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Abstract: Permafrost-affected soil stores a significant amount of organic carbon. Identifying the
biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial
soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected
soil. Fungi are important players in the decomposition of soil organic matter and often interact in
various mutualistic relationships during this process. We investigated four different soil horizon
types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types
of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal
communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned
fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified
the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher
relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala
in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1
and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes.
Co-occurrence network analysis revealed the lowest modularity and average path length, and highest
clustering coefficient in cryoOM, which suggested a lower network resistance to environmental
perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist
to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic
Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective
horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as
a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal
communities within cryoOM were more susceptible to environmental change and some taxa may
shift their role, which may lead to changes in carbon storage in permafrost-affected soil.

Keywords: arctic; permafrost; keystone taxa; co-occurrence network; Zi-Pi plot

1. Introduction

Fungi are ubiquitous and one of the most species-rich groups of organisms in the
Arctic soil ecosystem [1]. Our knowledge of their role in soil organic matter transformation
is continually increasing, still, there are many unanswered questions regarding the relation-
ship between different taxa with distinct lifestyles (i.e., saprotrophs, mycorrhizae) as they
are thought to be the key players of elemental and energy flow in carbon (C) and nitrogen
(N) cycles. They also influence the occurrence of other microbes, such as bacterial decom-
posers, pathogens, and symbiotrophs [2–4]. Despite the ubiquitous distribution of fungi in
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the soil, our knowledge of their biodiversity and functional traits in permafrost-affected soil
(PAS) remains limited to relatively few studies. Nevertheless, the number of fungal studies
from PAS is continually increasing, including studies from Svalbard [5,6], Alaska [7,8],
and Greenland [9,10]. However, only a few specific studies, from Eastern Siberia [11] and
the Northern American Arctic transect [12], have studied the fungal community from the
buried organic matter (cryoOM) pocket, which stores a significant amount (approx. 470 Pg
C) of organic C due to cryoturbation of the top organic layer.

Most ecological studies have focused on functional diversity, as opposed to bio-
diversity only, due to the fact that individual species can have several functions in an
ecosystem [13,14]. It is well-known that many fungal species play redundant roles by alter-
ing or manipulating the distribution of the same soil resource [15]. Several sequence-based
studies have parsed operational taxonomic units (OTUs) into more ecologically meaningful
groups [16–18]. These groups would have a similar function in the ecosystem and can
be divided into symbiotrophs, pathotrophs, and saprotrophs, collectively called trophic
modes [19]. These trophic modes of fungi play critical roles in the Arctic, for example,
symbiotrophs help plants to uptake nutrients, especially N, which is considered growth-
limiting in the Arctic tundra [20]. On the other hand, saprotrophic fungi are essential for
decomposing dead plant biomass and, therefore, crucial for nutrient and carbon cycling in
the Arctic soil [21–23]. Pathotrophic fungi are known to infect other fungi to gain organic
carbon and by doing so, they control other trophic modes [24]. There is still a lack of data
on the occurrence and potential interactions of these trophic guilds in Arctic PAS.

Microbes in the soil create a complex ecological network by interacting with each
other [25]. This interaction includes predation, competition, parasitism, and mutual-
ism [26–30]. To predict the composition of ecological microbial networks, it is especially
important to understand the microbial assembly, the potential interactions of keystone taxa,
and the resulting ecological function [29,31,32]. Despite the importance of these interac-
tions in ecological functions, the direct detection and investigation of these interactions are
difficult [25,33]. Several studies have demonstrated that the specific properties of ecological
species networks can, at least to some extent, explain the real response of the microbial
community to environmental changes [34–36]. For example, a study of experimental warm-
ing from Alaskan tundra soil evidenced that warming conditions had a more complex and
denser bacterial co-occurrence network compared to the control site, while the opposite
was observed for the fungal network [36]. The authors suggested that the environmental
changes were associated with a distinct response by microbial communities [36].

The specific properties (topological properties) of the co-occurrence networks include
(1) the degree distribution, which determines how many other taxa in the network are
connected with the given taxa; (2) the clustering coefficient, which describes how well
a taxon is connected to its neighboring taxa (analogy to human society, the clustering
coefficient is a measure of an “all-my-friends-know-each-other” property); (3) the average
path length, which is the shortest path between the two most distant taxa in the network
(a short average path length facilitates the quick transfer of information and reduces
costs leading to the concept of a small world where everyone is connected to everyone
else through a very short path); (4) modularity, which measures the degree to which the
network was organized into clearly delimited modules. Networks with high modularity
have dense connections between the taxa within modules but sparse connections between
taxa in different modules [37].

Another aspect of the ecological network is the identification of keystone species,
connectors and modular hubs [38,39]. The connectors are defined as those taxa or nodes
which have more connections among different modules, in contrast, module hubs are
those taxa or nodes which have more connections within their own modules [27]. These
keystone taxa play a key role in modulating network structure and function, as they often
have dominant relationships and interactions among other taxa [27]. The network analysis
may also provide information about the importance of low abundant taxa for supporting
the structure and functions of microbial communities. Most soil ecosystem studies have
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concentrated on the most abundant microbial species [11,40–42]. However, low abundance
taxa play a significant role in maintaining ecosystem functions, despite their low proportion.
Therefore, some of them are also considered as keystone taxa [31,43]. Herren and co-
authors [44] suggested that keystone taxa can explain microbiome compositional turnover
better than the most abundant taxa combined. The keystone species are most important
to protect since their absence might lead to network fragmentation [45]. For instance, the
disappearance of a keystone species from a network of bacterial wilt-susceptible soil made
it more loose and unstable compared to a network of healthy soil that had more keystone
species [46].

To understand the complexity of these interactions in fungal communities in Arctic
PAS, we addressed the following questions: (1) Does each horizon type (topsoil, cryoOM,
subsoil, and permafrost) contain exclusive/unique fungal genera and lifestyles? (2) Do
network topological properties significantly differ between different horizons and tundra
sites? (3) Which are the keystone species in different horizons and tundra sites? (4) Is there
any correlation between network modules, keystone species, and environmental factors?

To address these questions, we collected 122 soil samples from four different horizons
of four distinct tundra sites from Herschel Island, Canada. We used Illumina MiSeq
sequencing data of the fungal ribosomal internal transcribed spacer (ITS) to analyze the
change in the fungal community composition and intertaxa interaction. We implemented
sequencing data to infer fungal community composition, functional guild distribution,
and microbial ecological network analysis. Our central objective was to characterize and
understand the microbial ecological network pattern of sequencing data obtained from
Illumina MiSeq sequencing and specific emphasis was given to cryoOM.

2. Materials and Methods
2.1. The Site Description and Soil Sampling

The study area is located on Herschel Island (Qikiqtaruk; 69◦34′ N, 138◦55′ W, Beaufort
Sea, Canada). The mean annual air temperature is −9 ◦C with the mean monthly air
temperature varying between −26.3 ◦C (February) and 8.7 ◦C (July). The mean annual
precipitation ranges between 150 and 200 mm [47].

During late summer, a total of 122 samples were collected from four tundra sites and
three different types of soil horizons of the active layer. These horizons represented upper
topsoil, cryoOM, and mineral subsoil based on field description. We also collected samples
from the permafrost. The four sites had a landscape of hummocky tussock tundra (Site 1),
slightly disturbed upland tundra dominated by non-sorted circles (Site 2), wet polygonal
tundra (Site 3), and hummocky tussock tundra dominated by nonsorted circles (Site 4). The
main vegetation types were from Site 1, moss and cotton grass; Site 2, Arctic willow and
Dryas-Vetch; Site 3, Carex and bryophytes as primary vegetation types; and Site 4, Ledum
palustre and Betula nana. The different landscape types and the variability of soil properties
in the landscape are described in detail by Siewert et al. [48].

Soil samples were collected from four horizons of permafrost-affected soil which
included topsoil; cryoOM; subsoil; and permafrost. We collected samples according to
protocol described by Schoeneberger et al. [49] and we employed additional methods
to acquire soil samples from permafrost [50,51]. A detailed description of the sampling
location and sampling protocol was described in our previous study [52].

2.2. Measurement of Environmental Factors

We dried and reweighed soil samples at 60 ◦C for 48 h to determine the moisture
content. Soil pH was measured by pH meter 3151i (Xylem incorporation GmbH, Hessen,
Made in Germany) in soil suspension with a ratio of 1:2.5 (w/v). Total carbon (Ctot) and
nitrogen (Ntot) content were determined from 60 ◦C dried soil sample (8–10 mg) using
an Elementar Vario Micro cube (Elementar, Langenselbold, Germany) and expressed in
percentage. The carbon to nitrogen ratio (C/N ratio) was calculated by dividing Ctot with
Ntot. The dissolved organic carbon (DOC) and dissolved nitrogen (DN) were analyzed
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by mixing soil: water in a 1:5 ratio (w/v) and shaking on an orbital shaker (150 rpm) for
an hour and the filtered soil solution (10–15 mL) was used for LiquiTOCII (Elementar,
Germany) and expressed in ug g−1 dry weight of soil.

