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Abstract
We propose a new scattering mechanism of Rydberg excitons, i.e., those with high principal
quantum numbers, namely scattering by coupled LO phonon-plasmon modes, which becomes
possible due to small differences in energies of the states due to different quantum defects.
Already in very low-density electron–hole plasmas these provide a substantial contribution to
the excitonic linewidth. This effect should allow determining plasma densities by a simple line
shape analysis. Whenever one expects that low-density electron–hole plasma is present the
plasmon induced broadening is of high significance and must be taken into account in the
interpretation.

Keywords: Rydberg excitons, electron–hole plasma, scattering processes, coupled
phonon-plasmon modes
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1. Introduction

The experimental observation of excitons with high quantum
numbers up to n = 25 in cuprous oxide Cu2O at low tem-
peratures [1] has triggered a series of studies on the behavior
of these Rydberg excitons in electric and magnetic fields, as
maser materials, for studies of quantum properties of matter
etc (for an overview see [2]). On the other hand we expect
that Rydberg excitons are strongly influenced by the presence
of electron–hole plasma. Indeed, it has been found that the
presence of plasma with densities around 1010 cm−3 already
quenches the absorption of P states with high quantum num-
bers and leads to an additional broadening of the exciton states
[3]. Recently, we discussed the interactions of Rydberg exci-
tons with a low-density electron–hole plasma within a many-
particle theory [4, 5] to understand the observations. While the
quenching of the lines can be explained straightforwardly by
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the Mott effect [4, 6], caused mainly by the shift of the band
gap with increasing plasma density, using perturbation theory
we found almost no change in the imaginary part of the exciton
self-energy [5].

However, what is not considered in such an approach is the
interaction between different exciton states mediated by the
plasma excitations themselves, i.e., the exciton-plasmon inter-
action. This is expected to be strong if the plasmons themselves
are coupled to polar optical phonons, as is usual the case in a
polar semiconductor [7, 8]. In this contribution we show that
in case of Rydberg excitons with very small binding energies,
which are furthermore split because of additional interactions
due to the non-parabolicity of the band structure and other cen-
tral cell effects [9–12], the exciton scattering by LO-plasmons
can be quite strong leading to a substantial increase in excitonic
linewidth already at very low plasma densities of the order of
1011 cm−3 that should be easily detectable experimentally.

2. General considerations: exciton states and
overlap integrals

Quite generally, the linewidth �Γi of a state i is given by
Fermi’s golden rule as

1361-648X/21/425701+9$33.00 1 © 2021 The Author(s). Published by IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-648X/ac16aa
https://orcid.org/0000-0002-2678-3854
https://orcid.org/0000-0002-2179-9064
mailto:heinrich.stolz@uni-rostock.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ac16aa&domain=pdf&date_stamp=2021-8-12
https://creativecommons.org/licenses/by/4.0/


J. Phys.: Condens. Matter 33 (2021) 425701 H Stolz and D Semkat

Γi =
2π
�

∑
f

|M(i → f )|2δ(Ei − E f ). (1)

Here f denotes the possible final states of all scattering
processes characterized by the transition matrix element M
of the interaction under consideration. We consider scatter-
ing processes of excitons due to plasmons of an electron–hole
plasma. The general expression for the matrix elements of a
two-band Wannier exciton, where electron and hole scatter
independently, has the form [13]

M
(
�K, nlm, �K′, n′l′m′, �Q, σ

)
=

[
Ξσ

c (�K − �K′)W(nlm, n′l′m′,αh
�Q) (2)

−Ξσ
v (�K − �K′)W(nlm, n′l′m′,−αe

�Q)
]
δ(�K − �K′ ∓ �Q),

with the upper sign for Stokes, the lower sign for Antistokes
scattering. The overlap functions W are given as

W(nlm, n′l′m′,�q) =
∫

d�rφnlm(�r)∗φn′l′m′ (�r) exp(i�q ·�r), (3)

with φnlm(�r) denoting the exciton wave functions with quantum
numbers n, l, m and

αe = m∗
c/M, αh = m∗

h/M, M = m∗
c + m∗

h. (4)

Ξpl
c,v(�K − �K′) denote the strengths of the electron and hole

plasmon-interactions including the occupations number of
the plasmons given by the usual Bose distribution function
nB(ω, T) = 1/

(
exp(�ω/kBT) − 1

)
.

