
RESEARCH ARTICLE
www.mnf-journal.com

Evaluation of the Metabotype Concept Identified in an Irish
Population in the German KORA Cohort Study
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Martin Reincke, Wolfgang Koenig, Henri Wallaschofski, Hannelore Daniel, Hans Hauner,
Lorraine Brennan, and Jakob Linseisen*

Scope: Previous work identified three metabolically homogeneous
subgroups of individuals (“metabotypes”) using k-means cluster analysis
based on fasting serum levels of triacylglycerol, total cholesterol, HDL
cholesterol, and glucose. The aim is to reproduce these findings and describe
metabotype groups by dietary habits and by incident disease occurrence.
Methods and results: 1744 participants from the KORA F4 study and 2221 par-
ticipants from the KORA FF4 study are assigned to the three metabotype clus-
ters previously identified by minimizing the Euclidean distances. In both KORA
studies, the assignment of participants results in three metabolically distinct
clusters, with cluster 3 representing the group of participants with the most
unfavorable metabolic characteristics. Individuals of cluster 3 are further char-
acterized by the highest incident disease occurrence during follow-up; they also
reveal the most unfavorable diet with significantly lowest intakes of vegetables,
dairy products, and fibers, and highest intakes of total, red, and processedmeat.
Conclusion: The three metabotypes originally identified in an Irish population
are successfully reproduced. In addition to this validation approach, the
observed differences in disease incidence across metabotypes represent an
important new finding that strongly supports the metabotyping approach as a
tool for risk stratification.
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1. Introduction

The metabotyping concept is de-
fined as the formation of metaboli-
cally/phenotypically homogeneous sub-
groups of individuals, so-called metabo-
types or metabolic phenotypes.[1–6] This
concept has been successfully applied in
a number of different populations.[1,7,8]

Due to its broad definition, studies
showed large heterogeneities in its ap-
plication, especially in the amount and
type of metabolic parameters used for
the identification of metabotypes.[7]

There are some studies that identified
comprehensive metabotypes by the use
of a large number of metabolic variables
of different metabolic pathways, repre-
senting a detailed metabolic characteri-
zation of individuals.[8–14] For example,
we used in previous projects various
biochemical parameters from blood and
urine as well as anthropometric mea-
sures for the identification of metabo-
types in the German population-based
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Cooperative Health Research in the Region of Augsburg (KORA)
cohort study.[8,15]

However, this comprehensive metabotyping approach is dif-
ficult to implement in the general population, as most of these
metabolic parameters are not routinely measured in primary
care. Thus, a reduced set of standard clinical parameters allow-
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ing the identification of distinct metabolic subgroups may be
useful in practice, for example, for effective targeted strategies
for disease prevention at the metabotype subgroup level.[1,7,16–19]

In previous work in an Irish cross-sectional study in adults
(n = 875), named Irish National Adult Nutrition Survey (NANS),
O’Donovan et al.[20] identified three metabolically distinct sub-
groups of individuals using k-means cluster analysis based on the
four clinical standard serum parameters triacylglycerol (TAG), to-
tal cholesterol (TC), HDL cholesterol, and glucose. This indicates
that a small number of parameters seems to be sufficient to iden-
tify significant metabotypes.
The objective of the present study was to examine i) the re-

producibility of this metabotyping concept, ii) the occurrence of
incident diseases acrossmetabotypes, and iii) the identification of
significant differences in specific dietary habits between metabo-
type groups. Therefore, we assigned participants of the German
population-based KORA cohort study to these three metabo-
type clusters, and characterized these metabotype clusters in
detail.

2. Experimental Section

2.1. Study Population

Analyses were performed on data from the population-based
KORA F4 (2006–2008) and KORA FF4 (2013/2014) studies,
which are the first and second follow-up examinations of the
KORA S4 health survey conducted in the region of Augsburg
in Southern Germany between 1999 and 2001.[21] In brief, of
the 4261 participants aged 25–74 years included in the KORA
S4 health survey, 3080 individuals and 2279 individuals also
participated in the 7-year follow-up KORA F4 study and the
14-year follow-up KORA FF4 study, respectively. Of these, 2161
individuals participated in both follow-up studies. Information
on the participation response has been described in detail
elsewhere.[22] The participants of all studies were invited to
the study center for a standardized physical examination and a
computer-assisted personal interview, both conducted by trained
staff. In addition, all participants answered self-administered
questionnaires. Detailed information on these investigations,
which were all conducted in accordance with the Declaration
of Helsinki, has been provided previously.[23] All participants
gave their written informed consent and the studies were ap-
proved by the Ethics Committee of the Bavarian Chamber of
Physicians. To ensure comparability with previous investigations
on metabotyping in the KORA studies,[8,15] the same sample
sizes were used (KORA F4 study: n = 1768, KORA FF4 study:
n = 2279).

