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Abstract
Background: Huntington’s disease (HD) is a progressive neu-
rodegenerative disorder. The striatum is one of the first brain 
regions that show detectable atrophy in HD. Previous studies 
using functional magnetic resonance imaging (fMRI) at 3 tes-
la (3 T) revealed reduced functional connectivity between stri-
atum and motor cortex in the prodromal period of HD. Neu-
roanatomical and neurophysiological studies have suggested 
segregated corticostriatal pathways with distinct loops in-
volving different cortical regions, which may be investigated 
using fMRI at an ultra-high field (7 T) with enhanced sensitiv-
ity compared to lower fields. Objectives: We performed fMRI 
at 7 T to assess functional connectivity between the striatum 
and several chosen cortical areas including the motor and 
prefrontal cortex, in order to better understand brain changes 

in the striatum-cortical pathways. Method: 13 manifest sub-
jects (age 51 ± 13 years, cytosine-adenine-guanine [CAG]  
repeat 45 ± 5, Unified Huntington’s Disease Rating Scale  
[UHDRS] motor score 32 ± 17), 8 subjects in the close-to-onset 
premanifest period (age 38 ± 10 years, CAG repeat 44 ± 2, 
UHDRS motor score 8 ± 2), 11 subjects in the far-from-onset 
premanifest period (age 38 ± 11 years, CAG repeat 42 ± 2,  
UHDRS motor score 1 ± 2), and 16 healthy controls (age 44 ± 
15 years) were studied. The functional connectivity between 
the striatum and several cortical areas was measured by rest-
ing state fMRI at 7 T and analyzed in all participants. Results: 
Compared to controls, functional connectivity between stria-
tum and premotor area, supplementary motor area, inferior 
frontal as well as middle frontal regions was altered in HD (all 
p values < 0.001). Specifically, decreased striatum-motor con-
nectivity but increased striatum-prefrontal connectivity were 
found in premanifest HD subjects. Altered functional connec-
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tivity correlated consistently with genetic burden, but not 
with clinical scores. Conclusions: Differential changes in func-
tional connectivity of striatum-prefrontal and striatum-motor 
circuits can be found in early and premanifest HD. This may 
imply a compensatory mechanism, where additional cortical 
regions are recruited to subserve functions that have been 
impaired due to HD pathology. Our results suggest the poten-
tial value of functional connectivity as a marker for future clin-
ical trials in HD. © 2019 S. Karger AG, Basel

Introduction

Huntington’s disease (HD) is caused by a cytosine-ad-
enine-guanine (CAG) trinucleotide repeat length expan-
sion in the Huntingtin gene on chromosome 4 [1]. Mu-
tant Huntingtin protein causes cell toxicity leading to 
neurodegeneration and regional brain atrophy [2]. Ge-
netic testing allows for the identification of subjects at risk 
for HD and their estimated time of symptom onset [3].

Clinical symptoms of HD evolve insidiously [2, 4, 5]. 
First, individuals are in the “far-from-onset premanifest” 
period of HD (farpremHD), when they are indistinguish-
able from the general population. Then, subtle motor, 
cognitive, and behavioral changes develop in the “close-
to-onset premanifest” period of HD (closepremHD). 
These two periods together constitute the premanifest pe-
riod [5]. Thereafter, individuals transition into the “man-
ifest” period of HD, when the clinical diagnosis can be 
made based on the “unequivocal presence of an otherwise 
unexplained extrapyramidal movement disorder” [4].

Postmortem studies of subjects who died in the “man-
ifest” stage of HD revealed disease-specific neuronal loss 
in the striatum and cortical areas leading to atrophy [6]. 
Structural magnetic resonance imaging (MRI) studies 
have replicated neuropathological findings and also re-
vealed atrophy of the striatum and cortical areas already 
in the premanifest period of HD [7–9]. Dysfunction of 
neurons and their connections is believed to occur prior 
to actual neuronal cell death [2, 10]. Functional MRI 
(fMRI) can map altered brain activity before cell death 
occurs [2, 10, 11]. For instance, a previous study of our 
center revealed altered corticostriatal functional connec-
tivity in motor loops in prodromal HD subjects [12]. Such 
impaired functional connectivity between striatum and 
motor cortex has also been reported by other groups [11, 
13–16], linking the pathophysiological changes in the 
striatum and the clinical signs and symptoms in manifest 
HD. 

