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Alongside biological, psychological, and social risk factors, psychotic syndromes may be
related to disturbances of neuronal migration. This highly complex process characterizes
the developing brain of the fetus, the early postnatal brain, and the adult brain, as reflected
by changes within the subventricular zone and the dentate gyrus of the hippocampus,
where neurogenesis persists throughout life. Psychosis also appears to be linked to
human cytomegalovirus (HCMV) infection. However, little is known about the connection
between psychosis, HCMV infection, and disruption of neuronal migration. The present
study addresses the hypothesis that HCMV infection may lead to mental disorders
through mechanisms of autoimmune cross-reactivity. Searching for common peptides
that underlie immune cross-reactions, the analyses focus on HCMV and human proteins
involved in neuronal migration. Results demonstrate a large overlap of viral peptides with
human proteins associated with neuronal migration, such as ventral anterior homeobox 1
and cell adhesion molecule 1 implicated in GABAergic and glutamatergic
neurotransmission. The present findings support the possibility of immune cross-
reactivity between HCMV and human proteins that—when altered, mutated, or
improperly functioning—may disrupt normal neuronal migration. In addition, these
findings are consistent with a molecular and mechanistic framework for pathological
sequences of events, beginning with HCMV infection, followed by immune activation,
cross-reactivity, and neuronal protein variations that may ultimately contribute to the
emergence of mental disorders, including psychosis.

Keywords: peptide sharing, HCMV, immune response, schizophrenia, cross-reactivity
INTRODUCTION

Newly generated neurons migrate from their site of origin to specific brain areas and subregions, a
process that involves adaptation with different degrees of complexity (1, 2). The cytoskeleton is
regulated at the molecular and cellular level to execute neuronal migration (3); polarity in migrating
neurons is reached by re-purposing of cytokinetic processes (4, 5); and blood vessels are used as a
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physical substrate (6). Cell adhesion, cell cycle, and angiogenesis
are implicated in neuronal migration.

Clinically, disruption of this process has been related not only
to severe malformations of cortical development (lissencephaly,
schizencephaly, neuronal eterotopia, polymicrogyria) (7) but also
to psychosis (8–10). However, the relationship between macro-
and microscopic structural brain anomalies and psychosis
appears to be unclear, and disruption of cellular function has
been hypothesized (11, 12). According to current opinion, more
subtle alterations starting early during neurodevelopment can
alter neural circuits and induce psychotic syndromes during
adolescence or young adulthood (13). Indeed, altered migration
and development of GABAergic cortical interneurons have been
linked not only to schizophrenia but also to depression and
anxiety disorders and seem to be strongly dependent on other
neurotransmitter networks, such as dopaminergic and
glutamatergic systems (14–16).

Thepresent study focuses onHCMVinfection as a potential link
between neuronalmigration and psychosis. On the one hand, it has
been shown that herpesvirus infection of the developing brain can
disturb migration of neuronal cells in animal models (17–19). On
the other hand, HCMV has been discussed in the context of
psychosis. Indeed, previous research has demonstrated that
maternal HCMV infection and antibodies are associated with
psychosis in the offspring (20), that infection during childhood is
a risk factor for later psychosis (21), and that concurrent antibody
titers are associated with psychosis-related symptoms (22–25).
Epidemiological evidence is then not only suggestive of an
association between HCMV and psychosis but also points to an
influence of the infection on the early development of the central
nervous system, possibly on neuronal migration.

Therefore, we here tried to elucidate the associations between
HCMV infection, aberrant neuronal migration, and psychosis,
building on previous research that had assessed peptide
commonality and potential immune cross-reactivity between
microbial and human proteins (26–31). More specifically, we
investigated the peptide platform shared by HCMV and human
proteins involved in neuronal migration.
METHODS

A set formed by primary amino acid (aa) sequences of human
proteins involved in neuronal migration was retrieved from the
UniProtKB Database (www.uniprot.org) (32). The protein
library was obtained by separately searching for “neuron”
AND “migration” as well as “neuronal” AND “migration”
within the Homo sapiens proteins in the reviewed and
annotated section of the UniProt database. Duplicates were
removed. The procedure yielded 373 protein sequences that are
described in Supplemental Table S1. Human proteins are
expressed as UniProt entry names, if not discussed in detail.