2.2. Assessment of Biochemical Parameters for Metabotype
Assignment and Characterization

Biochemical parameters were assessed in both KORA studies,
KORA F4 and KORA FF4, using standard methods described
previously.[8,24]
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2.3. Assessment of Demographic, Anthropometric and Lifestyle
Data for Metabotype Characterization

Demographic and lifestyle data were assessed in standard-
ized face-to-face computer-assisted interviews and via self-
administered questionnaires in the KORA F4 and KORA FF4
studies. These data included sex, age (in years), education (<10
years, 10 to< 12 years,≥12 years), physical activity (active in both
seasons summer and winter and active for ≥1 h per week in at
least one season, inactive), and smoking status (non-smoker, ex-
smoker, smoker). BMI was considered both continuously in kg
m−2 and categorized into underweight (BMI < 18.5 kg m−2), nor-
mal weight (BMI 18.5 kg m−2 to < 25 kg m−2), overweight (BMI
25 kg m−2 to < 30 kg m−2), and obese (BMI ≥ 30 kg m−2).

2.4. Assessment of Cardiometabolic Disease for Metabotype
Characterization

The presence of the following cardiometabolic diseases (yes/no)
was assessed in the standardized face-to-face computer-assisted
interviews and in the physical examinations in both studies,
KORA F4 and KORA FF4. Type 2 diabetes was defined by ei-
ther present intake of antidiabetic medication or a self-reported
diagnosis, both validated with the respective treating physician.
Hyperuricemia/gout and dyslipidemia were both determined by
the self-reported current intake of the respective disease-specific
medication. Previous inpatient treatment of myocardial infarc-
tion and stroke as well as cancer were also assessed by self-
report. Hypertension was defined by the participants’ aware-
ness of a drug-controlled hypertension or by a blood pressure of
≥140/90 mmHg in the physical examinations.
For the determination of disease occurrence, all of these dis-

eases were analyzed individually and combined into metabolic
diseases (defined as suffering from at least one of the
four metabolic diseases hypertension, type 2 diabetes, hype-
ruricemia/gout and dyslipidemia) and cardiovascular diseases
(defined as inpatient treatment due to at least one of the two
cardiovascular diseases myocardial infarction and stroke). In the
KORA F4 study population, incident cases of diseases during the
following 7 years were identified by means of disease occurrence
in the KORA FF4 study in participants who did not suffer from
the respective disease in the KORA F4 study.

2.5. Assessment of Dietary Intake for Metabotype
Characterization

Dietary intake was assessed in the KORA FF4 study only. In total,
1602 KORA FF4 participants completed up to three 24 h food
lists[25] and a food frequency questionnaire.[26] The usual dietary
intake was estimated in an advanced blended two-step approach
by combining the information of both dietary assessment instru-
ments. This approach follows the idea of the National Cancer
Institute (NCI) method[27] and the multiple source method[28]

to initially separate the calculation of consumption probability
and consumption amount on consumption days with regression
models both including the same covariates to later connect the

two parts. Subsequently, the usual dietary intake of all food items
was computed for each participant by multiplying the consump-
tion probability of a certain food item by the usual consumption
amount on a consumption day. The food groups and subgroups
were classified according to the European Prospective Inves-
tigation into Cancer and Nutrition (EPIC)-Soft classification
system[29] and nutrients were determined using the National
Nutrient Database (Bundeslebensmittelschlüssel BLS 3.02).
In addition to energy intake given in kJ d−1, intakes of food

groups, food subgroups and nutrients were specified in g d−1:
potatoes, vegetables, fruits, total dairy, milk, yoghurt, cheese,
grains, total meat, red meat (beef and pork), poultry, processed
meat, fish, eggs, fruit and vegetable juice, sugar-sweetened bever-
ages, coffee, alcohol, total fiber, insoluble fiber, and soluble fiber.

2.6. Statistical Analysis

All statistical analyses were performed using the statistical soft-
ware package RStudio version 1.0.136 that uses R version 3.2.2 (R
Development Core Team, 2010, http://www.r-project.org). Statis-
tical significance was determined as a p < 0.05.

2.6.1. Assignment of the KORA Participants to the Metabotype
Clusters Identified in NANS

Of the selected samples of 1768 participants in the KORA F4
study and 2279 participants in the KORA FF4 study, excluded
were those who were not fasting for at least 8 hours and those
with missing data in the four grouping variables TAG, TC, HDL
cholesterol, and glucose (KORA F4 study: n = 24; KORA FF4
study: n = 58) prior to cluster allocation. This resulted in final
sample sizes of 1744 participants in the KORA F4 study and
2221 participants in the KORA FF4 study. These were respec-
tively assigned to the metabotype cluster previously identified in
NANS with the smallest total Euclidean distance of the four z-
standardized values for TAG, TC, HDL cholesterol, and glucose
to the respective z-standardized cluster centers (means) of these
variables. The cluster centers are provided in Table S1, Support-
ing Information.

2.6.2. Descriptive Statistics of the Identified Metabotype Clusters in
KORA

The metabotype clusters were described by medians, 25th and
75th percentiles of continuous variables and by total and relative
frequencies of categorical variables. Statistically significant
differences in these variables across metabotype clusters were
determined by Kruskal–Wallis test for continuous variables and
by Pearson’s chi-squared test for categorical variables, which
were followed by the respective post hoc tests with Bonferroni
correction. All data are shown for the total study population
and the three metabotype clusters, respectively. Due to missing
values in descriptive variables, the respective maximum number
of participants available was used for the calculations leading to
different sample sizes between variables.
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Table 1. Demographic characteristics of the total KORA F4 study population and across the three metabotype clusters.

