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Infection and inflammation can augment local Na+ abundance. These increases in local
Na+ levels boost proinflammatory and antimicrobial macrophage activity and can favor
polarization of T cells towards a proinflammatory Th17 phenotype. Although neutrophils
play an important role in fighting intruding invaders, the impact of increased Na+ on the
antimicrobial activity of neutrophils remains elusive. Here we show that, in neutrophils,
increases in Na+ (high salt, HS) impair the ability of human and murine neutrophils to
eliminate Escherichia coli and Staphylococcus aureus. High salt caused reduced
spontaneous movement, degranulation and impaired production of reactive oxygen
species (ROS) while leaving neutrophil viability unchanged. High salt enhanced the
activity of the p38 mitogen-activated protein kinase (p38/MAPK) and increased the
interleukin (IL)-8 release in a p38/MAPK-dependent manner. Whereas inhibition of p38/
MAPK did not result in improved neutrophil defense, pharmacological blockade of the
phagocyte oxidase (PHOX) or its genetic ablation mimicked the impaired antimicrobial
activity detected under high salt conditions. Stimulation of neutrophils with phorbol-12-
myristate-13-acetate (PMA) overcame high salt-induced impairment in ROS production
and restored antimicrobial activity of neutrophils. Hence, we conclude that high salt-
impaired PHOX activity results in diminished antimicrobial activity. Our findings suggest
that increases in local Na+ represent an ionic checkpoint that prevents excessive ROS
production of neutrophils, which decreases their antimicrobial potential and could
potentially curtail ROS-mediated tissue damage.
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INTRODUCTION

High salt diets (1, 2), renal impairment (3–6), inflammation, and
infection (7–11) can induce Na+ accumulation in skin tissues
that can be simulated by addition of approximately 40 mM NaCl
to standard cell culture media (= high salt condition, HS) (2, 8,
12, 13). In addition to skin, other organs such as liver, spleen and
thymus can display enhanced Na+ levels [reviewed in: (14)].
Although the mechanisms that govern local Na+ accumulation
are still elusive [reviewed in: (14)], it became clear in the last
years that these increases in Na+ and other ions impact the
biology of various immune cells [reviewed in: (14–19)] and serve
as ‘ionic checkpoints’ (20) in immunity.

Increases in Na+ favor the polarization of T cells towards an
inflammatory Th17 phenotype (10, 21–23). In macrophages, HS in
combination with inflammatory stimuli leads to enhanced pro-
inflammatory activation and increased antimicrobial capacity (8,
12, 13, 24, 25), while limiting their regulatory features (26–29).
Mechanistically, this HS-boosted proinflammatory macrophage
activation requires osmoprotective signaling involving the mitogen-
activated protein kinase (MAPK) p38 and the transcription factor
‘nuclear factor of activated T cells 5’ (NFAT5/TonEBP), an emerging
modulator in immunity [reviewed in: (30, 31)]. This signaling circuit
is crucial in renal defenses against uropathogenic Escherichia coli
[UPEC, (32)] under regular diet conditions as well as in cutaneous
macrophage-driven antimicrobial responses against the protozoan
parasite Leishmania major under experimental HS diet (8).

Effects of HS on polymorphonuclear leukocytes (PMN) are
less clear. PMN are promptly recruited to the site of infection and
contribute to warding off pathogens [reviewed in: (33)] but also
to pathology [reviewed in: (34)]. Several studies reveal that HS
can boost PMN activity (35–37), whereas other results indicate
impairment in inflammatory activity and activation of PMN
(35, 38–45). In line with the disparate findings regarding the
impact of HS on neutrophil activation, the effects of HS on
antibacterial capacity of PMN are not fully understood. Increases
in extracellular Na+ either impair (46, 47), augment (36) or do
not affect the antimicrobial activity of neutrophils (25).
Moreover, the underlying mechanisms contributing to these
divergent outcomes remain elusive.

Here, we show that HS diminishes the antimicrobial activity
of human and murine PMN against E. coli. Mechanistically,
reduced bactericidal activity is due to impairment of the
neutrophil enzyme nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (PHOX) and subsequently
reduced ROS production.
MATERIAL AND METHODS

Reagents and Antibodies
NaCl was purchased from Merck. E. coli (HB101 laboratory
strain) (48) and E. coli-GFP harboring pWRG167 (12) were
kept on Mueller Hinton agar II plates. S. aureus (ATCC 29213)
was kept on Columbia sheep blood plus agar plates. Bacterial
overnight liquid cultures were generated in LB media. All in vitro
Frontiers in Immunology | www.frontiersin.org 2
experiments were performed in RPMI media (Gibco;
# 618700044) containing 10% fetal calf serum (FCS; Sigma,
#F7524). We purchased phorbol-12-myristate-13-acetate
(PMA; #P1585), N-formylmethionyl-leucyl-phenylalanine
(fMLP; #F3506), and diphenyleneiodonium chloride (DPI;
#D2926) from Sigma and SB203580 (#tlrl-sb20) from
Invivogen. For western blotting, we used rabbit-anti-phospho-
p38 mouse (Cell Signaling Technology, #4511S) and mouse-anti-
Vinculin (BioRad, #V284) primary antibodies. As secondary
antibody, we used HRP-conjugated swine-anti-rabbit and goat-
anti-mouse antibodies (Dako). For flow cytometry, we stained
cells using Brilliant violet 421 anti-human CD62L (BioLegend,
#304828), APC anti-human CD11b (BioLegend, #301350),
Pacific-Blue anti-human CD66b (BioLegend, #305112), PE
anti-human CD35 (BioLegend, #333406) antibodies. For
confocal microscopy, we used the rabbit-anti-myeloperoxidase
(Agilent, #A039829-2) primary antibody, the donkey-anti-
rabbit-Cy5 conjugated (Dianova, #711-606-152) secondary
antibody and the Phalloidin AF-647 (Thermo Fisher,
#A22287) marker.

