figure 12: Heat flux development for the three different equilibria. Linear Phase, qualitative
features and quantitative averages over time are all virtually the same. Here, n;o and T;g are
the density/temperature at p = 0.5 and p; is the ion Larmor-radius.

5. Discussion and conclusion

The magnetic fields of a stochastic stellarator coil optimization (stochastic case N) are
compared with a magnetic field of the traditional stellarator coil optimization (reference
case) on the basis of an identical optimization sequence. The results are compared with
the target magnetic field used during the optimization. The coil sets are naturally
ordered by their fitness w.r.t. the penalty function f, which measures the difference
between the magnetic field produced by the coil configuration and the target magnetic
field by means of several quality criteria. Except for the reference case (sample size 1),
the ordering of the penalty values represents the number of samples used during the
optimization: The higher the sample size, the lower the penalty value. The reference
case lies between the stochastic case 2000 & 1000 and has a 20% lower penalty value
than the stochastic case 8000. The stochastic case 100 has by far the highest penalty
value, suggesting that it would have the worst performance. Each magnetic field is
transformed into a () = 5% equilibrium with VMEC and compared on the basis of the
W7-X objectives [3], namely the Shafranov shift, stability and neoclassical transport
properties, and the confinement of fast particles. At last, we investigate the gyrokinetic
behavior of the stochastic case 8000, the reference case, and the target magnetic field.

The penalty function f represents the performance of the stochastic cases 8000
& 4000 & 2000 together with the reference case quite well when investigating the
Shafranov shift, the neoclassical transport and the confinement of fast particles. The
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target magnetic field, which has a penalty value of zero, shows in the latter two criteria
the best performance, but only reflects its much better fitness w.r.t. f in the confinement
of fast particles. The stability is not very well described by the penalty function and
suggests that further improvement should be made. Interestingly, the stochastic cases
1000 & 100 show good results when investigating the performance criteria which means
that the penalty function f did not represent their performance very well. Especially
the surprisingly good performance of the stochastic case 100 questions the effectiveness
of the penalty function f and shows again that an agreement in the vacuum magnetic
field is not necessary for good performance (c.f. [13] and [14]). The investigation of the
turbulent transport showed that the differences in the magnetic field geometry are too
small to find reasonable differences in the heat flux.

Summarizing the performance investigation, the target plasma shape is optimal
followed by the stochastic cases and concludes with the plasma shape of the reference
case. This shows that stochastic stellarator coil optimization outperforms classic
stellarator coil optimization irrespective of the number of considered samples. The
original reason for introducing the stochastic coil optimization was to improve
robustness, but it managed to also find coil sets that outperform the previously found
coil set even when disregarding tolerances.

6. Outlook

The reason why stochastic stellarator coil optimization outperforms classic stellarator
coil optimization irrespective of the number of considered samples when analyzing
the physics properties of the corresponding magnetic fields is not fully understood.
Stochastic optimization smooths out the optimization space which leads to lower field
error values when the sample size is high enough. It is left to future work to investigate
why stochastically optimized coil configurations with noticeably higher field error values
performed better than the reference case.

The fitness ordering obtained from the penalty values after the optimization did
not fully reflect the actual expected physics performance of the coil sets. This motivates
to invent new proxies especially for the MHD stability. The coil optimization that we
have been focusing on here takes as input the target magnetic field and is therefore
limited to the performance of the target magnetic field, even if this target itself could be
further optimized. Therefore, an obvious next step is to apply the stochastic framework
to stellarator optimization, which concentrates on the optimization of the performance
criteria directly.
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Appendices

Appendix A. Quality Criteria used during the Optimization

In table A1 we list the achieved values of the quality criteria of the reference & stochastic
cases after the optimization together with the target values. Additionally, we show
the corresponding penalty values in brackets (). The quality criteria are grouped in
4 categories and appeared at different stages during the optimization sequence. The
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optimization sequence consisted of 6 optimization runs which differ in the values used
for each individual quality criterion. A detailed list of the corresponding weights used
in every single optimization run can be found in [2]. The optimization started with the
field error together with the geometric properties and introduced the basic properties
of the magnetic field in the second stage. The third stage was the optimization of the
Fourier coefficients of an inner flux surface. We obtained the Fourier coefficients from
the target magnetic field and optimized the corresponding coefficients in the magnetic
field produced by the coil set. We use PEST coordinates [45] for this computation
which assure identical poloidal angles for the different cases. In the corresponding row
in table A1 we are presenting the penalty value instead of the 104 Fourier coefficients.
A detailed description of the quality criteria and how they are computed in ONSET [1]
can be found in [22].
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Quality Criteria:

Stochastic Case 8000:

Target Values:

Reference Case:

Maximum Local Field Error 6.0 x 1072 (3.70) (0) 7.0 x 1072 (4.87)
Average Global Field Error 1.6 x 1072 (1.25) (0) 1.7 x 1072 (1.45)
Curvature 1 (m~')(Coil 1/2/3/4/5)  3.0/2.9/3.0/3.1/3.3 (9.2 x 1072) 3.0 (0) 3.0/3.0/3.0/3.0/3.1 (7.0 x 1073)
Curvature 2 (in 101 2.7/3.1/5.1/6.1/6.2 (1.0 x 10" 0.3 (0) 3.6/4.2/5.6/5.1/5.4 (6.7 x 1072)
Clearance (cm) 27/27/27.7/26.8/26.8 (1.4 x 1073) 27 (0) 27/26.8/26.8/26.8/31 (3.1 x 1073)
Magnetic Axis (bean-shaped cross.) 5.936m (5.6 x 107°) 5.934m (0) 5.928m (1.3 x 107)
Magnetic Axis (triangular cross.) 5.166m (7.2 x 1073) 5.17m (0) 517m (1.1 x 107*)
Magnetic Mirror on Axis 0.10853 (8.8 x 107°) 0.107 (0) 0.132 (1.9 x 107%)

Iota on Axis 0.882 (9.9 x 10°7) 0.883 (0) 0.881(3.9 x 107%)
Magnetic Shear 1.521 (2.6 x 1073) 1.56 (0) 1.49 (3.9 x 1073)

Magnetic Well

8.1 x 1073 (0)

7.0 x 1073 (0)

5.4 x 1073 (2.9 x 107%)

Fourier Coeff. of inner Flux Surface

(2.83 x 1071)

(0)

(2.44 x 1071

Total Penalty Value

(5.89)

(0)

(6.65)

Quality Criteria:

Stochastic Case 4000:

Stochastic Case 2000:

Maximum Local Field Error

Average Global Field Error

5.7 x 1072 (3.29)
1.66 x 1072 (1.39)

6.0 x 1072 (3.6)
1.95 x 1072 (1.9)

Curvature 1 (m™)(Coil 1/2/3/4/5)

Curvature 2 (in 1071)
Clearance (cm)

2.9/2.5/2.8/3.1/3.2 (4.0 x 1072)
2.2/2.4/4.1/5.3/5.4 (5.1 x 1072)
30.78/30.78/30.9,/28/28 (0)

2.2/2.3/3.1/3.1/3.3 (8.5 x 1072)
2/3.1/4.5/5.4/5.3 (5.1 x 1072)
33.0/31.22/29.66/27.8/27.8 (0)

Magnetic Axis (bean-shaped cross.)
Magnetic Axis (triangular cross.)

Magnetic Mirror on Axis
Iota on Axis
Magnetic Shear

5.922m (5.3 x 1074
5.158m (6.4 x 1072)
0.0994 (1.1 x 107%)
0.8815 (6.2 x 107%)
1.56 (9.2 x 1072)

5.923m (5.0 x 107)
5.152m (1.4 x 107Y)
0.0953 (3.8 x 107)
0.8849 (5.5 x 107%)
1.63 (4.2 x 1073)

Magnetic Well 7.9 x 1073 (0) 1.7 x 1072 (0)
Fourier Coeff. of inner Flux Surface 0.646 (6.46 x 1071) (5.07 x 1071)
Total Penalty Value (5.48) (6.3)

Quality Criteria:

Stochastic Case 1000:

Stochastic Case 100:

Maximum Local Field Error

Average Global Field Error

7.0 x 1072 (4.81)
1.92 x 1072 (1.85)

8.0 x 1072 (6.38)
2.27 x 1072 (2.58 x 1072)

Curvature 1 (m~!)(Coil 1/2/3/4/5)

Curvature 2 (in 1071)
Clearance (cm)

30.78/30.78/30.9/28 /28 ((

2.2/2.5/3.0/3.4/3.3 (1.7 x 1071)
1.9/2.2/3.2/6.1/4.8 (5.1 x 1072)

)

2.1/2.4/2.6/3.2/3.2 (3.2 x 1072)
1.7/3.5/3.9/4.8/5.0 (4.5 x 1072)
26.7/26/26/30.8/34.8 (0)

Magnetic Axis (bean-shaped cross.)
Magnetic Axis (triangular cross.)

Magnetic Mirror on Axis
Iota on Axis
Magnetic Shear

5.923m (4.8 x 1074)

5.174m (1.1 x 1072)
0.1011 (8.8 x 107%)
0.879 (1.2 x 1072)
1.43 (1.3 x 1072)

5.94m (1.6 x 1074
5.191m (2.2 x 1071
0.0975 (2.5 x 1074
0.8768 (6.6 x 1072)
1.52 (1.4 x 1072)

Magnetic Well 1.8 x 1072 (0) 1.6 x 1072 (9.7 x 107%)
Fourier Coeff. of inner Flux Surface (7.34 x 107Y) (9.62)
Total Penalty Value (7.65) (11.03)

Description:
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Penalty Value Number in brackets ().

Field Error Normal magnetic field on the plasma boundary.

Clearance Minimum distance between adjacent coils.

Curvature 1 Maximum coil curvature.

Curvature 2 Weighted curvature defined in [22].

Magnetic Axis Central closed field line about which the other field lines wind [44].

