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Abstract: An in vitro dissolution model, the so-called EyeFlowCell (EFC), was developed to test
intravitreal dosage forms, simulating parameters such as the gel-like consistency of the vitreous
body. The developed model consists of a stereolithography 3D-printed flow-through cell with a
polyacrylamide (PAA) gel as its core. This gel needed to be coated with an agarose sheath because
of its low viscosity. Drug release from hydroxypropyl methylcellulose-based implants containing
either triamcinolone acetonide or fluorescein sodium was studied in the EFC using a schematic
eye movement by the EyeMovementSystem (EyeMoS). For comparison, studies were performed in
USP apparatus 4 and USP apparatus 7. Significantly slower drug release was observed in the PAA
gel for both model drugs compared with the compendial methods. Drug release from fluorescein
sodium-containing model implants was completed after 40 min in USP apparatus 4, whereas drug
release in the gel-based EFC lasted 72 h. Drug release from triamcinolone acetonide-containing
model implants was completed after 35 min in USP apparatus 4 and after 150 min in USP apparatus
7, whereas this was delayed until 96 h in the EFC. These results suggest that compendial release
methods may overestimate the drug release rate in the human vitreous body. Using a gel-based
in vitro release system such as the EFC may better predict drug release.

Keywords: in vitro model; in vitro drug release; intravitreal implants; SLA 3D-printing; triamci-
nolone acetonide; USP apparatus 4; USP apparatus 7; vitreous substitute; dissolution

1. Introduction

The incidence of eye diseases has increased steadily in recent years as a result of
demographic change. In particular, diseases of the posterior segment of the eye, such as
diabetic retinopathy, macular edema, or age-related macular degeneration, are more and
more common [1–3]. Intravitreal therapy as a minimally invasive procedure, in which
suspensions, solutions, or implants containing antibodies like bevacizumab (Avastin®)
or glucocorticoids like dexamethasone (Ozurdex®) or triamcinolone acetonide (TA) are
injected into the human vitreous body, is becoming increasingly crucial for the treatment
of such clinical conditions [4]. Implants, in particular, provide better patient compliance
because of their sustained release, as the intervals between the individual applications may
be extended [5].

For ethical and practical reasons, in vivo studies in humans in preclinical development
of new intravitreal dosage forms are complicated. On the one hand, an in vivo determina-
tion of the drug in the vitreous body is almost impossible. On the other hand, the human
eye is a susceptible organ, where even minor damages can lead to visual impairment.
Therefore, the use of animal models plays a significant role in preclinical development.
Aside from rats and mini-pigs, rabbits are the most commonly used animal species [6].
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Even if animal models provide preliminary conclusions regarding the behavior of dosage
forms in the human vitreous, it must be taken into account that the physiological conditions
differ to a variable extent; that is, different vitreous volumes, aqueous flows, and vitreous
diffusional pathlength between the species may complicate the transferability of results
from in vivo studies [7,8]. Another important aspect is the age-related liquefaction of the
human vitreous body. Whereas this frequently occurs in humans with increasing age,
possibly leading to a different release and distribution behavior of dosage forms, young
animals used in in vivo studies have a more gel-like vitreous body that cannot reflect this
fact [9–11]. For this reason, the combination of in vivo animal studies with more biorelevant
in vitro models is a possible option to reduce the number of animal studies and obtain a
better first idea of the behavior of new drug formulations in the human vitreous body.

Compendial release apparatuses of the United States Pharmacopeia (USP) such as
the flow-through cell (USP apparatus 4) or the reciprocating holder (USP apparatus 7)
are the first approach for dissolution testing of new intravitreal dosage forms. Both are
recommended, for example, for in vitro release studies of implants [12]. The so-called
shake-flask method, in which implants are incubated with release medium in tubes under
agitation, is also commonly found in the literature [13,14]. With these methods, it is possible
to represent lower liquid volumes, as they are present at many application sites of implants.
Nevertheless, when it comes to simulating the physiological conditions of the human
vitreous body, unique characteristics such as the gel-like consistency or the aqueous flow
are neglected here. There are only a few in vitro models that try to simulate the behavior of
drug formulations in the human vitreous. One of them is the PK-Eye developed by Awwad
et al., which attempts to simulate the clearance of drugs via the aqueous flow-through the
anterior chamber of the eye [15]. Another model is the EyeMovementSystem (EyeMoS)
created by Loch et al. [16] and adjusted by Stein et al. [17], which takes the influence of
simulated eye movements on the distribution and release of drugs into account. Both
models investigate the influence of individual aspects on the distribution behavior of active
ingredients in a simulated human vitreous body. However, they are nevertheless fairly
limited regarding the information they provide about the release of the drugs from different
dosage forms.

This work aimed to develop a gel-based flow-through system and combine it with
the previously developed EyeMoS so that continuous dissolution testing is possible over
a more extended time. Until now, it was necessary for dissolution studies in the EyeMoS
either to perform multiple studies with different endpoints or to transfer the test objects into
fresh gels at defined time points. This transfer meant that the dosage form was subjected
to mechanical stress. By adding a flow-through system around the gel, sampling from an
external vessel should be possible without affecting the dosage form.