2.3. Extracellular Enzymes Activities

Hydrolytic enzymes involved in degradation of organic molecules like cellulose, chitin,
protein, and lignin were measured by microplate fluorometric assays according to Barta
et al. [53]. We used a half gram of sieved soil suspended in 50 mL of distilled deionized
nuclease-free water (ddH2O) and ultrasonicated at low energy (120 W) for 4 min. Potential
activities of β-glucosidase (BG), 1, 4-β-cellobiohydrolase (CBH), chitinase (NAG), and
leucine aminopeptidase (LAP) were measured fluorometrically using 4-methylumbelliferyl-
(MUF) and aminomethylcoumarin (AMC) as substrates (50–300 uM), respectively [54].
A 200 µL sample of the soil suspension and 50µL substrate (β-D-glucopyranoside, N-
cellobiopyranoside, phosphate, N-acetglucosaminide, and L-leucine-7-amido-4-methyl
coumarin, respectively) were pipetted into black microtiter plates in 3 analytical replicates.
For each sample, a standard curve with methyl umbelliferyl was used for the calibration of
ß-glucosidase, cellobiohydrolase, chitinase, whereas aminomethylcoumarin was used for
the calibration of leucine amino-peptidase. Plates were incubated in the dark for 30 min
and the first fluorescence was measured at 465 nm emission at an excitation of 360 nm
(Tecan Infinite F200 fluorimeter, Schoeller instruments, Prague-Kunratice, Czech Republic).
Fluorescence was measured again after 60 and 120 min. Enzyme activities were measured
nmol g−1 dry weight of soil h−1.

2.4. DNA Extraction and Quantitative Assessment of Fungal Community by qPCR

We extracted total genomic DNA from all collected soil samples (appx. 0.25 g) using a
DNeasy PowerSoilTM DNA Isolation Kit (Qiagen, Düsseldorf, Germany). Extracted DNA
was stored at −20 ◦C for further use. The 18S rDNA was used to amplify total fungal
abundance in the sample, each reaction was performed with 20 µL of reaction mixture
containing 3 µL of DNA from soil samples. The fungal ribosomal gene was amplified
using a nu-SSU-0817-5′/nu-SSU-1196-3′ primer set [55]. We used melt curve and gel
electrophoresis analysis to confirm the product specificity and amplicon size, respectively.
Standards were made from 10-fold dilution of a known amount of purified PCR product
obtained from Aspergillus niger. The qPCR assay was performed in two replicates for each
sample, along with standard and control (non-template ddH2Owater).

2.5. Barcoded Amplicon Sequencing

Aliquots of DNA extracts were sent to the SEQme Company (Dobříš, Czech Republic)
for the preparation of a library and sequencing using the MiSeq2500 platform. The Earth
Microbiome Project (EMP) protocol was used for library preparation with modified univer-
sal primers ITS1F/ITS2 [56]. The fungal ITS1 region was extracted from reads using the
ITSx algorithm [57]. Amplicons were trimmed to equal lengths (150bp) and fungal unique
reads were grouped to zero-radius OTUS (zOTUs) using a UNOISE 3.0 algorithm [58,59],
which also included the removal of potential chimeric sequences. The taxonomic assign-
ment of each fungal zOTUs was performed using the BLAST algorithm (E-value = 0.001)
in UNITE [60]. Raw sequencing data were deposited in the European Nucleotide Archive
(ENA) under the PRJEB44296 study.

Species richness (Chao1), diversity (Shannon), and evenness (Simpson) were calcu-
lated using the “microbiome” package [61] in R 3.5.3 [62]. To determine if the specific
functional groups of fungi differed between different horizons and tundra sites, we clas-
sified each zOTU into trophic modes and lifestyles using the fungal functional database
FungalTraits [63].
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2.6. Network Construction

To better understand the fungal communities’ interaction across different horizons and
tundra sites, we constructed the fungal ecological network by calculating all possible Spear-
man correlation coefficients between zOTUs. To increase the robustness of the ecological
network, we used only those zOTUs that were present in more than 30% of the sample (each
horizon and tundra sites), and relative proportions of less than 0.1% were also excluded
from the analysis. Spearman’s Rho between the pairwise zOTUs matrices were constructed
using the “Hmisc” package [64] in R. The false discovery rate (FDR) controlling procedure
was used to calculate the p-values for multiple testing [65]. A valid co-occurrence was
considered to be robust if the absolute value of the Spearman correlation coefficient was
either equal or greater than 0.6 or −0.6 and statistically significant if p-values < 0.01. The
cut-off correlation of 0.6 or −0.6 was chosen to increase the confidence for strong fungal in-
teractions. Network images were generated in R with the help of the “igraph” package [66].
In the network, nodes represented zOTUs, whereas edges represented the correlation
between nodes. We used the undirected network (where the edge has no direction) and
the Fruchterman–Reingold layout. The topology properties of the co-occurrence networks,
positive edge, negative edge, total node, average path length (APL), degree distribution
(DD), average closeness (AC), average betweenness (AB), edge density (ED), diameter (D),
clustering coefficient (CC), number of modules, and modularity (M) were calculated using
the “igraph” package [66] in R. We also constructed a random network with the same node
and edges from a real biological network to determine whether our biological networks
were not random networks and represented the actual fungal interactions in soil. We used
the “erdos. renyi. game” function from the igraph package to generate a thousand random
networks and calculated APL, CC, and M.

Different nodes in the network play different topological roles. These topological
roles can be described by two parameters. First is the within-module connectivity (Zi)
which describes how well a node is connected with other nodes within its own module.
The second parameter is connectivity between modules (Pi) which suggests how well a
node is connected to different modules. The threshold values of Zi and Pi for categorizing
nodes into different topological roles are 2.5 and 0.62, respectively, according to previous
studies [67–70]. In general, the topological role of each node subdivides into four cate-
gories according to pollination networks [70]. These categories are: (1) peripheral nodes
(specialist), which have low Zi (<2.5) and Pi values (<0.62) (i.e., they have only a few edges
that are always connected to the node within their modules); (2) connectors (generalist),
which have a low Zi (<2.5) but a high Pi value (>0.62) (i.e., these nodes tend to have more
connections with several modules); (3) module hubs (generalist), which have a high Zi
(>2.5) but a low Pi value (<0.62) (i.e., these are the nodes which have more connections with
other nodes but within their own modules); (4) network hubs (supergeneralist), which have
both high Zi (>2.5) and Pi (>0.62) values (i.e., they are connector and module hubs). The
generalists (connectors, module hubs) and supergeneralist (network hubs) are considered
the key microorganisms (keystone), which maintain network stability and play pivotal
roles [71].

2.7. Statistical Analyses

The difference in environmental factors, fungi gene copies, and α-diversity indices
were assessed using one-way ANOVA and followed by Tukey’s HSD post hoc test. A
significant difference was considered at p < 0.05 unless indicated otherwise. However,
we provide precise p-values wherever possible. We performed Spearman correlation of
the log-transformed environmental factors with network modules (top five) and keystone
taxa (identified from the Zi-Pi plot) using the “Hmisc” package [64] in R. A permutational
analysis of variance (PERMANOVA) test was used to evaluate the linkage between fungal
community composition and environmental factors using the Bray−Curtis dissimilarity
matrix. The PERMANOVA test was performed by the “adonis” function in the R package
“vegan” [72]. The best environmental factors explaining the fungal community composition
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were determined by the forward selection method. STAMP software was used to identify
the difference in the mean proportion of genera and lifestyle between different horizons
and tundra sites [73].

3. Results
3.1. Environmental Variables

In general, the soil samples from the topsoil had significantly greater moisture, DOC,
Ctot, Ntot, and C/N ratio and followed the order topsoil > cryoOM > subsoil > permafrost.
In contrast, the DN was significantly lower in the topsoil compared to other horizons. The
soil samples from cryoOM had significantly greater moisture, Ctot, and Ntot compared
to those from the surrounding mineral subsoil. In comparison to other horizons, the
permafrost samples had the highest values for pH and DN (Table 1). The enzymatic activity
of BG and LAP was significantly greater in the topsoil and decreased in the order of topsoil
> cryoOM > subsoil > permafrost. The CBH and NAG activities were similar between
topsoil and cryoOM, and both horizons had significantly greater activities of these enzymes
than subsoil and permafrost (Table 1).