Neuroanatomical and neurophysiological studies 
have suggested segregated striatum-cortical pathways 
that consist of distinct loops through the striatum, in-
cluding a motor loop connecting to the premotor re-
gions, and a prefrontal loop linking the striatum and the 
prefrontal cortex [17]. In this study, we investigated the 
possible occurrence of changes in functional connectiv-
ity between striatum and several chosen cortical regions 
other than the motor cortex in HD. We performed our 
study at the ultra-high magnetic field (7 tesla or 7 T), as 
higher field strength allows for a higher signal-to-noise 
ratio and thus a finer spatial resolution [18, 19]. This is 
important for seed-based analysis of resting state fMRI 
data for the evaluation of changes in separate neuronal 
pathways. We assessed HD subjects in the early “mani-
fest” period, the “closepremHD” period and the  
“farpremHD” period to investigate potential progressive 
changes in these pathways. We hypothesized that func-
tional connectivity between striatum and different corti-
cal regions may be affected differentially by the HD dis-
ease process.

Methods

Study Participants
Study participants were recruited from the Johns Hopkins 

Huntington’s Disease Center. Thirty-two participants with an in-
creased CAG expansion of 36 and higher in the Huntingtin gene 
were recruited and subdivided into three groups (Table 1). In the 
first group there were 11 farpremHD subjects, who had a Unified 
Huntington’s Disease Rating Scale (UHDRS) total motor score of 
4 or less and had a diagnostic confidence level of 0 or 1 (< 50% 
certainty) on the UHDRS. The second group comprised 8 
closepremHD subjects, with subtle motor, cognitive, or behav-
ioral alterations and a diagnostic confidence level of less than 4 on 
the UHDRS, but a score on the UHDRS motor score of 5 or high-
er. In the third group there were 13 subjects with early, but mani-
fest HD (earlyHD) with a diagnostic confidence level of 4 (≥99% 
certainty) on the UHDRS. The control group consisted of 16 
healthy subjects, who were consanguineous family members of 
people with HD but who had a normal number of CAG repeats 
(≤24) or were the unaffected spouse to subjects with HD. Indi-
viduals with a condition which would preclude them to have an 
MRI, a history of substance abuse, head trauma, a neurological 
illness, severe mood disorder, obsessive-compulsive disorder, or 
psychiatric disorder other than HD were excluded from this 
study.

All participants were examined using the UHDRS including all 
subscales [20], the Montreal Cognitive Assessment [21] and the 
Edinburgh Inventory to assess handiness [22] (Table 1). The CAG-
Age Product (CAP) score as age × (CAG-33.66) [23] was calcu-
lated. We estimated years to symptom onset (YTO) of motor 
symptoms in HD with a 50% certainty according to an established 
formula [3]. 



Kronenbuerger et al.Neurodegener Dis 2019;19:78–8780
DOI: 10.1159/000501616

The study was approved by the local ethics board at Johns Hop-
kins University. All participants in this study gave written in-
formed consent prior to participation. 

Magnetic Resonance Imaging
Experiments were performed on a 7-T MRI Philips scanner 

(Philips Healthcare, Best, The Netherlands) equipped with a 
32-channel head coil at the F.M. Kirby Research Center for Func-
tional Brain Imaging at the Kennedy Krieger Institute. 

Whole-brain anatomy was assessed using a T1-weighted, 3-di-
mensional (voxel = 1 mm isotropic) magnetization prepared rapid 
gradient echo MRI sequence. A resting state fMRI scan was per-
formed with gradient-echo echo-planar imaging with the follow-
ing parameters: time of repetition = 2,000 ms, time of echo = 22 
ms, flip angle = 60°, 150 slices (no gap), field of view = 256 × 256 
mm2, voxel = 2.5 mm isotropic, total scan time = 7 min. Optimal 
high-order shimming techniques [24] were used to minimize im-
age artifacts due to magnetic susceptibility effects and field inho-
mogeneity. 

Data Analysis
Analysis of T1-weighted magnetization prepared rapid gradi-

ent echo images was performed using topology-preserving, anato-
my-driven segmentation [25]. Resulting volumes of main cerebral 
structures were used for subsequent analysis.

Each fMRI analysis was performed using the Statistical Para-
metric Mapping (SPM) software package (http://www.fil.ion.ucl.
ac.uk/spm/) and the MatLab software (MathWorks Inc., Natick, 
MA, USA). Individual fMRI data were preprocessed by an initial 
correction for timing differences between slices, realignment, 
coregistration to anatomical images, spatial normalization to 
Montreal Neurological Institute template space, nuisance removal 
(CompCor) [26], regression of global mean, and motion parame-
ters (six rigid body motion correction parameters computed from 
the realignment routine and the first derivative of each parameter). 
A bandpass filter (0.1–0.01 Hz) was applied as a final step of pre-
processing. We also applied an additional “scrubbing” procedure 
[26, 27] to correct for micromovements after the standard realign-
ment procedure that can affect functional connectivity data [27–
29]. Each analysis was also repeated without the global signal re-
gression (GSR) step. 

