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“Nothing in life is to be feared, it is only to be understood. Now is the time to understand 

more, so that we may fear less.” 
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1. Introduction 
 

1.1 Viral infectious disease outbreaks and response 
 

Viral infectious diseases have always been a significant threat to global human and 

animal populations, causing unexpected illnesses and deaths that instigated detrimental 

impacts on the economy and society and interfered with everyday life activities [1,2]. Currently, 

the world is experiencing the devastating effects of the coronavirus disease 2019 (COVID-19) 

pandemic caused by a novel coronavirus. Within a year, COVID-19 has claimed more than 3 

million human lives and prompted the largest global economic crisis in history [3,4]. The world 

has also encountered several emerging infectious disease outbreaks caused by hitherto 

unknown viruses over the past three decades: Hendra virus, Nipah virus, severe acute 

respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome 

coronavirus (MERS-CoV) [5–8]. Simultaneously, numerous known viruses are posing constant 

threats to the well-being of humans and animals, with several known viruses reported to re-

emerge into local areas (e.g., Ebola virus, Dengue virus, and Chikungunya virus) [9–11] or 

introduced into new geographic locations with naïve populations (e.g., West Nile virus, Zika 

virus, and African swine fever virus) [12–15].  

Prior to their emergence, these viruses are naturally occurring within their animal 

reservoirs. Disturbances in their natural host populations’ ecology can change viral transmission 

dynamics, which escalate the probability of “spillover” infections to non-reservoir animal hosts 

[16]. A zoonotic spillover event can occur directly from animal reservoirs to human hosts or 

indirectly through intermediary hosts or arthropod vectors [17].  An emerging virus can cause 

an individual or a few sporadic cases and may proceed to a localized outbreak. An outbreak can 

develop into an epidemic (or epizooty when non-human animal hosts are affected) if public 

health interventions are delayed and insufficient, or progress into a pandemic in worst-case 

scenarios [18]. Due to the considerable number of pathogens and limited resources for research 

and development, the World Health Organization specified nine priority diseases posing the 

greatest public health risk due to their epidemic potential or insufficient countermeasures [19]. 

At present, these priority diseases include (1) COVID-19, (2) Crimean-Congo haemorrhagic 

fever, (3) Ebola virus disease and Marburg virus disease, (4) Lassa fever, (5) SARS and MERS-

CoV, (6) Nipah and henipaviral diseases, (7) Rift Valley fever, (8) Zika, and (9) “Disease X.”  

While known viruses caused the eight priority diseases, an unknown pathogen with pandemic 

potential can cause the “Disease X.” Another novel virus will probably bring upon the next 

pandemic.  

The World Health Organization warned that the world is still ill-prepared for these 



Introduction 

 

2 

emerging threats based on our responses to the 2009 H1N1 pandemic and the 2014-16 West 

African Ebola epidemic [20–22]. Experts have appealed for a centralized pandemic preparedness 

and response agency and closer collaborations among multiple stakeholders such as 

government, academics, industry, public health networks, and civil society [23–25]. Although 

the ongoing COVID-19 pandemic confirmed that the world was underprepared for a pandemic, 

the world has witnessed the fastest scientific response to a major infectious disease epidemic 

due to significant advances in fundamental science and collaborations among international 

research groups [reviewed in Publication I].  

Diagnostics and surveillance are fundamental components of outbreak response and 

preparedness. However, serological testing and nucleic acid-based testing (e.g., polymerase 

chain reaction; PCR) are often pathogen-specific and inefficient for screening novel or highly 

diverse etiological agents [reviewed in 26, 27]. Therefore, genomic approaches are especially 

suitable for broad pathogen identification and characterization since nearly all infectious agents 

have genetic materials. Consensus PCR, microarrays, and high-throughput sequencing (HTS) 

are genomic approaches that can detect a broad range of known pathogens and discover novel 

pathogens in clinical samples [reviewed in 26]. However, only the generic HTS approach can 

investigate any sample without prior sequence knowledge, leading to the accelerated rate of 

virus discovery [reviewed in 27,28].   
 

1.2 Second-generation high-throughput sequencing technologies 
 

Illumina (Illumina Inc.) and Ion Torrent systems (Thermo Fischer Scientific) are the 

most dominant second-generation HTS technologies in the market [reviewed in 29]. These 

sequencers remain the state-of-the-art technologies for population genomics, phylogenomics, 

and metagenomics for some years since these second-generation technologies have lower error 

rates and higher throughput than third-generation sequencing platforms [reviewed in 30]. In 

this study, the term high-throughput sequencing (HTS) will refer only to the second-generation 

HTS unless mentioned otherwise. 

Different HTS approaches follow a conventional workflow consisting of sample pre-

processing, library preparation, sequencing, and bioinformatic analysis (Figure 1) [reviewed in 

31]. Sample pre-processing includes nucleic acid extraction from sample materials; the extracted 

RNA materials are reverse transcribed into complementary DNA (cDNA). The cDNA or 

extracted DNA are subjected to second-strand synthesis. For generic library preparation, 

double-stranded DNA/cDNA are fragmented, end-repaired, phosphorylated, tailed with A-

overhang (for adapters with sticky-ends), and ligated with adapters at their 5’ and 3’ ends [32]. 

These platform-specific adapters contain sequences that enable hybridization, polymerase 

binding, and amplification. Each adapter consists of unique sequences for sample identification. 
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Size-selected library molecules are spatially separated and hybridized to oligonucleotides 

attached on a solid phase. Ligated adapters enable the clonal amplification of bound library 

molecules to enhance signal detection during the sequencing run. Ion Torrent and Illumina 

sequencing platforms employ the “sequencing-by-synthesis (SBS)” technology. The stepwise 

addition of nucleotides to the elongating strand is followed by the release of signals, detected 

by a sensor [33,34].  

Bioinformatic analyses and computational tools are required in raw data processing, 

assembly of contiguous sequences (contigs), and research-specific data analyses. Signals 

detected in a sequencing run (raw data) are converted into legible sequence reads (base calling) 

[33,35]and base quality scores (Phred scores) [36]. A single sequencing run can produce millions 

to billions of sequence reads. Contigs are assembled by tiling overlapping short sequence reads 

(de novo assembly) or mapping sequence reads to a known reference genome. Taxonomic 

classification of contigs and individual sequence reads (singletons) can be inferred using 

homology search against a nucleotide or protein sequence database [reviewed in 37]. 

Strategies employed in Ion Torrent and Illumina sequencing platforms are different in 

terms of commercially available sequencing adapters, clonal amplification, sequencing run, and 

signal detection. Hence, the following sections will discuss these platforms in more detail.  
 

 
 

Figure 1. Schematic diagram of a second-generation high-throughput sequencing workflow for generic shotgun 
library preparation. Green and violet boxes indicate adapters and red boxes indicate nucleic acid from samples. 
Abbreviation: dNTPs - deoxynucleoside triphosphates, TS-template strand, CS-complementary strand. Figure 1 
was based on Srivastav & Suneja [38] and atdbio Ltd. [39]. 
 

1.2.1 Ion Torrent sequencing 

In a typical Ion Torrent library preparation, fragmented DNA templates were end-

repaired and phosphorylated at their 5’ ends. These steps are followed by blunt-end ligation of 

two different linear adapters (A and P1) to both ends of DNA fragments (Figure 2A). Both A and 

P1 must be incorporated in this step to perform the necessary functionalities during a 
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sequencing run [40]. A water-in-oil emulsion compartmentalizes the amplification of each 

single library molecule (so-called emulsion PCR). Ideally, each droplet consists of one library 

molecule, ion sphere particle (ISP), and necessary reagents for amplification (Figure 2B). The 

emulsion PCR consists of two primers complementary to sequence library adapters: one is 

present in the solution while the other is bound to the ISP. This setup selects library molecules 

ligated with A and P1 adapters, ensuring a uniform orientation of bound library molecules to 

the ISP [41,42]. The ISP-bound library molecule is amplified to generate millions of identical 

copies (clones). Subsequently, magnetic bead-based separation enriches template-positive ISPs 

[34]. 

A sequencing run is performed in a complementary metal-oxide-semiconductor 

(CMOS) chip, which contains an array of microwells coupled with ion-sensitive field-effect 

transistors (ISFET) sensors (Figure 2C). Each template-positive ISPs incubated with sequencing 

primers and DNA polymerase are loaded into a microwell. The sequencing chip is sequentially 

flooded with one type of deoxynucleoside triphosphates (dNTPs; N = A, T, C, G) per flow. In 

each microwell, the polymerase incorporates complementary nucleotides to elongating strands 

that simultaneously release hydrogen ions. The ISFET sensor detects the shift in pH in a 

microwell caused by the release of protons. The DNA polymerase can incorporate more than 

one nucleotide per-flow when the template strand consists of a series of similar nucleotides 

(homopolymers). The released signals are nearly proportional to the number of incorporated 

nucleotides per flow (Figure 2D). A washing step after each nucleotide flow ensures the removal 

of unbound nucleotides in microwells [34].  