The individual horizon also had significant differences between each tundra site, the
topsoil from Site 2 had significantly lower moisture, but significantly higher pH, BG, CBH,
and LAP (Table S1). For cryoOM, the only significant difference between different tundra
sites was found for pH and C/N ratio, Site 2 significantly had the highest pH value whereas
Site 4 had, significantly, the highest C/N ratio. The lower mineral subsoil had a significant
difference between the tundra sites for pH, DN, C/N ratio, CBH, and NAG.

3.2. Fungal Gene Abundance, Community Composition, and Diversity Differed between Horizons
and Sites

Fungal 18S rRNA gene abundance was determined by quantitative PCR (qPCR), in
total 104 samples were successfully amplified from 122 soil samples (Figure 1a,b). Average
fungal SSU gene copies per gram of dry soil per individual soil horizon decreased in
order: topsoil (5.7 ± 11.5 × 109) > subsoil (2.2 ± 8.3 × 108) > cryoOM (1.9 ± 9.2 × 108)
> permafrost (1.7 ± 2.0 × 106), whereas Site 1 had a significantly higher fungal gene
abundance (9.1 ± 8.2 × 109) compared to the other sites.

The complete data set of fungal composition contained 858,309 filtered sequences, in
which 3199 zero radius OTU (zOTUs) were affiliated to 11 fungal phyla (Table S2). Those
phyla which had at least 1% of relative proportion were: Ascomycota, Basidiomycota,
Mortierellomycota, and Rozellomycota.

In total, we identified 366 genera, 24 of which had more than 1% relative proportion
(Figure 1c,d, Table S2). The most dominant genera belonged to the phyla Ascomycota,
Basidiomycota, and Mortierellomycota. The root-associated genus Lachnum and endophytic
fungus genus Phialocephala had a significantly greater mean proportion in topsoil, whereas
the ectomycorrhizal genus Russula had a greater mean proportion in cryoOM compared to
all other horizons (Welch’s t-test, two-sided, p < 0.05, Figure S1). Individual tundra sites
also deferred significantly at genera levels (Figure 1d). For example, the genus that had
the greatest mean proportion included ectomycorrhizal genus Amphinema from Site 1, soil
saprotrophic genus Oidiodendron from Site 2, unspecified saprotrophic genus Rhodotorula
from Site 3, and root endophytic genus Meliniomyces from Site 4 (Welch’s t-test, two-sided,
p < 0.05, Figure S1).
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Table 1. Soil environmental factors in each horizon. Averages and standard deviation were shown. The significant difference between different horizons within all tundra sites were
calculated using One-Way ANOVA and followed by a Tukey’s HSD test. Different letters in the brackets indicated a significant difference between tundra sites.

Site Horizon N Moisture
(%) pH DOC

(ug/g dw)
DN

(ug/g dw) Ctot (%) Ntot (%) C/N ratio
BG

(nmol MUF
g−1 dw h−1)

CBH
(nmol MUF
g−1 dw h−1)

LAP
(nmol MUF
g−1 dw h−1)

NAG
(nmol MUF
g−1 dw h−1)

Site 1

Topsoil 9 76.6 ± 3.45
(a) 6 ± 0.22 (a) 751.08 ±

308.98 (a)
2.56 ± 0.9

(b)
40.06 ± 3.43

(a)
1.15 ± 0.22

(a)
44.76 ± 14.8

(a)
1624.9 ± 294.78

(a)
239.86 ± 76.91

(a)
186.85 ± 79.3

(a)
400.23 ± 83.42

(a)

CryoOM 7 50.89 ± 6.91
(b)

6.35 ± 0.19
(a)

382.47 ± 84.75
(a)

8.3 ± 3.38
(ab)

11.87 ± 3.95
(b)

0.77 ± 0.24
(ab)

15.11 ± 0.57
(b) 441.33 ± 375 (b) 101.23 ±

107.23 (a)
74.09 ± 66.4

(a)
144.61 ± 40.54

(b)

Subsoil 5 30.44 ± 3.31
(c)

5.81 ± 0.05
(a)

205.97 ± 63.69
(a)

9.92 ± 1.22
(a)

4.63 ± 1.11
(b)

0.33 ± 0.07
(b)

13.48 ± 0.64
(b) 75.32 ± 26.19 (b) 13.47 ± 3.88

(a)
15.39 ± 3.48

(a)
76.08 ± 22.59

(b)

Permafrost 2 55.2 ± 5.89
(ab)

5.93 ± 0.18
(a)

695.72 ± 187.2
(a)

7.68 ± 1.56
(ab)

8.2 ± 0.33
(b)

0.56 ± 0.03
(ab)

14.78 ± 0.25
(b) 115.51 ± 7.6 (b) 13.16 ± 3.89

(a)
10.67 ± 4.41

(a)
73.9 ± 10.39

(b)

Site 2

Topsoil 8 54.51 ± 4.08
(a)

7.49 ± 0.29
(b)

466.72 ±
142.64 (a)

3.19 ± 1.46
(b)

29.57 ± 4.66
(a)

1.27 ± 0.13
(a)

22.93 ± 2.25
(b)

1595.35 ± 381.81
(a)

268.63 ± 72.32
(a)

704.2 ± 140.03
(a)

389.05 ± 174.6
(a)

CryoOM 2 54.26 ± 2.53
(a)

8.05 ± 0.11
(ab)

250.78 ± 11.86
(a)

2.64 ± 0.48
(b)

16.13 ± 1.29
(b)

1.03 ± 0.03
(a)

15.6 ± 0.75
(b) 263.6 ± 96.89 (b) 36.63 ± 18.79

(b)
128.23 ± 24.4

(b)
109.24 ± 2.79

(ab)

Subsoil 7 23.86 ± 3.87
(b)

8.12 ± 0.23
(ab)

326.18 ± 65.47
(a)

19.58 ± 6.76
(ab)

4.15 ± 0.71
(c)

0.22 ± 0.06
(b)

21.22 ± 2.2
(b) 21.58 ± 17.59 (b) 1.56 ± 1.33 (b) 77.66 ± 45.09

(b) 6.66 ± 5.14 (b)

Permafrost 9 29.04 ± 4.5
(b)

8.24 ± 0.3
(a)

374.77 ±
134.22 (a)

31.19 ±
11.31 (a) 3 ± 0.13 (c) 0.1 ± 0.01

(b)
29.52 ± 1.76

(a) 1.02 ± 0.47 (b) 0.15 ± 0.12 (b) 25.35 ± 4.21
(b) 0.58 ± 0.37 (b)

Site 3

Topsoil 21 78.32 ± 4.17
(a)

5.94 ± 0.38
(a)

5104.09 ±
2839.27 (a)

14.5 ± 7.45
(a)

30.2 ± 4.74
(a)

1.74 ± 0.25
(a)

17.93 ± 3.19
(a)

690.13 ± 399.39
(a)

90.1 ± 75.82
(a)

94.67 ± 73.1
(a)

241.01 ±
116.29 (a)

CryoOM 5 54.11 ± 9.86
(b)

6.11 ± 0.39
(a)

1066.41 ±
719.77 (a)

22.09 ± 9.95
(a)

14.57 ± 3.26
(b)

1.06 ± 0.2
(b)

13.72 ± 1.6
(a)

175.59 ± 108.25
(a)

20.53 ± 13.51
(a)

16.18 ± 4.58
(a)

119.29 ± 31.8
(a)

Permafrost 1 60.4 5.61 451.92 6.87 14.64 1.22 11.97 206.35 25 12.02 46

Site 4

Topsoil 12 75.57 ± 6.73
(a)

5.35 ± 0.42
(b)

2023.25 ±
628.9 (a)

6.86 ± 3.88
(c)

37.97 ± 6.07
(a) 1 ± 0.26 (a) 44.73 ±

12.06 (a)
1336.83 ± 371.99

(a)
204.45 ± 77.38

(a)
59.27 ± 40.06

(a)
271.86 ±
110.15 (a)

CryoOM 16 59.85 ± 9.11
(a)

5.93 ± 0.23
(b)

1588.26 ±
1028.78 (a)

13.9 ± 4.18
(bc)

17.44 ± 3.81
(b)

0.87 ± 0.12
(a)

19.68 ± 2.59
(b)

473.34 ± 422.09
(b)

110.9 ± 134.8
(a)

53.8 ± 25.98
(a)

316.64 ±
104.08 (a)

Subsoil 10 29.9 ± 6.03
(b)

5.91 ± 0.37
(b)

442.22 ±
138.73 (a)

38.54 ±
10.32 (b)

4.23 ± 0.98
(c)

0.22 ± 0.04
(b)

18.65 ± 2.12
(b) 99.28 ± 55.15 (b) 11.69 ± 4.79

(a)
35.73 ± 9.39

(a) 37.7 ± 23.6 (b)

Permafrost 8 38.1 ± 11.77
(b)

7.32 ± 0.56
(a)

671.93 ±
477.72 (a)

100.06 ±
24.95 (a)

3.17 ± 0.64
(c)

