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Abstract: The ubiquitin–proteasome system (UPS) is a central part of protein homeostasis, degrading
not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a
healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations
in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target
for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and
most important component of the UPS enzymatic cascade, have been approved for the treatment of
these malignancies. However, their use has been associated with side effects, drug resistance, and
relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the
cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective
proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety
against inflammatory and autoimmune diseases, even though their development for the treatment of
hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have
shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being
investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on
immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.

Keywords: ubiquitin–proteasome system (UPS); immunoproteasome (iP); proteasome inhibitors
(PIs); hematopoiesis; hematologic malignancies

1. Introduction

The ubiquitin–proteasome system (UPS) is the main non-lysosomal pathway for the
degradation of intracellular proteins. It consists of a sequence of enzymatic processes that
tag a protein substrate with multiple ubiquitin molecules for subsequent degradation by
the 26S proteasome, with the release of reusable ubiquitin performed by deubiquitinating
enzymes (DUBs) (Figure 1) [1]. During the initial step of ubiquitin conjugation, a ubiquitin-
activating enzyme (E1) activates ubiquitin in an ATP-dependent manner. One of the several
ubiquitin-conjugating enzymes (E2) transfers the activated ubiquitin to the substrate, which
is specifically bound to a ubiquitin-ligase enzyme (E3), in a two-step reaction [2]. Hundreds
of E3 enzymes have been characterized by individually defining motifs, determining
high substrate specificity [3]. Monoubiquitylation, namely, the attachment of only one
ubiquitin moiety through its C-terminal carboxylate to a protein, can regulate endocytosis,
endosomal sorting, histone regulation, and DNA repair [4]. Importantly, ubiquitin itself
exhibits eight potential sites for ubiquitination (M1, K6, K11, K27, K29, K33, K48, and
K63), thereby allowing the formation of polyubiquitin chains. Polyubiquitination through
different ubiquitination linkages may carry distinct biological fates, with proteins modified
with K48- or K11-linked polyubiquitin being typically degraded by the 26S proteasome [4].
The 26S proteasome is a 2.5 MDa complex that consists of a 20S core particle and a 19S
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regulatory particle [5–7]. It functions as a crucial regulator of the proteome in eukaryotic
cells by degrading damaged, misfolded, or regulatory proteins [8,9].
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Besides the constitutive 26S proteasome, which is expressed in all different tissues 
and cell types, three other proteasome isoforms, the immunoproteasome (iP), the thymo-
proteasome, and the spermatoproteasome, are expressed in a tissue-dependent manner 
[10,11]. In the case of the iP, the three main catalytic subunits of the constitutive pro-
teasome (β1, β2, β5) are substituted by the so-called immunosubunits (β1i, β2i, β5i) [12–
14]. The iP subunits appeared during the two rounds of whole-genome duplication that 
occurred before the emergence of the common ancestor of jawed vertebrates [11]. The iP 
is constitutively expressed in cells of hematopoietic origin or can be induced after cytokine 
stimulation in various tissues [15]. It modulates MHC class I antigen processing [16,17] 
and supports the differentiation of T-helper cells in the context of virus infection [18]. A 
later discovered catalytic subunit (β5t) was described to be exclusively expressed in corti-
cal thymic epithelial cells, suggesting that the thymoproteasome has a key role in gener-
ating the MHC class I antigen repertoire during thymic selection [19]. The β5t subunit 
emerged from the β5 in a common ancestor of jawed vertebrates [11]. Finally, the most 
dramatic changes in tissue-specific proteasome composition have been observed in the 
testis. In mammalian cells, a testis-specific variant in the α4s subunit of the spermatopro-
teasome [20] has been found to be essential for the assembly of the proteasome regulator 
PA200. PA200 is a different type of regulatory particle that can bind to the 20S particle 
instead of the 19S cap, and it is particularly abundant in testes [21]. It has been shown to 
promote the acetylation-dependent degradation of core histones during somatic DNA 
damage responses and spermatogenesis [22,23]. 

Protein homeostasis relies on protein degradation by the UPS, which is necessary to 
maintain the functionality of the hematopoietic system [24,25]. Hematopoietic stem cells 
(HSCs) give rise to all mature blood cells through a hierarchical process called hemato-
poiesis [26]. This process requires tight regulation of quiescence, self-renewal, and differ-
entiation [27,28]. Dormant HSCs show low protein synthesis [29], which increases under 
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Besides the constitutive 26S proteasome, which is expressed in all different tissues and
cell types, three other proteasome isoforms, the immunoproteasome (iP), the thymoprotea-
some, and the spermatoproteasome, are expressed in a tissue-dependent manner [10,11].
In the case of the iP, the three main catalytic subunits of the constitutive proteasome (β1,
β2, β5) are substituted by the so-called immunosubunits (β1i, β2i, β5i) [12–14]. The iP
subunits appeared during the two rounds of whole-genome duplication that occurred
before the emergence of the common ancestor of jawed vertebrates [11]. The iP is con-
stitutively expressed in cells of hematopoietic origin or can be induced after cytokine
stimulation in various tissues [15]. It modulates MHC class I antigen processing [16,17]
and supports the differentiation of T-helper cells in the context of virus infection [18].
A later discovered catalytic subunit (β5t) was described to be exclusively expressed in
cortical thymic epithelial cells, suggesting that the thymoproteasome has a key role in
generating the MHC class I antigen repertoire during thymic selection [19]. The β5t subunit
emerged from the β5 in a common ancestor of jawed vertebrates [11]. Finally, the most
dramatic changes in tissue-specific proteasome composition have been observed in the
testis. In mammalian cells, a testis-specific variant in the α4s subunit of the spermatopro-
teasome [20] has been found to be essential for the assembly of the proteasome regulator
PA200. PA200 is a different type of regulatory particle that can bind to the 20S particle
instead of the 19S cap, and it is particularly abundant in testes [21]. It has been shown
to promote the acetylation-dependent degradation of core histones during somatic DNA
damage responses and spermatogenesis [22,23].