For this purpose, model implants based on hydroxypropyl methylcellulose (HPMC)
containing fluorescein sodium (FS) or TA were manufactured by hot-melt extrusion. In
the first studies, the model was tested with the analytically accessible, hydrophilic model
substance FS, which is used as a dye in fluorescein angiography for staining tissue layers,
among other applications [18]. The glucocorticoid TA is used as a vascular endothelial
growth factor (VEGF) inhibitor in the therapy of diseases of the posterior segment of
the eye [19].

The drug release from the implants was investigated in the newly developed so-called
EyeFlowCell (EFC) after injection into a gel-like core. For this purpose, a polyacrylamide
(PAA) gel developed by Loch et al. was used, corresponding to the human vitreous body
in essential characteristics such as water content, pH, density, and viscosity [16]. As the
PAA gel used by Loch et al. has a low viscosity, a setup had to be found to prevent
it from being washed away by the flowing media. For this purpose, the PAA gel was
coated with a form-stable agarose sheath and the dual gel was placed centrally in a 3D-
printed basket so that the release medium could flow around it. By combining it with
the EyeMoS, the influence of schematic eye movement on drug release was investigated.
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Moreover, for reasons of comparison, dissolution studies were performed in the USP
standard apparatuses 4 (flow-through cell) and 7 (reciprocating holder).

2. Materials and Methods
2.1. Materials

Sodium chloride, potassium chloride, disodium hydrogen phosphate, and potassium
dihydrogen phosphate as components of phosphate buffered saline (PBS) pH 7.4 were pur-
chased from AppliChem (Darmstadt, Germany). A PAA gel developed by Loch et al. [16]
simulating the vitreous body was prepared according to the composition given in Table 1.
Rotiphoresis gel 30 (37.5:1), ammonium peroxodisulfate, and tetramethylethylenediamine
were purchased from Carl Roth (Karlsruhe, Germany). Agarose for the PAA gel-sheath
was purchased from Sigma Aldrich, Germany. Model implants were prepared via hot-melt
extrusion of FS (Sigma Aldrich, St. Louis, MO, USA) or TA (Caelo, Hilden, Germany)
as active pharmaceutical ingredients, hydroxypropyl methylcellulose (HPMC; Affinisol
100LV/Affinisol 15LV; Dow Chemicals, Midland, TX, USA) and polyethylene glycol (PEG)
6000 (Carl Roth). All chemicals and solvents for the high-performance liquid chromatog-
raphy (HPLC) were of analytical quality. A standard Formlabs Clear Resin (Formlabs,
Somerville, MA, USA) was used for the 3D-printed EFC.

Table 1. Composition of the modified polyacrylamide gel by Loch et al.

Compound Content (%)

phosphate buffered saline pH 7.4 92.21

rotiphoresis gel 30 6.69

ammonium peroxodisulfate 1

tetramethylethylendiamine 0.1

2.2. Methods
2.2.1. Preparation of the Model Implants

For the preparation of the drug-loaded model implants, the components listed in
Table 2 were mixed, dried in an oven for 24 h at 40 ◦C, and then extruded with a twin-screw
extruder (Three-Tec ZE12, Seon, Switzerland) through a 0.5 mm nozzle. The powder
inlet was cooled to 15 ◦C, and the barrel was heated to 180 ◦C. A Three-Tec conveyor
belt was used to stretch the extrudates. The produced filaments were cut to a length of
approximately 6 mm with a disposable scalpel, and their mass was determined individually
using a Sartorius SE2 ultra-micro balance (Sartorius, Goettingen, Germany).

Table 2. Composition of the powder mixtures for fluorescein sodium and triamcinolone acetonide
implants produced via hot-melt extrusion.

Compound Batch 1
Content (%)

Batch 2
Content (%)

fluorescein sodium 40 -

triamcinolone acetonide - 20

silicone dioxide 0.5 0.5

polyethylene glycol 6000 10 10

hydroxypropyl methylcellulose 49.5 69.5

2.2.2. Fabrication of the EyeFlowCell

The 3D-printed dissolution chambers, the so-called EyeFlowCell, were designed with
FreeCAD (version 0.17), sliced with Preform (version 3.4.5) software, and printed with a
Formlabs Form 3 (Formlabs, Somerville, MA, USA) stereolithography printer. A clear resin
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was used as material for all cells. A schematic view of the intended design is shown in
Figure 1. The chamber was developed to consist of a closed bottom side and a top side
with an injection channel for injecting the dosage forms to be tested and a basket keeps
the vitreous substitute centered in the middle. Sealing is achieved by a self-manufactured
sealing ring made of silicone; the injection channel is closed by a plug so no medium can
leak out this way. In contrast to conventional flow-through cells, the dissolution chamber is
perfused with a release medium from the bottom inlet to the top outlet. Special holders were
printed from polylactic acid (Formfutura, Nijmegen, The Netherlands) using an Ultimaker
3 Extended (Ultimaker, Ultrecht, The Netherlands) to mount the EFC on the EyeMoS.
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Figure 1. Schematic view of the EyeFlowCell. The vitreous substitute should be placed centrally in
the basket allowing the flow to pass through the inlet to the outlet and surround the substitute.