Seed-based functional connectivity analysis between the stria-
tum (seed) and four chosen cortical regions (“premotor,” supple-
mentary motor area (“SMA”), “frontal interior,” and “frontal mid-
dle”) were performed. Anatomical regions were identified using 
the Individual Brain Atlases using the Statistical Parametric Map-
ping atlas [30–34] provided in the PickAtlas software (Wake Forest 
University, NC, USA). Functional connectivity was calculated be-
tween the striatum and each cortical region and converted to nor-
mal distribution using Fisher r-to-z transformation.

Table 1. Demographic data and clinical assessment of the study populations

Subject groups Controls farpremHD closepremHD earlyHD p Post hoc tests

Demographics
Subjects, n 16 11 8 13
Age, years 44±15 39±11 39±11 51±13 0.077
Gender (F/M) 10:6 5:6 6:2 7:6 0.396a

Education, years 16±2 14±2 15±2 15±2 0.346
MoCA score 29±1 29±2 29±2 27±3 0.005
Handedness (R/L) 15/1 11/0 10/0 13/1 0.732a

Disease characteristics
CAG repeat size NA 42±2 44±2 45±5 0.113
CAP score NA 293±93 378±46 537±98 <0.001 farpremHD < earlyHD
YTO, 50% certainty NA 18±12 7±5 –7±8 <0.001 farpremHD < earlyHD

Clinical scores
UHDRS-motor 1±3 1±2 8±2 32±17 <0.001 controls, farpremHD, closepremHD < earlyHD
UHDRS-behavior 3±4 6±6 5±4 14±15 0.011
UHDRS TFC 13±0 13±0 13±0 10±4 <0.001 earlyHD < closepremHD, farpremHD, controls 
SDMT 53±12 58±18 62±8 34±14 <0.001 earlyHD < closepremHD
Verbal fluency 42±10 44±12 53±15 31±17 0.003 earlyHD < closepremHD
Stroop total 235±32 215±44 223±39 144±52 <0.001 earlyHD < farpremHD, closepremHD, controls

Values are means ± standard deviation; HD, Huntington’s disease; MoCA, Montreal Cognitive Assessment; YTO, estimated years 
to onset according to Langbehn et al. [3], 2004; CAG repeat, cytosine-adenine-guanine repeat; CAP score, age × (CAG-33.66); UHDRS, 
Unified Huntington’s Disease Rating Scale; TMS, total motor score; TFC, total functional capacity; SDMT, Symbol Digit Modalities 
Task; verbal fluency, sum of the three parts of the FAS test; Stroop total, sum of color naming, color reading, and interference section. 
Please see Methods on details regarding the test applied. Controls, control subjects; farpremHD, HD subjects in the far-from-onset 
premanifest period; closepremHD, HD subjects in the close-to-onset premanifest period; earlyHD, HD subjects in the early manifest 
period of HD; p values based on ANOVA (correction for multiple testing according to Bonferroni as applied; critical p value is 0.004);  
post hoc tests, post hoc testing using Tukey’s honest significant difference criterion. a Assessed with χ2 test.
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Statistics
Statistical analyses were performed using the Statistical Pack-

age for the Social Sciences 25 software (SPSS Inc., Chicago, IL, 
USA). One-way analysis of variance followed by post hoc testing 
using Tukey’s honestly significant difference criterion was per-
formed to do group and subgroup comparisons, respectively. 
The χ2 test was applied for comparing the categorical variables 
including gender and handedness. Correlations between func-
tional connectivity and clinical scores as well as CAP score and 
YTO were analyzed using Pearson’s correlation coefficient. Age, 
gender, regional gray matter volume from anatomical scans, 
motion, and differential motion parameters were all accounted 

for as covariates in the analysis. Alpha error was adjusted for 
multiple comparisons using the Bonferroni method (critical p 
value 0.004).