0.21 ± 0.04
(b)

15.22 ± 0.88
(b) 60.28 ± 52.38 (b) 7.04 ± 7.78 (a) 27.92 ± 9.69

(a)
36.17 ± 33.42

(b)
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zOTUs that were classified into genera to trophic modes (i.e., pathotrophs, saprotrophs, 
and symbiotrophs) (Figure 1e,f, and Table S2). In total, we were able to assign 56.6% of 
zOTUs to trophic modes. Of these, roughly one-third of the assigned zOTUs, 
pathotrophic, saprotrophic, and symbiotrophic fungi accounted for approximately 8.4%, 
29.7%, and 18.4%, respectively, on average. The pathotrophs were mainly dominated by 
the plant pathogens and their proportion was significantly lower in topsoil (Welch’s t-test, 
two-sided, p < 0.05, Figure S2). The root endophytes had a greater mean proportion in 
topsoil compared to other horizons, however, this difference was nonsignificant. We 
found a significantly greater mean proportion of ectomycorrhizal and wood saprotrophs 
in cryoOM compared to topsoil (data not shown). We did not find any significant differ-
ence in fungal trophic modes between cryoOM and subsoil. The relative proportion of 
plant-pathogen and litter saprotrophs decreased from Site 1 to Site 4, whereas the relative 
proportion of soil saprotrophs increased from Site 1 to Site 3 (Figure 1f). We found a sig-
nificantly greater mean proportion of litter saprotrophs, plant pathogen, and lichenized 

Figure 1. Fungi gene abundance and community composition. Log-transformed fungal gene copies per gram dry weight
of soil are shown for (a) horizon and (b) tundra site. Based on Tukey’s HSD post hoc tests, gene abundance that differed
between horizons and tundra sites was represented by different letters. The lavender point inside the bar plot suggested
a mean value. The relative fungal taxonomic composition at genus level and fungal lifestyle for (c,e) horizon and (d,f)
tundra sites were shown, respectively. Only those genera which had >1% relative proportion and filled to 100% were shown,
whereas all fungal lifestyles were depicted.

Using the fungal functional database FungalTraits, we were able to assign those
zOTUs that were classified into genera to trophic modes (i.e., pathotrophs, saprotrophs,
and symbiotrophs) (Figure 1e,f, and Table S2). In total, we were able to assign 56.6% of
zOTUs to trophic modes. Of these, roughly one-third of the assigned zOTUs, pathotrophic,
saprotrophic, and symbiotrophic fungi accounted for approximately 8.4%, 29.7%, and
18.4%, respectively, on average. The pathotrophs were mainly dominated by the plant
pathogens and their proportion was significantly lower in topsoil (Welch’s t-test, two-
sided, p < 0.05, Figure S2). The root endophytes had a greater mean proportion in topsoil
compared to other horizons, however, this difference was nonsignificant. We found a
significantly greater mean proportion of ectomycorrhizal and wood saprotrophs in cryoOM
compared to topsoil (data not shown). We did not find any significant difference in fungal
trophic modes between cryoOM and subsoil. The relative proportion of plant-pathogen
and litter saprotrophs decreased from Site 1 to Site 4, whereas the relative proportion of
soil saprotrophs increased from Site 1 to Site 3 (Figure 1f). We found a significantly greater
mean proportion of litter saprotrophs, plant pathogen, and lichenized trophic modes in
Site 1 compared to all other sites (Welch’s t-test, two-sided, p < 0.05, Figure S2). On the
other hand, Site 2 and Site 3 had a significantly greater mean proportion of plant-pathogen
and lichenized and soil saprotrophs, respectively.

The alpha diversity index suggested that fungal communities from topsoil were more
rich (nonsignificant chao1 index) but significantly less evenly (Simpson evenness index)
distributed compared to other horizons and the opposite was true for cryoOM (Table S3).
Tundra sites also significantly differed for alpha diversity indices, Site 1 had significantly
higher richness and diversity whereas Site 4 had the lowest.

We performed a permutational multivariate analysis of variance (PERMANOVA)
to determine the effect of different horizon and tundra sites, both had a significant ef-
fect on fungal community composition (Figure 2). We found a stronger site (F-Model
= 6.9, R2 = 0.15, p-value = 0.001) effect on fungal beta diversity than the horizon effect
(F-Model = 1.9, R2 = 0.05, p-value < 1 × 10−4). Topsoil samples were clustered close to
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each other from Site 1 and Site 2, whereas two dispersed clusters were found for topsoil
from Site 3. Samples from Site 4 were separated from other sites’ samples. The RDA-based
forward selection was used to identify the most important environmental factors affecting
the fungal communities, we found pH and DN as the main contributors.
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Figure 2. The phylogenetic dissimilarity between soil horizons and tundra types. (a) NMDS of fungal communities of
different horizons from distinct tundra types; (b) RDA biplot of fungal diversity and environmental factors. Significant
effect of soil parameters (black arrow in figure) on fungal communities were identified by forward selection. The proportion
of variability explained by significant soil parameters are given in the lower right corner.

3.3. Key Topological Properties of Co-Occurrence Network

To identify the interaction of fungal taxa, we constructed a co-occurrence network
from each horizon and tundra site (Figure 3). The respective global topological properties
of the co-occurrence network with the corresponding random network are given in Table 2.
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rence network were relatively smaller, except for Site 1 which had bigger modules. The 
biggest modules from individual tundra sites (S1-1, S3-1, and S4-2) had a greater relative 
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Figure 3. Co-occurrence network interaction of fungal zOTUs found in each horizon and tundra site. A connection stands
for a strong Spearman’s correlation (r≥ 0.6 and p-value≤ 0.01). Each circle or node represented a fungal zOTU and the sizes
of the circles were proportional to the values of node square-root degree. Lines connecting two fungal zOTU represented the
interactions between them, yellow and blue lines represented the positive and negative significant correlations, respectively.
Nodes were colored according to the top five modules. The relative proportion of fungal lifestyle from the top five modules
of each horizon and tundra site are shown.
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The number of nodes (zOTUs) that were significantly correlated was the highest in
the topsoil samples (476), however, the number of significant correlations between zOTUs
was greatest in the subsoil samples (3426). The number of total zOTUs after the abundance
filtration was highest from Site 1 and lowest from Site 4. The higher number of zOTUs
from Site 1 also accounted for a more connected co-occurrence network. We found Site 2
had a greater number of zOTUs compared to Site 4 but a considerably smaller number of
significant correlations between zOTUs.

Co-occurrence network complexity is generally measured by DD and CC indexes.
We found considerably different DD and CC indexes from the individual horizons. The
higher the DD value, the more complex the network. Hence, the DD value suggested
that the ecological network became more complex from the topsoil to the subsoil. The CC
was highest in the cryoOM network compared to other horizons which suggested that the
node’s neighbors were also connected in the cryoOM network. The DD values implied that
the co-occurrence network from Site 1 was more complex, whereas the CC value indicated
that the Site 4 network was more connected.

All generated networks were modular, as suggested by their modularity values which
were higher than the suggested threshold value of 0.4 for modular structure [37] and higher
than the corresponding random network (Table 2). A total of 31, 21, and 12 modules were
obtained for topsoil, cryoOM, and subsoil, respectively, and 21, 40, 27, and 18 modules
for Site 1, Site 2, Site 3, and Site 4, respectively. The relative proportion of the top five
modules for each horizon and tundra site network at the trophic mode’s level is given in
Figure 3. The top two modules (T1 and T2) from topsoil had a higher relative proportion of
ectomycorrhizal, whereas C3 and C1 modules from the cryoOM co-occurrence network
had a great relative proportion of litter saprotrophs and root endophytes, and dung and
soil saprotrophs, respectively. The biggest module (97 nodes) in all horizons, S3, had a
high relative proportion of soil saprotrophs, ectomycorrhizal, and root endophytes. In
comparison to the horizons, the modules from the tundra site co-occurrence network
were relatively smaller, except for Site 1 which had bigger modules. The biggest modules
from individual tundra sites (S1-1, S3-1, and S4-2) had a greater relative proportion of
ectomycorrhizal. Overall, the network structure was dramatically different between each
horizon and tundra site, and also the shared nodes between them.

The shared nodes (zOTUs, identified from the co-occurrence network only) between
horizons were lower compared to the unique nodes for the individual horizon networks
(Figure S3). Whereas there were only four nodes shared between the individual tundra
sites, Site 1 had the highest number of unique nodes (311).