Since we are interested in the scattering of optical excited
p-excitons, we have l = 1 and m = 0,±1. However, due to the
non-spherical interaction between electrons and holes in Cu2O
(see e.g. [11, 12]), the actual exciton states are a complicated
mixture of envelope functions and Bloch states of valence and
conduction bands. Since plasmons and LO phonons cannot flip
the spin of an electron and a hole, scattering can only occur
between the same spin states. These can be denoted as one
para and three ortho states

P =
1√
2

(↑v↓c − ↓v↑c)

Oyz =
i√
2

(↑v↑c − ↓v↓c)

Oxz =
1√
2

(↑v↑c + ↓v↓c)

Oxy = − i√
2

(↓v↑c + ↑v↓c).

(5)

So we have to expand all states involved in the scattering
process into their ortho and para components.

Each state is uniquely determined by the representation
of the symmetry group, except for the case of an acciden-
tal degeneracy. For all group theoretical calculations we used
the tables from [14]. Here the initial states of the scattering

are the optically excited states with a P envelope, which are
given by

Γ−
4 ⊗ (Γ+

7 ⊗ Γ+
6 ) = (Γ−

7 ⊕ Γ−
8 ) ⊗ Γ+

6

= (Γ−
2 ⊕ Γ−

5 ) ⊕ (Γ−
3 ⊕ Γ−

4 ⊕ Γ−
5 ), (6)

from which only the Γ−
4 state interacts with light. Expressed in

their ortho and para contributions, these states look like

∣∣P8, XΓ−
4

〉
= − 1√

2
PyOxy −

1√
2

PzOxz

∣∣P8, YΓ−
4

〉
= − 1√

2
PxOxy −

1√
2

PzOyz

∣∣P8, ZΓ−
4

〉
= − 1√

2
PxOxz −

1√
2

PyOyz.

(7)

To characterize a state uniquely we will give the enve-
lope (cubic) symmetry of the state, the representation of enve-
lope and hole spin and the representation and basis function
itself.

Defining the coordinate system so that the light propagates
along the z axis, which would be quite natural, we excite by
light polarized along the x direction the state

∣∣P8, XΓ−
4

〉
. From

this state we can scatter into all states with Oxy and Oxz spin
character. As we have for the states with an S envelope∣∣S,Γ+

2

〉
= SP∣∣S, XYΓ+

5

〉
= SOxy∣∣S, XZΓ+

5

〉
= SOxz∣∣S, YZΓ+

5

〉
= SOyz,

(8)

we can scatter into the
∣∣S, XYΓ+

5

〉
and

∣∣S, XZΓ+
5

〉
states. In

the same way we can treat the other P states and the D states.
The list of all these states can be found in appendix A. States
with higher angular momentum need not to be considered, as
their overlap functions (3) are smaller by at least two orders of
magnitude.

For the D states we have the following decomposition

(D ⊗ Γ+
7 ) ⊗ Γ+

6 = (Γ+
3 + Γ+

5 ) ⊗ Γ+
7 ⊗ Γ+

6

= Γ+
3 ⊗ Γ+

7 ⊗ Γ+
6 + Γ+

5 ⊗ Γ+
7 ⊗ Γ+

6

= (Γ+
8 ⊗ Γ+

6 ) + (Γ+
6 ⊗ Γ+

6 + Γ+
8 ⊗ Γ+

6 )

= (Γ+
3 + Γ+

4 + Γ+
5 )

+ (Γ+
1 + Γ+

4 + Γ+
3 + Γ+

4 + Γ+
5 ). (9)

The first bracket denotes the states derived from the Γ+
3 D

states, which are also nominated as D3 states, while the states
in the second bracket are designated as D5 using the decompo-
sition of the representations of the full rotation group into those
of the cubic group. So |D5, 8, 5XY〉 denotes the state in the
Γ+

5 representation transforming like xy and derived from the
D envelopes with Γ+

5 symmetry and envelope-hole symmetry
Γ+

8 .

2
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Checking table A1, we see that the
∣∣P8, XΓ−

4

〉
excitons can

scatter into all these states, except the pure Γ+
3 para states.

Using these relations, we can reduce the overlap integrals
over the exciton states into a sum over overlap integrals of
hydrogen-like angular momentum states, thereby neglecting
a possible change of the wave functions due to non-spherical
interactions [12].

