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Introduction 1
As obligatory parasites, herpesviruses have co-evolved with their host for 1.5 billion
years to efficiently hijack and manipulate cellular structures for their own advantage.
Over decades, researchers have revealed unknown cellular mechanisms by close anal-
ysis of viruses. Thereby, a ‘DNA-like-RNA’ was detected in T2 phage-infected E. coli,
not knowing that mRNA was discovered [Astrachan and Volkin, 1958]. Research on
viruses also provided the first evidence that the genetic code was read in sets of three
nucleotides by experiments using the T4 phage [Crick et al., 1961]. Years later, the first
nuclear localization signal (NLS) was discovered in the protein sequence of the Simian
Virus 40 large T-antigen [Kalderon et al., 1984] - to name only a few. Our understanding
of cell regulation is far from complete and this thesis is intended to contribute in further
understanding of herpesvirus infection mechanisms.

1.1 The Family of Herpesviridae

The order Herpesvirales consists of three families, the Alloherpesviridae, which includes
the herpesviruses of fish and amphibians, the Malacoherpesviridae with herpesviruses
from invertebrates and the Herpesviridae, which comprises over 100 species of viruses in
mammals, birds and reptiles [Davison et al., 2009; Davison, 2010].

A common characteristic of all herpesviruses is their nearly identical morphology of
the mature virus particle (Figure 1). All herpesvirus particles consist of four structu-
ral components: the large double-stranded (ds) linear DNA genome, which is enclosed
by an icosahedral capsid (T = 16) [Booy et al., 1991]. This capsid in turn is surrounded
by a proteinaceous layer, the tegument [Zhou et al., 1999]. Finally, the tegument with
the nucleocapsid is enveloped by a host-cell-derived lipid membrane, containing sev-
eral virus-encoded (glyco)proteins [Granzow et al., 1997; Mettenleiter et al., 2009]. The
non-segmented genome with a size of 120 to 300 kbp and coding for up to 200 proteins
classify the Herpesviridae among the largest and most complex dsDNA viruses [Metten-
leiter, 2002; Davison et al., 2009; Davison, 2010].
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1 Introduction

Figure 1: Morphology of a Herpesvirus Particle. Schematic representation of a Herpesvirus
particle is shown left. The icosahedral nucleocapsid containing the viral dsDNA is embedded in
the tegument layer, which is surrounded by the lipid envelope, spiked with viral glycoproteins.
The transmission electron microscopic (TEM) image of the Pseudorabies Virus particle is kindly
provided by FLI’s laboratory for electron microscopy, Dr. Kati Franzke.

Several biological properties are shared between all members of the Herpesviridae: first,
the replication of the viral DNA and the assembly of the capsids occur in the nucleus.
Second, all further steps of maturation take place in the cytoplasm. Third, all her-
pesviruses code for a diversity of enzymes that play a role in nucleic acid metabolism,
replication and protein processing. Finally, the hallmark of herpesviruses is their ability
to establish a life-long latency in their hosts, which can result in virus reactivation, e.g.
induced by local trauma or systemic stress [Croen, 1991; Davison, 2010; Grinde, 2013;
Pellet and Roizman, 2013], leading to further spread to naïve hosts.

Based on biological characteristics and sequence homologies the family Herpesviridae
is divided into the three subfamilies alpha- (α-), beta- (β-) and gamma- (γ-) Herpesviri-
nae [Davison, 2010]. Each subfamily shares unique genomic features and biological
properties, while some properties involved in critical steps of the replication cycle are
conserved throughout all subfamilies [McGeoch et al., 2006; Fossum et al., 2009].

Alphaherpesvirinae are characterized by a broad host spectrum, a short lytic replica-
tion cycle, a pronounced neurotropism and the establishment of latency in sensory
ganglia of their hosts [Weir, 1998; Davison, 2010; Weidner-Glunde et al., 2020]. The
α-herpesviruses include the human pathogens Herpes Simplex Virus 1 and 2 (HSV-1
or -2, HHV-1/-2) and Varicella-Zoster Virus (VZV, HHV-3). The animal pathogens
Pseudorabies Virus (PrV, SuHV-1) and Bovine herpesvirus 1 (BoHV-1) are well stud-
ied members of the α-herpesviruses leading to serious outbreaks of disease, resulting
in high mortalities and great economic losses.

Betaherpesvirinae are more restricted in their host range, have a prolonged replication
cycle and can establish latency in hematopoietic stem cells [Weidner-Glunde et al.,
2020]. Members of the β-herpesviruses are e.g. the human Cytomegalovirus (HCMV,
HHV-5) and the human Herpesvirus 6 (HHV-6).
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1.2 PrV and its Replication Cycle

Gammaherpesvirinae comprise herpesviruses with a narrow host range and transform-
ing potential, usually infecting immune cells with the establishment of latency in lym-
phoid tissues [Weidner-Glunde et al., 2020]. Members of the γ-herpesviruses are e.g.
Epstein-Barr Virus (EBV, HHV-4) and Kaposi’s Sarcoma Herpesvirus (KSHV, HHV-8).

1.2 PrV and its Replication Cycle

In this thesis, the Pseudorabies Virus (PrV), also known as Suid alphaherpesvirus 1, was
used to analyze the involvement of viral and cellular key players in the herpesviral repli-
cation cycle. PrV is phylogenetically classified into the genus Varicellovirus and is the
causative agent of Aujeszky’s disease.
PrV has a broad host spectrum, infecting a range of mammalians including ruminants,
carnivores and rodents [Pensaert and Kluge, 1989]. Members of the families Hominidae
(e.g. higher primates and humans) as well as Equidae (e.g. horses or goats) can resist
infection [Mettenleiter, 2000], yet there have been recent indications of few human in-
fections [Zhao et al., 2018; Wang et al., 2019, 2020]. The only natural hosts of PrV are
members of the family Suidae. While infection of piglets results in high mortalities, the
infection of adult swine causes only mild or no clinical signs [Pomeranz et al., 2005; Met-
tenleiter, 2008]. Infection of other susceptible hosts typically induce serious neurological
disease characterized by extreme pruritus with self-mutilation, hypersalivation, uncoor-
dinated movements and paralysis. The so-called ‘mad itch’ leads to a fatal outcome
[Hanson, 1954; Mettenleiter, 2008; Pellet and Roizman, 2013]. Since the clinical signs are
similar to those described for rabies, it was designated as pseudorabies [Pomeranz et al.,
2005]. Due to a successful vaccination strategy, domestic pig populations in Western
Europe, North America and New Zealand are considered PrV-free. In wild boar popu-
lations PrV is still circulating, leading to infrequent infections of hunting dogs (reviewed
in Freuling et al. [2017])

Its short replication cycle in a variety of animal and human cell lines and the absent or
low pathogenicity to humans makes PrV a suitable model for analysis of α-herpesviral
molecular processes [Webster and Granoff, 1994; Mettenleiter, 2000].

PrV, like other herpesviruses, has a complex replication cycle, as depicted in Figure 2.
Infection is initiated by binding of the attachment glycoprotein (g)C to cellular heparan
sulfate proteoglycans and subsequent binding of gD to the more specific receptors, like
nectin-1 and -2 on the cellular surface [Granzow et al., 2005; Eisenberg et al., 2012]. PrV
appears to be able to use multiple other receptors, which is suspected to be the reason
for the broad host range [Mettenleiter, 2001]. The fusion of the viral envelope with the
cell membrane is mediated by the viral fusion machinery, consisting of gH/gL and gB
[Heldwein and Krummenacher, 2008; Eisenberg et al., 2012] and results in release of the
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DNA-containing capsid and the tegument proteins into the cytoplasm. In addition to fu-
sion at the plasma membrane, the viral glycoproteins can also initiate pH-independent
fusion with the endosomal membrane after endocytosis [Kielian, 2014; Boulant et al.,
2015]. After fusion, some tegument proteins remain attached to the nucleocapsid me-
diating the microtubule-based capsid transport towards the nucleus by interaction with
the cellular dynein/dynactin protein complex [Sodeik et al., 1997; Luxton et al., 2006],
while others prime the cell for synthesis of viral components and initiate the host cell
shut-off [Kwong and Frenkel, 1989; Mettenleiter, 2006].

Figure 2: Schematic Overview on the Alphaherpesviral Replication Cycle. After attachment
and penetration (1), the capsid is transported along microtubules (MT) to the nucleus (Nuc)
by interaction of capsid-attached tegument proteins with motor proteins (2). After docking at
the nuclear pore (NP) (3), the viral genome is released into the nucleus. Here, transcription
of viral genes and genome replication occurs. The capsid assembles autocatalytically, the viral
genome is encapsidated (4) and the mature capsid leaves the nucleus by budding through the
nuclear membranes (5). Final maturation occurs in the cytoplasm (Cyt) by budding into vesicles
of the trans-Golgi network (TGN) containing viral glycoproteins (6), resulting in an enveloped
virion within a transport vesicle. After transport to the cell surface (7), the vesicle and plasma
membrane fuse, releasing the mature, enveloped virion from the cell (8). G: Golgi apparatus; M:
mitochondria; RER: rough endoplasmic reticulum

At the nuclear pore (NP), the genome is released into the nucleus [Newcomb et al.,
2001]. There the DNA circularizes and is available for transcription and replication
which results in production and transport of new virion components to sites of assembly
[Strang and Stow, 2005]. The genome of PrV is about 143 kbp long and codes for
approx. 70 proteins [Klupp et al., 2004]. The genome is divided into a unique long (UL)
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and a unique short (US) region with the US region being enclosed by an internal and a
terminal repeat sequence [Ben-Porat et al., 1983; Davison and Wilkie, 1983]. PrV’s open
reading frames were named according to the HSV-1 gene nomenclature, which is based
on the localization of the genes, while the gene products are marked by a prefixed ‘p’
[Mettenleiter, 2000; Pomeranz et al., 2005].

Genes are expressed in a coordinated cascade characterized by three kinetic classes:
immediate-early (IE), early (E) and late (L) genes [Honess and Roizman, 1974, 1975].
Some tegument proteins are important for transactivation of IE gene expression [Kwong
and Frenkel, 1989]. IE-proteins promote the expression of E-genes, with E-genes mainly
coding for enzymes involved in DNA replication and the viral nucleic acid metabolism.
Further, they induce the transcription of L-genes, which are mainly coding for structural
proteins. Capsid proteins are translocated into the nucleus where spherical procapsids
are formed autocatalytically [Heming et al., 2017]. Genome insertion into the procapsid
leads to structural rearrangements resulting in an icosahedral capsid [Cardone et al.,
2012]. In the infected host cell nucleus, three major capsid forms are detected, the
empty A-capsids, the scaffold containing B-capsids and the DNA containing mature
C-capsids. A- and B-capsids may represent assembly intermediates or abortive capsid
forms resulting from unsuccessful packaging, while C-capsids are the major substrate
for export [Tandon et al., 2015].

During nuclear egress, the nuclear lamina is locally dissolved through phosphorylation,
e.g. by protein kinase C (PKC). The mature nucleocapsid buds at the inner nuclear mem-
brane into the perinuclear space (PNS), thereby forming a primary enveloped virion in
the PNS. Subsequent fusion of the primary envelope with the outer nuclear membrane
releases the viral capsid into the cytoplasm, where it gains its final tegument and en-
velope by budding into trans-Golgi derived vesicles (reviewed in Hellberg et al. [2016]).
Since the major part of this thesis is focusing on the nuclear egress, a detailed description
can be found in section 1.4.

Release of the mature virions occurs after fusion of the vesicle with the cellular plasma
membrane. Herpesviruses can not only infect their host cell from the cell surface, but
can also spread directly from cell-to-cell, enabling the virus to hide from extracellular
immunity [Zsak et al., 1992; Johnson and Huber, 2002; Pellet and Roizman, 2013; Roller
et al., 2014].
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1 Introduction

1.3 The Nucleus - the Site of Viral Replication

The nucleus is the major characteristic of eukaryotic cells, distinguishing them from
prokaryotic bacteria and archaea. The boundary of the nucleus, and thus the separation
of cytoplasm and nucleoplasm, is formed by the nuclear envelope (NE).
The nucleus harbors the majority of the genetic information in the form of DNA. Ge-
nomic DNA is tightly condensed to fit into this sub-cellular compartment. For this the
DNA is organized in a structure called chromatin, a highly dynamic nucleoprotein com-
plex, which can be modified to tightly packed, inactive regions named heterochromatin
or the loosely packed, transcriptionally active euchromatin [Stralfors and Ekwall, 2011].
Chromatin is organized in large loops of DNA, some of which are attached to the NE
[Zuleger et al., 2011]. Chromatin plays important roles in maintaining DNA replication
and repair, preventing damage and controlling of gene expression (reviewed in Felsen-
feld and Groudine [2003]).

1.3.1 The Nuclear Envelope

Structurally, the NE is organized into two concentric phospholipid bilayers designated as
the inner (INM) and outer (ONM) nuclear membrane. The INM and ONM are separated
by the PNS, being contiguous with the lumen of the endoplasmic reticulum (ER).

Both membranes convey different functional properties and harbor different subsets of
membrane proteins. The ONM is continuous with the membrane of the rough ER and
studded with ribosomes [D’Angelo et al., 2006], whereas the INM harbors a unique set of
membrane proteins [Holmer and Worman, 2001; Schirmer et al., 2003] of which approx.
100 different proteins have been described, but with only limited knowledge on their
function.

Analysis of those proteins in the last decade gave an insight into their functional di-
versity with roles in structural maintenance, mitosis, nuclear anchoring and migra-
tion, mechano-sensory and gene expression functions [Worman and Courvalin, 2000;
Schirmer and Foisner, 2007; Katta et al., 2014]. These proteins provide interaction with
the nucleo- or cytoskeleton. The structural characteristics of the NE, as well as some
characteristic proteins are schematically shown in Figure 3.

Initially, the NE was viewed as a simple convex surface which was pierced by NP. Nowa-
days it is known that the NE is interrupted by intranuclear membranes and invagina-
tions that reach deep into the nucleoplasm and could even cross the nucleus completely
[Dupuy-Coin et al., 1986; Fricker et al., 1997; Malhas et al., 2011]. This nucleoplasmic
reticulum (NR) occurs in numerous cells and tissues, both under normal cellular condi-
tions [Fricker et al., 1997; Johnson et al., 2003], as well as in pathological states such as
cancer [Malhas and Vaux, 2014].
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Figure 3: Schematic Overview on the Nuclear Envelope. The nuclear envelope (NE) consists of an inner (INM) and an outer nuclear membrane (ONM)
separated by the perinuclear space (PNS). The ONM is contiguous with the rough endoplasmic reticulum membrane. Nuclear pore complexes (NPC) are
inserted in the NE, allowing the transport of cargo through the NE. The nucleoskeleton is a complex network of lamins and nuclear actin and connected
directly or indirectly to the peripheral chromatin. Several INM proteins like LBR, Emerin, LAP2, LAP1, LULL1, MAN1 or Torsins are embedded in the
NE. Interaction with the nuclear lamina or chromatin is mediated by some of them, either directly or indirectly via the protein BAF. The LINC complex,
consisting of INM SUN- and ONM KASH-domain containing proteins forms a direct connection between nucleoskeletal and cytoskeletal structures.
Abbreviations of proteins are explained in the text.15



1 Introduction

1.3.2 Nuclear Pore Complexes

The separation of the genome-related from cytoplasmic processes by the NE requires
a regulated transport between both compartments. This transport is facilitated by
multi-protein assemblies named nuclear pore complex (NPC). The two lipid bilayers are
fused at sites where NPCs are inserted. NPCs mediate both passive diffusion of small
molecules like water, sugars and ions as well as active bidirectional nucleo-cytoplasmic
transport of a wide range of cargo through the NE [Wente and Rout, 2010]. NPCs are
formed by a complex assembly of conserved nucleoporins (Nups) [Alber et al., 2007;
Wente and Rout, 2010]. Multiple copies of approx. 30 Nups build a cylindrical struc-
ture containing three stacked rings. The inner ring spans the fused nuclear membranes
building a central pore, while the outer rings sandwich the inner from the cytoplas-
mic and nucleoplasmic site (see Fig. 3) [von Appen and Beck, 2016]. Pore membrane
proteins (POMs) form a luminal ring, directly interfacing with the inner ring, thereby
anchoring the NPC to the NE [Cohen et al., 2005].

In order to pass through the NPC, the cargo associates with nuclear transport recep-
tors (NTRs) [Mackmull et al., 2017]. Recognition of the cargo takes place via specific
transport sequences like NLS or nuclear export signals (NES) [Kim et al., 2017]. Beside
the cargo and the NTR the small GTPase Ran is crucial for efficient nuclear transport
by shuttling active (RanGTP) and inactive (RanGDP) forms between the nucleus and
the cytoplasm [Lui and Huang, 2009]. For this, the associated cytoplasmic filaments
and the nuclear basket are suggested to represent docking sites for transport complexes
[Rout and Aitchison, 2001]. In addition, the nuclear basket was described to associate
with chromatin and most likely with elements of the nucleoskeleton [Zuleger et al., 2011;
Sood and Brickner, 2014], thereby supporting structural integrity.

1.3.3 The Nucleoskeleton

The nucleoskeleton is an important structural feature of the nucleus. The peripheral
nucleoskeleton is composed of the nuclear lamina, a complex network of nuclear lamins
and their INM-associated proteins, mediating structural maintenance and regulation of
gene expression.
The nuclear lamina is a proteinaceous meshwork of nuclear lamins. Lamins are type
V intermediate filaments, interacting with each other to form an irregular filamentous
meshwork. Most mammalian cells contain four different lamins, namely lamin A, B1,
B2 and C. B-type lamins are ubiquitously expressed, while lamins of the A- or C-type
are mostly expressed in differentiated cells [Stuurman et al., 1998; Dechat et al., 2008,
2010; Prokocimer et al., 2009]. B-type lamins are directly associated to the INM through
their farnesylated C-terminus [Adam, 2017]. In lesser amounts, lamins can also locate in
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1.3 The Nucleus - the Site of Viral Replication

the nucleoplasm [Moir et al., 2000]. The lamin meshwork has to dissociate during mito-
sis, which is mainly regulated through phosphorylation by PKC and cyclin-dependent
kinase 1 [Guttinger et al., 2009]. At the end of mitosis, assembly of lamins is induced
by dephosphorylation through protein phosphatase 1 (PP1) and PP2A [Huguet et al.,
2019].

The internal nucleoskeleton consisting of nuclear actin possesses a variety of structural
and functional roles in transcription, processing and export of messenger RNAs, as well
as chromatin remodeling (reviewed in Hendzel [2014]) underlining its importance in the
organization of the genome and regulation of gene expression [Shumaker et al., 2003].
Most nuclear actin is found in form of short filaments or as monomeric actin [Kokai
et al., 2014]. Direct binding of nuclear actin to lamins [Simon et al., 2010], as well as the
growing information on INM or nuclear proteins that contain both, actin- and lamin-
binding domains (see Fig. 3), illustrate the molecular crosstalk between these two types
of nucleoskeleton and NE (reviewed in Shumaker et al. [2003]).

1.3.4 Nuclear Envelope-associated Proteins

1.3.4.1 Lamin B receptor

The lamin B receptor (LBR) is an integral INM protein containing eight transmembrane
domains (TMD) [Worman et al., 1988]. Through its nucleoplasmic N-terminus it interacts
with B-type lamins and heterochromatin, thereby tethering chromatin to the nuclear pe-
riphery (see Fig. 3) [Olins et al., 2010]. This in turn regulates the chromatin organization
and might influence DNA replication, transcription or repair (reviewed in Prokocimer
et al. [2009]; Dechat et al. [2009, 2010]).

1.3.4.2 LEM-Domain Containing Proteins

A prominent and well-characterized family of INM proteins are the LEM-domain pro-
teins [Wagner and Krohne, 2007]. LEM-domain proteins all share an N-terminal LAP2-
Emerin-MAN1 (LEM) domain (reviewed in Wilson and Foisner [2010]), a globular mod-
ule of approx. 40 amino acids (aa) mediating interaction with the essential chromatin-
associated protein barrier-to-autointegration factor (BAF) [Zheng et al., 2000; Brachner
and Foisner, 2011]. In addition, all LEM-proteins can bind A- and B-type lamins [Wil-
son and Foisner, 2010]. LEM-domain proteins are involved in a diversity of cellular
processes including replication and cell cycle control, chromatin organization and nu-
clear assembly, as well as the regulation of gene expression and signaling pathways
(reviewed in Wagner and Krohne [2007]).
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LEM-domain proteins can be distinguished by their domain organization [Barton et al.,
2015]. Emerin and a diversity of Lamina-associated polypeptide 2 (LAP2) isoforms are
transmembrane proteins of the INM (group I), containing a large nucleoplasmic domain
including the LEM motif, a single TMD and a short luminal domain (LD) [Furukawa
et al., 1995]. Emerin was shown to bind directly to lamins and indirectly via the BAF to
chromatin [Margalit et al., 2007]. In addition, Emerin stimulates the polymerization of
nuclear actin [Holaska et al., 2004; Ho et al., 2013], thereby modulating both the periph-
eral and the internal nucleoskeleton. All LAP2 isoforms harbor an additional LEM-like
domain, mediating direct binding to DNA, rather than to the BAF [Cai et al., 2001]. The
second group of LEM proteins include the proteins MAN1 and LEM2 possessing two
TMD [Lin et al., 2000; Brachner et al., 2005]. Despite its interaction with the BAF, MAN1
can also interact directly with Emerin via its N-terminal nucleoplasmic region [Man-
sharamani and Wilson, 2005]. Furthermore, among the LEM proteins some, such as
LAP2α and Ankle1 (Ankyrin repeat and LEM-domain-containing protein, LEM3), lack
a TMD and localize in the nucleo- and/ or cytoplasm [Harris et al., 1995; Brachner and
Foisner, 2011; Brachner et al., 2012].

1.3.4.3 The LINC Complex

The nucleus is anchored in the cell by proteins which link the nuclear lamina and chro-
matin in the nucleoplasm with the actin filaments, microtubules and intermediate fila-
ments in the cytoplasm [Jahed and Mofrad, 2019]. This physical interaction across the
NE is mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex [Crisp
et al., 2006; Starr and Fridolfsson, 2010]. The LINC complex is composed of KASH (Klar-
sicht/ANC-1/SYNE homology) proteins interacting with SUN (Sad1p/UNC-84 homol-
ogy) proteins, which are present in all plant, animal and fungal cells [Razafsky and
Hodzic, 2009; Zhou et al., 2012]. It mechanically connects the nucleus with the cytoskele-
ton, mediating several fundamental cellular processes including cell division, meiotic
chromosome pairing and mechano-regulation of gene expression (reviewed in Meinke
and Schirmer [2015]).

SUN-domain family members are embedded in the INM. They consist of a variable
N-terminus, followed by a TMD connecting to a predicted luminal coiled-coil segment
localized in the PNS. SUN-domain proteins reach into the PNS with their C-terminal
part, containing the SUN-domain at the very end, leaving their N-terminus in the nucle-
oplasm [Starr, 2011]. In the nucleoplasm, SUN proteins interact directly with a variety of
nuclear factors such as chromatin, nuclear lamins and INM proteins like Emerin [Crisp
et al., 2006; Haque et al., 2006; Rothballer and Kutay, 2013]. There are different forms
of SUN proteins described in the human genome: SUN1 and SUN2 are ubiquitously
expressed in somatic cells, while SUN3, SUN4 and SUN5 are testis-specific [Starr and
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Fridolfsson, 2010; Gob et al., 2010; Meinke and Schirmer, 2015]. The length of the coiled-
coil segment varies between the different SUN homologs. They are predicted to mediate
the proper spacing of approx. 30 to 50 nm of the nuclear membranes [Sosa et al., 2013;
Rothballer et al., 2013], but conflicting findings suggested this might be true for nuclei
in cell culture, but not in vivo [Cain and Starr, 2015].

On the cytoplasmic side, this anchorage is mediated by KASH domain-containing pro-
teins, which are tail-anchored, single-spanning transmembrane proteins with a short
luminal C-terminus. The KASH proteins localize in the ONM inserting their KASH-
domain into the PNS and their large variable N-terminal domain into the cytoplasm
[Starr, 2011]. The N-terminal domain targets a great number of components of the cy-
toskeleton and signaling proteins to the ONM [Rothballer and Kutay, 2013; Luxton and
Starr, 2014; Kim et al., 2015]. To date, six KASH proteins are described in humans,
which are called nesprin 1 to 4 (nuclear envelope spectrin-repeat proteins) [Rajgor and
Shanahan, 2013], KASH-5 [Horn et al., 2013] and LRMP (lymphoid-restricted membrane
protein) [Lindeman and Pelegri, 2012].

In the PNS, three KASH domains are predicted to interact with a platform, most likely
build by SUN homotrimers, thereby forming a stable complex [Crisp et al., 2006; Starr
and Fridolfsson, 2010; Sosa et al., 2012; Tapley and Starr, 2013]. Interestingly, LINC com-
plexes are able to form higher order complexes, to increase their mechanical stability. In
fibroblasts, nuclei move away from a wound edge by using retrograde actin movement.
For this, SUN/KASH bridges arrange linearly, thereby assembling into transmembrane
actin-associated nuclear (TAN) lines [Luxton et al., 2010, 2011; Borrego-Pinto et al., 2012].
So far, the molecular mechanism of TAN line assembly remains poorly defined.

Although the LINC complex is involved in many essential cellular processes, it is still
unknown how assembly, clustering or disassembly is achieved. The regulation of multi-
protein complexes in cells is often accomplished by AAA+ ATPases [Hanson and White-
heart, 2005]. They are widely distributed in cells and participate in many important
functions, including in vesicle transport, budding and fission of vesicles, organelle as-
sembly, membrane dynamics and protein unfolding (reviewed in Erzberger and Berger
[2006]; White and Lauring [2007]). Recent evidence proposed a role for Torsin AAA+
ATPases, especially TorA, to be required for assembly of functional LINC complexes
[Nery et al., 2008; Vander Heyden et al., 2009; Saunders, 2017; Dominguez Gonzalez
et al., 2018; Gill et al., 2019; Chalfant et al., 2019].

1.3.4.4 Torsins and their Cofactors LULL1 and LAP1

The Torsin family belongs to the superfamily of AAA+ ATPases. AAA+ ATPases operate
as ring-shaped oligomeric structures which utilize energy derived from ATP-hydrolysis
to structurally remodel their target molecules [Stinson et al., 2013]. Most active AAA+
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ATPases oligomerize into hexameric ring structures, while those with two AAA+ do-
mains have a stacked or double-ring appearance [White and Lauring, 2007]. Oligomer-
ization is critical for ATP hydrolysis, since the ATP molecules are positioned between
two subunits within the ring. A conserved arginine from either subunit interacts with
the active-site pocket of the neighboring subunit, thereby stimulating hydrolysis [Glynn
et al., 2009, 2012; Stinson et al., 2013]. This results in conformational changes within
the ring structure [Stinson et al., 2013]. The hydrophobic stretches in the central pore
can bind and physically pull on substrates, thereby inducing remodeling [White and
Lauring, 2007; Martin et al., 2008; Glynn et al., 2009].

The human genome encodes for at least five Torsins: TorA (TOR1A), TorB (TOR1B), Tor2
(TOR2A), Tor3 (TOR3A) and Tor4 (TOR4A) with various expression levels in different
tissues.

Torsins are characterized as atypical members of the AAA+ superfamily:

They are the only AAA+ ATPases known to associate with membranes and subse-
quently reside within the shared lumen of ER and NE of mammalian cells [Kustedjo
et al., 2000; Breakefield et al., 2001; Vander Heyden et al., 2009; Jungwirth et al., 2010].

They contain a non-canonical Walker A motif [Nagy et al., 2009], where GxxxxGKN (x
represents any aa) is used instead of GxxxxGK[T/S] as in canonical AAA+ ATPases.

They lack the conserved arginine finger, which is needed for ATP hydrolysis [Zhao
et al., 2013; Sosa et al., 2014; Brown et al., 2014]. Therefore, cofactors are required.

While TorA and B have been the subject of numerous studies, the research on Tor2, Tor3
and especially Tor4 is still at its beginning. In the following, the focus is laid on TorA
and TorB due to their ubiquitous expression. Furthermore, TorA is expressed highly in
neuronal tissue, which is interesting with regard to the neurotropism of α-herpesviruses
[Jungwirth et al., 2010; Rose et al., 2015]. TorA and B have 85 % similarity in their aa
sequence and a number of publications described a functional redundancy of TorA and
TorB [Kim et al., 2010; Turner et al., 2015].