Total Metabotypes p-value

Cluster 1 Cluster 2 Cluster 3

N = 1744 N = 590 N = 813 N = 341

Sex

Men 846 (48.5) 162 (27.5) 477 (58.7) 207 (60.7) <0.0001

Women 898 (51.5) 428 (72.5) 336 (41.3) 134 (39.3) —

Age [years]

Median (25th, 75th) 61.0 (54.0, 68.0) 60.0 (53.0, 67.0) 60.0 (52.0, 68.0) 62.0 (55.0, 69.0) 0.02

Education [years]

<10 175 (10.1) 59 (10.0) 84 (10.4) 32 (9.4) 0.04

10 to < 12 912 (52.4) 328 (55.6) 392 (48.4) 192 (56.3) —

≥12 654 (37.6) 203 (34.4) 334 (41.2) 117 (34.3) —

BMI [kg m−2]

Median (25th, 75th) 27.5 (24.8, 30.7) 25.7 (23.5, 28.7) 27.9 (25.2, 31.0) 29.7 (27.0, 32.7) <0.0001

Underweight 1 (0.1) 0 (0.0) 1 (0.1) 0 (0.0) <0.0001

Normal 461 (26.5) 240 (40.7) 188 (23.2) 33 (9.7) —

Overweight 747 (43.0) 249 (42.2) 352 (43.5) 146 (43.1) —

Obese 529 (30.4) 101 (17.1) 268 (33.1) 160 (47.2) —

Physical activity

Inactive 738 (42.3) 209 (35.4) 358 (44.1) 171 (50.1) <0.0001

Active 1005 (57.7) 381 (64.6) 454 (55.9) 170 (49.9) —

Smoking status

Non-smoker 771 (44.2) 296 (50.2) 344 (42.4) 131 (38.4) 0.0004

Ex-smoker 718 (41.2) 226 (38.3) 350 (43.1) 142 (41.6) —

Smoker 254 (14.6) 68 (11.5) 118 (14.5) 68 (19.9) —

Median (25th, 75th percentile) for continuous variables and n (column %) for categorical variables; Kruskal–Wallis test for continuous variables and Pearson’s chi-squared
test for categorical variables; Significant results (p < 0.05) are highlighted in bold; Due to missing information, reduced datasets for education n = 1741, BMI n = 1738,
physical activity n = 1743, and smoking status n = 1743; KORA, Cooperative Health Research in the Region of Augsburg.

3. Results

Table 1 shows the demographic characteristics of the total study
population and of each of the three metabotype clusters identi-
fied in the KORA F4 study. The total study population aged 32–
77 years comprised nearly equal proportions of men and women.
Of 1744 participants, 590 (33.8%) were assigned to cluster 1, 813
(46.6%) to cluster 2 and 341 (19.6%) to cluster 3 by minimizing
the total Euclidean distance of the four grouping variables to their
cluster centers identified in NANS. The proportion of men was
higher in clusters 2 (58.7%) and 3 (60.7%) compared to cluster 1
(27.5%). Cluster 3 was characterized as the cluster with the high-
est median age of 62.0 years (range = 45–77 years) and BMI of
29.7 kg m−2 (range = 21.5–47.6 kg m−2) as well as the highest
proportions of physically inactive individuals (50.1%) and smok-
ers (19.9%). The proportion of highly educated individuals was
highest in cluster 2 with 41.2%. Similar results were found in
the KORA FF4 study and are displayed in Table S2, Supporting
Information.
Table 2 presents the variation of the four grouping vari-

ables (TAG, TC, HDL cholesterol, and glucose) across the three
metabotype clusters in the KORA F4 study population. Individu-
als in cluster 3 were characterized by the highest median values
of TAG, TC and glucose as well as by the lowest median value

of HDL cholesterol. Cluster 2 was comprised of individuals with
the lowest TC levels and individuals in cluster 1 were found to
have the highest HDL cholesterol levels and simultaneously the
lowest levels of TAG and glucose. The same results were found
in the KORA FF4 study population and are shown in Table S3,
Supporting Information.
Table 3 displays the median values of further biochemical pa-

rameters of the total KORA F4 study population and across the
three clusters. For most of the parameters, individuals in clus-
ter 3 showed the highest and individuals in cluster 1 simultane-
ously the lowest median values. Cluster 2 was characterized by
the significantly lower median values of LDL cholesterol, non-
esterified fatty acids, aldosterone, and insulin-like-growth-factor-
binding-protein-3 compared to clusters 1 and 3. Using the con-
servative Bonferronimethod to correct for multiple testing, those
results with p < 0.0017 still remain statistically significant. Table
S4, Supporting Information, shows similar results for the KORA
FF4 study population for the subset of biochemical parameters
available in this study.
Table 4 presents the prevalence and incidence of car-

diometabolic diseases across the three clusters in the KORA
F4 study population. Cluster 3 showed the highest prevalence
of hypertension, type 2 diabetes, hyperuricemia/gout and
presence of any metabolic disease. The highest prevalence of
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Table 2. Variation of the grouping variables across the three metabotype clusters of the KORA F4 study.