Results

Demographic information for the study participants is 
summarized in Table 1. Age and gender were matched 
between groups (p > 0.1). The farpremHD, closepremHD 
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Fig. 1. Functional connectivity measured in HD subjects and con-
trols. Box and whisker plots show degree of synchrony of blood 
oxygenation level dependent (BOLD) activity between cortical re-
gions and striatum (seed) in the different subject groups analyzed. 
Functional connectivity was converted to normal distribution us-
ing Fisher r-to-z transformation. Controls, control subjects; far-
premHD, HD subjects in the far-from-onset premanifest period; 

closepremHD, HD subjects in the close-to-onset premanifest pe-
riod; earlyHD, HD subjects in the manifest period of HD. a Func-
tional connectivity between the “premotor” region and striatum. 
b Functional connectivity between the supplementary motor area 
(SMA) and striatum. c Functional connectivity between the “fron-
tal inferior” region and striatum. d Functional connectivity be-
tween the “frontal middle” region and striatum.
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and early HD patient subgroups showed significant dif-
ferences in the CAP score (p < 0.001) and YTO (p < 0.001), 
and UHDRS motor score (p < 0.001), UHDRS behavior 
score (p < 0.01), and UHDRS total functional capacity  
(p < 0.001). Involuntary movements and related image 
artifacts were minimal during all MRI scans. This is re-
flected in the head motion parameters quantified using 
the SPM realignment routine (control: 0.33 ± 0.12 mm 
translation, 0.05 ± 0.05º rotation; HD: 0.32 ± 0.16 mm 
translation, 0.05 ± 0.06º rotation; p > 0.1).

Analysis of synchrony of blood oxygenation level de-
pendent (BOLD) activity showed statistically signifi-
cantly altered functional connectivity in HD subjects 
compared to controls between the striatum and “pre-
motor” region (p < 0.001, F = 11.4), “SMA” region (p < 
0.001, F = 11.9), “frontal inferior” region (p < 0.001, F = 
10.3), and “frontal middle” region (p < 0.001, F = 13.7) 
(Fig. 1). 

Specifically, functional connectivity between the “pre-
motor” region and the striatum as well as between the 
“SMA” region and the striatum was diminished in all 
three HD groups compared to controls (Fig. 1a, b). This 
finding proved to be statistically significant in the post 
hoc testing. In contrast, functional connectivity between 
the “frontal inferior” region and the striatum as well as 
the “frontal middle” region and the striatum was in-
creased in all three HD subgroups compared to controls 
(Fig. 1c, d). Post hoc testing revealed that functional con-
nectivity between the “frontal inferior” region and the 
striatum was significantly smaller in controls than in the 
three HD subgroups. The functional connectivity be-
tween the “frontal middle” region and the striatum was 
significantly smaller in controls compared with early HD 
subjects as revealed by post hoc testing, but results of the 
farpremHD subjects and the closepremHD subjects did 
not differ significantly from controls or early HD subjects 
based on post hoc test applied. 

Correlation Analysis between Functional Connectivity 
and Clinical Data
There was a significant correlation between UHDRS 

motor score and the “premotor” region as well as a sig-
nificant correlation between UHDRS behavioral score 
and the “frontal middle” region. Other clinical scores did 
not correlate with the impaired functional connectivity 
found (p values > 0.03). 

The CAP scores and YTO correlated statistically sig-
nificantly with altered functional connectivity between 
the striatum and the “frontal middle” region, “frontal in-
ferior” region, “premotor” region, and “SMA” region (all 

p values < 0.001 of Pearson’s correlation coefficients). The 
CAP scores showed a positive correlation with the altered 
functional connectivity found, while the YTO showed a 
negative correlation with the altered functional connec-
tivity (Fig. 2). 

Functional connectivity between the striatum and the 
cortical regions that showed changes of the same direc-
tions in HD (increase or decrease compared to controls) 
showed significant positive correlations (Fig.  3). Func-
tional connectivity between the striatum and the cortical 
regions that showed opposite changes in HD (increase or 
decrease compared to controls) showed significant nega-
tive correlations (Fig. 3).

All key findings including group differences and cor-
relations remained significant when the functional con-
nectivity analysis was repeated without GSR. 

Discussion

In the current study, functional connectivity between 
the striatum and several cortical regions was examined 
using resting state fMRI performed at 7 T in HD subjects 
of different stages. Our results confirmed our previous 
finding of impaired striatal connectivity to the motor cor-
tex but revealed enhanced striatal connectivity with the 
prefrontal cortex in HD [12]. The reduction in function-
al connectivity of the striatum-motor circuit in HD sub-
jects is consistent with previous studies at 3 T and lower 
fields [11–16]. We speculate that the enhanced function-
al connectivity of the striatum-prefrontal circuit in HD 
may imply a compensatory mechanism, in which cortical 
regions other than motor areas are recruited to subserve 
functions that have been impaired due to pathological 
changes in HD [10].