TorA and B (see Fig. 4) are composed of an N-terminal signal peptide, followed by a
hydrophobic stretch, that has been shown to function in ER retention, possibly through
membrane association [Vander Heyden et al., 2009, 2011]. The Walker A and B motifs,
which convey ATP binding and hydrolysis, are located downstream [Breakefield et al.,
2001]. The Walker A motif (GxxxxGKN), especially the lysine (K) is critical for ATP
binding, since it directly contacts the phosphates of the ATP molecule [Saraste et al.,
1990]. The consensus sequence of the Walker B motif however is hhhhDE, where h
represents a hydrophobic aa. While the aspartate (D) residue coordinates and stabilizes
the Mg2+ ion, required for ATP hydrolysis, the glutamate (E) in this motif is thought to
activate water for the hydrolysis reaction [Iyer et al., 2004]. Mutation of the glutamate
residue to glutamine (Q) or alanine (A) impedes the ATPase activity, while binding
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of the nucleotide is still possible [Hanson and Whiteheart, 2005]. Additionally, there
are two sensor motifs (sensor I and II) that mediate the nucleotide binding [Zhu et al.,
2010; Wendler et al., 2012; Demircioglu et al., 2016]. The sensor I motif is composed
of a polar residue that helps coordinating and attracting the water for the hydrolysis
reaction, while the sensor II motif with the consensus sequence GCK plays a role in ATP
turnover. Sensor II is additionally described to regulate cofactor binding [Zhu et al.,
2008, 2010].

Figure 4: Schematic Models of Torsins and their Cofactors. Shown is the proposed hexameric
assembly for Torsin and its cofactor LAP1 or LULL1 (A). Torsins may form a mixed alternating
ring with either cofactor, but Torsin assembly seems to be highly dynamic and may also result in
heterodimers or homohexamers (not shown in the scheme). Further, the domain organization of
the TorA, TorB, LAP1 and LULL1 proteins is depicted in (B). SS: signal sequence; H: hydrophobic
stretch; ΔE302/303: in-frame deletion in TorA that leads to DYT1 dystonia; EQ: aa exchange in
TorA/TorB that leads to an ATP hydrolysis-deficient mutant; TMD: transmembrane domain.

In active AAA+ proteins the ATPase activity is typically stimulated by a highly con-
served arginine residue [Glynn et al., 2009, 2012; Stinson et al., 2013]. Due to lack a of this
residue, Torsins are not able to hydrolyze ATP in vitro [Zhao et al., 2013; Sosa et al., 2014;
Brown et al., 2014] and therefore need to be activated by specific cofactors [Brown et al.,
2014]. The known regulatory cofactors of TorA and TorB are LAP1 (lamina-associated
polypeptide 1, encoded by TOR1AIP1) and LULL1 (luminal domain-like LAP1, encoded
by TOR1AIP2).
Besides the predicted heterohexameric ring structure (Torsin:cofactor, 3:3) [Zhao et al.,
2013; Sosa et al., 2014; Brown et al., 2014], Torsin-cofactor heterodimers [Demircioglu
et al., 2016], as well as Torsin homohexamers [Vander Heyden et al., 2009; Jungwirth
et al., 2010] were described in the past. Recently, the interaction of Torsins with their co-
factors was shown to be more dynamic than previously thought [Chase et al., 2017]. The
resulting model describes Torsins to assemble in homohexamers in dependence of ATP.
Upon binding, the LAP1 cofactors disassemble the Torsin hexameric ring with simulta-
neous ATP hydrolysis and loss of a TorA subunits from the ring. This argues against
a stable, mixed Torsin-cofactor ring. Although this model still needs further validation,
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it might describe a yet unknown mode of Torsin or AAA+ATPase regulation in the cell
[Chase et al., 2017].

Both cofactors are type II transmembrane proteins comprising an N-terminal hy-
drophilic nucleo- or cytoplasmic domain, a TMD and a C-terminal LD (see Fig. 4)
[Zhao et al., 2013; Martin et al., 1995]. In addition to its Torsin activating function, LAP1
was described to bind with its N-terminal domain to lamins [Maison et al., 1997] and to
interact with Emerin [Shin et al., 2013]. The LD of LAP1 and LULL1 both extending to
the PNS/ER are approx. 60 % identical [Goodchild and Dauer, 2005]. Further, they are
sufficient for interaction and activation of the ATPase activity of TorA [Zhao et al., 2013].
Structural analyses revealed an AAA+ like fold of the cofactors, although they lack the
ability to bind ATP [Sosa et al., 2014; Demircioglu et al., 2016]. The conserved arginine
finger, stimulating the ATPase activity by an active-site complementation mechanism, is
also located in the LD [Zhao et al., 2013; Brown et al., 2014; Sosa et al., 2014; Demircioglu
et al., 2016]. LULL1 and LAP1 have a different localization in the cell pointing to spe-
cific, non-redundant functions. While LAP1 localizes to the INM, LULL1 is specifically
targeted to the peripheral ER and does not enter the INM [Zhao et al., 2013].

Minor changes in the aa sequence of the TorA protein impair the functional interac-
tion with either the cofactors or the nucleotide as discovered in an autosomal-dominant
movement disorder in humans, called early onset torsion dystonia 1 (DYT1/TOR1A
dystonia) [Ozelius et al., 1997]. The most frequent disease-linked form TorA∆E302/303

lacks a single glutamic acid residue in the C-terminus of the protein (see position in Fig.
4) [Goodchild and Dauer, 2004; Naismith et al., 2004; Gonzalez-Alegre, 2019] resulting in
a weakened binding to LAP1/LULL1 [Ozelius et al., 1997]. None of the other Torsins are
yet linked to any human diseases. Nonetheless, EQ mutations in the Walker B domain
of TorA or TorB lead to expression of ATP hydrolysis-deficient Torsin molecules (see
position in Fig. 4) [Naismith et al., 2004; Hanson and Whiteheart, 2005]. These muta-
tions function as substrate traps, where the mutants can bind, but no longer hydrolyze
ATP, exerting dominant-negative effects on the endogenous wild type (WT) proteins
when overexpressed in the cell [Whiteheart et al., 1994; Hewett et al., 2000; Hanson and
Whiteheart, 2005; Vander Heyden et al., 2009; Rose et al., 2014].

At the cellular level, Torsins play a role in many cellular processes (reviewed in Rose
et al. [2015]), most of them critically important at the NE.
TorA is involved in NE architecture. It was shown that a TorA knock-out (TorAKO) in
mice, as well as expression of TorA∆E302/303, resulted in severe defects in NE architec-
ture leading to vesicle- or bubble-like structures [Naismith et al., 2004; Goodchild et al.,
2005; Kim et al., 2010]. Further, TorA is associated with the KASH domains of the pro-
teins nesprin-1, -2 and -3 [Nery et al., 2008]. The significance of this interaction was
not addressed so far but one might speculate that this interaction contributes to nuclear
morphology. Furthermore, a knock-down of TorA disrupted the localization of KASH
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proteins [Saunders and Luxton, 2016], whereas overexpression of the LULL1 cofactor
results in concentration of TorA to the NE, thereby displacing LINC complexes [Van-
der Heyden et al., 2009]. Besides the LINC complex, TorA might also have an influence
on the spacing of the nuclear membranes. Expression of the TorAEQ mutant resulted in
reduced spacing between the INM and ONM compared to the WT condition [Naismith
et al., 2004]. In accordance, recent publications attribute to Torsins a role in LINC as-
sembly, disassembly or regulation: TorA was shown to interact with SUN1 and SUN2 in
a heterologous yeast system [Chalfant et al., 2019], while its localization to the NE was
found to be SUN1-dependent [Jungwirth et al., 2011].
However, future studies need to analyze the potential role of Torsins in LINC regulation
in order to identify the underlying mechanism.

1.3.5 NPC-independent Transport of Large RNPs and Herpesviral Capsids

Traffic into and out of the nucleus was thought to occur exclusively through NPCs (re-
viewed in Adam [2001]; Kohler and Hurt [2007]), but the nuclear egress of herpesvirus
capsids is an exception (for detailed information see section 1.4). With approx. 125 nm
diameter, their size by far exceeds the 40 nm threshold for passing through intact NP
[Pante and Kann, 2002]. There is no evidence that infection impairs or alters the func-
tion of NPC, even at later stages of infection, pointing to a continued integrity of the NE
[Hofemeister and O’Hare, 2008; Nagel et al., 2008].

Beside this, a cellular vesicle-mediated mechanism transporting large ribonucleoproteins
(RNP) was discovered in Drosophila differentiation at neuromuscular junctions [Hatch
and Hetzer, 2012; Speese et al., 2012]. Nuclear import of fragments of the DFrizzled-2
(DFz2) receptor results in colocalization of the proteolytic DFz2C fragment in charac-
teristic foci at the NE. These foci colocalize with large RNP complexes, as well as with
A-type lamins (LamC). The formation of these DFz2C complexes requires LamC and
the cellular PKC. So far, it was assumed that all RNAs and RNP complexes, which are
synthesized and assembled in the nucleus, enter the cytoplasm by transit through the
NPC [Kohler and Hurt, 2007]. These DFz2C-RNP complexes contain mRNAs encoding
for postsynaptic proteins, have an average size of 192 nm and are far too large to pass
through unaltered NPC [Pante and Kann, 2002]. Therefore, these large RNP complexes
are suggested to leave the nucleus by budding through the nuclear membranes, resem-
bling the herpesviral nuclear egress. After budding, the vesicles probably translocate
to sites of synapse formation. In addition to Drosophila larval muscle cells, the authors
identified similar structures in salivary gland, Schneider-2 (S2) and midgut cells [Speese
et al., 2012]. Furthermore, granules in the PNS were described earlier for mice, point-
ing to an alternate nucleo-cytoplasmic export, without any experimental validation yet
[Szollosi and Szollosi, 1988].
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Recent evidence revealed Torsins to be involved in remodeling of the NE and impor-
tant for the translocation of RNP particles from the nucleus into the cytoplasm. A
down-regulation of Torsins or the expression of a mutated version resulted in abnormal
attachment of the large RNPs to the INM, raising the possibility that Torsins might be
involved in INM scission after primary envelopment [Jokhi et al., 2013]. Further, it has
been suggested that this Torsin-dependent budding process could be involved in pro-
tein quality control [Rose and Schlieker, 2012]. A mutation in the OOC-5 gene (TorA
orthologue in C. elegans) was shown to result in mislocalized NPC components and im-
paired nuclear import [VanGompel et al., 2015], also pointing to a contribution of Torsins
in NE transport processes. Beside RNP exit, Torsins were described to be involved in
herpesvirus nuclear egress (further described in section 1.4.2).

The awareness on the existence of both mechanisms - herpesviral nuclear egress and
large RNP budding - as well as the parallels in the molecular mechanism point to a
common cellular mechanism. Speese et al. [2012] suggest that herpesviruses may make
use of a cellular mechanism already used for RNP transport. How much this herpesviral
and cellular egress mechanisms have in common has not been clarified yet.

1.3.6 The ESCRT Machinery - A Damage Control Machinery at the NE

First discovered as regulators of cargo sorting in the endocytic pathway [Frankel and
Audhya, 2018], the multi-subunit endosomal sorting complex required for transport
(ESCRT) pathway was later shown to fulfill essential roles in evolutionarily conserved
membrane remodeling processes at the nuclear membrane (reviewed in Hurley [2015];
Olmos et al. [2015]; Vietri et al. [2015]; Olmos and Carlton [2016]; Vietri et al. [2016]; Ven-
timiglia et al. [2018]; Gatta and Carlton [2019]).
The core ESCRT machinery is build from multiple complexes functioning in a highly
regulated cascade consisting of ESCRT-I, -II, -III, all composed of a diversity of sub-
units and the Vps4 (vacuolar protein sorting-associated protein 4) complex. Site-specific
adaptor proteins recruit additional factors to assemble the core machinery at different
cellular membrane systems, where they initiate membrane bending, vesicle formation
and scission from membranes, while the AAA+ ATPase Vps4 subsequently disassem-
bles the ESCRT complexes [Schoneberg et al., 2017; McCullough et al., 2018].

Recent findings suggest an involvement of ESCRT-III in reformation and sealing of the
NE after mitosis, NPC insertion and quality control [Olmos et al., 2015; Vietri et al., 2015;
Ventimiglia et al., 2018; Gatta and Carlton, 2019]. Moreover, ESCRTs are also required for
efficient repair of NE ruptures arising during migration [Denais et al., 2016; Raab et al.,
2016] or mechanical stress by cytoskeletal forces [Hatch and Hetzer, 2016]. So far, little is
known about the regulation of ESCRT function at the NE. First results point to a role of
the INM protein LEM2 contributing to the ESCRT-III activation at the NE [Olmos et al.,
2015; Thaller et al., 2019]. LEM2 recruits CHMP7 (charged multivesicular body protein
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7), which was shown to be essential for localization of the ESCRT-III components to the
NE [Olmos and Carlton, 2016; Denais et al., 2016; Gu et al., 2017].

In addition, the ESCRT pathway was described to assume a prominent role in NPC
biogenesis. In growing interphase nuclei, NPCs are suggested to be inserted in the NE
by fusion of the inner and ONM (reviewed in D’Angelo et al. [2006]; Dultz and Ellenberg
[2010]; Otsuka and Ellenberg [2018]). Although the molecular mechanisms underlying
this fusion event remain not resolved, ESCRT-III, Vps4 as well as several other cellular
proteins like Nups and POMs are described to be involved in this process (reviewed
in Fichtman et al. [2010]; Otsuka and Ellenberg [2018]). Furthermore, ESCRT-III also
serves as a surveillance system for defective NPC assembly intermediates [Webster et al.,
2014]. There are speculations that proteins of the LEM-domain family, specifically Heh2
(yeast orthologue of MAN1), recruit the ESCRT-III subunit Snf7 and Vps4 to destabilize
malformed NPC assemblies [Webster et al., 2016].

The ESCRT pathway is working at the NE - but to understand how ESCRT-III activa-
tion and recruitment function at the molecular level requires more extensive research,
focusing on the NE-specific arm of the ESCRT pathway.
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1.4 The Escape: How Herpesviruses Exit the Nucleus

Herpesviruses use two different sub-cellular compartments for their assembly. Whereas
capsid formation and genome packaging take place in the nucleus, final virus matu-
ration proceeds in the cytoplasm, which requires an efficient translocation through the
NE.

A vesicular transport process based on an envelopment and de-envelopment strategy
is used at the NE to overcome the barrier [Skepper et al., 2001]. Since PrV belongs
to the family of α-herpesviruses this part mainly focuses on the α-herpesvirus nuclear
egress. The nuclear egress of mature capsids (Figure 5A) can be divided into three steps
(reviewed by Mettenleiter et al. [2009]; Johnson and Baines [2011]; Mettenleiter et al.
[2013]; Banfield [2019]):

(I) Assembly of the nuclear egress complex (NEC), modulation of the nuclear lamina
and recruitment of the nucleocapsid (section 1.4.1).

(II) Budding of the nucleocapsid at the INM resulting in a primary enveloped virion
located in the PNS (section 1.4.2).

(III) Fusion of the primary envelope with the ONM, releasing the capsid into the
cytoplasm (section 1.4.3).

1.4.1 The Nuclear Egress Complex

The NEC, composed of two viral proteins designated as pUL31 and pUL34 in the
α-herpesviruses PrV and HSV, is required for efficient translocation of herpesvirus nu-
cleocapsids from the nucleus into the PNS [Reynolds et al., 2001; Fuchs et al., 2002].
pUL31 and pUL34 are well conserved throughout the Herpesviridae, having orthologues
in HCMV (pUL50 and pUL53), in EBV (BFLF1 and BFLF2) and KSHV (ORF67 and
ORF69) [Gonnella et al., 2005; Farina et al., 2005; Milbradt et al., 2007; Camozzi et al.,
2008; Santarelli et al., 2008]. Both proteins are essential for efficient nuclear egress of
herpesvirus capsids [Johnson and Baines, 2011; Mettenleiter et al., 2013].

pUL34 is a tail-anchored type-II membrane protein, which has a conserved N-terminal
region, whereas the C-terminus is variable (Fig. 6A) [Haugo et al., 2011] . It is efficiently
anchored in the NE, even in the absence of other viral proteins [Meyer and Radsak, 2000;
Schuster et al., 2012; Passvogel et al., 2013]. Large parts of the C-terminal domain can
be replaced by domains from orthologue herpesvirus proteins or cellular proteins like
Emerin, Lap2β or LBR [Ott et al., 2011; Schuster et al., 2012].

pUL31 is a soluble nuclear protein containing a variable N-terminus and a more con-
served C-terminus. Sequence comparison of pUL31 among the family of Herpesviridae
revealed four conserved regions (CR1 to 4), in which the interaction domain for NEC
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Figure 5: Schematic Model of Nuclear Egress of the Alphaherpesvirus PrV. Membrane re-
modeling, budding and scission at the INM are mediated by the NEC, build by pUL34 (red), a
tail-anchored viral nuclear membrane protein binding the soluble viral pUL31 (green). During
infection, the NEC recruits viral and cellular protein kinases, resulting in partial dissolution of
the nuclear lamina. Nucleocapsids bud through the INM into the PNS by oligomerization of the
NEC. After budding and scission, a primary enveloped virion is located in the PNS. This pri-
mary envelope then fuses with the ONM thereby releasing the nucleocapsid into the cytoplasm
(A). Co-expression of both proteins in mammalian cells is sufficient for vesicle formation from
the INM (B). Infection with a PrV mutant lacking the α-herpesvirus-specific protein kinase pUS3
leads to accumulations of primary enveloped virions in invaginations of the INM (C). The TEM
images illustrate the different stages and are kindly provided by FLI’s laboratory for electron
microscopy, Dr. Kati Franzke.
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formation was mapped to CR1 (Fig. 6A) [Schnee et al., 2006]. pUL31 is transported into
the nucleus by a classical bipartite NLS via an importin-mediated translocation [Passvo-
gel et al., 2015; Funk et al., 2015]. Several possible phosphorylation sites were detected
in pUL31, e.g. for the PKC [Fuchs et al., 2002] or the viral kinase pUS3 [Mou et al.,
2009] thought to regulate UL31 activity. A conserved zinc finger motif consisting of
three cysteines contributed by CR1 and a histidine by CR3 takes part in stabilization of
the pUL31- and NEC-structure [Zeev-Ben-Mordehai et al., 2015; Bigalke and Heldwein,
2015b; Hagen et al., 2015; Bigalke and Heldwein, 2017]. Mutating the zinc finger motif in
PrV pUL31 impairs heterodimer formation [Zeev-Ben-Mordehai et al., 2015]. Both pro-
teins possess a globular core, but pUL31 forms in addition an N-terminal hook reaching
around the core and fitting into a groove of pUL34 (see Fig. 6B).

Figure 6: The Nuclear Egress Complex. The schematic domain organization of pUL34 and
pUL31 proteins is depicted in (A). In pUL34 the N-terminal region is important for interaction
with pUL31, the C-terminal part can be replaced by foreign sequences while the TMD mediates
integration in the INM. In pUL31 the conserved regions (CR) 1 to 4, as well as the NLS and
the NES are labeled. The K242 position was shown to be important for efficient budding of
mature capsids. (B) shows the crystal structure of the PrV NEC (PBD: 5E8C, resolution: 2.9 Å,
Zeev-Ben-Mordehai et al. [2015]), in which pUL34 is shown in red and pUL31 is depicted in
green. Bacterially expressed truncated proteins were used (pUL31: 26-271 aa, pUL34: 1-179 aa)
for crystallization. Unresolved regions are specified by dashed lines and the pUL31 bound Zn2+

ion is indicated in blue. The INM and the TMD of pUL34 are depicted schematically.

The NEC can partially dissolve the nuclear lamina [Bjerke and Roller, 2006; Reynolds
et al., 2004; Simpson-Holley et al., 2004]. This is mediated by recruitment of cellular and
viral factors, namely cellular PKC [Park and Baines, 2006; Leach and Roller, 2010] and
the viral kinases pUS3 [Mou et al., 2007; Reynolds et al., 2001; Purves et al., 1991] or
pUL13 [Cano-Monreal et al., 2009]. Apart from B-type lamins, PKC can also phospho-
rylate INM proteins like Emerin during HSV-1 infection [Leach et al., 2007; Leach and
Roller, 2010], which reduces the association of Emerin to the lamina, thereby potentially
contributing to the reorganization of chromatin during infection and to the weaken-
ing of the lamina. Furthermore, the NEC can bind directly to A/C-type lamins and
thereby disturbs the lamin meshwork resulting in a weakened lamina [Reynolds et al.,
2004; Mou et al., 2008]. In contrast to the disintegration of the nuclear lamina during
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mitosis, complete dissolution of the lamina would be counterproductive, as the nucleus
would lose its stability. Therefore, the lamina network is only partially dissolved during
herpesvirus infection [Park and Baines, 2006].

Partial disintegration of the nuclear lamina and reorganization of chromatin [Bjerke and
Roller, 2006; Park and Baines, 2006; Mettenleiter et al., 2013] pave the way for the capsid
to reach the INM, but how exactly is not yet resolved.
It is possible that by reorganization of the chromatin during infection, the capsids can
freely diffuse in the nucleus thereby attaching to the NE by chance [Bosse et al., 2015;
Myllys et al., 2016; Aho et al., 2017]. Moreover, it is possible that there is an active
transport of the nucleocapsids to the NE via nuclear actin [Forest et al., 2005], although
this is discussed controversially [Bosse et al., 2014; Bosse and Enquist, 2016; Myllys et al.,
2016]. A third possibility is that the nucleocapsids are recruited from the replication site
to NE by pUL31. This could be mediated by conformational changes in the N-terminal
domain of pUL31 which subsequently target the bound capsids to the INM [Leelawong
et al., 2011; Funk et al., 2015]. Further research is needed to determine the molecular
details of this process more precisely.

1.4.2 Envelopment at the INM

During envelopment the newly generated nucleocapsids bud at the INM by oligomer-
ization of the NEC. In the absence of one or both complex partners the nucleocapsids are
trapped in the nucleus, while in presence of both, pUL31 is recruited to the INM to form
the NEC by direct interaction with the INM-bound pUL34 [Roller et al., 2000; Reynolds
et al., 2001; Fuchs et al., 2002]. Interestingly, co-expression of the NEC components is
sufficient to mediate membrane bending and budding from the INM of eukaryotic cells
and from synthetic lipid membranes [Klupp et al., 2007; Desai et al., 2012; Bigalke et al.,
2014; Lorenz et al., 2015]. Generation of empty vesicles in the PNS indicates that no
other viral proteins are required for the initial budding step. A schematic model of how
vesicle budding occurs in presence of the NEC proteins is presented in Figure 5B.

The process of nuclear egress appears to be of high specificity. Formation of empty
vesicles, as seen in co-expression experiments, is rarely observed in WT virus infection
[Johnson and Baines, 2011; Mettenleiter et al., 2013], whereas the majority of budding
capsids are mature DNA-filled C-capsids [Klupp et al., 2011; Newcomb et al., 2017]. This
indicates that oligomerization of the NEC might be blocked until mature nucleocap-
sids trigger the budding reaction [Klupp et al., 2011; Newcomb et al., 2017]. The capsid
vertex-specific component (CVSC), mainly consisting of pUL17 and pUL25, is enriched
on mature C-capsids and is likely to be the trigger for this maturation-dependent pri-
mary envelopment and might act as an exit permit [Klupp et al., 2006; Trus et al., 2007;
Toropova et al., 2011; Newcomb et al., 2017]. Data indicated direct contacts between
the CVSC and the NEC using cryo-electron tomography of primary enveloped particles
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[Newcomb et al., 2017]. A direct interaction between pUL31 and a capsid protein was
not yet shown for PrV [Leelawong et al., 2011], while for HSV-1 a direct interaction with
the CVSC was confirmed [Yang and Baines, 2011; Yang et al., 2014; Takeshima et al.,
2019]. For PrV, however, interaction of the capsid and pUL31 was reported also in the
absence of pUL25 [Leelawong et al., 2011], allowing docking of capsids to the INM in
the absence of pUL25, while budding did not ensue [Klupp et al., 2006]. This points to
more than one putative NEC binding partner(s) on the capsid.

Until now, it is also unknown when the NEC dimer is formed and how it interacts
with the capsid. Recent analyses suggested the membrane-distal part of pUL31 as the
interaction domain to the nucleocapsid [Bigalke et al., 2014; Hagen et al., 2015; Zeev-
Ben-Mordehai et al., 2015]. A lysine in the alpha-helical region H10 of PrV pUL31 is
crucial for efficient incorporation of the nucleocapsid into budding vesicles (position
marked in Fig. 6A) [Rönfeldt et al., 2017]. Replacing the lysine by alanine resulted in
accumulation of empty vesicles in the PNS, while mature nucleocapsids were trapped
in the nucleus.

Further, it is unclear how higher oligomer formation is triggered and how the com-
plex mediates membrane bending. The recently elucidated crystal structures of the
NEC from different Herpesviridae revealed high structural similarity with only moder-
ate conservation at aa level [Bigalke and Heldwein, 2015b; Lye et al., 2015; Walzer et al.,
2015; Zeev-Ben-Mordehai et al., 2015]. These structural analyses together with data from
multi-modal cryo imaging presented a current functional model of capsid envelopment:
first a planar NEC layer is formed until nucleocapsids dock to the INM. This docking
might change the structural conformation of the oligomerized NEC patch which drives
formation of a spherical NEC coat engulfing the budding capsid [Hagen et al., 2015].

Although the budding of vesicles can take place in presence of the NEC, it is not clear
whether a cellular protein or mechanism is involved in efficient scission of the vesicles
during the infection.

In the cytoplasm, a variety of cellular vesicle formation mechanisms occur, some of
which catalyzed by the coordinated action of the ESCRT pathway. The formation of
vesicles is induced by the ESCRT-III complex, while the AAA+ ATPase Vps4 dissociates
the complex after successful scission [Otsuka and Ellenberg, 2018]. As described in
section 1.3.6, the complex is also active at the NE and recent work on HSV-1 suggests a
role for ESCRT-III and Vps4 in efficient nuclear egress [Arii et al., 2018], while conflicting
findings have been reported [Crump et al., 2007; Kharkwal et al., 2014].

Since budding of large RNPs at the INM was described to resemble herpesvirus nuclear
egress and TorA is thought to play a role in the scission these vesicles (see section 1.3.5),
a similar mechanism could be assumed for herpesviruses. Recent analyses revealed that
a KO of TorA, as well as of TorA and TorB in combination, only had minor effects on
HSV-1 replication showing no defect in nuclear egress [Turner et al., 2015]. Another
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study showed that TorA, as well as TorB overexpression resulted in virus-like vesicles
which were identified as primary virions in cytoplasmic structures, most likely in the ER
[Maric et al., 2011]. Interestingly, those vesicles were shown to contain TorA and pUL34,
pointing to efficient budding at the INM and an impairment of the de-envelopment
process of primary enveloped virions which promotes their escape into the ER.

Members of the vesicle-associated membrane protein (VAMP) family, which are involved
in cellular vesicle-associated transport processes, were described to accumulate in the
nuclear fraction after HSV-1 infection [Saiz-Ros et al., 2019]. While VAMP7 was not
characterized in detail, the vesicle-associated protein (VAP) B was shown to colocalize
with pUL34. A knock-down of the VAPB protein reduced viral progeny titers with accu-
mulation of viral particles in the nucleus, pointing to a role in efficient vesicle budding
at the INM.

The LINC complex was described to have an important role in nuclear spacing (see
section 1.3.4.3). Since budding of the nucleocapsids of about 125 nm requires more
space than the regular spacing of the NE (approx. 30 to 50 nm) [Cain and Starr, 2015],
a structural reorganization of the LINC complex is assumed. At the same time, the
spacing between the primary envelope and both nuclear membranes remains similar
during infection [Klupp et al., 2017]. It was recently demonstrated that the expression of
SUN2LD, which was described to disturb endogenous protein function in a dominant-
negative manner [Crisp et al., 2006], resulted in a severe dilation of the PNS and ER,
as well as an escape of primary enveloped virions from the PNS into the ER during
PrV infection [Klupp et al., 2017]. This was accompanied by a 10-fold titer decrease.
Accordingly, the structural reorganization seems important, while the maintenance of
the LINC complex integrity is required for efficient nuclear egress of PrV.