Protein homeostasis relies on protein degradation by the UPS, which is necessary
to maintain the functionality of the hematopoietic system [24,25]. Hematopoietic stem
cells (HSCs) give rise to all mature blood cells through a hierarchical process called
hematopoiesis [26]. This process requires tight regulation of quiescence, self-renewal,
and differentiation [27,28]. Dormant HSCs show low protein synthesis [29], which in-
creases under stress conditions and may lead to the production of misfolded or denatured
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proteins [30]. To prevent their aggregation, which would cause harmful effects, these
damaged proteins must be efficiently degraded by the UPS. Here, alterations of ubiquitin-
dependent proteolysis of cell-cycle regulators or house-keeping genes have been shown to
result in malignant transformation [31–34]. The growing recognition of fundamental UPS
functions has prompted the search for pharmacologic inhibitors to inactivate this pathway,
making it an attractive therapeutic target [35,36].

Proteasome inhibitors (PIs) have been approved by the US Food and Drug Admin-
istration for the treatment of patients with hematopoietic cancers, especially for multiple
myeloma (MM) [37,38]. However, the acquisition of resistance and toxicity (including pain,
fatigue, peripheral neuropathy, myelosuppression, and cardiotoxicity) remain a clinical
challenge [39]. Recently, next-generation proteasome inhibitors that may overcome resis-
tance to first-generation compounds [40–42] have been developed, but these also show
adverse effects on normal cells.

In general, proteasome inhibition can target any of the three proteasome proteolytic
sites—the caspase-like (β1), trypsin-like (β2), and chymotrypsin-like (β5) sites—whereby
most of the PIs developed so far inhibit the β5/β5i subunits of the constitutive proteasome
(cP) and the iP. It remains unclear whether the specific thymoproteasome subunit β5t is also
affected by established PIs; its sensitivity to standard PIs has been shown to substantially
differ from those of β5/β5i [43]. Differences in pharmacokinetics due to different chemical
backbones explain the diversity of PIs with regard to their activity, safety, and tissue
distribution [35]. Furthermore, selective inhibitors of the iP subunits that target both the cP
and the iP have been developed as an alternative to PIs [44,45]. This review will focus on
the role of the iP in the hematopoietic system and in malignant transformation and compile
information on iP inhibitors currently investigated in pre-clinical or clinical studies for the
treatment of hematologic malignancies.

2. The Immunoproteasome: A Proteasomal Variant Linked to the
Hematopoietic System
2.1. Immunoproteasome Structure

The 26S constitutive proteasome structurally consists of a catalytic 20S core particle
with three different peptidase activities and one or two terminal 19S regulatory parti-
cles composed of six ATPases and multiple components necessary for substrate binding
(Figure 2a) [5–7]. The 19S particle binds to one or both ends of the 20S proteasome and,
together, they form the enzymatically active 26S proteasome.

The composition of the 20S particle consists of four rings with seven subunits each.
The two outer rings contain α-subunits and the inner ones β-subunits. Three of the seven
β-subunits, the β1, β2, and β5 subunits, are responsible for the enzymatic activities of the
proteasome with caspase-like, trypsin-like and chymotrypsin-like activities, respectively
(Figure 2a). The 19S particle, also known as PA700, serves as a gate to the 20S particle
and can be divided into base and lid subcomplexes [46]. The base contains six ATPases
(Rpt1-6) that unfold substrates prior to translocation into the 20S core particle, while the lid
is required for recognition of the ubiquitin-modified proteins, notably via the Rpn10 [47],
Rpn13 [48], and Rpn1 [49] subunits.

The iP contains the three de novo synthesized subunits, β1i (encoded by the PSMB9
gene in humans and by the LMP2 in mice), β2i (encoded by PSMB10/MECL1), and
β5i (encoded by PSMB8/LMP7), that substitute the constitutive ones (Figure 2a). The
β1i/LMP2 and β5i/LMP7 genes are located in the MHC class II genomic region [13,14],
which led to the term “immunosubunits”. After INF-γ stimulation, β1i and β5i subunits
are expressed and incorporated into proteasome precursor complexes instead of their
homologous counterparts β1 and β5 [50,51]. Later, the third INF-γ inducible protein was
identified as β2i/MECL1 and also found to replace the standard β2 subunit [12]. It has been
shown that direct interaction of β5i with the assembly chaperone proteasome maturation
protein (POMP) accelerates iP biogenesis to the detriment of cP assembly, allowing a
quick response to immune and inflammatory stimuli [52]. Surprisingly, the simultaneous
expression of constitutive and inducible β-subunits is possible, thereby setting a variety of
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different 20S complexes from which the β1/β2/β5i and β1i/β2/β5i combinations are the
most common ones [53]. These proteasome variants are collectively known as intermediate
or mixed-type proteasomes [54].
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Moreover, INF-γ stimulation induces the expression of the proteasome activator
28 (PA28), a heteroheptameric complex that binds to the cP or the iP with the same
affinity [55]. PA28 can associate with one or both ends of a 20S particle or to the free
end of a 19S–20S complex to form homo (PA28-20S) or hybrid (PA28-20S–19S) complexes,
respectively [56]. While it is understood that PA28-20S proteasome complexes primarily
degrade oxidant-damaged proteins in a ubiquitin-independent manner [57,58], hybrid
proteasomes seem to specialize in the supply of MHC class-I-restricted peptides [59–61].