Magnetic Shear Difference of iota on axis and an iota value off axis divided by the
squared length.
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Following up on earlier work which demonstrated an improved numerical stellarator coil
design optimization performance by the use of stochastic optimization [Lobsien J., Nucl.
Fusion 58 106013], it is demonstrated here that significant further improvements can
be made - lower field errors, and improved robustness - for a Wendelstein 7-X test case.
This is done by increasing the sample size and applying fully 3D perturbations, but
most importantly, by changing the design sequence in which the optimization targets
are applied: Optimization for field error is conducted first, with coil shape penalties only
added to the objective function at a later step in the design process. A robust, feasible
coil configuration with a local maximum field error of 3.66% and an average field error
of 0.95% is achieved here, as compared to a maximum local field error of 6.08% and
average field error of 1.56% found in our earlier work. These new results are compared to
those found without stochastic optimization using the FOCUS and ONSET suites. The
relationship between local minima in the optimization space and coil shape penalties is
also discussed.

1. Introduction

The construction cost of stellarators is dominated by the manufacturing and assembly
process of the primary coil system, which produces the “magnetic cage” in which the
plasma is later confined. Budget and schedule of the whole project strongly depends
on the construction tolerances which are derived from a perturbation analysis after the
primary coil system is designed. Unfortunately, the construction of recent stellarator
experiments like Wendelstein 7-X (W7-X) and the National Compact Stellarator Ex-
periment (NCSX) were negatively influenced by their low construction tolerances which
led, in the case of NCSX, to the cancellation of the whole project [Orbach (2008)]. A
method that increases construction tolerances without compromising the performance of
the magnetic field would be highly beneficial.

We investigated the problem by integrating a perturbation analysis into the optimiza-
tion loop of ONSET [Drevlak (1998b)], a nonlinear coil optimization suite. Instead of
optimizing a single coil configuration, the average of a cloud of coil configurations is
being optimized. Each element of the cloud is a perturbation of the coil set at the cloud’s
center. The cloud is characterized by the number of samples N (perturbations) and
its size is defined by the average perturbation amplitude. In our earlier work [Lobsien

1 Email address for correspondence: jim.lobsien@ipp.mpg.de
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et al. (2018)] that concentrated on coil configurations for the original W7-X plasma
boundary the average perturbation amplitude was kept fixed at 2 mm while the number
of samples N was varied between 1 and 8000. Each perturbation was two dimensional
and displaced the coil set across its winding surface. For one sample this reduces to the
non-stochastic case of classic stellarator coil optimization called the reference case. The
stochastically optimized coil configurations were able to reproduce the target magnetic
field more accurately with a local maximum field error of 6.08% and an average field
error of 1.56% while we observed an increased resilience w.r.t. the objective function f.
A subsequent derivation of reactor relevant (3)=5% equilibria allowed us to analyse the
performance of the coil configurations w.r.t. the criteria that originally led to the shape of
the plasma boundary of W7-X. The investigation revealed that stochastic stellarator coil
optimization outperforms classic stellarator coil optimization irrespective of the sample
size [Lobsien et al. (2020)].

In this manuscript, we build on the results obtained in [Lobsien et al. (2018)] and study
the effects of stochastic stellarator coil optimization with 3D perturbations on a different
coil design process for the original W7-X plasma boundary. First, we solely concentrate
on the field error, then implement the geometric and vacuum magnetic field properties in
two subsequent phases. The number of samples is increased to N = 20000 while we test
three different average perturbation amplitudes 0 mm, 2 mm and 5 mm. The case with a
cloud size of 0 mm reduces again to the case of classic stellarator coil optimization called
the reference case.

We also test here the effect of the nonlinear coil optimization tool FOCUS [Zhu et al.
(2017)] to reduce the field error in the first phase of the design process. ONSET is then
used to implement the geometric constraints and adjust the properties of the vacuum
magnetic field. Following this procedure, we are able to compare the performance of
two nonlinear coil optimization tools. Their differences w.r.t. the objective function f
are described in section 2 together with the perturbation technique that is used in the
stochastic version of ONSET. A detailed description of the design process closes the
methodology. In section 3 we investigate the development of the field error during the
design process and analyze the final fitness of the coil configurations. Their robustness
w.r.t. the objective function f is investigated by a perturbation analysis. Lastly, we
visualize the final coil configurations and conclude the investigation.

2. Methodology

The task of designing a stellarator coil system can be seen as the second step in
the process of designing a stellarator. A given plasma boundary uniquely defines the
vacuum magnetic field in its interior and together with a pressure and current profile the
finite- effects when a plasma pressure is applied. Intuitively, one first tries to find the
optimal plasma shape that performs best w.r.t. predefined performance criteria like MHD
stability, energy and particle transport, and fast particle confinement. In the second step
one aims to reproduce the desired magnetic field with a finite set of coils. The magnetic
field which later confines the plasma is the crucial element in this scenario by building
the bridge between stellarator and coil optimization.

Deriving external currents that produce a given magnetic field is an inverse problem
that is ill-posed, but can be solved linearly on a surface outside the plasma boundary with
NESCOIL [Merkel (1987)] or its successor REGCOIL [Landreman (2017)| that allows dif-
ferent regularization schemes. The result is a continuous and smooth current distribution
on the winding surface which can be discretized into a finite set of filaments that describe
a coil set. The magnetic field of the coil set can be further improved with codes such as
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ONSET [Drevlak (1998b)], COILOPT [Strickler et al. (2002)], COILOPT** [Brown et al.
(2015)] and FOCUS |Zhu et al. (2017)] which translate the problem into the minimization
of a nonlinear objective function f. It consists of the parametrization h and the penalty
function g, i.e. f =goh.