1.4.3 De-envelopment at the ONM

During de-envelopment, the nucleocapsid is released into the cytoplasm by fusion of its
primary envelope with the ONM. The underlying mechanism is unknown.

The proteins gD, gH and gB are part of the viral fusion machinery mediating entry of the
virus [Eisenberg et al., 2012] and were reasonable candidates for mediating fusion step
leading to de-envelopment at the ONM. In HSV-1-infected cells all three were found to
localize at the NE using immuno-gold labeling in TEM analyses [Stannard et al., 1996;
Skepper et al., 2001]. Although primary enveloped virions are heavily coated with gold
particles specifically binding gD [Skepper et al., 2001], further analyses revealed that gD
is not involved in nuclear egress. Its deletion did not alter the exit from the nucleus
[Farnsworth et al., 2007]. However, the combined deletion of gB and gH [Farnsworth
et al., 2007], as well as mutations in the fusion loops of gB in concurrent absence of gH
[Wright et al., 2009], resulted in an accumulation of primary enveloped virions in the
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PNS. A single deletion or mutation showed only minor or no defects in nuclear egress
[Farnsworth et al., 2007]. However, nuclear egress was not blocked completely, since
intracytoplasmic nucleocapsids as well as mature virions on the cell surface were ob-
served.
As for HSV-1 infection, the single deletion of either gD, gH or gB did not affect nuclear
egress in PrV infection. Interestingly, and in contrast to HSV-1, the simultaneous dele-
tion of gB and gH did not impede nuclear egress of PrV [Klupp et al., 2008]. Additionally,
none of the tested viral glycoproteins were found either at the nuclear membrane or in
primary virions during PrV infection [Klupp et al., 2008]. These results indicate that the
fusion mechanisms utilized for entry and egress are distinct and that a different fusion
mechanism has to exist which mediates the efficient exit from the nucleus.

Another viral protein which seems to play a role in the secondary egress step and which
is incorporated into the primary enveloped virions is the viral serine/threonine kinase
pUS3, only found in the α-herpesvirus subfamily [Granzow et al., 2004]. pUS3 is re-
quired for efficient de-envelopment of primary enveloped virions [Klupp et al., 2001;
Reynolds et al., 2002]. In the absence of pUS3 (∆US3) [Purves et al., 1987; Wagenaar et al.,
1995; Klupp et al., 2001; Reynolds et al., 2002] or after impairment of its kinase function
(US3∆kin) [Kato et al., 2011; Sehl et al., 2020], primary enveloped virions accumulate in
invaginations of the INM pointing to a regulatory role in efficient nucleocapsid release.
However, pUS3 is not essential for viral egress, since viral progeny titers are only ap-
prox. 10-fold reduced in most α-herpesviruses and cell lines tested [Purves et al., 1987;
Wagenaar et al., 1995; Klupp et al., 2001; Reynolds et al., 2002; Kato et al., 2011; Sehl et al.,
2020].
The pUS3-phosphorylation of pUL31, rather than pUL34, was shown to possess a reg-
ulatory role on the NEC [Purves et al., 1991, 1992; Ryckman and Roller, 2004; Mou
et al., 2009]. After budding into the PNS, this phosphorylation might weaken the inter-
complex interactions thereby changing the binding affinity between capsid and NEC
enabling the capsid release [Bigalke and Heldwein, 2016; Newcomb et al., 2017]. For
PrV, pUS3 is not essential for the phosphorylation of pUL34, but it promotes its efficient
localization to the NE [Klupp et al., 2001]. A schematic model of how virus budding in
absence of the viral kinase pUS3 occurs is presented in Figure 5C.

HSV-1 mutants lacking the viral proteins pUL20 [Baines et al., 1991], pUL48 [Mossman
et al., 2000] or pUL51 [Nozawa et al., 2005] showed accumulations of enveloped virions in
the PNS and were suggested to have defects in the final de-envelopment step. However,
the knowledge on the function of these proteins in nuclear egress is limited. For PrV, no
effects were detected deleting these genes.

Since no other viral proteins were found to be critically involved in herpesvirus nuclear
egress, a cellular pathway is most likely. Although some candidates have already been
examined in this context, little is known about the molecular mechanism.
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Cellular factors including p32, CD98 hc (heavy chain) and β1 integrin were described
to be recruited to the NE upon HSV-1 infection [Hirohata et al., 2015; Liu et al., 2015].
Changes in the expression of those proteins resulted in accumulation of primary en-
veloped virions in the PNS, pointing to an involvement in de-envelopment.
Considering the results regarding the LINC complex and that TorA is a promising can-
didate for LINC complex regulation, the investigation the role of Torsins in the nuclear
egress with a focus on the de-envelopment form an exciting starting point.
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1.5 CRISPR Genome Editing, a Tool for Identification of
Cellular Key Players

In 2013, the CRISPR/Cas9 technology emerged as a powerful tool for precise genome
editing in eukaryotic cells [Jinek et al., 2012; Cong et al., 2013; Mali et al., 2013]. We used
this innovative tool to investigate the role of cellular proteins in the PrV replication cycle
by generation of KO cell lines.

Originally the system was discovered as the adaptive immune system of prokaryotes
(reviewed in Garneau et al. [2010]). Bacteria and archaea can respond to infections by
incorporation of small DNA fragments of bacteriophages that have previously infected
the cell [Jansen et al., 2002]. The foreign fragments are integrated into the genome as
spacers within the ‘clustered regularly interspaced short palindromic repeat’ (CRISPR)
locus . Several spacer regions are stored and later transcribed as guide RNA (gRNA)
consisting of a CRISPR RNA (crRNA) and the trans-activating crRNA (tracrRNA). They
allow the precise degradation of the foreign DNA by binding of effector proteins, namely
CRISPR-associated (Cas) ribonucleoproteins.

In detail, after specific recognition of the foreign DNA by binding of the gRNA, the Cas
protein is guided to the binding site and induces a double-strand break (DSB) (reviewed
in Rath et al. [2015]). CRISPRs are found in approx. 50 % of all sequenced bacterial
genomes and in 90 % of the archaea [Grissa et al., 2007; Hille et al., 2018]. CRISPR
systems are organized in two classes: while class I CRISPR systems need combinations
of multiple Cas proteins, the class II system is based on only one large Cas protein
[Makarova et al., 2011].

The Cas enzyme together with CRISPR sequences form the basis of the gene editing
technology known as CRISPR/Cas9. In this thesis, a modified class II CRISPR system of
Streptococcus (S.) pyogenes was used to investigate the role of cellular proteins in the PrV
replication cycle. For this, the pX330-NeoR vector was used, which is a modified ver-
sion of pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene, #42230) carrying an additional
expression cassette for G418 resistance [Hübner et al., 2018]. This allows the selection
of transfected mammalian cells. The vector contains a variable spacer region (synthetic
crRNA), which is important for recognition of the desired target sequence (protospacer)
after transfection. The tracrRNA following the crRNA provides the stem-loop-structure
important for the binding and the catalytic activity of the Cas9 nuclease. In contrast to
the bacterial system, the normally individual parts crRNA and tracrRNA are combined
by a -GAAA- linker to make a single chimeric gRNA. Usage of this chimeric gRNA
results in 5-fold increased efficiency [Jinek et al., 2012; Briner et al., 2014; Cong et al.,
2013].

The synthetic crRNA part of the gRNA has to be properly chosen to target the genome
region of interest and to avoid off-target effects [Zhang et al., 2015]. Additionally, the vec-
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Figure 7: Schematic Model on how a Double Strand Break is Induced by Cas9 and Repaired by
NHEJ during CRISPR/Cas9 Mutagenesis.

tor contains an improved version of S. pyogenes Cas9 which is human codon-optimized
and also contains two NLS added to each terminus [Cong et al., 2013]. In the nucleus,
Cas9 binds to the region of interest dependent on the single gRNA and the protospacer
adjacent motif (PAM) site. This PAM site follows immediately 3´- of the protospacer,
the complementary sequence of the gRNA. Different Cas9 proteins need different PAM
sequences. Cas9 from S. pyogenes is dependent on the sequence 5’-NGG-3’, where N can
be any nt [Hsu et al., 2013]. Upon binding of the gRNA to the protospacer, Cas9 induces
a DSB two to three base pairs upstream of the PAM sequence [Doudna and Sontheimer,
2014] (see Fig. 7).

In this thesis, the CRISPR/Cas9 system was used to target the exons encoding the N-ter-
minal part of proteins. Introduction of DSBs activate the error-prone cellular repair
mechanism called non-homologous end joining (NHEJ) [Lieber, 2008], resulting in small
insertions or deletions (InDel). This in turn can cause frame-shift mutations and lead to
premature stop codons, thereby targeting the corresponding transcript either for degra-
dation by nonsense-mediated mRNA decay or result in translation of a truncated protein
[Reber et al., 2018]. The generation of gene KOs in diploid cells requires mutations on
both alleles.

Beside the described application of CRISPR/Cas9, the method can also be used for com-
plete gene deletions, gene insertions by using homology-directed repair mechanisms,
RNA targeting, base editing, gene regulation like CRISPR interference or CRISPR acti-
vation, gene therapy using viral vectors and high-throughput loss or gain of function
screens with the help of genome-wide CRISPR libraries (reviewed in Pickar-Oliver and
Gersbach [2019]).
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1.6 The Objectives

Herpesvirus assembly and maturation take place in two different sub-cellular compart-
ments: Newly assembled nucleocapsids have to overcome the NE barrier for their final
maturation in the cytoplasm. To exit the nucleus, herpesviruses use a vesicle-mediated
transport process. The main goal of this project was to provide a better understanding
of how herpesviruses exit the nucleus focusing on the involved cellular and viral key
players.

To date, the molecular mechanisms of de-envelopment during nuclear egress have not
been elucidated and the question how the primary envelope is fused with the ONM
remains unanswered. Neither the analysis of viral nor cellular proteins has revealed the
molecular mechanism underlying this fusion event. Previous publications on the role
of Torsin proteins in NE maintenance and modulation [Naismith et al., 2004; Goodchild
and Dauer, 2005; Jungwirth et al., 2010; Kim et al., 2010], vesicle transport through the
NE [Jokhi et al., 2013; Rose and Schlieker, 2012] as well as their already described role in
herpesvirus infection [Maric et al., 2011; Turner et al., 2015] make them interesting can-
didates. In this thesis, the role of Torsins in the fusion of the primary envelope with the
ONM was investigated in the context of PrV infection. In detail, I aimed at addressing
the function of TorA and TorB in PrV infection either by generation of stable cell lines
over-expressing GFP-tagged TorA or TorB constructs or by generation of KO cell lines
by CRISPR/Cas9. Subsequently, these cell lines have been analyzed for their ability to
replicate PrV to WT-like titers and ultrastructurally to visualize potential effects during
nuclear egress. Elucidating the key components of the viral vesicular transport might
also reveal further information on a putative underlying cellular pathway.

The NEC is the key viral player mediating the translocation of newly formed capsids
from the nucleus into the PNS. The primary envelopment process and the NEC have
been extensively investigated in the last decades without revealing all its details. In the
second part, I focused on the budding process and planned to generate monoclonal anti-
bodies (mAbs) against the NEC and its single components. The generation of NEC-spe-
cific mAbs should allow the analysis of the localization, expression kinetics and potential
cofactors without visualizing a background of monomeric proteins. In addition, TEM
analyses of immuno-gold labeled infected cells could help to answer where in the cell
the NEC is formed and disassembled.

Finally, the interaction interface of the NEC with the nucleocapsid should be further
analyzed. This is based on the finding that a lysine (K) at position 242 in the most
membrane-distal part of the pUL31 component of the NEC is crucial for efficient in-
corporation of the nucleocapsid into budding vesicles. Replacing that lysine by alanine
(A) resulted in an accumulation of empty vesicles in the PNS, while the mature nu-
cleocapsids remained in the nucleus [Rönfeldt et al., 2017]. To test whether the uptake
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of the capsid into nascent vesicles is due to electrostatic interactions, this position was
substituted by alanine and by other aa using site-directed mutagenesis thereby chang-
ing charge and size of the side chains. The resulting mutant proteins were used for
complementation experiments. Furthermore, we generated and investigated revertants
resulting from passaging of a PrV-Ka-UL31-K242A virus mutant.
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Abstract: Newly assembled herpesvirus nucleocapsids traverse the intact nuclear envelope by a
vesicle-mediated nucleo-cytoplasmic transport for final virion maturation in the cytoplasm. For this,
they bud at the inner nuclear membrane resulting in primary enveloped particles in the perinuclear
space (PNS) followed by fusion of the primary envelope with the outer nuclear membrane (ONM).
While the conserved viral nuclear egress complex orchestrates the first steps, effectors of fusion of
the primary virion envelope with the ONM are still mostly enigmatic but might include cellular
proteins like SUN2 or ESCRT-III components. Here, we analyzed the influence of the only known
AAA+ ATPases located in the endoplasmic reticulum and the PNS, the Torsins (Tor), on nuclear
egress of the alphaherpesvirus pseudorabies virus. For this overexpression of wild type and mutant
proteins as well as CRISPR/Cas9 genome editing was applied. Neither single overexpression nor
gene knockout (KO) of TorA or TorB had a significant impact. However, TorA/B double KO cells
showed decreased viral titers at early time points of infection and an accumulation of primary virions
in the PNS pointing to a delay in capsid release during nuclear egress.

Keywords: herpesvirus; pseudorabies virus; nuclear egress; AAA+ ATPase; Torsin; CRISPR/Cas9

1. Introduction

Herpesviruses are double-stranded DNA viruses, which use the host cell nucleus and the
cytoplasm for replication and morphogenesis. While transcription, DNA replication, assembly of
viral capsids as well as viral genome encapsidation take place in the nucleus, the nucleocapsid has
to be transferred to the cytoplasm for final virion maturation. With a diameter of approximately
125 nm, its size far exceeds the 40 nm threshold for passage through intact nuclear pores [1]. However,
no evidence for a significant impairment or alteration of barrier and gating functions of nuclear
pores was found even at late time points after infection [2] demonstrating continued integrity of the
nuclear envelope.

In eukaryotic cells, the nuclear envelope (NE) separates the nuclear contents from the cytoplasm.
It consists of two concentric lipid bilayers designated as the inner (INM) and outer nuclear membrane
(ONM) which are separated by the perinuclear space (PNS). The PNS is contiguous with the lumen of
the endoplasmic reticulum (ER) as is the ONM with the ER membrane. In contrast, the INM harbors a
unique set of membrane proteins distinct from that of the ONM and ER. INM and ONM are fused at
sites where nuclear pore complexes (NPCs) are inserted, which also allow the import of the herpesviral
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genome at early stages of infection. Traffic into and out of the nucleus is thought to occur exclusively
through NPCs (reviewed in Adam [3], Knockenhauer and Schwartz [4]). Interestingly, herpesvirus
nucleocapsids are translocated through the nuclear envelope (NE) by a vesicle-mediated process
designated as nuclear egress (reviewed in [5–7]).

Budding of herpesvirus nucleocapsids at the INM is driven by the nuclear egress complex
(NEC) composed of two conserved herpesviral proteins designated as pUL31 and pUL34 in the
alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses (HSV-1, -2) [5–7]. The NEC
is not only required for efficient nuclear egress, thereby generating primary enveloped virions in
the PNS, but also sufficient for vesicle formation and scission from artificial lipid membranes and
the INM, [8–11]. In a subsequent step, this primary envelope fuses with the ONM to release the
nucleocapsids into the cytoplasm (reviewed in [12]).

Budding of nucleocapsids at the INM is quite well understood at the molecular level, while the
fusion process of the primary envelope with the ONM remains mostly enigmatic. In contrast to reports
for HSV-1 [13], the viral fusion machinery which is active during entry of herpesviruses is not involved
in nuclear egress of PrV [14]. In addition, a variety of different PrV gene deletion mutants studied so
far showed no detectable effect on nuclear egress arguing against a virus-encoded fusion machinery
active at the NE. Only mutants lacking the alphaherpesvirus specific protein kinase pUS3 showed an
impairment of nuclear translocation. In the absence of pUS3 [15–17] or by impairment of its kinase
function [18–20] primary enveloped virions accumulate in herniations of the INM. However, pUS3 is
not essential for viral replication and viral titers are only approx. 10-fold reduced. Based on these data,
we speculated that herpesviruses might use a cellular machinery either already present in or recruited
to the NE.

Although vesicle-mediated transport processes between cytoplasmic organelles and the plasma
membrane are well studied, knowledge on vesicular transport and fusion events at the NE is poor.
An example of such a cellular mechanism would be the fusion of the INM with the ONM that occurs
during NPC insertion in a growing interphase nucleus (reviewed in Otsuka and Ellenberg [21]).
This process is thought to involve an inside-out extrusion of the INM into and across the PNS followed
by its subsequent fusion with the ONM [22,23]. Although the molecular mechanism underlying
INM-ONM fusion remains incompletely understood, several cellular proteins have been implicated
in this process including the multi-subunit endosomal sorting complex required for transport III
(ESCRT-III) and the ATPase-associated with various cellular activities (AAA+) protein Vps4 (reviewed
in Otsuka and Ellenberg [21]). Recent work suggests that ESCRT-III and Vps4 are also important for
herpesvirus nuclear egress [24–26], but conflicting findings have been reported [27,28].

Two other potential cellular mediators of INM-ONM fusion during interphase NPC insertion
are Torsin A (TorA) and TorB. As similar to Vps4, Torsins belong to the AAA+ ATPase superfamily.
They function as molecular chaperones, which use energy derived from ATP-hydrolysis to remodel
their target molecules and are involved in numerous processes including budding and fission of
vesicles, and assembly as well as disassembly of protein complexes [29–35]. Torsins are composed
of a N-terminal signal peptide, followed by a hydrophobic stretch (TorA and TorB) upstream of the
Walker A and B motifs, which mediate ATP binding and hydrolysis [32]. TorA (TOR1A) and TorB
(TOR1B) are atypical AAA+ proteins for the following three reasons. First, they contain a non-canonical
Walker A motif [36]. Second, they and the related Tor2 (TOR2A), Tor3 (TOR3A), and Tor4 (TOR4A)
proteins are the only AAA+ proteins known to reside within the contiguous ER lumen and PNS of
the nuclear envelope [32,37–39]. Third, they lack the conserved ATP-hydrolysis-promoting arginine
finger [35,40]. Consistent with the lack of an arginine finger, purified Tor proteins are unable to
hydrolyze ATP in vitro [41]. Instead, they need to be activated by the direct interaction with the luminal
domain of one of two known regulatory protein cofactors: the INM lamina-associated polypeptide
1 (LAP1) or the ER/ONM protein luminal domain-like LAP1 (LULL1). Mutations in TorA lead to
an autosomal dominant disease in humans, called early-onset torsion dystonia 1 (DYT1/TOR1A
dystonia) [42]. The most frequent disease linked form TorA∆E302/303 lacks a single glutamic acid residue
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at position Glu302 or Glu303 in the C-terminus of the protein [43–45]. None of the other Torsins are
implicated in human disease. Nonetheless, EQ mutations in the Walker B domain of TorA or TorB
lead to expression of ATP hydrolysis-deficient Torsin molecules [33,45] which exert dominant-negative
effects [38,46,47]. While the substrates of TorA and TorB remain unknown, they and the related proteins
Tor2 and Tor3 appear to function in a partially redundant manner [48–50]. Furthermore, in previous
studies, TorA has been shown to play a role in NE maintenance. Specifically, severe defects in NE
architecture with “blebbing” of the INM in neuronal tissue are observed in knockout (KO) mice or mice
lacking proper Torsin function, by expression of the dystonia-related allele TorA∆E302/303 [37,45,50–53].
This phenotype is reminiscent of the INM herniations, which were observed in cells overexpressing
the NEC components [8] or in cells infected with US3-deletion mutants [15–17].

Consistent with a potential role during herpesvirus nuclear egress, overexpression of TorA or
TorB resulted in slightly reduced HSV-1 titers in neuron-like and epithelial cells, as well as in the
appearance of primary enveloped virions in cytoplasmic vesicles [54]. Moreover, HSV-1 replication
was reduced in HeLa cells lacking both TorA and TorB [55]. To date, the molecular mechanism
underlying the contribution of TorA and TorB to herpesvirus nuclear egress as well as interphase NPC
biogenesis remains poorly defined. Nevertheless, a growing body of evidence supports the hypothesis
that TorA is required for the assembly of functional linker of nucleoskeleton and cytoskeleton
(LINC) complexes [39,48,56–59]. This conserved NE-spanning molecular bridge is present in all
nucleated cells [60,61] and mechanically integrates the nucleus with the cytoskeleton mediating several
fundamental cellular processes including cell division, DNA damage repair, meiotic chromosome
pairing, mechano-regulation of gene expression, and nuclear positioning (reviewed in Meinke and
Schirmer [62]).

LINC complexes are composed of ONM Klarsicht/ANC-1/SYNE homology (KASH)-domain and
INM Sad1/UNC-84 homology (SUN)-domain containing proteins [63,64]. Although the LINC complex
is involved in many essential cellular processes, it is still unknown how assembly and disassembly
is achieved. TorA is reported to have affinity for the KASH domains of nesprin-1, -2, and -3 [56].
In addition, TorA was shown to interact with SUN1 and SUN2 in a heterologous system [48], while its
localization to the NE was found to be SUN1-dependent [65]. Furthermore, a knockdown of TorA
disrupted the localization of KASH proteins [66]. Interestingly, recent evidence proposed a role
for Torsins in the translocation of large ribonucleoprotein (RNP) particles from the nucleus into the
cytoplasm in neuromuscular junctions in Drosophila [67] through a pathway which mechanistically
resembles nuclear egress of herpesvirus [68].

For PrV, we recently demonstrated that expression of the luminal SUN2 domain, which was
described to disturb normal function in a dominant-negative (dn) manner [64], resulted in lower virus
titers, a severe dilation of the PNS and the ER, and an escape of primary enveloped virions from the
PNS into the ER [69]. Since this was similar to the effect reported for TorA overexpression on HSV-1 [54],
we were interested to study the function of TorA and B in PrV infection. Here, we overexpressed
GFP-tagged wild type or mutant proteins and used the CRISPR/Cas9 genome editing system for
generation of cell lines lacking TorA, TorB and TorA/B to examine how modulation of their expression
affects PrV replication with special focus on nuclear egress.

2. Material and Methods

2.1. Cells and Virus

Rabbit kidney cells (RK13, CCLV-Rie 109) were cultivated in Dulbecco’s modified Eagle’s minimum
essential medium supplemented with 10% fetal calf serum, provided by the Friedrich-Loeffler-Institute
bio bank (Greifswald, Insel Riems, Germany). PrV strain Kaplan (PrV-Ka) [70] was propagated on
RK13 cells. RK13 cells were used throughout this study since (I) they propagate PrV to high titers;
(II) are easy to transfect; (III) tolerate a wide panel of foreign protein expression; and (IV) are intensively
studied in our laboratory for many years.
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2.2. DNA Constructs

SS-EGFP-TorAWT, SS-EGFP-TorA∆E302/303, SS-EGFP-TorBWT, and SS-EGFP-TorBE178Q constructs
used in this work had been described [37,44,52,57]. Plasmid pDsRed2-ER was purchased from Takara
Bio Europe, Inc. Constructs used to perform CRISPR/Cas9-mediated genome editing were generated
as follows. Guide RNAs (gRNAs) were designed by targeting the first exon of TorA (TOR1A) or TorB
(TOR1B) as predicted in the rabbit genome OryCun2.0 (Oryctolagus cuniculus, ensemble.org [71]) with
the help of the online tool (http://crispr.mit.edu/). Four gRNAs with the highest score and the lowest
probability for off-target effects were selected for each gene (Table 1). gRNAs were ordered as unmodified
DNA oligonucleotides (MWG Eurofins, Ebersberg, Germany) with BbsI restriction overhang, hybridized
and inserted into the BbsI-digested vector pX330-NeoR (kindly provided by Dr. W. Fuchs), which is a
modified version of pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene, Watertown, MA, USA, #42230)
carrying an additional expression cassette for a G418 resistance for selection (previously described
in Hübner, et al. [72]). The correct cloning of gRNAs was verified by Sanger sequencing at the
Friedrich-Loeffler-Institut with HU6-F primer (5′-ATAATTTCTTGGGTAGTTTGCAG-3′).

Table 1. Oligonucleotide sequences. Compatible 5′ overhangs for restriction enzyme BbsI used for
cloning are underlined.

Name Sequence (5′–3′)

TorA_gRNA#1_Fwd CACCCTGGCGGTAGCGCCGGTCGG
TorA_gRNA#1_Rev AAACCCGACCGGCGCTACCGCCAG
TorA_gRNA#2_Fwd CACCTGTCTGGCGGTAGCGCCGGT
TorA_gRNA#2_Rev AAACACCGGCGCTACCGCCAGACA
TorA_gRNA#3_Fwd CACCCGCCGGTCGGTGGTCAGCGC
TorA_gRNA#3_Rev AAACCGCTGACCACCGACCGGCGG
TorA_gRNA#4_Fwd CACCGTTCCTGCGCTGACCACCGA
TorA_gRNA#4_Rev AAACGTCGGTGGTCAGCGCAGGAA
TorB_gRNA #1_Fwd CACCGTGATTCTGAAGGCGCTGAC
TorB_gRNA #1_Rev AAACGTCAGCGCCTTCAGAATCAC
TorB_gRNA #2_Fwd CACCCGCCTTCAGAATCACTTCCG
TorB_gRNA #2_Rev AAACCGGAAGTGATTCTGAAGGCG
TorB_gRNA #3_Fwd CACCTTTTTGGTTTTTGGTAACGA
TorB_gRNA #3_Rev AAACTCGTTACCAAAAACCAAAAA
TorB_gRNA #4_Fwd CACCGAAGCTGTTCGGACAGCATC
TorB_gRNA #4_Rev AAACGATGCTGTCCGAACAGCTTC

2.3. Transfection of Cells for Co-Localization Studies

RK13 cells were seeded on coverslips in a 24-well dish and transiently co-transfected by calcium
phosphate-precipitation [73] with an ER marker protein plasmid (pDsRed2-ER, Takara Bio Europe
Saint-Germain-en-Laye, France) and plasmids expressing the GFP-tagged constructs. We used the
calcium phosphate-coprecipitation method, although it is not very efficient, because it is milder to the
cells and therefore allows to capture qualitative images later on.

2.4. Immunoblotting

Cells were transfected with 1 µg of plasmid DNA using polyethylenimine (PEI) [74], and harvested
24 h post transfection by scraping into the medium, pelleted, washed twice with phosphate-buffered
saline (PBS) and lysed in SDS-containing sample buffer (0.13 M Tris-HCl, pH 6.8; 4% SDS; 20% glycerin;
0.01% bromophenol blue; 10% 2-mercaptoethanol). Here we used PEI transfection, instead of calcium
phosphate-precipitation method, because PEI transfection is more efficient. Proteins were separated
in SDS 10% polyacrylamide gels and after transfer to nitrocellulose membranes, blots were probed
with a rabbit anti-GFP serum (kindly provided by Dr. G. M. Keil, FLI, Insel Riems, Germany) and a
monoclonal antibody specific for alpha-tubulin (Sigma-Aldrich, Munich Germany, T5168) as loading
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control. After incubation with secondary peroxidase-labelled antibodies and substrate (Clarity ECL
western Blot substrate, Bio-Rad, Feldkirchen, Germany), chemiluminescence was recorded in a Bio-Rad
Versa Doc imager.

2.5. Generation of Stably Expressing RK13 Cell Lines

For generation of cells stably overexpressing wild type or mutant forms of Torsins A and B, cells in
a 6-well dish were transfected by calcium phosphate-coprecipitation [73] using 1.5 µg of plasmid DNA
expressing protein constructs schematically depicted in Figure 1. Two days after transfection, cells were
transferred to 10 cm plates (Corning, Kaiserslautern, Germany) and selected in medium containing
500 µg/mL G418 (Invitrogen, Schwerte, Germany). Ten to 14 days after transfection GFP-positive cell
colonies were picked by aspiration and further analyzed. Cell clones were seeded on cover slips in a
24-well plate for analysis of protein localization.
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Figure 1. Schematic depiction of expression constructs used in this study. All constructs carried EGFP
at the N-terminus. Mutations resulting in loss-of-function in TorA and B are indicated. Numbers
given below represent the corresponding amino acid residues of the Torsins in the constructs used.
SS: signal sequence.