The Ion Torrent sequencing technology employs natural, unmodified dNTP molecules 

and high-fidelity DNA-polymerase that lowers substitution errors. This technology is 

independent of optical sensors allowing faster sequencing runs [43]. Moreover, this technology’s 

sequencing adapters consist of a “key sequence” (TCAG), which facilitates the raw flow-value 

normalization. It can also sequence library molecules that are several hundred bases long. 

However, this technology faces a challenge in quantitating the length of homopolymer regions 

consisting of 5 – 10 bases, which arises from the inaccurate measurement of the magnitude of 

the released signals leading to insertion and deletion errors [44,45]. 

1.2.2 Illumina sequencing 

 The typical library preparation for Illumina sequencing entails the sticky-end ligation of 

Y-adapters to DNA fragments, which are end-repaired, phosphorylated at their 5’ ends, and 

added A-tail at their 3’ ends (Figure 2A). The Y-adapter consists of a short complementary region 

that binds top and bottom oligonucleotides, a T-overhang that ensures efficient adapter 

binding, and unique sequences that serve as annealing sites for clonal amplification and 

sequencing. After Y-adapter ligation, each strand becomes a functional sequencing library 
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molecule [reviewed in 32,46]. Library molecules are denatured and washed to an acrylamide-

coated glass flow cell containing an array of oligonucleotides, which serve as annealing and 

attachment sites for library molecules (Figure 2B). Each immobilized library molecule is clonally 

amplified (“bridge amplification”) to form a cluster consisting of up to 1000 clones of the 

template molecule [47]. After cluster generation, reverse strands are cleaved and washed off 

from the flow cell. The 3’ ends of forward strands are then blocked, which facilitates its 

unidirectional sequencing.  

Primers anneal to adapter primer binding sites of each library molecule. Four types of 

fluorescent-labeled dNTPs are flushed on the flow cell in each cycle. The polymerase 

incorporates one complementary nucleotide at each elongating strand, and unbound 

nucleotides are washed off (Figure 2C). Bound fluorophores are excited by a light source to emit 

characteristic fluorescent signals, which are captured by an optical system [33]. Tris(2-

carboxyethyl) phosphine treatment cleaves the fluorophores and the blocking group at the 3’-

hydroxyl group allowing the next round of nucleotide incorporation [47]. These steps are 

repeated until the sequencing run is finished. Stacked images with identified clusters are 

analyzed to generate sequences of library molecules (Figure 2D).  

The bridge amplification enables paired-end sequencing, which involves the 

denaturation of synthesized products from the first SBS round and bridge amplification to 

reconstitute the reverse strands of the libraries. Compared to the Ion Torrent sequencing 

technology, Illumina has lower insertion and deletion error rates due to the termination step 

after every nucleotide addition [48]. However, this technology utilizes modified nucleotides and 

engineered polymerases, resulting in higher substitution error rates [48]. Moreover, index 

hopping happens during bridge amplification due to missing physical barriers between clusters 

[49].  

1.3. High-throughput sequencing approaches for viral genome sequencing 
 

Three HTS approaches are typically employed to sequence virus genomes: (1) generic 

HTS, (2) target-enrichment HTS, and (3) PCR amplicon-HTS [reviewed in 50] (Figure 3). Each 

approach has its complexities and costs. Generally, a suitable HTS approach can be selected 

based on research objectives and virus concentration in sample materials. 

(1) The generic (or non-targeted) HTS approach sequences total DNA or RNA extracted 

from clinical or environmental samples, including genetic materials from the host, bacteria, 

viruses, fungi, parasites, other pathogens, and commensals (Figure 3) [51]. This approach is often 

employed in combination with metagenomics, which studies an entire biological community in 

a given sample using genomes or transcriptomes [52]. Metagenomics utilizes a computational 

workflow to classify sequence reads based on a reference sequence database [reviewed in 53]. 

Nooij and colleagues [54] reviewed different metagenomic workflows and their potential 
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suitability for various purposes: time-constrained diagnostics, discovery, biodiversity analysis, 

 

 

Figure 2. Significant differences of Ion Torrent and Illumina sequencing technologies. (A) Adapters and library 
preparation steps for both sequencing technologies. Figure 2A is based on Figure 1 in. (B) Differences in clonal 
amplification in two sequencing technologies. Ion Torrent technology: After the water-in-oil emulsion step, (1.1) 
each library molecule is denatured, and one of the strands hybridizes with the oligonucleotide attached to the 
ISP. (1.2) Polymerase covalently attaches the template strand on the ISP and copies the unhybridized strand, 
and (1.3) the resulting strands serve as templates for the next round of amplification. (1.4) The ISP is covered 
with cloned template strands after several amplification cycles. Illumina sequencing technology: (2.1) single-
stranded libraries anneal to oligonucleotides bound on the flow cell. (2.2) The polymerase synthesizes the 
complementary strand, which covalently linked the strand to a bound oligonucleotide, and (2.3) the template 
strand is washed away after a denaturation step. (2.3-2.4) Isothermal bridge amplification enables (2.7) cluster 
generation. (2.5) The library molecule in each cluster is linearized by cleavage, and (2.6) another cleavage step 
removes one of the strands that facilitates the unidirectional sequencing-by-synthesis of the remaining strand. 
(C) Steps for sequencing-by-synthesis and (D) signal detection for both sequencing technologies were shown. 
Figure 2 was based on studies and figures of Forth and Höper [55] (Figure 2A), Shendure et al. [56] and Bentley 
et al. [47] (Figure 2B), Rothberg et al. [34] and Illumina Inc. [33] (Figure 2C and 2D).  
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surveillance, and outbreak source tracing. 

The metagenomic HTS is a universal and hypothesis-free approach for detecting 

pathogens in clinical samples. It is also better suited to discover novel and highly divergent 

viruses and identify co-infecting pathogens, which cannot be recognized by pathogen-specific 

diagnostic assays [reviewed in 53,57]. Thus, the metagenomic HTS approach is more efficient in 

identifying pathogens than using a large panel of species-specific molecular assays or poorly 

designed diagnostic assays [reviewed in 57]. The metagenomic HTS identified hitherto 

unknown viruses in different outbreaks: Lujo virus, MERS-CoV, Schmallenberg 

orthobunyavirus, atypical porcine pestivirus, and SARS-CoV-2 [8,58–61]. However, several 

issues hinder its adoption for routine diagnostics, which will be discussed in section 1.4.2.  

The generic HTS approach can also obtain viral whole-genome sequences in samples 

with adequate virus-to-host nucleic acid (NA) ratio. Otherwise, two targeted HTS approaches 

can be utilized for improved viral whole-genome sequencing [reviewed in 50] (Figure 3).  

(2) The target-enrichment HTS approach utilizes biotinylated DNA or RNA probes 

(baits) complementary to specified viral sequences. In this enrichment step, probes hybridize 

with target library molecules. Probe-library molecule hybrids are bound to a solid phase (e.g., 

streptavidin-labeled magnetic beads), and untargeted library molecules are washed away [62] 

(Figure 3). This approach enables the assembly and characterization of clinically relevant viral 

genomes of varying sizes, ranging from hepatitis C virus (9.6 kilobases) to human 

cytomegalovirus (236 kilo-base pairs) [62–64]. Binding affinity can also tolerate several 

mismatches between bait and target, allowing variant detection [65]. The specificity of this 

approach improves as the number of reference sequences for probe design increases. However, 

this approach is time-consuming, expensive, requires high technical expertise, and unsuitable 

for detecting novel viruses with low homology to reference sequences [reviewed in 50].  

(3) In the PCR amplicon-HTS approach, primers bind to target sequences and these 

regions are amplified. Typical primer design employs a tiling amplicon scheme to cover a viral 

whole-genome sequence [66]. These amplicons are prepared for HTS (Figure 3). Compared to 

the other two HTS approaches, the PCR amplicon-HTS approach is cheaper and demonstrates, 

in most cases, higher sensitivity and specificity in enriching viral sequences. This approach was 

employed to investigate several epidemics caused by the Ebola virus, Zika virus, Usutu virus, 

and SARS-CoV-2 [66–69]. However, few mismatches between primers and template genome 

can prevent primer binding and amplification. A priori sequence knowledge is also necessary 

for the primer design. Thus, this HTS approach is unsuitable for targeting sequences from novel 

and highly diverse viruses [reviewed in 50]. Moreover, the DNA polymerase can incorporate 

wrong nucleotides during synthesis, and these errors can accumulate when a high number of  

PCR cycles is used [66].  
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Figure 3. Different high throughput sequencing (HTS) approaches for viral genome sequencing: (1) Generic HTS 
approach enables the sequencing of all nucleic acid (NA) in a given sample, (2) Target enrichment HTS approach 
includes enriching target sequences using a panel of probes. (3) PCR amplicon HTS approach includes the 
amplification of target sequences with specific primers. This figure was based on the review of Houldcroft et al. 
[50]. Images acquired from Pixabay under Pixabay license (https://pixabay.com/service/terms/#license).  

