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Abstract: The ubiquitin–proteasome system (UPS) is involved in multiple cellular functions including
the regulation of protein homeostasis, major histocompatibility (MHC) class I antigen processing,
cell cycle proliferation and signaling. In humans, proteasome loss-of-function mutations result in
autoinflammation dominated by a prominent type I interferon (IFN) gene signature. These genomic
alterations typically cause the development of proteasome-associated autoinflammatory syndromes
(PRAAS) by impairing proteasome activity and perturbing protein homeostasis. However, an
abnormal increased proteasomal activity can also be found in other human inflammatory diseases. In
this review, we cast a light on the different clinical aspects of proteasomal activity in human disease
and summarize the currently studied therapeutic approaches.

Keywords: proteasome; inflammation; autoinflammation; autoimmune; proteasome-associated
autoinflammatory syndrome

1. The Ubiquitin–Proteasome System

The ubiquitin–proteasome system (UPS) is the most important intracellular non-
lysosomal pathway for protein breakdown in eukaryotic cells [1–3]. As such, it plays a
critical role in preserving protein homeostasis and protecting the cells from harmful protein
aggregation which would compromise cell integrity and function [4,5].

The UPS is a highly complex mechanism with well over 1000 different genes in-
volved [6], about only 50 of which encode proteins serving proteasome function [7]. The
vast majority of the remaining UPS genes encode components involved in the selective
modification of intracellular substrates with the ubiquitin molecule for recognition and
subsequent degradation by proteasomes [8,9]. The covalent attachment of ubiquitin to
target proteins is mediated by a cascade reaction involving three enzymes. In the first step,
an E1 ubiquitin-activating enzyme uses energy released by adenosine triphosphate (ATP)
hydrolysis to form a covalent bond between a cysteine residue of its active site and the
C-terminal glycine of ubiquitin [10,11]. The activated ubiquitin is then transferred onto
an E2 ubiquitin-conjugating enzyme, which itself can bind to one of several E3 ubiquitin
ligases. In the final step, E3 ubiquitin ligases mediate the transfer of ubiquitin to a lysine
residue of target substrates [12] (Figure 1). Less frequently, ubiquitylation occurs on other
acceptors sites including cysteine, threonine and serine residues as well as N-terminal
methionine [12–15]. Remarkably, ubiquitin itself may be also subjected to ubiquitylation
at either one of its seven lysine (K) residues (K6, K11, K27, K29, K33, K48 and K63) or its
N-terminal methionine (M1—known as linear polyubiquitylation), thereby triggering the
formation of poly-ubiquitin chains [16,17]. Depending on the K-linkage used for ubiqui-
tylation, these poly-ubiquitin chains may decide different possible fates for the attached
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protein [18]. Among these ubiquitylation types, K48-linked poly-ubiquitin chains represent
canonical signals for proteasome-mediated degradation [17,19], while K63-linked and
linear (M1) polyubiquitylation may support non-proteolytic roles such as signaling [19–21].
Importantly, the process of ubiquitylation is counteracted by deubiquitinating enzymes
(DUBs) [22], whose most prominent families include the ubiquitin-specific proteases (USPs)
and the otubain proteases (OTUs) [23].
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Figure 1. Schematic representation of ubiquitylation and proteasomal protein degradation. (A) Proteins destined for
proteasomal degradation are conjugated with ubiquitin in a three-step cascade. First, E1-ubiquitin-activating enzymes
bind to ubiquitin in an ATP-dependent reaction. This ubiquitin is transferred onto a E2-ubiquitin conjugating-enzyme.
The E3-ubiquitin-ligase binds to both ubiquitin-conjugated E2-enzymes and target substrates which thereby undergo
modification with ubiquitin. Ubiquitylated proteins can be polyubiquitylated. Depicted is a K48 linked polyubiquitylation,
where ubiquitin is consecutively attached to the lysine 48 of the already bound ubiquitin. (B) The 20S proteasome core
particle is made up of α- and β-subunits. The assembly to αββα asymmetric heptameric rings is guided by assembly
chaperones. Each 20S core particle consists of two outer α-rings and two inner β-rings. In standard proteasomes (SPs), the
catalytically active subunits are β1, β2 and β5. In immunoproteasomes (IPs), these subunits are replaced by the inducible
subunits LMP2 (β1i), MECL1 (β2i) and LMP7 (β5i). IPs are preferentially incorporated to newly synthetized proteasomes
in response to IFN, as indicated. Additional isotypes include the thymoproteasome (TP) which contains a unique β5t
protease subunit and the spermatoproteasome (SpP) that incorporates a specific structural α4s subunit. The active sites of
the catalytic subunits face the inside of the 20S barrel shape. Proteasomes can bind to different regulators on one or both
sides. The 19S regulator has receptors for poly-ubiquitylated proteins and helps to unfold the proteins, remove ubiquitin
from substrates and translocate them into the 20S for degradation. The regulators can attach to different isoforms on either
or both sides. Additionally, combinations of the 19S regulator and PA28αβ/γ or PA200 regulators exist.