2.6. Generation of Stable RK13 Knockout Cell Lines

Stable KO cell lines were generated by co-transfection of all four gRNA-containing pX330-NeoR
constructs (1.5 µg per plasmid) using calcium phosphate-co-precipitation [73]. For DKO, all eight
plasmids were co-transfected simultaneously. Two days after transfection in 6 well dishes, cells were
transferred to 10 cm plates (Corning) and selected in medium containing 500 µg/mL G418 (Invitrogen).
Ten to 14 days after transfection cell colonies were picked by aspiration and tested for KO by sequencing
of the targeted gene sequence.

2.7. Test for Bi-Allelic Gene Knockout

DNA of the potential KO cell clones was isolated using Bradley Lysis Buffer (10 mM Tris,
10 mM EDTA, 0.5% SDS, 10 mM NaCl) with Pronase (1 mg/mL) and following ethanol precipitation.
The targeted gene region was amplified with Phusion®High-Fidelity DNA Polymerase (NEB, Frankfurt
am Main, Germany) and primers given in Table 2. The gel purified phosphorylated PCR products were
then blunt-end cloned into EcoRV-digested and dephosphorylated pBluescript II SK (+) (Stratagene,
Darmstadt, Germany). Ten white colonies each were randomly picked [75], plasmid DNA was
isolated and sequenced using the vector specific T7 primer by Sanger sequencing. In cases where all
ten sequenced plasmids carried identical inserts, plasmids of five additional bacterial clones were
isolated and sequenced. Mutations induced by Cas9 nuclease were identified by nucleotide sequence
alignments with the rabbit genome (OryCun2.0) using Geneious 11.1.5 (https://www.geneious.com).

2.1 Paper I

43



Cells 2020, 9, 738 6 of 19

Table 2. Primers used for amplification of targeted gene.

Name Sequence (5′–3′)

TorA_seq_Fwd CACCGGAGACAGCTATAGCC
TorA_seq_Rev GACCTTCTTGGCCAGATGCT
TorB_seq_Fwd CCGCGCGAATGTGAAGTGCGCCCCCGTGGAAC
TorB_seq_Rev GTCTTGTGCTCATGCGGGAAGTGCAGTGTG

2.8. PrestoBlue Assay

Cell viability of modified and knockout cells was determined using Presto Blue™Reagent (Thermo
Scientific, Dreieich, Germany), a resazurin-based metabolic assay. RK13 wild type cells were used
as control. 1 × 104 cells in 90 µL volume were seeded in a black 96-well plate with a flat and clear
bottom (Corning). At 24, 48 and 72 h after seeding 10 µL Presto Blue Reagent was added to the cells
and resuspended. The samples were incubated for 30 min at 37 ◦C. For each time point, cells were
measured in triplicates and eight medium containing wells were included for background estimation.
Before bottom-read measuring of fluorescence in a Tecan Reader at Ex560/Em590, the plate was shaken
for 5 sec. Multiple reads per well (3 × 3) were performed using the i-control™ microtiter reader
software. Blank-reduced raw data (fluorescence intensities) are given in the corresponding figures.
For standardization, we used the following formula: (measured value – mean)/standard deviation.
Statistics was applied on the standardized values.

2.9. In Vitro Replication Studies

To test the efficiency of PrV propagation in the generated cell lines, cells were infected with
PrV-Ka at a multiplicity of infection (MOI) of 5. Cells and supernatants were harvested at different
time points after infection (0, 4, 8, 12, 24 and 30 h p.i.). To determine the infectious virus titer, samples
were thawed, cell debris was removed by centrifugation (2 min, 15,000 rpm), the supernatant was
serially diluted (10−1 to 10−6) and used to infect RK13 cells in 24 well culture plates. After incubation
for 1 h, the inoculum was replaced by a semi sold medium allowing only direct cell-to cell spread of the
virus. Cells were fixed after 2 days with formaldehyde and stained with crystal violet. Virus plaques,
which were detectable as holes in the blue-stained cell monolayer, were counted in at least two different
wells and mean values were calculated as plaque forming units per milliliter (pfu/mL).

Shown are mean values of three (EGFP-TorA, -B overexpressing cells) or six (knockout cells)
independent experiments with corresponding standard deviations. To exclude clonal and putative
second site effects at least three different cell clones were tested initially for each mutated cell line.

2.10. Statistics

For each assay at least three independent experiments were performed. The statistical significance
of the data presented in Figures 5, 6, 7 and 8 was determined by a two-way ANOVA followed by
Dunnett’s multiple comparison test. All statistical tests were performed using GraphPad Prism version
8.1.0 (GraphPad Software, La Jolla, CA, USA). We compared the mean of each time point with the
mean of the corresponding parental RK13 cells. A p-value ≤ 0.05 was considered significant and is
presented in Figures 6 and 8 by the presence of asterisks (*, p ≤ 0.05, **, p ≤ 0.01, ****, p ≤ 0.0001).

2.11. Laser Scanning Confocal Microscopy

For confocal microscopy, we used stably expressing RK13 cells and RK13 cells transiently
co-expressing the GFP-tagged plasmids and an ER-marker plasmid [73]. In addition, RK13 and Torsin
knockout cells were infected with 250 pfu of PrV-Ka. Cells in 24 well dishes were fixed with 4%
paraformaldehyde for 15 min one day after seeding for the stable expressing cells or two days after
transient transfection. Infected cells were analyzed 18 h p.i. Fixed cells were washed three times and
then incubated for 30 min with 50 mM NH4Cl in 1X PBS to quench the free aldehyde groups after
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PFA fixation. The GFP-tagged proteins and the DsRed-ER marker proteins were directly visualized
via their autofluorescence. After permeabilization with 0.1% Triton X-100 in 1x PBS and subsequent
blocking for 20 min with 0.25% skimmed milk the viral antigen was stained with a polyclonal rabbit
serum specific for pUL34 (1:500, [76]). Alexa-Fluor 568-conjugated goat anti-rabbit IgG (dilution 1:1000,
Invitrogen) was used to detect bound antibody. The nuclei were counterstained with 300 mM DAPI for
5 min and cells were mounted in a drop of Kaiser’s glycerol gelatin (Merck, Darmstadt, Germany).
Samples were analyzed using with a confocal laser scanning microscope (Leica DMI 6000 TCS SP5, 63×
oil-immersion objective, NA = 1.4; Leica, Wetzlar, Germany). Representative images were processed
using the Fiji software [77,78]. Scale bars indicate 10 µm.

2.12. Ultrastructural Analyses

RK13 and KO cell lines were infected with PrV-Ka at an MOI of 1 for 14 h and processed for
transmission electron microscopy as described previously [76]. Numbers of primary virions present in
the PNS in infected RK13 and RK13-TorA/BDKO were counted in 10 different sections each.

3. Results

3.1. Influence of Torsin Overexpression on PrV Replication

To test whether overexpression of either the GFP-tagged wild type or mutated forms of (human)
Torsins A and B has an effect on PrV replication, the different expression constructs (Figure 1) were
transfected into RK13 cells for transient expression and generation of stably expressing cell lines.
Torsins are well conserved in metazoans [34] and functional expression of the same constructs in
murine cells was reported [66].

As expected, each of these constructs was targeted to the ER/NE when transiently expressed
in RK13 cells (Figure 2) showing a clear colocalization with the DsRed2-tagged ER marker
(DsRed2-ER) [38,46,47]. Consistent with previous reports, the expression of SS-EGFP-TorBE178Q resulted
in the appearance of dense protein accumulations within the ER [46]. Furthermore, each of the proteins
was expressed in RK13 cells at the predicted molecular mass evaluated in western blot analysis
(Figure 3). The SS-EGFP-tagged TorA and TorB constructs were ~65–70 kDa, with expression levels
of TorB slightly higher than for TorA. Taken together, these results demonstrate that the GFP-Torsin
constructs are expressed properly in RK13 cells.
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Figure 2. Localization of GFP-tagged constructs in RK13 cells. Representative images of RK13 cells
transiently expressing the GFP-tagged constructs. Cells were co-transfected with plasmids expressing
the DsRed2-ER marker and the GFP-tagged Torsins. Nuclei were counterstained with DAPI and
autofluorescence was detected with a confocal laser scanning microscope. Scale bars indicate 10 µm.
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Figure 3. Expression of GFP-tagged Torsins in RK13 cells. Lysates of transfected cells were harvested,
and proteins were separated in SDS 10%-polyacrylamide gels. Blots were probed with a GFP-specific
rabbit antiserum and a monoclonal antibody against α-tubulin as loading control. Molecular masses of
marker proteins (in kDa) are indicated on the left.

Stably expressing cell lines were selected for homogeneous GFP expression. The subcellular
localization of each protein in these cell lines was indistinguishable from what was observed in transient
expression (Figure 4). Ultrastructurally, cells overexpressing TorB showed a significant expansion of
the rough ER with either diffuse matter (TorBWT) or filled with protein filaments (TorBE178Q) (data not
shown) but no sinusoidal ER structures as reported for HeLa cells [46]. No deleterious effects on cellular
metabolic activity were observed from overexpression of the GFP-tagged cellular genes (Figure 5).
To test whether overexpression of these constructs influences virus replication, stably expressing cells
as well as parental RK13 cells were infected with PrV strain Kaplan (PrV-Ka) [70] at an MOI of 5 and
harvested at different time points after infection. As shown in Figure 6 small but significant 3- to 5-fold
titer reduction was found after infection of RK13-TorAWT at all time points later than 8 h after infection,
while cells expressing the mutant form TorA∆E302/303 supported PrV replication to similar titers as
non-transgenic RK13 cells. For RK13-TorBWT cells there were no significant changes in viral titers
compared to parental RK13 cells, while infection of TorBE178Q expressing cells resulted in 4 to 7-fold
titer decrease at all time points after infection.
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Figure 4. Localization of stably expressed RK13-GFP-TorA and -TorB. Representative merged images
show the intracellular localization of RK13 cells stably expressing the GFP-tagged mutant and wild
type proteins. Nuclei were stained with DAPI, and GFP autofluorescence was detected with a confocal
laser scanning microscope. Scale bars indicate 10 µm.
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parental RK13 cells were infected with PrV-Ka (MOI of 5) and harvested at different time points. 
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experiments with corresponding standard deviations. Statistically significant differences compared 
to the parental RK13 were determined by GraphPad Prism software and are indicated by asterisks in 
the same color as the corresponding graphs (*, p ≤ 0.05, **, p ≤ 0.01, ****, p ≤ 0.0001). 

3.2. Torsin A and Torsin B Are Required for Efficient PrV Replication in RK13 Cells 

Torsin A and B are suggested to be functionally redundant [52]. Surprisingly, overexpression of 
the wild type TorA and the mutant TorBE178Q slightly impaired PrV replication while the other two 
forms had no significant impact pointing to different mechanisms. We were interested to analyze 
whether this effect might be more pronounced when both proteins are targeted simultaneously. Since 
equivalent simultaneous expression of both proteins in cell lines is difficult to achieve and maintain, 
we decided to use the CRISPR/Cas9 genome editing system to generate single and double KO cell 
lines for TorA and TorB. Four guide RNAs per gene were designed (Table 1), cloned into vector 
pX330-NeoR [72], and transfected simultaneously into RK13 cells. Genomic DNA of several cell 
clones was isolated, and the target region was amplified by PCR using primers given in Table 2. The 
PCR products were cloned into pBluescript SK+ and plasmid DNA from at least ten bacterial colonies 
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and -TorB cells were seeded with 1 × 104 cells per well and at 24, 48, and 72 h post seeding the
mitochondrial activity was measured (in fluorescence intensities) via the Presto Blue Assay. Shown is
the mean of three independent experiments, ns = statistically not significant.
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Figure 6. Effects of overexpression of Torsins on PrV replication. Stably expressing cell lines and
parental RK13 cells were infected with PrV-Ka (MOI of 5) and harvested at different time points.
Progeny virus titers were determined on RK13 cells. Given are mean values of three independent
experiments with corresponding standard deviations. Statistically significant differences compared to
the parental RK13 were determined by GraphPad Prism software and are indicated by asterisks in the
same color as the corresponding graphs (*, p ≤ 0.05, **, p ≤ 0.01, ****, p ≤ 0.0001).

3.2. Torsin A and Torsin B Are Required for Efficient PrV Replication in RK13 Cells

Torsin A and B are suggested to be functionally redundant [52]. Surprisingly, overexpression of the
wild type TorA and the mutant TorBE178Q slightly impaired PrV replication while the other two forms
had no significant impact pointing to different mechanisms. We were interested to analyze whether this
effect might be more pronounced when both proteins are targeted simultaneously. Since equivalent
simultaneous expression of both proteins in cell lines is difficult to achieve and maintain, we decided
to use the CRISPR/Cas9 genome editing system to generate single and double KO cell lines for TorA
and TorB. Four guide RNAs per gene were designed (Table 1), cloned into vector pX330-NeoR [72],
and transfected simultaneously into RK13 cells. Genomic DNA of several cell clones was isolated,
and the target region was amplified by PCR using primers given in Table 2. The PCR products
were cloned into pBluescript SK+ and plasmid DNA from at least ten bacterial colonies each was
isolated and sequenced. Wild type sequences in comparison to the mutations found in the different
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plasmids are summarized in Table 3. All cloned PCR products derived from RK13-TorBKO and
RK13-TorA/BDKO exhibited only a single type of mutation indicating that both alleles carry the same
deletion. Two different allelic variants were present in RK13-TorAKO cells. In-frame deletions were
found in the TorB allele of RK13-TorA/BDKO cells (∆30 bp, both alleles). Unfortunately, the tested
antisera, which are specific for human Torsins, did not detect the corresponding homologs in RK13
cells (data not shown). As similar to the stably expressing cells described above, no deleterious effects
on metabolic activity were observed in the KO cell lines (Figure 7).
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Figure 8. Effect of gene knockout on PrV replication. RK13 and TorsinKO cell lines were infected with
PrV-Ka (MOI of 5) and harvested at different time points after infection. Progeny virus titers were
determined on RK13 cells. Shown are mean values of six independent experiments. Statistics were
done with GraphPad Prism software and asterisks indicate statistically significant differences compared
to the parental RK13 in the same color as the corresponding graph (****, p ≤ 0.0001).
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To test whether the absence of Torsin A and/or B influences nuclear envelope localization of the
viral NEC component pUL34, parental RK13 and Torsin knockout cells were infected with PrV-Ka under
plaque assay conditions. Cells were fixed after 18 h and stained with the monospecific anti-pUL34
rabbit serum [76]. As shown in Figure 9, no difference in nuclear rim staining for pUL34 was obvious
independent of presence or absence of Torsins A, B or both proteins.
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Figure 9. Localization of the NEC component pUL34 in PrV-Ka infected RK13 and TorsinKO cells.
Representative images showing undisturbed localization of the NEC component pUL34 (red) in infected
RK13-TorsinKO cells. Nuclei were counterstained with DAPI (blue) and the fluorescence was imaged
with a confocal laser scanning microscope. Scale bars indicate 10 µm.

Although no drastic effect on viral titers was observed, we analyzed nuclear egress at the
ultrastructural level. All KO cell lines were infected with PrV-Ka at an MOI of 1 and processed for
electron microscopy. We did not observe any impairment in nuclear egress or virion morphogenesis in
infected RK13-TorAKO and RK13-TorBKO (data not shown). In contrast to previous studies [45,51–53],
nuclear envelope blebbing in the Torsin KO cells was not obvious. However, in PrV infected
RK13-TorA/BDKO cells primary enveloped virions accumulated in the PNS which is in contrast to PrV
infected parental RK13 cells, exhibiting only rare single virions in the PNS (Figure 10E; marked by an
asterisk). We counted the number of primary enveloped virions in 10 sections each of PrV-Ka infected
RK13 and RK13-TorA/BDKO cells. While in RK13 cells 5 primary enveloped virions could be detected
in 30 nuclei, infected RK13-TorA/BDKO cells contained 593 primary virions in 52 nuclei. Compared
to the accumulations observed in mutants lacking the pUS3 protein kinase [15], primary virions did
not preferentially accumulate in herniations of the INM but were mainly found lined up in the PNS
(Figure 10). Fission from the INM seemed to be less efficient in the absence of TorA/B since primary
virions were frequently found still attached to the INM by a small neck (Figure 10, arrows).
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many of them still connected to the INM by a short neck (indicated by arrows) (A–D). Panel (B) shows 
a higher magnification of the infected cell in panel (A), while panel (C) shows a higher magnification 
of panel (D). Panel (E) shows a rare case of a primary virion in the PNS in parental RK13 cells (marked 
by asterisk). Scale bars indicate 600 nm in panel (A,E), 300 nm in panel (B,C) and 100 nm in panel (D). 
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Figure 10. TorA/B DKO results in accumulation of primary enveloped virions in the PNS. RK13,
RK13-TorAKO, RK13-TorBKO and RK13-TorA/BDKO cells were infected with PrV-Ka (MOI of 1) and
processed for electron microscopic imaging 14 h p.i. No obvious effect was found for the single KO
cells (data not shown), while the TorA/BDKO showed accumulations of primary virions within the PNS,
many of them still connected to the INM by a short neck (indicated by arrows) (A–D). Panel (B) shows
a higher magnification of the infected cell in panel (A), while panel (C) shows a higher magnification of
panel (D). Panel (E) shows a rare case of a primary virion in the PNS in parental RK13 cells (marked by
asterisk). Scale bars indicate 600 nm in panel (A,E), 300 nm in panel (B,C) and 100 nm in panel (D).
Nuc: nucleus, Cyt: cytoplasm.
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Table 3. Summary of mutations detected in the KO cell lines.

Mutant Genotype Sequence Mutations

TorAKO
wild type GAACCGGAAGAGCGTGTCTGGCGGTAGCGCCG..GTCGGTGGTCAGCGCAGGAAGGCGCGGGGAGGCG

knockout GAACCGGAAGAGCGTGTCTGGCGGTAGCGCGGTGGT�-GGTCAGCGCAGGAAGGCGCGGGGAGGCG (3)
GAACCGGAAGAGCGTGTCTGGCGGTAGCGCCG..GT�-GGTCAGCGCAGGAAGGCGCGGGGAGGCG (7)

1 nt Ex, 2 bp In, 4 bp
Del4 bp Del

TorBKO
wild type CTTGGAGAAGCTGTTCGGACAGCATCTGGCCACGGAAGTGATTCTGAAGGCGCTGACCGGCTTCAAGA
knockout CTTGGAGAAGCTGTTCGGACAGC��������������������������-CTGACCGGCTTCAAGA (15) 29 bp Del

TorA/BDKO

TorA
wild type GAACCGGAAGAGCGTGTCTGGCGGTAGCGCCGGTCGGTGGTCAGCGCAGGAAGGCGCGGGGAGGCGCG
knockout GAACCGGAAGAGCGTGTCTGGCGGTAGCGCCCG����-TCAGCGCAGGAAGGCGCGGGGAGGCGCG (15) 1 nt Ex, 7 bp Del

TorB
wild type CTTGGAGAAGCTGTTCGGACAGCATCTGGCCACGGAAGTGATTCTGAAGGCGCTGACCGGCTTCAAGA
knockout CTTGGAGAAGCTGTTCGGACA����������������������������GCTGACCGGCTTCAAGA (15) 30 bp Del

The sequence for each targeted gene region was compared to the sequence of the parental RK13 sequence. Numbers in brackets indicate the frequency of InDel (Insertion or Deletion)
mutations found in the clones sequenced. Deletion (Del) of a base pairs (bp) is shown as hyphen, insertion (In) of a bp is marked by a dot in the parental sequence and nucleotide (nt)
exchanges (Ex) are shown in bold characters.
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4. Discussion

Herpesvirus nucleocapsids rely on a vesicular pathway engaging the NE for nuclear egress.
While the viral NEC orchestrates budding at and scission from the INM, no viral protein essential
for de-envelopment at the ONM could be identified yet, while the pUS3 protein kinase exhibits a
regulatory role (reviewed in Mettenleiter, Klupp and Granzow [5], Mettenleiter, Muller, Granzow and
Klupp [7], and Johnson and Baines [6]).

Here, we analyzed a possible converging role for Torsin in herpesvirus nuclear egress by
overexpressing them singly, and by generation of single and double KO cells using CRISPR/Cas9
based mutagenesis in the rabbit kidney cell line RK13. Torsins A and B seem to be ubiquitously
expressed and are at least partially functionally redundant, complicating interpretation of experimental
data generated by targeting only one form. Overexpression of TorAWT or TorBE178Q, which carries a
mutation rendering the protein unable to hydrolyze ATP [46], resulted in a small but significant drop
in virus titers compared to the non-transgenic RK13 control. A similar drop in virus titer was also
observed for HSV-1 after infection of a neuronal cell line expressing TorAWT [54]. Primary enveloped
virions escaped into the lumen of the ER as it was shown after overexpression of a dominant-negative
SUN2 [69]. These data support the notion that Torsins regulate the SUN/nesprin interaction and that
an intact LINC complex/Torsin relationship is necessary to restrict primary virions in the PNS [54].
However, neither TorAWT nor TorBE178Q expression resulted in an obvious increase of the number of
primary virions in cytoplasmic structures, alteration of the nuclear envelope or the spacing between
the INM and ONM (data not shown). Due to the lack of antibodies detecting SUN proteins in RK13
cells, an influence of Tor expression on the LINC could not be tested.

We also generated single and double knockout cells by CRISPR/Cas9 mutagenesis, which was
verified by sequencing of the corresponding gene regions. No obvious differences in growth or
metabolic activity were observed between the modified cell lines stably expressing the respective Torsin
constructs or in Torsin KO cell lines, compared to parental RK13 cells. In addition, we did not detect any
morphological defects, indicating that the targeted proteins are non-essential for cellular proliferation
under our cell culture conditions. Since we could not exclude second site effects, we always included
different cell clones for each KO in the preliminary screens. In none of the KO cell lines wild-type
sequences could be identified. Unfortunately, the available antisera against the corresponding proteins
of human origin did not react with the rabbit homologs in the RK13 cell lysates. The used gRNAs
were designed to target exons that are shared by all transcript variants of the gene of interest to
minimize the chance that shorter but still functional protein isoforms might be expressed. Although
the RK13-TorA/BDKO cell line carries an in-frame deletion (aa 76–85) upstream of the Walker A motif
(aa 105–112) in both alleles of the TorB gene and we cannot exclude expression of a truncated protein,
the observed effects indicate a significant loss of function.

In contrast to the overexpression experiments, in which a slight but significant drop in progeny
virus titers was found after infection of RK13-TorAWT and RK13-TorBEQ cells, none of the single KO
cells showed a significant effect on infectious virus production or on localization of the NEC component
pUL34. In ultrastructural analyses, we could not detect perturbations of the NE in cells lacking TorA
or B, and primary virions were only rarely detected in the PNS or in cytoplasmic vesicles arguing
against an impairment of nuclear egress. However, after infection of RK13-TorA/BDKO cells a drop
in virus titer occurred at early time points after infection. High-resolution imaging revealed striking
accumulations of primary enveloped virions lined-up in the PNS, while accumulations in herniations
of the ONM were only rarely detected. Many of the primary envelopes seemed to be connected to
the INM indicating that in the absence of Torsin A and B scission might be impaired (Figure 10).
In line with this, in a HeLa cell line where all four known Torsins had been eliminated simultaneously,
NE blebs still connected to the INM had been described [50]. Unfortunately, these cell lines were not
tested for effects on herpesvirus nuclear egress. It is tempting to speculate that not only Torsin A and B,
but also other Torsins might be involved in this process. Incomplete scission of primary HSV-1 virions
from the INM was also reported after depletion of ESCRT-III proteins [24]. It might be speculated that
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recruitment of an AAA+ ATPase (Torsin/Vps4) might alleviate the scission process mediated by the
NEC proteins.

It should be noted that we did not observe clear blebs of the INM into the PNS of our TorA/BDKO

cells, which contrasts previous reports from fibroblasts [52], HeLa cells [50], or neurons [53].
Torsins are supposed to function as regulators of the LINC complex [56] and an intact LINC

complex may be required for efficient nuclear egress by restricting primary virions to the PNS in close
proximity to the NE for efficient fusion of the primary envelope with the ONM [69]. In our TorA/BDKO

cells no impact on spacing between INM and ONM was apparent indicating no impairment of LINC.
In summary, we demonstrate that Torsins A and B, which might be involved in proper functioning

of the LINC complex, play a role during nuclear egress of herpesvirus capsids. These results together
with our previous findings on SUN2 impairment highlight the importance of this complex for
vesicle-mediated herpesvirus capsid transport through the nuclear envelope.
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Abstract

During herpesvirus replication, newly synthesized nucleocapsids exit the nucleus by a vesicle-

mediated transport which requires the nuclear egress complex (NEC), composed of the 

conserved viral proteins designated as pUL31 and pUL34 in the alphaherpesviruses 

pseudorabies virus (PrV) and herpes simplex viruses. Oligomerization of the heterodimeric 

NEC at the inner nuclear membrane (INM) results in membrane bending and budding of virus 

particles into the perinuclear space. The INM-derived primary envelope then fuses with the 

outer nuclear membrane to release nucleocapsids into the cytoplasm. The two NEC 

components are necessary and sufficient for induction of vesicle budding and scission as 

shown after co-expression in eukaryotic cells or in synthetic membranes. However, where and 

when the NEC is formed, how membrane curvature is mediated and how it is regulated, 

remains unclear. 

While monospecific antisera raised against the different components of the PrV NEC aided in 

the characterization and intracellular localization of the individual proteins, no NEC specific 

tools have been described yet for any herpesvirus. To gain more insight into vesicle budding 

and scission, we aimed at generating NEC specific monoclonal antibodies (mAbs). To this end, 

mice were immunized with bacterially expressed soluble PrV NEC, which was previously used 

for structure determination. Besides pUL31- and pUL34-specific mAbs, we also identified 

mAbs, which reacted only in the presence of both proteins indicating specificity for the complex. 

Confocal microscopy with those NEC-specific mAbs revealed small puncta along the nuclear 

rim in PrV wild type infected cells. In contrast, huge speckles were detectable in cells infected 

with a PrV mutant lacking the viral protein kinase pUS3, which is known to accumulate primary 

enveloped virions in the PNS within large invaginations of the INM, or in cells co-expressing 

pUL31 and pUL34. Kinetic experiments showed that while the individual proteins were 

detectable already between 2 to 4 hours after infection, the NEC-specific mAbs produced 

significant staining only after 4 to 6 hours in accordance with timing of nuclear egress. Taken 

together, the data indicate that these mAbs specifically label the PrV NEC. 

Highlights

• Generation of monoclonal antibodies (mAbs) specific for the PrV NEC 

• First herpesvirus NEC specific mAbs

• Visualization of the NEC in infected and transfected cells 

• NEC formation is detectable between 4 to 6 h post infection with no obvious “hot spots” 

for nuclear egress
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1. Introduction

Efficient translocation of newly assembled intranuclear nucleocapsids to the cytoplasm through 

the nuclear envelope requires the herpesvirus nuclear egress complex (NEC), an exceptional 

membrane budding and scission machinery acting at the inner nuclear membrane (INM). The 

NEC is composed of two conserved viral proteins designated as pUL31 and pUL34 in the 

alphaherpesviruses pseudorabies virus (PrV) and herpes simplex viruses 1 and 2 (HSV-1, -2). 

Expression of the NEC results in vesicle budding and scission from synthetic membranes as 

well as in vesiculation from the INM in eukaryotic cells (Fig. 1) (Bigalke, Heuser, Nicastro, & 

Heldwein, 2014; Desai, Pryce, Henson, Luitweiler, & Cothran, 2012; Klupp et al., 2007; Lorenz 

et al., 2015). 

The crystal structures of the NECs from different herpesviruses showed a high similarity 

despite only moderate conservation at the amino acid level (Bigalke & Heldwein, 2015; Lye et 

al., 2015; Walzer et al., 2015; Zeev-Ben-Mordehai et al., 2015). Both proteins possess a 

globular core and only the pUL31 N-terminal domain forms a hook-like extension reaching 

around and inserting into a groove of pUL34. The transmembrane domain located at the C-

terminus of pUL34 (Klupp, Granzow, & Mettenleiter, 2000; Shiba et al., 2000) anchors the 

complex in the nuclear envelope forming a platform for pUL31 at the INM. However, when and 

where the NEC dimer is assembled, how oligomerization is triggered, and how the NEC 

mediates membrane bending resulting in nucleocapsid uptake and scission of a membranous 

vesicle is still unclear. Data from a multimodal imaging approach indicated that first a flat NEC 

patch is formed at sites where nucleocapsids dock at the INM, which then transforms into a 

curved spherical coat finally engulfing the nucleocapsid (Hagen et al., 2015).

