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Abstract: A N-heterocyclic olefin (NHO), a terminal alkene

selectively activates aromatic C@F bonds without the need

of any additional catalyst. As a result, a straightforward
methodology was developed for the formation of differ-
ent fluoroaryl-substituted alkenes in which the central
carbon–carbon double bond is in a twisted geometry.

Compounds containing C@F bond(s) are extremely important
in diverse fields ranging from materials chemistry [1] to medici-

nal chemistry.[2] In comparison to the C@H bond, the most

striking differences of the C@F bond are its reverse polarity

and higher bond energy.[3] These features contribute to the
unique physical and chemical properties of fluorinated com-

pounds. The synthesis of such compounds and the ability to
selectively activate C@F compounds in this family is an impor-

tant area of research. Low-valent, low-coordinate transition-
metal complexes have been known to activate the C@F bond

by an oxidative addition.[4] Strong Lewis acids as well as frus-

trated Lewis pairs (FLPs) are also known for electrophilic activa-
tion of the C@F bond.[5] In 1998, Kuhn et al. reported a nucleo-

philic aromatic C@F activation using the N-heterocyclic carbene
(NHC) I (Scheme 1).[6] Since then, nucleophilic activation of aro-

matic C@F bonds has been achieved employing various two-
coordinate divalent Group 14 compounds such as different
NHCs, cyclic(alkyl)(amino)carbenes (CAACs), N-heterocyclic sily-

lene II,[7] and base stabilized three-coordinate divalent
Group 14 compounds such as base stabilized silylenes and ger-

mylenes III (Scheme 1).[8] Also, aromatic C@F activation has
been reported using N-heterocyclic aluminylene IV[9] and
Jones’s MgI@MgI bonded compound V (Scheme 1).[10]

However, all the above-mentioned C@F activation of fluo-
roarenes are restricted in their utility for the synthesis of any
general family of organofluorine compounds. This and the con-

sideration of the lack of direct synthetic methodologies for an
important class of compounds such as fluoroorgano-substitut-

ed (fluoro, fluoro-alkyl, fluoro-aryl) alkenes[11] prompted us to
consider a N-heterocyclic olefin (NHO) 1,3,4,5-tetramethyl-2-

methyleneimidazoline 1 (Scheme 1).[12] We report that this ter-
minal alkene is an excellent reagent for the nucleophilic activa-

Scheme 1. Selected examples of low-valent main-group compounds that ac-
tivate aromatic C@F bond (Ar = 2,6-iPr2C6H3).
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tion of aromatic C@F bond under the direct formation of differ-
ent fluoroaryl-substituted alkenes without using any additional

catalyst. Previous syntheses of fluoroaryl-substituted alkenes
have been reported using transition-metal complex-catalyzed

alkenylation of fluoroarenes.[13] Very recently Berkessel and his
group have reported carbene-derived pentafluorophenyl-sub-

stituted alkenes using corresponding fluoroarylaldehyde as a
precursor.[14] Our method, apart from its novelty, has the ad-
vantage of being applied to a wide range of aromatic fluoro

hydrocarbons, and also reveals an excellent selectivity.
The reaction of 1 with hexafluorobenzene in a 2:1 ratio in

hexane, resulted in the formation of the fluoroaryl-substituted
alkene, that is, a C@F activation product 2 in 67 % yield along
with the imidazolium salt 1HX (Scheme 2).[15] The formation of
compound 2, which is air and moisture-sensitive, has been

confirmed by the presence of three singlet resonances at 1.29,

2.42, and 3.96 ppm in a 6:6:1 ratio, respectively, in the 1H NMR

spectrum and three multiplets at @176.68, @167.05, and
@149.11 ppm in a 1:2:2 ratio, respectively, in the 19F NMR spec-

trum. In this reaction, 1 also acts as HF scavenger and forms

the imidazolium salt 1HX containing a mixture of fluoride (F@)
and bifluoride (HF2

@) as counter anions.[15] The solid-state mo-

lecular structure of 2 revealed that the central C1@C8 bond dis-
tance is 1.391(16) a (Figure 1), which is longer than the corre-

sponding distance in 1 (1.363(3) a)[12] and imidazole–imidazoli-
um-substituted alkene (1.334(5) a for E-isomer and 1.322(6) a
for Z-isomer).[16] The bond elongation is due to the installation

of the electron-withdrawing group in place of the H-substitu-
ent. The notable feature of 2 is a twist angle of 24.79(12)8
around the central carbon–carbon double bond.

After this initial success, we considered more reactive per-

fluorinated arenes such as pentafluoropyridine and octafluoro-

toluene for reaction with 1. The 2:1 reaction of 1 with penta-
fluoropyridine and octafluorotoluene gave regioselectively the
corresponding fluoroaryl substituted olefins 3 (87 %) and 4
(72 %), respectively, as deep-yellow colored solids (Scheme 3).
To minimize the employed amount of 1, we considered Et3N as
a HF scavenger. However, 1 does always compete as proton

scavenger with Et3N even when 10 equivalents of Et3N were
used.[15] Formation of 3 and 4 was confirmed by solution-state

NMR spectroscopy as well as by single crystal X-ray diffraction
analysis (Figure 1). The twist angle of the exocyclic olefin
moiety for compound 3 is as high as 45.76(76)8 which is higher
than that of compound 4 (35.83(12)8) and compound 2
(24.79(12)8).