As the scattering processes have to fulfill both conservation
of energy and quasi-momentum, the exact energetic positions
of the different states are important. Recently, quite a lot of
papers have been published that investigated this fine struc-
ture both from the experimental [9–11] and the theoretical
point of view [11, 12]. Designating the energy difference of
the

∣∣P8, XΓ−
4

〉
state and the S and D states by ΔEPX the depen-

dence on principal quantum number can be described in form
of a quantum defect [9–11]

ΔEXP(n) =
δXP

nβ
, (10)

with constants δXP. From the experimentally determined
energy differences [11, 15] we get δS5P = −32 meV, β =
3; δPD385 = 35 meV, β = 2.75; δPD584 = 25 meV, β = 3. All
other states are almost degenerate [12] and will be designated
as A with δPDA = 16 meV, β = 3.

We expand the plane wave in (3) into spherical harmonics

exp(i
→
Q · →r ) = 4π

∞∑
l’=0

l’∑
m’=−l’

il’ jl’(Qr)

× Y∗
l’m’(ϑQ,ϕQ)Yl’m’(ϑ,ϕ). (11)

We can write the overlap function for scattering from a
hydrogen-like P state into any other hydrogen-like angular
momentum state as

W(n1m, n’Lm’,
→
Q) = i(L−1)Y∗

L−1,m−m’ (ϑQ,ϕQ)

× GC(1, L, L − 1, m, m’)
∫

r2dr

× Rn1(r)∗Rn’L(r) jL−1(Qr)

+ i(L+1)Y∗
L+1,m−m’ (ϑQ,ϕQ)

× GC(1, L, L + 1, m, m’)
∫

r2dr

× Rn1(r)∗Rn’L(r) jL+1(Qr). (12)

since GC(1, L, L, m, m′) = 0. The factors GC(l, l′, l′′, m, m′) are
defined as

GC(l, l′, l′′, m, m′) = 〈Ylm|Yl′′m′−m |Yl′m′ 〉 . (13)

We note that all terms in the l-expansion have the same m′′.
But as the total overlap between the

∣∣P8, XΓ−
4

〉
and all the other

states consists of contributions with different m′′, we cannot
take out from W a common factor exp(im′′ϕQ), so the overlap
integrals also depend on the azimuth ϕQ. As example we write
down the overlap integral between

∣∣P8, XΓ−
4

〉
and the states

derived from the Γ+
3 envelope functions

〈P, X

∣∣∣∣ei
→
Q·→r |D3, XY〉

= i4π
[
CG(1211, 0)Re(Y11(ϑQ,ϕQ))WR(n1n’2, 1)

+ Re(Y3−1(ϑQ,ϕQ))CG(12310) )WR(n1n’2, 3)]

〈P, X

∣∣∣∣ei
→
Q·→r |D3, XZ〉 = 4π√

8

[
Y10(ϑQ,ϕQ)

×CG(12 100)WR(n1n’2, 1) +
(
Y30(ϑQ,ϕQ)CG(12 300)

−
√

3
2

Re(Y32(ϑQ,ϕQ))CG(12 302)

)
WR(n1n’2, 3)

]

× 〈P, X

∣∣∣∣ei
→
Q·→r |D3, YZ〉 = 0

× 〈P, X

∣∣∣∣ei
→
Q·→r |D3, X〉 = 0

× 〈P, X

∣∣∣∣ei
→
Q·→r |D3, Y〉 = −1

2
4π [(CG(12 302)

× Re(Y32(ϑQ,ϕQ)) +

√
3
2

Y30(ϑQ,ϕQ)CG(12 300)

)

×WR(n1n’2, 3)

+

√
3
2

{
Y10(ϑQ,ϕQ)CG(12 100)WR(n1n’2, 1)

}]

× 〈P, X

∣∣∣∣ei
→
Q·→r |D3, Z〉 = − i√

2
4π [CG(12 112)

×Re(Y11(ϑQ,ϕQ))WR(n1n’2, 1)

+
(
CG(1231 − 2)Re(Y33(ϑQ,ϕQ)) + CG(12 312)

× Re(Y31(ϑQ,ϕQ))
)

WR(n1n’2, 3)
]
. (14)

So in calculating the scattering rates we have to integrate
also over the angle ϕ.