We observed significant correlations between the network modules (top five only)
and environmental variables (Figure 4). In topsoil modules, modules T1 and T12 which
had a high relative proportion of ectomycorrhizal and litter saprotrophs, respectively, had
a strong positive correlation with moisture and a significant negative correlation with
NAG. Other than moisture, dissolved nutrients (DOC and DN) had a positive correlation
and C enzyme (BG and CBH) activity had a negative correlation with topsoil module
T1, whereas modules C1 and C2 from cryoOM had a strong positive correlation with
pH. Ectomycorrhizal, which had a high relative proportion in module C4, was positively
affected by NAG and negatively affected by BG and CBH. In the subsoil, soil saprotrophs,
ectomycorrhizal, and root endophytes had a great relative proportion in module S3, and
a significant positive correlation with pH and negative with DOC. The total number of
significant correlations was highest in permafrost. A strong significant positive correlation
was found between ericoid mycorrhizal comprised module P4 and both moisture and C/N
ratio, whereas a negative correlation was observed with Ntot, BG, CBH, and NAG.
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Table 2. Major topological properties of the empirical networks of soil fungal communities in different horizons and tundra sites, and their associated random network.

Horizon Topsoil CryoOM Subsoil Permafrost Site 1 Site 2 Site 3 Site 4

Empirical network

Total zOTUs a 558 413 479 479 688 458 324 212

Abundance (%) b 61.13 68.22 63.22 71.06 75.97 67.33 65 71.36

Total significant correlations 3054 2454 3426 1110 6886 666 1152 814

Total node 476 340 437 281 643 267 246 130

Total edge 1527 1227 1713 555 3443 333 576 407

Positive edge 1527 1216 1699 553 3277 331 568 407

Negative edge 0 11 14 2 166 2 8 0

Average path length (APL) 7.12 5.3 5.42 7.61 5.72 7.2 5.4 5.23

Degree distribution (DD) 6.42 ± 7.88 7.22 ± 7.05 7.84 ± 6.05 3.95 ± 3.3 10.71 ± 9.83 2.49 ± 1.89 4.68 ± 4.66 6.26 ± 7.64

Average closeness (AC) −4.42 ± 0.28 −4.16 ± 0.28 −3.82 ± 0.21 −4.5 ± 0.24 −4.33 ± 0.25 −4.67 ± 0.16 −4.23 ± 0.27 −3.82 ± 0.23

Average betweenness (AB) 1225.6 ± 2195.08 606.04 ± 1405.7 923.8 ± 1432.28 494.75 ± 1148.79 1404.42 ± 1920.9 246.18 ± 597.43 353.79 ± 728.76 153.46 ± 332.88

Edge density (ED) 0.0135 0.0213 0.018 0.0141 0.0167 0.0094 0.0191 0.0485

Diameter (D) 20 16 15 20 17 19 17 17

Clustering coefficient (CC) 0.24 0.34 0.23 0.26 0.18 0.13 0.23 0.3

Number of modules 31 21 12 34 21 40 27 18

Modularity (M) 0.72 0.68 0.73 0.82 0.69 0.85 0.65 0.38

Random network c

Average path length (APL) 3.52 ± 0.008 3.16 ± 0.007 3.18 ± 0.005 4.2 ± 0.042 2.44 ± 0.001 3.64 ± 0.022 2.7 ± 0.005 2.17 ± 0.005

Clustering coefficient (CC) 0.01 ± 0.002 0.02 ± 0.003 0.02 ± 0.002 0.01 ± 0.004 0.03 ± 0.001 0.02 ± 0.004 0.04 ± 0.003 0.1 ± 0.005

Modularity (M) 0.32 ± 0.01 0.3 ± 0.011 0.28 ± 0.01 0.44 ± 0.016 0.15 ± 0.004 0.38 ± 0.014 0.26 ± 0.011 0.21 ± 0.012
a total zOTUs left after filtration; b total abundance of filtrated zOTUs; c same number of nodes and edges from empirical networks were used to calculated random network.
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We found only three significant correlations between the network’s module and
environmental factors from Site 1. These correlations included modules S1-5 and S1-7,
which had a great relative proportion of unspecified saprotrophs and litter saprotrophs,
negatively correlated with pH and positively correlated with Ctot and CBH, respectively.
Modules S2-1 and S2-2 from Site 2 had a significantly negative correlation with Ctot, Ntot,
BG, CBH, LAP, and NAG and a significantly positive correlation with pH and DN. We
found a significant positive correlation between ectomycorrhizal comprised module S3-1
and pH and C/N ratio. Module S4-2, S4-3, S4-5, and S4-4 from Site 4 had a significant
negative correlation with C/N ratio, BG, and CBH and the same environmental factor
had a positive correlation with module S4-1 which had a great relative proportion of root
endophytes.
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Figure 4. Spearman rank correlation coefficients of soil environmental factors and network modules (top five) for individual
horizons and tundra sites. The reds represented a positive correlation and the blue represented a negative correlation. The
heatmap cells marked by “*” or “**” were statistically significant: * p-value < 0.05 and ** p-value < 0.01.

3.4. The Topological Roles of Nodes and Generalist-Specialist Shift

The topological roles of the nodes in networks were identified from the Zi-Pi plot
(Figure 5), by plotting the within-module connectivity (Zi) and among-module connectivity
(Pi) proposed by [74] and simplified by [70]. All nodes fell into four categories (peripherals,
module hubs, network hubs, and connectors). We found that most nodes (97.2%, 98.2%,
98.1%, 100% for topsoil, cryoOM, subsoil, and permafrost, respectively) were peripherals
that had a connection to other nodes but only in their own modules. Among them, 77.3%
(topsoil), 76.1% (cryoOM), 65.4% (subsoil), and 57.3% (permafrost) of the peripherals had
no edge outside of their own module (i.e., Pi = 0). In total, we found 11 nodes as connectors
and 17 nodes as module hubs. A total of 4, 1, and 6 connectors and 9, 5, and 2 module
hubs were found for topsoil, cryoOM, and subsoil networks, respectively. We did not find
supergeneralists in any of the horizon’ networks. Detailed taxonomic information for the
topological role is given in Table S4.
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Similar to the horizon’s Zi-Pi plot, the Zi-Pi plot from the tundra site identified most
of the nodes as a peripheral and a great number of those nodes (57.5%, 92.5%, 75.2%,
and 68.4% for Site 1, Site 2, Site 3, and Site 4, respectively) did not have an edge outside
their own module (Figure 5). Site 1 had the highest, and Site 3 had the lowest number of
generalists (module hubs and connectors). In total, we found 10 connectors and 9 module
hubs from Site 1.

It is also worth mentioning that some nodes were identified as generalists in one hori-
zon but played the role of specialist (peripheral) in other horizons (Table 3 and Table S5).
For instance, in topsoil, generalists included zOTU6200 (unidentified Chaetothyriales),
zOTU4687 (unidentified Herpotrichiellaceae), and zOTU6829 (unidentified Herpotrichiel-
laceae), however, these zOTUs were found as specialists in other horizons. Similarly,
generalists from cryoOM included zOTU952 (Mortierella antarctica), zOTU3565 (Penicillium
oregonense), and zOTU4853 (unidentified Tetracladium), but these were observed as spe-
cialists in other horizons. Subsoil generalists included zOTU1148 (Penicillium odoratum)
and zOTU2775 (unidentified Fungi), while these zOTUs were identified as specialists in
other horizons. Similar to the horizon, we also found some zOTUs that identified as a
generalist for one site but specialist for other sites, for instance, zOTU1843 (Cadophora
finlandica) was identified as a generalist from Site 1 (module hubs) but specialist from all
other sites (Table 4 and Table S5).

Table 3. Topological role shift between different horizons. Module hubs and connectors were considered as generalists
whereas peripheral as specialists.

zOTUs ID Genera Species Lifestyle Topsoil CryoOM Subsoil Permafrost

Zotu6272 Cladophialophora unidentified Soil_Saprotroph Module hubs Peripheral Peripheral -
Zotu7 Cortinarius Cortinarius flexipes Ectomycorrhizal Module hubs - - Peripheral

Zotu952 Mortierella Mortierella antarctica Soil_Saprotroph Peripheral Module hubs Peripheral Peripheral

Zotu1060 Mortierella unidentified Soil_Saprotroph Peripheral Peripheral Module
hubs -

Zotu19 Neobulgaria unidentified Wood_Saprotroph Module hubs - Peripheral Peripheral
Zotu229 Oidiodendron unidentified Soil_Saprotroph - Peripheral Connectors Peripheral

Zotu972 Penicillium Penicillium
bialowiezense unspecified_Saprotroph Peripheral - Connectors Peripheral

Zotu1148 Penicillium Penicillium odoratum unspecified_Saprotroph Peripheral Peripheral Connectors Peripheral
Zotu3565 Penicillium Penicillium oregonense unspecified_Saprotroph Peripheral Module hubs Peripheral Peripheral
Zotu7940 Russula Russula emetica Ectomycorrhizal Module hubs - Peripheral -
Zotu4713 Sympodiella Sympodiella acicola Litter_Saprotroph - - Connectors Peripheral
Zotu389 Tetracladium unidentified Litter_Saprotroph Module hubs - - Peripheral
Zotu4853 Tetracladium unidentified Litter_Saprotroph Peripheral Module hubs Peripheral Peripheral
Zotu5812 Tylospora Tylospora fibrillosa Ectomycorrhizal - Module hubs Peripheral -
Zotu3079 Vishniacozyma Vishniacozyma_victoriae Soil_Saprotroph Connectors - - Peripheral