ONSET and FOCUS show substantial differences in the choice of the coil parametriza-
tion (section 2.1), the quality criteria that define the penalty function (section 2.2), and
the optimizer that minimize the objective function f. ONSET has several optimizers,
but we use Brent’s method [Gegenfurtner (1992)] which approximates the Hessian of
f in an iterative process and optimizes along its principal axes. FOCUS, on the other
hand, computes the gradient and Hessian [Zhu et al. (2018b)] of f analytically. FOCUS
also has several optimizers to minimize the objective function f, but in this study, we
will mainly use the conjugate gradient method. ONSET has the ability to optimize a
coil configuration stochastically which perturbs the coil configuration to create a sample
cloud. The technique is explained in section 2.3. The values of the weight constants w;
define the coil design process (section 2.4) which is the path we chose to solve the coil
optimization problem defined as

2.1

min f(z), (2.1)

where z € R" is the set of parameters describing the coil set. The objective function
f:R" =R, f(z)=(g0h)(z) (2.2)

consists of a parametrization h : R” — R3S which maps the set of parameters to a set of
S filament points that describe the coil set in the 3D Euclidean space. Subsequently, the
penalty function ¢ : R?*® — R calculates the magnetic field with the Biot-Savart formula
and measures the difference between the magnetic field produced by the coils and the
target magnetic field defined by the shape of the plasma boundary. In detail, it calculates
the quality criteria which are compared to the design values of the target magnetic field
while it simultaneously assures that the shape of the coil set is feasible for construction.

2.1. Parametrization

Coil sets are parametrized differently in FOCUS and ONSET. FOCUS uses a three
dimensional Fourier representation of the coil set, where each spatial coordinate is
represented by

— xc o+ Z ncos(nt) + a7, sin(nt)]  with ¢ € [0,2n] (2.3)

and j = {1, 2, 3}. This parametrization avoids the necessity of a winding surface. In total,
the number of parameters defining a single coil is 3 x (2Np + 1).

The winding surface is an essential element of the parametrisation we chose in ONSET.
Its two parts are visualized in figure 1. Each coil consists of 2 x Np parameters describing
a cubic periodic spline in the two dimensional plane. The splines are then mapped by
h onto two limiting surfaces. Additional Np parameters then interpolate the winding
surface between two limiting surfaces. The interpolation uses the arc tangent such that the
winding surface can never reach the limiting surfaces. Full three-dimensional flexibility of
the coil set can be achieved when the parametrisation is extended such that each coil has
its own set of parameters that interpolate the winding surface between the two limiting
surfaces. This way, each coil is attached to its own winding surface and can be displaced
independently perpendicular to it. Such a flexibility is comparable to that available in
FOCUS. The number of parameters then yields 3 x No per coil.
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Transformation from the Parameter Space to the Euclidean Space
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FIGURE 1. The parametrization used in ONSET.

We choose Np = 13 and Ng = 6 such that ONSET and FOCUS use the same number
of parameters per coil.

2.2. Penalty Function

In order to compute the value of the penalty function g, the magnetic field produced by
the coil set is computed. Subsequently, characteristics of that magnetic field are derived
called quality criteria. The analytic function that maps the quality criteria to the penalty
value in R is the last part of the calculation of the penalty function and is defined by

k

Zwi (qz(x) — qgle”g")2 ) (2.4)

i=1

The value of the quality criterion ¢;(z) is subtracted by its design value ¢%¢**9" and yields,
factorized by its weight constant w;, the specific contribution to the penalty function.
The change of the weight constants w; defines the coil design process and is explained in
section 2.4. The target plasma boundary uniquely defines the target vacuum magnetic
field from which the design values ¢?¢**9" are derived prior the optimization.

The most dominant quality criterion is the field error evaluated by computing B - n,
where B is the vector of the magnetic field produced by the coils and n is the normal on
the target plasma boundary. In general, B may include internal plasma currents, which
were absent in the optimization of W7-X. FOCUS minimizes the average squared field
error

Qase(T) = /A %(B -n)%dA, (2.5)

where A is the area of the plasma boundary. ONSET uses two different measures for the
normalized field error

B - n|
qre(x) = : (2.6)
B
The maximum local field error max q;. and the average global field error
qledA
Qae(x) = fA A . (2.7)

In ONSET, one can fully control the shape of the coil set by geometric constraints.
The material used for the coils defines the finite extent of the coils which sets the
minimal clearance between adjacent coils. This design process uses two limiting surfaces
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which guarantee that the coils do not get too close or too far away from the plasma
boundary. The finite extent of the coils also defines the maximal allowed coil curvature.
Its computation in ONSET follows x = %, where R is the smallest radius of curvature
for a given coil. Unnecessary undulations are penalized by a second curvature which is a
weighted variant of the first curvature described in [Drevlak (1998a)|. Ultimately, crossing
points are penalized. These criteria define the geometric properties absolute necessary
for the construction of the W7-X central coil system.