2.2.3. Fabrication of the Vitreous Substitute

In order to prevent the PAA gel from washing out, a method to produce a sheath
around it had to be developed. To mimic the volume of the human vitreous body, a spheric
4 mL gel body of the PAA gel was cast in silicone molds (r = 10 mm; Figure 2a) and frozen
at −80 ◦C for at least 2 h (Figure 2b). A 2% agarose solution in PBS 7.4 mixture was heated
on a heating plate to 100 ◦C under agitation until the agarose was completely dissolved
and then cooled down to 50–60 ◦C. Evaporation loss was corrected and the frozen PAA
gel was fixed centrally with a metal rod in a larger silicone mold (r = 14 mm; Figure 2c).
This mold was used to coat the PAA gel with the hot agarose solution and create a uniform,
4 mm thick sheath. The dual gel was stored at 8 ◦C for at least 2 h.
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2.2.4. In Vitro Drug Release Studies Using Compendial Methods

In vitro release testing of the FS and TA-containing HPMC implants in USP apparatus
4 was performed using flow-through cells under sink conditions at room temperature in
a closed system. A magnetic stirrer stirred the test volume of 100 mL PBS in a vessel at
250 rpm. An Ismatec IPC peristaltic pump was used to circulate the release medium at a
flow rate of 5 mL/min through the cells. Samples of 1 mL were withdrawn at predeter-
mined time points from the vessel and replaced with fresh PBS after sampling. In vitro
release of TA-containing HPMC implants was furthermore studied under sink conditions
in a USP 7 apparatus (400-DS Dissolution Apparatus 7, Agilent Technologies, Santa Clara,
CA, USA) at room temperature. Cells were filled with a volume of 10 mL of PBS and each
cell was loaded with a 12-port mesh basket dipping at 30 dips per minute through an
externally controlled magnetic plate. A sample volume of 1 mL was withdrawn at each
time point, and the remaining volume was discarded and replaced with 10 mL of fresh PBS.

2.2.5. In Vitro Drug Release Studies in the EyeFlowCell

The release testing of the drug-loaded model implants was performed in the newly
developed system combined with or without the EyeMovementSystem (EyeMoS). For both
methods, 100 mL PBS 7.4 was used as the release medium. The medium container was
stirred at room temperature by a magnetic stirrer at 250 rpm. An Ismatec IPC peristaltic
pump was used to circulate the release medium at a flow rate of 5 mL/min through the
chambers. A picture of this setup is shown in Figure 3.
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Figure 3. Setup of the EyeFlowCell combined with the EyeMoS.

For the release in the EFC, the gel vitreous bodies were prepared as described above
and inserted into the dissolution chambers. The drug-loaded implants were injected
into the gel vitreous bodies with a Sterican cannula (0.5 × 16 mm) through the injection
channel. The cannula was fitted with a spacer to ensure reproducible injection, placing the
implant centrally in the vitreous substitute. For dissolution testing with the simulated eye
movement, the repetitive 24 h scheme given in Table 3 was used, which was also used in
previous works [16,17]. To determine the residual drug content in the gel, TA or FS was
extracted from the gel with 10 mL of acetone. Extraction was carried out in an incubator
at room temperature for 24 h and 150 rpm. The PAA gel collapsed upon exposure to
the solvent and was removed with the parts of the agarose sheath. The acetone was then
evaporated, and the residue was taken up in 10 mL PBS and measured by high-performance
liquid chromatography (TA) or fluorescence spectroscopy (FS).
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Table 3. Movement pattern of the applied schematic eye movement.

Movement Pattern (x-Axis) Angle (◦) Angular Velocity (◦/s)

Mode 1 Slow pursuit movement 35 41

Mode 2 Fast pursuit movement 33 83

Mode 3 Saccadic movement 42 165

Mode 4 Pursuit movement with distinct amplitudes 90 330

Movement pattern y-axis 20 60

24 h day rhythm
Minutes (mode)

290 min (mode 1), 5 min (mode 3)
280 min (mode 4), 5 min (mode 3)
260 min (mode 2), 5 min (mode 3)
300 min (mode 1), 5 min (mode 3)
285 min (mode 4), 5 min (mode 3)

2.2.6. Quantification

TA was quantified using a Shimadzu Nexera XR Modular high-pressure liquid chro-
matography system (Shimadzu, Kyoto, Japan) consisting of a SIL-20ACxr autosampler, a
CTO-10AC column oven, SPD-M20A diode array detector, DGU-20A3R degasser, CBM-
20A system controller, and LC-20AD pumps. A Kinetix Polar C18 column (2.6 µm,
150 × 2.1 mm; Phenomenex, Torrance, CA, USA) was used. The column oven was heated
to 40 ◦C, and the wavelength of the detector was set to 238 nm. The mobile phase consisted
of 30% millipore water and 70% methanol, both mixed with 0.5% formic acid. The injection
volume was 20 µL, the flow rate was 0.45 mL/min, and the retention time was approx-
imately 1.8 min. The concentration range for the calibration was 0.1–10 µg/mL with a
coefficient of determination (R2) of 0.999. The evaluation was performed with the software
LabSolution (Shimadzu).