As alluded earlier, K48-linked ubiquitination is a prerequisite for the breakdown of
intracellular proteins by 26S proteasome complexes, which themselves are made up of a 20S
core particle (CP) and a 19S regulatory particle (RP) [24,25]. The 20S CP is a barrel-shaped
multicatalytic protease consisting of four heptameric αββα rings. The outer two rings are
each composed of seven different α-subunits, while the inner two rings each contain seven
different β-subunits [26,27]. The catalytic activity of the 20S CP is driven by the β1, β2 and
β5 subunits encoded by the PSMB6, PSMB7 and PSMB5 genes, respectively [28]. All three
β-subunits carry N-terminal threonine active sites exposed to the inner chamber of the
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20 CP and exhibit chymotrypsin-, trypsin and caspase-like activities [29]. The assembly of
the 20S CP is a highly coordinated process guided by the proteasome-assembly chaperones
(PAC)1-4 encoded by the PSMG1-4 genes and the proteasome maturation protein (POMP)
encoded by POMP [7,30,31].

Importantly, 20S CPs are usually capped by regulators at either one or both sides
of the barrel-shaped structure. One prime example of such regulators is the 19S RP [32],
a complex of approximately 20 subunits which is essential for the recognition of K48-
linked polyubiquitinated proteins via the Rpn10 and Rpn13 subunits [33,34]. The 19S
RP also ensures the ATP-dependent unfolding of substrates as well as the removal of the
ubiquitin moieties before translocation into the 20S CP [35–37]. Other regulators include
the proteasome activators (PA) 28-αβ, PA28-γ and PA200 [27]. The ability of the 20S CP to
bind distinct regulators at both sides gives rise to multiple proteasome complexes whose
respective biological relevance, however, remains to be better understood [38] (Figure 1).
Degradation products produced by the UPS are usually 8–10 amino acid long-peptides [39].
Only a small fraction of them may enter the endoplasmic reticulum (ER) via transporter
associated with antigen processing (TAP) and are presented onto major histocompatibility
(MHC) class I molecules [40,41]. In this regard, the UPS is a major contributor to MHC
class I antigen presentation. Conversely, the vast majority of proteasomal products are
further degraded into amino acids by various peptidases.

1.1. Proteasome Isoforms

Besides the β1, β2 and β5 subunits traditionally referred to as standard subunits,
proteasomes may incorporate alternative catalytic β-subunits including the inducible
β1i (low molecular weight protein 2—LMP2), β2i (multicatalytic endopeptidase complex
subunit 1—MECL1) and β5i (LMP7) to form so-called immunoproteasomes (IPs) [42–44].
While standard proteasomes (SPs) are found in virtually all tissues, IPs are predominantly
expressed in immune cells or other cell types that have been exposed to type I and/or II
interferons (IFN) [43,45].

It is believed that IPs are more effective than SPs at degrading substrates under
stress conditions [46–49], thereby protecting the cells from the accumulation of insoluble
ubiquitin-modified protein aggregates [4,43,50]. It is also understood that SPs and IPs
differ in their cleavage rates [51], thereby modulating the supply of MHC class I-restricted
peptide positively or negatively, depending on antigen primary structure [6]. Recently,
IPs have also been shown to regulate inflammation, as discussed below. Apart from the
standard and inducible subunits, 20S CPs may contain the β5t catalytic subunit (encoded
by the PSMB11 gene) which is exclusively expressed in thymus [52]. The assembly of
β5t results in the formation of so-called thymus-proteasomes which participate in T-cell
positive selection [52,53]. Another proteasome isoform is the spermatoproteasome which
carries the α4s (encoded by PSMA8) alternative structural subunit, predominantly found
in testis and involved in spermatogenesis [54] (Figure 1).