ONSET has additionally the capability to optimize properties of the vacuum magnetic
field by following magnetic field lines and calculating magnetic flux surfaces. The prop-
erties and their calculation are explained in more detail in [Drevlak (1998a)| and briefly
summarized here:

e The position of the magnetic axis is determined by finding the fixed-point of the
field line map and two positions of the magnetic axis at the beginning and at the end of
the half-module are evaluated.

e The difference between the magnetic field strength on the axis at the start and at
the end of the half-module is referred to as the magnetic mirror. It is normalized to the
sum of the two magnetic field strength values.

e The value of iota on the axis and the shear is determined. The latter is computed
by taking the difference of iota on axis and iota 0.2m off axis at the beginning of the
half-module at z = 0.

e The magnetic well (hill) is defined as the normalized difference of the specific volume
of two well-separated magnetic surfaces (including the magnetic axis). The specific
volume is defined as limpy_, oo % f N % = j—g where ¥ is the toroidal magnetic flux.

e The Fourier coefficients of inner flux surfaces can be computed and optimized
towards the coefficients of the corresponding surfaces of the target magnetic field. They
are derived in PEST coordinates [GRIMM et al. (1976)] and we chose the R,,, and Z,,,
of a flux surface slightly inside the plasma boundary.

FOCUS has less control of the coil geometry than ONSET despite having penalty
functions over the coil length, coil-to-coil separation, coil-plasma separation and coil
curvature. To use analytic derivatives, FOCUS employs integrated formulas for these
engineering constraints. The primary constraints used in this study are the coil length
and coil curvature. The penalty on the coil length is

N¢

qr(z) = NLC ; % (lz(fvi:(l;)o(x)) ;where [;(z) = /0 ’ || dt (2.8)

is the length of the i-th coil, [; , is the target length and N¢ is the number of coils. It
has the disadvantage that chosen [; , too low one can perfectly approximates the plasma
boundary but cannot control the geometric properties of the coil. Chosen [; , too high,
one obtains values of the field error that are too large. The introduction of a penalty
on the curvature improved the shape of the coil sets but could not completely avoid the
violation of the second curvature and the coil-to-coil clearance used in ONSET. Compared
to ONSET, the squared curvature was optimized. Due to technical limitations, a version
of FOCUS that could use the curvature and coil-to-coil constraint was not available
during our computations.

2.2.1. Remark:

Both ONSET and FOCUS have the ability to optimize additional physics properties.
We list them here to give a full overview of the characteristics of the two coil optimization
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suites.

ONSET:

e Following magnetic field lines, ONSET can check the existence of magnetic flux
surface.

e On a flux surface ONSET can also compute:

o The Fourier coefficients of the magnetic field H,,,, in PEST coordinates.
o Epsilon effective e.g.

e ONSET can detect the fixed-point of magnetic islands and optimize their width by
computing their residual |[Greene (1968)].

e ONSET has the ability to do equilibrium calculations with VMEC [Hirshman &
Whitson (1983)] such that all performance criteria available in the stellarator optimiza-
tion suite ROSE [Drevlak et al. (2018)] can be optimized.

e A NESCOIL calculation can be invoked to compute the current distribution needed
to eliminate the residual field error. This is useful for optimizing systems of simple
primary field coils (toroidal field component in a mixed-topology coil system) so as
to minimize the burden on a saddle coil or permanent-magnet solution providing the
rotational transform.

ONSET and FOCUS can optimize the current that flows through the coils. In this
manuscript, all coils were equipped with an equal current of 1.45 MA.

FOCUS:

e FOCUS can detect magnetic islands and optimize the island width [Zhu et al.
(2018a)].

e FOCUS can optimize the quasi-symmetry of the configuration [Zhu et al. (2018a)].

We did not optimize any of these properties because their investigation would be out of
the scope of this manuscript.

2.3. Perturbation of the Coil Set

Stochastic coil optimization extends the optimization of a single coil configuration
(c.f. equation (2.1)) to the optimization of a cloud of coil configurations

in F. : 2.9

min Fy(z) (2.9)

The cloud is characterized by the number of samples N. Each element of the cloud is

a perturbation of the original coil set at the cloud’s center. A perturbation of the coil

configuration can be intuitively achieved by perturbing the set of parameters that define

the coil set. This leads to the objective function

Fa(e) i= 5 > {60+ war = . > (goheg)e) +uo  (210)

where {y(x) = x¢ is the original parameter set and {&;(x)}i=1,... n is the set of perturbed
parameter sets which have a Gaussian distribution around the cloud’s center. The last
term after the sum w,o is a penalty on the standard deviation o of the penalty value
distribution of one sample cloud. It is a tool of risk averse programming and intends to
increase the robustness w.r.t. f. In the previous coil optimization study [Lobsien et al.
(2018)], we only perturbed the parameters that deform the coil set across its winding
surface. Here, we perturb all of the input parameters and assure that the deviation of
the winding surface itself has the same magnitude as the deviation across the winding
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Optimization Phase: 1 II I11
Maximum Field Error 0/ 1.0-10?

Mean Field Error 0/1.0-10°

Clearance - 0.27m/1

Curvature 1 - 3m~'/0.7

Curvature 2 - 0.3/0.4

Magnetic Axis (bean) - - 5.93 m/2450
Magnetic Axis (triangle) - - 7.17m/2450
Magnetic Mirror on Axis - - 0.11/3
Iota on Axis - - 0.88/1.5-10°
Magnetic Shear - - 1.56/1.6

Magnetic Well - 0.007/1.0 - 10°

Fourier Coeff. of Surface - - varies/2.0 - 102
Limiting Surfaces +30cm/+75cm . +30cm/+80cm
Points per Coil 13 : .
Variables of WS 13

Wo 0.5

TABLE 1. Design Sequence in ONSET: ¢%***9" /w;

surface. The perturbation of the parameters has the disadvantage that the outcome of
the displacement is hard to control and strongly depends on the parametrization.