FS was determined by UV/vis spectrometry using a Cary 60 spectrophotometer
(Agilent, San Diego, CA, USA) with a fiber optic-based system (slit width 10 mm). In a
two-minute interval, measurements were carried out at a wavelength of 490 nm (λmax of
fluorescein) and 600 nm (baseline correction). The calibration range was 0.1–10 µg/mL
(coefficient of determination R2 = 0.999). All FS experiments were performed under
protection from light.

3. Results
3.1. Preparation of the Vitreous Substitute

The PAA gel used to simulate the vitreous body had to be covered with a form-giving
agarose sheath because of its low viscosity. For this purpose, the frozen PAA gel core was
coated with a warm agarose solution in a special silicone mold. On contact with the gel,
this solution cooled and formed a 4 mm thick agarose sheath. An agarose solution of 2%
proved to be practicable in handling. Cracks occurred in the sheath at lower concentrations,
so washing out of the gel core could not be avoided entirely. At higher concentrations, the
warm agarose solution was too viscous to cast a uniformly thick sheath without defects.
Figure 4a shows a schematic view of the dual gel. The coated dual gel is shown in Figure 4b.

Even after the release studies, both the inner PAA gel and the outer agarose sheath
were intact. Images of vitreous substitutes that were cut in half after a release experiment
are shown in Figure 5. There is a clear separation between the viscous PAA gel and the
form-stable agarose sheath.
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3.2. Fabrication of the EyeFlowCell

The 3D-printed dissolution chamber, called EyeFlowCell, is depicted in Figure 6a.
Printing was achieved in a suitable resolution and the planned properties were achieved.
The dimensions of the EFC are 60 mm × 60 mm × 52 mm (width, length, height). The
chamber volume is 51 mL, of which 11.5 mL is occupied by the inner basket for the vitreous
substitute. The central basket for holding the vitreous substitute has an inner radius of
14 mm. The basket itself consists of eight bars with a width of 2.8 mm, which are connected
at the top in a 1.4 mm thick ring. Leak tightness was achieved with the custom-made
sealing ring. The upper side of the model as shown in Figure 6b has an injection channel
with a diameter of 3.5 mm, intended for direct injection of the dosage form to be tested into
the inner vitreous substitute. The cell is attached to a holder via two cantilevers so that the
orientation allows a vertically upward flow through the cell.
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3.3. Drug Loaded Model Implants

TA- and FS-loaded implants based on HPMC were successfully extruded. Microscopic
images of the extruded implants are shown in Figure 7. The filaments exhibit a relatively
uniform diameter of 0.49 mm with a homogeneous matrix and a slightly rough surface. The
length of the cut implants was approximately 6 mm. The actual drug loading of the implants
was 29.5 ± 1.4% for the implants with FS and 17.3 ± 0.8% for those with TA. In relation
to the powder mixture, the drug content of the FS filaments deviates significantly. On the
one hand, thermal stress during extrusion and, on the other hand, photoinstabilities could
be responsible for this. Before the dissolution experiments, the mass of the investigated
implants was determined and used for calculating the drug content. The average mass of
FS implants was 1.627 ± 0.103 mg containing 0.480 ± 0.030 mg FS, and the TA implants
weighed 1.421 ± 0.219 mg with an amount of 0.246 ± 0.038 mg TA incorporated.
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3.4. Dissolution Studies

The drug release of FS- or TA-containing HPMC implants was tested in the EFC,
as shown in Figure 8 (FS) and Figure 9 (TA). For both the hydrophilic FS and the more
lipophilic TA, no difference can be seen between the respective profiles in the EFC inde-
pendent of whether or not the movement was applied. The release of the FS-containing
HPMC implants after 72 h was 110.0 ± 4.4% with EyeMoS versus 113.1 ± 7.2% without
EyeMoS. In comparison, even minimally less drug is released without the movement by
the EyeMovementSystem. However, the slight difference shows that the movement does
not seem to have any influence in this experiment. Moreover, there is no difference in
the release profiles of the TA-containing HPMC implants. After four days, a plateau was
reached for both release profiles in the EFC. At this time, 91.3 ± 1.6% was released when
testing with movement, while without movement, 91.3 ± 0.9% of the theoretical drug load
was released.
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(b) in the EyeFlowCell with and without agitation with EyeMovementSystem, n = 5 ± SD.

Comparing the profiles with those obtained using compendial methods, a slower
release can be seen in the EFC for both drugs. While for the TA-containing implants in
the USP apparatus 7, there is a low release at the beginning, in the USP apparatus 4, a
rapid increase in the amount released can be seen directly for TA as well as for FS. In USP
apparatus 4, the plateau and thus the complete release of TA with 100.5 ± 8.1% is even
reached after 35 min, while in USP apparatus 7, the reciprocating holder, 100.6 ± 12.0% is
released after 150 min into the surrounding medium. The release from the FS-containing
implants reached a plateau of 95.5 ± 4.5% after approximately 40 min in USP apparatus 4.