2.2. Immune and Non-Immune Functions of the Immunoproteasome

As discussed above, the proteasome functions as a key modulator and central part
of the UPS. Of note, it plays a dual role by exerting immune and non-immune functions.
It not only generates antigen peptides for immune responses but also degrades damaged
or misfolded proteins produced under stress stimuli and short-lived proteins with regu-
latory functions in cell differentiation, cell-cycle regulation, transcriptional regulation, or
apoptosis [8,9] and thereby facilitates regulation of intrinsic cell processes.
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The proteasome is the main protease involved in the generation of antigenic peptides
presented by MHC class I molecules to cytotoxic T-lymphocytes [62]. Expression of the
immunosubunits (β1i, β2i, and β5i) after INF-γ induction has been shown to modulate the
efficiency of peptide production, generating peptides that are better suited to bind MHC
class I molecules, [16,17] by exhibiting a different cleavage rate [63]. Herein, depending
on protein sequence, some antigens are exclusively produced by the iP or the cP, while
others can be processed by both [64–68]. There are even some antigens that seem to be
preferentially processed by intermediate-type proteasomes [53,69]. Moreover, mice de-
ficient in β1i/LMP2, β5i/LMP7, or β2i/MECL1 exhibit modest defects in MHC class I
antigen presentation [70–72], while mice deficient for all iP subunits have an impairment
in the presentation of MHC class I epitopes, similar, regarding the immunological phe-
notype, to β5i/LMP7-deficient mice [73]. The iP has additional immunological functions
apart from MHC class I antigen processing. First, the iP plays a role in the maintenance
and expansion of the CD8+ T-cell repertoire during immune response against intracel-
lular infections [18,74]. Additionally, it promotes the differentiation of pro-inflammatory
T-helper type 1 (Th1) and type 17 (Th17) cells and suppresses the induction of regulatory
cells [75–77]. It also induces the production of cytokine IL-23 by monocytes and IL-2 by
T-cells [45].

In contrast to the initial assumption that the iP only plays a specific role in MHC class
I antigen production, it is now accepted that this function is part of a more general role
in protein homeostasis. The iP has been shown to prevent the accumulation of harmful
protein aggregates under cytokine-induced oxidative stress due to increased efficiency in
protein degradation compared to the cP [78–82], even though this aspect is still a matter
of debate [83,84]. In addition, the 20S core particle has been demonstrated to dissociate
from the 26S proteasome under stress conditions, with the iP containing 20S being more
efficient than its standard counterpart at degrading oxidized proteins in an ATP- and
ubiquitin-independent manner [58,85]. Supporting this notion, expression of the iP is
upregulated through the mTOR pathway to prevent the accumulation of misfolded or
damaged proteins [82].

The fact that iPs are more efficient than cPs at breaking down intracellular proteins
implies that these may exert pleiotropic effects on cell function. As the proteasome has been
associated with control of transcription [86], the iP may also impact transcription during
cell stress or malignant transformation. Along these lines, iP expression has been shown
to modulate the abundance of transcription factors that regulate fundamental signaling
pathways [87,88].

2.3. Expression Patterns of the Immunoproteasome

While cP is highly expressed in various tissues and its constitutive expression and
formation is controlled on the transcriptional level through Nrf1/Tcf11 or inducible mainly
upon proteotoxic stress, iP subunits are downregulated under these conditions [89–91].
Expression of the three iP subunits is inducible after pro-inflammatory cytokine stimulation
in many tissues. IP induction is mediated by the activation of signal transducer activator
of transcription (STAT) and interferon regulatory factor (IRF) families [92–94]. Moreover,
iP subunits are constitutively expressed at high levels in cells of hematopoietic origin
across different species [95,96] and can be found in vivo in hematopoietic cells such as
macrophages [97] or B-cells [98]. The iP is the predominant proteasome variant found
in the bone marrow cells of healthy individuals and MM patients [41]. Similarly, in
tumor cell lines of hematopoietic origin, the iP represents the major constituent of the
total proteasome pool, while in other non-hematologic-derived cells, the percentage of
iPs appeared rather low [41]. Of note, the ratio of iP-to-cP expression is significantly
higher in pre-B acute lymphoblastic leukemia (ALL) than in acute myeloid leukemia (AML)
pediatric patients. This ratio correlates with therapy response to PIs, suggesting it can
be used as an indicator of sensitivity [99,100]. Immunoproteasome expression has also
been found to be upregulated in other types of hematologic malignancies, such as in
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myeloproliferative neoplasms (MPNs), specifically in primary myelofibrosis (PMF) [101].
Apart from its expression in hematopoietic cells, the β5i/LMP7 subunit is also expressed in
small intestinal epithelial cells [102], colon [103], liver [104,105], umbilical vein cells [106],
and placenta [107].

The β5i/LMP7 subunit is known to be incorporated into 20S proteasome assembly
intermediates, preferentially by higher affinity to the assembly factor POMP [52]. In some
cell types, the exclusive expression of β5i/LMP7 leads to the formation of intermediate type
proteasomes, with only one or two immunosubunits incorporated [53]. Such proteasome
subtypes were shown to generate spliced tumor epitopes more efficiently than other sub-
types [108]. POMP expression, in turn, is negatively controlled by micro-RNA miR-101 to
modulate (immuno-)proteasome formation. Manipulation of miR-101 is engaged by breast
cancer cells to ensure higher proteasome activity along with higher proliferation rates [109].
miRNAs—including miR-101 and others—are associated with cancer immunity [110] and
thus discussed as a potential therapeutic target. In this context, miR-101 is also proposed
to target Jak2 [111].