PMN Isolation and Infection
We obtained peripheral blood from healthy donors and
employed established standard procedures (49–51) in order to
isolate PMN from peripheral blood by density gradient
centrifugation using Lymphoflot (Bio-Rad, #824012). After
hypotonic lysis of erythrocytes, the remaining PMN were
adjusted to 250 000 cells per well and incubated for 1 h at 37°C,
5% CO2 in 24-well plates. If DPI was used, 3 µM of DPI was
added 30 min prior to stimulation. Subsequently, 40 mM NaCl
(= high salt, HS) or mannitol was added where indicated.
Together with the standard cell culture media conditions
(= normal salt, NS), they were additionally incubated for 1 h.
Cells were infected with E. coli at a multiplicity of 1 (MOI 1) and
centrifuged to synchronize the infection. For infection with
S. aureus (MOI 1), bacteria were opsonized with 20% human
serum AB male (Biowest). Where indicated, 10 ng/ml PMA was
added at this stage. Infection was terminated after 1 h - 1.5 h by
addition of 400 µl cold PBS. Subsequently, serial dilutions were
generated and plated on Mueller Hinton agar II plates. After
overnight incubation, colony forming units (CFU) were counted
and normalized to the mean of the respective NS group.

PBMC Isolation and Infection
We obtained peripheral blood from healthy donors and isolated
peripheral blood mononuclear cells (PBMC) by density gradient
centrifugation using Lymphoflot (Bio-Rad). PBMC were washed
twice with PBS and adjusted to 250 000 cells per well in 24-well
plates. PBMC infection was performed as described previously in
murine macrophages (12). Briefly, cells were infected with E. coli
(MOI 100) and subjected to gentamicin protection assays. After
2 h of infection, cells were lysed with PBS containing 0.1%
Triton-X (PanReac AppliChem, #9036-19-5) and 0.05% Tween-
80 (Sigma, #8.22187.0500) and serial dilutions were plated on
Mueller Hinton agar II plates. CFU were counted and
normalized to the mean of the respective NS group.
September 2021 | Volume 12 | Article 712948
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Murine Granulocyte Isolation and Infection
We obtained femurs and tibiae from C57BL/6 wildtype (WT)
and Cybb-/- mice (including the respective controls) (52) and
flushed the bone marrow using microlances (13 gauge, BD) and
syringes (BD). Erythrocyte lysis was performed using ACK buffer
(0.1 mM EDTA, 10 mM KHCO3, 150 mM NH4Cl, pH 7.3-7.5 in
H2Odd) for 10 min at room temperature. Subsequently, cells were
washed and passed through a 100 µm cell strainer, before they
were resuspended in MACS buffer (0.5% BSA, 2 mM EDTA, pH
7.2 in PBS). We purified neutrophils by negative magnetic
selection using the ‘Neutrophil isolation Kit’ (Miltenyi Biotec,
#130-097-658) according to the manufacturer’s instructions.
Infection of murine granulocytes was performed as described
above but with MOI 0.1.

BMDM Generation and Infection
Bone marrow-derived macrophages (BMDM) were generated in
Teflon-bags using L929 supernatant as described earlier (53).
Infection experiments (MOI 100) were performed as described
above or previously (12).

Peritoneal Cell Purification and Infection
We induced a sterile inflammatory response by injecting
thioglycollate (Sigma, #B2551) in the peritoneal cavity (54, 55).
PMN were isolated with cold PBS from the peritoneum one day
after injection. Erythrocyte lysis was performed using ACK
buffer for 10 min at room temperature. Subsequently, cells
were washed and PMN infection experiments were performed
as described earlier. 4 days after induction of peritoneal
inflammation by injection of thioglycollate, peritoneal
macrophages (pMF) were obtained essentially as described
earlier (56, 57). After 10 min of erythrocyte lysis using ACK
buffer at room temperature, peritoneal cells were washed, seeded
and incubated for 1-2 h before we eliminated nonadherent cells
by washing. Then macrophage infection experiments were
performed as described previously (12).

Immunofluorescence Microscopy
PMN were isolated as described above and seeded on gelatin/
fibronectin (Sigma, #F1141) pre-coated coverslips. After 2 h of
incubation, cells were infected as described earlier, but with E.
coli-GFP (MOI 1). 1 h post infection, cells were fixed with 4%
PFA (Sigma, #1.04003.1000; diluted in PBS) overnight. The next
day, cells were permeabilized (PBS with 2% BSA and 0.1%
Saponin) and stained with anti-Phalloidin AF-647 antibody for
1 h, followed by 30 min incubation with the secondary antibody
and subsequent mounting of the slides with Prolong Gold
containing DAPI (Invitrogen, #P36931). Images were collected
with a Leica TCS SP5 confocal laser scanning microscope and
processed using the Leica Application Suite (version 2.7.3.9723).
Bacterial load was analyzed in Fiji (58).

