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Abstract
Analytical results for the dielectric function in RPA are derived for three-, two-, and
one-dimensional semiconductors in the weakly-degenerate limit. Based on this limit, quantum
corrections are derived. Further attention is devoted to systems with linear carrier dispersion
and the resulting Dirac-cone physics.
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1. Introduction

The response of a medium to external electromagnetic fields
is determined by its dielectric function [1]. The description of
various phenomena is closely connected with this quantity, e.g.
the buildup of screening or the behavior of bound states of elec-
trons and holes in a semiconductor (excitons) surrounded by a
plasma of free carriers [2, 3]. While in earlier times the main
interest was focused on higher densities (see, e.g., [4]), with
the observation of Rydberg excitons in cuprous oxide (Cu2O)
[5, 6] the behavior in a very low density plasma has become
important, as Rydberg states due to their large Bohr radius (up
to 1 μm for n = 30 [7]), are extremely sensitive to such a low
density plasma. In a recent study we have shown that the Mott
effect, i.e., the vanishing of a bound state at a certain plasma
density, occurs for quantum number n = 25 already at a den-
sity of 108 cm−3. Most important, however, is that, despite
the low density, the commonly used Debye approximation [2]

∗ Author to whom any correspondence should be addressed.
Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

gives completely wrong results [8, 9]. Crucial in these calcu-
lations was the use of an exact expression for the dielectric
function. To extend these studies to two-dimensional systems
such as transition metal dichalcogenide monolayers [10] and
even to one-dimensional systems, one has to know the exact
dielectric function also for lower dimensionality.

A further example are the collective oscillation modes
of this plasma (plasmons), the complex energies of which
are given by the zeros of the complex dielectric function.
Knowledge on this function is, therefore, essential for the
understanding of various optical and transport properties of
semiconductors.

In the current paper we derive and discuss analytical results
for the dielectric function in random phase approximation
(RPA). Section 3 is devoted to the case of bulk systems.
Afterward in section 4 we discuss lower-dimensional systems.
Finally, in section 5 we show an extension of the results to
moderate degeneracy, i.e., derive quantum corrections to the
nondegenerate limit.

Some derivations are presented in the appendices, e.g.,
the effective Coulomb potential for quasi-two-dimensional
systems (appendix A) and the dielectric function for the
one-dimensional case (B). The quite distinct case of linear
quasiparticle dispersion, which occurs in graphene [11] and
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topological quantum matter [12] with Dirac-cone functionality
is analyzed on the same footing in appendix C.

2. Polarization function

The dielectric function of an electron–hole plasma in a d-
dimensional semiconductor is connected via

ε(k,ω) = 1 −
∑
a=e,h

Vaa(k)Πaa(k,ω) (1)

with the polarization function Πaa of electrons and holes
(a = e, h), respectively [2]. Vaa is the dimension-dependent
interaction potential between carriers of species a. In RPA,
the polarization function is given by the well-known Lindhard
expression [2]

Πaa(k,ω) = (2sa + 1)
∫

ddq
(2π)d

× fa
(

k
2 − q

)
− fa

(
k
2 + q

)
Ea

(
k
2 − q

)
− Ea

(
k
2 + q

)
+ h̄ω + iε

. (2)

Here fa is the distribution function of species a which is, in the
nondegenerate case, given by the Boltzmann distribution

fa(k) =
naΛ

d
a

2sa + 1
exp

(
− h̄2k2

2makBTa

)
(3)

with temperature Ta and density na of species a. Λa is the
thermal de Broglie wavelength,

Λa =

(
2π h̄2

makBTa

)1/2

(4)

and 2sa + 1 is the spin degeneracy factor which is for elec-
trons and holes 2sa + 1 = 2. The quasiparticle energies Ea are
approximated by free particle energies [13] which read, in the
usual approximation of parabolic bands,

Ea(k) =
h̄2k2

2ma
+ ReΣa(k,ω)

∣∣∣∣
ω=Ea(k)/ h̄

≈ h̄2k2

2ma
. (5)

It is well known and frequently cited that the integral in (2)
can be evaluated in the nondegenerate case (for d = 3) analyt-
ically [4, 14, 15]. Reference [16] is regarded as the key source,
however, the explicit derivation cannot be found in that work.
Moreover, in the mentioned papers, the three-dimensional (3d)
case is (implicitly) assumed. We will, therefore, rederive the
‘classical’ result in 3d and consider afterward the 2d and 1d
cases.