Table 4. Topological role shift between different tundra sites. Module hubs and connectors were considered as generalists
whereas peripheral as specialists.

zOTUs ID Genera Species Lifestyle Site 1 Site 2 Site 3 Site 4

Zotu1843 Cadophora Cadophora finlandica Litter_Saprotroph Module hubs Peripheral Peripheral Peripheral
Zotu6578 Cenococcum Cenococcum geophilum Ectomycorrhizal Module hubs Peripheral - -
Zotu3982 Luellia unidentified Wood_Saprotroph Module hubs Peripheral Peripheral -
Zotu5146 Meliniomyces unidentified Root_Endophyte Connectors Peripheral Peripheral -
Zotu6819 Verrucaria Verrucaria calciseda Lichenized Connectors Peripheral - -

The fungal zOTU role shift may be attributed to different environmental factors. We
found distinct correlation patterns between generalists and specialists with environmental
factors from different horizons (Table S6) and tundra sites (Table S7). The distinct cor-
relations, which to a certain extent indicated that the dominant factors shaping fungal
networks were specific to each horizon and tundra site, and potentially change or shift the
role of generalist−specialist (topological role shift).
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In general, the fungal ecological networks in the topsoil, subsoil, and Site 1 contained
more keystone taxa (generalists) than those in other horizons (cryoOM and permafrost)
and sites (Site 2, Site 3, and Site 4), which may lead to a more effective organization of taxa
connections in the network as they are regulated by more connectors and module hubs.

4. Discussion

Several studies have reported that high fungal diversity has a positive effect on ecosys-
tem functioning, and a loss of fungal diversity can alter the ecosystem functioning, with
changes such as lower enzyme activities and litter decomposition rates [75,76]. Addi-
tionally, soil fungi have specific substrate preferences and acquisition strategies. Hence,
each of the soil fungi comprises different lifestyles and functions [77], and ultimately they
form complex interactions with each other (i.e., competition, mutualism, predation, para-
sitism). These complex interactions determine the overall fungal community structures
and stability [27,70,78]. In this study, we constructed a fungal co-occurrence network of
different horizons and tundra sites based on high-throughput sequencing data of the fungal
ITS region. Previous studies have reported differences between the fungal community
structure of organic and mineral soils, for instance, a study from the high Arctic found a
more diverse fungal community from the organic horizon than the mineral subsoil [8,79].
Only one previous study has focused on the fungal community composition from cryoOM
soil [11]. Studies on the co-occurrence of microbial networks, on the other hand, provide
essential information regarding the interaction between species in complex soil ecosystems.
In this study, we constructed an ecological network of fine-scale taxonomy and identified
important fungal interactions in the PAS.

4.1. Horizon and Tundra Specific Fungal Lifestyle

Differences in the soil fungal community across distinct horizons and tundra vege-
tation were apparent at the genera and lifestyle level, which suggest significant changes
occur in the entire fungal community with depth and supports the theory that at least some
degree of ecological coherence exists among different fungal lifestyles [80].

Our study showed that symbiotrophs are the most abundant functional lifestyle in PAS
which is in agreement with studies from other ecosystems [22,81,82]. We also found that
root endophytes had a greater relative proportion in topsoil compared to other horizons,
however, not significant (Figure 1 and Figure S4). Root endophytes are plant-associated
fungi that reside within plant tissues or grow inside roots, stems, or leaves, and they
have been previously studied and isolated from Arctic vascular plants [83–85]. They have
been shown to play an important role in the nutrient cycle of the other natural ecosystem,
including the decomposition of Norway spruce needles [86,87]. Some species of endophytes
exhibit functions morphologically and phylogenetically similar to saprotrophs and produce
leaf degrading enzymes [88]. We, for instance, found the dark septate endophytic genus
Phialocephala to have a significantly greater mean proportion in topsoil compared to other
horizons (Figure 1 and Figure S2). Members of this genus utilize proteins as a sole nitrogen
source [89], mineralize organic nitrogen in the rhizosphere [90], and potentially decompose
SOM [91]. On the other hand, their relatively significant presence in the deeper layers of
the PAS shows that endophytic fungi are not strictly tied to life inside plant tissues, but
instead can migrate over relatively long distances in the soil, where they can participate in
the decomposition of complex organic matter.

Recent studies show that other symbiotrophs such as mycorrhizal fungi can be viable
competitors for saprotrophic fungi [92,93], but only under certain conditions. Due to
their symbiotic plant friends, they gain a greater competitive advantage under C-limiting
conditions in which the plant “pumps” its own C to them, which is used in part by the
mycorrhizal fungus for the synthesis of extracellular enzymes [94,95]. These will help it
“win” over the saprotrophic fungus. In this fight, mycorrhizal fungi have a competitive
advantage where roots are present, but in deeper soil where roots are absent and mostly
recalcitrant SOM dominates, it can be inhabited by litter saprotrophs. This seemingly minor
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battle can have a major impact on soil organic matter transformation in PAS. In our study,
however, we found a significantly greater proportion of mycorrhizas in deeper soil of PAS
in comparison to upper topsoil (Figure 1 and Figure S2). This can be explained either by
the fact that plants root deeper on Herschel Island, which has not been confirmed, or that
fungi in temperate ecosystems, known as mycorrhizal fungi, have multiple life strategies
in the Arctic and can survive without a host in deeper horizons and feed saprotrophically.
The litter saprotrophs are more efficient than mycorrhizal in colonizing and utilizing fresh,
energy-rich compounds [96,97]. However, as the C/N ratio and available energy decrease
with soil depth [98,99], saprotrophs might become less competitive, and be replaced by
mycorrhizal fungi that do not depend on litter-derived energy in deep soil horizons [100].
We hypothesize that the energy and nutrient-demanding extracellular enzymes synthesized
by mycorrhizal fungi utilize nutrient-rich compounds (mainly organic N), but because a
large part of this N is then transported to plant symbiont, they remove N from the soil and
leave C-rich and nutrient-poor substrates behind. Therefore, it may result in inadequate
nutrient availability for the saprotrophic fungi in deeper soil, reducing SOM decomposition
and potentially increasing C in PAS soil [101,102]. A previous study also reported that
the C in cryoOM was thousands of years old and the decomposition process rate was
slower and was three times older than the C in topsoil horizons [103]. CryoOM in soils is
considered highly N-limited [99,104] and the greater proportion of ectomycorrhizal fungi
which are known to have a less efficient enzyme activity [100,105] compared to saprotrophs
can exacerbate this limitation and potentially increase C storage in PAS. We argue that the
“role shift” of mycorrhizal lifestyle in topsoil to a more saprotrophic lifestyle in deeper soil
horizons can affect the vulnerability of C in PAS.

4.2. Co-Occurrence Networks Reveal More Complex Interactions in Deeper Soil Horizons

The analysis of co-occurrence patterns can provide a vivid and simplified version of
the interactions in complex fungal communities. Moreover, it offers an in-depth insight
into ecological assembly from different horizons and sites.

We found that fungal assemblages in topsoil formed a less complex network compared
to those in the subsoil, even with the highest number of nodes and significantly higher
fungal gene abundance among all horizons. Topsoil in the Arctic is experiencing extreme
changes (i.e., a higher fluctuation temperature and nutrient cycling) compared to deeper soil
horizons. This may have forced selective pressure on the fungal communities, which was
also evidenced by the high fungal richness but unevenly distributed fungal communities
(Table S3). This was reflected in a less connected network in topsoil compared to the
subsoil. A relationship between species richness, diversity, and network connectivity has
been previously observed [30,106]. It was suggested that microbial diversity decreases as
network size and connectivity increase. Furthermore, an increased network complexity
with increased soil depth (in subsoil) for bacterial and fungi were previously observed
in a grassland study [107]. We hypothesize that the more densely connected network of
fungal communities in deeper soil horizons is due to the oligotrophic environment of these
horizons, where different groups of fungi must compete or cooperate to obtain nutrients
that are in short supply. This may be due to the decreased direct input of root exudates
and possible metabolic recalcitrant byproducts that remain in the lower soil horizons.
These conditions could generate more competition or co-metabolism due to the lower
quality and quantity of substrate available in deeper soil horizons. In support of this
idea, negative correlation, which suggests co-exclusion between two taxa, increased from
the topsoil to the subsoil network (Table 2). This trend may indicate a more competitive
(negative correlation) relationship between fungal species in deeper soil horizons compared
to topsoil [108]. Moreover, APL and CC were lowest and highest, respectively in cryoOM
compared to all other horizons. Networks that have smaller APL and higher CC are
considered a “small world” which means every species is connected to every other species
through a very short path and an “all-my-friends-know-each-other” relationship [109,110].
The networks termed “small worlds” are generally vulnerable to the rapid changes of an
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ecosystem perturbation [111]. Therefore, fungal communities from the cryoOM may be
more sensitive to environmental changes compared to other horizons. It may also reflect a
less fluctuating environment compared to that experienced by topsoil.