Analysis of Neutrophil Extracellular Traps
Formation of neutrophil extracellular traps (NETs) was analyzed
via confocal microscopy, as described elsewhere (59) with minor
modifications. PMN were isolated and seeded on gelatin/
fibronectin pre-coated coverslips. Subsequently, 40 mM NaCl
Frontiers in Immunology | www.frontiersin.org 3
was added to the HS conditions and, together with the NS
conditions, cells were additionally incubated for 1 h. Then,
cells were infected as described above, but with MOI 10, and
further incubated for 1 or 4 h. Infection was terminated and cells
were fixed with 4% PFA overnight. The next day, cells were
blocked in PBS containing 10% FCS and stained with anti-
myeloperoxidase (MPO) antibody for 1 h, followed by 30 min
incubation with the secondary antibody and subsequent
mounting of the slides as described above. Images were
collected with a Leica TCS SP5 confocal laser scanning
microscope and processed using the Leica Application Suite
(version 2.7.3.9723). Analysis of NET formation was
performed by Fiji (58), calculating the ratio of MPO-positive
(NET marker) and DAPI-positive (cellular DNA) signal in
each condition.

Cytokine Release Measurements
PMN were isolated and infected as described above. In these
experiments, supernatants were kept and analyzed by Luminex®

(Austin, USA) for quantification of bactericidal/permeability
increasing protein (BPI) and IL-8 as described earlier (60, 61).
Mean fluorescence intensities (MFI) were acquired using the
Luminex xMAP 100 system (Luminex Corp).

Cell Viability Assays
Cell viability was assessed by Annexin V (BD Biosciences,
#550475)/Propidium iodide (PI, Sigma-Aldrich, P4864)
staining. PMN were isolated and infected as described above.
Then, cells were washed and stained with Annexin V/PI,
according to ‘BD Biosciences’ protocol. In detail, PMN were
washed with cold PBS, adjusted to 106 cells/ml in 1x Binding
Buffer (10x, BD Biosciences, #556 454) and stained for 15 min.
Analysis was performed using a FACS Canto II flow cytometer
(BD). MFI were calculated by FlowJo software (version 10).

Western Blotting
For analysis of pp38 abundance, PMN were lysed in RIPA buffer
(25 mM sodium deoxycholate, 1% SDS, 0.4% EDTA, 10 mM
NaF, 1% NP 40 in H2Odd) containing complete protease
inhibitors (Roche, #1183617001) and PhosphoStop (Roche,
#04906837001). After homogenization, proteins were separated
on a 13% polyacrylamide gel and subsequently blotted on PVDF
membranes (Merck, IPFL 00010). Images were acquired using
Luminata Forte HRP substrate (Millipore, #WBLUF0500) on a
Chemo Star imager (Intas).

Mobility Assays
For the detection of spontaneous (undirected) movement, PMN
were isolated as described above and seeded in 8-well IBIDI live
cell chamber slides (200 000 cells per well). Chambers were
incubated at 37°C, 5% CO2 for 1 h. Subsequently, 40 mM NaCl
was added where indicated (= high salt, HS). After 1 h of
additional incubation, cells were infected with E. coli at a
multiplicity of 1 (MOI 1) and 10 ng/ml PMA was added where
indicated. The chamber was immediately placed on a Leica SP5
confocal laser scanning microscope in a pre-heated (37°C)
environment. Prior to and during the measurement,
September 2021 | Volume 12 | Article 712948
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temperature was controlled by ‘The cube’ (Life Imaging
Services), keeping the cell environment at 37°C. Cells were
recorded for 30 min by acquiring pictures in 10 s intervals.
Assessment of cell mobility was performed by Fiji plugin ‘manual
cell tracker’ analyzing 19-20 cells per video which showed at least
a minimal movement. PMN migration was not given in µm but
in arbitrary units (a. u.) since our experimental setup does not
allow for reliable detection of cell movement in the z-axis.

Direct PMN migration towards fMLP was analyzed with the
QCM Chemotaxis Cell Migration Assay (Sigma, #ECM504)
according to the manufacturers’ instructions. Briefly, PMN
were isolated as described above and seeded in 24-well plates
(500 000 cells per well) in serum-free medium. After 30 min
incubation at 37°C, 5% CO2, 40 mM NaCl was added where
indicated and cells were incubated further for 1 h. Subsequently,
PMN were washed twice in RPMI medium containing 0.5% BSA
and adjusted to 106 cells/ml. Based on the Boyden chamber assay
principle (62, 63), 250 µl cell suspension were added into each
insert and 300 µl serum-free media ± 1 µM fMLP were added
into the lower chamber. HS was added where indicated to each
insert and lower chamber. The plate was incubated for 4 h at 37°C,
5% CO2, then the inserts were removed and 200 µl cell suspension
with migrated cells was transferred from the lower chamber to a
96-well plate. 20 µl of WST-1 dye solution was added to each well
and PMN were incubated for 2 h before fluorescence was
measured using a microplate reader (Bio-Rad).

Quantification of Reactive Oxygen Species
We used luminol-enhanced chemiluminescence for ROS
quantification as described earlier (49). PMN were isolated as
described above, seeded in 24-well plates (250 000 cells per well)
and incubated for 30 min at 37°C, 5% CO2. Subsequently, where
indicated, cells were treated with 3 µM DPI for additional 30
min. After that incubation period, 40 mM NaCl was added to the
media and incubated for additional 1 h. Following this step, cells
were transferred into FACS tubes, washed and resuspended in
HBSS containing luminol (Sigma, #A8511) ± 40 mM NaCl and
incubated for additional 15 min at 37°C, 5% CO2. ROS formation
was induced upon stimulation with 1 µM fMLP and the
measurement of ROS production using a Lumat3 LB 9507
Tube Luminometer (Berthold Technologies) was started (2 s
interval). Where indicated, 10 ng/ml PMA was added
simultaneously with fMLP.

