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Abstract
We introduce PVSC-DTM (Parallel Vectorized Stencil Code for Dirac and Topological Materials), a library and code
generator based on a domain-specific language tailored to implement the specific stencil-like algorithms that can describe
Dirac and topological materials such as graphene and topological insulators in a matrix-free way. The generated hybrid-
parallel (MPIþOpenMP) code is fully vectorized using Single Instruction Multiple Data (SIMD) extensions. It is significantly
faster than matrix-based approaches on the node level and performs in accordance with the roofline model. We
demonstrate the chip-level performance and distributed-memory scalability of basic building blocks such as sparse matrix-
(multiple-) vector multiplication on modern multicore CPUs. As an application example, we use the PVSC-DTM scheme to
(i) explore the scattering of a Dirac wave on an array of gate-defined quantum dots, to (ii) calculate a bunch of interior
eigenvalues for strong topological insulators, and to (iii) discuss the photoemission spectra of a disordered Weyl semimetal.
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1. Introduction and related work

Dirac-type semimetals and topological insulators are new

materials with an enormous application potential in fields

ranging from nano-electronics, plasmonics and optics to

quantum information and computation. Their striking elec-

tronic, spectroscopic, and transport properties result from

spin-polarized (chiral), (semi)metallic surface states, which

are located in the middle of the spectrum and show linear

dispersion to a good approximation. The discovery of such

massless Dirac fermions in graphene by Castro Neto et al.

(2009), on the surface of topological insulators by Hasan

and Kane (2010), and in Weyl semimetals by Xu et al.

(2015) has triggered the investigation of Dirac physics.

Realizing that certain transport, magnetic and optical prop-

erties of solid state systems can be expressed by topological

invariants that are insensitive to local perturbations, has

largely changed the focus and direction of current con-

densed matter research from strong correlation to topolo-

gical aspects (see Chamon et al., 2014).

Whether a material develops distinct topological phases

is dictated by the dimension, the lattice structure and asso-

ciated electronic band structure including the boundary

states, and the relevant interactions, all reflected in the

system’s Hamilton operator and its symmetries. Therefore

it is of great interest to determine and analyze the ground-

state and spectral properties of paradigmatic model Hamil-

tonians for topological matter. This can be achieved by

means of unbiased numerical approaches.

PVSC-DTM is a highly parallel, vectorized (matrix-

free) stencil code for investigating the properties of two-

dimensional (2D) graphene and graphene-nanoribbons

(GNRs), three-dimensional (3D) topological insulators as

well as Weyl semimetals, including also disorder effects,

by using modern numerical methods based on matrix poly-

nomials. Due to the complexity of the problem, a consid-

erable amount of computation is required. Thus, one of the

design goals of PVSC-DTM was to build highly parallel

software that supports the architectural features of modern

computer systems, notably SIMD (Single Instruction
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Multiple Data) parallelism, shared-memory thread paralle-

lism, and massively parallel, distributed-memory paralle-

lism. On the compute node level, the development process

was guided by performance models to ensure that the rel-

evant bottleneck is saturated. The major methodological

advantage compared to existing software packages for sim-

ilar purposes is that all matrix operations are performed

without an explicitly stored matrix, thereby greatly reduc-

ing the pressure on the memory interface and opening

possibilities for advanced optimizations developed for

stencil-type algorithms.

In order to ease the burden on users and still provide the

flexibility to adapt the code to different physical setups, a

domain-specific language (DSL) was developed that allows

for a formulation of the problem without any reference to a

specific implementation, let alone optimization. The actual

code is generated automatically, including parallelization and

blocking optimizations. Although several stencil DSLs have

been developed (see, e.g. Schmitt et al., 2014; Tang et al.,

2011; Zhang et al., 2017), some even with specific application

fields in mind such as in Ragan-Kelley et al. (2013), there is to

date no domain-specific approach to generating efficient sten-

cil code for algorithms describing the specific quantum sys-

tems mentioned above from a high-level representation.

Optimal blocking factors and other optimization strategies

are traditionally determined using auto-tuning, which was

extensively analyzed in the past by, e.g. Datta et al. (2008,

2009), Kamil et al. (2010), and Basu et al. (2013). Here we

calculate optimal blocking factors automatically from

machine properties, which makes performance tuning (auto-

matically or manually) on the generated code or within the

code generation phase obsolete. The touchstone for perfor-

mance optimality is whether the sparse matrix-vector multi-

plication (spMVM) loop can achieve minimal code balance

and still utilize a large fraction of the memory bandwidth. In

all application cases investigated so far, this was not observed

as a restriction or disadvantage.

Temporal blocking strategies have been a subject of

intense research over the last two decades (Bandishti et al.,

2012; Malas et al., 2017; Wonnacott, 2000). They perform

multiple stencil sweeps of in-cache tiles in order to (ideally)

decouple from the main memory bottleneck. In unmodified

form, these approaches are unsuitable for the applications

covered here because spMVM is only a part (albeit an impor-

tant one) of the whole algorithm. However, blocking optimi-

zations do exist for, e.g. filter diagonalization methods, and

can have a similar effect as temporal blocking for pure stencil

codes, as shown by Kreutzer et al. (2015, 2018).

This report gives an overview of the physical motivation

and describes in detail the implementation of the frame-

work, including the DSL. Performance models are devel-

oped to confirm the optimal resource utilization on the chip

level and assess the potential of code optimizations, such as

spatial blocking and on-the-fly random number generation.

Performance comparisons on the node and the highly par-

allel level with matrix-bound techniques (using the

GHOST library) show the benefit of a matrix-free

formulation. The code is freely available for download at

http://tiny.cc/PVSC-DTM.

For the benchmark tests we used two different compute

nodes: A dual-socket Intel Xeon E5-2660v2 “Ivy Bridge”

(IVB) node with 10 cores per socket and 2.2 GHz of nom-

inal clock speed, and an Intel Xeon E5-2697v4

“Broadwell” (BDW) node with 18 cores per socket and

2.3 GHz of nominal clock speed. In all cases the clock

frequency was fixed to the nominal value (i.e., Turbo Boost

was not used). The “cluster on die” (CoD) mode was

switched off on BDW, so both systems ran with two

ccNUMA domains. The maximum achievable per-socket

memory bandwidth was 40 Gbyte/sec on IVB and 61

Gbyte/sec on BDW. The Intel C/Cþþ compiler in version

16.0 was used for compiling the source code.

For all distributed-memory benchmarks we employed the

“Emmy” cluster at RRZE (Erlangen Regional Computing

Center). This cluster comprises over 500 of the IVB nodes

described above, each equipped with 64 GB of RAM and

connected via a full nonblocking fat-tree InfiniBand network.

This paper is organized as follows. Section 2 provides

typical lattice-model Hamiltonians for graphene nanorib-

bons with imprinted quantum dots, strong topological insu-

lators, and disordered Weyl semimetals. A matrix-free

method and code for the calculation of electronic properties

of these topological systems is described in Sec. 3, with a

focus on a domain-specific language that serves as an input

to a code generator. To validate and benchmark the perfor-

mance of the numerical approach, the proposed PVSC-DTM

scheme is executed for several test cases. Section 4 describes

the matrix-polynomial algorithms used for some physical

“real-world” applications. Finally, we conclude in Sec. 5.

2. Model Hamiltonians

In this section we specify the microscopic model Hamilto-

nians under consideration, in a form best suitable for the

application of the PVSC-DTM stencil code. The emer-

gence of Dirac-cone physics is demonstrated.