 

1.4. Utilizing HTS approaches in improving preparedness and response to 
outbreaks 
 

High-throughput sequencing technologies are reshaping the surveillance of emerging 

infectious diseases, which enable the rapid identification of causative agents in diseases and 

genome-based outbreak investigations [61,70]. Furthermore, HTS technologies can be utilized 

to actively screen for novel pathogens with epidemic potential, allowing evidence-based 

preparedness and control for future outbreaks [71].  
 

1.4.1 Sequence-based virus outbreak investigation 
 

Traditional epidemiological approaches depend on case/incidence reports, including 

epidemiological metadata (e.g., sample collection date and location) and interview-based 

contact tracing to estimate key epidemic parameters, reconstruct transmission chains, and 

devise an informed epidemic control policy [72–74]. For several decades, virus genomics has 

also been employed to investigate infectious disease outbreaks [reviewed in 75], and this is 

termed genomic epidemiology [reviewed in 18].  

Viral genomes (particularly RNA virus genomes) accumulate genetic variations through 

high mutation and replication rates on a similar timescale as their epidemiological spread 

[76,77]. Hence, viral genome sequences collected over short epidemic periods can reveal the 

epidemiological dynamics and emergence of an infectious disease outbreak. Thus, genomic 

epidemiology empowers traditional outbreak investigation and infectious disease surveillance 

[74].  

Phylogenetic inference is typically utilized to resolve evolutionary relationships between 

viruses based on the temporal resolution found in their sequences [78,79]. The ‘traditional’ 

approach (multiple tree search on bootstrapped data) and the Bayesian approach are two 

statistical inference methodologies for reconstructing phylogenies [reviewed in 80]. The 

https://pixabay.com/service/terms/#license
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maximum likelihood (ML), a ‘traditional’ approach, calculates all possible mutational pathways 

compatible with the aligned sequences [81]. This method provides consistent and robust 

statistical inference; however, it requires long computational times [reviewed in 80]. As an 

alternative, the faster Bayesian approach for phylogenetic analyses has been introduced [82]. 

The Bayesian approach integrates the prior probability of a phylogeny with tree likelihood to 

yield trees with posterior probability distribution [82,83]. This method enables the 

implementation of complex models of sequence evolution and integration of relevant data for 

phylogenetic inferences [reviewed in 80]. Epidemiological data and mathematical models can 

be included in the reconstruction of a phylogenetic tree. For instance, the “phylodynamic 

approach” integrates phylogenetic inferences, population genetics, epidemiological data, and 

mathematical modeling to reconstruct the evolutionary history and transmission dynamics of a 

pathogen [79,84]. Additionally, the “phylogeographic approach” incorporates phylogenetic 

inferences with discrete traits (e.g., geographic location, hosts) to determine the effect of each 

trait in infectious disease outbreak emergence and dynamics [85,86].  

Viral genome sequencing and phylogenetic analysis can be utilized for precise 

taxonomic identification and classification of known and also novel viruses. They are also 

instrumental for understanding emerging viruses’ spillover dynamics and identifying their 

natural host reservoirs [78]. Moreover, recent advances in HTS approaches and phylogenetic 

analyses enabled the resolution of some basic questions regarding infectious disease outbreaks  

[reviewed in 18], to name a few: (1) large-scale sequencing and phylogenetic analyses revealed 

that the 2009 H1N1 influenza A pandemic originated in swine populations from Mexico [87,88]; 

(2) genomic epidemiology provided evidence that the intermediate hosts of MERS-CoV are 

dromedary camels [89]; (3) sequencing and phylogeographic analyses exhibited the spread and 

evolution of WNV in the Americas for 20 years [90].  
 

1.4.2 Sequenced-based virus discovery and characterization as tools for outbreak 

preparedness?  
 

Early detection and rapid genetic characterization of emerging infectious diseases might 

enable the containment of an outbreak at a local level, reducing its devastating effects on human 

and animal populations [91]. The global early warning and response system focused more on 

recognizing the early onset outbreaks [92]. However, Carroll and colleagues [93] emphasized 

the necessity for an early warning system (EWS) that detects novel viral spillover before it 

emerges to a local outbreak. In both cases, metagenomic HTS (metagenomic analysis of generic 

HTS datasets) has proven to be a powerful tool for virus discovery, hypothesis-free pathogen 

identification, and virus genome characterization. 

For early outbreak recognition, metagenomic HTS rapidly identified the etiological 
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agent (SARS-CoV-2) in a cluster of patients with atypical pneumonia in China that progressed 

into the current COVID-19 pandemic [61], which is remarkably faster compared to the 

identification of causative agents of previous global epidemics (Table 1). Moreover, the early 

availability of novel SARS-CoV-2 whole-genome sequences enabled the rapid development of 

diagnostic assays [94,95], virus reconstruction using reverse genetic systems [96], and swift 

vaccine development [97], which all are essential tools in pandemic response and mitigation 

[reviewed in detail in Publication I].  

Table 1. Timelines of recent global epidemics.  

Disease  Virus First report/ Index 
case 

Pathogen 
identification (Date) 

Genome 
available (Date) 

References 

SARS SARS-CoV Nov 2002 Mar 2003 Apr 2003 [98–101] 
2009 H1N1 
pandemic 

H1N1 25 Mar 2009 15 Apr 2009 24 Apr 2009 [20,102, 
103] 

MERS MERS-CoV 13 Jun 2012 24 Sep 2012 27 Sep 2012 [8,104] 
COVID-19 SARS-CoV-2 31 Dec 2019 9 Jan 2020 20 Jan 2020 [61] 

 

 

For surveillance of virome diversity, numerous novel viral sequences in humans [99,100], 

domestic animals [105,106], wildlife [107–111], blood-sucking vectors [reviewed in 112], other 

arthropods [113,114], and specific environments [115,116] were discovered and characterized using 

metagenomic HTS approaches. However, most of these newly discovered viruses have unknown 

pathogenicity. Thus, Canuti and van der Hoek [117] recommend that sequence-based pathogen 

discovery should be accompanied by virus characterization to understand the role of newly 

discovered viruses in a disease. Virus characterization includes but is not limited to in silico 

analyses of viral genomes, epidemiological investigation, virus isolation, and disease association 

testing. Association between virus and disease can be established when the Henle-Loeffler-

Koch’s postulates are fulfilled [118]. One of the postulates requires that the pathogen must be 

isolated from a diseased organism; however, numerous viruses cannot be propagated in vivo 

[119]. To overcome this problem, Mokili and colleagues [27] proposed a modified metagenomic 

Henle-Loeffler-Koch’s postulates that require differential metagenomic traits between healthy 

and diseased individuals. Mokili and colleagues’ modified postulates only involve inoculating 

healthy individuals with a diseased subject instead of a pathogen grown in pure culture [27].  

However, the analytic sensitivity of metagenomic HTS is influenced by several variables 

that depend on test design (e.g., completeness of reference database), pathogen (e.g., genome 

size), and specimen type (e.g., pathogen-to-host ratio) [120]. Furthermore, this approach is 

challenged by specificity issues (misclassification or cross-contamination), inconsistency of 

bioinformatics pipelines, and costs [reviewed in 121]. These challenges hinder the adoption of 

metagenomic HTS for routine diagnostics [120] and active surveillance of novel pathogens in 

wildlife reservoirs [reviewed in 122]. 
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2. Objectives 
 

 

Due to increasing threats of viral infectious diseases in humans and animals, a training 

network that focuses on outbreak preparedness and response was established. In line with this 

program, this thesis aimed to establish a unified pipeline for routine outbreak investigation and 

early warning system, which could enhance the outbreak preparedness and response through 

the early detection of pathogens with outbreak potential.  

 

This thesis focused on the following objectives:  

(1) to develop an early warning system for the detection of novel and unexpected 

pathogens using generic and unbiased HTS datasets derived from routine 

outbreak investigations 

(2) to investigate causative agents of infectious disease outbreaks and suspected 

pathogens with outbreak potential, which were identified either by the routine 

surveillance or the early warning system, with regards to genetic characterization, 

molecular-based screening, and/or in vitro isolation 
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Table S1. The generic high throughput sequence (HTS) datasets from the 2018-29 West Nile Virus epidemics in Germany. 