2.4. Genetic Variants of the Immunoproteasome

All proteasome subunits have known genetic variants, with some of them causing
diseases. Variants in the PSMA6 gene have been linked to coronary artery disease, my-
ocardial infarction, type II diabetes mellitus, and ischemic stroke, while an association
between variants in the PSMA7 gene and intellectual disability has been reported [112].
Recently, two reports have associated variants in the PSMC3 gene with severe congenital
deafness, early-onset cataracts, and various neurological features [113] and PSMB1 variants
with microcephaly, intellectual disability, developmental delay, and short stature [114].
Polymorphisms in genes encoding the iP subunits β1i (PSBM9) and β5i (PSMB8) have
been associated with an increased risk of tumor development, including the develop-
ment of esophageal carcinoma [115], cervical carcinoma [116], oral squamous cell carci-
noma [81,117], prostate cancer [118], and colon cancer [119]. It has also been reported
that polymorphisms in PSBM9 but not in PSMB8 can be used as a susceptibility factor
in the development of AML or MM [120]. The G201V mutation in the PSMB8 gene has
been reported in Nakajo–Nishimura syndrome [121]. During iP biogenesis, the mutated
β5i protein is not correctly incorporated into mature proteasomes, leading to reduced
proteasome activity and an accumulation of ubiquitinated proteins within the cells that
highly express iPs. Another mutation in PSMB8 (G197V) has been found in patients with an
autoinflammatory disease [122]; it produces a significant decrease in proteasome function
and an accumulation of ubiquitin-modified proteins in the patient’s tissues. Meanwhile,
further mutations in the PSMB8 gene or other genes coding for iP or cP subunits, including
PSMB9, PSMB10, PSMA3, PSMB4, POMP, and PSMG2, have been identified in patients
suffering from similar autoinflammatory syndromes [123–127]. Because of their clinical
manifestations and proteasomal etiology, these conditions are frequently referred to as
chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
(CANDLE) or proteasome-associated autoinflammatory syndrome (PRAAS), respectively.
On the molecular level, cells suffer from severe proteotoxic stress in these conditions,
including ER-stress or activation of Nrf1/Tcf11 [89,90,126], similar to the cells treated with
proteasome inhibitors.

3. Pro- and Anti-Tumoral Properties of the Immunoproteasome

The iP has been found to exert antagonistic effects on different types of malignancies,
having pro- or anti-tumorigenic properties that are all due to its capacity to modulate the
expression of pro-tumorigenic cytokines and chemokines or to increase the presentation of
tumor peptides, respectively.

The loss of MHC class I molecules on the tumor surface is a well-known mechanism
for evading recognition and destruction by cytotoxic T-lymphocytes [128,129]. An alterna-
tive strategy for escaping immune control has been found in non-small cell lung cancer
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(NSCLC), in which epithelial-to-mesenchymal transition leads to a loss of iP expression,
resulting in markedly reduced MHC class I antigen presentation [130] and cancer pro-
gression. Conversely, higher iP expression correlates with improved prognosis. Here,
increased iP expression was attributed to the secretion of INF-γ by CD8+ tumor-infiltrating
lymphocytes (TILs), the presence of which is considered a good prognosis factor [131–133].
A similar mechanism has also been reported in melanoma, where high β5i/PSMB8 and
β1i/PSMB9 expression has been associated with increased survival, enhanced immune
response, and the presence of TILs [134]. In breast cancer, high expression of iP subunits
correlates with good prognoses and an abundance of TILs [135,136]. On the other hand, iP
expression is essential for the initiation of inflammatory processes [137], which can lead to
inflammation-driven carcinogenesis. The iP seems to play a fundamental role in colitis-
associated carcinogenesis (CAC) since increased expression of β5i/LMP7 and β1i/LMP2
has been observed in inflamed colons and LMP7-deficient mice exhibit a reduction in tumor
formation compared to their wild-type counterparts [138]. LMP7 deficiency also leads
to reduced expression of pro-tumorigenic chemokines CXCL1, CXCL2, and CXCL3 and
decreased secretion of IL-6 and TNF-α in this model.

Independently from its pro- or anti-tumorigenic properties, iP expression in these
types of cancer is dependent on the paracrine production of pro-inflammatory cytokines by
the surrounding immune cells, as particularly exemplified by breast cancer cells [136]. On
the contrary, as mentioned above, constitutive expression of iPs without stimulation has
mainly been found at high levels in cells of hematopoietic origin, including hematologic
malignancies. This high iP expression may indicate a dependency of hematologic malignant
cells to iP function, which one begins to explore with the development of selective iP
inhibitors. However, the sensitivity of different types of hematologic malignancies may
vary depending on iP expression or may be oncogene-specific. For instance, it was found
that acute promyelocytic leukemia (APL), which contains the chromosomal translocation
PML/RARα, can evade immune control by suppressing the PU.1-dependent activation of
immunosubunits [139].

4. Development of Immunoproteasome Inhibitors to Target Hematologic
Malignancies

The first PIs developed were non-selective and inhibited both cPs and iPs to the same
extent. Building on these rather unspecific compounds, chemical modifications have led
to the alteration of their structure and selective binding capacity to specific proteasome
subunits (Figure 2b).