2.1. Graphene

Graphene consists of carbon atoms arranged in a 2D hon-

eycomb lattice structure (see the review by Castro Neto

et al., 2009). The honeycomb lattice is not a Bravais lattice,

because two neighboring sites are inequivalent from a crys-

tallographic point of view, but can be viewed as a triangular

lattice with a two-atom basis, as shown in Goerbig (2011).

Taking into account only nearest-neighbor hopping pro-

cesses on the honeycomb lattice, the resulting two-band

structure of pure graphene,
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exhibits an upper (þ) anti-bonding p� band and a lower (�)

bonding p band, which touch each other at so-called Dirac

points; next to any of those the dispersion becomes linear

(see Castro Neto et al., 2009). In the following, we set the

lattice constant a ¼ 1. The corresponding graphene tight-

binding Hamiltonian respects time-inversion symmetry,

which implies eð�kÞ ¼ eðkÞ, and if kD is the solution for

eðkÞ ¼ 0 [which is the Fermi energy EF for intrinsic

(undoped) graphene], so is �kD, i.e. the Dirac points occur

in pairs.

Compared to the band structure of an infinite 2D graphene

sheet, the DOS of finite GNRs is characterized by a multitude

of Van Hove singularities, as shown by Castro Neto et al.

(2009) and Schubert et al. (2009). For zigzag GNRs, the

strong signature at E ¼ 0 indicates the high degeneracy of

edge states, as shown in Figure 1(a). By contrast, armchair

GNRs are gapped around E ¼ 0; this finite-size gap vanishes

when the width of the ribbon tends to infinity.

Particularly with regard to the implementation of the

PVSC-DTM, the effective tight-binding Hamiltonian for

graphene’s p-electrons is brought into the form:

H ¼
XN=4

n¼1

Cy
nþêx

TxCn þCy
nþêy

T yCn þ H:c:
� �

þ
XN=4

n¼1

CynðTn þ V nÞCn ;

ð2Þ

where Cn is a four-component spinor at site n. Here and in

what follows we use units such that h� ¼ 1 and measure the

energy in terms of the carbon-carbon electron transfer inte-

gral t; N is the number of lattice sites. Then, in Eq. (2), the

first term describes the particle transfer Tx;y between neigh-

boring cells (containing now four atoms each) in x and y

direction, while the second term gives the transfer Tn within

the cells. To include the case of (on-site) disorder, we are

allowing the potentials vn;j to vary within the cells and from

cell to cell. Then 4�4 matrices are

Tx ¼

0 0 0 0

�1 0 0 0

0 0 0 �1

0 0 0 0

0
BBBBB@

1
CCCCCA ; Ty ¼

0 0 0 �1

0 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA ;

Tn ¼

0 �1 0 0

�1 0 �1 0

0 �1 0 �1

0 0 �1 0

0
BBBBB@

1
CCCCCA ;

V n ¼

vn;0 0 0 0

0 vn;1 0 0

0 0 vn;2 0

0 0 0 vn;3

0
BBBBB@

1
CCCCCA:

ð3Þ
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Figure 1. Band dispersion along kx deduced from the single-particle spectral function Aðk; EÞ [left panels] and density of states (DOS)
[right panels] for the model Hamiltonians (2), (4), and (8). (a) Zigzag GNR with vn;j ¼ 0 having 16 “rows” and open boundary conditions
(BCs) in y direction (periodic BCs in x direction). (b) Strong TI with m ¼ 2, D1=2 ¼ Vn ¼ 0 on a cuboid with 512� 64� 8 sites and
periodic BCs. Here the Dirac cone (linear dispersion) near E ¼ 0 is due to the surface states. (c) Weyl semimetal on a cuboid with
256� 32� 32 sites and open BCs in z direction (periodic BCs in x and y directions).
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2.2. Topological insulators

The remarkable properties of 3D topological insulators

(TIs) result from a particular topology of their band struc-

ture, which exhibits gapped (i.e., insulating) bulk and

gapless (i.e., metallic) linearly dispersed Dirac surface

states (see reviews by Hasan and Kane (2010) and Qi and

Zhang (2011)). Bulk-surface correspondence implies, as

shown by Fu et al. (2007), that so-called weak TIs (which

are less robust against the influence of non-magnetic impu-

rities) feature none or an even number of helical Dirac

cones while strong (largely robust) Z2 TIs have a single

Dirac cone.

As a minimal theoretical model for a 3D TI with cubic

lattice structure we consider—inspired by the orbitals of

strained 3D HgTe or the insulators of the Bi2Se3 family,

as studied in Sitte et al. (2012)—the following four-band

Hamiltonian:

H ¼
XN

n¼1

Cyn mG1 þ D1G5 þ D2G15 þ V nG0
� �

Cn

�
XN

n¼1

X3

j¼1

Cy
nþê j

G1 � iGjþ1

2
Cn þ H:c:

0
@

1
A;

ð4Þ

where Cn is a four-component spinor at site n. The Hamil-

tonian is expressed in terms of the five Dirac matrices Ga,

Gð1;2;3;4;5Þ ¼ ð1� sz;�sy � sx;sx � sx;�1� sy;sz � sx),

and their 10 commutators Gab ¼ ½Ga;Gb�=2i, which satisfy

the Clifford algebra, fGa;Gbg ¼ 2da;bG0, with G0 being the

identity 14 and si (si) the Pauli matrices referring to orbital

(spin) space (see Pieper and Fehske, 2016; Schubert et al.,

2012). Hence, H constitutes a complex, sparse, banded

matrix with seven subdiagonals of small dense blocks of

size 4� 4. The corresponding tight-binding 4� 4 band

matrix reads:

eðkÞ ¼ �
X3

j¼1

G1 � iGjþ1
� �

coskj

þ mG1 þ D1G5 þ D2G15 :

ð5Þ

The parameter m can be used to tune the band structure:

For jmj < 1, a weak TI with two Dirac cones per surface

arises, whereas for 1 < jmj < 3, a strong TI results, with a

single Dirac cone per surface (see Figure 1(b)). In the case

that jmj > 3 we have a conventional band insulator. Exter-

nal magnetic fields cause finite D1 and D2, which will break

the inversion symmetry. D1, in addition, breaks the time-

inversion symmetry.

We now describe for the TI problem how the density of

states (DOS) and the single-particle spectral function

Aðk;EÞ depicted in Figure 1 is obtained using state-of-the

art exact diagonalization and kernel polynomial methods

that were described in Weiße and Fehske (2008) and Weiße

et al. (2006), respectively. For a given sample geometry

(and disorder realization), we can calculate fjlig, the

two-fold Kramers degenerate eigenstates of H (5). Those

can be visualized in momentum and energy space, via the

momentum-resolved spectral function

Aðk;EÞ ¼
X4

n¼1

X4N

l¼1

jhlj ðk; nÞij2dðE � ElÞ ð6Þ

and the density of states (DOS)

DOSðEÞ ¼
X4N

l¼1

dðE � ElÞ

¼ 1

N

X
n

X4

n¼1

X4N

l¼1

jhlj ðrn; nÞij2dðE � ElÞ;
ð7Þ

even in the case of disorder. Here, heðpÞn � e
ðbÞ
n j ðk; n

0 Þi
¼ expðihkjeðpÞn iÞdnn0 is a Bloch state and hjeðpÞn � e

ðbÞ
n j

 ðrn
0 ; n

0 Þi ¼ dnn
0 dnn0 is a Wannier state, where jeðpÞn i and

jeðbÞn i denote the canonical basis vectors of position and

band index space, respectively (see Schubert et al., 2012).