3. Plasmons and coupling with LO phonons

Assuming a plasma with density ρeh and temperature T we
have the plasma frequency [6]

ωpl
2 =

e2
0

ε0εstμeh
ρeh, (15)

where εst is the static dielectric constant of the crystal and
μeh = (1/m∗

e + 1/m∗
h)−1 the reduced electron–hole mass with

individual masses m∗
e and m∗

h.
The plasmon dispersion ωp(q) is determined by the zeros of

the real part of the dielectric function (DF) ε(q,ω) [6]

Re(ε(q,ωp(q))) = 0, (16)

3
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while the damping is given by

γ(q) =
Im (ε(q,ω + iδ)

∂
∂ω

Re (ε(q,ω)

∣∣∣∣
ω=ωp(q)

. (17)

The detailed form of the DF depends on the composition
of the plasma and the degree of degeneracy which is given by
the product of density and thermal de Broglie wavelength [6].
In case of an electron–hole plasma with temperature Teh this
product is given as

ρeh

(
2π�2

μehkBTeh

)3/2

. (18)

For the relevant densities below 1012 cm−3 and tempera-
tures above 1 K this product is much smaller than 1 so that we
are always in the non-degenerate regime. Here the plasmon
properties have been investigated thoroughly (see e.g. [6]).

The plasma dispersion is given by

ω2
p(q) = ω2

pl

(
1 +

3q2

κ2
nd

)
, (19)

with the screening vector

κ2
nd =

ω4
pl∑

i
ρie2

i kBT/(εstε0m2
i )

= κ2
D ·

(
1
2

(mc + mv)2

m2
c + m2

v

)

= 0.9652κ2
D, (20)

where κD is the Debye wave number [6].
The numerical value applies for Cu2O.
The plasmon damping can be derived from (17), but we

will use a simplified consideration according to which a well-
defined plasmon exists only outside the single-particle excita-
tion regime, i.e., for wave vectors

q < qmax = κc

(√
1 +

2ωp(q)
ωc

− 1

)
with ωc =

�κ2
c

μeh
,

(21)
where κc is a critical wave number that for T = 0 can be taken
as the Fermi wave number κF =

(
3π2ρeh

)1/3
.

Note that this already rules out any scattering from the nP
states to the 1S state, as the wave vector required is much larger
than allowed by (21).

However, these considerations neglect that in polar crystals
the plasmons are coupled to the LO phonons giving rise to a
coupled phonon-plasmon mode (see e.g. [8]). If ΩLO denotes
the LO frequency, we have the relation

ΩTO =

√
εinf

εst
ΩLO. (22)

The coupled modes are obtained from the solution of the
dispersion relation

ω4 − ω2(Ω2
LO + ω2

pl + ω2
q) +Ω2

TO(ω2
pl + ω2

q) = 0, (23)

with the plasma frequency ωpl and

ω2
q =

3q2

κ2
nd

ω2
pl. (24)

Figure 1. Coupled phonon-plasmon dispersions in Cu2O for
different densities as indicated (in units of μm−3) and a temperature
of 12 K. The dotted line gives the linear approximation.

Note that this expression differs from that used in [8] where
it is ωp(q) =

〈
v2
〉

q2/3ε∞ (ε∞ denotes the dielectric constant
for infinite frequency) and

〈
v2
〉
= 3kBT/m∗ is the average

squared velocity of the non-degenerate electron gas.
The solutions of (23) are given as

ω2
±(q) =

1
2

(
Ω2

LO + ω2
pl + ω2

q

)
(25)

±
√

1
4

(
Ω2

LO + ω2
pl + ω2

q

)2
− Ω2

TO(ω2
pl + ω2

q).

A typical example of a dispersion relation for the lower
mode is shown in figure 1 for different plasma densities and
a temperature of 12 K. One sees that the dispersion, espe-
cially for low plasma densities is almost linear. Therefore we
can describe the plasma dispersion by a sound velocity which
is density independent, but depends on the plasma tempera-
ture as upl(T) = 5.76 × 103 m s−1

√
T K−1 (acoustic model).

This approximation is valid in the range of wave numbers of
interest (see figure 2) and simplifies the calculations below
considerably.