Non-selective inhibitors of the proteasome have proved their efficacy against MM
and other hematologic malignancies. Compounds such as bortezomib, carfilzomib, and
ixazomib have already been approved for clinical use and later-generation inhibitors are
currently being investigated in advanced clinical trials [140,141]. The fact that these in-
hibitors indiscriminately target both the cP and the iP may lead to a non-selective inhibition
of protein degradation. This lack of specificity may account, in part, for the side effects
that are often observed, as well as drug-resistance relapse following long-term treatment.
Bortezomib-resistant MM cells often show manipulation of proteasome subunits and their
expression, although the molecular mechanisms of resistance are not entirely clear. MM
cells from patients with relapses present mutations in the β5 subunit, different proteasome
subunit compositions, and induction of proteasome subunits. Since all mutations detected
after bortezomib treatment are in the binding site of β5 to the inhibitor, the development
of iP inhibitors will solve at least the problem with β5 active site mutations [142]. The
specificity of binding of PIs to the cP and/or the iP subunits is determined by interactions
with the substrate-binding channels (S1, S2, and S3) of the proteolytic subunits [143]. By
X-ray crystallography, it was determined that the immunosubunits (β1i, β2i, β5i) present
substitutions, in particular, the amino acids of the substrate-binding channels, compared to
constitutive subunits (β1, β2, β5). Exploiting these differences allows for the development
of specific cP or iP inhibitors [143].



Cells 2021, 10, 1577 8 of 21

Selective inhibition of the iP over the cP may overcome side effects while maintain-
ing anti-myeloma or anti-lymphoma efficacy. Since the iP is the major proteasome form
expressed in cells of hematopoietic origin, including MM cells [41], treatment with iP
inhibitors could spare other tissues with little or no iP expression. Moreover, some reports
have shown that normal hematopoietic cells may be able to better overcome the effects
of iP inhibition. The treatment of mouse splenocytes with an iP inhibitor led to reduced
MHC-I surface expression in lymphocytes but did not affect the viability of the cells [45].
In agreement, iP inhibition in naïve T- and B-cells, which express almost exclusively iP
or mixed-type proteasomes, leads to mild proteostasis stress, with T-cells being able to
recover without increased apoptosis [55], which is also true for microglia [144]. Moreover,
normal PBMCs had a minimal reduction of viability after iP inhibitor treatment [145]. In
contrast, other studies have pointed out a reduction of viability in PBMCs after iP inhibi-
tion [44]. Additionally, because the iP is induced by pro-inflammatory cytokines during
stress conditions, iP inhibitors are also an appealing therapeutic target in inflammatory and
autoimmune diseases [146,147]. In fact, great progress has been made regarding therapy for
these diseases, with iP inhibitors and several novel inhibitors currently being investigated
in advanced clinical trials. A list of all the iP inhibitors developed to date can be found in
Table 1. In contrast, and despite the encouraging preliminary results, the development of
iP inhibitors for the treatment of hematologic malignancies is rather slow-paced. In this
section, we present a comprehensive review of iP inhibitors and their anti-tumoral effects
in hematologic malignancies (Table 2).

UK-101 is a dihydroeponemycin analog developed to selectively inactivate the β1i
subunit of the iP [148]. Initially, prostate cancer cell lines with a high content of β1i were
shown to be more sensitive to UK-101 treatment than cell lines with low β1i expression [148].
More recent results have confirmed that in vivo UK-101 treatment reduces tumor growth
in a xenograft model of prostate cancer [149]. Moreover, UK-101 has been demonstrated
to reduce cell growth in MM patient samples, even in cells that have become resistant to
bortezomib treatment [150].

ONX-0914 (PR-957) is the first selective iP inhibitor developed against the β5i subunit,
and it has been described as a peptide–ketoepoxide related to the cP inhibitor carfil-
zomib [45]. Using ONX-0914, several reports have shown the therapeutic potential of
iP inhibition in various inflammatory and autoimmune diseases, including rheumatoid
arthritis [45], multiple sclerosis [151], colitis [137], and lupus [152]. In vitro ONX-0914
treatment in ALL and AML patient samples have determined that ALL samples are more
sensitive to iP inhibition than AML samples (LC50 for ALL was 44.6 nM and for AML
248 nM). An increased ratio of immunoproteasome/constitutive proteasome expression
was correlated with increased sensitivity to iP inhibitor treatment [99]. Among different
AML subtypes, MLL-rearranged (MLLr) AML had the highest iP expression. Treatment of
an MLLr cell line with ONX-0914 led to decreased viability and accumulation of polyu-
biquitinylated proteins, while another AML cell line containing a different chromosomal
rearrangement was unaffected by the treatment [136]. Both cell lines were sensitive to
non-selective proteasome inhibition with bortezomib and MG132, suggesting that a higher
iP expression renders cells more sensitive to iP inhibition.

Other reports have indicated that MM cell lines exhibit reduced proliferation after
ONX-0914 treatment [153]. Increasing the expression of iPs by INF-γ treatment made MM
cells more sensitive to ONX-0914 but could not increase sensitivity to the cP inhibitor
carfilzomib. Combined treatment of ONX-0914 with a β2 inhibitor dramatically sensitized
MM cell lines and primary patient samples to ONX-0914. Similarly, ONX-0914 synergized
with cP inhibitors in vitro and in vivo [153].
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Table 1. Immunoproteasome inhibitors in pre-clinical and clinical development.