1.2. Proteasomes and Cellular Pro-Inflammatory-Pathways

Due to its ability to degrade multiple regulatory proteins, the UPS coordinates a myr-
iad of cellular responses. Innate immunity is a prime example of such processes, whereby
the UPS regulates key signaling cascades. For instance, activation of the NF-κB and
MAPK pathways in response to pattern recognition receptors’ (PRRs) engagement typically
requires the generation of poly-ubiquitin chains at multiple levels. This is probably best de-
picted by the linear ubiquitin chain assembly complex (LUBAC) which contains the two E3
ubiquitin ligases HOIL-1L and HOIP [55]. By promoting the linear (M1-linked) ubiquitina-
tion of the IKK regulatory subunit NF-κB essential modulator (NEMO), LUBAC facilitates
the phosphorylation of IκBα by IKK [55]. This phosphorylation serves as a signal for
K48-linked poly-ubiquitylation and proteasomal degradation, thereby allowing the translo-
cation of NF-κB into the nucleus for the transcription of genes encoding proinflammatory
cytokines [56]. Further substrates of LUBAC include the receptor-interacting protein kinase
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1 (RIPK1) involved in TNF signaling, which following linear ubiquitylation activates the
proinflammatory NF-κB and MAPK pathways. The activation of RIPK1 is counterbalanced
by the OTU DUB OTULIN, which is able to trim linear ubiquitin linkages [57]. In addition,
K63-linked ubiquitin chains can result in the downstream activation of proinflammatory
pathways, which is counteracted by the deubiquitinase A20 [58] (Figure 2).
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Figure 2. Current understanding of the pathogenesis of UPS dysfunction in autoinflammatory diseases. PRAAS
(Proteasome-Associated Autoinflammatory Syndrome): proteasome loss-of-function mutations decrease proteasome
proteolytic activity and result in intracellular accumulation of polyubiquitylated proteins. These proteotoxic aggregates
induce ER-stress which initiates the unfolded protein response (UPR). The IRE1 (inositol-requiring enzyme 1) arm of
the UPR has been shown to contribute to the transcription of IFN-stimulated genes (ISG). A possible involvement of the
integrated stress response (ISR) in this process is also discussed. NF-κB-mediated autoinflammation: PPR and cytokine
receptor activation requires ubiquitylation for the induction of pro-inflammatory signaling. Depicted is the activation of the
TNF receptor 1 (TNFR). The receptor-interacting protein kinase 1 (RIPK1) binds to the activated TFNR and is ubiquitylated
with linear (M1-linked) poly-ubiquitin chains by the LUBAC complex or with K63-linked polyubiquitin. Polyubiquitylation
is counterbalanced by the deubiquitinating enzymes (DUB) OTULIN and A20 in order to control the activation of the NF-κB
and MAPK pro-inflammatory pathways. USP18 deficiency: USP18 besides its DUB activity also directly regulates IFN
signaling. It is upregulated following different pro-inflammatory stimuli and directly inhibits JAK1, thereby acting as a
negative feedback loop. Disruption of this negative feedback leads to overwhelming inflammatory IFN response.
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Overall, proinflammatory pathways have been shown to be dependent on both pro-
teasomal activity and ubiquitylation [6]. Toll-like receptor (TLR) stimuli, for example,
rely on active IPs for the full induction of proinflammatory cytokines via the MAPK path-
way [59,60]. These studies were mainly performed in myeloid-derived immune cells, but
lymphoid cells were affected as well [61]. Interestingly, IP activity was found to play a
critical role in T-cell differentiation with inducible subunits favoring T helper (Th)1 and
Th17 differentiation, while SPs promoted a regulatory T cell phenotype [60,62,63]. B cells,
especially plasma cells (PC), have an increased sensitivity to proteotoxic stress and there-
fore, are extremely dependent on proper proteasome function for their survival [64–66].
The accumulation of protein aggregates that cannot be effectively degraded by proteasomes
generally induces intracellular stress and activates the unfolded protein response (UPR).
This, in turn, leads to compensatory mechanisms including the upregulation of proteasome
isoforms to restore protein homeostasis [6,67].

2. Impaired Proteasomal Function—(Mono)genetic Defects in the Ubiquitin
Proteasome-System in Autoinflammatory Disorders
2.1. Proteasome-Associated-Autoinflammatory-Syndrome (PRAAS)

A cause-and-effect relationship between proteasome dysfunction and chronic inflam-
mation was first established in 2010, as loss-of-function mutations in the PSMB8 gene were
identified in patients suffering from autoinflammatory syndromes [68]. As disease mani-
festations included joint contractures, muscle atrophy, microcytic anemia and panniculitis-
induced lipodystrophy, these syndromes were initially referred to as JMP syndromes.
Shortly afterwards, further mutations in the very same PSMB8 gene were found in patients
presenting with similar autoinflammatory symptoms. Many different names have been
proposed to describe these disorders, including Nakajo-Nishimura syndrome (NNS) [69],
Japanese autoinflammatory syndrome with lipodystrophy (JASL) [70] and chronic atypical
neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syn-
drome [71]. As these syndromes share the same genetic etiology, these were subsequently
brought together and referred to as proteasome-associated-autoinflammatory-syndromes
(PRAAS) [72,73].