4. Discussion

Monographed pharmacopeia release systems offer many advantages for the in vitro
characterization of dosage forms. They assure defined and reproducible conditions for
drug release from different dosage forms. As a result, they provide comparability of
collected data. However, these systems usually have little in common with the conditions
at the respective application sites. Therefore, they offer great advantages for quality
control, but lack predictability of the actual behavior of the dosage form in vivo. The
general approach for developing a gel-based flow-through cell is based on the assumption
that the degradation, swelling, and thus release behavior of dosage forms like implants
depends on the medium surrounding them. In the case of intravitreal application, this is
the gel-like vitreous body. This site of application is poorly reflected by compendial release
systems, leading to differences in in vitro behavior compared with the situation in vivo.
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Suitable systems for continuous dissolution studies, which provide a better preliminary
understanding of how the dissolution might occur in vivo, are lacking so far. While there
are several approaches for human vitreous body substitution in vivo, in vitro drug release
in these has not been studied in detail so far [20,21]. Apart from the PAA gel by Loch
et al. used here, which has already been used for release studies, and another vitreous
substitute developed by Awwad et al. from hyaluronic acid and agar, which was used to
determine the clearance of PLGA microparticles or antibodies, there is little literature on
in vitro experiments. One reason for this could be the problems associated with sampling
from gels.

The use of 3D-printing is beneficial for dissolution test setup development. The in-
dividual options for design and layout allow new dissolution test models to be adapted
quickly and easily, depending on requirements. The stereolithography printing used here
enables the precise production of fine models. In previous works, it has been used to
produce a Franz cell for permeation studies or to print tablets containing drugs, for ex-
ample, [22,23]. The EFC is intended to simulate the human vitreous body, which is why a
gel was used as a dissolution medium to simulate the human vitreous body, resembling
the vitreous body in some essential properties [16]. In the human vitreous body, the gel-
like structure is formed by an interaction of primary collagen and hyaluronic acid [24,25].
In contrast, in the PAA gel, this is achieved by crosslinking acrylic amide with tetram-
ethylethylenediamine. The negative charge of the glycosaminoglycan hyaluronic acid is
not considered here, for which interactions and inhibition of the diffusion of cations have
been described [26]. This point should be an approach for future developments to revise
the inner gel core, the in vitro vitreous substitute.

In order to maintain sink conditions, the use of a flow-through system around this gel
was chosen. Moreover, this offers the advantage of sampling from a liquid medium, as the
determination of the release into gels usually requires extraction for sampling, and thus
leads to multiple experiments with different endpoints. Compared with USP apparatus 4,
however, the EFC requires a larger minimum volume of the release medium. Owing to
the chamber volume of 51 mL and the tubing system, at least 100 mL of release medium is
required, whereas in USP apparatus 4, 50 mL or even less is sufficient depending on the
cell and tubing design. Because the PAA gel used as the vitreous substitute possesses a low
viscosity, it had to be enclosed in a 2% agarose coating to prevent it from being liquefied
and washed away by the flow. Preliminary tests have shown that a sheath thickness of
4 mm is necessary to produce a uniform reproducible shell. A spherical coating was chosen
because it visually reflects the almost spherical vitreous body and ensures simple and
reproducible handling. Preliminary experiments with dye solution (data not shown) have
indicated that the diffusion of the drug from the inner PAA gel into the dissolution medium
is not significantly hindered.

To test this system, simple model implants were produced from HPMC and FS or
TA. HPMC is a water-soluble polymer commonly used in hot-melt extrusion, which
has excellent properties for processing. FS was chosen as an analytically well-accessible
hydrophilic model substance. The glucocorticoid TA belongs to the VEGF inhibitors and is
used as an intravitreal suspension for various diseases like macular edema [27], and was
thus selected as a model substance. The length and diameter of the fabricated implants
were based on the intravitreal implant Ozurdex® (Allergan), which is approved in Europe.

An extreme discrepancy in dissolution times is noticeable when comparing the disso-
lution profiles between the EFC and the standard apparatuses. Because of the flow of the
medium in USP apparatus 4 and the dipping in USP apparatus 7, the release is completed
within 35–150 min, whereas this takes several days in the EFC. This time difference can be
attributed to the movement of the dosage form in the medium associated with convective
transport of the drug after dissolution, which does not occur when gels are used as injection
sites. Another reason for the slower drug release in the EFC could be the dissolution of the
implants. As these are immobilized in the gel and degradation products also have to diffuse
out of the PAA gel core, slower degradation may result in slower drug release. Moreover,
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no diffusion of the drugs is required in the compendial setups, so that the released drug
can be determined without delay. Comparing the two releases in the EFC, it can be seen
that the applied movement had no influence on the release rate in these first investigations.
All release profiles in the EFC can be divided into three phases: at the beginning, there is a
lag-time of 1.5–2 h, during which almost no drug is released into the medium. In this phase,
the drug is most likely distributed in the inner gel core, and is thus not yet detectable in the
surrounding medium. Subsequently, the release curves increase constantly over several
days until they reach a plateau.