We found a great difference in the co-occurrence network for different tundra sites too,
Site 1 was more complex, whereas nodes from Site 4 were more connected. The potential
reason was that the fungi had a higher richness and Shannon index from Site 1 compared
to other sites, thus causing more complex fungal interaction [30,106]. Whereas Site 4 had
the lowest richness and diversity which made it a less complex but more connected co-
occurrence network as suggested above for the topsoil horizon. Moreover, APL and CC
values suggested that Site 4 is a “small world” and vulnerable to environmental changes.

4.3. Greater Connectivity but Lower Specialization

The modules in ecological networks play a critical role in maintaining overall microbial
community structure and stability, hence, the majority of ecosystem studies have focused
on identifying modules in ecological networks [27,70,112,113]. Modules, by definition, are
densely connected nodes that have more edges inside the module than outside. From
our study, we found an average modularity higher than 0.4 which suggested a modular
structure in all horizons and tundra sites [37].

The modularity value was lowest in buried cryoOM and Site 4 and highest in the
mineral subsoil and Site 2 (Table 2). This highly modular network means that the fungal
community is stable with an ordered structure with high efficiency at nutrient and informa-
tion exchange [68]. Previous studies have interpreted modules as niches [114,115], and we
found higher modularity values within subsoil and Site 2 which linked to stronger niche
separation compared to other horizons and tundra sites.

4.4. Environmental Condition Associated with Topological Role Shift

In the present study, connectors and module hubs were considered as generalists and
peripherals (taxa in the network which have only a few connections and only within their
own module) as specialists [27]. Generalists are the key fungi that promote the exchange
of nutrients and information among different taxa in network and hence play a pivotal
role in maintaining the balance between different microbial taxa. In a natural ecosystem,
generalists uptake nutrients from a broad range of sources and grow well in many habitats,
whereas specialists have very specific nutrient requirements and therefore their growth is
restricted to some habitats only [27,45,112,116]. In total, we found 13, 6, and 8 generalists
within the topsoil, cryoOM, and subsoils, respectively. Additionally, the role of some taxa
shifted in different horizons, topsoil (zOTU6200, unclassified Chaetothyriales; zOTU4687,
Cladophialophora; and zOTU6829, Cladophialophora), cryoOM (zOTU952, Mortierella antarctica;
zOTU3565, Penicillium oregonense; and zOTU4853, Tetracladium), and subsoil (zOTU1148,
Penicillium odoratum and zOTU2775, unidentified fungi) were found as generalists in the
respective horizons but a specialist in other horizons (Table 3). The role shifts of a generalist
to a specialist in cryoOM probably occurred as a result of major events whereby the topsoil
community was buried into deep soil horizons and surrounded by mineral subsoil with
low nutrient availability and higher competition pressure between taxa. Two lines of
evidence supported this generalization. Firstly, the generalist taxa in the topsoil network
were found to be specialist taxa in the cryoOM network, suggesting their role shift (Figure 5
and Table S5). Secondly, the majority of taxa identified in the cryoOM network were not
shared with topsoil network taxa (Figure S3), but with subsoil network taxa [11,117].

The number of generalists identified from each tundra site was 19, 5, 1, and 2 from
Site 1, Site 2, Site 3, and Site 4, respectively. The taxa which were identified as generalists
from Site 1 but specialists from other sites were litter saprotrophic zOTU1843 (Cadophora
finlandica) (Table 4). This taxon has shown the ability to degrade various polysaccharides
including cellulose, starch, and xylem [89], and previously detected from the Canadian
High Arctic [118]. We speculate that the reason for this taxon being a generalist from Site
1 was mainly because Site 1 was mostly dominated by vascular plant vegetation (cotton
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grass) which has more above-ground biomass compared to the other sites’ vegetation.
Tussock cotton grass generally has more dead leaves and culms than the living which may
also nourish the higher proportion of litter-decomposing saprotrophic fungi. The role shift
of key fungal taxa can be attributed to the different environmental conditions experienced
in different horizons (Table S6) and tundra sites (Table S7).

The generalist taxa from topsoil but specialists from other horizons belonged to the
order Chaetothyriales. Fungi from this order are dark septate root endophytes and as
described above, they commonly interact with plant roots which may explain their role
as generalists in topsoil. In contrast, in deeper soil horizons where plant roots are less
abundant and also the availability of nutrients is scarcer, they might have different roles to
play. For example, members of Cladophialophora were found as mycoparasites [119,120], and
due to the lower nutrient availability in deeper soil, they might feed on other fungal species.
This is in support of the fact that overall fungal gene abundance was found to be lower in
cryoOM and subsoil compared to upper topsoil from this study and a previous study [11].
The generalists from cryoOM, had a negative correlation with LAP activity from topsoil
but no such correlations were observed from cryoOM, we found a positive correlation
with NAG activity instead. We speculated that high LAP production by other taxa (i.e.,
Articulospora) might have a negative effect on these taxa and potentially change their role
to specialists. Furthermore, significantly higher DN content in subsoil and permafrost
compared to the other two horizons (Table 1), potentially contributed to shifting the role of
generalist from cryoOM to specialist in subsoil and permafrost.

Collectively, these co-occurrence data suggest that role shifts probably happen when
the top layer becomes buried in the deep soil layer, and more connectors being shared
between cryoOM and subsoil may suggest that most of these changes in cryoOM were
driven by the different environmental conditions in surrounding mineral subsoil and the
resident fungi [11,117].

5. Conclusions

In conclusion, our data showed that different horizons and tundra sites of the active
layer of cryosols harbored not only distinct fungal communities with diverse lifestyles but
also specific co-occurrence patterns along with changes in topological role (from generalist
to specialist and vice-versa). The interactions of distinct microbial taxa can be more
important to soil processes than species richness and their abundance, more importantly in
the ecosystem where extreme changes happen in a short time. The inference of microbial
networks allows us to find key microbes which are pivotal in maintaining the overall
community structure and perform key roles.

Ultimately, such co-occurrence network analysis will be able to predict the outcome of
community alterations (topological role shift) and the effects of environmental perturba-
tions. For example, members of Cladophialophora were found as generalists in upper PAS
where microbes are not limited by nutrients, but in the deeper soil layer, where nutrients
are scarcer, they shifted their role from being a generalist to a specialist (mycoparasite) due
to nutrient constraints. The topological indexes, average path length, and clustering coeffi-
cient suggested that the fungal network from cryoOM is a small world where everyone is
connected to each other with a short path and every taxon is known to each other. The small
world (cryoOM) is suggested to be more vulnerable to environmental changes than the
bigger world (topsoil), thus, perturbation may lead to change in the overall carbon storage
in PAS. The taxon Cadophora finlandica (litter saprotrophs) was identified as a generalist
from Site 1 where litter is in ample amounts, however, for the other site its role shifted to a
specialist due to environmental constraints.