Disease starts usually in infancy up to early childhood and is characterized by arthritis,
skin eruptions, lipodystrophy and myositis as well as muscle atrophy in all PRAAS forms.
Recurring fever is also described in all syndromes but JMP. Further PRAAS hallmarks
include basal ganglia calcifications and hepatosplenomegaly [68–70,73–75]. As for the skin
lesions, they seem to slightly differ in presentation between syndromes, with CANDLE
being associated with annular plaque and violaceous eyelids [74], while NNS and JASL
mostly present with nodular erythema [69,70]. Additionally, lesions in JMP patients are
described as erythematous macular/papular and nodules [68].

Laboratory findings are in line with the observed chronic inflammation, as elevated
C-reactive protein levels and erythrocyte sedimentation rate are common in patients [72].
Unfortunately, beside genetic analysis, rapid diagnostic tests for PRAAS are not available so
far. However, two biological traits highly specific to PRAAS may be used to help establish
the presence of the disease. These include: (i) a typical type I IFN gene signature in the
blood [7,75–77] and (ii) a ubiquitous proteasome loss of function. One way to detect type I
IFN responses is to monitor the expression of IFN-stimulated genes (ISG) at the transcript
level by qPCR and/or Nanostring technology [78,79] or at the protein level (i.e., SIGLEC1)
using flow cytometry [80]. Impaired proteasomal function can be measured either directly
using activity-based-probes showing cleavage capacity [68] or indirectly by assessing the
content of ubiquitin-modified proteins by Western blotting [69].

Given that the first PRAAS genetic mutations were all identified within the PSMB8
gene encoding the catalytic IP subunit β5i [71], it was initially assumed that these disorders
were primarily caused by IP defects. This notion was, however, rapidly challenged by the
fact that PRAAS patients may carry genomic alterations in other proteasome genes such as
PSMA3 [76], PSMB4 [76], PSMB9 [76], POMP [76,81], PSMG2 [82] and PSMB10 [83]. Surpris-
ingly, a series of proteasome loss-of-function mutations affecting PSMB1 [84], PSMD12 [85]
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or PSMC3 [86] were not associated with typical PRAAS phenotypes, as they were found in
patients suffering from neurodevelopmental delay (NDD). While cognitive impairment
is also detectable in PRAAS patients, NDD subjects fail to develop any clinical signs of
autoinflammation. The reasons for these discrepancies are unclear and warrant further in-
vestigation.

Due to the inherent type I IFN gene signature, PRAAS may be placed into the category
of interferonopathies. However, in contrast to other well-defined interferonopathies such
as Aicardi–Goutières syndrome (AGS) or STING-associated vasculopathy with onset in
infancy (SAVI), the molecular mechanisms leading to type I IFN production in PRAAS
remain unclear. One particularly attractive hypothesis for the induction of sterile inflamma-
tion in PRAAS subjects is the propagation of ER stress. It is indeed well established that ER
associated protein degradation (ERAD) function is compromised by proteasome defects,
thereby resulting in the retention of misfolded proteins in the ER [87,88]. Perturbed protein
homeostasis in the ER lumen is then sensed by the three ER-resident transmembrane
receptors ATF6 (activating transcription factor 6), IRE1 (inositol-requiring enzyme 1) and
PERK (protein kinase R (PKR)-like endoplasmic reticulum kinase) which in turn initiate
the so-called unfolded protein response (UPR). This results in the activation of downstream
transcriptions factors destined to upregulate ERAD component and/or chaperones [89].
Strikingly, it has been shown that sustained UPR activation may induce inflammation even
in a pathogen-free context by various mechanisms [67,90]. For instance, the exposure of
microglia to proteasome inhibitors leads to the production of inflammatory cytokines in
an IRE1-dependent fashion [91]. The observation that PRAAS patients express typical
ER stress markers [81], suggests that the UPR might be one the mechanisms underlying
inflammation in these patients. Interestingly, the activation of the UPR also results in the
transcription of genes encoding inhibitors of the mTORC1 signaling pathway [92–95]. A
decreased activation of mTORC1 would result in decreased lipid biosynthesis and reduced
amounts of cholesterol. The observation that cholesterol deficiency is a danger signal
alerting the innate immune system [96] reinforces the notion that the UPR might play a key
role in PRAAS pathogenesis.