Flow Cytometry
After PMN isolation, 250 000 cells per well were seeded in 24-
well plates and incubated at 37°C, 5% CO2 for 1 h. 40 mM NaCl
was added to the HS condition and cells were incubated again for
1 h. Cells were subsequently infected with E. coli (MOI 1) for 1 h.
Infection was stopped by addition of 500 µl cold PBS. Media
including cells and bacteria were transferred into FACS tubes
and centrifuged. Cells were resuspended in 500 µl FACS buffer
(PBS containing FCS, EDTA and NaN3) and stained either with
anti-CD35 (also known as complement receptor type 1, CR1)
and anti-CD66b (carcinoembryonic antigen-related cell
adhesion molecule 8, CEACAM8) or with anti-CD11b
(complement receptor type 3, CR3) and anti-CD62L
Frontiers in Immunology | www.frontiersin.org 4
(L-Selectin) antibodies for 30 min at 4°C, respectively. Cells
were washed and resuspended in 200 µl FACS buffer and
recorded using a FACS Canto II flow cytometer (BD). MFI
were calculated by FlowJo software (version 10).

Statistics
All data are presented as means ± standard error of mean (s.e.m.)
unless indicated otherwise. In all experiments (unless indicated
otherwise), ‘n’ denotes separate wells from at least two
independent experiments. Graphs and statistics were carried
out by GraphPad Prism (v.6.0 or 8.0). In IL-8 quantifications
and Boyden chamber assays, we used ROUT to identify outliers.
Data was analyzed regarding normal distribution using the
Kolmogorov-Smirnov test and compared by Student’s two-
tailed t tests with Welch’s correction (for normally distributed
data sets) or Mann-Whitney U tests (for non-normally
distributed data sets), respectively. When two or more groups
were compared, normally distributed data sets were analyzed by
one-way ANOVA with Bonferroni’s multiple-comparison test,
whereas the Kruskal-Wallis test with subsequent Dunn multiple-
comparison test was used for non-normally distributed data.
Area under the curve (AUC) calculations were carried out with
the AUC tool of GraphPad Prism (v.6.0 or 8.0), as described
earlier by Gagnon et al. (64). We considered p-values < 0.05 as
statistically significant (*).
RESULTS

High Extracellular Na+ Impairs
Antibacterial Activity of Murine
and Human Neutrophils
As demonstrated earlier (8, 12, 13, 65), addition of 40 mM NaCl
to standard cell culture media (= high salt, HS) increased the
antimicrobial activity of murine BMDM against E. coli
(Figure 1A). In contrast, however, HS conditions impaired the
antibacterial activity of bone marrow-derived murine
neutrophils (BMN) (Figure 1B). Likewise, HS boosted
antimicrobial activity of murine peritoneal macrophages
(pMF; Figure 1C) and diminished the bactericidal activity of
murine peritoneal elicited neutrophils (pPMN; Figure 1D). In
accordance with these findings obtained from murine cells, HS
augmented the antibacterial activity of human peripheral blood
mononuclear cells (PBMC; Figure 1E) and, again, decreased the
antibacterial activity of human PMN isolated from peripheral
blood (Figure 1F). Moreover, HS not only impaired PMN
clearance of E. coli, but also of Gram-positive S. aureus
(Figure 1G). Of note, increases of osmolality and tonicity
using mannitol did not impair the antibacterial activity of
human PMN directed against E. coli or S. aureus (Figure S1).
Annexin V/propidium iodide (PI) stainings of uninfected and
infected PMN revealed no differences in the fraction of viable
(Annexin V-/PI-) cells between NS or HS conditions
(Figure 1H), suggesting that HS did not affect the cellular
viability. In line with this, confocal microscopy revealed more
GFP-labelled E. coli in infected PMN under HS conditions
September 2021 | Volume 12 | Article 712948
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(Figure 1I). This indicates that, in contrast to macrophages, HS
impairs the antibacterial activity of murine and human PMN.

HS Exposure Impairs Neutrophil Mobility
and Activation
In a next step, we investigated if the suppressive effect of HS is
limited to their antimicrobial capacity or whether HS impairs
additional PMN functions. For that purpose, we analyzed the
expression of well-established cell surface markers to
characterize neutrophil degranulation and activation status
(66–70), which had been shown to be modified under HS
conditions (40, 41, 43). HS interfered with the surface
expression of CD35 (Figure 2A) and CD66b (Figure 2B),
which are both markers for PMN degranulation (66, 67, 71,
72). This resulted in a reduced frequency of degranulated PMN
under HS conditions (Figure S2). In line with this, HS conditions
reduced the release of bactericidal/permeability increasing
protein (BPI; Figure 2C), which is stored in primary
(azurophilic) granules (73). HS conditions additionally
diminished the expression of the complement receptor 3 (CR3,
CD11b, Figure 2D), which is linked to PMN activation (68, 70,
74, 75). Moreover, HS-treated PMN displayed a higher surface
expression of CD62L (Figure 2E; L-selectin), whose expression
inversely correlates with the activation and migratory potential
of PMN (76).