Because diffusion processes play a role in the distribution within the gel and between
the different media and, according to Fick’s law, these are only driven by the concentration
gradient, this result was expected. These results demonstrate that the PAA gel, intended to
simulate the human vitreous body, can significantly slow down drug release from HPMC
implants. Assuming that the dosage form behaves approximately the same in the human
vitreous, it can be hypothesized that compendial methods significantly overestimate the
rate of drug release for both hydrophilic and lipophilic drugs, at least for the release from
HPMC implants tested here. However, to confirm this hypothesis and the suitability of EFC
to predict the in vivo behavior of dosage forms, in vivo release data are required. Diffusion,
as well as convection, plays an essential role in the human vitreous. The elimination of
drugs occurs either via the posterior chamber of the eye or the retina, thus the drug has to
be distributed in the vitreous body [28]. The distribution processes that take place in the
vitreous body could thus be roughly simulated with the distribution in the gel as a vitreous
body substitute. Because of the limited volume of the PAA gel, solubility in it could be a
limiting factor. Even if sink conditions exist in the release medium, non-sink conditions in
the PAA gel could affect the concentration gradient between the vitreous substitute and
the dosage form, thus slowing down release. It may be expected that this effect is more
pronounced for drugs with low solubility in the water-based gel.

The use of the EFC is not only limited to implants owing to the PAA gel core. An
investigation of suspensions or nanoparticles would also be possible because separation of
the particles from the release medium used for sampling is assured when using the EFC.
If the results for implants are transferred to nanoparticles, this would probably also be
considered with a slower drug release in the EFC compared with compendial methods.

All experiments in this work were performed at room temperature because tempera-
ture control of the EFC could not be implemented thus far. This detail is to be seen as a
disadvantage compared with the compendial methods, in which the temperature can be
easily adjusted. Especially in the dissolution of implants and the disintegration process
of polymers, temperature plays a major role. This aspect must be considered in future
developments in any case.

Because mainly young animals are used in preclinical in vivo studies, the gel used in
this work should take this aspect into account [13,29]. However, using a pure gel body as
a vitreous substitute here only represents idealized physiological conditions. With aging,
the human vitreous body liquefies [25], so that an applied movement might influence the
release behavior because of the addition of convective processes [9]. Because the incidence
of many posterior eye diseases (diabetic retinopathy, age-related macular degeneration, and
macular edema) increases with age, simulation of a liquefied vitreous should be included in
further experiments. A simulation of a vitrectomized vitreous body would also be possible
with the EFC. Stein et al. showed that the addition of silicone oil to an in vitro vitreous
substitute has an influence on distribution processes [30]. Because of the outer agarose
sheath, the inner gel core can be easily adapted to these different conditions.

In conclusion, the EFC, a gel-based flow-through cell, was developed to simulate
the human vitreous body in this work. With this, a continuous dissolution study of
intravitreal implants is possible without the need for multiple experiments with different
endpoints or manual transfer of the implants. In the future, temperature control of the
system needs to be considered to take the influence of body temperature into account.
Further steps should include the testing of commercially available dosage forms using
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this setup. However, model evaluation based on the comparison of in vitro and in vivo
data is complicated for intravitreal products because in vivo data regarding release into
the vitreous are not available owing to the local release of small amounts of drug over time
and the inaccessibility of human vitreous for sampling. Nevertheless, the model is a first
approach to investigate intravitreal dosage forms under more biorelevant conditions in
preclinical development.

5. Conclusions

Models of more biorelevant in vitro release in preclinical development can better pre-
dict the dissolution behavior of dosage forms in vivo. Official compendial drug dissolution
methods generally represent aqueous systems that often inadequately reflect physiological
conditions. The EFC developed here as a modified flow-through cell represents a first
approach to study intravitreal dosage forms, in which a gel simulates the human vitreous
body. The setup was successfully printed with a 3D printer using stereolithography. It
was shown that drug release from FS- or TA-containing HPMC implants was significantly
slower when using a gel system compared with two standard compendial methods (USP
apparatus 4 and 7). The EFC represents a gel-based release system that allows continuous
dissolution testing of intravitreal dosage forms. Further studies, specifically on long-term
suitability, need to be conducted to further evaluate the system.

Author Contributions: Conceptualization, T.A., L.G., W.W. and A.S.; methodology, T.A. and L.G.;
software, L.S.; validation, T.A. and L.G; investigation, T.A. and L.G.; data curation, T.A.; writing—
original draft preparation, T.A. and A.S.; writing—review and editing, T.A., L.G., L.S., W.W. and A.S.;
funding acquisition, W.W. and A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors thank Agilent Technologies, Inc., USA, and Sandra Klein for the
supply of the 400-DS reciprocating holder apparatus and Katharina Tietz for assistance with the
experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular

degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014,
2, e106–e116. [CrossRef]

2. Voleti, V.B.; Hubschman, J.P. Age-related eye disease. Maturitas 2013, 75, 29–33. [CrossRef]
3. Finger, R.P.; Fimmers, R.; Holz, F.G.; Scholl, H.P.N. Incidence of blindness and severe visual impairment in Germany: Projections

for 2030. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4381–4389. [CrossRef] [PubMed]
4. Fogli, S.; Del Re, M.; Rofi, E.; Posarelli, C.; Figus, M.; Danesi, R. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye 2018,