Thus far, the therapeutic options for PRAAS are extremely limited. Subjects with
PRAAS respond poorly to conventional or biologic disease-modifying antirheumatic
drugs [76]. Recently, major advances have been made by introducing the JAK1/2 in-
hibitor baricitinib into the treatment protocols [97]. Baricitinib, which blocks inter alia
IFN signaling, has shown promising effects in PRAAS patients, as it could reduce dis-
ease manifestation in 8 out of 10 patients and promote clinical/inflammatory remission
in 5 out of 10 patients, even though one patient had to drop out because of an uncon-
trolled BK-virus infection [97]. Similarly, successful treatment of PRAAS with tofacitinib, a
pan-JAK-inhibitor, was demonstrated in a case report [98].

2.2. Further Genetic Inflammatory Diseases with a Link to the UPS

Dysregulated ubiquitylation has recently been associated with NF-κB-related au-
toinflammatory diseases, also named relopathies [99]. Among them, three are currently
associated with altered ubiquitylation patterns [100]. These include mutations within genes
encoding LUBAC and the OTU-deubiquitinase OTULIN and A20.

Mutations in RBCK, encoding HOIL-1L [101], and RNF31, encoding HOIP [102], are
found in patients suffering from autoinflammation and immunodeficiency. These are
traditionally referred to as LUBAC-mutations, as they result in the impaired assembly of
the LUBAC complex, thereby preventing the linear (M1) ubiquitylation of critical signal
transducing proteins (for TNF-signaling RIPK1, as depicted in Figure 2). LUBAC deficiency
induces cell-type specific and cytokine-specific down- but also upregulation of the NF-
κB-pathway. Clinically, patients with mutations in either one of the LUBAC subunits
present with multiorgan autoinflammation, recurring infections and intracellular muscular
glycogen inclusions with consecutive (cardio-)myopathy (amylopectionsis) [101,102].
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OUTLIN, which counteracts linear LUBAC ubiquitylation, may be subjected to several
loss-of-function mutations in patients exhibiting enhanced NF-κB activation [57]. Conse-
quently, this leads to increased secretion of pro-inflammatory cytokines due to unbalanced
LUBAC-activity (Figure 2).The resulting disease is named otulipenia or otulin-related
autoinflammatory syndrome (ORAS) [103], whereby patients suffer from recurring fevers,
sterile neutrophilia, lipodystrophy, panniculitis and systemic inflammation with growth
retardation [100].

Another DUB involved in a negative feedback regulation is A20, whose alterations
are associated with severe autoinflammation. Heterozygous loss-of-function mutations in
the gene TNFAIP3 encoding A20 result in a Behçet-like disease named A20 haploinsuffi-
ciency [104,105]. Autoinflammation manifests early and is accompanied by bipolar oral and
genital ulcers, inflammation of the eyes, exanthemas, and arthralgia/arthritis (ref). Further-
more, mutations within TNFAIP3 have been found in autoimmune–lymphoproliferative
syndrome (ALPS) [105]. In these diseases, autoinflammation is typically accompanied by
immunodeficiency due to the severe dysregulation of the NF-κB-pathway [100] (Figure 2).

USP18 deficiency was recently described as a novel autoinflammatory disorder [106].
USP18 serves as a negative feedback for type I IFN-signaling besides its role as a DUB
for the ubiquitin-like modifier ISG15 [107]. Genetic mutations resulting in USP18 loss-
of-function of present with a pseudo-TORCH (toxoplasmosis, other [syphilis, varicella,
mumps, parvovirus and HIV], rubella, cytomegalovirus, and herpes simplex) fetopathy
due to the unmitigated IFN-induced inflammation [106]. Similarly, impaired trafficking
of USP18 to the IFN receptor results in loss of USP18 activity and a phenocopy of USP18
deficiency [108]. Untreated USP18 deficiency results in neonatal death [106]. However,
immediate treatment with JAK-inhibitors has been successful in a first case [109].

Most recently, mutations within the major E1 ubiquitin-activating enzyme ubiquitin-
like modifier activating enzyme 1 (UBA1) have been associated with adult-onset autoin-
flammation [110,111]. In the affected patients, somatic mutations in peripheral blood
myeloid cells in the X-chromosomal UBA1 gene resulted in the expression of a catalyti-
cally impaired UBA1 isoform. Mechanistically the impaired ubiquitin-activating activity
resulted in decreased polyubiquitylation and increased unfolded protein response. Thus,
only males were found to be affected and somatic nature explains the late onset of inflam-
mation. Clinical phenotypes can vary. Common inflammatory manifestations include
relapsing perichondritis, Sweet’s syndrome or vasculitis. Additionally, patients frequently
present with hematological abnormalities including myelodysplastic syndrome. Due to the
vacuoles found in myeloid precursor cells, the affected E1 enzyme on the X-chromosome,
causing autoinflammation by a somatic the disease was named VEXAS [110].