The scattering efficiency of a coupled mode can be calcu-
lated from the effective charge of the mode in close analogy
to the pure phonon (see [8]). For a Fröhlich-type interaction of
polar optical phonons it is given as

ΞLO
c,v (Q) =

√
�ωLOe2

0

2ε0NΩ0

√
1
ε∗

· 1
Q

=

√
e0e∗LO

2Mionε0NΩ0ΩLO

1
Q
.

(26)
Here �ωLO denotes the phonon energy, ε∗ denotes the

effective dielectric constant of the phonon mode given as

1
ε∗

=
1
εup

− 1
εlow

, (27)

where εup,low
i denotes the dielectric constant above and below

the phonon mode.

4
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Figure 2. Limits for the Q integration in as function of main
quantum number n for nP → nS and nP → nD35 processes. The
blue full lines gives the limits for the Stokes process in case of
nP → nS (as indicated by the blue arrows in the inset), the red dotted
lines give the limits of the anti-Stokes process in case of nP → nD35
(red arrows in the inset). The green dot-dashed and the magenta
dot-dashed lines give the limits for the anti-Stokes nP → nS and the
second anti-Stokes process for nP → nD35.

The effective charge of the LO mode is given by

e∗LO =

√
MionNΩ0ε0

(
1
ε∞

− 1
εst

)
ΩLO. (28)

The matrix element of the coupled plasmon-phonon scat-
tering of an electron with wave vector q is [8]

M =

[
e0e∗

MionNΩ0ε0ω−(q)q2

]1/2

, (29)

with the effective charge

e∗ = e∗LO · R. (30)

With a function R given by

R =

(
ω2
± − Ω2

TO

Ω2
LO − Ω2

TO

)
·
[

1 +

(
ω2

pl + ω2
q

)2(
ω2
± − Ω2

TO

)2

ω4
pl(Ω

2
LO − Ω2

TO)

]−1/2

,

(31)
this gives finally for M

M =

[
e2

0Ω
2
LO

2ε0ω−(q)q2

(
1
ε∞

− 1
εst

)]1/2

· R. (32)

As electron and hole masses we use polaron masses
m∗

e = 0.985me m∗
h = 0.575me [16], which gives as exciton

mass for the states with n � 2 MX = 1.56me and a reduced
mass μeh = 0.356me. In Cu2O we have the complication that
there are two LO modes with phonon energies (see e.g. [17])

ETO1 = 18.8 meV ELO1 = 19.1 meV

ETO2 = 78.5 meV ELO2 = 82.1 meV,
(33)

and effective ε∗i (ε∗1 = 233, ε∗2 = 76) corresponding to εst =
7.53 and ε∞ = 6.47. To be able to use the theory developed
above, we consider instead an effective phonon with energy
ELO =

√
ELO1ELO2 and ETO =

√
ε∞/εstELO.

The scattering rate by plasmons between the initial exciton

state
∣∣∣nlm; �K

〉
and a specified final state |n′l′m′〉 is given by

Γ(nlm,
→
K; n’l’m’) =

2π
�

NΩ0

8π3

∞∫
0

dQQ2

×
(

nB (�ωpl(Q, T) +
1
2
± 1

2

)

×
π∫
0

2π∫
0

dϕ
∣∣∣M (→

K, nlm,
→
K (34)

±
→
Q, n’l’m’, Q,ϑ,ϕ

)∣∣∣2δ (Ei − E f

)
sin ϑ dϑ.

Here, one has to distinguish between (i) Stokes (phonon
emission, upper sign) and (ii) anti-Stokes (phonon absorption,
lower sign) processes. nB(�ω, T) is the Bose distribution. We
have

(i) Ei = Eg − EBX(n, l) +
�

2
→
K2

2MXn
,

E f = Eg − EBX(n’, l’) +
�

2(
→
K +

→
Q)2

2MXn’
+ �ωpl(

→
Q)

(ii) Ei = Eg − EBX(n, l) +
�

2
→
K2

2MXn
+ �ωpl(

→
Q),

E f = Eg − EBX(n’, l’) +
�

2(
→
K −

→
Q)2

2MXn’
. (35)

where EBX(n, l) is the binding energy of the state with quan-
tum numbers n, l. We see, that the argument of the delta-
function depends on the angle ϑ between K and Q and on
the magnitude of Q. Note that the excitons are excited at the
finite optical wave vector Kopt = nb(Eg − Ry/n2)/�c0 [17].
In calculating (34) we follow closely the procedure in [17],
note that we have here κ = MXupl/�, thereby assuming that
ωpl(Q) = uplQ.