32, 1010–1020. [CrossRef] [PubMed]
5. Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based

drug delivery systems—A review. Int. J. Pharm. 2011, 415, 34–52. [CrossRef]
6. Awwad, S.; Henein, C.; Ibeanu, N.; Khaw, P.T.; Brocchini, S. Preclinical challenges for developing long acting intravitreal

medicines. Eur. J. Pharm. Biopharm. 2020, 153, 130–149. [CrossRef]
7. del Amo, E.M.; Urtti, A. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the

published data. Exp. Eye Res. 2015, 137, 111–124. [CrossRef] [PubMed]
8. Rowe-Rendleman, C.L.; Durazo, S.A.; Kompella, U.B.; Rittenhouse, K.D.; Di Polo, A.; Weiner, A.L.; Grossniklaus, H.E.; Naash,

M.I.; Lewin, A.S.; Horsager, A.; et al. Drug and gene delivery to the back of the eye: From bench to bedside. Investig. Ophthalmol.
Vis. Sci. 2014, 55, 2714–2730. [CrossRef] [PubMed]

http://doi.org/10.1016/S2214-109X(13)70145-1
http://doi.org/10.1016/j.maturitas.2013.01.018
http://doi.org/10.1167/iovs.10-6987
http://www.ncbi.nlm.nih.gov/pubmed/21447690
http://doi.org/10.1038/s41433-018-0021-7
http://www.ncbi.nlm.nih.gov/pubmed/29398697
http://doi.org/10.1016/j.ijpharm.2011.05.049
http://doi.org/10.1016/j.ejpb.2020.05.005
http://doi.org/10.1016/j.exer.2015.05.003
http://www.ncbi.nlm.nih.gov/pubmed/25975234
http://doi.org/10.1167/iovs.13-13707
http://www.ncbi.nlm.nih.gov/pubmed/24777644


Pharmaceutics 2021, 13, 1394 14 of 14

9. Tan, L.E.; Orilla, W.; Hughes, P.M.; Tsai, S.; Burke, J.A.; Wilson, C.G. Effects of vitreous liquefaction on the intravitreal distribution
of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1111–1118.
[CrossRef]

10. Stein, S.; Hadlich, S.; Langner, S.; Biesenack, A.; Zehm, N.; Kruschke, S.; Oelze, M.; Grimm, M.; Mahnhardt, S.; Weitschies, W.;
et al. 7.1 T MRI and T2 mapping of the human and porcine vitreous body post mortem. Eur. J. Pharm. Biopharm. 2018, 131, 82–91.
[CrossRef]

11. Henein, C.; Awwad, S.; Ibeanu, N.; Vlatakis, S.; Brocchini, S.; Tee Khaw, P.; Bouremel, Y. Hydrodynamics of Intravitreal Injections
into Liquid Vitreous Substitutes. Pharmaceutics 2019, 11, 371. [CrossRef]

12. Seidlitz, A.; Weitschies, W. In-vitro dissolution methods for controlled release parenterals and their applicability to drug-eluting
stent testing. J. Pharm. Pharmacol. 2012, 64, 969–985. [CrossRef]

13. Fialho, S.L.; Behar-Cohen, F.; Silva-Cunha, A. Dexamethasone-loaded poly(ε-caprolactone) intravitreal implants: A pilot study.
Eur. J. Pharm. Biopharm. 2008, 68, 637–646. [CrossRef]

14. Matter, B.; Ghaffari, A.; Bourne, D.; Wang, Y.; Choi, S.; Kompella, U.B. Dexamethasone Degradation in Aqueous Medium and
Implications for Correction of In Vitro Release from Sustained Release Delivery Systems. AAPS PharmSciTech 2019, 20. [CrossRef]

15. Awwad, S.; Lockwood, A.; Brocchini, S.; Khaw, P.T. The PK-Eye: A Novel in Vitro Ocular Flow Model for Use in Preclinical Drug
Development. J. Pharm. Sci. 2015, 104, 3330–3342. [CrossRef]

16. Loch, C.; Nagel, S.; Guthoff, R.; Seidlitz, A.; Weitschies, W. The vitreous model—A new in vitro test method simulating the
vitreous body. Biomed. Tech. 2012, 57, 281–284. [CrossRef]

17. Stein, S.; Auel, T.; Kempin, W.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Influence of the test method on in vitro drug re-
lease from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (D,L-lactide-co-glycolide) or
polycaprolactone. Eur. J. Pharm. Biopharm. 2018, 127, 270–278. [CrossRef]

18. Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence
tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [CrossRef]

19. German Society of Ophthalmology (DOG); German Retina Society (RG); Professional Association of Ophthalmologists in
Germany (BVA). Statement of the German Ophthalmological Society, the German Retina Society, and the Professional Association
of Ophthalmologists in Germany on treatment of diabetic macular edema. Ophthalmologe 2021, 118, 40–67. [CrossRef]