The significant correlations between altered function-
al connectivity and genetic measures (CAP and YTO) 
suggest its potential value as a biomarker for tracking 
disease progression in HD. The CAG-age product or 
“CAP score” can be used to estimate the degree of ge-
netic exposure to the HD mutation in HD subjects [23]. 

(For figure see next page.)

Fig. 2. Correlation between functional connectivity between the 
striatum and various cortical regions (measured with correlation 
coefficient or CC) and genetic data in early and premanifest HD 
subjects (n = 34). The CAG-age product (CAP) score and estimat-
ed year to onset (YTO, approximate) are both quantities derived 
from genetic exposure of the HD subjects. R2, adjusted R2 in mul-
tiple regression.
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In line with the group comparison results, functional 
connectivity between the striatum and motor regions 
showed negative correlation with genetic exposure, 
whereas striatum-prefrontal functional connectivity 
showed the opposite. 

The current study was performed at the ultra-high 
field strength of 7 T, which is expected to benefit from 
higher signal-to-noise ratio, thus increased sensitivity 
and spatial resolution compared to lower fields such as 
3 T [18]. In addition to an approximately linear increase 
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Fig. 3. a–f Correlation between functional connectivity between the striatum and various cortical regions (mea-
sured with correlation coefficient) in all subjects including healthy controls and HD subjects (n = 51). R2, ad-
justed R2 in multiple regression.
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in signal-to-noise ratio with field strength, ultra-high 
field is particularly attractive to BOLD fMRI as the 
BOLD contrast shows supra-linear increase with field 
[35]. The spatial specificity of BOLD fMRI also im-
proves at ultra-high field since the BOLD signal pre-
dominantly originates from microvessels close to neu-
ronal parenchyma due to shortened venous blood T2*-
weighted relaxation time, whereas at 3 T and lower 
fields, macrovessels can have significant contributions 
to the BOLD signals [36–39]. For functional connectiv-
ity measured by resting state BOLD fMRI, 7 T can im-
prove spatial specificity and is capable of detecting sub-
tle correlations between brain regions not detected at  
3 T [40]. MRI at 7 T also presents technical challenges 
in terms of increased magnetic susceptibility effects and 
field inhomogeneity. However, optimal high-order 
shimming techniques [24] were employed in the cur-
rent study to minimize these problems. No substantial 
image artifacts were observed in our fMRI data using 
the optimized methodology. In a recent study conduct-
ed with the same fMRI approaches on the same scanner 
in our center on subjects with schizophrenia, we showed 
that comparable effect sizes in changes in functional 
connectivity from large-scale 3-T studies can be detect-
ed with a much smaller cohort at 7 T [41]. Therefore, we 
believe that the results from this study may aid the de-
velopment of therapeutic biomarkers using functional 
connectivity measures at ultra-high field to detect func-
tional changes in the brain with substantially fewer sub-
jects in HD clinical trials.

Given the growing concerns that the GSR step in func-
tional connectivity analysis may introduce additional 
negative correlations in the data, and thus may confound 
group comparison results [42], all functional connectiv-
ity analysis in the study was repeated without the GSR 
step in preprocessing. Indeed, we found that the results 
without GSR seemed to show somewhat fewer negative 
correlations compared to results with GSR, consistent 
with previous reports [42]. However, the main findings in 
our data including the group level differences in func-
tional connectivity and correlations were comparable 
with or without the GSR step. 

Although significant effects were detected in our data, 
we believe that the relatively small sample size and the 
cross-sectional design remain fundamental limitations 
of the current study. The sample size was estimated based 
on the effect size of functional connectivity changes in 
the striatum-motor circuit reported in our previous 
study [12]. The data from the current study will serve as 
the basis for designing future studies with larger cohorts 

and longitudinal components to validate our current 
findings. 

In summary, differential changes in functional con-
nectivity were detected in the striatum-motor and stri-
atum-prefrontal pathways in the brains of premanifest 
and early manifest HD subjects using ultra-high field 
(7-T) BOLD fMRI. The functional connectivity changes 
correlated strongly with the CAP score in HD subjects. 
Our data are consistent with a compensatory mecha-
nism in the HD brain attempting to restore the impaired 
motor functions by recruiting additional cortical re-
gions such as the prefrontal cortex. This hypothesis 
should be further explored and validated in subsequent 
studies to help us better understand the functional 
changes in the brain in HD. This may help with the de-
velopment of useful biomarkers to track disease pro-
gression and to evaluate responses to therapeutic inter-
ventions in HD.
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