For the model (4) with m ¼ 2 (and V n ¼ 0, D1=2 ¼ 0),

bulk states occur for energies jEj � 1. Moreover, subgap

surface states develop, forming a Dirac cone located at the

surface momentum kD ¼ ð0; 0Þ, as shown in Figure 1(b).

The latter states determine the striking electronic properties

of TIs.

2.3. Weyl semimetals

The Weyl semimetallic phase, which can be observed, e.g.

in TaAS (see Xu et al., 2015), is characterized by a set of

linear-dispersive band touching points of two adjacent

bands, the so-called Weyl nodes. The real-space Weyl

points are associated with chiral fermions, which behave

in momentum space like magnetic monopoles. Unlike the

2D Dirac points in graphene, the 3D Weyl nodes are pro-

tected by the symmetry of the band structure and, as long as

there is no translational-symmetry-breaking intervalley-

mixing between different Weyl nodes, the Weyl semimetal

is robust against perturbations, as was shown by Yang et al.

(2011). In this way a Weyl semimetal hosts, like a TI,

metallic topological surface states (arising from bulk topo-

logical invariants). However, while the topological surface

states of TIs give rise to a closed Fermi surface (in momen-

tum space), the surface-state band structure of Weyl semi-

metals is more exotic; it forms open curves, the so-called

Fermi arcs, which terminate on the bulk Weyl points (see

Wan et al., 2011).

The minimal theoretical models for topological Weyl

semimetals have been reviewed quite recently by McCor-

mick et al. (2017). Here we consider the following 3D

lattice two-band Hamiltonian,

H ¼
XN

n¼1

Cy
nþêx

sx

2
Cn þ

X
j¼y;z

Cynþê j

sx þ isj

2
Cn þ H:c:

0
@

1
A

þ
XN

n¼1

Cyn V n � sxð2þ cosk0Þ½ �Cn;

ð8Þ
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where Cn is now a two-component spinor and sj are the

Pauli matrices (again, the lattice constant is set to unity, just

as the transfer element). In momentum space

[k ¼ ðkx; ky; kzÞ], the (2� 2) band matrix takes the form

(V n ¼ 0)

eðkÞ ¼ sxðcoskx � cosk0 þ cosky þ coskz � 2Þ
þsysinky þ szsinkz ;

ð9Þ

developing two Weyl nodes at momenta kW
+ ¼ ð+k0 ; 0; 0Þ

with k0 ¼ p=2, as seen in Figure 1(c) (Hasan et al., 2017).

3. Matrix-free code for topological systems
with Dirac cones

In general, topological materials have a rather complex

lattice structure, although it is so regular that a matrix-

free formulation of spMVM and similar kernels is

feasible due to the stencil-like neighbor relations. The

lattice is always periodic (apart from disorder effects),

but particle transfer integrals or interactions vary widely

among materials. In other words, the resulting stencil

geometry depends strongly on the physics, and in a way

that makes it impossible to set up optimal code for all

possible situations in advance although the core algo-

rithm is always a stencil-like update scheme. The

required blocking strategies for optimal code perfor-

mance also vary with the stencil shape. Consequently,

it is worthwhile to generate the code for a particular

physical setup. This allows to hard-code performance-

relevant features and takes out a lot of uncertainty about

compiler optimizations. In this section we describe some

of the design goals and implementation details of our

matrix-free code, including the DSL, representative

benchmark cases, and performance results.

3.1. Preliminary considerations

Many numerical algorithms that can describe quantum sys-

tems, such as eigenvalue solvers or methods for computing

spectral properties, such as the Kernel Polynomial Method

(KPM) (reviewed in Weiße et al., 2006), require the multi-

plication of large sparse matrices with one or more RHS

vectors as a time-consuming component. If the matrix is

stored explicitly in memory and special structures such as

symmetry and dense subblocks are not exploited, The data

transfer between the CPU and the main memory is the

performance-limiting bottleneck. An upper limit for the

performance of a typical linear algebra building block such

as spMVM can thus be easily calculated by means of the

naive roofline model, which was popularized by Williams

et al. (2009) and applied in many different contexts, includ-

ing stencils (Datta et al., 2009), fluid dynamics (Randles

et al., 2013), and sparse linear algebra (Gropp et al., 2000),

among many others:

P � min Ppeak; bS=Bc

� �
: ð10Þ

This model assumes that the performance of a loop is

either limited by the computational peak performance of

the CPU (Ppeak) or by the maximum performance allowed

by memory data transfers (bS=Bc), whichever is more strin-

gent. In case of spMVM and similar algorithms on any

modern multicore CPU, the former is much larger than the

latter, so we can safely ignore it here. bS is the achievable

main memory bandwidth in bytes/s; it can be determined by

a suitable benchmark, such as STREAM by McCalpin

(1991–2007). Bc is the code balance, i.e. the ratio of the

required data volume through the memory interface (in

bytes) and the amount of work (usually floating-point oper-

ations, but any valid “work” metric will do). Clearly, bS=Bc

is then an upper limit for the expected performance of the

loop. In practice one can determine the code balance by

code inspection and an analysis of data access locality.

Whenever the data traffic cannot be calculated accurately,

e.g. because some indirect and unpredictable access is

involved, it is often possible to give at least a lower limit

for Bc and thus an absolute upper limit for the performance.

A “good” code in the context of the roofline model is a code

whose performance is near the limit. Once this has been

achieved, any optimization that lowers Bc will increase the

performance accordingly. Many refinements of the model

have been developed to make it more accurate in situations

where the bottleneck is not so clearly identified, e.g. by Ilic

et al. (2014) and Stengel et al. (2015).

Depending on the processor architecture, SIMD vector-

ization, i.e. using data-parallel instructions to carry out

multiple operations in parallel on short vectors, may be

required to achieve memory bandwidth saturation even

with a code that has a rather low code balance. This hap-

pens when the single core is too slow with scalar, i.e. non-

SIMD code, so that even the combined demand of all cores

for data does not exert enough “pressure” on the memory

interface. Hence, SIMD vectorization was given special

attention in our framework. See below for details.

It was first shown by Gropp et al. (2000) that the min-

imal code balance of spMVM for double precision, real

matrices in CRS format and a 32-bit index is

6 bytes=flop , leading to memory-bound execution if the

matrix does not fit into a cache. A matrix-free formulation

can greatly reduce the demand for data and leads, in case of

many topological materials, to stencil-like update schemes.

Even if some of the terms in the operators require variable

coefficients, getting rid of the matrix data still has a notable

effect. Although the resulting code is limited by memory

bandwidth as well, the code balance can be very low

depending on the particular stencil shape and on whether

layer conditions (LCs) are satisfied. The concept of LCs

was conceived by Rivera and Tseng (2000) and applied in

the context of advanced analytic performance models by

Stengel et al. (2015). In the following we briefly describe

the optimizations that were taken into account, using a

simple five-point stencil as an example.

Listing 1 shows one update sweep of this code, i.e. one

complete update of one LHS vector. In a matrix-bound

64 The International Journal of High Performance Computing Applications 35(1)



formulation the coefficients c1, . . .,c4 would be stored in

memory as separate, explicit arrays. In addition to the RHS

vector the array noise[] is read, implementing a random

potential. As is customary with stencil algorithms we use

the lattice-site update (LUP) as the principal unit of work,

which allows us to decouple the analysis from the actual

number of flops executed in the loop body.