Information includes sample identification number (FLI code), dataset name (library number), common names (host name) 

and species names of hosts, organ samples prepared for unbiased HTS, and total number of sequences reads per library. 
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Table S2. Number of sequence reads annotated as non-viral pathogens per dataset. 
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Table S3. More detailed taxonomic classification of viral sequence reads detected in generic high throughput sequence 

datasets derived from 2018-19 WNV Epidemic in Germany. Number of detected reads, length based on sequencing and 

assembly, and their closest hits (accession numbers, description, and blastx identities) from the database were included. 

Total number of sequence reads per library and sample information were indicated in Table S1. 
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Table S4. Accession numbers for different protein sequences of representative Orbivirus species. These protein sequences 

included tubule forming proteins or nonstructural protein 1 (NS1), viral inclusion bodies or nonstructural protein 2 (NS2), 

nonstructural protein 3 (NS3), RNA dependent RNA polymerase (RdRp), inner shell protein (T2), outer core or viral protein 

7 (T13), outer capsid protein 1 (OCP1), capping enzyme or viral protein 4 (VP4), outer capsid or viral protein 5 (VP5), and 

helicase or viral protein 6 (VP6). 
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Table S5. Pairwise identity percentages of amino acid sequences of Orbivirus RdRp and Orbivirus T2 (upper box: lower left 

and upper right, respectively) and Orbivirus T13 and Orbivirus OCP1 proteins (lower box: lower left and upper right, 

respectively). 
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Table S7. Pairwise identity percentages of amino acid sequences of nucleocapsid (top), glycoprotein precursor (middle) and 

RNA dependent RNA polymerase (bottom) proteins of representative Peribunyaviridae and and the outgroup Tomato 

spotted wilt virus. The corresponding acronyms and accession numbers of representative peribunyaviruses were shown in 

Table S2. 
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Table S8. Samples tested in RT-qPCR screening for Umatilla virus and Hedwig virus. RNA samples grouped to panel 1 belong 

to animal samples with representative organ/s processed using high throughput sequencing, while the remaining animal 

samples (without representative sample for sequencing) were categorized in panel 2. NT, not tested 
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Table S9. Results of reverse transcription quantitative polymerase chain reaction (RT-qPCR) Results for (A) Umatilla virus or 

(B) Hedwig virus specific screening in different cell cultures passages. 
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5. Results and Discussion 
 

 

Early warning systems (EWS) and outbreak investigations are two effective approaches 

for mitigating and preventing future infectious disease outbreaks. In this thesis, a unified and 

generic pipeline was established for outbreak investigation and surveillance of novel and 

unexpected pathogens using high-throughput sequencing (HTS) approaches, bioinformatics, 

and virus characterization techniques (Figure 4). As a proof-of-concept, this unified pipeline 

evaluated generic HTS datasets derived from the 2018-19 West Nile virus (WNV) epidemic 

accompanied by the ongoing Usutu virus (USUV) epizooty in Germany [Publication II]. 
 

 

 
FIGURE 4. The proposed model for the enhanced outbreak investigation. A. The unified and generic pipeline for 
outbreak investigation and the early warning system (EWS). Violet lines indicate analyses that can be performed 
using generic HTS datasets, and green lines indicate possible analyses using targeted HTS datasets (i.e., target 
enrichment HTS approach, PCR amplicon HTS approach). *Datasets generated using the target enrichment HTS 
approach can also be utilized for the EWS. B. The proposed addition of the unified pipeline for outbreak 
investigation and EWS in key response to viral outbreaks. Figure 4B was modified from Kinsella et al. [Publication 
I, Figure 1] under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 
 

Outbreak samples (n=39) with sufficient WNV viral loads (quantitation cycle or Cq 

values ≤20) or with interesting conditions (e.g., horse samples, samples with USUV co-infection) 

were selected for the generic HTS approach to yield WNV whole-genome sequences. Overall, 

WNV whole-genome sequences were obtained from 34 generic HTS datasets [Publication II], 

while five generic HTS datasets have 0-16 WNV sequence reads [Publication IV]. In this study, 

WNV whole-genome sequences were assembled from generic HTS datasets with >500 WNV 

sequence reads. Selected generic HTS datasets (e.g., with few WNV sequences or samples with 

suspected USUV co-infection) were examined using a metagenomic analysis tool to check for 

other potential pathogens that may have caused infections in corresponding birds and horses 

(Figure 4, violet line). Interestingly, sequence reads from USUV and an unclassified 

https://creativecommons.org/licenses/by/4.0/
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peribunyavirus were also detected in these tested HTS datasets. Hence, an EWS utilizing 

repurposed generic HTS datasets was established since these datasets can contain abundant 

sequence information from novel, unexpected, and silently circulating pathogens [Publication 

IV].  

Generic HTS libraries that yield insufficient virus sequences can be subjected to re-

sequencing to generate more sequence reads and complete viral genome sequences. However, 

re-sequencing the same HTS libraries can be costly, especially when these libraries were derived 

from samples with low virus-to-host nucleic acid (NA) ratios. For example, only five WNV 

sequence reads were detected in datasets derived from snowy owl #1 samples 

(lib03038:lib03039), consisting of 11,308,585 sequence reads [Publication IV]. Therefore, re-

sequencing these libraries to acquire the WNV whole-genome sequence is impractical, and 

other HTS approaches should be considered.  

The virus enrichment approach for HTS can also involve the propagation of virus-

positive samples in cell culture. However, virus cultivation can be time-consuming, labor-

intensive, and the virus may not successfully replicate in cell culture [119,123]. For example, 

USUV failed to replicate in the Vero B4 cell culture after attempting to co-propagate WNV and 

USUV [Publication III, Table S4]. As a result, only WNV sequence reads were detected in the 

HTS dataset derived from harvested cell culture supernatant inoculated with a WNV and USUV 

double-positive tissue sample (5 days post-infection).  

This study employed two established targeted HTS approaches to generate viral whole-

genome sequences of samples with low viral loads [reviewed in 50]. In particular, the probe-

based target-enrichment HTS approach [64] was utilized to improve WNV sequence detection 

in six generic sequencing libraries [Publications II and III] and the USUV-specific multiplex 

PCR-HTS approach [68] was applied on samples with WNV and USUV co-infection. These 

respective targeted approaches yielded three WNV whole-genome sequences, three WNV 

partial genome sequences, five USUV whole-genome sequences, and one nearly complete USUV 

genome sequence [Publications II and III]. Hence, these targeted HTS approaches were 

incorporated in the unified pipeline as supplementary methods for acquiring viral genome 

sequences (Figure 4, green line).  

Both targeted HTS approaches have higher sensitivity in sequencing target viruses than 

the generic HTS approach. The PCR amplicon-HTS approach is typically pathogen species-

specific; however, few mismatches between target genomes and primers can prevent successful 

amplification. On the contrary, the probe-based target-enrichment HTS approach can 

simultaneously enrich several virus species [reviewed in 50]. For instance, Wylezich and 

colleagues [64] designed a probe panel targeting >30 viral pathogen sequences and reported the 

simultaneous enrichment of different virus species in a sequencing library. However, the latter 
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was not utilized for USUV genome sequencing since USUV-specific probes were not included 

in this specific panel [64]. In general, datasets produced using targeted HTS approaches are not 

optimal for the screening part of the proposed EWS due to their limited ability to sequence 

novel and highly divergent pathogens [reviewed in 50]. Nevertheless, datasets from the target 

enrichment HTS approach can still contain sequences from novel viruses with low sequence 

identities to the probe panel since this approach can tolerate a few mismatches between probes 

and target sequences [64]. Thus, these datasets should also be investigated using the EWS.   

This unified pipeline delivered viral whole-genome sequences that facilitated the 

genomic-based investigation of the 2018-19 WNV epidemic in Germany using phylogenetic and 

phylogeographic analyses [Publication II] and presented substantial evidence for WNV and 

USUV co-infection in avian hosts [Publication III; see section 5.1]. In addition, the EWS detected 

sequences from USUV and other potential pathogens using the same generic HTS datasets 

derived from the WNV epidemic. Among these sequences, two new viruses were further 

characterized using genomic analyses, molecular-based screening, and virus cultivation 

[Publication IV, see section 5.2]. This thesis recommends incorporating the unified and generic 

workflow in the key response to viral outbreaks [Publication I] to enhance the outbreak 

preparedness and response strategy (Figure 4). 
 