3. Inflammation and Increased Proteasomal Activity

As the inducible β1i, β2i and β5i catalytic units are typically upregulated in response
to inflammatory cytokines (as highlighted in the first chapter), the constitutive expres-
sion of IPs is a common hallmark of autoinflammatory diseases [112,113]. In this regard,
other UPS-related biomarkers include proteasome-directed autoantibodies which were
identified in multiple autoimmune diseases such as poly/dermatomyositis, systemic lupus
erythematosus (SLE), Sjögren Syndrome (SjS) and multiple sclerosis (MS) [114–116]. Inter-
estingly, these antibodies were capable of reducing proteasomal activation by PA28, at least
in vitro [117]. Besides autoantibodies against proteasome subunits, circulating proteasomes
were also found in various autoinflammatory diseases including SLE, rheumatoid arthritis
(RA) or vasculitis [118]. Interestingly, the amounts of circulating proteasomes seemed to
correlate with cellular damage, thereby making them good clinical markers for disease pro-
gression [119]. These findings led to multiple preclinical studies, investigating proteasomal
activity in various autoinflammatory diseases and autoimmune diseases [59,60,120–125],
as discussed below. Additionally, in autoimmune driven diseases further benefit from
proteasome inhibition might be accounted to the specific proapoptotic effect on plasma
cells [64,66,126,127].
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3.1. Rheumatoid Arthritis

RA is a common autoimmune disease characterized by inflammation of the synovia
and joints leading to cartilage and bone destruction [128]. It can be accompanied by
systemic disorders, thereby potentially leading to high morbidity and increased mortal-
ity [128]. A key driver of RA pathogenesis is NF-κB [129], whose activation relies on proper
proteasome function, as mentioned above. Hence, proteasome inhibition has proven clin-
ically useful to reduce the production of interleukin (IL)-1β and IL-6 in T cells from RA
patients [130]. In addition, blocking proteasome function by small molecule inhibitors
has been shown to limit RA synovial cell proliferation by preventing the degradation of
p53 [131]. Preclinical data from two mouse models of collagen antibody-induced arthritis
and collagen-induced arthritis have also revealed that IP activity supports disease pro-
gression by promoting pro-inflammatory cytokine production and inflammatory joint
infiltration [120].

3.2. Systemic Lupus Erythematosus

SLE is an autoimmune disease in which inflammation may target multiple organs,
resulting in a very heterogeneous clinical manifestation with individual disease courses
and various life-shortening and life-threatening complications [132]. Autoantibodies found
in SLE target nuclear proteins are frequently produced by long-lived plasma cells (PC)
that evade conventional B cell-targeted treatment [127]. However, due to their particularly
high-rate production of secretory proteins, PCs generate large amounts of misfolded pro-
teins in ER lumen that must be transported back to the cytosol by ERAD for subsequent
degradation by proteasomes. For that reason, PCs are particularly sensitive to proteasome
inhibition (as discussed below). A more direct involvement of proteasomes in SLE patho-
genesis has been shown in mouse models in which specific IP inhibition was associated
with reduced production of IFN-α [133], a critical disease marker [134]. Another hint for
an active contribution of proteasomes to SLE comes from the observation that PA28γ is
downregulated in lupus nephritis tissue [135]. Since PA28γ-capped proteasomes accel-
erate the turnover of phosphorylated STAT3 [135], it is highly likely that the decreased
expression of PA28γ actively contributes to diseases pathogenesis. Interestingly, this notion
seems to be specific to SLE, as the serum levels of circulating PA28γ in RA, SjS and other
undifferentiated connective tissue diseases (CTDs) are increased and positively correlate
with disease activity [136].

3.3. Sjögren Syndrome

Like RA and SLE, SjS is an autoimmune CTD. In SjS, autoimmunity leads to a chronic
inflammation of salivatory and lacrimal glands [137]. It can manifest primarily or in combi-
nation with other autoimmune diseases and is the most frequent autoimmune CTD [137].
Besides the prevalence of anti-proteasome autoantibodies in SjS [138], the expression of the
IP subunit LMP2 was significantly reduced in SjS salivatory glands [113,139]. The down-
regulation of LMP2 in SjS seems to occur as a consequence of increased protein turnover, as
LMP2 mRNA were simultaneously upregulated. mRNA upregulation was most prominent
in B cells and correlated with reduced susceptibility to proteasome inhibition [140]. How-
ever, proteasome inhibition in an animal model of SjS prevented disease development [141].
In this study, the beneficial effect of proteasome inhibitors was attributed to the prevention
of Th17 differentiation and lymphocytic gland-infiltration. Furthermore, a variant of the
PSMB11 gene encoding the thymoproteasome specific β5t subunit was associated with the
development SjS [142]. In this work, the introduction of this variant in mice resulted in
impaired positive T-cell selection and an altered CD8+ T-cell receptor repertoire.