The minimum code balance of this loop nest for data in

memory is Bc¼ 16þ 8þ 8ð Þ bytes=LUP¼32 bytes=LUP,

because each LHS element must be updated in memory (16

bytes), and each RHS and noise element must be loaded (eight

bytes each). If nontemporal stores can be used for y[], the

code balance reduces to 24 bytes=LUP because the write-

allocate transfers do not occur and data is written to memory

directly. The minimum code balance can only be attained,

however, if the highlighted RHS elements do not have to be

loaded from memory. This LC is satisfied if at least three

successive rows of x[] fit into the cache. Assuming that the

noise[] array and the LHS also require one row of cache

space, the condition reads:

5� imax� 8 bytes < C ; ð11Þ

where C is the available cache size in bytes per thread. In

multi-threaded execution with outer loop parallelization via

OpenMP, each thread must have its LC fulfilled. If the

condition is broken, the inner loop can be blocked with a

block size of ib and the condition will be satisfied if

ib <
C

40bytes
: ð12Þ

If the blocking is done for a cache level that is shared

among the threads in the team, the LC gets more and more

stringent the more threads are used. For best single-

threaded performance it is advisable to block for an inner

cache, i.e. L1 or L2. See Stengel et al. (2015) for more

details. Our production code determines the optimal block

size according to (12).

The noise[] array is a significant contribution to the

code balance. However, its contents are static and can be

generated on the fly, trading arithmetic effort for memory

traffic. The generation of random numbers should certainly

be fast and vectorizable, so as to not cause too much over-

head. See the section on random number generation below

for details.

Some algorithmic variants require the concurrent,

independent execution of stencil updates on multiple

source and target vectors. Although SIMD vectorization

is easily possible even with a single update by lever-

aging the data parallelism along the inner dimension, a

more efficient option exists for multiple concurrent

updates: If the vectors can be stored in an interleaved

way, i.e. with the leading dimension going across vec-

tors, vectorization along this dimension is straightfor-

ward if the number of vectors is large compared to the

SIMD width. As opposed to the traditional scheme, per-

fect data alignment can be achieved (if this is required)

and no shuffling of data in SIMD registers is necessary

for optimal register reuse. See Listing 2 for an example

using a simple five-point stencil. The considerations

about LCs do not change apart from the fact that now

each RHS vector needs to have its own LC fulfilled.

Condition (12) is thus modified to

ib <
C

5� nb � 8bytes
ð13Þ

if n_b is the number of concurrent updates and the

noise[] arrays have to be loaded from memory.

In summary, code generation in our framework has two

goals: produce a spMVM routine with minimal code bal-

ance by cache-adapted loop blocking, and produce SIMD-

vectorized code in order to be able to address the memory

bandwidth bottleneck in all relevant cases.

3.2. Domain-specific language

In order to provide a maximum amount of flexibility to

users and still guarantee optimal code, a DSL was con-

structed which is used to define the physical problem at

hand. A precompiler written in Python then generates

OpenMP-parallel C code for the sparse matrix-vector mul-

tiplication (a “lattice sweep”), which can be handled by a

standard compiler. In the following we describe the DSL in

detail by example.

Listing 2. Two-dimensional five-point stencil sweep with nb RHS
and LHS vectors. SIMD vectorization across RHS and LHS vectors
is possible and efficient if the vector storage order can be chosen
as shown.

Listing 1. Two-dimensional five-point stencil sweep with one
RHS and one LHS vector. The highlighted elements must come
from cache for optimal code balance.
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The source code for the DSL program resides in a text

file. The code begins with a specification of the problem

dimensionality (2D/3D) and the basis size:

dim 2

size 4

The stencil coefficients can take various forms: con-

stant, variable, or random. The number of coefficients of

each kind is set by the keywords n_coeff_*, where “*” is

one of the three options. For example, in case of four vari-

able coefficients:

n_coeff_variable 4

The command nn with two or three arguments (depend-

ing on the dim parameter) and the following size lines

define a sparse coefficient matrix to a neighboring lattice

block at the offset defined by the arguments of nn. Multiple

entries in a line are separated by “;”. Optionally the first

entry begins with “l” followed by the row index. A single

block entry is written as “fcolumn indexg|fvalueg” for

a fixed value, or as “fcolumn indexg| ftypeg|ftype

index or valueg” for a different type. This is a simple

example for a coefficient matrix one lattice position to the

left of the current position (set by nn-10) and a fixed entry

of value �1 at position (0,1) and another entry of value �1

at position (3,2):

nn -1 0

l0; 1|-1

l1;

l2;

l3; 2|-1

Note that all indexing is zero-based. The following coef-

ficient types are allowed:

f Fixed coefficient, hard-coded (default type). This

means that an entry of “1|-1” can also be written

as “1|f|-1”. It will be hard-coded into the generated

C code.

c Constant coefficient per lattice site, read from an array

of length n_coeff_const. For example, “1|c|2”

means that the coefficient used will be coeff_c[2].

The coefficient array can be changed at runtime if

required, or preset in the DSL source code. For exam-

ple, the line

coeff_const_default 1 2 -0.5

will initialize the array coeff_c[] with the specified

values.

v Variable coefficient per lattice site, read from an array

of length n_coeff_variable per lattice site.

r Random coefficient per lattice site, read from an array

of length n_coeff_rand per lattice site.

In Listing 3 we show a complete example for a 2D

graphene stencil with variable coefficients on the diagonal,

while Listing 4 shows the generated C source code for the

spMVM. Note that spatial blocking is the only explicit

optimization done by the code generator. We rely on the

compiler to produce SIMD-vectorized code from the C

source, which is usually possible by giving it sufficient

information, particularly about non-aliasing of pointers.1

Coefficient arrays and execution parameters (such as, e.g.

the grid size) can be configured and changed at runtime.

The code repository2 contains numerous examples that

Listing 3. DSL source for a graphene stencil.

Listing 4. Generated matrix-vector multiplication code for the
graphene stencil (shortened).
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demonstrate the DSL usage and how the generated source

code can be embedded into algorithms.

3.3. Random number generator

In some physically relevant cases, the Hamiltonian matrix

has a diagonal, random component. These random numbers

are usually stored in a constant array to be loaded during

the matrix-vector multiplication step. At double precision

this leads to an increase in code balance by 8 bytes/LUP,

which can be entirely saved by generating the random num-

bers on the fly using a fast random number generator

(RNG). Considering that the stencil update schemes studied

here can run at several billions of lattice site updates per

second on modern server processors, a suitable RNG must

be able to produce random numbers at a comparable rate.

This is not possible with standard library-based implemen-

tations such as, e.g. drand48(), but faster and (in terms of

quality) better options do exist. The RNG code should be

inlined with the actual spMVM or at least be available as a

function that generates long sequences of random numbers

in order to avoid hazardous call overhead.

The standard type of RNG used in scientific computing

is the linear congruential generator (LCG), which calcu-

lates xiþ1 ¼ ðaxi þ bÞmod m and casts the result to a

floating-point number. The numbers a, b, and m parame-

terize the generator; for efficiency reasons one can choose

m to be a power of two (e.g., m¼ 248 in drand48()), but

such simple methods fail the statistical tests of the popular

TESTU01 suite devised by L’Ecuyer and Simard (2007).