5.1 HTS-based outbreak investigation: a response to the West Nile virus 

epidemic accompanied by a Usutu virus epizooty in Germany 2018-19 
 

In 2018, WNV-infection in birds and horses was reported for the first time in Germany, 

followed by the emergence of a WNV epidemic the following year. The WNV epidemic caused 

considerably higher numbers of infected birds and horses, and the first autochthonous human 

cases and WNV-positive mosquito samples were reported [Publication II]. The WNV epizooty 

and epidemic overlapped with the ongoing USUV epizooty in Germany. USUV has been 

circulating since 2010 [124–128]. Six suspected WNV and USUV co-infection cases in birds were 

reported during the first two years of WNV and USUV co-circulation in Germany. These samples 

have high USUV-specific Cq values (28.76-37.83), with two samples considered “possible” USUV-

positive (Cq values > 37). Hence, WNV and USUV genome sequences were obtained to present 

the first reliable evidence for flavivirus co-infection in captive and wild birds [Publication III].  

The wild and resident bird monitoring study from 2017-18 was the latest published 

information regarding the USUV epizooty in Germany [129]. Hence, phylogenetic analyses of 

USUV partial and whole-genome sequences provide preliminary insights regarding the 2019 

USUV epizooty in Germany. These phylogenies exhibited the further dispersal of the USUV 

lineage Africa 3 and the probable overwintering of USUV lineage Europe 2 in Germany. 

However, phylogenetic inferences using USUV partial envelope gene sequences were 
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insufficient to trace the immediate origin of the USUV lineage Africa 3. Moreover, a 

comprehensive genomic epidemiology investigation for USUV epizooty was not performed in 

Publication III since only six samples were sequenced out of >1,200 USUV-positive cases in 

Germany from 2018-19. Additionally, only partial envelope sequences were available from the 

2017-18 USUV epizooty in Germany [129].  

In contrast, the phylogenetic and phylogeographic inferences allow comprehensive 

analyses of the 2018-19 WNV epidemic in Germany. West Nile virus variants involved in this 

epidemic belonged to the Central and Eastern European clade (CEC) and branched into six 

distinct subclades. The majority of the German WNV variants clustered into a well-defined 

monophyletic subclade named the “Eastern German Clade (EGC),” including viruses derived 

from humans, mosquitoes, birds with WNV and USUV co-infection, and a horse [Publications 

II and III].   

It was hypothesized that the WNV EGC subclade was introduced to Germany as a single 

introduction event [Publication II]; therefore, branching within the WNV EGC subclade was 

further investigated using two phylogenetic inferences (Figure 5). Interestingly, the ML 

phylogenetic tree demonstrated six distinct branches with reliable bootstrap replicates (≥70%) 

within the WNV EGC subclade, and minimal substitutions per site were observed among WNV 

EGC variants (Figure 5C). In contrast, the Bayesian MCC inference exhibited four distinct 

branches with only one internal node having a significant posterior probability value (pp ≥0.9; 

Figure 5D). These two phylogenetic trees demonstrated almost similar topologies except for two 

differences. First, WNV variants that clustered in the WNV EGC branch 3 of the Bayesian MCC 

tree were found in three distinct branches (3.1 -3.3) of the ML phylogenetic tree. Second, the 

WNV LR743430 had inconsistent clustering between these phylogenetic trees (Figure 5; red 

dot). These inconsistencies probably arise due to the low frequency of nucleotide substitutions 

among WNV EGC variants. Furthermore, the factor of time and location were included in the 

reconstruction of the Bayesian MCC tree.  

These phylogenetic inferences provide hints that the WNV EGC subclade was more 

likely introduced to Germany in multiple introduction events. For example, WNV EGC branch 

1 variants are relatively divergent compared to other WNV EGC variants (Figure 5C). Moreover, 

the most recent common ancestor (MRCA) between branch 1 variants and branches 2-4 variants 

was estimated to exist around 2012 (Figure 5D). Thus, if the WNV EGC subclade was introduced 

to Germany in a single event, then the MRCA of WNV EGC variants should have circulated in 

Germany some years before the first report of WNV-infection in 2018. However, this assumption 

is highly unlikely since the nationwide surveillance network, which systematically monitors 

WNV in birds, horses and mosquitoes, reported all WNV-negative results until 2018 [124–132].  
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Figure 5. Phylogenetic inferences of European West Nile virus (WNV) lineage 2 complete coding sequences. Overview of 
maximum likelihood phylogenetic tree (A.) and Bayesian maximum credibility clade phylogenetic tree (B.) using European 
WNV lineage 2 sequences. (C.) Magnified view of maximum likelihood phylogenetic tree focusing WNV Eastern German clade 
variants. Scale bar indicates units of substitutions per site. Tip labels include the accession number and sample collection 
year. Sample locations were also included in variants collected >200 kilometers (blue dot) from the location of clusters and 
the variant with inconsistent clustering. Bootstrap values ≥70% were shown and significant values are highlighted in red. 
Figures showed the host species origin of the WNV sequences; otherwise, WNV sequences were acquired from avian hosts. 
(D.) Magnified view of Bayesian maximum credibility clade phylogenetic tree focusing WNV Eastern German clade variants. 
The scale at the bottom of the tree represents calendar years. Tip labels include accession number, host species and bird 
habitat: Z – zoo birds and W – wild bird. Sample locations were also included in variants collected >200 kilometers from the 
location (blue dot; labeled in the box) of clusters and the variant with inconsistent clustering. Posterior probabilities  ≥60% 
were shown and significant values are highlighted in red. The estimated time to the most recent common ancestor (MRCA) 
of three nodes were shown with 95% posterior time intervals in parentheses (HPD -highest posterior density). Regarding the 
main differences of these trees: Distinct branches in this phylogenetic tree were indicated by numbers 1-4. Variants that 
clustered in the WNV EGC branch 3 in the Bayesian MCC tree were distributed in three distinct branches in ML phylogenetic 
tree WNV EGC branches 3.1-3.3. A red dot indicated the variant that inconsistently clustered in two phylogenies. Images of 
samples were acquired from Pixabay under the Pixabay license (https://pixabay.com/service/terms/#license). 
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Therefore, WNV EGC branch 1 variants are most likely transferred to Germany in a separate and 

recent introduction event. 

Furthermore, the Bayesian MCC tree also suggested that WNV EGC branch 2-4 variants 

were introduced to Germany in multiple introduction events (Figure 5D). The MRCA of WNV 

EGC branch 2-4 variants was estimated to exist around May/June 2015, while WNV EGC branch 

3-4 variants’ MRCA probably existed around 2016. However, uncertainties of these calculated 

ages overlapped, as shown by 95% HPD values in nodes 2 and 3. Moreover, unknown factors 

may increase these uncertainties (Figure 5D). Given these data, probable locations and ages of 

these MRCA and the number of WNV EGC introduction events in Germany cannot be precisely 

estimated.  

The majority of WNV EGC branch 3 (3.1-3.3) and branch 4 variants were detected in 

clusters of WNV cases (hotspot areas) in Saxony and Saxony Anhalt (branch 3), and Berlin 

(branch 4; Figure 5D). These geographical clustering can indicate that their progenitors 

successfully caused localized outbreaks. Moreover, very few variants from these branches were 

detected >200 km outside of these clusters, i.e., MH986056 (Rostock) and MN794939 

(Hamburg). WNV MH986056 and MN794939 were detected in a blackbird and a dunnock, 

categorized as both resident and partial migrant birds [130,133]. These birds potentially got 

infected within these WNV-infection hotspot areas and dispersed these WNV variants to 

Rostock and Hamburg during migration. Thus, bird migration and movement patterns should 

be monitored in more detail to understand the local WNV dispersal.  

As of 2019, progenitors of WNV EGC branches 3 and 4 variants can be considered the 

most successful WNV German variants for causing local WNV outbreaks. However, which 

factors made them more successful than other WNV EGC variants? In genetic factors, WNV 

German variants have low and homogenous genetic variations across their genomes, although 

the WNV EGC subclade shared a distinct nonsynonymous mutation in their NS3 gene 

[Publication II; Figure 7]. However, it can only be hypothesized whether this unique mutation 

provided the WNV EGC variants with an extra advantage. So far, WNV MH986056, MN794939, 

and other WNV EGC variants (branches 1 and 2) have not yet been reported to cause a localized 

outbreak. Hence, ecological and environmental factors may have played a more important role 

in a variant’s ability to cause outbreaks, as stated in the review of Rizzoli and colleagues [134].  

Potential WNV mosquito vectors occur throughout Germany and are active within the 

vegetative seasons [135]. Moreover, most reported WNV cases were collected in areas with a low 

average extrinsic incubation period (EIP), a temperature-dependent variable that calculates 

mosquitoes’ ability to transmit WNV [Publication II, Figure 1]. Briefly, WNV transmission risks 

increase (=decrease EIP) as average local temperatures increase. Hence, these newly introduced 

variants may have comparable opportunities for causing outbreaks. However, changes in 
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temperature and EIP in the following years after WNV introduction should also be accounted. 