4. Calculation of the scattering rates

For this we have to take the fine structure of the Rydberg
excitons into account (see section 1). Since nP → nP Stokes
scattering is not possible because κ > Kopt, we have to con-
sider nP → nS and nP → nD scattering. From the conditions

5
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Figure 3. Line broadening due to exciton-plasmon scattering as function of quantum number n of the P exciton state. The left diagram (A)
shows the relaxation rates for some possible scattering processes for an electron–hole density of ρeh = 0.1 μm−3 and a plasma temperature
of Teh = 12 K as indicated (1 = nP → nS, 2 = nP → nD35, 3 = nP → nD564, 4 = nP → nD34, 5 = nP → n585, 6 = nP → nD561, 7 =
nP → nD584 and 8 = nP → nP). The right diagram (B) shows the sum of all processes for different densities as indicated (in units of μm−3)
and Teh = 12 K. The full lines give the scaling law. The dashed line indicates the Mott point for the corresponding quantum number at
which the exciton state vanishes [6]. The inset in part (B) shows the temperature dependence of the proportionality constant of.

of energy and momentum conservation one can easily derive
that scattering into the lower lying S states is possible both by
Stokes (type 1) and anti-Stokes processes (type 2) while the
higher energy D states can only be reached by anti-Stokes scat-
tering (type 2). The integration limits depend strongly on the
quantum number and are depicted for the different processes
in figure 2. Here we see that for nP → nS the wave numbers
for the anti-Stokes process (green dot-dashed lines) are very
large, so that the occupation number of these plasmons is very
small and can be neglected. For nP → nD (here the case of the
D355 states) there are two regions where anti-Stokes scattering
is possible, but only the processes marked by red dotted lines
have sufficient occupation. The maximum possible plasmon
wave number qmax (see (21)) is here about 0.23 nm−1.

The results of the integrations are shown in figure 3(A) for
typical densities (ρeh = 1011 cm−3) and temperatures (Teh =
17 K) of an electron–hole plasma present in optically pumped
Cu2O [3].

The two dominant processes are the scattering into the SΓ+
5

and the D3Γ+
5 exciton states (red and blue lines in figure 3(A)).

The sum of the rates nicely follows a power law for quantum
numbers up to n = 12

Γpl(n, T) = Cplsc(T)ρeh(n − 1)3.3, (36)

with a proportionality factor Cplsc(12 K) = 0.235 μeV μm3.
As shown in the inset of figure 3(B), the proportionality factor

strongly depends on temperature following closely a relation
(for details see appendix B)

Cplsc(T) = 0.8/
√

T μeV μm3K1/2. (37)

To give an order of magnitude of the effect, we calculate the
broadening for a typical plasma density of ρeh = 1011 cm−3

and a temperature of Teh = 15 K. For n = 10 we obtain a
broadening of 32 μeV which should be easily detectable
experimentally [3].

In conclusion, we have demonstrated that Rydberg exci-
tons in Cu2O which are embedded in a low-density
electron–hole plasma undergo strong scattering between
different angular momentum states (S, P and D) that are
energetically split due to the non-parabolicity of the band
structure. Since in all experiments performed up to now
involving Rydberg excitons, the creation of a low-density
plasma is unavoidable due to congruent excitation of yellow
1S exciton states by the indirect phonon-assisted background
absorption and subsequent Auger-like decay processes of these
excitons [18–21], we expect that the plasmon induced broad-
ening is of high significance and must be taken into account in
the interpretation.

Furthermore, we expect that this scattering mechanism is
also important in other semiconductors which show a split-
ting of exciton states with different angular momentum due
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to a non-parabolicity of the valence or conduction bands, like
III–V and II–VI materials [7] and also in two-dimensional
semiconductor structures as WSe2 [22].

Acknowledgments

We thank Wolf-Dietrich Kraeft and Peter Grünwald for clarify-
ing discussions. DS thanks the Deutsche Forschungsgemein-
schaft for financial support (Project Number SE 2885/1-1).

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix A. Symmetry decomposition of S, P and D
exciton states

S states ∣∣S,Γ+
2

〉
= SP∣∣S, XYΓ+

5

〉
= SOxy∣∣S, XZΓ+

5

〉
= SOxz∣∣S, YZΓ+

5

〉
= SOyz.