Inhibitor Developed by Backbone Target Binding Kinetics

UK-101 [148] Peptidyl epoxyketone β1i subunit (144-fold more selective than β1,
but only 10-fold to β5) Covalent irreversible

ONX-0914 (PR-957) [45] Peptidyl epoxyketone β5i subunit (20- to 40-fold
more selective than β5 or β1i) Covalent irreversible

IPSI-001 [44] Peptidyl aldehyde β1i subunit (100-fold more selective than β1) Covalent reversible

PR-924 [41] Peptidyl epoxyketone β5i subunit (130-fold more selective than β5) Covalent irreversible

LU-001i [154] Peptidyl epoxyketone β1i subunit (925-fold more selective than β1) Covalent irreversible

LU-015i [154] Peptidyl epoxyketone β5i subunit (553-fold more selective than β5) Covalent irreversible

LU-035i [154] Peptidyl epoxyketone β5i subunit (500-fold more selective than β5) Covalent irreversible

HT2210 and HT2106 [155] Oxathiazole β5i subunit (>4700-fold
more selective than β5c) Covalent irreversible

1-CA and 4-CA [156] Peptidyl epoxyketone β5i subunit (75- to 150-fold
more selective than β5) Covalent irreversible

PKS2279 and PKS2252 [157] N,C-capped dipeptide β5i subunit (5600 and 13,600-fold more
selective than β5) Non-covalent

KZR-504 [158] Peptidyl epoxyketone β1i subunit (925-fold more selective than β1) Covalent irreversible

KZR-616 [158] Peptidyl epoxyketone β5i and β1i subunits (18- and 81-fold more
selective than β5 and β1c) Covalent irreversible

LU-002i [159] Peptidyl epoxyketone β2i subunit Covalent irreversible

M3258 [160] Boronic acid β5i subunit (>500-fold more selective than β5) Covalent reversible

Table 2. In vitro and in vivo testing of immunoproteasome inhibitors in hematologic malignancies.

Inhibitor Effective against In Vitro/In Vivo Experiments References

UK-101 MM Patient samples [150]

ONX-0914
(PR-957) MM and MLLr-AML Human cell lines

Synergism with BTZ in a MM murine model [99,127,136]

IPSI-001 MM, NHL, CLL, and AML Human cell lines and patient samples [44]

PR-924 MM, T-ALL, and AML Human cell lines and patient samples
MM xenograft model [79,145]

LU-035i MM Human cell lines in conjugation with cytotoxic drug [161]

HT2210 and HT2106 NHL Human cell lines [155]

M3258 MM, AML, and lymphoma
Human cell lines

MM xenograft model
Phase I clinical trial

[160,162,163]

MM: multiple myeloma; MLLr: MLL rearranged; AML: acute myeloid leukemia; NHL: non-Hodgkins lymphoma; CLL: chronic lymphocytic
leukemia; T-ALL: T-cell acute lymphoblastic leukemia; BTZ: bortezomib.

IPSI-001 was selected in a pharmacologic screen from a panel of rationally designed
peptidyl–aldehyde inhibitors using substrates specific for the chymotryptic activity of
the iP [44]. IPSI-001 showed antiproliferative and apoptotic effects in MM cell lines and
purified patient plasma cells. Samples from patients with diffuse large B-cell non-Hodgkin
lymphoma (NHL), chronic lymphocytic leukemia (CLL), and AML were also sensitive to
IPSI-001 treatment, as well as samples with acquired bortezomib resistance [44].

PR-924 was discovered by Parlati et al. [41] in a pharmacologic screen designed to
find analogs of carfilzomib that preferentially target β5i. In this initial study, a one-hour
pulse treatment with PR-924 (which induced a β5i inhibition of 90%) could not induce
apoptosis in MM, B-lymphoma, or T-lymphoma cell lines. In contrast, when combined
with a selective inhibitor of the constitutive β5 subunit or with the genetic knockdown
of β5, these cells became sensitive to PR-924. More recent reports found that PR-924
treatment showed cytotoxicity in MM cell lines and primary patient cells without affecting
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normal peripheral blood mononuclear cells (PBMCs) [145]. In vivo treatment with PR-
924 inhibited tumor growth and prolonged survival of human MM xenograft murine
models. In agreement with these data, treatment of MM, T-cell ALL (T-ALL), and AML
cell lines with PR-924 led to antiproliferative and apoptotic effects [79]. The treated cells
acquired drug resistance after 3 months of treatment with increasing concentrations of
PR-924. The β5i/PSMB8 subunit was checked for mutations but none were found, in
contrast to β5/PSMB5, where the same mutations as in bortezomib-resistant cells were
found. PR-924-resistant cells exhibited a 2.5-fold upregulation of cP subunits, whereas iP
expression decreased 2-fold [79].

LU-035i is one of the most specific inhibitors for the β5i subunit; it was designed
based on ONX-0914 and PR-924 through a structure-based design approach [154]. Apart
from LU-035i, de Bruin et al. [154] also developed LU-015i, another potent β5i inhibitor,
and LU-001i, a β1i inhibitor based on a previously designed β1 inhibitor, NC-001 [164]. A
novel strategy for cancer treatment is the conjugation of cytotoxic agents to a peptide with a
high affinity for tumor-specific proteins [165]. Since MM cells have a high expression of iPs,
conjugating an iP inhibitor that covalently binds to the iP may represent a good strategy
for the selective delivery of cytotoxic drugs that will otherwise show unspecific binding.
LU-035i has been used to selectively target MM cells for treatment with doxorubicin [161].
Further support for this design is the observation that proteasome inhibition synergizes
with doxorubicin therapy [166]. Treatment of a MM human cell line with the conjugate
LU-035i–doxorubicin increased cell death in sensitive and carfilzomib-resistant cells [161].

HT2210 and HT2106 are two oxathiazolones that were found to be active against
iP [155]. Treatment with HT2210 or HT2106 inhibited β5i activity (90% decreased activity
at 10nM) of an NHL human cell line and induced an accumulation of polyubiquitinylated
proteins [155].