For instance, the decreased average temperatures in Poing and Rostock in 2019 may have 

hindered the WNV re-emergence in these areas [Publication II].   

In terms of vertebrate hosts, WNV is an ecological generalist [136] and feeding patterns 

of most WNV vectors have extreme host heterogeneity, enabling multi-host species WNV 

transmission [137–139]. The absence of clustering based on host species in the WNV EGC 

subclade supports these statements (Figure 5D). However, different avian species have varying 

susceptibility and reservoir competence to WNV. For instance, avian species under taxonomic 

orders Passeriformes, Charadriiformes, Falconiformes, and Strigiformes can be considered 

competent WNV reservoirs [140]. The ecology of WNV and its mosquito vectors demonstrate 

that areas with dense naïve and susceptible bird populations (e.g., zoological gardens) are highly 

vulnerable to a WNV outbreak emergence, as shown in, e.g., Berlin [Publication II]. This factor 

likely increased the success of WNV EGC branches 3 and 4’s progenitors since several of their 

member variants were derived from competent bird species collected in zoos (Figure 5D).  

However, WNV EGC branch 1 variants (Wittenberg), LR743448 (Cottbus), and LR743437 

and LR743437 (Poing) were also derived from competent and susceptible birds collected in 

zoological gardens, but a local outbreak was not detected in these areas. The detection of WNV 

infection in captive birds is a good indicator that a local mosquito population infected with 

WNV is present in the area. Hence, varying densities of potential WNV vectors and competent 

bird populations may have caused different WNV transmission rates in these zoological 

gardens.  

Moreover, an introduced WNV variant most likely needs sufficient time to adapt to a 

new area successfully. The review from Pesko and Ebel [136] highlighted the evidence of WNV 

geographic clustering being only observed a few years after a WNV variant was introduced into 

a new area. In this study, strong geographical clustering was only observed a year after the first 

report of WNV-infection within Saxony and Saxony-Anhalt (branch 3) and Berlin (branch 4). 

Hence, the outbreak potential of other WNV variants is unclear since most of them were 

collected in 2019 [Publication II, Figure 2]. Therefore, the situation of the 2020 WNV epidemic 

in Germany can provide better insights into whether other WNV variants have managed to 

cause outbreaks.  

This thesis provided evidence that the presence of susceptible bird species and time have 

important roles in a WNV variant’s outbreak potential. However, this study cannot elucidate 

whether a specific mutation provided advantages for the WNV EGC variants; hence, this 

hypothesis has to be studied in more detail in further analyses. In addition, including detailed 

information regarding the density of competent host and vector populations in WNV-infected 

areas, such as Kampen and colleagues’ study [135], may elucidate their effects on the outbreak 



Results and Discussion 
 

 

115 

potential of a WNV variant. Other factors were also not included in this analysis, including 

sampling bias, mosquito species distributions, human interventions, host immunity, and others. 

Hence, this study suggested to incorporate these factors in future WNV phylogenetic analyses 

to understand WNV lineage 2 dispersal, establishment, and viral population diversity.     

Within the European context, geographical-based clustering in the WNV lineage 2 

phylogenetic tree was observed in variants from Italy, Greece, and Germany (EGC subclade). In 

contrast, WNV variants from Austria, the Czech Republic, Slovakia, and Germany (non-EGC 

variants) are interspersed in the Bayesian MCC tree [Publication II, Figure 2]. These 

observations were supported by Zehender and colleagues’ [141] phylogeographic analysis, which 

revealed that Greece and Italy are receiving areas (sinks) of the European WNV lineage 2 

migration while Hungary and Austria serve as radiation centers (virus sources). Therefore, it is 

interesting to observe Germany’s role in WNV lineage 2 migration and dispersal in Europe. 

Recently, Sikkema and colleagues [142] demonstrated that WNV CEC variants from Utrecht, the 

Netherlands (MW036633-MW036634: mosquito pools from 2020) clustered with WNV CEC 

variant from Cottbus, Germany (LR743448: captive bird from 2019). However, the most recent 

ancestors, origin and mode of dispersal of these variants have to be further investigated.  

Although Publications II and III provided 42 WNV whole-genome sequences from the 

2018-19 WNV epidemic in Germany, missing WNV whole-genome sequences from different  

European countries (from 2004 to present), especially from Eastern Europe, hinder the more 

precise reconstruction of the phylogenetic and phylogeographic inferences of the WNV lineage 

2 circulation in Europe and Germany. Oude Munnink and colleagues [68] encountered similar 

problems in reconstructing the evolutionary history of Usutu virus in Europe even when their 

study included 112 USUV whole-genome sequences from the Netherlands (2016-18). Their study 

could not elucidate the emergence of USUV lineages Africa 3 and Europe 2 in the Netherlands 

since USUV whole-genome sequences from other European countries (e.g., Germany, Belgium) 

are unavailable.  

Since the countrywide WNV and USUV monitoring and sequencing are inadequate to 

elucidate the evolutionary histories of these viruses, this study strongly recommends systematic 

WNV and USUV whole-genome sequencing from representative virus-positive samples (e.g., 

birds, mosquitoes, horses, humans) collected in different European countries at continuous 

sampling periods, including past and recent outbreaks. This study also highlights the necessity 

of a “One-health” approach in monitoring WNV and USUV infections in clinical, veterinary, and 

environmental settings. Moreover, long-term international collaboration among countries 

affected by WNV or USUV is highly recommended to enhance the exchange of information, 

protocols, and strategies for the surveillance and control of these pathogens. Different research 

institutions are also encouraged to employ an open data-sharing platform, such as the 
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Nextstrain [90], to provide real-time interactive analyses of WNV or USUV evolution and 

transmission in Europe.  

5.2 Advanced outbreak preparedness through an early warning system: A 

pilot study using the 2018-19 WNV epidemic generic HTS datasets 
 

An early warning system (EWS) enables the timely detection of emerging pathogens, 

which is helpful in preventing a “spillover event” or containing an outbreak. However, utilizing 

metagenomic HTS for EWS can be time-consuming, labor-intensive, and expensive. As a 

possible alternative, this study proposed to exploit the rich sequence information found in 

generic HTS datasets obtained from previous surveillance and outbreak studies to screen for 

sequences of novel pathogens.   

The proposed EWS consists of pathogen screening using generic HTS datasets and 

pathogen characterization techniques to determine the relevance of detected pathogens in 

public and animal health. This EWS is a generic platform, which can be established when the 

following components are available: (1) generic HTS datasets, (2) bioinformatic tools for 

metagenomic analysis and phylogenetic analyses, (3) samples associated with HTS datasets, and 

(4) capacities for HTS, RT-qPCR, and cell and virus culture [Publication IV, Figure 1]. These 

components are also utilized in the routine HTS-based outbreak investigation. This EWS aimed 

to maximize the extracted information from outbreak and surveillance samples without 

spending additional resources for sample collection and sequencing. However, the added 

sequence information offered by the EWS depends on samples (e.g., sample type and quality, 

pathogen concentration) processed by previous studies. Moreover, the sizes of available HTS 

datasets may also affect EWS’s ability to detect other pathogens.   

In this pilot study, the EWS investigated generic HTS datasets derived from the 2018-19 

WNV epidemic in Germany, focusing on potential virus pathogens. The metagenomic analysis 

pipeline “RIEMS” [143] detected sequences of several putative pathogens, including bacteria, 

protozoa, WNV, and other viruses. However, characterizing all detected putative pathogen 

sequences can be a highly demanding task. Moreover, some sequences may have incorrect 

taxonomic classifications. Therefore, stepwise criteria were specified in selecting suspected 

pathogens for the EWS reporting (criteria I-II) and EWS downstream analyses (criteria I-IV). In 

detail, these criteria include: (I) virus sequence reads must have true-positive taxonomic 

classification at least in the realm level; (II) sequences are unlikely to originate from other 

samples; (III) suspected viruses should have adequate sequence information; and (IV) suspected 

viruses can be associated with vertebrate hosts.  

Criterion I requires that pathogen sequences have accurate taxonomic classification. 

Taxonomic classifications are based on the contents of the selected reference database, such as 
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public databases (e.g., Genbank nucleotide collection nr/nt database). Public databases can 

contain sequences with erroneous taxonomic assignments since these databases are not 

curated. For example, several sequence reads initially classified as Guanarito mammarenavirus 

were, in fact, identified as ribosomal RNA sequences from eukaryotic organisms after 

performing a confirmatory homology search (Table 2). 
 

Table 2. Representative virus sequences (non-WNV) detected in generic HTS datasets obtained from the 2018-
19 WNV epidemic. The red box and “X” indicate that the sequence did not attain the respective criterion, the 
orange box and “?” indicate difficulty in verification, and the green box denotes that the criterion was satisfied. 