Metabotypes p-value

Cluster 1
(N = 590)

Cluster 2
(N = 813)

Cluster 3
(N = 341)

Grouping variables
(serum fasting levels in mmol L−1)

Median (25%, 75%) Median (25%, 75%) Median (25%, 75%)

TAG 0.98 (0.73, 1.28) 1.21 (0.89, 1.60) 2.59 (2.07, 3.18) <0.0001

TC 6.18 (5.66, 6.77) 5.09 (4.60, 5.58) 6.33 (5.79, 6.98) <0.0001

HDL cholesterol 1.81 (1.65, 2.02) 1.29 (1.14, 1.45) 1.16 (1.03, 1.34) <0.0001

Glucose 5.11 (4.83, 5.50) 5.39 (5.00, 5.89) 5.89 (5.39, 6.72) <0.0001

Median (25th, 75th percentile); Kruskal–Wallis test; Significant results (p < 0.05) are highlighted in bold; Underlined values represent the highest value across the clusters;
the bold values represent the lowest; KORA, Cooperative Health Research in the Region of Augsburg; TAG, triacylglycerol; TC, total cholesterol.

dyslipidemia, myocardial infarction and of any cardiovascular
disease was found in cluster 2, closely followed by cluster 3. The
incidence of all individual metabolic diseases as well as of any
metabolic or any cardiovascular disease was highest in cluster 3.
Comparable results of cardiometabolic disease prevalence in the
KORA FF4 study population are shown in Table S5, Supporting
Information.
As the usual dietary intake was not assessed in the KORA

F4 study but in the KORA FF4 study, Table 5 presents the me-
dian usual dietary intake of the total KORA FF4 study popula-
tion and across the three metabotype clusters identified in this
study. The participants assigned to cluster 3 showed significantly
higher consumption of total meat, red meat, and processed meat
and significantly lower intake of vegetables, total dairy, milk, yo-
ghurt, total fiber, insoluble fiber, and soluble fiber compared to
clusters 1 and 2. In contrast, participants of cluster 1 consumed
the highest amounts of vegetables and yoghurt and the lowest
amounts of grains, total meat, red meat, poultry, processed meat,
fruit and vegetable juice, sugar-sweetened beverages and total
energy. Participants grouped into cluster 2 showed mainly inter-
mediate median intake amounts. After applying the conservative
Bonferroni method to correct for multiple testing, those results
with p < 0.0023 still remain statistically significant.

4. Discussion

Using previously published metabotypes,[20] we identified three
metabolically distinct clusters of individuals in each of the two
KORA studies. Cluster 3 represented the group of participants
with the most unfavorable metabolic characteristics. Individuals
of cluster 3 were further characterized by the highest disease
occurrence and the most unfavorable diet. Thus, we could suc-
cessfully reproduce the metabotype concept based on a minimal
number of biochemical parameters, a prerequisite for further
development of such a concept. The shown differences in the
occurrence of incident diseases by metabotype group clearly
demonstrate that metabotyping can be used as a tool for the iden-
tification of high-risk groups. In combination with the observed
differences in habitual dietary characteristics, the metabotype
concept is still very likely to approach our expectation, that is,
the development of a practical tool for personalized prevention
of cardio-metabolic diseases.

4.1. Comparison of Findings with the Originally Identified
Metabotypes in NANS

Regarding the metabolic parameters (TAG, TC, HDL choles-
terol, and glucose) measured in all three studies, NANS and the
KORA F4/FF4 studies, it is interesting to note that the values
are more favorable in NANS than in the KORA studies across all
three metabotype clusters.[20] This suggests that the NANS study
population was generally healthier than the KORA F4 and KORA
FF4 study populations, which is supported by the high disease
prevalence and incidence in the KORA studies. Furthermore,
the NANS population was markedly younger compared to the
KORA F4/FF4 populations (median age of 41 vs 61/60 years)
and it is well accepted that the physiological aging process is
associated with adverse alterations in metabolism and metabolic
flexibility.[30] Besides age, the human metabolism is further in-
fluenced by a variety of intrinsic and environmental factors such
as genetics, epigenetics, gut microbiome or body composition
in conjunction with lifestyle factors such as physical activity and
diet.[16,17,31,32] Despite these considerations, we demonstrated
that metabotypes established in one population group could be
used to classify individuals in another group. Overall, our results
clearly indicate that we have successfully used the metabotypes
identified by O’Donovan et al.[20] in the Irish NANS by clas-
sifying individuals of the German KORA F4 and KORA FF4
study populations into metabolically distinct subgroups. Our
work suggests that the metabotype concept is transferrable and
applicable to other ethnically similar populations.

4.2. Comparison of Findings with Previously Identified
Metabotypes in KORA

In previous analyses on metabotyping,[8,15] we also identified
three metabotype clusters in both the KORA F4 and the KORA
FF4 studies using extensive sets of grouping variables. We used
in total 34 parameters in the KORA F4 study and a subset of 16
parameters in the KORA FF4 study.
In both metabotyping approaches used in the KORA studies,

that is, assignment of participants to existing metabotype clus-
ters identified in NANS (conducted here) and identification of
metabotype clusters by cluster analysis,[8,15] a more metabolically
unfavorable cluster 3, an intermediate cluster 2 and a more
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Table 3.Median values of biochemical parameters of the total study population and across the three metabotype clusters, KORA F4 study.