However, if there are no particular quality requirements

(i.e., if only “some randomness” is asked for), they may

still be of value. Despite the nonresolvable dependency of

xiþ1 on xi, which appears to rule out SIMD vectorization,

LCGs can be vectorized if a number of independent random

number sequences is needed and if the SIMD instruction

set of the hardware allows for the relevant operations

(e.g., SIMD-parallel addition, multiplication, and modulo

on unsigned integer operands with the required number

of bits).

A more modern and similarly fast approach to RNGs are

the xorshift generators by Marsaglia (2003). In the simplest

case they work by a sequence of XOR mask operations of

the seed with a bit-shifted version of itself: x ¼ x	 a;
x ¼ x
 b; x ¼ x	 c. Improved versions like the

xorshift128þ by Vigna (2017) pass all statistical tests of

the “SmallCrush” suite in TESTU01. Table 1 shows a per-

formance comparison of different RNGs on one socket of

the IVB and BDW systems, respectively.

The speedup between IVB and BDW is particularly

large for the xorshift generators because the AVX2 instruc-

tion set on BDW supports SIMD-parallel bit shifting oper-

ations, which are not available in AVX. For reference, we

have included a SIMD-vectorized Mersenne Twister RNG

(SFMT19937), which is available in Intel’s Math Kernel

Library (MKL). Note that the purpose of Table 1 is not to

compare the performance of different RNG algorithms but

to give an impression of how expensive random number

generation is compared to the pure spMVM operation. To

this end, the GRN/sec numbers should be compared to the

GLUP/s stencil performance numbers in the following

sections.

Whether a particular RNG impacts the performance of

the matrix-free spMVM step depends on the application. In

the cases we investigate here, a whole row of random num-

bers can be generated in advance before each inner loop

traversal (see Listing 5) without a significant performance

degradation in the bandwidth-saturated case. Fusing the

RNG with the inner loop is a possible optimization that

would, however, not change the roofline limits but at best

lead to faster bandwidth saturation as the number of cores

goes up.

3.4. Geometry

The current implementation of PVSC-DTM supports

cuboid domains of arbitrary size (only limited by memory

capacity) with 3D domain decomposition using MPI, and

OpenMP-based multithreading on the subdomain level. For

each spatial dimension, periodic BCs can be configured

separately as needed. Variable-coefficient arrays and initial

vectors can be preset via a user-defined callback function

with the following interface:

Table 1. Performance comparison of the LCG32 RNG, four
xorshift generators of different sophistication, and the
SFMT19937 generator available in the Intel MKL. Performance
numbers are given in billions of random numbers per second
(GRN/sec) on one socket (10 or 18 cores, respectively). The
benchmark consists in the (repeated) computation of 2000
double-precision random numbers with uniform distribution. For
each generator, the second column lists the failed SmallCrush tests
of the TESTU01 suite. These particular test results were taken with
the Intel C compiler version 17.0 update 5. The benchmarks are
available in the code repository.

RNG (loop unrolling)
Failed

SmallCrush
Perf. IVB

[GRN/sec]

Perf.
BDW

[GRN/sec]

lgc32 (32) 1,2,3,4,5,6,7,8,9,10 19.3 28.8
xorshift32 (32) 1,3,4,8,9,10 10.1 28.8
xorshift128 (16) 6 8.29 25.4
xorshift64_long (16) 8 8.26 31.7
xorshift128plus_long (16) — 6.34 20.7
Intel MKL SFMT19937 — 7.72 22.0

Listing 5. Using an “out-of-band” fast RNG to save memory data
traffic.
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double (* fnc)(long * r, int k, \

void * parm, void * seed);

This function must expect the following input

parameters:

fx¼r[0], y¼r[1], z¼r[2], \

basis_place¼r[3], vector_block_index¼kg

It returns the respective vector entry as a double-

precision number. The pointer parm is handed down from

the vector initial call and allows for configuring specific

options. The pointer seed is a reference to a 128-bit pro-

cess- and thread-local random seed.

Finally a vector block will be initialized by calling the

function:

pvsc_vector_from_func(pvsc_vector * vec, \

pvsc_vector_func_ptr * fnc, void * parm);

This mechanism lets the user define a generalized initial

function with optionally free parameters. In addition, a

thread-local random seed for optional random functions

is available in the initialization function, which enables a

fully parallelized initialization of vectors.

3.5. Benchmarks

In order to validate the performance claims of our matrix-

free implementation and optimization of random number

generation we ran several test cases on the benchmark sys-

tems described in the introduction. Performance is quanti-

fied in billions of lattice site updates per second (GLUPs/

sec). For all stencil update kernels (spMVMs) with constant

coefficients studied here, the minimal code balance is 24

bytes/LUP with on-the-fly RNGs (see Listing 5) and 32

bytes/LUP with random numbers stored as constant arrays.

The roofline model thus predicts bandwidth-bound per-

socket upper performance limits of 1.67 GLUPs/sec on

IVB and 2.5 GLUPs/sec on BDW.

Figures 2 and 3 show the performance scaling of the

spMVM with a 3D 7-point stencil on one socket of the

benchmark systems. On IVB, the “fallback” kernel, which

uses explicitly stored random numbers, saturates the mem-

ory bandwidth with eight cores at about 95% of the achiev-

able bandwidth (black solid line). The kernel without

random numbers (labeled “const. coeff.”) marks a practical

upper performance limit. It also saturates at about the same

bandwidth (and thus at 33% higher performance), with a

very slight additional speedup from SMT (Hyper-Thread-

ing). As expected, the versions with on-the-fly RNGs are

somewhat slower on the core level due to the increased

amount of work, which, in case of the xorshift variants, leads

to a lower performance than for the fallback variant up to

seven cores, and non-saturation when only physical cores

are used. SMT can close this gap by filling pipeline bubbles

on the core level, and all RNG versions end up at exactly the

same performance with 20 SMT threads. On BDW the full-

socket situation is similar, but all versions come closer to the

practical bandwidth limit than on IVB, and the fallback

variant is slower than all RNG versions at all core counts.

The bottom line is that even the most “expensive” on-

the-fly RNG allows memory bandwidth saturation on both

architectures, that the roofline model predictions are quite

accurate, that the automatic spatial blocking in PVSC-

DTM works as intended and yields the optimal in-

memory code balance, and that the elimination of the stored

random number stream causes the expected speedup even

with high-quality RNGs.
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Figure 2. Performance scaling of a spMVM kernel using a
constant-coefficient 3D 7-point stencil problem with (as in Listing
5) and without on-the-fly RNG on one IVB socket (10 cores) and
with SMT (2 threads per core). The dashed line shows the per-
formance without a random potential, whereas the filled black
squares (fallback) show the result with random numbers read
from memory. All other data sets were obtained with different
on-the-fly RNGs (nb ¼ 1, system size 5123).
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Figure 4 shows a performance comparison of stored

random numbers and on-the-fly RNG for a 2D graphene

application with four subsites, a block vector size nb of 1, 2,

and 4, and four variable coefficients. The code balance goes

down from 32 bytes/LUP to 28 bytes/LUP and finally to 26

bytes/LUP when going from nb ¼ 1 to 2 and 4, approach-

ing the limit of 24 bytes/LUP at nb !1. With on-the-fly

RNGs substituting the variable-coefficient arrays this bal-

ance is achieved for any nb, which is shown in the right

panel of Figure 4. It can also be observed in the data that the

improved SIMD vectorization with nb > 1 speeds up the

code measurably in the nonsaturated regime, but this

advantage vanishes close to saturation because the data

transfer becomes the only bottleneck.