Proteins from HCMV (human herpesvirus 5, Tax Id: 295027;
168 proteins) were dissected into heptapeptides overlapped by
six residues (that is, MPATDTN, PATDTNS, ATDTNST,
TDTNSTH, and so forth). Then, each viral heptapeptide
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served as a probe to screen the library for exact matches within
the proteins related to neuronal migration.

The viral heptapeptides shared with the neuronal migration-
associated proteins were successively analyzed for occurrences in
the entire human proteome using the Peptide Match program
(https://research.bioinformatics.udel.edu/peptidematch/index.
jsp) (33). The 373 human proteins listed in Supplemental Table
1 were filtered out.

The Immune Epitope Database (IEDB; www.iedb.org)
resource (34) was used to investigate the immunological
potential of the peptide sharing among HCMV and human
proteins related to neuronal migration. Only epitopes that had
been experimentally validated as immunopositive in the human
host were considered.
RESULTS AND DISCUSSION

Heptapeptide Sharing Between
HCMV and Human Proteins Related
to Neuronal Migration
Following the procedure described underMethods, we found that
41 HCMV heptapeptides are repeatedly distributed among 26
proteins associated with neuronal migration (see Table 1). An
example of potential neuropathological relevance is the protein
expression level in the hippocampus, a brain region where
neurogenesis occurs in the adult stage.

The viral versus human peptide sharing displayed in Table 1
is specific, unexpected, intensive, and endowed with an
immunologic potential, as outlined in the following paragraphs.

Specificity: The shared heptapeptides found in this analysis are,
in general, scarcely represented in the entire human proteome
assumedas a control (seeTable1, 1st column). Inotherwords,most
of thematches illustrated inTable1donot reflect anunspecific viral
heptapeptide over-representation throughout the human
proteome. Extreme examples for the specificity of the
heptapeptide overlap are the sequences AVENGDS, DRGGGGG,
INKRVKR, KPGASAA, LKPGASA, QTVTSTP, SSSSTSH, and
YQRFLRE that are uniquely present in proteins related to
neuronal migration and absent in the remaining human proteins
(seeTable1).Actually, theheptapeptidesAVENGDS,DRGGGGG,
INKRVKR, KPGASAA, LKPGASA, QTVTSTP, SSSSTSH, and
YQRFLRE are HCMV molecular signatures of the human
proteins associated with neuronal migration SAV1, SHH,
MAGI2, SMAD2, SMAD3, ULK1, and ACK1, respectively.
Exceptions to such a specific sharing are represented by simple aa
repeats such as EEEEEED.GGGGGGG, SSSSSSS, AAAAAAA, and
EEEEEEE, known for being common in eukaryotic proteomes
(36, 37).

Unexpectedness: The heptapeptide sharing between HCMV
and human proteins associated with neuronal migration is largely
unexpected in light of the fact that the probability of finding the
same heptapeptide fragment in two proteins is 1 out of 207.

Intense peptide sharing: The overlap is not just extensive by
affecting many of proteins examined, but also intensive, meaning
that, in spite of the low probability, many of the proteins
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TABLE 1 | Heptapeptide sharing between HCMV and human proteins related to neuronal migration.

HCMV heptapeptide1 Occurrences in
the human proteome2

Occurrences in the set of
proteins related to
neuronal migration3

Human proteins related to neuronal migration4,5

UniProt Name Cellular location6 Protein expression
in the hippocampus7,8

AVENGDS 0 1 SAV1 I l
DRGGGGG 0 1 SHH I –

KPGASAA 0 1 MAGI2 I M
LKPGASA 0 1 MAGI2 I M
LLLPPPS 0 1 ACK1 I M
QTVTSTP 0 2 SMAD2

SMAD3
I
I

h
m

STTAAAA 0 1 BARH2 I –

YQRFLRE 0 1 ACK1 I M
AAGPPEA 1 1 CAC1B M l
RRERERR 1 1 CAC1B M l
SGLGDLS 1 1 AP2A I l
TDSSLEA 1 1 MK10 I M
PPAPRGP 2 1 RTN4 I h
SGSSASS 2 1 LMNA I h
SSGSSAS 3 1 LMNA I h
SAVAAAA 4 1 SOX1 I –