Total Metabotypes p-value

Cluster 1 Cluster 2 Cluster 3

N = 1744 N = 590 N = 813 N = 341

TC/HDL cholesterol 3.98 (3.31, 4.78) 3.37 (2.91, 3.93)a 3.98 (3.44, 4.61)b 5.40 (4.73, 6.12)c <0.0001

Glycated hemoglobin [%] 5.5 (5.3, 5.8) 5.5 (5.2, 5.6)a 5.5 (5.3, 5.8)b 5.7 (5.4, 6.1)c <0.0001

Uric acid [𝜇mol L−1] 313 (255, 375) 270 (229, 327)a 318 (268, 378)b 365 (313, 426)c <0.0001

LDL cholesterol [mmol L−1] 3.57 (3.00, 4.19) 3.80 (3.19, 4.44)a 3.28 (2.76, 3.75)b 4.11 (3.44, 4.68)c <0.0001

Leukocytes [nL−1] 5.7 (4.8, 6.7) 5.3 (4.5, 6.3)a 5.7 (4.9, 6.8)b 6.1 (5.1, 7.3)c <0.0001

Glutamate–pyruvate transaminase [𝜇kat L−1] 0.37 (0.27, 0.51) 0.32 (0.26, 0.42)a 0.38 (0.27, 0.53)b 0.45 (0.34, 0.67)c <0.0001

Glutamate–oxaloacetate transaminase [𝜇kat L−1] 0.42 (0.36, 0.50) 0.40 (0.35, 0.48)a 0.43 (0.35, 0.50)a 0.44 (0.37, 0.54)b <0.0001

Gamma-glutamyltransferase [𝜇kat L−1] 0.47 (0.31, 0.76) 0.38 (0.27, 0.62)a 0.46 (0.31, 0.70)b 0.67 (0.47, 1.04)c <0.0001

Alkaline phosphatase [𝜇kat L−1] 1.13 (0.95, 1.36) 1.13 (0.92, 1.34)a 1.11 (0.95, 1.36)a 1.20 (1.02, 1.39)b 0.001

Average telomere length in leukocytes (ratio of the
telomere repeat copy number to a single copy gene)

1.77 (1.59, 1.98) 1.80 (1.61, 2.00)a 1.76 (1.59, 1.98)a,b 1.75 (1.57, 1.95)b 0.02

Non-esterified fatty acids [mg dL−1] 6.92 (5.34, 8.74) 7.04 (5.54, 8.93)a 6.60 (4.94, 8.44)b 7.49 (5.87, 9.13)a <0.0001

Lipoprotein(a) [mg dL−1] 12.2 (5.5, 31.9) 14.0 (6.1, 34.8)a 11.5 (4.9, 28.6)b 12.3 (5.6, 32.7)a,b 0.02

Apolipoprotein A-IV [mg dL−1] 15.1 (12.6, 17.9) 15.7 (12.8, 18.3)a 14.9 (12.5, 17.5)b 15.2 (12.4, 18.2)a,b 0.02

Afamin [mg L−1] 71.3 (61.2, 82.8) 67.6 (59.1, 77.4)a 70.3 (60.3, 81.0)b 83.1 (71.4, 95.4)c <0.0001

Leptin [ng mL−1] 13.4 (6.2, 26.4) 14.0 (6.4, 24.7)a 12.0 (5.5, 25.6)a 16.0 (7.8, 33.1)b <0.0001

Thyroperoxidase antibodies [IU mL−1] 12 (11, 15) 12 (11, 16)a 12 (11, 15)a 12 (11, 15)a 0.82

Cystatin C [mg L−1] 0.74 (0.68, 0.83) 0.72 (0.65, 0.79)a 0.75 (0.68, 0.83)b 0.78 (0.71, 0.87)c <0.0001

High-sensitivity C-reactive protein [mg L−1] 1.28 (0.63, 2.66) 1.10 (0.54, 2.09)a 1.18 (0.61, 2.64)b 1.88 (0.98, 3.62)c <0.0001

Urine albumin [mg L−1] 7.5 (3.9, 16.8) 6.6 (3.3, 13.5)a 7.7 (4.0, 17.0)b 11.3 (4.8, 23.0)c <0.0001

Urine creatinine [g L−1] 1.31 (0.84, 1.92) 1.20 (0.74, 1.74)a 1.34 (0.87, 1.99)b 1.48 (0.96, 2.06)b <0.0001

Interleukin-18 [pg mL−1] 299 (232, 389) 268 (205, 345)a 314 (239, 409)b 325 (262, 418)b <0.0001

Insulin-like growth factor-1 [ng mL−1] 126 (100, 155) 127 (102, 154)a 127 (100, 159)a 119 (95, 147)b 0.01

Renin [𝜇IU mL−1] 10.8 (5.7, 19.0) 9.9 (5.4, 16.8)a 10.8 (5.6, 20.4)a 12.4 (7.1, 24.0)b <0.0001