We describe the extent of the cloud of samples in physical units of mm by the average
perturbation amplitude. It is defined by

N 500

1 1

i=1 j=1

where p;;p;; is the distance between the perturbed p;; and unperturbed py filament
point. The sum goes over all the 500 filament points that describe a coil set and over all
the coil sets in the cloud except the unperturbed one.

2.4. Design Sequence

The coil design process is divided into three phases. The first phase solely concentrates
on the field error, the next phase then targets the geometric properties, and last but not
least properties of the vacuum magnetic field are optimized. Each phase is defined by the
corresponding values of the weight constants w; which are shown in table 1.

The optimization of the field error consists of multiple adjustments that shift the outer
limiting surface further away to find the optimal coil-to-plasma distance. Similarly, we
start the optimization phase with fewer points per coil to slowly increase the geometric
freedom of the coil set while the weights for the field errors and the standard deviation
w, are kept fixed throughout the whole design process.

The 274 design phase focuses on controlling and improving the geometric properties
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while keeping the weights on the field error fixed. The whole process adjusts the weights
of the coil-to-coil clearance and the two curvatures to their final values with the overall
aim to not increase the value of the field error. This may not always be possible. In some
cases, large kinks and/or self-intersections of the coils appear, and the code can get stuck
with these unacceptable features, even after the geometric properties have been included
in the penalty function in phase II. We find that this can be avoided by either using
stochastic optimization already in phase I, or switching to phase II early, i.e. before
having completed phase I. This is another indication that the optimization space has
many local minima in which the optimizer can get stuck. The coil sets first optimized
with FOCUS enter the design sequence with ONSET at phase II.

After the shape of the coil set meets the geometric constraints, the coil design process
concludes with the optimization of properties of the vacuum magnetic field. The last
design phase usually concentrates first on the magnetic axis, iota profile and the magnetic
mirror and well, and then it concentrates on the Fourier coefficients of an inner flux
surface. All the design values ¢%¢%*9" were previously deduced from the target vacuum
magnetic field which corresponds to the original W7-X plasma boundary. The boundary
was first introduced in [Niihrenberg & Zille (1988)], but the high-mirror configuration we
are using is better described in [Niithrenberg (1996)].

The design sequence described here is slightly different from the one used in the
previous study [Lobsien et al. (2018)]. There, the geometric properties are optimized
simultaneously to the field error such that phases I and II are combined into a single
phase. In its concluding phase the weights of the vacuum field properties are reduced
and the outer limiting surface is kept fixed at +75cm.

3. Results

In this section, we investigate the effects of stochastic stellarator coil optimization using
3D perturbations. We follow the coil design process described in section 2.4 that consists
of three phases. Two coil configurations are optimized using the stochastic version of
ONSET with an average perturbation amplitude of 2mm and 5mm. In both cases, the
cloud consists of 20000 samples. The investigation includes two reference cases: One
reference case passes the whole design process with the single sample version of ONSET,
the other reference case is first optimized with FOCUS and then enters the design process
with the single sample version of ONSET at phase II. We refer to them as reference
case ONSET and HYBRID. In order to be consistent with the first design phase of the
previous design process [Lobsien et al. (2018)], the two stochastic cases and the reference
case ONSET use a single winding surface in phase I and II while in phase III they use
the extended parametrisation where each coil is attached to its own winding surface. The
perturbation used in the stochastic optimization always uses the current set of parameters
that describe the coil set. The reference case HY BRID uses the extended parametrisation
of ONSET throughout phase II and III.

3.1. Comparison after design phase I

In table 2 we list the maximal and average field error of the coil configurations after
the completion of the first design phase.

The reference case HYBRID reaches by far the lowest average field error which is
directly targeted through the average squared error in its objective function. Not directly
covered is the maximal field error which is slightly higher than the value of the stochastic
case 2mm. The reduced coil flexibility of the stochastic case 2mm in phase I inhibited
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Coil Configuration: Maximal Average
Field Error Field Error

Stochastic Case 2 mm 3.73 x 1072 1.3 x 1072
Stochastic Case 5 mm 6.64 x 1072  2.01 x 1072
Reference Case HYBRID 40%x 1072 0.53x 1072
Reference Case ONSET 571 %1072 1.37x 1072

Stochastic Case 8000 [Lobsien et al. (2018)] 6.1 x 1072 1.59 x 102

TABLE 2. Values of the maximal and average field error after design phase I.

a further reduction of the field error but is not responsible for the large difference in the
average field error values compared to the reference case HYBRID.

In the previous study [Lobsien et al. (2018)], where geometric constraints were part of
the penalty function g throughout the first design phase, the lowest field error values
after its first design phase were achieved by the stochastic case 8000. Compared to
these values, the stochastic case 2mm could reduce the maximal field error by 40%
and the average field error by 15%. This shows that in principle geometric constraints
inhibit the optimization of the field error because they restrict the shape of the coil.
The stochastic case 5 mm occupies the lowest rank which shows that an increase of the
average perturbation amplitude negatively influences the optimization of the field error
similar to geometric constraints.