20. Mondelo-García, C.; Bandín-Vilar, E.; García-Quintanilla, L.; Castro-Balado, A.; del Amo, E.M.; Gil-Martínez, M.; Blanco-Teijeiro,
M.J.; González-Barcia, M.; Zarra-Ferro, I.; Fernández-Ferreiro, A.; et al. Current Situation and Challenges in Vitreous Substitutes.
Macromol. Biosci. 2021, 2100066. [CrossRef]

21. Yu, Z.; Ma, S.; Wu, M.; Cui, H.; Wu, R.; Chen, S.; Xu, C.; Lu, X.; Feng, S. Self-assembling hydrogel loaded with 5-FU PLGA
microspheres as a novel vitreous substitute for proliferative vitreoretinopathy. J. Biomed. Mater. Res. Part A 2020, 108, 2435–2446.
[CrossRef] [PubMed]

22. Wang, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int. J.
Pharm. 2016, 503, 207–212. [CrossRef]

23. Sil, B.C.; Alvarez, M.P.; Zhang, Y.; Kung, C.P.; Hossain, M.; Iliopoulos, F.; Luo, L.; Crowther, J.M.; Moore, D.J.; Hadgraft, J.; et al.
3D-printed Franz type diffusion cells. Int. J. Cosmet. Sci. 2018, 40, 604–609. [CrossRef] [PubMed]

24. Käsdorf, B.T.; Arends, F.; Lieleg, O. Diffusion Regulation in the Vitreous Humor. Biophys. J. 2015, 109, 2171–2181. [CrossRef]
25. Le Goff, M.M.; Bishop, P.N. Adult vitreous structure and postnatal changes. Eye 2008, 22, 1214–1222. [CrossRef]
26. Kim, H.; Robinson, S.B.; Csaky, K.G. Investigating the movement of intravitreal human serum albumin nanoparticles in the

vitreous and retina. Pharm. Res. 2009, 26, 329–337. [CrossRef] [PubMed]
27. Soheilian, M.; Eskandari, A.; Ramezani, A.; Rabbanikhah, Z.; Soheilian, R. A pilot study of intravitreal diclofenac versus

intravitreal triamcinolone for uveitic cystoid macular edema. Ocul. Immunol. Inflamm. 2013, 21, 124–129. [CrossRef]
28. del Amo, E.M.; Rimpelä, A.K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.;

Richardson, D.; et al. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017, 57, 134–185. [CrossRef]
29. Rauck, B.M.; Friberg, T.R.; Medina Mendez, C.A.; Park, D.; Shah, V.; Bilonick, R.A.; Wang, Y. Biocompatible reverse thermal gel

sustains the release of intravitreal bevacizumab in vivo. Investig. Ophthalmol. Vis. Sci. 2013, 55, 469–470. [CrossRef]
30. Stein, S.; Bogdahn, M.; Rosenbaum, C.; Weitschies, W.; Seidlitz, A. Distribution of fluorescein sodium and triamcinolone acetonide

in the simulated liquefied and vitrectomized Vitreous Model with simulated eye movements. Eur. J. Pharm. Sci. 2017, 109,
233–243. [CrossRef]

http://doi.org/10.1167/iovs.10-5813
http://doi.org/10.1016/j.ejpb.2018.07.021
http://doi.org/10.3390/pharmaceutics11080371
http://doi.org/10.1111/j.2042-7158.2011.01439.x
http://doi.org/10.1016/j.ejpb.2007.08.004
http://doi.org/10.1208/s12249-019-1508-7
http://doi.org/10.1002/jps.24480
http://doi.org/10.1515/bmt-2012-4106
http://doi.org/10.1016/j.ejpb.2018.02.034
http://doi.org/10.1001/jamaophthalmol.2014.3616
http://doi.org/10.1007/s00347-020-01244-w
http://doi.org/10.1002/mabi.202100066
http://doi.org/10.1002/jbm.a.36995
http://www.ncbi.nlm.nih.gov/pubmed/32419359
http://doi.org/10.1016/j.ijpharm.2016.03.016
http://doi.org/10.1111/ics.12504
http://www.ncbi.nlm.nih.gov/pubmed/30468516
http://doi.org/10.1016/j.bpj.2015.10.002
http://doi.org/10.1038/eye.2008.21
http://doi.org/10.1007/s11095-008-9745-6
http://www.ncbi.nlm.nih.gov/pubmed/18958405
http://doi.org/10.3109/09273948.2012.745883
http://doi.org/10.1016/j.preteyeres.2016.12.001
http://doi.org/10.1167/iovs.13-13120
http://doi.org/10.1016/j.ejps.2017.08.018

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Preparation of the Model Implants 
	Fabrication of the EyeFlowCell 
	Fabrication of the Vitreous Substitute 
	In Vitro Drug Release Studies Using Compendial Methods 
	In Vitro Drug Release Studies in the EyeFlowCell 
	Quantification 


	Results 
	Preparation of the Vitreous Substitute 
	Fabrication of the EyeFlowCell 
	Drug Loaded Model Implants 
	Dissolution Studies 

	Discussion 
	Conclusions 
	References