1-CA and 4-CA were developed as peptide–ketoepoxides related to the cP inhibitor
carfilzomib with selectivity for the β5i subunit [156]. Using an AML human cell line, the
effects on cell viability of 1-CA and 4-CA treatments were determined, and no significant
effects were observed.

KZR-616 was derived from the iP inhibitor ONX-0914 to increase its affinity not
only to the β5i subunit but also to the β1i subunit to obtain a double-inhibitor [158]. In
subsequent studies, it was concluded that treatment of a murine model of arthritis with
single inhibitors of β5i/LMP7 or β1i/LMP2 was not sufficient to have an effect on disease
progression, while double inhibition using KZR-616 resulted in a reduction of the disease
burden [167]. Moreover, the solubility of KZR-616 is 14,000-fold higher than ONX-0914,
which makes it a good candidate for clinical trials [167]. KZR-616 was the first iP inhibitor
to successfully complete a phase I clinical trial for the treatment of autoimmune and
inflammatory diseases [168] and enter a phase II study for the treatment of patients with
inflammatory myopathies such as polymyositis or dermatomyositis and a phase Ib/II trial
for the treatment of systemic lupus erythematosus and lupus nephritis [169,170]. To date,
there have been no data published on the use of KZR-616 in hematopoietic malignancies,
but the promising data obtained on autoimmune and inflammatory diseases suggest the
possibility of further exploring its potential for the treatment of hematologic malignancies.

M3258 was synthesized using the α-aminoboronic acid scaffold as a starting point
through the optimization of potency and selectivity to the β5i subunit [160]. From a pool
of DNA-barcoded MM, leukemia and lymphoma cells that were treated with M3258, a
subset of cell lines, were discovered to respond to M3258 treatment. Reductions in cell
viability of more than 50% [162] could be observed. Moreover, in vivo treatment in several
MM xenograft models, including models resistant to bortezomib treatment, demonstrated
anti-tumor activity [138,160,171]. M3258 has entered a phase I clinical trial for the treatment
of MM as a single agent or in combination with dexamethasone [163].
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5. Pathways Affected by Immunoproteasome Inhibition

Treatment with non-selective PIs has been shown to impact different pathways. First
of all, proteasome inhibition confers severe proteotoxic stress to cells, affecting protein
quality control in the endoplasmic reticulum (ER) and the cytosol. This is manifested
by the accumulation of ubiquitin conjugates, the activation of unfolded and integrated
stress responses [172], and the activation of the transcription factor Nrf1/Tcf11 [89,90].
Proteasome inhibition with bortezomib has been suggested to prevent the degradation
of IkB, an inhibitor of the nuclear factor-κB (Nf-κB) pathway, blocking this pathway and,
consequently, the activation of downstream pathways such as cytokine and survival factor
production. However, other studies have shown that bortezomib can increase Nf-κB
activation in MM cell lines and patient samples [173,174]. The pro-apoptotic protein
NOXA has also been demonstrated to be an important mechanism of PI treatment. NOXA
becomes upregulated after bortezomib treatment [175], inducing apoptosis by binding
to the anti-apoptotic proteins of the Bcl-2 subfamily or other factors. Moreover, other
effects of non-selective PIs include the induction of cell cycle arrest [176], stimulation of
angiogenesis [177], and increased DNA repair [178]. As stated before, PIs inhibit both
cPs and iPs, making it difficult to determine what part of their effect is due to the specific
inhibition of iPs. Consequently, so far, it remains elusive which intracellular pathways are
affected by specific cP or iP inhibition. Because of the wide range of substrates, the turnover
of which may be accelerated by iPs compared to cPs [81], iP inhibition most likely affects
multiple pathways rather than one selective target. Therefore, differential sensitivity to iP
inhibition can be expected, depending on the cell type and the genetic cellular background.

Supporting the notion that the cellular processes affected by iPs may vary depending
on cell type, a co-regulation of genes involved in immune processes with iP expression
was found in non-MLLr AML cell lines (which are insensitive to iP inhibition), while in
MLLr cell lines, iP genes were co-regulated with genes involved in cell metabolism and
proliferation, mitochondrial activity, and stress response [136].

Effects on the phosphorylation of the three main MAPK pathways (ERK1/2, p38/SAPKs,
and JNKs) have been observed following iP inhibition. Similarly, in lymphocytes derived
from patients with mutations in PSMB8, increased levels in phosphorylation of p38 could be
detected [121]. In primary human and mouse lymphocytes, iP inhibition reduced ERK phos-
phorylation [179], and, similarly, inhibition of LMP7 in macrophages resulted in consistent
impairment of ERK1/2 and p38 phosphorylation [180]. Likewise, bone-marrow-derived
macrophages showed reduced activation of all three pathways [181]. In contrast, JNK was
found to be activated after iP inhibition in MM cell lines [44]. This finding supports the
notion that the consequences of iP inhibition are cell type- and oncogene-dependent.