To analyze the impact of HS on the spontaneous movement
capacity of PMN, we monitored the migratory trajectories of
PMN using live cell imaging. Visualization and quantification of
Frontiers in Immunology | www.frontiersin.org 5
the migrated distance over 30 min revealed that HS conditions
compromised the spontaneous movement of PMN (Figure 2F).
Next, we performed Boyden chamber assays (62). In line with
our previous findings, we found less spontaneous transmigration
of HS-exposed PMN in the absence of a chemoattractant
stimulus into the lower chamber. Interestingly, HS conditions
did not impair the directed movement of PMN towards N-
formylmethionyl-leucyl-phenylalanine (fMLP; Figure 2G)
which is an established chemoattractant and proinflammatory
activator of PMN (77–82). Taken together, these findings
demonstrate that HS conditions not only interfere with the
antimicrobial activity, but also diminish the overall activation
status and spontaneous migratory capacity of PMN.

Elevated Extracellular Na+ Levels Diminish
ROS Production in Neutrophils
Next, we set out to identify how HS alters the antimicrobial
effector function of PMN. Neutrophils can trap and kill bacteria
within neutrophil extracellular traps (NETs) [reviewed in: (83,
84)]. NETs are composed of neutrophil-derived cellular DNA,
which serves as a scaffold for antimicrobial granule proteins
such as the myeloperoxidase (MPO) (85). Extracellular MPO
abundance can be used as a measure of NET formation (86). By
confocal microscopy, we quantified extracellular MPO levels in
infected PMN. In line with earlier findings (87), we did not detect
NET formation at early time points (Figure 3A) under NS and
HS conditions, while there was robust NET formation at 4 h after
infection which was independent of extracellular Na+ levels
A B D E F G

IH

C

FIGURE 1 | High salt impairs bacterial killing of neutrophils. Antibacterial activity of (A) murine bone marrow-derived macrophages (BMDM; means ± s.e.m.; n = 15-
16; Mann-Whitney test; *p < 0.05), (B) murine bone marrow-derived neutrophils (BMN; means ± s.e.m.; n = 12; Mann-Whitney test; *p < 0.05), (C) murine peritoneal
macrophages (pMF; means ± s.e.m.; n = 20; Student’s t test; *p < 0.05), (D) murine peritoneal neutrophils (pPMN; means ± s.e.m.; n = 15; Student’s t test with
Welch’s correction; *p < 0.05), (E) human peripheral blood mononuclear cells (PBMC; means ± s.e.m.; n = 16; Student’s t test; *p < 0.05) and (F) human peripheral
blood neutrophils (PMN, means ± s.e.m.; n = 14; Student’s t test with Welch’s correction; *p < 0.05) infected with E. coli under NS or HS (NS + 40 mM NaCl)
conditions. (G) Antibacterial activity of PMN infected with S. aureus (means ± s.e.m.; n = 24; Mann-Whitney test; *p < 0.05). (H) Cell viability by Annexin/PI staining in
uninfected (Ctrl) and E.coli-infected PMNs (means ± s.e.m.; n = 5; Student’s t test and Mann-Whitney test; n.s., not significant; *p < 0.05). (I) Infection rate in PMN
1 h after E. coli-infection; Bacterial load under NS or HS conditions, intracellular bacteria marked by arrowheads. A representative image out of three independent
experiments is displayed. E. coli-GFP, green; Phalloidin, red; DAPI (DNA), blue. Scale bar: 50 µm (means ± s.e.m.; n = 15; Mann-Whitney test; *p < 0.05).
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(Figure 3B). Hence, we conclude that HS conditions did not
affect NET-dependent antimicrobial activity of PMN.

In macrophages and PMN, exposure to HS augments the
activation of the osmoprotective p38/MAPK signaling pathway
(8, 35). In accordance to these reports, we found that HS enhanced
Frontiers in Immunology | www.frontiersin.org 6
the phosphorylation of p38/MAPK in neutrophils (Figure 3C).
HS-boosted p38/MAPK was linked to IL-8 release in PBMC (88).
In line with this, we found that HS increased the IL-8 release from
PMN (Figure 3D). Since p38/MAPKwas required for HS-boosted
antimicrobial function in macrophages (8, 12), we wanted to
A B D

E F G

C

FIGURE 2 | High salt diminishes cell activation and migration. (A, B) Flow cytometry analysis of surface expression of CD35 and CD66b on infected PMN 1 h post
infection (means ± s.e.m.; n = 10; Student’s t test with Welch’s correction and Mann-Whitney test; *p < 0.05). (C) Extracellular bactericidal/permeability increasing
protein (BPI) levels of control and infected (E. coli) PMN under NS or HS conditions (means ± s.e.m, n = 10-15; Mann-Whitney test; n.s., not significant; *p < 0.05).
(D, E) As (A, B), but surface expression of CD11b and CD62L was analyzed (means ± s.e.m.; n = 10; Student’s t test with Welch’s correction and Mann-Whitney test;
*p < 0.05). (F) Spontaneous movement of PMN [given in arbitrary units (a. u.)] upon E. coli-infection under NS or HS conditions. Scale bar: 50 µm (means ± s.e.m.; n =
40; each dot represents individual cell traces from two independent experiments; Mann-Whitney test; *p < 0.05). (G) Spontaneous and directed movement towards fMLP
of PMN measured by Boyden chamber assays (means ± s.e.m.; n = 15-17; Student’s t test and Mann-Whitney test; n.s., not significant; *p < 0.05).
A B