SEEEDDD 5 1 TOP2B I h
SGGAGGG 5 1 SMAD2 I h
DNLTLWT 6 1 1433E I h
LAVADLL 11 2 5HT2B

DRD2
M
I

nd
m

EDDDDDD 21 1 FGFR1 I M
AAAAASS 24 1 SOX1 I –

SSGGGGG 26 1 ALK I h
EEEDDDD 27 1 APBB1 I M
AAAAAAP 30 2 CADM1

VAX1
I
I

nd
–

DDDDDDD 30 1 FGFR1 I M
QQPPPPP 33 1 BARH2 I –

GAGGGGG 40 1 SOX1 I –

AVAAAAA 43 1 SOX1 I –

EEEEEDD 47 1 APBB1 I M
VAAAAAA 51 1 SOX1 I –

AGGGGGG 56 2 ALK
SOX1

I
I

h
–

GGGGGGA 62 2 ALK
SOX1

I
I

h
–

AAAAAAS 70 1 SOX1 I –

QPPPPPP 70 1 BARH2 I –

SAAAAAA 72 1 VAX1 I nd
EEEEEED 140 3 ndF4

PAK3
RTN4

I
I
I

nd
–

h
GGGGGGG 170 2 ALK

SOX1
I
I

h
–

SSSSSSS 173 1 ULK1 I –

AAAAAAA 258 4 BARH2
CADM1
SOX1
VAX1

I
I
I
I

–

nd
–

nd
EEEEEEE 301 4 CELR2

NDF4
PAK3
RTN4

M
I
I
I

M
nd
–

h
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1HCMV heptapeptide sequences in 1-letter aa code.
2HCMV heptapeptide occurrences in the human proteome, with proteins related to neuronal migration (Table S1) filtered out.
3HCMV heptapeptide occurrences in human proteins related to neuronal migration.
4Human proteins related to neuronal migration and sharing HCMV heptapeptide(s). Proteins indicated according to UniProtKB entry name.
5Data from the Human Protein Atlas (35).
6I, intracellular; M, membrane.
7Expression level: nd, not detected; l, low; m, medium; h, high.
8Data pending.
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associated with neuronal migration share more than one HCMV
heptapeptide. An example is the human transcription factor
SOX1 that shares 10 heptapeptides with HCMV (see Table 1).
Of note, the 10 viral heptapeptide matches that are disseminated
along the SOX1 primary amino acid consecutively overlap to
form long peptide stretches which may be targeted by anti-
HCMV immune responses (see Figure 1).

Immunological potential: Finally, many of the heptapeptides
shared between HCMV and the 26 human proteins related to
neuronal migration are endowed with an immunologic potential
by being part of epitopes that have been experimentally validated
as immunopositive in humans (see Table 2).

Immunological Relevance of the
Heptapeptide Sharing Between HCMV
and Human Proteins Associated With
Neuronal Migration
Tables 1 and 2 support the possibility that immune responses
against HCMV may cross-react with brain proteins involved
in neuronal connectivity, synaptogenesis, and transmitter
Frontiers in Psychiatry | www.frontiersin.org 4
networks. Although the protein cell location is mainly
intracellular (see Table 1), proteins involved in the viral
overlap nonetheless remain fully accessible to immune cross-
reactions, given the availability of intracellular antigens to the
immune system, which is a well-known phenomenon (38, 39).
Immune cross-reactions with these proteins can (1) impair brain
development, structure, and function; (2) alter cognitive
processes and behavior; and (3) be involved in complex mental
disorders: in particular, disorders from the psychotic spectrum.

Indeed, examples are, inter alia:

1. BarH-like 2 homeobox protein (BARH2) and sonic
hedgehog protein (SHH) contribute to establish the
positional identities of progenitor cells in the diencephalon
(40), while alterations of BARH2 and SHH can affect
cerebellum development (41, 42). Notably, reduced
cerebellar volume has been reported in first-time psychotic
episodes (43).