Virus Family Species Library number Count I II III IV Assessment 

Arenaviridae Guanarito 
mammarenavirus 

lib02898, 
lib03038:lib03039  
lib03041:lib03042 
lib03383,lib03417
lib03431 

1-61 X    False hit. Sequence 
from eukaryotic rRNA 
sequences.   

Peribunyaviridae Bunyamwera 
Orthobunyavirus 

lib03426, 
lib03038: 
lib03039 

1;  
1 

X    False hit. Sequence 
from eukaryotic rRNA 
sequences.  

Rhabdoviridae European bat 1 
lyssavirus 

lib02898 2  X   False hit. True hit but  
a cross-contaminant 

Phenuiviridae Rift Valley fever 
phlebovirus 

lib03431; 
lib03432; 
lib03433 

1; 
1; 
2 

 ?   Unclear hit. Possible 
cross-contaminants but 
with unknown source.1  

Reoviridae Avian 
orthoreovirus 

lib03428 2   X  Reported in the EWS 
Few sequence 
information.  

Unclassifired 
Ribovaria 

Wuhan insect  
virus 27 

lib03381 15    X Reported in the EWS 
Invertebrate associated 
virus 

Myoviridae Escherichia virus 
VR7 

lib03423 1    X Reported in the EWS 
Bacteriophage 

Totiviridae Eimeria stiedai 
RNA virus 1;  
Eimeria tenella 
RNA virus 1; 

lib03433 76   X X Reported in the EWS 
Few sequence 
information; Protist 
associated virus 

Chrysoviridae Eskilstorp virus lib03481 3   X X Reported in the EWS 
Few sequence 
information; Mosquito 
associated virus 

Mesoniviridae Alphamesonivirus 
1 

lib03482 24260
7 

   X Reported in the EWS 
Mosquito-associated 
virus 

Flaviviridae Usutu virus lib03038: 
lib03039, 
lib03422 

50;  
 

2 

  X  Reported in the EWS 
Too few sequence 
information2  

Reoviridae Umatilla virus 
species 

lib03381, 
lib03422,lib03433  

1588;
1; 960   

    EWS reporting + 
downstream analysis 

Peribunyaviridae Peribunyaviridae 
species 

lib03038:lib03039 
lib03041:lib03042 

151;  
9 

    EWS reporting + 
downstream analysis 

1 – Colleagues are informed for follow-up investigations. 2 – Confirmed the suspicion for WNV and USUV co-infection 

 

Criterion II checks that these sequences are unlikely to originate from other samples 

(cross-contaminants). It also excludes falsely labeled sequence reads due to index hopping and 

contaminants from run-to-run carryover, commonly reported in the Illumina sequencing 

platform [49,55]. For instance, two European Bat 1 lyssavirus (EBLV-1) sequences were detected 

in lib02898. These sequences were considered contaminants since lib02898 and EBLV-1-positive 
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HTS libraries were processed in parallel (Table 2). The alignment of EBLV-1 sequences from 

these sequencing libraries showed very high nucleotide sequence identities. Suspected virus 

sequences, which passed criteria I and II, were reported to respective colleagues from different 

institutions for follow-up investigations. 

In some cases, tracing the origin of viral sequences can be challenging. For example, Rift 

Valley fever virus (RVFV) sequence reads were detected in three generic HTS datasets derived 

from bird samples (Table 2). RVFV sequences are suspected cross-contaminants since an RVFV-

related outbreak has not been reported in Europe [144]. Moreover, RVFV-related diseases are 

commonly reported in humans, ruminants, and camels [144].  

In this EWS, potential sources of RVFV sequences were traced to confirm whether they 

are contaminants or derived from a potential circulating RVFV strain in Germany. The EWS 

traced an RVFV-positive library that was processed before the preparation of lib03431, lib03432, 

and lib03433. Short RVFV sequences detected by the EWS were aligned with RVFV sequences 

obtained from the laboratory and public database. This alignment demonstrated high 

nucleotide identities (>99%), which led to an inconclusive assessment. Thus, the HTS library 

lib03433 was also subjected to probe-based target enrichment to enhance RVFV sequence 

detection; however, an RVFV sequence was not detected in the targeted HTS dataset. This result 

suggests that RVFV sequences were derived from a run-to-run carryover or the target-

enrichment HTS approach is inefficient for RVFV sequence enrichment. However, Wylezich 

and colleagues [64] demonstrated that the same probe-based target-enrichment HTS approach 

effectively enriches RVFV sequence reads. Thus, in the selected example, RVFV sequences can 

be considered as contaminants. For further confirmation, this finding was also forwarded to 

colleagues from the reference laboratory for follow-up investigations. 

Criteria III and IV are specified for selecting potential viruses for EWS downstream 

analyses. Criterion III requires that the sequence information should be adequate for further 

virus characterization. For instance, RIEMS detected two avian orthoreovirus sequences in the 

dataset lib03428, which are inadequate for RT-qPCR design and reconstruct a reliable 

phylogenetic tree. Thus, the EWS investigation for this putative virus was paused until new 

sequences will be found in other datasets. However, some relevant viruses (e.g., disease-related 

viruses) may not always comply with criterion III due to sensitivity issues of the generic HTS 

approach, as described in the study of Schlaberg and colleagues [120]. When there is a hint that 

the virus sequence is related to a relevant infection, then an appropriate HTS approach should 

be performed to increase virus sequence reads. For example, ≤60 USUV sequence reads were 

detected in two generic HTS datasets (Table 2), providing stronger evidence for WNV and USUV 

co-infection in their respective samples. However, these USUV sequences were inadequate for 

USUV subspecies classification and reconstruction of a reliable USUV phylogenetic tree. Thus, 
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an USUV-specific multiplex PCR–HTS approach was employed to obtain adequate USUV 

genome sequences, which were finally analyzed in Publication III.  

Criterion IV requires that the putative viruses can be associated with vertebrate hosts. 

The RIEMS pipeline classified several sequences as viruses associated with bacteria, protists, 

and invertebrates (Table 2). Moreover, the phylogenetic inference demonstrates that viral 

sequences from dataset lib03482 clustered with mosquito-associated viruses (Mesoniviridae) 

[Publication IV, Figure S1], suggesting that this virus has a low probability of infecting vertebrate 

hosts. Thus, the EWS investigation for these viruses was stopped at this point.  

Virus sequences classified as mosquito-borne Reoviridae (Umatilla virus; UMAV) and 

unclassified Peribunyaviridae (Hedwig virus; HEDV) comply with all four criteria for the EWS 

downstream analysis. Nearly complete coding sequences of UMAV and partial genome 

sequences of HEDV were detected in a few generic HTS datasets (Table 2). Although their 

closest relatives were detected from mosquitoes [145–149], these virus sequences were 

discovered in HTS libraries derived from WNV-infected bird samples.  

These two potential pathogens were characterized using genetic analyses, molecular 

screening, and attempts for virus cultivation. The UMAV coding sequences were completed by 

re-sequencing lib03381 and lib03433, while an initial RT-qPCR was developed based on HEDV 

partial genome sequences to select the best candidate sample for the generic HTS approach 

[Publication IV]. The HEDV complete coding sequences were assembled from dataset 

lib03038:lib03039 and dataset lib03211 derived from the tissue sample with the highest HEDV 

RNA concentration. Newly developed virus-specific RT-qPCR assays detected 8 (6.4% of 125 

tested bird samples) HEDV-positive captive birds and 14 (12.5% of 112 tested bird samples) 

UMAV-positive wild birds in small sample sets. Another UMAV-positive sample, confirmed by 

the metagenomic analysis, was not tested using RT-qPCR assay since its RNA sample was 

already depleted. Splenomegaly was observed in seven UMAV only-positive wild birds, which 

suggests an acute infection. Meanwhile, HEDV only-positive birds demonstrated varying 

diagnoses in their necropsy reports. Furthermore, Umatilla virus was successfully propagated in 

a mosquito cell culture [Publication IV]. 

The developed EWS also aims to enhance outbreak responses by providing viral genome 

sequences essential for developing molecular and serological diagnostic assays and targeted-

HTS approaches (Figure 4). Virus-specific RT-qPCR assays were already developed in 

Publication IV, while a new probe panel for the target enrichment HTS approach was designed 

using UMAV and HEDV genome sequences for future outbreak investigation. However, the 

EWS does not include virus characterization techniques that can prove the association of newly 

discovered viruses with the disease based on Henle-Loeffler-Koch’s postulates [118] or the 

modified metagenomic Henle-Loeffler-Koch’s postulates [27]. Nevertheless, the EWS provides 
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important contributions to test these postulates. Virus-specific RT-qPCR assays are essential 

tools to screen for viruses in healthy and diseased animals. Moreover, the propagated Umatilla 

virus in C6/36 mosquito cells can serve as starting material to produce pure virus stocks, which 

can be utilized in infection trials and pathogenicity studies or for the development of additional 

diagnostic assays (e.g., virus neutralization test) [1]. 
 