Aldosterone [pg mL−1] 38 (26, 56) 40 (28, 58)a 36 (24, 54)b 40 (27, 59)a 0.01

Insulin-like-growth-factor-binding-protein-3 [ng mL−1] 3390 (2835, 3970) 3400 (2910, 3960)a 3275 (2700, 3830)b 3720 (3085, 4280)c <0.0001

Sex-hormone-binding globulin [nmol L−1] 30.5 (23.1, 42.2) 36.5 (27.7, 48.5)a 29.4 (22.7, 40.5)b 24.5 (18.6, 33.4)c <0.0001

Thyroid-stimulating hormone [mIU L−1] 1.24 (0.81, 1.80) 1.22 (0.76, 1.77)a 1.22 (0.82, 1.79)a 1.33 (0.83, 1.90)a 0.16

Free thyroxine [pmol L−1] 14.0 (12.7, 15.4) 13.9 (12.7, 15.3)a,b 14.1 (12.9, 15.8)a 13.7 (12.4, 14.9)b 0.002

Insulin [𝜇IU mL−1] 4.4 (2.9, 7.9) 3.4 (2.3, 5.0)a 4.6 (3.2, 8.7)b 6.8 (4.3, 14.4)c <0.0001

Median (25th, 75th percentile); Kruskal–Wallis test (and Kruskal–Wallis post hoc test with Bonferroni correction); Significant results (p< 0.05) are highlighted in bold. Different
superscript letters between clusters indicate a significant difference between clusters, whereas the same superscript letters between clusters indicate no significant difference
between clusters; Underlined values represent the highest value across the clusters; the bold values represent the lowest; Due tomissing values reduced data sets for leukocytes
n = 1743, glutamate–pyruvate transaminase n = 1741, glutamate–oxaloacetate transaminase n = 1741, gamma-glutamyltransferase n = 1741, alkaline phosphatase n = 1741,
average telomere length in leukocytes n = 1735, non-esterified fatty acids n = 1743, lipoprotein(a) n = 1743, apolipoprotein A-IV n = 1743, afamin n = 1743, leptin n = 1741,
Thyroperoxidase antibodies n = 1691, cystatin C n = 1742, high-sensitivity C-reactive protein n = 1742, urine albumin n = 1736, urine creatinine n = 1735, interleukin-18
n = 1733, insulin-like growth factor-1 n = 1743, renin n = 1728, aldosterone n = 1731, insulin-like-growth-factor-binding-protein-3 n = 1727, sex-hormone-binding globulin
n = 1726, thyroid-stimulating hormone n = 1704, free thyroxine n = 1711, and insulin n = 1742; KORA, Cooperative Health Research in the Region of Augsburg; TC, total
cholesterol.

metabolically favorable cluster 1 were found. However, the two
approaches resulted in a difference in the number of individuals
per cluster for cluster 1 (34% vs 44%) and cluster 2 (46% vs
36%) with a stable percentage but not the identical individuals
in cluster 3 (20% vs 20%). The median values of fasting blood
lipids across clusters also varied between the metabotyping
approaches. The most unfavorable fasting blood lipid values
were seen in cluster 3 of the metabotype clusters identified by as-
signment to the NANS metabotype clusters, which is in contrast
to the metabotype clusters identified by cluster analysis with the
most unfavorable blood lipid values in the intermediate cluster 2.

The disease prevalence and incidence was significantly different
across metabotype clusters identified by cluster assignment,
especially for type 2 diabetes and hyperuricemia/gout. Using
cluster analysis based on extensive parameters, the disease
occurrence was higher in cluster 3 and, thus, a stronger risk
group was identified than by cluster assignment based on the
four parameters. These differences were mainly evoked by the
different sets of grouping variables. This means that individuals
could be assigned easily and reasonably to existing metabotypes
without grouping each population separately by cluster anal-
ysis, and this would be especially relevant in clinical practice.
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Table 4. Disease prevalence and incidence in the total study population and across the three metabotype clusters, KORA F4/FF4 study.

Total Metabotypes p-value

Cluster 1 Cluster 2 Cluster 3

N = 1744 N = 590 N = 813 N = 341

Prevalence of diseases in KORA F4 % [n]

Hypertension 45.5 (793) 31.7 (187) 49.1 (399) 60.9 (207) <0.0001

Type 2 diabetes 8.8 (153) 1.9 (11) 9.5 (77) 19.1 (65) <0.0001

Hyperuricemia/gout 4.6 (81) 1.9 (11) 5.0 (41) 8.5 (29) <0.0001

Dyslipidemia 16.6 (290) 9.8 (58) 21.2 (172) 17.6 (60) <0.0001

Any of above metabolic diseases 52.4 (912) 36.3 (214) 57.4 (466) 68.4 (232) <0.0001

Myocardial infarction 3.6 (62) 1.2 (7) 4.8 (39) 4.7 (16) 0.001

Stroke 2.7 (47) 1.7 (10) 3.6 (29) 2.3 (8) 0.09

Any of above cardiovascular diseases 5.9 (103) 2.7 (16) 7.8 (63) 7.0 (24) 0.0002

Cancer 9.1 (159) 7.3 (43) 10.0 (81) 10.3 (35) 0.16

Incidence of diseases in KORA FF4 % [n]