3.4. Inflammatory Bowel Disease

Besides CTD, it has been suspected that UPS dysfunction might be involved in the
pathogenesis of other inflammatory diseases. For instance, it is thought that proteasomes
participate in the progression of inflammatory bowel disease (IBD). The two main IBD forms
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are ulcerative colitis (UC) and Crohn’s disease (CD), both of which presents with relapsing
chronic inflammation of the gut and sustained activation of the NF-κB pathway [143].
Strikingly, the IP subunits β1i and β2i were found to be constitutively expressed in colons
of patients with CD [144,145] and to a lesser extent in UC [145]. It has been proposed that
the presence of IP in patients with IBD favors IκBα degradation, thereby promoting the
excessive activation of NF-κB activation [146]. IP subunit expression and activity in CD
might be involved in immunopathogenesis. However, a prominent role of IFN-γ (known
to induce IP formation) in CD limits conclusions made from these ex vivo studies [144].
Preclinical studies have been carried out to investigate whether such differential expression
of proteasome isoforms was disease-relevant. It could be confirmed that both proteasome
pan- and IP-specific inhibitions reduced gut inflammation in mice [147,148]. For the
targeted approach, a dual inhibition of at least two IP subunits was necessary [149].The
protective mechanism was attributed to reduced NF-κB-signaling in all these studies.

3.5. Multiple Sclerosis

MS is an inflammatory disease of the central nervous system (CNS) resulting in de-
myelination and neuronal damage [150]. It is the most common CNS autoimmune disease
whose molecular pathogenesis remains, however, poorly understood. It predominantly
affects young adults and has a severe impact on the quality of life of these individu-
als [150]. Interestingly, LMP2 and PA28αβ were found to be enriched in immune cells
and oligodendrocytes of MS lesions [151]. Further evidence for an involvement of IPs in
MS pathogenesis was made by the identification of a PSMB9 variant associated with a
reduced risk of developing MS. It is understood that the beneficial effect of this variant
is attributed to altered MHC class I-restricted myelin-derived peptides [151]. It was also
shown that proteasome pan-inhibition could prevent the development of experimental
autoimmune encephalitis (EAE, a mouse model of MS) in mice following the injection of
antigens and/or antigen-specific CD4+ or CD8+ T cells [125,152,153]. Similar effects were
observed by specifically inhibiting the two IP subunits LMP2 and LMP7 [125,149].

3.6. Further Inflammatory Diseases with a Link to the UPS

The critical role of the UPS in cytokine signaling, especially the NF-κB- and Th17
differentiation pathways makes it a good disease-causing candidate in many other inflam-
matory disorders. For example, in psoriasis, a chronic inflammatory skin disease, driven
by both innate and adaptive immunity, genome wide association studies have shown a
direct cause-and-effect relationship between UPS dysfunction and psoriasis [154,155]. A
central role here is assigned to the IL-23/Th-17 axis and TNFα a cytokine upregulated by
NF-κB [156]. Similarly, any UPS dysfunction might trigger auto-immune diseases because
of inappropriate supply of MHC class I-restricted peptides. This view is supported by a
genome wide association study in Behçet’s disease [157].