During nuclear egress, mature DNA-containing capsids are the predominant cargo for 

translocation while immature capsid forms or empty vesicles are only rarely observed in the 

PNS (Granzow, Klupp, & Mettenleiter, 2004; Newcomb et al., 2017) indicating that NEC 

formation and/or oligomerization is blocked until nucleocapsids trigger the budding reaction. 

The capsid vertex-specific component (CVSC) mainly consisting of pUL17 and pUL25, which 

is enriched on nucleocapsids (Newcomb et al., 2017; Toropova, Huffman, Homa, & Conway, 

2011; Trus et al., 2007) seems to act as exit permit. A few direct contacts between the NEC 

and the CVSC could be visualized using cryo-electron tomography of primary enveloped 

particles (Newcomb et al., 2017) and an interaction between pUL31 and the CVSC was 

demonstrated for HSV-1 (Takeshima et al., 2019; Yang & Baines, 2011; Yang, Wills, Lim, 

Zhou, & Baines, 2014). In addition, a recent manuscript suggested a rearrangement of the 

hexameric HSV-1 NEC coat formed on synthetic membranes into pentameric structures in the 

presence of a truncated pUL25 indicating that the NEC coat is anchored at the capsids via 

pUL25 pentamers at the vertices (Draganova, Zhang, Zhou, & Heldwein, 2020).
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Fig. 1 Herpesvirus nuclear egress and vesicle formation at the INM. (A) In infected cells the viral 
tail-anchored nuclear membrane protein pUL34 recruits pUL31 to the inner nuclear membrane (INM) 
forming the nuclear egress complex (NEC). The PrV NEC structure (Zeev-Ben-Mordehai et al., 2015) is 
shown enlarged in the inset. The NEC recruits viral and cellular protein kinases, resulting in 
phosphorylation and partial dissolution of the nuclear lamina. The nucleocapsid attaches to the INM and 
buds into the perinuclear space (PNS) by oligomerization of the NEC. Budding and scission results in a 
primary enveloped virion in the PNS. The primary virion envelope subsequently fuses with the outer 
nuclear membrane (ONM) thereby releasing the nucleocapsid into the cytoplasm. (B) Co-expression of 
PrV pUL31 and pUL34 is sufficient for membrane budding, vesicle formation and scission from the INM, 
while fusion with the ONM seems to be inefficient resulting in an accumulation of membranous vesicles 
in the PNS. (C) Infection with a virus mutant lacking the protein kinase pUS3 leads to an accumulation 
of primary enveloped virions in large invaginations of the INM. Electron microscopic images illustrate 
the different stages. 
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pUL31 is assumed to bind to nucleocapsids already in the nucleoplasm governing transport to 

the INM budding sites (Funk et al., 2015). For PrV, however, interaction of pUL31 with the 

capsid was reported also in the absence of pUL25 (Leelawong, Guo, & Smith, 2011), and 

capsids lacking pUL25 were able to reach the INM but budding did not ensue (Klupp, Granzow, 

Keil, & Mettenleiter, 2006) pointing to several and probably promiscuous NEC binding 

partner(s) on the capsid. 

In the absence of enzymatically active alphaherpesvirus-specific protein kinase pUS3, primary 

enveloped virions accumulate in huge invaginations of the INM (Klupp, Granzow, & 

Mettenleiter, 2001; Reynolds, Wills, Roller, Ryckman, & Baines, 2002; Sehl et al., 2020; 

Wagenaar et al., 1995) pointing to a modulatory role in the release of nucleocapsids from the 

perinuclear space (PNS) (Fig. 1C). However, with the enrichment of primary virions in the PNS, 

which are only rarely detected in wild type infected cells, these mutants serve as an invaluable 

tool to study primary envelopment and composition of these particles (Granzow et al., 2004; 

Newcomb et al., 2017).

For an in-depth characterization of NEC formation and the structural rearrangements resulting 

in translocation of nucleocapsids from the nucleus into the cytoplasm, we generated 

monoclonal antibodies (mAbs) against bacterially expressed soluble PrV pUL31/pUL34, which 

was successfully used for elucidation of the NEC crystal structure (Zeev-Ben-Mordehai et al., 

2015). This approach resulted in the isolation of mAbs specific for either pUL31 or pUL34, but 

also in mAbs reacting only in the presence of both complex partners, indicating that they 

specifically detect the NEC. 
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2. Material and Methods

2.1 Viruses and cells. Rabbit kidney cells (RK13) were cultivated in Dulbecco´s modified 

Eagle´s minimum essential medium supplemented with 10 % fetal calf serum. The wild type 

PrV strain Kaplan (PrV-Ka) (Kaplan & Vatter, 1959) and the gene deletion mutants PrV-ΔUL31 

(Fuchs, Klupp, Granzow, Osterrieder, & Mettenleiter, 2002), PrV-ΔUL34 (Klupp et al., 2000), 

as well as PrV-ΔUS3 (Klupp et al., 2001) were used for infection. PrV-Ka and PrV-ΔUS3 were 

propagated in RK13 cells, while PrV-ΔUL31 was grown in RK13-UL31 (Fuchs et al., 2002) and 

PrV-ΔUL34 in RK13-UL34 (Klupp et al., 2000) cells. 

2.2 Expression and purification of the nuclear egress complex. Open reading frames 

encoding N-terminally truncated PrV pUL31 (aa 26-271) and pUL34 (aa 1-179) lacking the C-

terminal transmembrane domain were cloned into pETDuet and expressed in E. coli strain 

LEMO21 (DE3) at 25°C. Purification was done as described (Zeev-Ben-Mordehai et al., 2015).

2.3 Immunization of BALB/c mice and cell fusion. Three female BALB/c mice were 

immunized four times intraperitoneally with 50 µg of bacterially expressed pUL31/pUL34, 

mixed with an equal amount of GERBU Adjuvant MM (GERBU Biotechnik) in 4-week intervals. 

A final boost was set four days before mice were euthanized. Spleen cells were fused with 

SP2/0 myeloma cells in a ratio of 1:4 in the presence of polyethylene glycol 1500 (PEG, Sigma-

Aldrich). Hybridoma cells were selected as described previously (Bussmann, Reiche, Jacob, 

Braun, & Jassoy, 2006; Fischer et al., 2018). Immunizations were performed in compliance 

with the national and European legislation, with approval by the competent authority of the 

Federal State of Mecklenburg-Western Pomerania, Germany. 

2.4 Screening for pUL31-, pUL34-, and NEC-specific monoclonal antibodies. 
Supernatants of hybridoma cells were first screened by indirect immunofluorescence on RK13 

cells infected with PrV-Ka at a low multiplicity of infection (MOI) in 96-well plates. Hybridomas, 

which produced positively reacting supernatants, were subcloned twice and further 

characterized. 

2.5 Immunoblotting. Cells were infected with PrV-Ka, PrV-ΔUL31, PrV-ΔUL34, or PrV-ΔUS3 

at an MOI of 5 and harvested 24 h post infection (p.i.) by scraping into the medium. Cells were 

pelleted, washed twice with phosphate-buffered saline (PBS) and lysed in SDS-containing 

sample buffer (0.13 M Tris-HCl, pH 6.8; 4 % SDS; 20 % glycerin; 0.01 % bromophenol blue; 

10 % 2-mercaptoethanol). Proteins were separated in SDS 10 % polyacrylamide gels and after 

transfer to nitrocellulose membranes, parallel blots were probed with the monospecific 

polyclonal rabbit sera (pUL31 pAb, pUL34 pAb, both 1:50,000) or with the hybridoma 

supernatants (1:10 dilutions). After incubation with secondary peroxidase-labelled antibodies 
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and substrate (Clarity ECL Western Blot Substrate, Bio-Rad), chemiluminescence was 

recorded in a Bio-Rad Versa Doc imager.

2.6 Indirect immunofluorescence on transfected and infected cells. RK13 cells were 

seeded on coverslips in a 24-well dish and transfected by calcium phosphate-coprecipitation 

(Graham & van der Eb, 1973) with 1 µg of pcDNA-UL31 (Fuchs et al., 2002) and/or pcDNA-

UL34 (Klupp et al., 2000), or infected with PrV-Ka, PrV-ΔUL31, PrV-ΔUL34 or PrV-ΔUS3 with 

approx. 250 plaque forming units (pfu)/well. Cells were fixed 2 d post transfection or 18 to 24h 

p.i. with 4 % paraformaldehyde for 15 min. Fixed cells were washed three times and incubated 

with 50 mM NH4Cl in 1x PBS for 30 min. For expression kinetics, cells were infected with PrV-

Ka or PrV-ΔUS3 at an MOI of 5 and fixed after 2 h, 4 h, and 6 h p.i. Fixed samples were 

permeabilized with 0.1 % Triton X-100 in 1x PBS. Samples were stained with the hybridoma 

supernatants and/or with the polyclonal rabbit sera specific for pUL31 (pAb, 1:500, (Fuchs et 

al., 2002)) and pUL34 (pAb, 1:500, (Klupp et al., 2000)). Alexa Fluor 488-conjugated goat anti-

rabbit or -mouse IgG and Alexa 568-conjugated goat anti-rabbit or anti-mouse IgG (dilution 

1:1000, Invitrogen) were used to detect bound antibody. Nuclei were stained with 300 mM 4′,6-

Diamidin-2-phenylindol (DAPI, Sigma-Aldrich) for 5 min, cells were mounted in a drop of 

Kaiser’s glycerol gelatin (Merck) and imaged with a confocal laser scanning microscope (Leica 

DMI 6000 TCS SP5, 63x oil-immersion objective, NA = 1.4). Cells for determination of infection 

kinetics were processed in parallel and all images were acquired with identical parameters 

(laser excitation, detector settings, and zoom factor). Representative single images and Z-

stacks were processed using Fiji software version 1.52 (Schindelin et al., 2012; Schneider, 

Rasband, & Eliceiri, 2012) and Icy software version 2.0 (de Chaumont et al., 2012). 

2.7 Ultrastructural analyses. RK13 cell lines were infected with PrV-Ka and PrV-∆US3 at an 

MOI of 1 for 14 h and processed for transmission electron microscopy. They were fixed in 0.5 

% glutaraldehyde buffered in 0.1 M PBS (pH 7.2) for 2 h at 4 °C. The fixed samples were 

embedded in 1.8 % low-melting agarose, cut in small pieces (1 mm3) and postfixed in 0.5% 

glutaraldehyde buffered in 1x PBS (pH 7.2) for 30 min (Serva). After that, samples were 

blocked in 0.1 M NH4Cl in 1 x PBS for 60 min, washed in 1x PBS and stained in 0.5 % aqueous 

uranyl acetate overnight. During stepwise dehydration in ethanol, temperature was progressive 

lowered until -20 °C with the help of the Leica EM ASF2. The samples were infiltrated with 

Lowicryl resin K4M (Polyscience), filled in gelatin capsules and polymerized under UV light for 

3 days. Ultrathin sections were prepared with an ultramicrotome (UC7; Leica), transferred to 

formvar coated nickel grids (300 mesh, Athene; Plano), and stored until immunostaining.

For a better immunostaining of nuclear proteins, DNase I digestion was performed. DNase I 

(NEB) was diluted 1:10 in its reaction buffer and grids were incubated 30 min at room 
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temperature. After washing with PBS the sections were blocked with 1 % cold-water fish 

gelatin, 0.02 M glycine and 1 % bovine serum albumin (BSA) in 1 x PBS (Merck). 

For staining with the monoclonal antibodies undiluted supernatants, as well as 1:10 and 1:50 

dilutions in 1 % BSA in 1 x PBS were tested and incubated at 4 °C overnight. For staining with 

the polyclonal monospecific antisera a 1:1000 dilution in 1 % BSA in 1 x PBS was prepared 

and incubated at room temperature for 3 h. Bound antibodies were detected with immunogold 

conjugate against mouse monoclonal antibodies (GMHL10; BBI solutions) and rabbit 

polyclonal antisera (GAR10; BBI solutions), respectively. The conjugates were used in 1:50 

dilutions and incubated for 1 h at room temperature.

After washing and drying the grids were counterstained with uranyl acetate and lead citrate 

and finally examined with a Tecnai Spirit transmission electron microscope (FEI, NED) at an 

accelerating voltage of 80 kV.
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3. Results and Discussion

3.1 Screening of hybridoma cell clone supernatants.

Initial screening of the hybridoma supernatants was performed by indirect 

immunofluorescence of RK13 cells infected with PrV-Ka under plaque assay conditions. Non-

infected cells in the same wells served as control and allowed exclusion of antibodies reacting 

with cellular antigens. Hybridoma cells, whose supernatant showed a virus-positive reactivity, 

were subcloned twice and screened on pUL31 and pUL34 individually or co-expressing cells. 

For further characterization, RK13 cells were infected with PrV-ΔUL31, PrV-ΔUL34 and PrV-

ΔUS3, and tested by indirect immunofluorescence. Six hybridoma supernatants reacted 

specifically with pUL31, while eight showed reactivity for pUL34 as was evident by comparison 

with cells infected with the deletion mutants or expressing individual proteins. Four hybridoma 

supernatants showed positive staining only in the presence of both proteins in transfected as 

well as in infected cells pointing to complex-specific reactivity (Table 1).

Table 1: Overview on the reactivity of the monoclonal antibodies (mAbs). 

Immunofluorescence

Infection Transfection
mAb clone

PrV-
Ka

ΔUS3 ΔUL31 ΔUL34 pUL31 pUL34
pUL31/

pUL34

WB
Immune 

EM

1 1A1 B3 + + - + + - + + -

2 1A4 B3 + + - + + - + + n.t.

5
3A12 

C4
+ + - + + - + + +

9
2E12 

C3 
+ + - + + - + + -

11 2F6 D1 + + - + + - + + n.t.

an
ti-

pU
L3

1

12 3G5 B3 + + - + + - + + n.t.

7 6C2 B2 + + + - - + + - -

8 1D7 A1 + + + - - + + - n.t.

an
ti-

pU
L3

4

A 4B1 C1 + + + - - + + - -
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B
7G7 
A3

+ + + - - + + - -

D
7E11 

A2
+ + + - - + + - n.t.

F 3H2 A3 + + + - - + + - -

G
4G12 

A3
+ + + - - + + - n.t.

H
7G6 
A3

+ + + - - + + - n.t.

4 2A7 B2 + + - - - - + - -

6 2B5 A2 + + - - - - + - -

13 2H3 A1 + + - - - - + - -

an
ti-

N
EC

14
2H11 

B1
+ + - - - - + - -

mAbs were characterized by indirect immunofluorescence of infected and transfected cells, by western 
blotting (WB) with lysates of infected cells and immunoelectron microscopy (EM) on infected cells.

+, positive signal; -, no signal; n.t., not tested;

All hybridoma supernatants were further tested by immunoblotting of lysates of infected or 

transfected cells under denaturing conditions. Here, only the pUL31-specific hybridoma 

supernatants showed a positive reaction (Table 1), while the pUL34- and NEC-specific mAbs 

were negative, which suggests that these antibodies detect conformational epitopes. 

3.2 Comparison of reaction pattern of the pUL31- and pUL34-specific monoclonal 
antibodies with the polyclonal monospecific sera.

To compare the reaction patterns of the pUL31- and pUL34-specific monoclonal antibodies 

present in the selected hybridoma supernatants with our well-characterized monospecific 

rabbit sera, transfected (Fig. 2A) or infected (Fig. 2B) RK13 cells were fixed, stained with the 

different antibodies and antisera, and processed for confocal laser scanning microscopy. In 

transfected cells, pUL31 localizes diffusely in the nucleus, while pUL34 is detectable 

predominantly at the nuclear rim but also in cytoplasmic structures, most likely the endoplasmic 

reticulum. Co-expression of both proteins resulted in the typical nuclear speckled pattern after 

staining with pUL31- and pUL34-specific antibodies (Fig. 2A) (Klupp et al., 2007). 
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In PrV-Ka infected and transfected cells pUL31 is found diffusely distributed in the nucleus but 

also partly at the nuclear rim. Labelling of PrV-Ka infected cells with anti-pUL34 showed only 

a smooth nuclear rim staining. In PrV-ΔUS3 infected cells immunostaining revealed the typical 

huge nuclear speckles after incubation with the anti-pUL31 as well as with the anti-pUL34 

antibodies as described (Klupp et al., 2007) . For anti-pUL34 antibodies, in addition to the 

speckles, a nuclear rim staining was still evident. However, nuclear localization was less 

prominent and more cytoplasmic fluorescence was detectable in the absence of pUS3 as 

reported earlier (Klupp et al., 2001). After infection with PrV-ΔUL34, recruitment of pUL31 to 

the nuclear rim was not detectable and in the absence of pUL31, staining for pUL34 was less 

concentrated in the nuclear rim (Fig. 2B). 

 
Fig. 2. Comparison of pUL31- and pUL34-specific polyclonal and monoclonal antibody labelling 
patterns. Staining patterns for the pUL31- and pUL34-specific pAbs and mAbs were compared using 
confocal laser scanning microscopy after transfection of the corresponding expression plasmids either 
individually or in combination (A) or after infection with PrV-Ka, PrV-ΔUS3, PrV-ΔUL34, or PrV-ΔUL31 
(B). Scale bars indicate 10 µm. 

In the transfected and infected cells, the pUL31- and pUL34-specific mAbs showed 

comparable staining as the polyclonal rabbit sera. In addition, no difference in the reaction 

pattern was evident for the different pUL31- and pUL34-specific mAbs (Table 1).

3.3 Characterization of the NEC-specific monoclonal antibodies.
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Supernatants from four different hybridoma clones did not label singly transfected cells or cells 

infected with the UL31- or UL34-deletion mutants, but showed a robust reactivity with cells co-

expressing pUL31/pUL34 as well as with cells infected with PrV-Ka or PrV-ΔUS3 (Fig. 3, Table 

1) suggesting that these antibodies specifically recognize the NEC. Previous structural 

analyses suggested that binding of pUL31 results in conformational changes in pUL34 (Bigalke 

& Heldwein, 2015; Zeev-Ben-Mordehai et al., 2015). Further, the N-terminal hook of pUL31 is 

most likely folded differently in the absence of pUL34 (Bigalke & Heldwein, 2017; Funk et al., 

2015). Co-expression of pUL31 and pUL34 resulting in NEC formation, membrane deformation 

and vesicle scission probably results in generation of epitopes which are either not accessible 

or not present on the individual proteins. In fact, an extensive interface between pUL31 and 

pUL34 is formed in the heterodimeric NEC but also in the oligomeric NEC coat (Hagen et al., 

2015; Zeev-Ben-Mordehai et al., 2015), which could harbor those antibody-binding sites.

To compare the staining of the NEC-specific mAbs with the localization of the individual 

complex components, singly and co-transfected cells were stained simultaneously with the 

mAbs and pAbs in different combinations. As expected, the singly transfected cells showed no 

specific staining with the NEC-specific mAb, while after co-transfection staining of the speckles 

showed a significant overlap between the NEC-specific mAb and the pUL31- or pUL34-specific 

pAbs (Fig. 3A). 
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Fig. 3. Characterization of NEC-specific monoclonal antibodies. The reaction pattern for the 
hybridoma cell supernatants, which labelled only in presence of both NEC components, was compared 
with the staining pattern of the polyclonal anti-pUL31 and anti-pUL34 sera (pAb). (A) RK13 cells were 
transfected with pUL31 and pUL34 expression plasmids individually or in combination, or infected with 
the single gene deletion mutants (B), PrV-Ka (C), or PrV-ΔUS3 (D) and labelled with a NEC-specific 
mAb and either the anti-pUL31 or the anti-pUL34 pAb. For a better visualization of co-localization, areas 
boxed in C are shown in higher magnification and arrows mark some brighter spots. Nuclei were stained 
with DAPI and scale bars indicate 10 µm. 

The NEC-specific mAbs showed no reactivity with cells infected with the UL31- or UL34-

deletion mutants (Fig. 3B). Staining of PrV-Ka infected cells with these mAbs, however, 

revealed a small dotted and a faint diffuse nuclear staining (Fig. 3C). Co-staining with the 

polyclonal anti-pUL31 and anti-pUL34 sera showed an overlap at least in the puncta (Fig. 3C, 

some prominent dots marked by arrows). In contrast, a very strong and clear colocalization 

between the NEC-specific mAbs and the pUL31 or pUL34-specific pAb label was evident in 

PrV-ΔUS3 infected cells (Fig. 3D). We speculate that the small dots in PrV-Ka infected cells or 

the larges speckles in PrV-ΔUS3 infected cells represent budding sites and/or primary 

enveloped virions. Comparison of the four different NEC-specific mAbs revealed similar 

staining patterns after co-transfection as well as infection with PrV-Ka and PrV-ΔUS3 (Fig. 4). 

Fig. 4. Comparison of the staining pattern of the different NEC-specific mAbs. Reactivity of the 
four different NEC-specific mAbs in RK13 cells was compared by confocal laser scanning microscopy 
after co-transfection with the pUL31 and pUL34 expression plasmids (A), after infection with PrV-Ka (B) 
or after infection with PrV-ΔUS3 (C). Scale bars indicate 10 µm.

3.4 The NEC-specific signal is localized at the nuclear rim. 

Despite using a confocal laser scanning microscope, the small and large speckles in infected 

and transfected cells appeared to be distributed throughout the whole nucleus. To investigate 

this in more detail, Z-stacks were generated from PrV-Ka and PrV-ΔUS3 infected cells 
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incubated with the NEC-specific mAb #13 (Fig. 5). 3D projection showed that the dots are all 

located along the nuclear rim indicating that they are derived from the INM. The distribution of 

the small puncta detectable in the PrV-Ka infected cells as well as the huge speckles present 

after infection with PrV-ΔUS3 indicated budding along the nuclear envelope with no obvious 

preferential locations or ‚hot spots‘ (Fig. 5 and Suppl. Video 1 + 2). In contrast, nuclear egress 

was suggested to occur predominantly adjacent to the assembly compartments in human 

cytomegalovirus infected cells (Buchkovich et al., 2008).

Fig. 5. Localization of NEC-specific staining at the nuclear envelope. Three-dimensional 
reconstruction of a PrV-Ka (left) and a PrV-ΔUS3 infected cell (right) stained with the NEC-specific mAb 
#13. Z-stacks were obtained with a step size of 0.13 µm. Shown are stacks of approx. 70 optical sections 
from each cell. The maximum projection shows the merged signals. For 3D reconstruction, the Ivy 
software was used. The 2D projection (Fiji software) shows all sections individually. Scale bars indicate 
10 µm. 

3.5 NEC expression kinetics.

Expression kinetics for the NEC components were analyzed in RK13 cells infected with a MOI 

of 5 of PrV-Ka or PrV-ΔUS3 (Fig. 6). Infected cells were fixed 2 h, 4 h, and 6 h after infection, 

and imaged with constant settings using a confocal laser scanning microscope. As expected, 

the specific signals increased over time. In PrV-Ka and PrV-ΔUS3 infected cells expression of 

pUL31 and pUL34 was first detected approx. 4 h p.i. Recruitment of pUL31 to the nuclear 

envelope was not observed until 6 h after infection. In PrV-ΔUS3 infected cells expression of 

both proteins seemed to be slightly delayed but was comparable at 6 h p.i when small puncta 

were already observed (Fig. 6). Small nuclear dots were also detectable 6 h p.i. in PrV-Ka and 
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PrV-ΔUS3 infected cells after incubation with the NEC-specific mAbs, paralleling the 

appearance of nuclear rim staining for pUL31 and supporting the assumption that these dots 

represent either budding sites or primary enveloped virions. Imaging at later time points was 

not possible since the cells already showed cytopathic effect and detached from the cover 

slips. 

Fig. 6. NEC expression kinetics. Expression of the NEC components was investigated 2 h, 4 h, and 
6h after high MOI infection with PrV-Ka (left panels) or PrV-ΔUS3 (right panels) by confocal laser 
scanning microscopy. The NEC components were visualized by staining with the anti-pUL31 pAb and 
anti-pUL34 mAb #7 (A), while for panel (B) the NEC-specific mAb #6 was used. Nuclei were stained 
with DAPI. Scale bars indicate 10 µm.

3.6 Immunoelectron microscopic analyses.

A subset of pUL31- and pUL34-specific mAbs and all four NEC-specific mAbs were tested by 

immunoelectron microscopy on PrV-Ka- and PrV-∆US3 infected cells (Table 1). Unfortunately, 

the anti-pUL34 and anti-NEC mAbs did not react under these conditions. In contrast, the pUL31 

specific mAb #5 produced a clear labeling of the nuclear envelope in PrV-Ka infected cells with 

only few gold particles present in the nucleoplasm or on intranuclear capsids (Fig. 7A). In PrV-

∆US3 infected cells the gold particles were mainly associated with primary virions in INM 

herniations. Immune labeling with the monospecific anti-pUL31 serum revealed a comparable 

pattern (Fig. 7B).
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Until now, it is not clear how mature nucleocapsids reach the INM for budding. One of the 

hypotheses for HSV-1 suggests that capsids are escorted by pUL31 to the sites of nuclear 

egress (Funk et al., 2015). In our studies, however, using either the potent pUL31-specific pAb 

or the newly generated mAbs binding of pUL31 to the nucleocapsids was only rarely detected. 

Despite the prominent staining achieved with the pUL34- and NEC-specific mAbs in indirect 

immunofluorescence assays, unfortunately no label was found on the ultrathin sections. We 

assume that the antigen density in these sections might be too small for a positive signal. 

Alternatively, the fixation method might change the native structure of the complex, thereby 

masking or destroying the epitopes. Better results might be obtained on cryo sections, which 

however, are not yet established in our facility. 

Fig. 7. Immunoelectron microscopy. RK13 cells infected with PrV-Ka or PrV-∆US3 (MOI=1) were 
processed for immunoelectron microscopy. pUL31 was detected with mAb #5 (A) or the pAb (B) and 
gold-labeled secondary antibodies. Due to pretreatment with DNase I capsids often appear empty 
(indicated by asterisks). Bars indicate 200 nm. Nuc: nucleus
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ABSTRACT Herpesvirus nucleocapsids leave the nucleus by a vesicle-mediated
translocation mediated by the viral nuclear egress complex (NEC). The NEC is com-
posed of two conserved viral proteins, designated pUL34 and pUL31 in the alpha-
herpesvirus pseudorabies virus (PrV). It is required for efficient nuclear egress and is
sufficient for vesicle formation and scission from the inner nuclear membrane (INM).
Structure-based mutagenesis identified a lysine at position 242 (K242) in pUL31, lo-
cated in the most membrane distal part of the NEC, to be crucial for efficient nu-
cleocapsid incorporation into budding vesicles. Replacing the lysine by alanine
(K242A) resulted in accumulations of empty vesicles in the perinuclear space, despite
the presence of excess nucleocapsids in the nucleus. However, it remained unclear
whether the defect in capsid incorporation was due to interference with a direct,
electrostatic interaction between the capsid and the NEC or structural restrictions. To
test this, we replaced K242 with several amino acids, thereby modifying the charge,
size, and side chain orientation. In addition, virus recombinants expressing pUL31-
K242A were passaged and screened for second-site mutations. Compensatory muta-
tions at different locations in pUL31 or pUL34 were identified, pointing to an inher-
ent flexibility of the NEC. In summary, our data suggest that the amino acid at
position 242 does not directly interact with the nucleocapsid but that rearrange-
ments in the NEC coat are required for efficient nucleocapsid envelopment at
the INM.

IMPORTANCE Herpesviruses encode an exceptional vesicle formation and scission
machinery, which operates at the inner nuclear membrane, translocating the viral
nucleocapsid from the nucleus into the perinuclear space. The conserved herpesviral
nuclear egress complex (NEC) orchestrates this process. High-resolution imaging ap-
proaches as well as the recently solved crystal structures of the NEC provided deep
insight into the molecular details of vesicle formation and scission. Nevertheless, the
molecular mechanism of nucleocapsid incorporation remained unclear. In accor-
dance with structure-based predictions, a basic amino acid could be pinpointed in
the most membrane-distal domain of the NEC (pUL31-K242), indicating that capsid
incorporation might depend on a direct electrostatic interaction. Our follow-up
study, described here, however, shows that the positive charge is not relevant but
that the overall structure matters.