2. Ventral anterior homeobox 1 (VAX1) is a transcription
factor, and its deficit causes severe depletion of
GABAergic neurons in the neocortex (44), thus possibly
FIGURE 1 | Distribution of overlapping HCMV heptapeptides through SOX1 primary aa sequence. HCMV peptide sequences are highlighted.
TABLE 2 | Immunopositive epitopes containing heptapeptides shared between HCMV and human proteins associated with neuronal migration.

IEDB ID1 Epitopes2,3 IEDB ID1 Epitopes2,3

71055 vsnappvaspsiLKPGASAA 512030 asggAAAAAAAPaap
424109 AVENGDSgsryyy 515004 epAAAAASSacaapsq
429240 aSAAAAAAAAlly 516191 gAAAAAAAPaapaapr
432006 qtdprAGGGGGGdy 516566 GGGGGGAaaagray
433931 fvrepedEEEEEEEEEED 517250 gptGGGGGGGfntvgr
440752 srevftSSSSSSS 518048 hqpsasggAAAAAAAPa
440782 sSSGGGGGGGrfssssgy 519007 ipSAAAAAAAAgria
441180 tSSSSSSSrqtrpilk 519995 kkwenEEEEEEEEqppp
456753 mAAAAAAAPs 521695 lppkpgtmEEEEEDDdy
457859 QPPPPPPpm 525008 rlAAAAAAAqsvy
465590 glAAGPPEA 525963 sggAAAAAAAPaapa
466037 gprpAAAAAAAtpav 530324 ypdppgtmEEEEEDDd
474480 AAAAAAAqsvy 541856 esnGGGGGGGAgsgggp
483230 qeSAAAAAA 542212 gaavVAAAAAASm
510536 AAAAAAAAPaaaat 542215 GAGGGGGeagagggaaava
510982 AGGGGGGAaaagray 544474 pQPPPPPPp
May 2020
1Epitope IEDB IDs are listed according to numerical order. Further details and references are reported in http://www.iedb.org/.
2Epitope peptides are given in one-letter codes.
3Epitope fragments shared between HMCV and human proteins associated with neuronal migration are indicated in capital letters.
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triggering the emergence of disorders within the psychotic
spectrum. Indeed, a deficit in GABAergic system is one of
the predominant pathophysiological features in psychotic
disorders (45–47).

3. Fibroblast growth factor receptor 1 (FGFR1) may be
involved in aberrant dopaminergic firing in psychotic
disorders. Altered FGFR1 affects development and
function of dopamine neurons, resulting in psychotic
disorders in transgenic mice (48).

4. Cell adhesion molecule 1 (CADM1) expression has been
detected in glutamatergic neurons, including the granule
cells of the dentate gyrus, the pyramidal cells of the CA1 and
CA3 regions (namely, in parvalbumin-positive neurons in
the CA3 region), and in a subset of GABAergic neurons in
the hippocampus (49, 50).

5. The 1433E epsilon protein (1433E or tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation
protein [YWHAE]); 5-hydroxytryptamine receptor 2B
(5HT2B or serotonin receptor 2B); and dopamine D2
receptor (DRD2) are three proteins, that—when altered—
appear to be involved in the genesis of psychotic disorders.
Actually, theories on potential causes of psychotic disorders
assign a causal role to altered serotonin and dopamine
neurotransmission (51–58). Specifically, the HCMV
peptide sharing with 5HT2B and DRD2 consists of the
heptapeptide LAVADLL (Table 1) . The HCMV
LAVADLL peptide is present in the transmembrane
domain 2 (TMD2) of 5-HT2B and is involved in the
interaction with TMD7 that allows the human 5-HT2B to
adopt a conformation able to bind the neurotransmitter
serotonine (59). Moreover, the LAVADLL sequence is
endowed with an immunogenic potential by being part of
the epitope KLAVADLEK (IEDB ID: 213202), derived from
human centromere protein F (aa pos 557–565) (60).
Therefore, cross-reactions targeting LAVADLL may hit
multiple proteins involved in neurotransmission as well as
centriolar proteins involved in brain malformations
(microcephaly and ocular anomalies) (61).