4. The UPS as a Therapeutic Target

Bortezomib is the first proteasome inhibitor with FDA approval. It was initially
described as an anti-inflammatory drug [158]. However, bortezomib and the second-
generation proteasome inhibitor carfilzomib have only been clinically approved for treat-
ing malignancies such as multiple myeloma and mantle cell lymphoma so far [159–161].
Clinical data from a small study involving 12 patients with SLE [64] and a randomized
double-blind controlled trial with 14 patients with SLE [162] have shown a beneficial effect
of bortezomib on disease outcome. Similarly, in another study, bortezomib was shown to
deplete PCs and reduce autoantibody production [127,163]. As discussed earlier, this effect
can be easily explained by the fact that antigen-producing PCs need a high proteasomal
capacity to degrade misfolded antibodies, which renders them susceptible to proteasome
inhibition [127]. The perceived benefit of bortezomib is its proapoptotic effect on long-lived
PCs. This effect is unfortunately not limited to pathogenic PCs but also depletes protec-
tive PCs [164]. Bortezomib has furthermore successfully been used in different cases of
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autoimmunity including autoimmune cytopenia, refractory primary SjS and encephali-
tis [165–168]. As all beneficial effects of bortezomib on the SLE disease course cannot
be attributed to the reduction in autoantibodies [162], an additional anti-inflammatory
effect is suspected. For instance, ex vitro stimulated T cells from healthy donors showed
the reduced expression of inflammatory cytokines under proteasome inhibition by borte-
zomib [169]. A substantial part of the anti-inflammatory potential might also be attributed
to overall cytotoxic effects on immune cells [170], which were most prominently observed
in monocytes [124,170]. Similar effects on antibody formation has been observed in a
small case series of anti-NMDA-receptor encephalitis [171], and a multicenter randomized
controlled double-blinded study is currently recruiting patients [172] (ClinicalTrials iden-
tifier NCT03993262, https://clinicaltrials.gov/ct2/show/NCT03993262, accessed on 20
February 2021). However, a therapy with bortezomib is limited by the hematological and
neurotoxic side effects [173]. The assumed effects are summarized in Figure 3.
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Figure 3. Overview of the potential anti-inflammatory mechanisms of proteasome inhibitors.
Proteasome inhibitors including bortezomib, carfilzomib, ONX 0914 and KZR 616 were shown to
exert anti-inflammatory effects via different mechanisms. These involve all cells: an influence on
MHC class I antigen presentation (top left) and degradation of IκBα (top right), which results in
NF-κB nuclear translocation and transcription of pro-inflammatory cytokines. Specific effects on
cellular subsets include a targeted anti-inflammatory and proapoptotic effect on monocytes which
results in a reduction in pro-inflammatory cytokine production upon TLR stimuli (bottom left). In
T-cells, active IP are required for differentiation into Th1 and Th17 phenotypes (bottom center),
whilst IP inhibition results in increased Treg differentiation and decreased IFN-γ production, as
indicated. Plasma cells (PC) are especially sensitive to reduced proteasomal activity, which results in
apoptosis most likely via activation of the UPR and in depletion of autoantibodies (bottom right).

Further proteasome inhibitors, particularly those only targeting the IP subunits,
are currently under investigation [174], as they are thought to have fewer toxic side ef-
fects [175,176]. IP-specific inhibitors have been established in preclinical research [120,174]
and have shown promising potential in multiple inflammatory disease models of various
inflammatory and autoimmune disorders including experimental arthritis [120], sepsis-
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models [59], experimental autoimmune myocarditis [60] experimental autoimmune en-
cephalomyelitis [125] and experimental colitis [121] inter alia [123,177–179].

For sufficient anti-inflammatory treatment, a co-inhibition of at least two IP catalytic
subunits is necessary [149,179]. For immune cell depletion, including PC depletion, at least
a partial added inhibitory effect on SPs is needed, as the catalytically active SP subunits
β1, β2 and β5 are upregulated compensatory under highly specific IP inhibition in these
cells [180]. The first human immunoproteasome inhibitor with such inhibitory capacity
is KZR-616 [174]. It is currently in clinical phase 2 studies for treating systemic lupus
erythematosus (ClinicalTrials identifier NCT03393013, https://www.clinicaltrials.gov/ct2
/show/NCT03393013, accessed on 20 February 2021) and polymyositis/dermatomyositis
(ClinicalTrials identifier NCT04033926, https://www.clinicaltrials.gov/ct2/show/NCT040
33926, accessed on 20 February 2021).

Whilst proteasome inhibitors are well established, only limited data are currently
available on the therapeutic potential of small molecule proteasome activators [181]. Ex-
amples of the very few substances capable of activating proteasomes include a MAPK
inhibitor [181] and the protein kinase (PKA) activator Rolipram, which acts most likely by
phosphorylating proteasomes [182]. Other substances increase proteasomal activity by the
transcription of proteasome genes [183] or by the inhibition of DUBs [184] Clearly, further
research is needed in this field, as increasing proteasome activity may provide treatment
for patients with PRAAS or other diseases [181].

5. Conclusions

To summarize, the UPS is tightly involved in inflammation and (auto-)inflammatory
diseases. It is involved in regulating pro-inflammatory pathways and is in turn upregulated
during inflammation. Its exact role in the disease pathogenesis of inflammatory diseases is,
however, still under investigation. Then again, impaired proteasomal activity is known
to induce sterile inflammation, as observed in PRAAS patients. The exact mechanism
is still not fully understood. Unravelling the pathogenesis of such diseases further will
aid in better therapeutic approaches for PRAAS patients. For (auto-)inflammatory and
auto-immune diseases, multiple mechanisms involved have been found. This resulted in
successful initial clinical trials using the immunoproteasome as a therapeutic target. Larger
studies with novel proteasome inhibitors with an optimized side-effect spectrum seem
promising for larger randomized clinical trials.
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