Hypertension 22.8 (168) 18.0 (55) 25.9 (86) 27.0 (27) 0.03

Type 2 diabetes 6.7 (78) 2.8 (12) 7.0 (38) 14.9 (28) <0.0001

Hyperuricemia/gout 3.0 (36) 1.2 (5) 3.6 (20) 5.3 (11) 0.01

Dyslipidemia 12.3 (132) 10.2 (41) 8.4 (40) 26.6 (51) <0.0001

Any of above metabolic diseases 27.7 (180) 22.8 (65) 27.6 (78) 45.7 (37) 0.0003

Myocardial infarction 2.0 (24) 0.9 (4) 2.3 (13) 3.2 (7) 0.07

Stroke 2.4 (29) 1.4 (6) 2.4 (14) 4.1 (9) 0.10

Any of above cardiovascular diseases 4.1 (49) 2.1 (9) 4.6 (25) 7.0 (15) 0.01

Cancer 6.9 (79) 6.8 (28) 7.7 (41) 5.0 (10) 0.43

Column % (n); Pearson’s chi-squared test (Fisher’s exact test if expected frequencies were too low); Significant results (p < 0.05) are highlighted in bold; Prevalence: Due to
missing information, reduced datasets for hypertension n = 1741, type 2 diabetes n = 1743, hyperuricemia/gout n = 1743, dyslipidemia n = 1743, all metabolic diseases n =
1740, myocardial infarction n = 1743, stroke n = 1743, all cardiovascular diseases n = 1743, and cancer n = 1743; Incidence: Due to missing information, reduced datasets
for hypertension n = 738, type 2 diabetes n = 1165, hyperuricemia/gout n = 1202, dyslipidemia n = 1069, all metabolic diseases n = 649, myocardial infarction n = 1213,
stroke n = 1234, all cardiovascular diseases n = 1195, and cancer n = 1148; KORA, Cooperative Health Research in the Region of Augsburg.

Further examinations should focus on the determination of
a uniform set of grouping variables, which are routinely and
easily measured in research and clinical practice, but simulta-
neously enable the identification of precise and metabolically
significantly different metabotypes possibly with a strong risk
group for diseases. This could be useful to improve the compa-
rability and transferability of metabotypes across populations.
In addition, it is planned that the metabotypes identified in the
KORA cohort study by cluster analysis will be applied as well
in NANS and other studies to test their applicability in other
populations.

4.3. Metabotypes for the Development of Targeted Strategies

Metabotypes as described here may be useful for the develop-
ment and establishment of targeted strategies at a group level.[1]

For the metabotype clusters identified in NANS and also for
metabotype clusters identified in the European Food4Me study,
O’Donovan et al.[20,33] previously developed decision tree ap-
proaches for targeted dietary advice, which showed high accor-
dance with personalized advice. Thus, metabotyping seems to
be a promising tool to simplify the delivery of effective advice to
large populations.[1,16–19] As unhealthy dietary behavior and phys-
ical inactivity are major risk factors for many cardiometabolic

diseases,[34,35] targeted lifestyle approaches may be useful in
disease prevention and treatment. This seems to be especially
relevant for metabotype cluster 3 with the highest occurrence
of diseases and risk factors. Individuals in cluster 3 could be
generally adviced to reduce the relatively high consumption of
meat and to increase the relatively low consumption of vegeta-
bles and physical activity compared to clusters 1 and 2. How-
ever, for the development of targeted disease prevention strate-
gies, it is necessary to identify differences between metabotype
clusters in their association of diet and/or physical activity with
disease-specific outcomes. Since only few studies investigated
such differences between metabotypes,[10,15,36–38] further studies
are needed for the development of targeted disease prevention
strategies on the metabotype subgroup level and for testing the
effectiveness. In addition, this could be also relevant for more
specificmetabolically subgroups such as of diabetic patients.[39,40]

In that case however, personalized disease treatment on the indi-
vidual’s level seems to be more effective than targeted strategies
on the metabotype subgroup level.[41]

4.4. Strengths and Limitations

One strength of the study is that we successfully applied the
metabotypes identified in NANS in a large population-based
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Table 5. Usual dietary intake of the total study population and across the three metabotype clusters, KORA FF4 study.

Total Metabotypes p-value

Cluster 1 Cluster 2 Cluster 3

N = 2221 N = 764 N = 1019 N = 438

Food groups or subgroups

Potatoes [g d−1] 56 (45, 71) 54 (44, 68)a 56 (45, 73)a,b 58 (48, 76)b 0.01

Vegetables [g d−1] 164 (133, 207) 174 (142, 216)a 162 (131, 203)b 153 (124, 190)c <0.0001

Fruits [g d−1] 147 (91, 207) 153 (103, 208)a 145 (90, 208)a,b 130 (80, 204)b 0.01

Total dairy [g d−1] 178 (115, 257) 187 (129, 265)a 180 (113, 263)a 160 (101, 218)b <0.0001