D E F

C

FIGURE 3 | Elevated Na+ decreases ROS production, independent of NET formation or p38/MAPK signaling. (A, B) Staining of extracellular myeloperoxidase (MPO)
(A) 1 h or (B) 4 h after E. coli-infection of PMN. A representative image out of three independent experiments is displayed. MPO, red; DAPI (DNA), blue. Scale bar:
50 µm. Gray value analysis of MPO positive NETs (means ± s.e.m.; n = 16; each dot represents an individual confocal image from three independent experiments;
Student’s t test; n.s., not significant). (C) Representative phospho-p38/MAPK and vinculin immunoblot of PMN 30 min after E. coli infection out of three independent
experiments. (D) IL-8 in the supernatant of control and infected PMN under NS or HS conditions ± p38-inhibitor SB203580 (means ± s.e.m.; n = 25-45; Kruskal-
Wallis test with subsequent Dunn multiple-comparison test; n.s., not significant; *p < 0.05). (E) Antibacterial activity of PMN 1.5 h after E. coli-infection ± p38 inhibitor
SB203580 (means ± s.e.m.; n = 21; Kruskal-Wallis test with subsequent Dunn multiple-comparison test; *p < 0.05). (F) ROS production upon fMLP stimulation;
Luminometric ROS detection; time curve and AUC values (means ± s.e.m.; n = 5; Student’s t test; *p < 0.05).
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assess bacterial elimination in PMN in the absence or presence of
the pharmacological p38-inhibitor SB203580. Inhibition of p38/
MAPK largely abolished HS-boosted IL-8 release (Figure 3D)
and, in line with earlier findings (89, 90), impaired the
antimicrobial activity of PMN under NS and HS conditions
(Figure 3E). However, inhibition of p38/MAPK did not abolish
the blunted antimicrobial activity under HS conditions
(Figure 3E). This suggests that p38/MAPK-dependent signaling
does not play a role in HS-impaired antimicrobial activity
of PMN.

PHOX-dependent ROS production critically contributes to
the antimicrobial activity of neutrophils [reviewed in: (33, 91)].
We measured ROS production for 90 s after fMLP-stimulation
using continuous luminol measurements that allow for
immediate detection of ROS over time (49). These assays
revealed that HS conditions substantially diminished fMLP-
triggered ROS production (Figure 3F), demonstrating that HS-
mediated impairment of antibacterial PMN activity is
independent of osmoprotective signaling and NET formation,
possibly due to reduced ROS production.

Disturbed ROS Production Underlies
Impaired Antimicrobial Activity in PMN
Under HS Conditions
Therefore, we analyzed whether blocking ROS production in PMN
using diphenyleneiodonium chloride (DPI) (92) mimics HS-
induced attenuation of antibacterial activity. DPI-treatment
diminished ROS production in PMN stimulated with fMLP
under NS conditions (Figure 4A) and reduced the antibacterial
Frontiers in Immunology | www.frontiersin.org 7
activity of PMN under NS to levels obtained for PMN exposed to
HS conditions (Figure 4B). Of note, HS did not further
compromise the ability of PMN to fight E. coli (Figure 4B). This
suggests that HS-triggered impairment of PHOX activity underlies
the blunted antimicrobial PMN response. To corroborate this
finding, we purified neutrophils from bone marrow of mice
lacking the cytochrome b-245 subunit of PHOX (Cybb-/-). We
infected these cells with E. coli and analyzed their bactericidal
activity. These experiments confirmed the previous findings using
the pharmacological inhibitor DPI (Figure 4C). In a second
approach, we wanted to test if increasing ROS production using
phorbol-12-myristate-13-acetate (PMA) is able to rescue HS-
impaired antimicrobial capacity of PMN. PMA is known to
boost ROS production in PMN (92, 93). After additional
stimulation with PMA, there was a robust increase in ROS
production which was unaffected by HS exposure (Figure 4D).
PMA-treatment normalized the blockade of HS on the migratory
potential of PMN (Figure 4E). Of utmost importance, addition of
PMA abolished the inhibitory effect of HS on the antimicrobial
activity of PMN (Figure 4F). We conclude that HS-triggered
impairment of ROS production in PMN underlies their
disturbed antimicrobial activity under HS conditions.
DISCUSSION

Here, we demonstrate that a Na+-rich environment curtails the
expression of activation markers, spontaneous movement, and
ROS production of PMN upon exposure to bacteria and bacterial
A B

D E
F

C

FIGURE 4 | NADPH oxidase inhibition mimics high salt effect while PMA abrogates high salt-induced killing deficiency. (A) ROS production in DPI pre-treated PMN
under NS or HS conditions, stimulated with fMLP (means ± s.e.m.; n = 4-5). (B) Antibacterial activity of PMN 1.5 h after E. coli-infection ± PHOX-inhibitor (DPI;
means ± s.e.m.; n = 9; Kruskal-Wallis test with subsequent Dunn multiple-comparison test; n.s., not significant; *p < 0.05). (C) Antibacterial activity of neutrophils
from PHOX-deficient (Cybb-/-) and control mice 1.5 h after E. coli-infection (means ± s.e.m.; n = 8; Mann-Whitney test; n.s., not significant; *p < 0.05). (D) ROS
production in fMLP/PMA-stimulated PMN (PMA) under NS and HS conditions; time curve and AUC values (means ± s.e.m.; n = 8; Student’s t test; n.s., not
significant). (E) Cell migration (given as arbitrary units) upon PMA stimulation of E. coli-infected PMN under NS and HS conditions (means ± s.e.m.; n = 39-40;
Kruskal-Wallis test with subsequent Dunn multiple-comparison test; n.s., not significant; *p < 0.05). (F) Antibacterial activity of PMN 1.5 h after E. coli-infection ±
PMA-stimulation under NS or HS conditions (means ± s.e.m.; n = 9; ordinary one-way ANOVA with Bonferroni’s post hoc test; n.s., not significant; *p < 0.05).
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products which ultimately leads to diminished antimicrobial
capacities of PMN. In contrast, simultaneous infection and
increase of extracellular Na+ reportedly triggers more ROS
production in PMN and enhances antibacterial activity of
PMN in this experimental system (36). Moreover, Junger et al.
reported that exposure of PMN to HS after fMLP-stimulation did
not affect ROS production (35). However, in line with our
findings, other groups showed that stimulation of PMN after
exposure to HS conditions caused disturbed assembly of PHOX
(38), reduced ROS production (35, 37, 39), decreased expression
of various surface markers related to human neutrophil
activation (39–41, 43), and bacterial killing (46, 47). These
findings suggest that the sequence of stimulation and Na+