5.3 Conclusions 
 

The here reported study provided evidence that the unified and generic pipeline is an 

effective tool to jointly investigate outbreaks and discover potential pathogens using the same 

generic HTS datasets. As a proof-of-concept, this pipeline obtained 34 WNV whole-genome 

sequences and detected sequences of USUV and other unexpected viruses from generic HTS 

datasets derived from the 2018-19 WNV epidemic and USUV epizooty in Germany. In addition, 

two targeted HTS approaches were incorporated in this pipeline to resolve the limitation of the 

generic HTS approach in obtaining sufficient virus sequences in samples with low viral loads.  

Viral genome sequences acquired by the unified pipeline were utilized in understanding 

the 2018-19 WNV epidemic in Germany using phylogenetic and phylogeographic analyses, 

providing substantial evidence for the first reported WNV and USUV co-infection cases in birds, 

and detecting and characterizing suspected virus pathogens using the EWS. In particular, this 

EWS led to the first detection of UMAV in Europe and the discovery of a novel peribunyavirus 

in birds. Therefore, incorporating this unified and generic pipeline in routine outbreak 

investigation workflows, especially with investigations adhering to the “One-Health” approach, 

can advance preparedness and response strategies by early detection of novel and unexpected 

pathogens before they spillover to humans or cause a larger epizooty in animal populations.   

As an outlook, this unified pipeline can also utilize third-generation sequencing 

technologies (e.g., Oxford Nanopore Technologies), especially in combination with the PCR 

amplicon HTS approach. For instance, the multiplex PCR assays specific for USUV and Zika 

virus were designed and optimized for second-generation and third-generation HTS 

technologies [66,150]. However, further development and refinement are needed to incorporate 

third-generation sequencing technologies with the generic HTS approach and the target 

enrichment HTS approach since they have high reported error rates (10–30%) and relatively 

low-throughput (<100,000 reads per flow cell) [151,152]. 
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  6. Summary 
 

 

Infectious diseases remain a significant threat to the wellbeing of humans and animals 

worldwide. Thus, infectious disease outbreaks should be investigated to understand the 

emergence of these pathogens, leading to prevention and mitigation strategies for future 

outbreaks. High-throughput sequencing (HTS) and bioinformatic analysis tools are reshaping 

the surveillance of viral infectious diseases through genome-based outbreak investigations. In 

particular, analyzing generic HTS datasets using a metagenomic analysis pipeline enable 

simultaneous identification, characterization, and discovery of pathogens.   

In this thesis, generic HTS datasets derived from the 2018-19 WNV epidemic and USUV 

epizooty in Germany were evaluated using a unified pipeline for outbreak investigation and an 

early warning system (EWS). This pipeline obtained 34 West Nile virus (WNV) whole-genome 

sequences and detected several sequences of Usutu virus (USUV) and other potential 

pathogens. A few WNV and USUV genome sequences were completed using targeted HTS 

approaches. Phylogenetic and phylogeographic inferences, reconstructed using WNV whole-

genome sequences, revealed that Germany experienced at least six WNV introduction events. 

The majority of WNV German variants clustered into the so-called “Eastern German clade 

(EGC),” consisting of variants derived from birds, mosquitoes, a horse, and human cases. The 

progenitors of the EGC subclade probably circulated within Eastern Europe around 2011. These 

flavivirus genome sequences also provided substantial evidence for the first reported cases of 

WNV and USUV co-infection in birds. Phylogenetic inferences of USUV genome sequences 

showed the further spread of the USUV lineage Africa 3 and might indicate the overwintering 

of the USUV lineage Europe 2 in Germany. Among viral sequences reported in the EWS, Hedwig 

virus (HEDV; a novel peribunyavirus) and Umatilla virus (UMAV; detected in Europe for the 

first time) were investigated using genome characterization, molecular-based screening, and 

virus cultivation since these viruses were suspected of causing co-infections in WNV-infected 

birds. The EWS detected overall 8 HEDV-positive and 15 UMAV-positive birds in small sets of 

samples, and UMAV could be propagated in a mosquito cell culture Future studies are necessary 

to investigate the pathogenicity of these viruses and their role in the health of wild and captive 

birds.   

 In conclusion, this study provided a proof-of-concept that the developed unified and 

generic pipeline is an effective tool for outbreak investigation and pathogen discovery using the 

same generic HTS datasets derived from outbreak and surveillance samples. Therefore, this 

thesis recommends incorporating the unified pipeline in the key response to viral outbreaks to 

enhance outbreak preparedness and response. 
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7. Zusammenfassung 
 

Infektionskrankheiten stellen nach wie vor eine erhebliche Bedrohung für das 

Wohlergehen von Menschen und Tieren weltweit dar. Daher sollten Ausbrüche von 

Infektionskrankheiten untersucht werden, um die Entstehung dieser Erreger zu verstehen und 

Präventions- sowie Eindämmungsstrategien für künftige Ausbrüche entwickeln zu können. Die 

Hochdurchsatz-Sequenzierung (HTS) und bioinformatische Analysetools verändern die 

Überwachung viraler Infektionskrankheiten durch genombasierte Ausbruchsuntersuchungen. 

Insbesondere die Analyse von generischen HTS-Datensätzen mit Hilfe einer metagenomischen 

Analysepipeline ermöglicht die gleichzeitige Identifizierung, Charakterisierung und 

Entdeckung von Pathogenen.   

In dieser Arbeit wurden generische HTS-Datensätze, die von der WNV-Epidemie 2018-

19 und der USUV-Epizootie in Deutschland stammen, mit einer einheitlichen Pipeline für die 

Ausbruchsuntersuchung und einem Frühwarnsystem (EWS) ausgewertet. Diese Pipeline 

lieferte 34 Ganzgenomsequenzen des West-Nil-Virus (WNV) und wies mehrere Sequenzen des 

Usutu-Virus (USUV) und anderer potenzieller Erreger nach. Einige WNV- und USUV-

Genomsequenzen wurden durch gezielte HTS-Ansätze vervollständigt. Phylogenetische und 

phylogeographische Schlussfolgerungen, die anhand von WNV-Ganzgenomsequenzen 

rekonstruiert wurden, ergaben, dass es in Deutschland mindestens sechs WNV-

Einschleppungsereignisse gab. Die Mehrzahl der deutschen WNV-Varianten stammt von Fällen 

bei Vögeln, Stechmücken, einem Pferd und Menschen und wurde in der so genannten "Eastern 

German Clade" (EGC) zusammengefasst. Die Vorläufer der EGC-Subklade zirkulierten 

wahrscheinlich um 2011 in Osteuropa. Diese Flavivirus-Genomsequenzen lieferten auch 

wesentliche Beweise für die ersten gemeldeten Fälle von WNV- und USUV-Koinfektionen bei 

Vögeln. Phylogenetische Rückschlüsse aus den USUV-Genomsequenzen zeigten die weitere 

Verbreitung der USUV-Linie Afrika 3 und könnten auf die Überwinterung der USUV-Linie 

Europa 2 in Deutschland hinweisen. Von den im EWS gemeldeten Virensequenzen wurden das 

Hedwig-Virus (HEDV; ein neuentdecktes Peribunyavirus) und das Umatilla-Virus (UMAV;  

zum ersten Mal in Europa entdeckt) mittels Genomcharakterisierung, molekularbasiertem 

Screening und Viruskultivierung untersucht, da diese Viren im Verdacht standen, Co-

Infektionen bei WNV-infizierten Vögeln zu verursachen. Das EWS wies insgesamt 8 HEDV-

positive sowie 15 UMAV-positive Vögel in kleinen Probensätzen nach außerdem konnte UMAV 

in einer Stechmücken-Zellkultur vermehrt werden. Es sind zukünftig weitere Studien 

notwendig, um die Pathogenität dieser Viren und ihre Rolle für die Gesundheit von Wildvögeln 

und in Gefangenschaft gehaltenen Vögeln zu untersuchen.   
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Zusammenfassend lässt sich sagen, dass diese Studie den Nachweis erbracht hat, dass 

die entwickelte einheitliche und generische Pipeline ein wirksames Instrument für die 

Untersuchung von Ausbrüchen und die Entdeckung von Krankheitserregern ist, wobei 

dieselben generischen HTS-Datensätze verwendet werden, die aus Ausbruchs- und 

Überwachungsproben stammen. Daher wird in dieser Arbeit empfohlen, die einheitliche 

Pipeline in die zentrale Reaktion auf Virusausbrüche einzubeziehen, um die Bereitschaft und 

Reaktion auf Ausbrüche zu verbessern. 
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