Although exploring such an ecological network improves our understanding of micro-
bial ecology, more investigations are needed to overcome methodological limitations such
as the prediction of a relationship between two taxa by interpreting the correlation. For
instance, the incorporation of techniques that will not only take into account the relation-
ship between two taxa but also third-party microorganisms and random soil processes. In
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addition, limited information on biotic and abiotic factors that covary in different horizons
demands further investigation to determine the exact drivers and mechanisms of topolog-
ical role shifts (generalist to a specialist), the number of which increased from topsoil to
permafrost.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9091943/s1, Figure S1: Significantly different in mean proportion of fungal
genera for the different horizon and tundra sites. Only >1% mean proportion and significant
difference between one horizon or site to rest of the horizons or sites are shown. Different colored
bars represent topsoil, green; cryoOM, brown; subsoil, yellow; permafrost, cyan; Site 1, red; Site 2,
blue; Site 3, black; Site 4, yellow; Figure S2: Significantly different in mean proportion of fungal
lifestyle for different horizon and tundra site. Only >1% mean proportion and significant difference
between one horizon or site to rest of the horizons or sites are shown. Different colored bars represent
topsoil, green; cryoOM, brown; subsoil, yellow; permafrost, cyan; Site 1, red; Site 2, blue; Site 3, black;
Site 4, yellow; Figure S3: Venn diagram of the total number of nodes (zOTUs) overlapping between
different horizons and site networks and percentages of overlapping are given in the brackets;
Table S1: Soil environmental factors in each tundra site. Averages and standard deviation are shown.
The significant difference between tundra sites within all horizons together and individual horizons
were calculated using one-way ANOVA and followed by a Tukey’s HSD test. Different letters in the
brackets indicate a significant difference between tundra sites; Table S2: Fungal relative proportion at
the genera level for individual samples; Table S3: Fungi α-diversity indices. Averages and standard
deviation are shown. The significant difference between all horizons and site together and within
site were calculated using one-way ANOVA and followed by a Tukey’s HSD test. Different letters
in the brackets indicate a significant difference between horizons and sites; Table S4: Taxonomy of
zOTUs identified by Zi-Pi plot; Table S5: zOTUs identified either module hub or connect (generalist)
for one horizon or tundra site, but peripheral (specialist) for other horizons and tundra sites; Table S6:
Correlation between keystone taxa (connectors and module hubs) identified from the Zi-Pi plot
and environmental factors. Only significant correlations are shown. zOTUs ids were followed by
letters in brackets which denote T, topsoil; C, cryoOM; S, subsoil; and P, permafrost. These letters
mean that zOTU was identified as specialists from other horizons as well; Table S7: Correlation
between keystone taxa (connectors and module hubs) identified from the Zi-Pi plot of tundra site
and environmental factors. Only significant correlations are shown. zOTUs ids were followed by the
number in brackets which denote 1, Site 1; 2, Site 2; 3, Site 3; and 4, Site 4. These numbers mean that
zOTU was identified as specialists from other sites as well.
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99. Wild, B.; Schnecker, J.; Alves, R.J.E.; Barsukov, P.; Bárta, J.; Čapek, P.; Gentsch, N.; Gittel, A.; Guggenberger, G.; Lashchinskiy, N.;

et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil.
Soil Biol. Biochem. 2014, 75, 143–151. [CrossRef]

100. Lindahl, B.D.; Ihrmark, K.; Boberg, J.; Trumbore, S.E.; Högberg, P.; Stenlid, J.; Finlay, R.D. Spatial separation of litter decomposition
and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007, 173, 611–620. [CrossRef]

101. Orwin, K.H.; Kirschbaum, M.U.F.; St John, M.G.; Dickie, I.A. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem
carbon storage: A model-based assessment. Ecol. Lett. 2011, 14, 493–502. [CrossRef]

102. Averill, C.; Hawkes, C.V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 2016, 19, 937–947. [CrossRef] [PubMed]
103. Kaiser, C.; Meyer, H.; Biasi, C.; Rusalimova, O.; Barsukov, P.; Richter, A. Conservation of soil organic matter through cryoturbation

in arctic soils in Siberia. J. Geophys. Res. Biogeosci. 2007, 112, 1–8. [CrossRef]
104. Wild, B.; Schnecker, J.; Knoltsch, A.; Takriti, M.; Mooshammer, M.; Gentsch, N.; Mikutta, R.; Alves, R.J.E.; Gittel, A.; Lashchinskiy,

N.; et al. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia. Glob.
Biogeochem. Cycles 2015, 29, 567–582. [CrossRef]

105. Talbot, J.M.; Martin, F.; Kohler, A.; Henrissat, B.; Peay, K.G. Functional guild classification predicts the enzymatic role of fungi in
litter and soil biogeochemistry. Soil Biol. Biochem. 2015, 88, 441–456. [CrossRef]

106. Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The interconnected rhizosphere: High network complexity
dominates rhizosphere assemblages. Ecol. Lett. 2016, 19, 926–936. [CrossRef] [PubMed]

107. Upton, R.N.; Checinska Sielaff, A.; Hofmockel, K.S.; Xu, X.; Polley, H.W.; Wilsey, B.J. Soil depth and grassland origin cooperatively
shape microbial community co-occurrence and function. Ecosphere 2020, 11, e02973. [CrossRef]

108. Toju, H.; Kishida, O.; Katayama, N.; Takagi, K. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.
PLoS ONE 2016, 11, e0165987. [CrossRef]

109. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [CrossRef]
110. Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [CrossRef]
111. Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional Molecular Ecological Networks. MBio 2010, 1, e00169-10. [CrossRef]
112. Dupont, Y.L.; Olesen, J.M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol.

2009, 78, 346–353. [CrossRef] [PubMed]
113. Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional

redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil.
Soil Biol. Biochem. 2016, 97, 188–198. [CrossRef]

114. Wu, L.; Yang, Y.; Chen, S.; Zhao, M.; Zhu, Z.; Yang, S.; Qu, Y.; Ma, Q.; He, Z.; Zhou, J.; et al. Long-term successional dynamics of
microbial association networks in anaerobic digestion processes. Water Res. 2016, 104, 1–10. [CrossRef]

115. Zhang, B.; Zhang, J.; Liu, Y.; Shi, P.; Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil
Biol. Biochem. 2018, 118, 178–186. [CrossRef]

116. Tao, J.; Meng, D.; Qin, C.; Liu, X.; Liang, Y.; Xiao, Y.; Liu, Z.; Gu, Y.; Li, J.; Yin, H. Integrated network analysis reveals the
importance of microbial interactions for maize growth. Appl. Microbiol. Biotechnol. 2018, 102, 3805–3818. [CrossRef]

117. Schnecker, J.; Wild, B.; Hofhansl, F.; Eloy Alves, R.J.; Bárta, J.; Čapek, P.; Fuchslueger, L.; Gentsch, N.; Gittel, A.; Guggenberger, G.;
et al. Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated
Arctic Soils. PLoS ONE 2014, 9, e94076. [CrossRef]

118. Jurgens, J.A.; Blanchette, R.A.; Filley, T.R. Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap
region in the Canadian High Arctic. Polar Biol. 2009, 32, 751–758. [CrossRef]

119. Obase, K.; Douhan, G.W.; Matsuda, Y.; Smith, M.E. Culturable fungal assemblages growing within Cenococcum sclerotia in forest
soils. FEMS Microbiol. Ecol. 2014, 90, 708–717. [CrossRef]

120. James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; et al.
Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006, 443, 818–822. [CrossRef]

http://doi.org/10.1111/1365-2435.12677
http://doi.org/10.1111/j.1365-2435.2008.01402.x
http://doi.org/10.1038/ismej.2013.91
http://www.ncbi.nlm.nih.gov/pubmed/23788332
http://doi.org/10.1111/j.1469-8137.1996.tb01152.x
http://doi.org/10.1038/233133a0
http://doi.org/10.1038/nature06275
http://doi.org/10.1016/j.soilbio.2014.04.014
http://doi.org/10.1111/j.1469-8137.2006.01936.x
http://doi.org/10.1111/j.1461-0248.2011.01611.x
http://doi.org/10.1111/ele.12631
http://www.ncbi.nlm.nih.gov/pubmed/27335203
http://doi.org/10.1029/2006JG000258
http://doi.org/10.1002/2015GB005084
http://doi.org/10.1016/j.soilbio.2015.05.006
http://doi.org/10.1111/ele.12630
http://www.ncbi.nlm.nih.gov/pubmed/27264635
http://doi.org/10.1002/ecs2.2973
http://doi.org/10.1371/journal.pone.0165987
http://doi.org/10.1038/30918
http://doi.org/10.1103/RevModPhys.74.47
http://doi.org/10.1128/mBio.00169-10
http://doi.org/10.1111/j.1365-2656.2008.01501.x
http://www.ncbi.nlm.nih.gov/pubmed/19021779
http://doi.org/10.1016/j.soilbio.2016.03.017
http://doi.org/10.1016/j.watres.2016.07.072
http://doi.org/10.1016/j.soilbio.2017.12.011
http://doi.org/10.1007/s00253-018-8837-4
http://doi.org/10.1371/journal.pone.0094076
http://doi.org/10.1007/s00300-008-0578-x
http://doi.org/10.1111/1574-6941.12428
http://doi.org/10.1038/nature05110

	Introduction 
	Materials and Methods 
	The Site Description and Soil Sampling 
	Measurement of Environmental Factors 
	Extracellular Enzymes Activities 
	DNA Extraction and Quantitative Assessment of Fungal Community by qPCR 
	Barcoded Amplicon Sequencing 
	Network Construction 
	Statistical Analyses 

	Results 
	Environmental Variables 
	Fungal Gene Abundance, Community Composition, and Diversity Differed between Horizons and Sites 
	Key Topological Properties of Co-Occurrence Network 
	The Topological Roles of Nodes and Generalist-Specialist Shift 

	Discussion 
	Horizon and Tundra Specific Fungal Lifestyle 
	Co-Occurrence Networks Reveal More Complex Interactions in Deeper Soil Horizons 
	Greater Connectivity but Lower Specialization 
	Environmental Condition Associated with Topological Role Shift 

	Conclusions 
	References