exposure critically influences the outcome of PMN activation.
If PMN are exposed to very high Na+ environments (addition

of 130 mM NaCl) this reportedly impaired migration towards an
established chemoattractant (44). We, however, increased the
Na+ concentrations by addition of 40 mM NaCl in order to
simulate Na+ conditions that can be encountered in inflamed and
infected skin tissues (7, 8, 10, 11). Although we found a reduced
spontaneous migration of PMN upon exposure to increases in
Na+, these HS conditions did not affect chemotaxis. This
indicates that local Na+-rich environments that can be present
in infected skin still allow for PMN infiltration into tissues if a
chemoattractant such as fMLP is present. Since inflamed and
infected skin tissues can display increased Na+ levels (7, 8, 10,
11), it is likely that PMN pass through Na+-rich environments
before reaching the invading pathogen. Therefore, our findings
might have relevance in migration of PMN through Na+-rich
environments and PMN-dependent clearance of bacteria
from tissues.

Here, we confirm findings that HS impairs the antibacterial
activity of PMN (46, 47). These studies (46, 47), however,
assessed the effects of very high Na+ levels that are present in
the renal medulla (94). We, however, simulated moderate
increases in Na+ that can be encountered in inflamed and
infected skin tissues (7, 8, 10, 11). Moreover, our studies
provide mechanistic insights into how HS impairs antibacterial
responses in PMN by pinning down antibacterial effectors
disturbed by the addition of Na+. In contrast to an earlier
report (95), we did not detect any difference in viability upon
HS exposure in our experimental setup. Therefore, we exclude
cytotoxicity as cause of reduced antimicrobial activity. Further
we interrogated processes and pathways relevant for microbial
disposal in PMN. Oxidative killing is promptly triggered in PMN
following microbial internalization. We observed reduced ROS
release in HS-exposed PMN. Using pharmacological PHOX
inhibitors, neutrophils from Cybb-/- mice, and pharmacological
means to rescue HS-blunted ROS production, we demonstrated
that HS impairs the antibacterial activity by dampening PHOX-
dependent ROS production. From this finding, we would predict
that the role of HS on the outcome of PMN-pathogen interaction
depends on the susceptibility of the pathogen to ROS-dependent
killing mechanisms. Indeed, HS did not affect the in vitro
antimicrobial activity of PMN isolated from bone marrow
directed against an uropathogenic E. coli (UPEC) (25), which
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is known to suppress oxidative burst in PMN and to be more
resistant to reactive oxygen species than commensal strains (96).
Moreover, in line with this reasoning, we found that HS
diminished the antimicrobial control of PMN directed against
S. aureus, whose control depends on PHOX-dependent ROS
production (97).

NADPH oxidase-dependent ROS production [reviewed in:
(98)] may trigger NET production or alternatively NETs require
p38/MAPK (89, 99). Nadesalingam et al, who also demonstrated
that increasing Na+ availability decreases ROS production in
PMN, showed that this is linked to impairment of NET
formation (45). In our study, however, HS did not affect
generation of NETs in PMN 4 h after E. coli-infection,
indicating that ROS levels are not critical for casting of NETs
in our experimental setup. Thus, a direct link of NET formation
to HS-impaired antibacterial activity in our experiments
is unlikely.

p38/MAPK activation contributes to cytokine release
(including IL-8) by neutrophils (100), NADPH oxidase-
dependent ROS production (101, 102) and subsequent
antimicrobial activity of neutrophils under NS conditions (89,
90). In line with this, we found that p38/MAPK inhibition
reduced antimicrobial activity of PMN and diminished HS-
triggered or boosted IL-8 release. However, HS conditions
diminished the antimicrobial activity of PMN in the absence or
presence of pharmacological p38/MAPK blockade. This strongly
suggests that the HS-impaired antimicrobial activity is not linked
to HS-triggered modulation of p38/MAPK activity in PMN.

In sum, HS-mediated impairment of antimicrobial activity is
due to blunted PHOX-dependent ROS production. The
molecular mechanism that results in impaired PHOX-
dependent ROS production requires further investigation. Our
data strongly suggest that impaired ROS production is
uncoupled from HS-modified p38/MAPK. It is possible that
increases in Na+ directly impair enzymatic PHOX activity.
Since increases in Na+ are known to affect the dynamics of the
actin cytoskeleton (41) and Rac proteins that interact with the
actin cytoskeleton [reviewed in: (103)] are required for proper
PHOX activity [reviewed in: (104)], it is also possible that
molecules involved in PHOX assembly, e.g. Rho GTPases, or
rearrangement of the actin cytoskeleton could underlie
our finding.