We compare the speed and the corresponding efficiency of the three optimization
approaches by the number of evaluations of their individual objective functions assuming
that the evaluations takes a similar amount of time. In the stochastic optimization this
does not include the 20000 samples, since their computation is parallelized which only
marginal contributes to the evaluation time due to the communication between the
processes. FOCUS only needed 300 evaluations of its objective function f to arrive at that
very low minimum. The stochastic case 5 mm needed 5000 evaluations of its objective
function Fl, corresponding to 10® evaluations of f, to converge and the stochastic case
2 mm needed 28 000 evaluations of Fiy (5.6 x 10® evaluations of f) to arrive at a slightly
worse performing minimum. That is two orders of magnitude more evaluations of the
objective function which shows the advantage of optimizing with derivatives.

3.2. Comparison after design phase 11

The design phase II fully concentrates on implementing the geometric properties of
the coil configurations. This was not possible for the reference case ONSET because the
geometric penalties used in the design process were not able to repair the kink in coil
number 1 counting from left. We visualize the reference case ONSET together with both
stochastic coil cases in figure 2. Both have a much smoother coil shape, which shows that
the technique of stochastic coil optimization works as a geometric constraint and reduces
the maximal and average coil curvature.

The development of the field error in phase II is especially interesting, because geo-
metric constraints are not necessary to obtain an optimal approximation of the desired
magnetic field. We visualize the values of the two stochastic cases and the reference
case HYBRID in table 3. The relatively low field errors increased in the stochastic case
2mm and in the reference case HYBRID which shows again that geometric constraints
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F1GURE 2. The stochastic case 2 mm is situated left, the reference case ONSET is situated in
the middle and the stochastic case 5 mm is situated right.

Coil Configuration: Maximal Average
Field Error Field Error

Stochastic Case 2 mm 4.8 x 1072 1.38 x 1072
Stochastic Case 5 mm 539 x 1072 1.50 x 1072
Reference Case HYBRID 3.44 x 1072 0.69 x 1072

TABLE 3. Values of the maximal and average field error after design phase II.

negatively influence the optimization of the field error. But the relatively high field
errors of the stochastic case 5mm decreased. This does not contradict the previous
statement because in principle geometric constraints just change the landscape of the
optimization space. An optimization which was previously halted by the increased average
perturbation amplitude can continue to minimize the field error if the change of the
landscape includes a beneficial change of the local minimum. The increase in field error
indicates that geometric constraints set the lower boundary of the field error. We point
out that the stochastic case 2mm still has lower field error values than the stochastic
case 8000 (c.f. table 2) which shows the advantage of adding shape penalties at a later
step in the design process when using stochastic optimization.

FOCUS can reduce the field error to values much lower than shown in table 2 by
increasing the length of the coil. It gives the coil more freedom to take shape and thus
better approximate the magnetic field. Unfortunately, the field error later increased again
in phase II to values higher than shown in table 3. This shows that for a coil configuration
with our desired geometric properties the average coil length of 8.5m is optimal to
approximate the magnetic field of the W7-X configuration. This is confirmed by the
average coil length of the two stochastic cases.

The absence of a penalty on the coil curvature in FOCUS could initially in phase I
also reduce the field error to values lower than shown in table 2, but they increased again
in phase II to values higher than shown in table 3. The situation was not as fatal as for
the reference case ONSET but it shows that the geometric constraints can be beneficial
and can prevent the optimizer from entering local minima that are far from the global
minimum.

3.3. Comparison after design phase 111

In this section we investigate the fitness and robustness of the two stochastic cases
together with the reference case HYBRID after they completed the coil design process.
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Perturbation Analysis
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FIGURE 3. Perturbation analysis of the two stochastic cases and the reference case HYBRID.
All the coil sets were perturbed 200000 times by changing the input parameters. The vertical
dashed line shows the penalty value of the unperturbed coil configuration.

The total fitness is represented by the penalty value and the robustness is visualized by the
penalty value histograms obtained by a perturbation analysis. Each coil configuration is
perturbed 200000 times with an average perturbation amplitude of 2 mm. Their penalty
value histogram together with the penalty value of the unperturbed coil configuration is
shown in figure 3.

The stochastic case 5mm has the lowest penalty value after the completion of the
design process which needed 58 000 evaluations of the objective function Fi (1.16 x 10°
evaluations of f). Closely behind follows the reference case HYBRID which needed
86 000 evaluations of the objective function f to complete phase II & III. The stochastic
case 2mm arrives at a slightly higher penalty value but needed only 69 000 evaluations
of Fy (1.38 x 10° evaluations of f) to conclude the design process. This means that
the larger the average perturbation amplitude, the fewer evaluations are necessary to
converge. Figure 3 additionally shows that a larger average perturbation amplitude does
not necessarily lead to a lower performance. The penalty value histogram of the stochastic
case 2mm shows the highest peak and the smallest width. Thus, the coil configuration is
most robust w.r.t. the objective function f which is closely followed by the stochastic case
5 mm. The lowest robustness w.r.t. f shows the reference case HYBRID with a noticeable
difference to the stochastic cases. This was expected because it was not optimized for
that.