KEYWORDS herpesvirus, nuclear egress complex, nuclear envelope, pUL31, pUL34,
pseudorabies virus

Herpesviruses are large enveloped DNA viruses which replicate in two different
cellular compartments. While viral DNA replication, capsid assembly, and genome

packaging occur in the nucleus, final virus maturation proceeds in the cytoplasm. To
transfer newly assembled nucleocapsids to the cytoplasm, herpesviruses use a unique
vesicle-mediated pathway by budding through the inner nuclear membrane (INM) into
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the perinuclear space (PNS). This is subsequently followed by fusion of the INM-derived
primary virion envelope with the outer nuclear membrane (ONM), releasing the nu-
cleocapsids into the cytoplasm (reviewed in references 1 to 4).

Budding at and scission from the INM are coordinated by the viral nuclear egress
complex (NEC), which is conserved throughout the Herpesviridae. The NEC consists of
two viral proteins, designated pUL34 and pUL31 in the alphaherpesviruses pseudora-
bies virus (PrV) and herpes simplex virus (HSV). pUL34 is a tail-anchored membrane
protein which is autonomously targeted to the nuclear envelope. pUL31 is diffusely
distributed in the nucleus in the absence of pUL34 but is recruited to the INM by
interaction with membrane-bound pUL34, forming the NEC (reviewed in references 1
to 4). NEC oligomerization at the INM most likely mediates membrane bending and
vesicle scission. The ectopic expression of pUL31 and pUL34 is sufficient for vesicle
formation and scission from the INM in eukaryotic cells but also from synthetic lipid
bilayers, such as giant unilamellar vesicles, indicating that no other viral or cellular
protein(s) is needed for vesiculation (5–7). Despite the simultaneous presence of the
NEC components in the nucleus, in infected cells empty vesicles are only rarely
observed, while nucleocapsids are apparently selected for translocation (8, 9). How
nucleocapsids trigger this process and how they are incorporated into the nascent
vesicles remained unclear.

Previous data suggested that pUL31 binds to capsids already in the nucleoplasm
and mediates their transport to INM-located pUL34, initiating complex formation and
oligomerization (10). The HSV-1 capsid vertex-specific component (CVSC), which is
composed of pUL17 and pUL25 and which is enriched on mature capsids (9, 11), was
shown to interact with pUL31 (12, 13). In addition, direct contacts between the NEC
coat and the CVSC were visualized using cryo-electron tomography on primary envel-
oped particles (9). Recently, a direct interaction between pUL25 and the NEC was
suggested by glutathione S-transferase-pulldown assays (14). In contrast, binding of PrV
pUL31 also occurred independently of the pUL25 CVSC component (15), pointing to
multiple binding partners or binding sites on the capsids. Due to the transient nature
of the nucleocapsid-NEC interaction, which must be formed during envelopment at the
INM but which needs to disengage during deenvelopment at the ONM, identification
of interaction partners by classical biochemical approaches is difficult. In addition, the
observation that preferentially mature nucleocapsids are enveloped at the INM indi-
cates a complex structure-based interaction influenced by subsequent subtle structural
changes, ranging from genome packaging and scaffold expulsion to addition of the
CVSC.

To analyze this process, we modified potential capsid interaction interfaces on the
NEC by site-directed mutagenesis (16) based on the crystal structures of the NECs from
PrV, HSV-1 (17, 18), and human cytomegalovirus (19, 20), as well as high-resolution
imaging of the PrV NEC (21). The NEC is an elongated rod-like structure, with the two,
mostly globular components sitting on top of each other (Fig. 1A). Oligomerization of
the NEC results in a tightly packed and curved hexameric, honeycomb-like structure
(Fig. 1B). Based on these data, only the membrane-distal end of the NEC, formed by
pUL31, appears to be accessible for interaction with the nucleocapsid, presumably
involving electrostatic interactions (17, 18). To test this hypothesis, we isolated several
PrV pUL31 mutants where predicted surface-exposed and charged amino acids were
altered to alanine (16). These data resulted in the identification of the relevance of the
most membrane-distal alpha-helical (H10) region (17) and especially a conserved lysine
at position 242 (K242) as the key residue. Mutation of this lysine or the simultaneous
exchange of the triad C241/K242/M243 for alanine (C241-243A) resulted in accumula-
tions of empty membrane vesicles in the PNS, despite the intranuclear presence of
numerous nucleocapsids, indicating that this region of pUL31 is crucial for nucleocapsid
incorporation (16).

To further explore the role of H10 and K242 in this process, we generated additional
mutants by replacing lysine 242 with acidic aspartic acid or glutamic acid with serine,
glutamine, or tyrosine, which have smaller or larger side chains than glutamic acid, or
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with arginine, thereby maintaining the basic character. In addition, virus mutants
carrying either the single K242A substitution or the triple C241-243A substitution were
passaged in cell culture to select for second-site mutations compensating for the capsid
incorporation defect.

FIG 1 Structural prediction of the PrV NEC. (A) pUL34 is shown in gray and pUL31 is shown in cyan in the PrV NEC
structure (17). The orientation toward and anchorage in the INM are indicated by the dotted line, and the
transmembrane domain in a lipid bilayer is represented by a dark gray box. The location of the amino acid (K242)
targeted in this study is indicated in red. (B) Bottom view of the membrane-distal end in the honeycomb array (17),
with interacting interhexameric molecules being shown by surface representation with amino acid K242 in red. The
zoomed image of the boxed region shows the interaction interface of different NEC heterodimers with one pUL31
in a semitransparent surface presentation, while the neighboring pUL31 is shown with its full surface. Amino acids
in close proximity to K242 are indicated by arrows and given with the corresponding position. (C) A bottom view
of the membrane-distal end of pUL31 with a partial surface presentation of alpha helix H10 is shown with amino
acid K242 in red. Amino acid substitutions at position 242 are modeled into the NEC dimer structure (PDB accession
number 5E8C). Molecular graphics and analysis were performed with the UCSF Chimera package (34).
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The data presented here indicate that capsid incorporation into primary vesicles is
not dependent on a specific charge interaction with K242 but may require conforma-
tional flexibility within the NEC coat.

RESULTS
Structural predictions of the pUL31-K242 location in the NEC coat. A lysine

residue at position 242 in the PrV pUL31 component of the NEC was found to be crucial
for incorporation of nucleocapsids into INM-derived vesicles (16). While in the NEC
heterodimer K242 seemed to be freely accessible at the surface (Fig. 1A), modeling of
this residue into the hexagonal array showed that this position might indeed be more
deeply buried and constrained by residues A233 and S235 in pUL31 of a neighboring
hexamer, impairing or even prohibiting direct interaction with the nucleocapsid
(Fig. 1B). To further analyze the role of K242 in nucleocapsid incorporation, we replaced
this residue by the basic but larger arginine (R), the negatively charged but smaller
glutamic acid (E) or aspartic acid (D), the small neutral serine (S), the large aromatic
tyrosine (Y), or the medium-sized glutamine (Q). The influence of the amino acid
exchanges was calculated and modeled into the heterodimeric NEC structure by using
the intrinsic functions of the UCSF Chimera package (Fig. 1C). Mutants were generated
by site-specific mutagenesis using the primers shown in Table 1 with pcDNA-UL31
as the template. Correct mutagenesis was verified by sequencing.

Intracellular localization of pUL31 mutants and colocalization with pUL34. The
mutated pUL31 proteins were tested for correct nuclear targeting and interaction with
the complex partner pUL34 by either transfection of the corresponding expression
plasmids or cotransfection with pcDNA-UL34 (22) into rabbit kidney (RK13) cells and
processed for confocal microscopy 2 days later. pUL31 was detected using a mono-
clonal anti-pUL31 antibody, while pUL34 was visualized by a monospecific rabbit
antiserum (Fig. 2) (22). All pUL31 mutants showed the same diffuse distribution in the
nucleus as native pUL31 (Fig. 2, top row), indicating stable expression and correct
targeting. A punctate pUL31/pUL34-positive staining pattern comparable to that
achieved with wild-type pUL31/pUL34 coexpression (Fig. 2, bottom three rows) indi-
cated that complex formation and membrane deformation were not affected by the
introduced changes. Only cotransfections of pcDNA-UL31-K242D and pcDNA-UL34
showed the presence of a higher level of pUL34 in the nuclear rim and in cytoplasmic
structures.

Functional complementation of PrV-!UL31 by the pUL31-K242 substitutions.
To investigate the ability of the generated mutants to complement the defect of
PrV-∆UL31, cell lines stably expressing the respective pUL31 mutants in trans were
generated. Cell clones were isolated and tested by indirect immunofluorescence and
immunoblotting, using monospecific anti-pUL31 rabbit serum (23). In contrast to the
parental RK13 cells, expression of pUL31 could be detected in all transgenic cell lines.
Anti-!-tubulin was included as a loading control (Fig. 3).

To test for functional complementation, RK13 and the pUL31-expressing RK13 cell
lines (RK13-UL31 cells) were infected with PrV wild-type strain Kaplan (PrV-Ka) or
PrV-∆UL31 (23) at a multiplicity of infection (MOI) of 5. At 24 h postinfection (p.i.), the
supernatant and cells were harvested and progeny virus titers were determined on

TABLE 1 Primers used for site-directed mutagenesis

Primer name Sequence (5= to 3=)a

UL31 K242S GAC ATT TAT TGC AGC ATG CGG GAC ATC AGC
UL31 K242Q GAC ATT TAT TGC CAG ATG CGG GAC ATC AGC
UL31 K242Y GC GAC ATT TAT TGC TAC ATG CGG GAC ATC AGC
UL31 K242R G AGC GAC ATT TAT TGC AGG ATG CGG GAC ATC AGC
UL31 K242E G AGC GAC ATT TAT TGC GAG ATG CGG GAC ATC AGC
UL31 K242D GCG AGC GAC ATT TAT TGC GAT ATG CGG GAC ATC AGC
UL31 A242K GC GAC ATT TAT TGC AAG ATG CGG GAC ATC AG
aMismatches are underlined and in bold. Only the forward primer is shown; the reverse complementary
primers are not depicted.
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RK13-UL31 cells (Fig. 4). Infection with PrV-Ka resulted in progeny titers of approxi-
mately 106 PFU/ml in all cell lines, similar to the findings for parental RK13 cells,
indicating that none of the pUL31 mutants exerted a dominant negative effect. The
titers of PrV-∆UL31 derived from RK13-UL31-K242S and RK13-UL31-K242Y cells were
only slightly reduced compared to those of PrV-Ka derived from the corresponding cells
(6- and 10-fold lower, respectively), indicating functional complementation. The titers
from RK13-UL31-K242Q cells were approximately 20-fold lower, while the titers result-
ing from infection of RK13-UL31-K242R cells were reduced 70-fold. No or only very low
levels of complementation of PrV-∆UL31 (reduced more than 100-fold) were found on
RK13-UL31-K242E and RK13-UL31-K242D cells, which were in the range of those found

FIG 2 Intracellular localization of pUL31 mutants and colocalization with pUL34. Localization was tested after
transfection of RK13 cells with the corresponding pUL31 expression plasmids (top row). Colocalization was
analyzed after cotransfection with pcDNA-UL34. pUL31 was stained with a pUL31-specific monoclonal antibody
(green, second row), while for pUL34, polyclonal anti-pUL34 serum (red, third row) was used. Merged channels are
shown in the bottom row. Fluorescence was imaged with a confocal laser-scanning microscope (63! oil immersion
objective, single slice; SP5; Leica Germany). Bars, 10 "m.

FIG 3 pUL31 expression in RK13 cells. Lysates of cell lines stably expressing native or mutated pUL31 as
well as nontransgenic RK13 cells were separated in an SDS-10% polyacrylamide gel. Proteins were
detected after transfer to nitrocellulose with the monospecific anti-pUL31 rabbit serum. As loading
control, anti-!-tubulin was used. The molecular masses of the marker proteins (in kilodaltons) are
indicated on the left.
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on cells expressing pUL31-K242A or for nontransgenic RK13 cells (Fig. 4) (16), indicating
that these pUL31 mutants are nonfunctional.

To characterize the effect of the substitutions on nuclear egress, cell lines were
infected with PrV-∆UL31 at an MOI of 1 and processed for electron microscopy.
Surprisingly, none of the pUL31 mutant cell lines showed accumulations of empty
vesicles within the PNS similar to those observed after infection of RK13-UL31-K242A
cells (16) (Fig. 5A). In contrast, PrV-∆UL31-infected RK13-UL31-K242S cells (Fig. 5B) and
RK13-UL31-K242Y cells (Fig. 5C) showed all stages of virion morphogenesis, including
nucleocapsids in the cytoplasm and virions at the plasma membrane, paralleling their
complementation phenotype (Fig. 4). In PrV-∆UL31-infected RK13 cells expressing
pUL31-K242Q (Fig. 5D) or pUL31-K242R (Fig. 5E), intranuclear nucleocapsids were often
detected in close apposition to the inner nuclear membrane, but membrane bending
and/or budding was observed only infrequently. Only a few vesicle-like structures in the
PNS were present in RK13-UL31-K242E cells (Fig. 5G), while nucleocapsids accumulated
in the nucleus in RK13-UL31-K242D cells (Fig. 5F), paralleling the observed lack of
complementation (Fig. 4).

Serial passaging of virus recombinants. The results obtained with the various
constructs with amino acid substitutions at position K242 were unexpected, arguing
against a direct electrostatic interaction between the K242 region within pUL31 alpha
helix H10 and nucleocapsids. To analyze the NEC-nucleocapsid interaction further, virus
recombinants expressing noncomplementing pUL31-K242A or pUL31-C241-243A were
generated by homologous recombination. PrV-UL31-K242A and PrV-UL31-C241-243A
exhibited strongly reduced growth properties comparable to those of PrV-∆UL31 on
the corresponding stably expressing cell lines (16), with only low progeny virus titers
and striking accumulations of empty vesicles in the PNS. However, the production of a
small amount of infectious virus progeny was observed and used for reversion analysis.

To select for compensating second-site mutations, PrV-UL31-K242A and PrV-UL31-
C241-243A were passaged in RK13 and Vero cells. Within only a few cell passages, the
titers of the supernatants reached up to 106 PFU/ml. Single plaques from several
independent assays were isolated and tested. Genomic DNA of revertants which
replicated to titers of at least 106 PFU/ml was isolated, and the UL31- and UL34-coding
regions were amplified by PCR and sequenced. The mutations identified in pUL31 and
pUL34 are summarized in Table 2. In this study, we subsequently focused on the pUL31
mutations.

Characterization of second-site mutations. To test whether the additional muta-
tions in pUL31 are sufficient to compensate for the replication defect in pUL31-K242A

FIG 4 trans-Complementation assays. Functional complementation by the generated pUL31 mutants
was tested after infection of the stably expressing cell lines with PrV-Ka and PrV-∆UL31 at an MOI of 5.
Cells and supernatant were harvested at 24 h p.i., and titers were determined on RK13-UL31 cells. Shown
are the mean values from four independent experiments with the corresponding standard deviations.
Statistically significant differences are indicated (**, P # 0.01; ****, P # 0.0001; ns, not significant).
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and pUL31-C241-243A (16), the UL31 genes were cloned into pcDNA3. The localization
and colocalization with pUL34 after transfection into RK13 cells were comparable to
those of the wild-type proteins (data not shown), pointing to correct nuclear targeting
and interaction with pUL34.

Stably expressing cell lines were isolated, tested for correct pUL31 expression
(Fig. 6A), and infected with PrV-∆UL31 and PrV-Ka as described above. The titers of

FIG 5 Ultrastructural analyses of cells expressing pUL31 mutants infected with PrV-∆UL31. RK13-UL31-K242A (A),
RK13-UL31-K242S (B), RK13-UL31-K242Y (C), RK13-UL31-K242Q (D), RK13-UL31-K242R (E), RK13-UL31-K242D (F), and
RK13-UL31 K242E (G) cells were infected with PrV-∆UL31 at an MOI of 1 and processed for electron microscopy at 14 h
p.i. Representative images are shown. Asterisks mark empty vesicles in the PNS, arrows point to nucleocapsids close to
the INM, and arrowheads indicate nucleocapsids or virions in the cytoplasm. Bars, 500 nm (A, C to G) and 800 nm (B).
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PrV-Ka reached at least 106 PFU/ml on all cell lines, demonstrating the absence of
a dominant negative effect of the second-site mutations (Fig. 7). Only RK13-UL31-
M79I/K242A replicated PrV-Ka to slightly lower titers. Nevertheless, complementa-
tion of PrV-∆UL31 with, at the most, 10-fold reduced titers was observed for
pUL31-M79I/K242A-, pUL31-A137T/K242A-, pUL31-K242T-, and pUL31-Y121H/C241-
243A-expressing cells. RK13-UL31-S40A/K242A, RK13-UL31-L115R/K242A, RK13-UL31-
A126T/C241-243A, and RK13-UL31-C241-243A/G250R cells showed a more pronounced
deficiency for complementation with 10- to 30-fold lower titers, but these were still
significantly above those derived from RK13-UL31-K242A or RK13-UL31-C241-243A cells
(Fig. 7), pointing to at least partial compensation of the K242A/C241-243A defect.

To test whether the second-site mutations affect virus replication in the absence
of the K242A or C241-243A substitutions, the latter were reverted by site-directed
mutagenesis, resulting in pcDNA-UL31-S40A, pcDNA-UL31-M79I, pcDNA-UL31-L115R,
pcDNA-UL31-Y121H, pcDNA-UL31-A126T, pcDNA-UL31-A137T, and pcDNA-UL31-
G250R. Since the localization of the mutated pUL31 and colocalization with pUL34 were
comparable to those of wild-type pUL31 (data not shown), stably expressing RK13 cells
were generated and tested for pUL31 expression (Fig. 6B) and for functional comple-
mentation of PrV-∆UL31 (Fig. 8). While pUL31-S40A, pUL31-M79I, pUL31-A126T, and
pUL31-Y121H complementation of PrV-∆UL31 produced wild-type-like titers with no
detectable effect, expression of pUL31-L115R and pUL31-G250R resulted in progeny
titers only in the range of those derived from nontransgenic RK13 cells, indicating that
these mutations significantly impaired the pUL31 function in the absence of the
K242A/C241-243A substitutions (Fig. 8).

TABLE 2 Second-site mutations detected in reversion analyses

Mutant used for
passaging

Cell line used for
passaging

Second-site mutation in:

UL31 UL34
PrV-UL31-K242A Vero S40 —a

PrV-UL31-K242A RK13 M79I —
PrV-UL31-K242A RK13 L115R —
PrV-UL31-K242A RK13 A137T —
PrV-UL31-K242A Vero K242T —
PrV-UL31-C241-243A Vero Y121H —
PrV-UL31-C241-243A RK13 " Vero A126T —
PrV-UL31-C241-243A RK13 " Vero G250R —
PrV-UL31-K242A Vero — G15W
PrV-UL31-K242A Vero — T25M
PrV-UL31-K242A Vero — A26V
PrV-UL31-K242A RK13 " Vero — T98A
PrV-UL31-K242A Vero — A99V
a—, no mutation.

FIG 6 Immunoblot analysis of RK13 cells expressing pUL31 with second-site mutations. RK13 cells expressing
UL31-K242A with the second-site mutations (A) or pUL31 carrying only these mutations (B) were harvested and
tested for pUL31 expression with the monospecific anti-pUL31 serum. Anti-!-tubulin (!-Tub) was used as a loading
control.
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In ultrastructural analyses, all stages of nuclear egress and virion formation could be
observed in cells expressing pUL31 with substitutions in H10 in the presence of the
second-site mutations, as shown for PrV-∆UL31-infected RK13-UL31-K242T, RK13-UL31-
S40A/K242A, RK13-UL31-L115R/K242A, and RK13-UL31-C241-243A/G250R cells (Fig. 9C
to F). These data point to an at least partial reversion of the nucleocapsid incorporation
defect observed in PrV-∆UL31-infected RK13-UL31-K242A and RK13-UL31-C241-243A
cells (16) or RK13 cells infected with PrV-UL31-K242A and PrV-UL31-C241-243A (Fig. 9A
and B). Nevertheless, single empty vesicles in the PNS were still evident, indicating that
capsid uptake into the nascent primary virion envelope may not be as efficient as that

FIG 7 Complementation of PrV-∆UL31 by second-site-mutated pUL31-K242A and pUL31-C241-243A.
Complementation by pUL31-K242A and pUL31-C241-243A carrying second-site mutations was tested
after infection of the stably expressing cell lines with PrV-Ka and PrV-∆UL31 at an MOI of 5. Cells and
supernatant were harvested at 24 h p.i., and titers were determined on RK13-UL31 cells. Shown are the
mean values from three independent experiments with the corresponding standard deviations. Statis-
tically significant differences were evaluated using GraphPad Prism software and are indicated (*,
P # 0.05; **, P # 0.01; ***, P # 0.001; ****, P # 0.0001; ns, not significant).

FIG 8 Effect of second-site mutations in the absence of the K242A mutation or the C241-243A mutations.
The K242A and C241-243A mutations in plasmids expressing the pUL31 genes derived from the
passaged mutants were repaired to the wild type by site-directed mutagenesis. Stably expressing cells
were infected with PrV-Ka and PrV-∆UL31 as described in the Fig. 7 legend. Shown are mean values from
three independent experiments with the corresponding standard deviations (****, P # 0.0001; ns, not
significant).
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with the wild-type NEC. Nucleocapsids in close proximity to the INM could be observed
in PrV-∆UL31-infected cells expressing pUL31-L115R and pUL31-G250R, while mem-
brane bending did not ensue (Fig. 9G and H).

DISCUSSION
Elucidation of the structures of several NECs by X-ray diffraction (17–20) as well as

a multimodal imaging approach (21) shed light on this exceptional viral vesicle forma-

FIG 9 Ultrastructural analysis. RK13 cells were infected with PrV-UL31-K242A (A) or PrV-UL31-C241-243A (B). (C to
H) RK13 cells expressing pUL31-K242T (C), pUL31-S40A/K242A (D), pUL31-L115R/K242A (E), pUL31-G250R/C241-
243A (F), pUL31-L115R (G), or pUL31-G250R (H), infected with PrV-∆UL31 (MOI, 1), fixed, and processed for electron
microscopy at 14 h p.i. Asterisks mark empty vesicles in the PNS, nucleocapsids close to the INM are indicated by
arrows, and nucleocapsids or virions in the cytoplasm or at the plasma membrane are highlighted by arrowheads.
Bars, 300 nm (A) and 600 nm (B to H).
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tion and scission machinery. Identification of a clear polarity in the NEC with a
membrane-proximal and a membrane-distal face revealed that the major portion of the
NEC components is involved in oligomerization and vesicle coat formation, leaving only
the most membrane-distal part as a potential interaction interface with the nucleocap-
sid (21). In line with this, mutation of lysine 242 to alanine in the most membrane-distal
helical region (H10) in PrV pUL31 (16) or a R281A/D282A exchange in HSV-1 pUL31 (14)
(corresponding to amino acids R244 and D245, respectively, in PrV pUL31) resulted in
accumulations of empty membrane vesicles in the PNS, indicating that capsid uptake
into the nascent vesicles was impaired. However, in contrast to the findings for HSV-1,
a direct physical interaction between H10 and the nucleocapsid cargo was not shown
for PrV.

Although H10 and, in particular, K242 appeared to be surface exposed in the crystal
structure of the PrV NEC heterodimer, modeling of this position into the hexagonal
array showed that it might be more deeply buried in the interior and not available for
a direct capsid interaction. To investigate this in more detail, we replaced the lysine
K242 with either the smaller amino acid serine (S) or glutamine (Q), the negatively
charged aspartate (D) or glutamate (E), the bulky but also basic arginine (R), or the large
aromatic tyrosine (Y).

Modeling the different residues into the PrV NEC dimer (Fig. 1C) revealed that the
side chains of the substituted amino acids occupy the available space differently. While
the original lysine contains the longest extension pointing toward the neighboring
pUL31 molecules (Fig. 1B and C), alanine is small and compact, leaving some empty
space. The positions of serine and, especially, tyrosine with its aromatic ring and
aspartic acid partly mimicked the position of lysine. In contrast, side chains of arginine,
glutamine, and glutamic acid were kinked and directed inwards but not toward the
neighboring pUL31 in the hexameric ring.

All pUL31 mutants translocated to the nucleus indistinguishably from the wild-type
protein and interacted with coexpressed pUL34 to deform the nuclear membrane,
resulting in the typical punctate speckled pattern observed for the wild-type proteins
(7). Only the coexpression of pUL31-K242D slightly affected the localization of pUL34
and showed reduced colocalization. Nevertheless, a double-positive fluorescent punc-
tate pattern was also evident. Modeling of aspartic acid into the NEC structure indicates
that it fits into the position of the original lysine, but the negative charge seems to
influence the binding affinity to the NEC partner or the NEC oligomer.

The function of the mutated pUL31 was tested by complementation assays and
ultrastructural analyses using stably expressing cell lines. Surprisingly, none of the novel
mutations resulted in prominent accumulations of empty vesicles, as observed for
pUL31-K242A or pUL31-C241-243A (16). Surprisingly, maintaining the basic character
by alteration of lysine to arginine led to significantly reduced titers. Thus, the presence
of a basic amino acid at this position does not per se result in the proper function of the
NEC, arguing against a simple charge interaction. Only intranuclear nucleocapsids were
observed, and these were often in close proximity to the INM, suggesting that capsid
transport to and docking at the INM occurs but that membrane bending is impaired. A
similar phenotype could be found in virus mutants lacking the CVSC component pUL25
(24) or expressing pUL31 with mutations in the neighboring alpha-helical region, H11,
which affect the nuclear export signal (pUL31-NESPM) (16, 25). These data indicate that
alpha-helical regions H10 and H11 may indeed cooperate in the structural rearrange-
ments during nuclear egress, leading from a flat NEC patch to a curved shape. A similar
phenotype was also found in cells expressing pUL31-K242Q.

In contrast, the replacement of K242 by the small and neutral serine (K242S) and by
the large and aromatic tyrosine (K242Y) had only a limited effect on the production of
infectious progeny, with the titers being approximately 5- to 10-fold lower than those
of PrV-Ka. Electron microscopic images showed all stages of herpesvirus assembly and
egress, although nucleocapsids and virions were only rarely detected in the cytoplasm
or in the extracellular space, which is in line with the reduced titers and the relatively
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low sensitivity of electron microscopy. In contrast to pUL31-K242A expression, no
empty vesicles were observed in the PNS.

Cells expressing pUL31-K242D or pUL31-K242E, which reverted the net charge at
position 242, were unable to complement the defect of PrV-∆UL31, and the titers were
comparable to those derived from nontransgenic RK13 cells. Only intranuclear nucleo-
capsids were observed, in line with the severe drop in viral progeny titers. Very rarely,
single empty vesicles in the PNS were found, but these were in striking contrast to the
abundant vesiculation in cells expressing pUL31-K242A (Fig. 5A) or pUL31-C241-243A
(16).

Thus, the question remains why K242A resulted in these massive accumulations of
membrane vesicles in the PNS. Alanine is the only amino acid tested with an apolar side
chain, in contrast to the wild-type lysine and all other amino acids substituted. In
addition, modeling shows that the side chain does not fill the space between the pUL31
molecules in the dimeric interface of the hexamers (Fig. 1B and C), with less restriction
and/or higher flexibility probably resulting in deregulated vesicle budding and scission.
A similar dysregulation of vesicle formation from the INM was reported for HSV-1 when
a basic patch in pUL34 was mutated to alanine (R158A/R161A, CL13) (26). These two
mutations are located in the interaction surface between pUL34 and pUL31 within the
core NEC and close to an intramolecular salt bridge (18). It is feasible that both changes,
the alanine substitution in PrV pUL31-K242A and the double alanine exchange in HSV-1
pUL34, resulted in a greater flexibility and an enhanced propensity for oligomerization,
resulting in increased capsid-independent budding and vesicle scission.

The defect in HSV-1 pUL34 could be compensated for by inter- or intramolecular
second-site mutations (26). Thus, we were interested in whether this might also be the
case for PrV pUL31-K242A and pUL31-C241-243A. For this, recombinant viruses ex-
pressing pUL31-K242A or pUL31-C241-243A were generated and passaged in RK13 and
Vero cells. Although severely impaired in viral replication, infectious progeny was
formed in nontransgenic cells infected with these mutants, which served as a basis for
reversion analysis. Within less than 10 passages, viral titers increased to wild-type-like
values of 106 PFU/ml. Surprisingly, second-site mutations occurred at different amino
acid positions in pUL31 as well as in pUL34, pointing to higher flexibility of the NEC
than expected.