Immunoproteasome may also influence cytokine production. In PBMCs and AML hu-
man cell lines, in vitro iP inhibition reduces the production of several cytokines, including
IL-23, IL-6, IL-2, TNF-α, and INF-γ [45,156]. In line with these results, bone-marrow-
derived dendritic cells from LMP2-deficient mice exhibited substantially reduced levels
of IFN-γ, IL-6, IL-1b, and TNF-α upon infection with influenza A virus [182], and iP in-
hibition in autoimmune and inflammatory mouse disease models resulted in decreased
production of pro-inflammatory cytokines as well [45,137,151]. Moreover, mutations of the
β5i subunit led to an increase in IL-6 in the serum, skin, and B-cells of patients harboring
this mutation [121,122]. Transcription factor NF-κB induces the expression of various
pro-inflammatory cytokines, the activation of which, by proteasomes, has been clearly
established [183]. In this regard, various studies have aimed at determining how iP inhibi-
tion or inactivation impacts this pathway. NF-κB is sequestered in the cytoplasm and is
inhibited when bound to proteins of the IκB family, which are degraded by the proteasome.
The protein turnover of IκB is higher in cells expressing iP subunits than in cells mainly
expressing cPs [81]. Moreover, a reduction in the activation of the NF-κB pathway was
observed in LMP7-deficient mice over the course of CVB3 infection [80] and in MM cell
lines after iP inhibition [44]. However, other studies in macrophages, cardiomyocytes, and
lymphocytes failed to detect an effect on NF-κB after iP inhibition [179,180]. For that reason,
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it remains a matter of debate whether the reduction in cytokine production, observed after
iP inhibition, relies on impaired NF-κB signaling.

The observation that iP inhibition induces apoptosis in cancer cells has led to the
investigation of its effects regarding the activation of the apoptotic machinery. Immunopro-
teasome inhibition led to an increase in apoptosis in MM cell lines through the activation
of intrinsic (caspase-9-mediated) and extrinsic (caspase-8-mediated) apoptotic pathways
that merged in the activation of the common effector caspase-3 [44,145]. In agreement with
the activation of the intrinsic apoptotic pathway, cleavage of poly(ADP)-ribose polymerase
(PARP), translocation of cleaved-BID to mitochondria, accumulation of proapoptotic Bax,
and cytochrome c release were observed following iP inhibition [44,145]. In contrast, T-cells
did not show increased apoptosis and were able to recover from the proteostatic stress
response following iP inhibition by the activation of Nrf1 [179], a transcription factor that
induces expression of the cP subunits [89]. This increase in cP expression may be able to
restore—at least in part—the cell’s homeostasis.

6. Discussion

The development of new targeted and personalized therapeutic strategies has im-
proved the survival of patients with hematopoietic cancers. The prevalence of hematologic
malignancies has increased due to demographic change and an aging population. However,
the long-term survival of older patients remains rather low [184,185]. The UPS, due to
its crucial role in protein homeostasis, has been associated with tumorigenesis [31–34]
and moved into focus as a putative therapeutic target for the treatment of hematologic
malignancies [35,36].

Different enzymatic processes that integrate the UPS beyond proteasome inhibition
can be targeted for therapeutic intervention. Examples include ubiquitin activation by
E1 enzymes that can be blocked by the small molecule PYR41, which has demonstrated
antileukemic activity in mouse models [186]; E1 enzyme NEDD8-activating enzyme (NAE)
can be inhibited to blunt the activation of the NF-κB pathway, DNA damage, and cell death
in lymphoma and AML xenograft models [187,188]. Despite the fact that several studies
have linked E2s to cancer and the efforts to develop strategies that target these enzymes,
there are currently no reported therapies involving E2 enzymes [189]. The high substrate
specificity that characterizes E3 enzymes [3] has been exploited for the development of a
novel strategy for drug discovery that allows the marking of essential proteins to cancer
biology that have no targetable catalytic activity. Targeted protein degradation employs
small molecules that act as “molecular glue” to recruit a specific target protein to E3
enzymes, leading to its ubiquitination and subsequent degradation by the proteasome [190].
Thalidomide and thalidomide analogs—lenalidomide and pomalidomide—are the first
approved degrader drugs to target an E3 ubiquitin-ligase. Cereblon (CRBN) is the substrate
adaptor of the CRL4CRBN cullin-ring ligase E3 enzyme and has been identified as the
target of thalidomide [191]. In MM cells, IKZF1 and IKZF3 are selectively ubiquitinylated
by CRL4CRBN in the presence of lenalidomide, leading to antitumor effects [192,193].
Lenalidomide is also highly effective in myelodysplastic syndrome (MDS) with the deletion
of chromosome 5q, where it induces the ubiquitination of casein kinase 1A1 (CK1α) by
CRL4CRBN [194].

While targeting E1, E2, or E3 enzymes can provide specificity for individual substrates,
targeting the proteasome inhibits the final step of protein degradation. Non-selective
PIs (targeting cPs and iPs) have demonstrated efficacy against hematologic malignancies.
Toxicities and therapy resistance associated with their use have prompted the development
of iP inhibitors. Despite promising results observed in pre-clinical experiments, only one
iP inhibitor is currently in clinical trials for the treatment of myeloma. The characteristics
that make them suitable for inflammatory diseases may also be suitable for the treatment
of hematologic cancers.

Selective inhibition of more than one iP subunit may increase efficacy in clinically
relevant settings. For non-selective PIs, it has been shown that β5 inhibition alone is



Cells 2021, 10, 1577 13 of 21

sufficient to induce cytotoxicity in PI-sensitive but not PI-resistant cells. Conversely, the
combination of β1/β2 with β5 inhibition is also effective in PI-resistant cells [195]. Along
these lines, selective iP inhibition and the inhibition of more than one immunosubunit may
also improve inhibitory efficacy. Consistent with this suggestion, KRZ-616, a dual inhibitor
of β5i and β1i subunits, was able to effectively reduce the inflammatory phenotype in
autoimmune disease; in contrast, treatment with iP inhibitors of the β1i and β5i subunits
alone did not have any beneficial effect [167].

Taken together, iP inhibition represents a promising therapeutic avenue for inflamma-
tory diseases and hematopoietic cancers.
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