We visualize the field errors after the completion of the design process in table 4. The
penalties on the properties of the vacuum magnetic field and the increased flexibility
through the extended parametrisation in phase III could further reduce the field error of
the stochastic cases, which means that the design process before ended again in a local
minimum. The design process of the reference case HYBRID took a completely different
path, because it started with a very low average field error which increased during the
design process and only the maximum field error slightly decreased. During phase II
and III, coil configurations that used a stronger penalty on the coil length in FOCUS
could not decrease their final field error to values lower than shown in table 4, whereas
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Coil Configuration: Maximal Average
Field Error Field Error

Stochastic Case 2 mm 4.32x 1072 1.09 x 1072
Stochastic Case 5 mm 3.66 x 1072  0.95 x 1072
Reference Case HYBRID 3.45x 1072 0.72x 1072

Stochastic Case 8000 [Lobsien et al. (2018)] 6.08 x 1072  1.56 x 10?2

TABLE 4. Values of the maximal and average field error after design phase III.

== Reference Case HYBRID

Inboard Side m====_Stochastic Case 2 mm Outboard Side
== Stochastic Case 5 mm

F1GURE 4. The final coil configurations of the reference case HYBRID together with two
stochastic cases are shown from both sides.

a weaker penalty led to field error values as well higher than shown in table 4. All of
the coil configurations discussed here have reached lower field error values than the best
results of previous W7-X design studies |Lobsien et al. (2018)] [Drevlak (1998a)]| .

3.4. Picture of the Coil Configurations

In figure 4 we visualize the coil configuration of the two stochastic cases and the
reference case HYBRID after they completed the coil design process. Although having
similar fitness their coil shapes are quite different and only coincide at the diagonal
section on the inboard side (c.f. figure 4 right).

4. Discussion and conclusion

We investigated the effects of 3D stochastic stellarator coil optimization and followed
a coil design process for the original Wendelstein 7-X plasma boundary that focused
on the reduction of the field error. The design process consists of three phases: Field
error, geometric properties, and properties of the vacuum magnetic field. The stochastic
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optimization is used with an average perturbation amplitude of 5mm, 2 mm and 0 mm,
with the latter case reducing to the single sample version of ONSET, i.e. the reference case
ONSET. Unfortunately, the reference case ONSET could not finish the design process
successfully, which shows that certain geometric properties are necessary to prevent the
optimizer from entering a local minimum that leads to unpractical coil shapes. The
stochastic case 5 mm completed the design process and reached the lowest penalty value
of exactly 2 and consequently the best fitness. Its field errors are 3.66% maximal and
0.95% on average and except of phase II they reduced over the course of the design
process. With the aim to put our results into a broader perspective, we used the FOCUS
code to reduce the field error in phase I and then finished the design process with the
single sample version of ONSET. This reference case HYBRID concluded with a slightly
higher penalty value of 2.07 but lower field error values of 3.45% maximal and 0.72%
on average. In contrast to the two stochastic cases, the field error increased during the
optimization of the geometric and vacuum magnetic field properties (phase II and III).
This is consistent with, but does not prove that the field error values obtained here are
close to a global field error minimum of a coil configuration that meets the geometric
constraints necessary to build Wendelstein 7-X. Comparing the results to our previous
design study [Lobsien et al. (2018)] it shows that the absence of most of the geometric
constraints in the first phase of the design process in combination with an increased
sample size and fully 3D perturbations yielded lower field error values. We conclude that
geometric constraints are responsible for the creation of local less performing minima in
which the optimizer got stuck.

We have shown in this paper that the enhanced robustness in our previous study can be
extended to three-dimensional perturbations facilitated by the penalty on the standard
deviation w,o. We also compared the penalty value histograms for coil sets designed with
the stochastic version of ONSET and ones designed with FOCUS first and then ONSET.
The robustness of the reference case HYBRID w.r.t. the objective function is noticeably
lower than the two stochastic cases. This is consistent with our previous finding that
the stochastic optimization approach tends to improve robustness, although stochastic
optimizations with FOCUS in the future will shed more light on this. The FOCUS code
uses nearly two orders of magnitude fewer evaluations for similar results in phase I.

We also found that, when optimizing with FOCUS in phase I and with ONSET for
phase II and III without stochastic optimization, results are improved significantly over
previous non-stochastic optimizations, but still less well performing and significantly less
robust than the best stochastic optimization results.

4.1. Remark on geometric constraints

A coil configuration needs to fulfil certain geometric properties such that its design can
be realized during a subsequent construction. The corresponding geometric constraints
used during the optimization have a strong effect on the optimization space. Omitting
them completely leads to a reduction of the field error, but allows the optimization
to arrive in a non optimal minimum that terminates the design process. From testing
stochastic stellarator coil optimization without geometric constraints we can say that a
penalty on the coil curvature is necessary to prevent such a situation, but previous studies
have shown that a penalty that is too large has a negative effect on the field error. The
study conducted in this manuscript shows that one is able to fix the geometric properties
at a later step in the design process, when the coil configuration was optimized with
only a small penalty on the curvature, without dramatically increasing the field error.
To summarize, geometric constraints are necessary to prevent the optimizer from getting
stuck in non optimal minima, but chosen to high can halt the whole optimization process.
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