The relevance of mutations uncovered in pUL34 is difficult to test in our trans-
complementation assays since the native pUL34 was still present. Therefore, in this
study, we focused on the mutations found in pUL31. Cell lines expressing the second-
site pUL31 mutants in the presence of the H10 substitutions all replicated PrV-∆UL31
to significantly higher titers than the parental cell lines RK13-UL31-K242A and RK13-
UL31-C241-243A or nontransgenic RK13 cells. Titers only 6- to 12-fold lower than those
of PrV-Ka were achieved with pUL31-K242T, pUL31-M79I/K242A, pUL31-L115R/K242A,
pUL31-A137T/K242A, pUL31-Y121H/C241-243A, and pUL31-C241-243A/G250R, point-
ing to at least a partial functional complementation of the nuclear egress defect and
infectious virion maturation. Approximately 30-fold-lower titers were obtained on
RK13-UL31-S40A/K242A and RK13-UL31-A126T/C241-243A cells than were obtained for
PrV-Ka, still pointing to a partial functional rescue of the defect induced by the
K242A/C241-243A mutations.

Modeling the second-site mutations into the NEC structure showed that the sub-
stitutions L115R, Y121H, A126T, A137T, and G250R were located in close proximity to
the alpha-helical region H10 or a direct reversion of K242A (K242T) within the
membrane-distal part of pUL31 (Fig. 10), indicating that these mutations compensate
for the structural defects imposed by the amino acid changes in H10.

The second-site mutations resulting in amino acid substitutions L115R und G250R
both introduce a positive charge, which was lost in pUL31-K242A and pUL31-C241-
243A. L115 is located at the end of H5, which is supposed to form the trimeric interface
in hexamers (17). Addition of this positive charge might rearrange and stabilize the
hexamers forming the trimeric interaction interface. G250R is located in H11, which also
carries the nuclear export signal sequence (25). The simultaneous substitutions L252A
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and L254A, which are part of the predicted NES (pUL31-NESPM), resulted in a nonfunc-
tional protein (25), further supporting the suggestion that H10 and H11 may collabo-
rate for membrane deformation and budding during nuclear egress. L115R and G250R,
however, resulted in a nonfunctional pUL31 in the absence of the K242A/C241-243A
mutation. In ultrastructural analyses, a phenotype similar to that achieved with pUL31-
∆NES, i.e., nucleocapsids lined up at the INM but no detectable membrane deformation
or budding events, was observed (25), indicating that H5, in addition to H10 and H11,
facilitates membrane deformation and budding.

The second-site mutations S40A and M97I are located distantly from H10 and the
membrane-distal part of the NEC (Fig. 10). S40 is located in the second of the two alpha
helices forming the hinge region of the pUL31 N-terminal arm, which reaches around
and inserts into a groove of the pUL34 core. This arm is one of the major interaction
domains between the complex partners in the NEC dimer (17–20). In PrV pUL31, the
neighboring D41 forms an intramolecular hydrogen bond with Y34, stabilizing the kink
at an angle of ca. 80° (17). It is conceivable that the exchange of the polar serine in the
wild-type protein for the nonpolar alanine (S40A) allows more flexibility of this arm and,
thus, orientation between the complex partners. In addition, S40 is predicted to be a
putative phosphorylation site (http://www.cbs.dtu.dk/services/NetPhos), which may
play a regulatory role in assembly and/or disassembly of the NEC during nuclear egress
and which is lost by the S40A substitution.

The region comprising amino acids 77 to 79 in PrV pUL31 forms a loop between two
$ sheets (17) (Fig. 10). This loop, together with the zinc finger (ZNF) motif coordinated
by amino acids C73, C89, C92, and H188, is anticipated to form an important intrahex-
amer interface connecting to a loop comprising amino acids 88 to 93 in pUL34 of a

FIG 10 Location of the pUL31 mutations in the NEC dimer and in the hexagonal lattice. (A) Top view of the NEC
hexameric lattice (PDB accession number 5FKI) (17, 21). The chains are rainbow colored. (B to D) Close-up views of
NEC heterodimer interfaces of the hexameric lattice, with the mutations being marked in color. pUL31 is shown in
cyan, while pUL34 is shown in gray. The interfaces indicated in panel A are represented by a red circle for panel
B and a red rectangle for panel C. (B) Top view of the trimer interface between hexamers. (C) Side view of the
dimer-dimer interface. (D) Zoom of the membrane-distal part of the NEC shown in panel B. The amino acids that
were mutated are highlighted by different colors and labeled. Molecular graphics and analysis were performed
with the UCSF Chimera package (34).
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neighboring NEC dimer (17) (Fig. 10). Mutations in or close to the loop as well as
mutations in the ZNF motif (L76A, S77A, G80A, C73S, C89S, C92S, and H188A) resulted
in nonfunctional proteins (17), highlighting the importance of this region for higher-
order complex formation and NEC function. The exchange of methionine at position 79
for the more hydrophobic isoleucine might impose a higher flexibility on the dimer-
dimer interaction interface.

None of the revertants revealed a mutation back to K242. However, in one of the
revertants, which efficiently replicated in cell culture, the alanine substitution in pUL31-
K242A was changed to threonine (pUL31-K242T). Cell lines expressing pUL31-K242T
partially complemented the defect of PrV-∆UL31, and the titers derived from these cells
were similar to those observed for RK13-UL31-K242S and RK13-UL31-K242Y cells
(Fig. 4), adding another example of a functional amino acid exchange of the lysine at
position 242. It is noteworthy that all amino acid substitutions at this position which
complemented PrV-∆UL31 could serve as a potential phosphorylation site. The phos-
phomimetic amino acids aspartic acid (D) and glutamic acid (E), however, were non-
functional at this position (Fig. 4). Lysine, besides adding a positive charge, is also a
major target for posttranslational modifications, such as ubiquitination, acetylation,
sumoylation, and methylation, which play critical roles in regulating biological pro-
cesses (27). Further studies are needed to uncover putative protein modifications in the
NEC, especially at this particular site.

Several K242A second-site revertants had no additional mutations in pUL31 but in
pUL34 (Table 2). All these mutations were located in predicted loop regions (G15W,
T25M, A26V, T98A, A99V) (17). The loop region comprising amino acids 22 to 26 of PrV
pUL34 is thought to form the dimeric interface in the hexagonal lattice (17). In addition,
in HSV-1 the dominant negative mutation D35A/E37A in pUL34 (corresponding to
amino acids D22/E24 in PrV pUL34) (28, 29) impairs curvature formation of the coat (5).
The functional relevance of these mutations will be analyzed in the future.

In summary, our data indicate that K242 in H10 in PrV pUL31 may, in fact, not
mediate a direct interaction with the nucleocapsid cargo but indicate that this part of
the NEC is important for rearrangements leading to the correct curvature of the coated
vesicle, allowing for uptake of the nucleocapsid into the nascent primary virion
envelope.

MATERIALS AND METHODS
Cells and viruses. Rabbit kidney (RK13) cells, RK13-UL31 cells, and Vero cells were cultivated in

Dulbeccós modified Eaglés minimum essential medium supplemented with 10% or 5% (Vero) fetal calf
serum. PrV laboratory strain Kaplan (PrV-Ka) (30) was propagated in RK13 cells, while PrV-∆UL31 was
grown in RK13-UL31 cells (23).

Site-specific mutagenesis of pUL31. pUL31 mutants were generated using a QuikChange II XL
site-directed mutagenesis kit (Agilent Technologies) as described previously (16) and the primers listed
in Table 1 with the respective UL31 genes cloned in pcDNA3 (Invitrogen) as the template. Correct
mutagenesis was verified by sequencing.

Laser-scanning confocal microscopy. For localization and colocalization studies, RK13 cells were
transfected either with the corresponding pUL31 expression plasmids singly or with the corresponding
pUL31 expression plasmids cotransfected with pcDNA-UL34 (22) by calcium phosphate coprecipitation
(31). At 2 days posttransfection, the cells were fixed with 4% paraformaldehyde, permeabilized with 0.1%
Triton X-100 in phosphate-buffered saline (PBS), and incubated with a recently generated anti-pUL31
monoclonal antibody (1:50) and with the monospecific rabbit anti-pUL34 serum (1:500) (22). For
detection, Alexa Fluor 488-conjugated goat anti-mouse IgG and Alexa 568-conjugated goat anti-rabbit
IgG (Invitrogen) were used. Images were acquired with a confocal laser-scanning microscope (63! oil
immersion objective, single slice; SP5; Leica, Germany) and processed using ImageJ software (32).

Generation of stably expressing RK13 cell lines. To generate stably expressing RK13 cell lines,
calcium phosphate coprecipitation was used (31). At 2 days posttransfection, the cells were split and
transferred into selection medium containing 500 "g/ml G418 (Invitrogen). After 10 to 14 days, resistant
cell colonies were picked by aspiration and screened by indirect immunofluorescence for pUL31
expression using the polyclonal rabbit anti-pUL31 serum (23). Cell clones homogeneously expressing
wild-type or mutated pUL31 were used.

Immunoblot analysis. Cells were cultivated in 24-well plates for 2 days, scraped into medium, and
pelleted by centrifugation at 2,000 ! g for 5 min. The pellets were resuspended after washing with
phosphate-buffered saline (PBS) in sample buffer (0.13 M Tris-HCl, pH 6.8, 4% SDS, 20% glycerin, 0.01%
bromophenol blue, 10% $-mercaptoethanol). Lysates were sonicated and boiled for 3 min before
separation of proteins in an SDS-10% polyacrylamide gel. Proteins were transferred onto a nitrocellulose
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membrane and incubated with the polyclonal rabbit anti-pUL31 serum (23) and a monoclonal anti-!-
tubulin antibody (Sigma) as a loading control. Bound antibody was detected by peroxidase-coupled goat
anti-rabbit and goat anti-mouse immunoglobulin antibodies and visualized by enhanced chemilumines-
cence (Bio-Rad Clarity Western ECL blotting substrate), recorded in an image analyzer (Bio-Rad).

Generation of virus recombinants expressing pUL31-K242A and pUL31-C241-243A. Virus re-
combinants PrV-UL31-K242A and PrV-UL31-C241-243A were generated by homologous recombination.
For this, the corresponding mutations were introduced into cloned genomic 3.3-kb SalI fragment 1C,
comprising the UL31 gene region (23). Mutations were introduced using the QuikChange II XL site-
directed mutagenesis kit (Agilent Technologies) and the primers described previously (16). Recombina-
tion plasmids were cotransfected with PrV-∆UL31 (green fluorescent protein-positive) genomic DNA (7),
followed by purification of nonfluorescing plaques on RK13-UL31 cells. Correct mutagenesis and recom-
bination were tested after PCR amplification by sequencing of the corresponding gene region.

Serial passaging of virus recombinants. For serial passaging, monolayers of RK13 and Vero cells
were infected with either PrV-UL31-K242A or PrV-UL31-C241-243A in 24-well cell culture plates in
dilutions of 10#1 to 10#6. Infected cells were incubated for 3 to 5 days. The contents of the well with the
highest virus dilution showing a 100% cytopathic effect were harvested and centrifuged at 15,000 ! g
for 5 min. The supernatant was again titrated on 24-well culture plates. After 10 and 30 passages, the
supernatants were titrated under plaque assay conditions and single virus plaques were picked. After a
second round of plaque purification, virus stocks were prepared and the titer was determined on RK13
cells. Plaque isolates which reached titers of at least 106 PFU/ml were further investigated. For this, viral
DNA was isolated, and the UL31 and UL34 genes were amplified by PCR (23) and sequenced. UL31 PCR
products carrying additional mutations were cloned into pcDNA3, and stably expressing cells were
generated as described above.

In vitro complementation studies. To test for functional complementation, stably expressing cell
lines were infected on ice with PrV-Ka or PrV-∆UL31 at a multiplicity of infection (MOI) of 5 for 1 h to allow
for attachment of viruses to the cells. Subsequently, the inoculum was replaced by prewarmed medium
to initiate infection and incubated at 37°C for 1 h. Thereafter, the remaining extracellular virus was
inactivated by low-pH treatment (33), and cells were kept for an additional 24 h at 37°C. Cells and
supernatant were harvested, frozen, and thawed. After the removal of cellular debris by centrifugation,
progeny virus in the supernatant was titrated on RK13-UL31 cells. The mean values from at least three
independent experiments were calculated. Statistical significance was determined by a two-way analysis
of variance, followed by Sidak’s multiple-comparison test. All statistical tests were performed using
GraphPad Prism (version 8.1.0) software (GraphPad Software, La Jolla, CA, USA). Significant differences
between PrV-Ka and PrV-∆UL31 infection are indicated by asterisks in the appropriate figures.

Electron microscopy. Stably expressing cell lines infected with PrV-∆UL31 or RK13 cells infected with
PrV-UL31-K242A or PrV-UL31-C241-243A at an MOI of 1 were processed for electron microscopy at 14 h
p.i. as described previously (22).
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Results and Discussion 4
Herpesviruses are large DNA viruses that use two sub-cellular compartments for their
morphogenesis. After assembly, the newly formed nucleocapsids must leave the nu-
cleus for their final maturation in the cytoplasm. To overcome the nuclear barrier, her-
pesviruses engage a vesicle-mediated transport process, named nuclear egress [Metten-
leiter, 2002; Johnson and Baines, 2011; Mettenleiter et al., 2013; Bigalke and Heldwein,
2015a]. Initiator of this process is the conserved herpesviral NEC consisting of pUL31
and pUL34 orthologues. The NEC mediates budding of the nucleocapsids at the INM re-
sulting in primary enveloped virions located in the PNS. In the second step, the capsids
are released into the cytoplasm by fusion of their primary envelope with the ONM.

The main goal of this thesis was to further elucidate the molecular details of the her-
pesviral nuclear egress. In Paper I, the role of cellular Torsins in fusion of the primary
envelope with the ONM was investigated, while Paper II and Paper III focused on the
characterization of the PrV NEC and how it interacts with the nucleocapsid.

4.1 Analyzing the Role of Cellular Proteins in Nuclear Egress

While the assembly and function of the viral NEC has been studied to some detail, little
is known about the fusion process of the primary virion envelope with the ONM. Fusion
of the primary envelope with the ONM and most likely, disassembly of the tight NEC
lattice surrounding the capsid are required for efficient release. While herpesviruses
rely on pUL31 and pUL34 for orchestrating budding at and scission from the INM, both
are not directly involved in the subsequent fusion step (reviewed in Mettenleiter et al.
[2009]; Johnson and Baines [2011]; Mettenleiter et al. [2013]).
The viral protein kinase pUS3 appears to execute a regulatory function in this fusion
process in α-herpesviruses, which is manifested by an accumulation of primary virions
in the PNS in the absence of the protein (∆US3) or in presence of a non-functional kinase
(US3∆kin) [Wagenaar et al., 1995; Klupp et al., 2001; Reynolds et al., 2002; Schumacher
et al., 2005; Kato et al., 2011; Sehl et al., 2020]. The regulatory effect is most likely based
on its ability to phosphorylate NEC components [Purves et al., 1991, 1992; Ryckman
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4 Results and Discussion

and Roller, 2004; Mou et al., 2009], thereby potentially weakening their interaction. It
is supposed that phosphorylation of pUL31 within the primary virion results in NEC
disassembly or its detachment from the capsid [Mou et al., 2009].

Since extensive research on PrV did not reveal a viral protein mediating this fusion event,
we were interested whether and which cellular player(s) could be involved in the fusion
of the primary envelope with the ONM. Viruses frequently depend for their replica-
tion on cellular pathways and proteins. Although vesicle-mediated transport processes
between the plasma membrane and cytoplasmic organelles are well studied [Mironov
and Beznoussenko, 2019], knowledge on vesicular transport mechanisms and fusion
events at the NE is poor. Besides the herpesviral nuclear egress, budding at the NE has
also been observed for baculoviruses [Yuan et al., 2011] and for large RNP particles in
Drosophila [Hatch and Hetzer, 2012; Speese et al., 2012], pointing to a potential cellular
mechanism. How much this herpesviral and the cellular egress mechanisms might have
in common remains to be investigated.

Our laboratory started research on the LINC complex, because it was described to be
involved in NE spacing at least in cell culture [Sosa et al., 2013; Rothballer et al., 2013;
Cain and Starr, 2015]. During PrV infection, it was observed that the spacing of the
membranes remained similar between the INM and ONM and between the primary en-
velope and both nuclear membranes. Overexpression of the SUN2LD resulted in 10-fold
decreased virus titers and a dilated PNS and ER lumen. The most prominent result was
that primary enveloped virions appeared not only in the PNS, but also escaped into the
ER lumen, which was not observed in infected WT cells [Klupp et al., 2017].
To further validate these findings, cell lines were generated lacking either SUN1, SUN2
or both (unpublished). For this, we used CRISPR/Cas9-based mutagenesis, which is
used widely to modify eukaryotic genomes [Cong et al., 2013; Mali et al., 2013]. Analysis
of these KO cell lines allowed the confirmation of previous results from Klupp et al.
[2017] regarding the role of the LINC components in herpesvirus nuclear egress. The
results of infection experiments with RK13-SUN2KO cells were comparable to those of
the RK13-SUN2LD cells. In particular, the 10-fold titer loss, the dilation of the NE/ER
structures and the escape of primary virions into the ER were detected. However, no
apparent defect in nuclear egress was identified in SUN1KO cells, as it was reported for
SUN1LD expressing cells [Klupp et al., 2017]. A SUN1/2DKO cell line showed a similar
phenotype to RK13-SUN2KO demonstrating that the role in herpesvirus nuclear egress
is specific for SUN2.

It is not well understood yet, how the LINC complex is assembled, disassembled and/or
regulated. First results suggest that the AAA+ ATPase TorA might be involved [Nery
et al., 2008; Vander Heyden et al., 2009; Saunders et al., 2017; Dominguez Gonzalez
et al., 2018; Gill et al., 2019; Chalfant et al., 2019]. A similar phenotype as seen in
SUN2LD overexpression was also observed in HSV-1-infected, TorA-overexpressing cells
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4.1 Analyzing the Role of Cellular Proteins in Nuclear Egress

[Maric et al., 2011]. The escape of primary enveloped virions in both SUN2LD- or TorA-
overexpressing cells into the ER indicated that an intact LINC/Torsin interaction is nec-
essary to restrict primary virions in the PNS.

The Role of Torsins in Nuclear Egress - Paper I In the first paper (Paper I), the role
of Torsin AAA+ ATPases in nuclear egress of PrV was examined.
AAA+ ATPases as e.g. NSF (N-ethylmaleimide sensitive factor) and Vps4 are known
to be involved in membrane fusion processes such as organelle biogenesis or vesicle
trafficking [White and Lauring, 2007; Zhao et al., 2007, 2012]. Therefore it seemed plau-
sible that Torsins might be involved in fusogenic processes at the NE as well. NSF
participates in vesicular trafficking [Stenbeck, 1998] and is most likely required for the
post-fusion recycling of SNAREs (soluble NSF attachment protein receptors) [Zhao et al.,
2012]. Interestingly, functional NSF was also described to play a role in budding of bac-
ulovirus progeny nucleocapsids from the nucleus. Expression of a dominant-negative
NSF version resulted in accumulations of nucleocapsids in large PNS dilations [Guo
et al., 2017]. Vps4, however, drives neck constriction during multivesicular body forma-
tion in lysosomes [Adell et al., 2014] and subsequently leads to scission of the neck in
an ATP-dependent manner coupling to the ESCRT-III complex [Schoneberg et al., 2018].
Vps4 has already been analyzed in the context of HSV-1 infection, where it was shown
to be required for cytoplasmic envelopment but not for nuclear egress [Crump et al.,
2007].

Torsins have been described to be involved in NE maintenance and modulation [Nai-
smith et al., 2004; Goodchild and Dauer, 2005; Jungwirth et al., 2010; Kim et al., 2010] as
well as vesicle transport through the NE [Rose and Schlieker, 2012; Jokhi et al., 2013].
Additionally, defects in TorA cause blebbing of the NE in neuronal cells [Naismith et al.,
2004; Goodchild et al., 2005; Kim et al., 2010], which resembles vesicle budding induced
by NEC expression [Klupp et al., 2007], making them exciting candidates for our studies
on their influence on herpesvirus nuclear egress.

We analyzed a possible involvement of Torsins in PrV replication by individually over-
expressing Torsins. Among the five predicted mammalian Torsins A, B, 2, 3 and 4, we
focused on the ubiquitously expressed TorA and B. Since Torsins are well conserved
between humans, mice and rabbits we used already existing expression constructs en-
coding human TorA and B WT and the corresponding mutated forms, all tagged with
EGFP at the N-terminus [Jungwirth et al., 2010; Goodchild and Dauer, 2004; Kim et al.,
2010; Saunders et al., 2017]. The mutated proteins exert a dominant-negative effect on
the endogenous WT protein either by disturbing the interaction with the cofactor essen-
tial for ATP-hydrolysis (TorA∆E302/303) [Ozelius et al., 1997] or by generating a substrate
trap where the ATPase can bind, but no longer hydrolyze ATP (TorBE178Q) [Whiteheart
et al., 1994; Hewett et al., 2000; Hanson and Whiteheart, 2005; Vander Heyden et al., 2009;
Rose et al., 2014].
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Infection of rabbit kidney (RK13) cells stably overexpressing TorAWT and TorBE178Q,
resulted in a small drop in virus titers, while RK13-TorA∆E302/303 and -TorBWT yielded
virus titers comparable to parental RK13 cells. None of the overexpressing cell lines
showed a detectably increased number of primary virions in cytoplasmic structures or
an alteration of the NE ultrastructure.

Since TorA and TorB serve partially redundant functions [Kim et al., 2010; Rose et al.,
2014], we were interested to investigate whether the effects on PrV infection might be
more pronounced when TorA and TorB were targeted simultaneously. Since equivalent
overexpression of both proteins in cell lines is difficult to achieve and maintain, we
aimed at analyzing the effects by generating single and double KO (DKO) cell lines
using CRISPR/Cas9. Overexpression of a protein is an artificial model, which might
have several side effects on the metabolism of the cell [Prelich, 2012]. Therefore, the
specific targeting of a single protein by KO might disturb the cell to a lesser extent.
The generated KO cells were used for infection experiments, where, in contrast to the
overexpression experiments the single KO cell lines propagated PrV to titers comparable
to unmodified RK13 cells. Further, we did not observe any impairment of nuclear egress
or virion morphogenesis in ultrastructural analyses.

Interestingly, we did observe a 10-fold titer decrease after infection of TorA/BDKO cells.
The proposed redundancy for TorA and B may compensate the defect in the single
KO by a partial functional overlap of both proteins. The detected effect on the titer in
RK13-TorA/BDKO was evident at early time points (4 h, 6 h, 8 h p.i.), pointing to a delay
in capsid release from the nucleus that is compensated over time.
The most interesting finding was that in RK13-TorA/BDKO cells primary enveloped viri-
ons accumulated in the PNS, whereas in infected parental RK13 cells single primary
enveloped virions were found rarely. In contrast to the large accumulations found after
infection with PrV-∆US3 or PrV-US3∆kin [Wagenaar et al., 1995; Klupp et al., 2001;
Sehl et al., 2020], the primary virions were mainly found lined-up in the PNS and
not within herniations of the INM. Furthermore, the envelope of primary virions in
RK13-TorA/BDKO cells was often still connected to the INM by a small neck indicating
that vesicle scission might be less efficient.

For HSV-1, overexpression of TorAWT also resulted in a similar titer reduction compared
to PrV infection and primary enveloped virions were reported to escape into the ER
[Maric et al., 2011]. Interestingly, and in contrast to Maric et al. [2011], we did not
detect any primary enveloped virions within ER structures either after overexpression
or deletion of single or both Torsins. Consistent with our results, HSV-1 replication was
reduced in HeLa cells lacking both TorA and TorB [Turner et al., 2015]. The fusion with
the ONM seemed to be less efficient in the TorA/BDKO cells, which is comparable to
the results for TorAWT overexpression in HSV-1 [Maric et al., 2011], as well as SUN2LD

overexpression [Klupp et al., 2017] or SUN2KO in PrV infection. It would be interesting to
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4.1 Analyzing the Role of Cellular Proteins in Nuclear Egress

further analyze the TorsinKO cells with specific attention to the structure or regulation of
the LINC complex. So far, no impact on spacing between INM and ONM was apparent
in the TorA/BDKO cells indicating that the LINC complex may not be altered.

Detection of primary envelopes which are still connected to the INM supports the hy-
pothesis of Jokhi et al. [2013] that Torsins have a role in vesicle scission. This hypothesis
is based on the analysis of Torsins role in primary envelopment of large RNP complexes.
A Torsin knock-down resulted in abnormal attachment of these large RNP particles to
the INM [Jokhi et al., 2013]. A similar phenotype was described for uninfected HeLa
cells where multiple members of the Torsin family were deleted simultaneously and
membrane vesicles were described that were still connected to the INM. Interestingly,
the authors identified different Nups and ubiquitin as constituents of the neck and the
lumen of the blebs [Laudermilch et al., 2016], indicating that NPC biogenesis is impaired
[Rampello et al., 2020].

Alteration of the NE in form of luminal vesicles was shown to occur predominantly
in neuronal cells defective for TorA [Naismith et al., 2004; Goodchild et al., 2005; Kim
et al., 2010], where TorA is the predominant Torsin [Jungwirth et al., 2010]. Analysis of
murine embryonic fibroblasts (MEFs) from TorAKO mice showed a normal NE architec-
ture. Interestingly, the expression of a short hairpin RNA against TorB in TorAKO-MEFs
induced blebbing at the NE, suggesting a clear functional overlap between both Torsins
[Kim et al., 2010; Rose et al., 2014]. Despite this redundancy, the different Torsins are
suspected to operate also in independent pathways and to have tissue-specific functions
[Laudermilch et al., 2016]. Considering these results, we anticipated to detect membrane
blebbing at least in the TorA/BDKO cells. Contrary to expectations, in none of the gen-
erated cell lines nuclear membrane blebbing was detected. The KO of more than two
Torsins was described to increase the nuclear blebbing effect drastically [Laudermilch
et al., 2016]. It is tempting to speculate that not only TorA and B, but also Tor2, Tor3
and Tor4 might share functions, influencing NE integrity. This redundancy between the
Torsins complicates the analysis of this protein family and therefore it is interesting to
test also the less characterized Torsins singly as well as in different combinations.

Do the Torsin Cofactors LAP1 or LULL1 Play a Role in Nuclear Egress? Torsins
need a cofactor for activation of their ATPase function [Zhao et al., 2013; Sosa et al., 2014;
Brown et al., 2014]. Whether one or both known cofactors LAP1 or LULL1 influence the
vesicle-based nuclear transport of either herpesviral capsids or other cellular cargo as
large RNPs is not yet known. For this, we also investigated whether the cofactors are
involved in PrV infection (unpublished).
To test this, we either overexpressed the N-terminally GFP-tagged full-length (FL) pro-
tein or only the LD of the cofactors LAP1 and LULL1 or generated single KOs as well
as a DKO. However, no effect on nuclear egress or on infectious virus production was
observed in any of the cell lines.
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Interestingly, for HSV-1 a KO of LULL1 resulted in reduced genome copy numbers
accompanied by approx. 10-fold decreased viral titers [Turner et al., 2015], pointing to
an effect of the LULL1KO prior to primary envelopment and nuclear egress. How the KO
of the ER-localized LULL1 affects the genome copy number in the nuclear compartment
remained unclear.

Furthermore, it is unclear how the DKO of TorA and TorB, but not that of LAP1 and
LULL1 - either singly or in combination - can have an effect of the PrV replication, since
both cofactors are needed for activation of the AAA+ ATPase function of Torsins [Zhao
et al., 2013; Sosa et al., 2014; Brown et al., 2014]. Therefore, it seems plausible that the
DKO of TorA and B somehow perturbs the function of a yet unidentified cellular or viral
factor that is directly or indirectly involved in the fusion of the primary enveloped virion
with the ONM or additionally that there are yet unknown functions for Torsins and/or
SUN2. Identifying factors which can physically interact with SUN2, TorA or TorB in
PrV-infected cells might provide novel information on the de-envelopment process.