Figures 5 and 6 show the performance of the stencil

kernels of a 3D TI model with different nb on IVB and

BDW. Two versions are shown for each architecture: The

standard one and an optimized version with dot products

fused into the stencil kernel, increasing the number of flops

per update by six. The code balance for TI stencils is lower

than for graphene or the 7-point stencil, hence more cores

are required for bandwidth saturation.

At larger nb the loop body becomes more complicated,

and the benefit of SIMD vectorization may be compensated

by a more inefficient in-core execution due to register

shortage and less effective out-of-order execution. This can

be seen on IVB at nb ¼ 8, where the available number of

cores is too small to reach saturation, as opposed to nb ¼ 4,

where the SIMD width matches the number of block

vectors.

Calculating dot products on the fly has a rather small

impact on performance (less that 15%), which on BDW

vanishes at saturation because of its generally lower

machine balance. Still, overall the roofline model provides

a good estimate of the expected socket-level performance

of our matrix-free codes even for topological insulators.

Note, however, that the saturation properties depend on

many factors, such as the number of cores per socket, the

memory bandwidth, the clock speed, and the SIMD width.

An accurate prediction of speedup versus the number of

cores would require a more advanced performance model,

such as the ECM model described in Stengel et al. (2015).

In Figures 7 and 8 we compare PVSC-DTM with the

GHOST library developed by Kreutzer et al. (2017) using a

strong scaling TI test case on the Emmy cluster. One MPI

process was bound to each socket, with OpenMP paralle-

lization (10 threads) across the cores. Both PVSC-DTM

and GHOST were used in “vector mode,” i.e. without over-

lap between communication and computation. GHOST

always uses explicitly stored matrices, which is why

PVSC-DTM not only has the expected performance advan-

tage due to its matrix-free algorithms but also requires less

hardware to handle a given problem size. The maximum

number of nodes was chosen such that a maximum
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communication overhead of about 40–50% (see insets) can

be observed for PVSC-DTM, which is a reasonable upper

limit in production runs for resource efficiency reasons.

Note that GHOST exhibits a larger communication time

than PVSC-DTM because it assumes a general matrix and

cuts it into horizontal blocks, resulting in sub-optimal

communication behavior for stencil-based patterns. Our

generated code, on the other hand, can exploit the regular

next-neighbor exchange pattern.

In the test case in Figure 7, GHOST requires at least 16

nodes for storing the matrix and two vectors. With the same

resources, PVSC-DTM is about 5� faster, and can outper-

form GHOST already with four nodes. The ratio of com-

munication to computation time is naturally larger with

PVSC-DTM due to the faster code execution. Although

this particular test case cannot be run on a single node with

GHOST, the performance comparison at 16 nodes also

reflects quite accurately the per-node (or per-socket, i.e.

pure OpenMP) performance ratio between PVSC-DTM

and GHOST, since at this point the communication over-

head is still only 10–20%.

For nb > 1 the memory traffic caused by the matrix

becomes less significant and the speedup of PVSC-DTM

versus GHOST gets smaller. In the smaller nb ¼ 4 test case

shown in Figure 8, GHOST requires at least four nodes and

is still about 2.5� slower than PVSC-DTM at that point.

Again, this is also the expected per-socket speedup if it

were possible to run the test case on a single socket with

GHOST.

4. Algorithms and application examples

So far we have set the stage for the quantum physics con-

text of possible applications of our framework. We have

also described the performance properties of generated

code and shown that it achieves near-optimal performance

for the sparse matrix-vector multiplication (as given by the

memory bandwidth limitation and the minimal code bal-

ance) on two different processor architectures for operators

relevant for real applications. In the following sections we

give some examples for typical applications in the field of

Dirac and topological materials that utilize spMVM as a

major numerical component.

In large-scale simulations of any kind, avoiding global

synchronization points is crucial for scalability. This chal-

lenge can be met by modern matrix polynomial methods.

The kernel polynomial method (KPM), the Chebyshev time

propagation approach described in Weiße and Fehske

(2008) and Alvermann and Fehske (2008), and the high-

performance Chebyshev filter diagonalization technique

(ChebFD) implementation introduced in Pieper et al.

(2016) are already available in PVSC-DTM . These algo-

rithms benefit from partial dot products, vector blocking,

and loop fusion. The high-order commutator-free exponen-

tial time-propagation algorithm introduced by Alvermann

and Fehske (2011) for driven quantum systems will be

implemented in the near future.

4.1. Time propagation

The time evolution of a quantum state j i is described by

the Schrödinger equation. If the Hamilton operator H does

not explicitly depend on the time t we can formally inte-

grate this equation and express the dynamics in terms of the

time evolution operator Uðt; t0Þ as j ðtÞi ¼ Uðt; t0Þj ðt0Þi
with Uðt; t0Þ ¼ e�iHðt�t0Þ (h� ¼ 1). Expanding the time evo-

lution operator into a finite series of first-kind Chebyshev

polynomials of order k, T kðxÞ ¼ cosðkarccosðxÞÞ, we

obtain (Fehske et al., 2009; Tal-Ezer and Kosloff, 1984)

UðDtÞ ¼ e�ibDt½c0ðaDtÞ þ 2
XM
k¼1

ckðaDtÞTkð ~HÞ�: ð14Þ
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Figure 7. Runtime of spMVM (nb ¼ 1) for a strong scaling test
case of the TI model (system size 6083) with 200 iterations on the
Emmy cluster, comparing PVSC-DTM with the GHOST library.
The dashed lines show the communication time only. Inset: ratio
of communication time vs. total runtime. All codes were run with
one MPI process per socket (10 cores) and 10 OpenMP threads
per process.
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Figure 8. Runtime of spMVM (nb ¼ 4) for a strong scaling test
case of the TI model (system size 3843) with 200 iterations on the
Emmy cluster, comparing PVSC-DTM with the GHOST library.
The dashed lines show the communication time only. Inset: ratio
of communication time vs. total runtime. All codes were run with
one MPI process per socket (10 cores) and 10 OpenMP threads
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Prior to the expansion the Hamiltonian has to be shifted

and rescaled such that the spectrum of ~H ¼ ðH � bÞ=a is

within the definition interval of the Chebyshev polyno-

mials, ½�1; 1�, where a and b are calculated from the

extreme eigenvalues of H: b ¼ 1
2
ðEmax þ EminÞ and

a ¼ 1
2
ðEmax � Emin þ eÞ. The expansion coefficients ck are

given by

ckðaDtÞ ¼
Z1

�1

TkðxÞe�ixaDt

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p dx ¼ ð�iÞkJkðaDtÞ ð15Þ

(Jk denotes the k-th order Bessel function of the first

kind).