(A1)

P states∣∣P7,Γ−
2

〉
= − 1√

3
PxOyz +

1√
3

PyOxz +
1√
3

PzOxy

∣∣P7, YZΓ−
5

〉
= − 1√

3
PxP − 1√

3
PyOxy +

1√
3

PzOxz

∣∣P7, XZΓ−
5

〉
=

1√
3

PxOxy −
1√
3

PyP − 1√
3

PzOyz

∣∣P7, XYΓ−
5

〉
= − 1√

3
PxOxz +

1√
3

PyOyz −
1√
3

PzP

∣∣P8, 1Γ−
3

〉
= − 1√

2
PyOxy −

1√
2

PzOxz

∣∣P8, 2Γ−
3

〉
= − 1√

2
PxOxy −

1√
2

PzOyz

∣∣P8, XΓ−
4

〉
= − 1√

2
PyOxy −

1√
2

PzOxz

∣∣P8, YΓ−
4

〉
= − 1√

2
PxOxy −

1√
2

PzOyz

∣∣P8, ZΓ−
4

〉
= − 1√

2
PxOxz −

1√
2

PyOyz

∣∣P8, YZΓ−
5

〉
= − 1√

2
PyOxy −

1√
2

PzOxz

∣∣P8, XZΓ−
5

〉
= − 1√

2
PxOxy −

1√
2

PzOyz

∣∣P8, YZΓ−
5

〉
= − 1√

2
PxOxz −

1√
2

PyOyz.

(A2)

D states
D3 derived

∣∣D3, 1Γ+
3

〉
=

∣∣dx2−y2

〉
P∣∣D3, 2Γ+

3

〉
= |dz2〉P∣∣D3, XYΓ+

5

〉
= − |dz2〉Oxy∣∣D3, YZΓ+

5

〉
=

1
2

(|dz2〉+
√

3
∣∣dx2−y2

〉
)Oyz

∣∣D3, XZΓ+
5

〉
=

1
2

(|dz2〉 −
√

3
∣∣dx2−y2

〉
)Oxz∣∣D3, ZΓ+

4

〉
= −

∣∣dx2−y2

〉
Oxy∣∣D3, XΓ+

4

〉
=

1
2

(
∣∣dx2−y2

〉
−
√

3 |dz2〉)Oyz

∣∣D3, YΓ+
4

〉
=

1
2

(
∣∣dx2−y2

〉
+
√

3 |dz2〉)Oxz. (A3)

D5 derived

∣∣D5, 6,Γ+
1 > =

1√
3

dyzOyz +
1√
3

dxzOxz +
1√
3

dxyOxy∣∣D5, 6, XΓ+
4 > = − 1√

3
dyzP +

1√
3

dxzOxy +
1√
3

dxyOxz∣∣D5, 6, YΓ+
4 > =

1√
3

dyzOxy −
1√
3

dxzP − 1√
3

dxyOyz∣∣D5, 6, ZΓ+
4 > = − 1√

3
dyzOxz −

1√
3

dxyP +
1√
3

dxzOyz∣∣D5, 8, 1Γ+
3 > = − 1√

2
PyOxy −

1√
2

PzOxz∣∣D5, 8, 2Γ+
3 > = − 1√

2
PxOxy −

1√
2

PzOyz∣∣D5, 8, XΓ+
4 > = +

2√
6

dyzP +
1√
6

dxyOxz −
1√
6

dxzOxy∣∣D5, 8, YΓ+
4 > = − 1√

6
dyzOxy +

2√
6

dxzP − 1√
6

dxyOyz∣∣D5, 8, ZΓ+
4 > = − 1√

6
dyzOxz +

1√
6

dxzOyz +
2√
6

dxyP∣∣D5, 8, YZΓ+
5 >=

1√
2

dxyOxz +
1√
2

dxzOxy∣∣D5, 8, XZΓ+
5 >=

1√
2

dyzOxy +
1√
2

dxyOyz∣∣D5, 8, XYΓ+
5 >=

1√
2

dyzOxz +
1√
2

dxzOyz.

(A4)

Appendix B. Scattering rates of all processes for
different densities and temperatures

Here we give all scattering rates for a density range from
109 cm−3 to 1013 cm−3 (indicated in the figures in units
of μm−3) and temperatures Teh = 2 K to Teh = 32 K and
principal quantum numbers from 3 to 20; for Teh = 12 K see
figure 3).
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Figure 4. Total scattering rates for different densities and temperatures. The full lines give the scaling law.
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