6. The transcription factor Sex-determining Region Y-related
HMG-box 1 (SOX1) is uniquely expressed at a high level in
the majority of telencephalic neurons that constitute the
ventral striatum (62), a brain area closely associated with
decision making and belonging to the reward-salience
circuitry (i.e., ventral striatum, dorsal caudate, and
anterior cingulate cortex) (63–65). SOX1 regulates the
neural primordia and promotes neurogenesis not only by
acting as a transcription factor but also by forming protein-
protein interactions through its COOH-terminus (66). Of
note, the HCMV versus SOX1 peptide overlap is mainly
allocated in the COOH-terminus (Figure 1). Consequently,
cross-reactions targeting the SOX1 C-terminus may have
multiple pathologic consequences, from disruption of the
molecular network underlying neurodevelopment to
alteration of specific neural circuits that produce complex
behavior.
Frontiers in Psychiatry | www.frontiersin.org 5
7. The anaplastic lymphoma kinase (ALK) protein is a tyrosine
kinase receptor that, when altered, is involved in psychotic
disorders (67, 68) and in neuroblastoma, a common
neoplasm of early childhood that arises from cells of the
primitive neural crest, giving rise to the adrenal medulla and
the sympathetic nervous system (69).

8. The serine/threonine-protein kinase (PAK3) (also known as
ol igophrenin-3) plays a role in dendrite spine
morphogenesis as well as synapse formation and plasticity,
and its dysregulation may lead to synaptic deficits in
psychotic disorders (70–72).

9. The reticulon-4 (RTN4) protein is implicated in the
stabilization of wiring and restriction of plasticity in the
adult central nervous system (73). RTN4 is differentially
expressed in the dorsolateral prefrontal cortex from
individuals with psychotic disorders (74).

10. MAGI2 is a membrane-associated guanylate kinase that acts
as a scaffold molecule at synaptic junctions by assembling
neurotransmitter receptors and cell adhesion proteins.
MAGI2 seems to be involved in psychotic disorders (75–77).

11. The brain calcium channel III or voltage-dependent N-type
calcium channel subunit alpha-1B (CAC1B) may have a key
role in etiology of bipolar disorder and psychosis (78).

The variety of proteins involved in peptide sharing with
HCMV presented here is consistent with the complex
multifactorial nature of mental disorders in general, and
psychosis in particular. These proteins were examined in the
present study in light of their involvement with neuronal
migration, while it is highly likely that any alteration of their
function or structure may affect higher cognitive processes
through impairment of different mechanisms above and
beyond migration (i.e., axon guidance, neurotransmission,
excitatory-inhibitory balance, oscillatory neuronal firing, and
others). Notably, these mechanisms can also be directly
affected by cross-reactive targeting of proteins allowing
membrane excitability (26–30), in a complex endotypical
scenario that mirrors the phenotypical complexity of mental
disorders without the need for a biunivocal match between them.
CONCLUSIONS

The present study demonstrates that numerous human proteins
related to neuronal migration are involved in a specific
heptapeptide overlap with HCMV. Such a wide peptide
sharing supports the possibility that, following HCMV active
infection, anti-HCMV human immune responses may cross-
react with proteins involved in peptide sharing with the
herpesvirus. In the case of cross-reactions, neuropathological
consequences might include the development of mental
disorders, such as psychotic syndromes. In fact, the 26 human
proteins listed in Table 1 hold the key to specifying brain
processes, such as neuronal connectivity, synaptogenesis, and
neurotransmission in a prolonged temporal window that runs
May 2020 | Volume 11 | Article 349
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from fetal-early postnatal neurodevelopment to adult
neurogenesis. In the context of peptide sharing described here,
GABAergic and glutamatergic circuitry might play a central role,
with disturbances potentially leading to psychotic syndromes by
altering excitatory-inhibitory balance in oscillating brain
networks underpinning higher cognitive functions (79–84).
Different strategies could allow to test this hypothesis in vivo.
Observationally, sera from human patients suffering from
psychotic disorders might be examined for immunoreactivity
against the sequences analyzed here. Causally, animal models of
neuropsychiatric disorders might be obtained by immunizing
pregnant and young animals with the same sequences.
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