A Future Approach to Identify Cellular Key Players. In addition to the specific target-
ing of single genes, whole cellular genomes can be targeted to analyze multiple factors
simultaneously in a high-throughput screening [Miles et al., 2016]. To gain more infor-
mation on putative cellular proteins involved in the herpesviral replication cycle, we
used a genome-scale CRISPR-Cas9 knockout (GeCKO) screening. Here, pseudotyped
lentiviral particles were used as vectors for a CRISPR/Cas9 gene knock-out library con-
taining gRNAs targeting every porcine gene.

The GeCKO screening method provides an unbiased approach to identify viral strate-
gies and potentially reveals novel genes and molecular pathways used by viruses (re-
viewed in Panda and Cherry [2012]). The technology offers an enormous potential to
identify cellular key factors involved in early stages of infection and was used multiple
to identify receptor-related pathways of different viruses [Orchard et al., 2016; Han et al.,
2018; Staring et al., 2018; Vanarsdall et al., 2018; Karakus et al., 2019]. An optimization
could result in a more efficient screening set-up, allowing a broader analysis of viral
processes.

With specific regard to PrV, we try to adapt the system to not only target early stages of
infection but also allow the analysis of later stages of the replication cycle. By optimiza-
tion and usage of different virus mutants we want to create a bottle neck, which could
provide a breakthrough in finding the fusion mediator during nuclear egress.
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4.2 How the NEC Facilitates the Initial Budding Step

Herpesvirus nuclear egress was extensively studied in the last decades. Composed of
the viral proteins pUL31 and pUL34, the NEC is the major determinant for the vesicle-
mediated nuclear egress of herpesviral capsids. During infection, but also at artificial
membranes in the absence of any other viral and cellular proteins, the NEC can in-
duce membrane bending, budding and scission, thereby resulting in vesicular structures
[Klupp et al., 2007; Desai et al., 2012; Bigalke et al., 2014; Lorenz et al., 2015]

4.2.1 Characterization of the Viral Nuclear Egress Complex - Paper II

In previous studies, the NEC was analyzed using monospecific sera against the individ-
ual components in localization and expression analyses. This has already resulted in a
number of results. However, it is still not clear when and where the NEC is formed.
To gain more insight into NEC formation and rearrangement leading to capsid bud-
ding during nuclear egress, we aimed at generating NEC-specific monoclonal antibodies
(mAbs).

The second paper (Paper II) provides the first direct labeling of the PrV NEC in trans-
fected and infected cells. For generation of the mAbs truncated versions of bacterially
expressed pUL31 and pUL34 were utilized to immunize mice. The same expression con-
structs were recently used for elucidation of the PrV NEC crystal structure [Zeev-Ben-
Mordehai et al., 2015]. Supernatants of the hybridoma cells were screened by indirect
immunofluorescence on PrV-Ka-, PrV-∆UL31-, PrV-∆UL34-infected cells or after trans-
fection of the expression plasmids for pUL31, pUL34 or both. This approach resulted
in identification of mAbs specific for either pUL31 or pUL34, but also in mAbs reacting
only in the presence of both proteins, indicating a specificity for the complex.

pUL31- and pUL34-specific mAbs. The newly generated mAbs against the individual
components and the hitherto used polyclonal sera were compared by immunofluores-
cence analysis of transfected as well as PrV-infected RK13 cells.

Using the mAbs, we detected pUL31 in transfected cells in a diffuse staining in the nu-
cleus, whereas the membrane-anchored pUL34 was detected at the nuclear rim and to
some extent additionally in cytoplasmic, most likely ER structures.
Co-expression of both proteins results in complex formation and vesicle budding from
the INM with accumulation of vesicles in the PNS, which appeared in the immunofluo-
rescence analyses as pUL31- and pUL34-positive speckles [Klupp et al., 2007; Passvogel
et al., 2015].
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Analysis of infected cells showed that pUL31 was partly recruited to the nuclear rim
colocalizing with pUL34, which was localized in a smooth nuclear rim staining with-
out additional cytoplasmic fluorescence. After infection with PrV-∆UL34, pUL31 was
as expected not detected at the nuclear rim, while the staining pattern for pUL34 in
PrV-∆UL31-infected cells did not change.
In PrV-∆US3-infected cells immunostaining resulted in a punctate pattern using the
pUL31 and/or pUL34 mAbs, most likely representing accumulations of primary en-
veloped particles in invaginations of the INM, as described before [Wagenaar et al., 1995;
Klupp et al., 2001]. The enrichment of primary virions in the PNS after infection with
this mutant is an invaluable tool to study primary envelopment and the composition
of these particles, which in WT virus infection are only rarely observed and difficult to
analyze.

In summary, the newly generated mAbs against pUL31 and pUL34 showed staining
patterns in immunofluorescence analyses that were comparable to already the existing
monospecific rabbit sera (pAbs).

The combined use of the newly generated mAbs in association with the already existing
pAbs enabled the analysis of NEC component expression at different time points after
infection in immunofluorescence analyses. Expression kinetics showed as expected in-
creasing protein expression over time and first signals for pUL31 and pUL34 4 h after
PrV-Ka infection of RK13 cells. Interestingly, recruitment of pUL31 to the nuclear rim
was not detected until 6 h p.i. After infection with the PrV-∆US3 mutant, detection of
both proteins was slightly delayed but was comparable at 6 h p.i. where small punctae
were observed. Compared to the huge speckles detected in cells at later time points of
infection e.g. cells infected under plaque assay conditions, those punctae were smaller,
indicating that the primary virions accumulate over time.

We tested the different pUL31- and pUL34-specific mAbs in immunoelectron microscopy
on PrV-Ka- and PrV-∆US3-infected cells. Unfortunately, the anti-pUL34 mAbs showed
no specific reaction in the immunogold labeling. In contrast, after incubation with the
pUL31 specific mAb, gold particles were found associated with the NE and only rarely
labeled intranuclear capsids or other structures in the nucleus.
Until now, it is not clear how the mature capsids reach the inner nuclear membrane for
budding. One of the hypotheses suggests that HSV-1 capsids are escorted by pUL31
to the sites of nuclear egress [Funk et al., 2015]. In our studies, however, using either
the potent pUL31-specific pAb or the newly generated mAbs binding of pUL31 to the
nucleocapsids was only rarely detected.

PrV NEC-specific mAbs. Interestingly, our screening of the hybridoma supernatants
resulted in four monoclonal antibodies showing reactivity with PrV-Ka-, PrV-∆US3-
infected or pUL31/ pUL34 co-expressing cells, but no signal after infection with
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PrV-∆UL34, PrV-∆UL31 or singly transfected cells. This suggested that these antibodies
are specific for the NEC, allowing the analysis of the localization and expression kinetics
without visualizing the single proteins, offering a new perspective on NEC analysis.

The missing reactivity with single expressing cells either transfected or infected, might
be explained by structural changes in either pUL31 or pUL34 during complex formation.
Previous structural analyses suggested that binding of pUL31 results in conformational
changes in pUL34 [Zeev-Ben-Mordehai et al., 2015]. Further, it is likely that the N-termi-
nal hook of pUL31 is differently folded in the absence of pUL34 [Bigalke and Heldwein,
2017]. Therefore, complex formation might alter the structure of either protein, pre-
senting epitopes not accessible or present on the single proteins. Moreover, the NEC
formation could create novel epitopes with contribution from either component. In fact,
the extensive interaction interface between pUL31 and pUL34 in the NEC heterodimer or
after assembly into higher oligomeric structures could create specific antibody binding
sites.

Staining of co-expressed pUL31/pUL34 with the NEC-specific mAbs in transfected cells
as well as PrV-∆US3-infected cells resulted in a punctate pattern, comparable to the typ-
ical double-positive speckles observed using the pUL31- or pUL34-specific pAbs/ mAbs.
A different staining pattern with the NEC mAbs was detected in PrV-Ka-infected cells.
NEC-specific mAbs revealed a diffuse pattern with additional small punctae at the nu-
clear rim. These small dots are suggested to represent either nascent NEC platforms at
the INM or primary enveloped virions in the PNS. All four NEC-specific mAbs showed
comparable staining patterns in transfected, as well as in infected cells.

Co-staining of the NEC-specific mAbs with the pUL31- or pUL34-specific pAbs was
used to evaluate if both proteins can be detected in the same structures as labeled by
the anti-NEC mAbs. Transfection experiments, as well as PrV-∆US3 infection of cells
revealed a strong signal conformity of the punctae with the corresponding pUL31- or
pUL34-specific pAb staining.
Infection with PrV-Ka gave an ambiguous result. Whereas a co-staining with pUL34
pAb revealed a colocalization of the punctate structures in addition to the pUL34-spe-
cific rim staining, co-staining with the pUL31 pAb revealed no clear colocalization with
the NEC-specific mAbs. The failure to detect the dotted structures with the pUL31
monospecific serum might be explained by high levels of diffuse pUL31 in the nucleus
relative to low protein levels in those budding events.

Despite using a confocal laser scanning microscope, it appeared that the punctae are dis-
tributed throughout the nucleus and not specifically associated with the nuclear mem-
brane. A 3D reconstruction of a PrV-Ka- and a PrV-∆US3-infected nucleus from serial
z-stack images revealed an equal distribution of NEC complexes over the entire nuclear
membrane. Further, we did not detect any obvious ‘hot spots’ which would point to
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specific budding sites. In addition, we saw larger dots in PrV-∆US3-infected cells com-
pared to PrV-Ka-infected cells, indicating that these mAbs most likely label primary
enveloped virions.

Unfortunately, these mAbs did not label specific structures in ultrathin sections. As
judged by the weak labeling in indirect immunofluorescence analyses, the amount of
antigen might be too small for a positive signal in immunoelectron microscopy.

As for the single components, the NEC-specific mAbs were used on PrV-Ka- or
PrV-∆US3-infected cells to analyze protein expression. First positive signals were de-
tected at 6 h p.i., which fits the assumption that these indeed detect the NEC and not the
single components. Furthermore, this is consistent with published data for HSV-1 that
capsid egress from the nucleus occurred around 6 h p.i. [Nagel et al., 2008].

Future Perspectives. The newly generated mAbs provide a promising tool to address
some of the remaining questions regarding NEC formation and regulation.

First, it is interesting to map the epitopes detected by these NEC-specific mAbs and
differentiate whether these mAbs detect the nascent NEC platforms and/or the primary
enveloped virions.
For this, it would be helpful to test different point-mutated or truncated pUL31 or pUL34
forms and check if the mAbs still detect the mutant and its corresponding WT partner
in transfected cells. Of particular interest are mutants that are able to form speckles after
coexpression, as visualized by previous colocalization studies, but do not complement
a PrV-∆UL31 or PrV-∆UL34 virus.
Based on the assumption that we detect NEC platforms, one would expect that non-
functional NECs cannot be detected with the newly generated NEC-specific mAbs. This
might be explained by structural changes of the protein caused by the mutation that
allow interaction with the partner but prevent or interfere with correct or functional
oligomerization and subsequent budding.

Beside this, the panel of different PrV deletion mutants with defects in nuclear egress
should be checked for the localization and/or distribution of the punctae in immunoflu-
orescence analyses.
A PrV mutant deficient for the viral protein pUL25 for example allows docking of cap-
sids to the INM, while budding does not ensue [Klupp et al., 2006]. It would be exciting
to investigate if and where the NEC-specific staining can be detected after infection with
this mutant. Furthermore, infection with a genome cleavage-/ encapsidation-defective
mutant like PrV-∆UL28 [Mettenleiter et al., 1993; Fuchs et al., 2009] might lack the trig-
ger for reorganization of the suspected planar NEC layer to the formation of a curved
NEC patch and also miss the budding step, which might result in fewer or even no
punctae.
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Furthermore, it would be interesting to test whether cellular as well as viral proteins
influence the formation of the NEC or the initiation of budding. The budding activity
is likely to be influenced both positively and negatively by viral and cellular proteins
[Bigalke and Heldwein, 2017]. The targeted overexpression of different cellular/viral
proteins in combination with the NEC could reveal colocalizations which point to an
involvement in the process, allowing focused future analyses.
For instance, a recent publication described a member of the cellular VAMP family,
namely VAPB, to accumulate in the nuclear fraction after HSV-1 infection and further-
more to colocalize with pUL34 [Saiz-Ros et al., 2019]. An analysis of the distribution of
NEC-specific fluorescence would allow a more specific way of detecting interaction of
cellular proteins with the NEC lattice, than analysis of the single components.

In conclusion, these mAbs form the basis for a variety of further analyses and are a
useful tool addressing some of the unsolved questions.

4.2.2 Analyzing the NEC - Capsid Interaction - Paper III

The molecular basis for the incorporation of the nucleocapsid into the budding vesicles
at the INM remains incompletely understood. The availability of the NEC structures
from different herpesviruses [Bigalke and Heldwein, 2015b; Lye et al., 2015; Walzer et al.,
2015; Zeev-Ben-Mordehai et al., 2015] allowed the targeted mutagenesis for identification
of functional and/or structural domains. A specific region in the membrane-distal part
of the NEC was predicted to be responsible for a possible electrostatic interaction be-
tween the capsid and the NEC [Zeev-Ben-Mordehai et al., 2015; Bigalke and Heldwein,
2015b]. For PrV, this region could be mapped to the alpha-helical region 10, where
the lysine (K) at position 242 in pUL31 was found to be important for efficient capsid
incorporation [Rönfeldt et al., 2017].

The analysis of HSV-1 pUL31 revealed two aa, R281 and D282, possessing a similar
role in nuclear egress mediating efficient NEC binding to the nucleocapsid [Takeshima
et al., 2019]. These residues, corresponding to the aa R244 and D245 in PrV, were also
shown to convey binding to pUL25, thereby providing evidence that the budding of
mature virions in HSV-1 infection is indeed dependent on pUL25 [Yang and Baines,
2011; Yang et al., 2014; Takeshima et al., 2019]. It has been demonstrated earlier that
pUL25 is located on the outside of the mature capsid and is involved in efficient nuclear
egress [Klupp et al., 2006; Trus et al., 2007]. Interestingly, the indicated residues from PrV
and HSV-1 are located in corresponding alpha-helical regions, which once more show
the importance of this region for efficient nuclear egress.

Replacing the pUL31-K242 by alanine (A) resulted in the accumulation of empty vesi-
cles in large invaginations of the INM in the PNS, while mature nucleocapsids were
present in the nucleus often even in close proximity. The same effect was detected
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in a pUL31-C241-243A mutant [Rönfeldt et al., 2017]. Most likely, the mutation at the
membrane-distal site of pUL31 blocks the interaction between the NEC and the cap-
sid. However, it remained unclear whether the missing incorporation into the budding
vesicle was due to electrostatic interference or structural restrictions.

The third paper (Paper III) focused on characterizing the mode of interaction between the
NEC and the nucleocapsid. As a basis, the NEC structure as well as the hexagonal lat-
tice was analyzed in more detail. This revealed that the lysine residue at position 242 in
pUL31 seemed freely accessible in the NEC heterodimer, while in the predicted hexag-
onal lattice, this aa appeared more deeply buried than expected for a direct interaction
interface.

The Functional Analysis of the Essential K242 Position in pUL31. To analyze
whether that the interaction of the nucleocapsid with the membrane-distal part of pUL31
is mediated by electrostatic interference, the aa at position K242 was analyzed for func-
tional substitutes. K242 was replaced by aa with side chains of different charge, size
and orientation including the basic but larger arginine (R), the negatively charged but
smaller glutamic acid (E) or aspartic acid (D), the small neutral serine (S), the large
aromatic tyrosine (Y), or the medium-sized glutamine (Q). The resulting mutants were
analyzed in transient expression assays for speckle formation and, after establishment
of stably expressing cell lines, for functional complementation of the PrV-∆UL31 mu-
tant.

After single transfection all generated mutants localized as the WT protein diffusely in
the nucleus and complex formation with pUL34 after coexpression was unaffected ex-
cept for pUL31-K242D.
Exchange to D resulted in higher levels of pUL34 at the nuclear rim and in cytoplas-
mic structures. Besides the exchange to D, the position was also exchanged to another
negatively charged aa, pUL31-K242E. Interestingly, stable expression of pUL31-K242D
or pUL31-K242E was not sufficient to complement PrV-∆UL31. However, in contrast to
pUL31-K242A expression, only a few vesicle-like structures were detected in the PNS of
pUL31-K242E expressing cells, while for pUL31-K242D no budding events were evident
in ultrastructural analyses. The introduction of a negative charge might lower the bind-
ing affinities of the NEC partners or the NEC oligomer, thereby probably destabilizing
the complex.

Propagation of the pUL31 deletion mutant on pUL31-K242Q and -K242R expressing
cells resulted in decreased progeny titers compared to WT infection and nucleocapsids
were found in close proximity to the INM, while membrane bending or budding was
detected only infrequently. The exchange to R shows that a basic aa at that position 242
does not imply that the NEC is fully functional, arguing against a charge interaction.
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The replacement to K242S and K242Y had only a minor effect on viral progeny titers
of PrV-∆UL31 and all stages of herpesvirus replication were detected in ultrastructural
analyses, indicating that S and Y are tolerated at this position.

Assuming that charge does not play a role, it is likely that the either the structure or
the size of the side chain are important for efficient incorporation of the nucleocapsid
into budding vesicles. Although some mutations resulted in severely reduced titers,
none led to an accumulation of empty vesicles, as seen in pUL31-K242A. We assume
that the side chain of alanine might not fill the space between the pUL31 molecules of
interacting heterodimers. The resulting steric effects might enable a greater flexibility
of the hexagonal lattice. Thereby, an enhanced capsid-independent budding and vesicle
scission at the INM might be triggered.

Second-site mutations correct the capsid incorporation defect of pUL31-K242A.
In a subsequent step the mutations K242A and C241-243A were introduced into the
genome of PrV-Ka, thereby generating PrV-UL31-K242A and PrV-UL31-C241-243A
viruses. Infection with these viruses resulted in decreased viral titers with accumu-
lation of empty vesicles in the PNS while nucleocapsids were trapped in the nucleus, as
reported after PrV-∆UL31 infection of cells expressing these mutant proteins [Rönfeldt
et al., 2017]. Still, a small amount of infectious virus was observed in the supernatant,
which was used for serial passaging of the virus mutants in different cell lines. The
resulting revertants harbored a number of mutations in pUL31 and pUL34.

Studying viral revertants provides a valuable tool for identification of functional do-
mains which compensate for defects imposed by mutations.

To test whether the second site-mutations in pUL31, identified in the different rever-
tants, are sufficient to compensate the defect of K242A, stable cell lines were generated.
The second site mutations did not influence the localization of the mutated pUL31 or
their ability to form the NEC with WT pUL34.
The analysis of the stably expressing cell lines in complementation of PrV-∆UL31 re-
vealed an at least partial compensation of the K242A-dependent titer defect. Subsequent
ultrastructural analysis of these mutants infected with PrV-∆UL31 revealed that all re-
sulted in partial reversion of the capsid incorporation defect induced by the K242A
mutation, although some empty vesicles were still detected.

After modeling of the mutations into the NEC structure, the majority of the mutations
were found to be in close proximity to the membrane distal part of pUL31. It is likely
that these mutations compensate for structural effects triggered by the K242A mutation.
One of the revertants carried a direct exchange of the K242 position to threonine (K242T).
This constitutes another example of a functional exchange of the lysine, as seen for
K242S or K242Y in the first part of the study.
Interestingly, two mutations were found to be located distant from this region. One is
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located in the N-terminal arm of pUL31, which directly interacts with pUL34 [Zeev-
Ben-Mordehai et al., 2015; Bigalke and Heldwein, 2015b; Lye et al., 2015; Walzer et al.,
2015]. This mutation is likely to change the flexibility of the arm. We suppose a similar
effect for the second mutation, which is part of a loop and together with the zinc finger
motif important for the intra-hexamer interface stabilized by hydrophobic interactions
[Zeev-Ben-Mordehai et al., 2015]. Mutations at those sites could increase the flexibility of
intra- or inter-complex interactions, allowing to compensate for the structural changes
induced by K242A mutation.

In summary, these data suggest that the K242 residue in H10 of pUL31 does not mediate
a direct electrostatic interaction with the capsid. It is likely that this part of the NEC is
important for correct curvature of the NEC coat thereby allowing the incorporation of
the nucleocapsid.

Future Perspectives. So far, only revertants carrying mutations in pUL31 have been
characterized in more detail, but some mutations were also found in pUL34. The charac-
terization should shed light on the interaction and structural changes during oligomer-
ization.

Lysine residues are often targeted by posttranslational modifications [Zee and Garcia,
2012], like acetylation, formylation, methylation, sumoylation and ubiquitination. These
could affect protein stability and activity, thereby being critical for the regulation of
various biological processes [Xu et al., 2017]. An analysis of the putative modifications on
K242 or on other aa within the NEC could reveal further information on the regulation
of NEC formation and its interaction with the nucleocapsid.

Besides alanine, all aa exchanges tested so far were polar aa. It would be interesting to
test if other apolar aa of different size have a similar effect on nuclear egress, resulting in
uncontrolled vesicle budding. For example, the small glycine, the medium-sized leucine
or the large tryptophan could be considered.
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Summary

Herpesviruses are enveloped DNA viruses which are dependent on two fusion steps for efficient
replication in the host cell. First, they have to fuse their envelope with the cellular plasma
membrane or with the vesicle membrane after endocytic uptake to enter the host cell and second,
they have to export the newly generated nucleocapsids from the site of assembly to the cytoplasm
by fusion of the primary virion envelope with the outer nuclear membrane (ONM). The main
goal of this project was to provide a better understanding of how herpesvirus capsids exit the
nucleus. On the one hand this thesis aimed at finding cellular proteins involved in nuclear egress
(Paper I), while on the other the focus was on further characterization of the viral nuclear egress
complex (NEC, Paper II) and its interaction with the capsid (Paper III).

It is the hallmark of viruses, including herpesviruses, to hijack host cell proteins for their effi-
cient replication. Some of those interactions are well characterized, while others might not yet
have been discovered. In the last step of the nuclear egress, where the primary virion mem-
brane fuses with the ONM, most likely a cellular machinery is involved. The presented work
focused on Torsin, the only known AAA+ ATPase localizing in the endoplasmic reticulum and
the perinuclear space (PNS). For this, the effect of overexpression of WT and mutant proteins, as
well as CRISPR/Cas9 generated knock-out cell lines, on PrV replication was analyzed. Neither
single overexpression nor single knockouts of TorA or TorB had any significant effects on virus
titers. However, infection of TorA/B double knockout cells revealed reduced viral titers and an
accumulation of primary virions in the PNS at early infection times, indicating a delay in nuclear
egress.

The process of nuclear egress has been intensively investigated without revealing all its details.
To address some of the missing aspects we generated monoclonal antibodies (mAbs) against
the NEC and its components (pUL31 and pUL34) for a better visualization of the process in
transfected as well as infected cells. These mAbs provide a useful tool for future analyses.

The publication of the NEC crystal structure formed the basis for intensive research on the
molecular details of the NEC formation and its interaction with the nucleocapsid. Recently, our
lab showed that lysine (K) at position 242 in the membrane-distal part of pUL31 is crucial for
incorporation of the nucleocapsid into budding vesicles. Replacing K by alanine (A) resulted
in accumulations of vesicles in the PNS, while mature capsids were not incorporated. To test
whether this is due to electrostatic interference or structural restrictions we substituted K242 by
different aa to determine the requirements for nucleocapsid uptake into the nascent primary
particles. To analyze whether the defect of pUL31-K242A can be compensated by second-site
mutations, PrV-UL31-K242A was passaged and mutations in revertants were analyzed. Different
mutations have been identified compensating for the K242A defect. A considerable number of
mutations indicates that the NEC is much more flexible than previously thought. Further, we
gained information that the K at position 242 is not directly involved in capsid interaction, while
it is more likely involved in rearrangements within the NEC coat.
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Zusammenfassung

Herpesviren sind umhüllte DNA-Viren, die zur effizienten Replikation in der Wirtszelle auf
zwei Fusionsmechanismen angewiesen sind. Erstens müssen sie ihre Hülle entweder mit der
zellulären Plasmamembran oder der Vesikelmembran nach erfolgter Endozytose verschmelzen,
um in die Wirtszelle einzudringen. Zweitens müssen die neu gebildeten Nukleokapside aus
dem Zellkern durch Fusion der primären Virushülle mit der äußeren Kernmembran in das Zy-
toplasma exportiert werden. Das Hauptziel dieser Arbeit war es, den herpesviralen Kernaustritt,
auch "Nuclear Egress" genannt, besser zu verstehen. Zum einen zielte die Arbeit auf eine Iden-
tifizierung von zellulären Proteinen, die beim Nuclear Egress eine Rolle spielen, ab (Publikation
I). Zum anderen sollte der für den Kernaustritt wichtige Nuclear Egress Complex (NEC) genauer
charakterisiert (Publikation II) und die Interaktion mit dem Kapsid entschlüsselt werden (Pub-
likation III).

Herpesviren nutzen für ihre effiziente Replikation Proteine der Wirtszelle nutzen. Einige
dieser Interaktionen wurden in der Vergangenheit bereits gut charakterisiert, während andere
möglicherweise noch nicht entdeckt wurden. Im letzten Schritt des Nuclear Egress fusioniert
die primäre Hülle der Kapside mit der äußeren Kernmembran. Dieser Schritt wird höchst-
wahrscheinlich durch eine zelluläre Maschinerie vermittelt. Die vorliegende Arbeit konzentri-
erte sich dabei auf die AAA+ ATPase Torsin, die als einzige im endoplasmatischen Retikulum
und im Kernspalt vorhanden ist. Es wurden die Auswirkungen der Überexpression (von Wild-
typ und Mutanten) sowie die Erzeugung von Knock-outs (mit Hilfe der CRISPR/Cas9 Technik)
auf die PrV-Vermehrung analysiert. Weder die Expression noch die einzelnen Gen Knock-outs
zeigten signifikante Auswirkungen auf die Virusvermehrung. Ein gleichzeitiger Knock-out von
Torsin A und B führte zu reduzierten Virustitern zu frühen Zeitpunkten nach der Infektion und
einer Anhäufung primärer Virionen im Kernspalt. Auffällig war, dass die primäre Virushülle
häufig noch mit der inneren Kernmembran verbunden war. Dies könnte darauf hindeuten, dass
Torsine bei der Abschnürung der primären Viruspartikel eine Rolle spielen.

Der Nuclear Egress wurde im Laufe der letzten Jahrzehnte intensiv untersucht. Um einige der
noch unbekannten Aspekte zu beleuchten, wurden im Rahmen dieser Arbeit monoklonale An-
tikörper gegen den NEC sowie seine einzelnen Komponenten pUL31 und pUL34 generiert.
Diese sollen zur besseren Visualisierung des NEC in transfizierten, aber auch infizierten Zellen
dienen. Diese Antikörper sind ein nützliches Werkzeug für zukünftige Analysen.

Mit der Aufklärung der Kristallstruktur des NEC wurde der Grundstein für eine genauere Un-
tersuchung und Aufklärung der molekularen Details sowie seiner Wechselwirkungen mit dem
Nukleokapsid gelegt. Unser Labor konnte kürzlich zeigen, dass ein Lysin (K) an Position 242 in
pUL31 für den Einbau des Nukleokapsids in die primären Vesikel von entscheidender Bedeu-
tung ist. Tauscht man das Lysin gegen ein Alanin (A) aus, werden zwar Vesikel von der inneren
Kernmembrane abgeschnürt, aber keine Kapside eingebaut. Im Rahmen dieser Arbeit wurde
das Lysin an Position 242 nicht nur gegen Alanin ausgetauscht, sondern auch durch eine Reihe
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anderer Aminosäuren mit unterschiedlicher Ladung oder Größe ersetzt, um zu untersuchen,
ob der Effekt auf elektrostatische Interferenzen oder strukturelle Restriktionen zurückzuführen
ist. Reversionsanalysen zeigten, dass der K242A-Defekt durch unterschiedliche Mutationen in
pUL31 kompensiert werden konnte. Die große Zahl und Diversität dieser Mutationen weisen
auf eine größere Flexibilität des NEC hin als bisher angenommen. Weiterhin ergaben sich Hin-
weise, dass das Lysin an Position 242 nicht direkt an der Kapsidinteraktion, sondern vermutlich
eher an strukturellen Veränderungen in der NEC-Hülle beteiligt ist.
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