Subsequently, to see the regioselectivity of 1 towards the C@
F activation as well as to obtain different fluoroaryl-substituted
olefins we have considered partially fluorinated compounds

such as pentafluorobenzene, 1,2,3,4-tetrafluorobenzene,
1,2,3,5-tetrafluorobenzene, and chloropentafluorobenzene

along with octafluoronaphthalene and decafluorobiphenyl

(Scheme 4). The reaction of 1 with pentafluorobenzene,
1,2,3,4-tetrafluorobenzene, and 1,2,3,5-tetrafluorobenzene

leads to exclusive regioselective C@F activation products 5, 6,
and 7, respectively (Scheme 4). These compounds show

unique 19F and 1H splitting patterns due to the presence of an
extended 19F@19F/19F@1H/1H@1H scalar-coupling network.

To characterize and assign these resonances, the splitting

patterns of all resonances were fitted using simulations provid-
ing values of the scalar couplings and the likely connectivity. In
case of compound 6, for instance, three 19F resonances and
two 1H resonances from the fluoroaryl substituent were unam-

biguously assigned using their scalar-coupling constants and

Scheme 2. Reaction of 1 with hexafluorobenzene.

Figure 1. Molecular structures of 2 (left), 3 (middle), and 4 (right) with thermal ellipsoids at 50 % probability level. All H atoms except C8@H are omitted for
clarity.[18]

Scheme 3. Reactions of 1 with pentafluoropyridine and octafluorotoluene.
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the experimentally obtained 1H, 1H{19F}, 19F, and 19F{1H} NMR

spectra match well with the simulated spectra (Figure 2). The
formation of compound 7 was further confirmed by its solid-

state molecular-structure determination (Figure 3).
The reaction of 1 with chloropentafluorobenzene leads to

selective C@F activation resulting in 8 with 56 % yield

(Scheme 4). The molecular X-ray structure of 8 shows a twist
angle of the exocyclic olefin moiety of only 18.34(22)8 which is

more acute than that of 2 (24.79(12)8), 3 (45.76(76)8), 4
(35.83(12)8), and 7 (32.10(11)8). On treatment of 1 with octa-

fluoronaphthalene, compound 9 was obtained in 56 % yield as
a bright orange colored solid as a result of selective C2@F acti-

vation (Scheme 4). Its structural analysis exhibits a twist angle
of the exocyclic olefin moiety of 24.29(16)8 (Figure 3).

The reaction of 1 with decafluorobiphenyl leads to com-
pound 10 (Scheme 4). A small amount of the double C@F acti-
vation product 11 was also noticed, even when a strict 1:1 stoi-

chiometry was imposed. Subsequently, the bis-alkenyl moiety
functionalized octafluorobiphenyl system 11 was synthesized
on purpose by reacting 10 with 1 (Scheme 5). The X-ray struc-
tural analyses reveal twist angles of the exocyclic olefin moiet-
ies of 34.79(11)8 in 10 and of 26.74(19)8 and 32.34(17)8 in 11
(Figure 4).

Scheme 4. Reactions of 1 with different fluoroarenes.

Figure 2. Experimental and simulated 1H (A), 19F (B), 1H{19F} (C), and 19F{1H} NMR (D) spectra of compound 6.
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We propose that the reaction of 1 with fluoroarenes pro-
ceeds through an aromatic nucleophilic substitution reaction
(Scheme 6). A nucleophilic attack of 1 at the electrophilic C-

center of the C@F moiety of fluoroarenes leads to a transition
state, TS. This TS can directly lead to the product 2 by an elim-
ination of HF (pathway a) or it can evolve into an ionic inter-
mediate (Int, [2H++]F@@), which has different fates depending on
the conditions (pathway b).

One of the observed routes is the subsequent elimination of

HF leading to 2. This route was computationally observed
when a relaxed surface scan starting with 1++C6F6 was per-
formed in hexane as pseudo solvent, without inclusion of addi-

tional molecules. In this case Int was not the final structure,
but 2++HF (pathway a). The intermediate Int could be stabi-

lized if a molecule of Et3N was added, leading to deprotona-
tion of [2H++] , through TS2Et3 N and final products 2++Et3N·HF
(pathway b in Scheme 6 and Figure S51 in the Supporting In-

formation). This proposed pathway is supported by the theo-
retical calculation at PBEO/def2-TZVP level of theory.[15] The

energy barrier of TS in hexane is 22.1 kcal mol@1 whereas the
formation of 2 is exergonic by DG300 =@21.7 kcal mol@1, when

the fluoride anion acts as a proton scavenger (Figure 5).[15] The
intermediate Int could also be stabilized if DMF was chosen as

Figure 3. Molecular structures of 7 (left), 8 (middle), and 9 (right) with thermal ellipsoids at 50 % probability level. All H atoms except C8@H are omitted for
clarity reasons.[18]

Scheme 5. Synthesis of 11.

Figure 4. Molecular structures of 10 (left) and 11 (right) with thermal ellipsoids at 50 % probability level. All H atoms except C8@H (for 10) and C8@H and
C21@H (for 11) are omitted for clarity reasons.[18]

Scheme 6. Proposed mechanism of aromatic C@F bond activation by NHO 1.
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pseudo solvent in the calculations (pathway b), which also re-

sulted in a slight lowering of the activation barrier to 21.3 kcal

mol@1 (Figure S50).
In conclusion, we have demonstrated that the N-heterocyclic

olefin (NHO), as a terminal alkene selectively activates a large
variety of aromatic C@F bonds without any additional catalyst.

The aromatic C@F activation by NHO results in a straightfor-
ward formation of fluoroaryl-substituted alkenes, which have a

twisted central carbon–carbon double bond with an angle

varying from 18.348 to 45.768, depending on the fluoroaryl
substituent. Considering that a large variety of NHOs are al-

ready available,[17] and that new NHO designs can be readily
adapted to our strategy, our reported synthetic methodology

is extremely versatile.
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Figure 5. The reaction energy profile diagram for the C@F bond activation of
C6F6 by 1 (all energy values are in kcal mol@1).
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