We published earlier that HS conditions led to impaired ROS
production upon E. coli infection in macrophages as well, which
nevertheless showed increased antibacterial activity under HS
conditions (12). In contrast to PMN, PHOX-dependent ROS
production was dispensable in HS-augmented antibacterial
activity in macrophages (12). Instead, HS boosted autophagy
and autolysosomal targeting of bacteria for degradation into
these highly acidic compartments (12, 13). This demonstrates
that HS differentially alters antibacterial responses in
distinct phagocytes.

Macrophages play an important role in controlling tissue
integrity and resolution of inflammation by eliminating
intruding invaders and fostering the degradation of debris
(105–107). Neutrophils are the first responders that are
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attracted to tissue injuries, which cannot be managed by local
tissue-resident macrophages already on site (108). While
neutrophil accumulation helps in warding off infections, this
comes at a cost of collateral tissue damage. Although it is
established that in inflamed and infected tissue Na+-rich
microdomains can be present (7, 8, 10), it is unclear which
mechanisms orchestrate Na+ accumulation [reviewed in: (14)]
and when Na+ accumulation in tissues appears in the course of
inflammation and infection. It is very tempting to speculate that
Na+-rich environments are a signature of prolonged
inflammatory processes. Likewise it is possible that within
inflamed/infected tissues Na+ gradients exist that modulate
immune cell activity. Therefore, interstitial Na+-accumulation
could represent an 'ionic checkpoint' (20) which shapes a niche
that ensures tissue integrity by dampening PMN function on the
one hand, while boosting macrophage-dependent antibacterial
activity and clearance of tissue debris on the other hand.

In line with this hypothesis, several reports showed that
hypertonic saline infusion is linked to reduced lung injury and
concomitant decreased neutrophil activation (37, 109, 110) as
well as increased bacterial removal by immune cells in the
peritoneal cavity (37). Further studies are required to
systematically assess the role of local tissue Na+ in the
resolution of inflammatory diseases. Our findings provide new
views on the resolution process, which have direct clinical
relevance, and open new lines of investigations.
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17. Wilck N, Balogh A, Markó L, Bartolomaeus H, Müller DN. The Role of
Sodium in Modulating Immune Cell Function. Nat Rev Nephrol (2019)
15:546–58. doi: 10.1038/s41581-019-0167-y

18. Müller DN, Wilck N, Haase S, Kleinewietfeld M, Linker RA. Sodium in the
Microenvironment Regulates Immune Responses and Tissue Homeostasis.
Nat Rev Immunol (2019) 19:243–54. doi: 10.1038/s41577-018-0113-4

19. Gurusamy D, Clever D, Eil R, Restifo NP. Novel “Elements” of Immune
Suppression Within the Tumor Microenvironment. Cancer Immunol Res
(2017) 5:426–33. doi: 10.1158/2326-6066.CIR-17-0117

20. Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH, et al. Ionic
Immune Suppression Within the Tumour Microenvironment Limits T Cell
Effector Function. Nature (2016) 537:539–43. doi: 10.1038/nature19364

21. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al.
Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic
TH17 Cells. Nature (2013) 496:518–22. doi: 10.1038/nature11868

22. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of
Pathogenic TH17 Cells by Inducible Salt-Sensing Kinase SGK1. Nature
(2013) 496:513–7. doi: 10.1038/nature11984

23. Matthias J, Heink S, Picard F, Zeiträg J, Kolz A, Chao Y-Y, et al. Salt
Generates Antiinflammatory Th17 Cells But Amplifies Pathogenicity in
Proinflammatory Cytokine Microenvironments. J Clin Invest (2020)
130:4587–600. doi: 10.1172/JCI137786

24. Zhang W-C, Zheng X-J, Du L-J, Sun J-Y, Shen Z-X, Shi C, et al. High Salt
Primes a Specific Activation State of Macrophages, M(Na). Cell Res (2015)
25:893–910. doi: 10.1038/cr.2015.87

25. Jobin K, Stumpf NE, Schwab S, Eichler M, Neubert P, Rauh M, et al. A High-
Salt Diet Compromises Antibacterial Neutrophil Responses Through
Hormonal Perturbation. Sci Transl Med (2020) 12(536):eaay3850.
doi: 10.1126/scitranslmed.aay3850

26. Binger KJ, Gebhardt M, Heinig M, Rintisch C, Schroeder A, Neuhofer W,
et al. High Salt Reduces the Activation of IL-4- and IL-13-Stimulated
Macrophages. J Clin Invest (2015) 125:4223–38. doi: 10.1172/JCI80919

27. Hucke S, Eschborn M, Liebmann M, Herold M, Freise N, Engbers A, et al.
Sodium Chloride Promotes Pro-Inflammatory Macrophage Polarization
Thereby Aggravating CNS Autoimmunity. J Autoimmun (2016) 67:90–
101. doi: 10.1016/j.jaut.2015.11.001

28. He W, Xu J, Mu R, Li Q, Lv D-L, Huang Z, et al. High-Salt Diet Inhibits
Tumour Growth in Mice via Regulating Myeloid-Derived Suppressor Cell
Differentiation. Nat Commun (2020) 11:1732. doi: 10.1038/s41467-020-
15524-1

29. Willebrand R, Hamad I, van Zeebroeck L, Kiss M, Bruderek K, Geuzens A,
et al. High Salt Inhibits Tumor Growth by Enhancing Anti-Tumor
Immunity. Front Immunol (2019) 10:1141. doi: 10.3389/fimmu.2019.01141

30. Choi SY, Lee-Kwon W, Kwon HM. The Evolving Role of TonEBP as an
Immunometabolic Stress Protein. Nat Rev Nephrol (2020) 16:352–64.
doi: 10.1038/s41581-020-0261-1
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