Milk [g d−1] 69 (24, 132) 77 (27, 136)a 70 (22, 140)a 58 (22, 102)b 0.003

Yoghurt [g d−1] 31 (14, 67) 35 (16, 73)a 30 (13, 67)b 22 (12, 48)c <0.0001

Cheese [g d−1] 27 (19, 37) 28 (20, 37)a 27 (19, 38)a,b 25 (18, 35)b 0.03

Grains [g d−1] 162 (133, 195) 152 (127, 184)a 169 (139, 206)b 164 (138, 191)b <0.0001

Total meat [g d−1] 107 (83, 142) 90 (74, 113)a 116 (90, 149)b 128 (98, 157)c <0.0001

Red meat [g d−1] 26 (19, 34) 21 (17, 29)a 28 (20, 37)b 30 (23, 38)c <0.0001

Poultry [g d−1] 13 (10, 18) 11 (9, 17)a 13 (11, 18)b 13 (11, 19)b <0.0001

Processed meat [g d−1] 42 (30, 62) 34 (24, 49)a 46 (32, 65)b 52 (38, 75)c <0.0001

Fish [g d−1] 17 (12, 25) 16 (12, 25)a 17 (12, 25)a 17 (12, 26)a 0.17

Eggs [g d−1] 11 (8, 17) 11 (8, 16)a,b 11 (8, 17)a 12 (8, 19)b 0.04

Fruit and vegetable juice [g d−1] 42 (24, 117) 35 (22, 100)a 45 (25, 130)b 45 (27, 136)b <0.0001

Sugar-sweetened beverages [g d−1] 6 (4, 20) 4 (3, 8)a 8 (4, 38)b 9 (5, 50)b <0.0001

Coffee [g d−1] 435 (361, 480) 437 (363, 476)a 434 (366, 484)a 437 (353, 482)a 0.95

Nutrients

Energy [kJ d−1] 7680 (6520, 8920) 7172 (6368, 8516)a 7949 (6636, 9178)b 7895 (6656, 8892)b <0.0001

Alcohol [g d−1] 5 (3, 14) 5 (2, 13)a 5 (3, 15)a 6 (3, 19)a 0.04

Total fiber [g d−1] 17 (14, 20) 18 (15, 21)a 17 (14, 20)a 16 (14, 19)b <0.0001

Insoluble fiber [g d−1] 11 (10, 14) 12 (10, 14)a 12 (10, 14)a 11 (9, 13)b <0.0001

Soluble fiber [g d−1] 6 (5, 7) 6 (5, 7)a 6 (5, 7)a 5 (5, 6)b 0.001

Median (25th, 75th percentile); Kruskal–Wallis test (and Kruskal–Wallis post hoc test with Bonferroni correction); Significant results (p< 0.05) are highlighted in bold. Different
superscript letters between clusters indicate a significant difference between clusters, whereas the same superscript letters between clusters indicate no significant difference
between clusters; Underlined values represent the highest value across the clusters and the bold values represent the lowest; Due to missing information, reduced datasets
for all dietary intake variables: total n = 1562, cluster 1 n = 555, cluster 2 n = 715, cluster 3 n = 292; KORA, Cooperative Health Research in the Region of Augsburg.

cohort by identifying metabolically distinct clusters of individu-
als. These results should be confirmed in further studies to allow
the use of the metabotype concept across different populations.
Due to the absence of a uniform metabotype definition so far,
it may be also worth replicating metabotyping approaches of
other studies in different cohorts and comparing the results.
This could lead to a more general and consistent metabotype
definition and classification. Another strength of the present
work is the availability of extensive data for the characterization
ofmetabotypes in the KORA studies. Dietary intake was collected
in detail by food frequency questionnaire and by up to three
24 h food lists in the KORA FF4 study and those data are the
basis for targeted dietary advice. In addition, the cardiometabolic
disease status was assessed in both KORA studies, KORA F4
and KORA FF4, so that disease incidence could be determined
during the relatively long follow-up of 7 years between both
studies. However, despite the influence of antidiabetic and lipid-
lowering medication intake on the grouping parameters, we did
not exclude individuals with prevalent type 2 diabetes and/or
dyslipidemia before cluster assignment to ensure sufficient sam-
ple sizes for a meanigful metabotype characterization. Another

limitation of this work is that data on diet and disease status were
mainly based on self-report, known to be prone to misreporting.

5. Conclusions

Our successful replication of this metabotype concept—based on
four commonly measured clinical parameters only—in another
European population is a prerequisite for further developing
this approach. Using data on incident disease occurrence, we
could demonstrate for the first time that this is a promising
concept to identify high-risk groups in the population that would
most benefit from prevention measures. Given that the groups
are differential in their dietary habits, the idea is to develop
a full model for personalized prevention with specific dietary
modification. However, further replication and identification
of differences in lifestyle-disease associations between metabo-
types seems necessary for the development of targeted disease
prevention strategies. Before developing a decision tree leading
to differential recommendations depending on the subjects’
metabotype, further work on the metabotyping concept itself is
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necessary. A comparison of models based on a minimal number
of parameters (as applied here), a comprehensive number of
biochemical parameters,[8] and an in-between solution will be
performed to clarify what is the best model in terms of risk
prediction and practicability.
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