Calculating the evolution of a state j ðt0Þi from

one time grid point to the adjacent one, j ðtÞi ¼
UðDtÞj ðt0Þi, we have to accumulate the ck-weighted vec-

tors jwki ¼ Tkð ~HÞj ðt0Þi. Since the coefficients ckðaDtÞ
depend on the time step but not on time explicitly, we need

to calculate them only once. The vectors jwki can be com-

puted iteratively, exploiting the recurrence relation of the

Chebyshev polynomials, jwkþ1i ¼ 2 ~H jwki � jwk�1i, with

jw1i ¼ ~H jw0i and jw0i ¼ j ðt0Þi. Evolving the wave func-

tion from one time step to the next then requires M

spMVMs of a given complex vector with the (sparse)

Hamilton matrix of dimension N and the summation of the

resulting vectors after an appropriate rescaling. Thus, for

time-independent H, arbitrary large time steps are in prin-

ciple possible at the expense of increasing M. We may

choose M such that for k > M the modulus of all expansion

coefficients jckðaDtÞj*JkðaDtÞ is smaller than a desired

accuracy cutoff. This is facilitated by the fast asymptotic

decay of the Bessel functions, JkðaDtÞ* 1ffiffiffiffiffiffi
2pk
p eaDt

2k

� �k
for

k !1. Thus, for large M, the Chebyshev expansion can

be considered as quasi-exact. Besides the high accuracy of

the method, the linear scaling of computation time with

both time step and Hilbert space dimension are promising

in view of potential applications to more complex systems.

In our cases almost all computation time is spent in

spMVMs, which can be efficiently parallelized, allowing

for a good speedup on highly parallel computers. This also

means that any significant speedup that can be achieved for

the spMVM, such as by our matrix-free formulation, will

have a corresponding effect on the runtime of the overall

algorithm. The actual speedup is a function of the memory

traffic reduction; for instance, a sparse matrix stored in

CRS format that describes a stencil-like neighborhood rela-

tion with eight neighbors will (in double precision) cause a

minimum data traffic of approximately 7.6 bytes/flop when

acting on a RHS vector. In a matrix-free formulation this

balance reduces to 1.3 bytes/flop, leading to a performance

improvement of 5.7� if the memory bandwidth can be

saturated in both cases.

As an example, we apply the Chebyshev time evolution

scheme to the propagation and scattering of a Dirac elec-

tron wave packet on a graphene sheet with an imprinted

gate-defined quantum dot array (Fehske et al., 2015; Pieper

et al., 2013). This is a timely issue of of high experimental

relevance (Caridad et al., 2016; Tang et al., 2016; Walls

and Hadad, 2015). We mimic the quantum dot array by

implementing the potential Vn in (2) as

V ðrÞ ¼
XL;K

l¼1;k¼1

V kYðRdot � jRl;k � rjÞ ð16Þ

with varying amplitude V k ¼ V 0 þ DV jk � K=2j in y

direction. In (16), Rdot (Ddot) is the radius of a single quan-

tum dot (the nearest-neighbor distance between dots) and

Rl;k ¼ ðx0 þ lDdot; y0 þ kDdotÞ gives the dot’s position [l

ðkÞ counts in x (y) direction]. The quantum dot lattice can

be created by applying spatially confined top gate voltages.

The gradient change of the dot potentials mimics spatially

varying effective refraction indices for the Dirac electron

waves.

Figure 9 illustrates the scattering and temporary particle

confinement by the quantum dot array. It has been demon-

strated by Heinisch et al. (2013) and Pieper et al. (2013)

that the normal modes of an isolated quantum dot lead to

sharp resonances in the scattering efficiency. Appearing for

particular values of Rdot, V, and E, they allow the

“trapping” even of Dirac electrons. Of course, for the scat-

tering setup considered here, only quasi-bound states can

appear, which may have an exceptionally long lifetime,

however. Thereby the energy of the wave is fed into vor-

tices inside the dot. For a periodic array of dots the normal

modes at neighboring dots can couple, leading to coherence

effects (such inter-dot particle transfer takes place on a

reduced energy scale compared to pure graphene (Fehske

et al., 2015)). The situation becomes more complicated—

but also more interesting—when the dot potentials are

modulated spatially or energetically. In this case, a

direction-dependent transmission (cascaded Mie scattering

(Caridad et al., 2016)) or even the focusing of the electron

beam outside the dots can be observed (Tang et al., 2016).

Similar phenomena are demonstrated by Figure 9. For this

simulation the electron is created by a Gaussian wave

packet

 ðr; t ¼ 0Þ ¼ exp � ðx� x0Þ2

4Dx2

 !
 K;xðrÞ ; ð17Þ

where  K;xðrÞ is Dirac electron with momentum in x

direction. When the wavefront hits the dot region, the wave

is partly trapped by the quantum dots, whereby—for the

parameters used—the resonance conditions are better ful-

filled near the lower/upper end of the dot array (here the

particle wave is best captured). The other way around, the

transmission (and also the reflection, i.e. the backscatter-

ing) is strongest in the central region, leading to a curved

wavefront. For larger time values a second pulse (wave-

front) emerges (note that we have reflections and repeated

scattering events in our finite GNR, but the largest time

considered, t ¼ 3t1, is much shorter than the pass-through

time of an unperturbed Dirac wave). In any case, one
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observes a strongly time- and direction-dependent emission

pattern for the considered graphene-based nanostructure,

which can be exploited to manipulate electron beams. Par-

ticularly interesting in this respect would be focusing of the

electron beam with large focal length, such that the focal

spot lies outside the array. Then the structure can be used as

a coupler to other electronic units. Achieving this by tuning

the gradient of the gate potential appears to be a very effi-

cient way, which is more easily realized in practice than

modifying the geometrical properties of the array such as

the lattice gradient or the layer number (Tang et al., 2016).

4.2. Interior eigenvalues of topological insulators

Since the electronic properties of TIs are mainly deter-

mined by the (topologically nontrival) surface states

located in the bulk-state gap, an efficient calculation of

electron states at or close to the center of a spectrum is of

vital importance. This can be done by Chebyshev filter

diagonalization (ChebFD), a straightforward scheme for

interior eigenvalue computation, which is based on poly-

nomial filter functions and therefore has much in common

with the KPM. ChebFD applies a matrix polynomial filter

that is suitable for the target interval to a block of vectors.

In each iteration, the search space is checked for conver-

gence using a Rayleigh-Ritz procedure. ChebFD has

already proven its practical suitability: Parallelized and

implemented on the “SuperMUC” supercomputer at LRZ

Garching, 102 central eigenvalues of a 109-dimensional

sparse matrix have been calculated at 40 Tflop/s sustained

performance by Pieper et al. (2016).

Figure 10 shows the DOS of a strong TI. The focus is on

the (pseudo-) gap region of the DOS. Implementing the

effect of nonmagnetic impurities by uniformly distributed

random on-site potentials Vn, we see how disorder fills the

gap that exists in the DOS of system with a finite number of

sites (see the red curves in the upper panels). Introducing a

finite D1, which mimics, e.g. the effect of an external mag-

netic field, the midgap Dirac cone formed by the surface

states is broken up. Again, disorder will induce electronic

states in the gap region generated by D1. This is demon-

strated by the lower panel of Figure 10, showing the DOS at

the band center (E ¼ 0) in the D1-g plane. As the disorder

strength increases, more and more states pop up at E ¼ 0

until the DOS saturates when g reaches the order of mag-

nitude of the bulk band gap. For a more detailed investiga-

tion of disordered (weak and strong) TIs we refer the reader

to Kobayashi et al. (2013) where, besides the phase dia-

gram, also the DOS was calculated using the KPM (see

supplementary material in that paper). Compared to KPM,

our ChebFD approach yields a better resolution at the same

computational cost in the target interval (band center),

which is important regarding the scientific applications.

The ChebFD algorithm is robust and scalable, but algor-

ithmically sub-optimal. In PVSC-DTM we have also

implemented the trLanczosFD (thick-restart Lanczos with

polynomial filters) algorithm by Li et al. (2016). This algo-

rithm benefits a little more from a matrix-free formulation

because it uses smaller block vectors: Smaller blocks

increase the impact of the data transfer for the matrix ele-

ments as shown, e.g. in Kreutzer et al. (2018). However, its

actual advantage is improved convergence. A thorough

description would exceed the scope of this paper; in Table 2

we show runtime data and the maximum residual of the

inner Ritz eigenvalues for trLanczosFD on two TI test cases

in comparison with ChebFD. TrLanczosFD outperforms
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Figure 9. Time evolution of a Dirac electron wave impinging on a
graphene quantum dot array (visible by the bright spots). We
consider a GNR (periodic BCs in y direction) with an imprinted
quantum dot lattice (L ¼ 6). The radii of the quantum dots
Rdot ¼ 10 nm, their (midpoint) distance Ddot ¼ 40 nm, and the
dot potentials (parameterized by V0 ¼ 0:1, DV ¼ 0:002) vary
along the y direction between a minimum and maximum value
of y ¼ 600 nm and y ¼ 0 nm or 1200 nm, respectively. A (Gaus-
sian) wave packet with momentum in x direction was created at
ðx; yÞ ¼ ð200 nm; 600 nmÞ with ðx;DxÞ ¼ ð200 nm; 300 nmÞ at
time t ¼ 0. The panels give the (color coded) squared amplitude
of the wave function jcðr; tÞj2 at times t1, 2t1, and 3t1 with

t1 ¼ 4:37� 10�13 sec (from top to bottom).
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ChebFD by a factor of almost four (using PVSC-DTM

for both).

4.3. Disorder effects in Weyl semimetals

The Weyl nodes in the gapless topological Weyl semime-

tals are believed to be robust against perturbations unless,

e.g. the translation or charge conservation symmetry is

broken. Showing the stability of a single or a pair of Weyl

nodal points against disorder has been the subject of intense

research (Chen et al., 2015; Liu et al., 2016; McCormick

et al., 2017; Pixley et al., 2015; Shapourian and Hughes,

2016; Zhao and Wang, 2015). Due to the vanishing DOS at

the nodal points, disorder effects can be expected to be

particularly pronounced. Since analytic methods fail

widely in their quantitative predictions, even in the case

of weak disorder, we use a purely numerical, KPM-based

approach to analyze the spectral properties of Weyl semi-

metals with real-space quenched potential disorder.

Figure 11 displays the momentum-resolved spectral

function Aðk;EÞ of a disordered Weyl metal along different

paths in the bulk Brillouin zone. The photoemission spectra

shown were calculated for the model (8) with random

potentials Vn drawn from a uniform box distribution of

strength g, i.e. V n 2 ½�g=2; g=2�. The presented data

should be compared with the results for the clean case

provided by Figure 1 (c). Most notably, the electronic states

at the Fermi arc (connecting the nodal points) and its imme-

diate vicinity are hardly influenced by weak and even inter-

mediate disorder. This does not apply for states further

away from the Fermi surface. Here, the spectral signatures

(band dispersion) are rapidly washed out, even for weak

disorder. Of course, strong disorder will also affect the

Fermi arc and the nodal points: Above a certain disorder

strength they will be smeared out in both energy and

momentum space and, as a result, the Weyl semimetal will

transform into a diffusive metal with a finite DOS at the

nodal points. A more detailed investigation of the spectral

properties would be desirable in order to confirm the very

recent evidence found by Su et al. (2017) for an intermedi-

ate Chern insulator state between the disordered Weyl

semimetallic and diffusive metallic phases. At even stron-

ger disorder, the distribution of the local density of states

significantly broadens (just as in the case of strongly dis-

ordered strong TIs (Schubert et al., 2012) or disordered

GNR (Schubert et al., 2009; Schubert and Fehske, 2012))

and Anderson localization sets in (Pixley et al., 2015).

5. Conclusion and outlook

The PVSC-DTM DSL and library have been demonstrated

to be powerful tools for generating high-performance code

to investigate ground-state, spectral, and dynamic proper-

ties of graphene, topological insulators, and other materials

whose physics is governed by short-range interactions that

lead to stencil-like numerical kernels. In particular, by cal-

culating the time evolution and scattering of wave packets

Table 2. Test cases for the filter diagonalization method, using a
matrix for TI with all eigenvalues in the range [�5.5,5.5]. Runtime
and residuum data for runs with eight nodes on the Emmy cluster
are shown for the ChebFD and the trLanczosFD algorithm,
respectively.

Test case 1 Test case 2

Size 480�480�6 240�240�6
Eigenpairs 72 40
Emmy nodes 8 8
ChebFD:
Runtime [s] 2852 642
Max res. 7:3� 10�12 4:9� 10�15

TrLanczosFD:
Runtime [s] 760 142
Max res. 3:5� 10�15 1:7� 10�11
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Figure 10. Density of states for a strong TI described by the
Hamiltonian (4) with m ¼ 2, D2 ¼ 0, and open (periodic) BCs in z
(x and y) direction. Top panel: DOS without (Vn ¼ 0; black curve)
and with [Vn 2 ½�g=2; g=2�; red curve] disorder, where D1 ¼ 0.
Data obtained by KPM with stochastic trace evaluation for a cuboid
with 256� 256� 10 sites. Middle panel: Zoom-in of the central
part of the spectrum with the target interval used for the ChebFD
calculations (Pieper et al., 2016). Bottom panel: DOS at the band
center (E ¼ 0) in dependence on the gap parameter D1 and the
disorder strength g (Pieper and Fehske, 2016). Applying the KPM,
2048 Chebyshev moments were used for a system with
512� 512� 10 sites. Note that the finite DOS at D1 ¼ 0 is a
finite-size effect and due to the finite KPM resolution (variance
s ¼ 0:01).

Pieper et al. 73



in graphene-based nanostructures, determining the interior

eigenvalues related to protected surface states in topologi-

cal insulators, and treating the effects of random impurities

in Weyl semimetals, we exemplarily showed that the pro-

posed PVSC-DTM scheme can easily be combined with

other numerical algorithms based on an efficient matrix-

vector multiplication and used for studying very diverse

aspects in the highly topical field of functional quantum

matter.

Due to is matrix-free design, PVSC-DTM outperforms

matrix-based libraries such as GHOST. It also implements

effective SIMD vectorization and fast on-the-fly random

number generation and yields optimal memory-bound

chip-level performance as shown by the roofline model.

Spatial blocking of the iteration loops is fully automatic

and based on layer conditions.

Several improvements to the DSL library are left for

future work: A better integration of the random number

generator with the inner update loop would increase the

non-saturated and sequential performance. Overlapping

computation with communication would improve the

distributed-memory parallel efficiency. Both optimizations

are prerequisites for a possible integration with advanced

blocking algorithms. Blocked ChebFD, which we actually

used in this work, is one example, but more complex

schemes exist. Exploiting the symmetry of the stencil shape

or coefficients is not currently implemented in the DSL but

could be useful to make writing the code easier. The system

geometry is currently limited to rectangular and cuboid

domains, which is a restriction that may be lifted to support

other physical setups, e.g. ring-shaped structures to study

the Aharonov-Bohm effect or boundary-related (topologi-

cal) states.

Finally we plan to implement more algorithms in order

to make the library more versatile beyond the showcases

described here.
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Notes

1. This can either be achieved by using the restrict keyword

on pointer declarations, by compiler directives such as

ivdep, or via global options such as -fno-alias.

2. http://tiny.cc/PVSC-DTM
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