3. Bulk semiconductor

In the case of a bulk semiconductor, the interaction poten-
tial between carriers of species a Vaa(a = e, h) is given by the
three-dimensional Coulomb potential VC

aa,

VC
aa(k) =

eaea

ε0εb

1
k2

=
e2

ε0εb

1
k2

(6)

with εb being the background dielectric constant. The integral
in (2) can be written in spherical coordinates (q,ϑ,ϕ). We lay
the z-axis of the q-integration into k. The difference in the
numerator of (2) then becomes

fa

(
k
2
− q

)
− fa

(
k
2
+ q

)

=
naΛ

3
a

2
exp

[
− h̄2

2makBTa

(
k2

4
+ q2

)]

×
[

exp

(
h̄2

2makBTa
kq cos ϑ

)

− exp

(
− h̄2

2makBTa
kq cos ϑ

)]
. (7)

Using (5) the energy difference in the denominator of (2) is

Ea

(
k
2
− q

)
− Ea

(
k
2
+ q

)
=

h̄2

2ma

[(
k
2
− q

)2

−
(

k
2
+ q

)2
]

= − h̄2

ma
kq cos ϑ. (8)

Inserting the differences (7) and (8) into (2), substituting
in the usual manner cosϑ = t and performing the trivial ϕ-
integration, the polarization function reads

Π(3d)
aa (k,ω) =

1
(2π)2

naΛ
3
a exp

(
− h̄2k2

8makBTa

)

×
∫ ∞

0
dq q2 exp

(
− h̄2q2

2makBTa

)
(9)

×
∫ 1

−1
dt

exp
(

h̄2

2makBTa
kqt

)
− exp

(
− h̄2

2makBTa
kqt

)
h̄ω − h̄2

ma
kqt + iε

.

For the following calculations, we introduce the abbrevia-
tionsβ = 1/(kBTa), a = h̄2/(2ma), and w = h̄ω and substitute
akq = x. The double integral to be evaluated reads now

I =
1

a3k3

∫ ∞

0
dx x2 exp

(
− β

ak2
x2

)∫ 1

−1
dt

eβxt − e−βxt

w − 2xt + iε
.

(10)
We separate real and imaginary parts by expanding with the
complex conjugate of the denominator,

I =
1

a3k3

∫ ∞

0
dx x2 exp

(
− β

ak2
x2

)∫ 1

−1
dt
(
eβxt − e−βxt

)

×
{

w − 2xt
(w − 2xt)2 + ε2

− i ε
(w − 2xt)2 + ε2

}

= I1 + I2. (11)

The imaginary part I2 can be evaluated easily. We perform
in this term the limit ε→ 0, obtaining
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I2 = − iπ
a3k3

∫ ∞

0
dx x2 exp

(
− β

ak2
x2

)

×
∫ 1

−1
dt
(
eβxt − e−βxt

)
δ(w − 2xt). (12)

Performing subsequently t- and x-integration yields

I2 = − iπ
4βa2k

(
eβw/2 − e−βw/2

)
exp

(
− βw2

4ak2

)
. (13)

In its present form, the real part I1 cannot be solved straight-
forwardly. Therefore, we introduce an auxiliary integral by
making use of

1
y
=

∫ ∞

0
ds e−ys for y > 0. (14)

After rearranging the exponentials, changing the order of
integrations, and substituting 4s = z, integral I1 then reads

I1 =
1

4a3k3

∫ ∞

0
dz exp

[
−1

4
(w2 + ε2)z

]

×
∫ ∞

0
dx x2 exp

(
− β

ak2
x2

)∫ 1

−1
dt exp

(
−x2zt2

)
× {exp [(wz + β)xt] − exp [(wz − β)xt]} (w − 2xt).

(15)

The t-, x-, and z-integrals can now be performed sub-
sequently yielding (note that the limit ε→ 0 can be done
trivially)

I1 = −
√
π

2βa2k
exp

(
βak2

4

){
F

[ √
β

2
√

ak

(
w + ak2

)]

− F

[ √
β

2
√

ak

(
w − ak2

)]}
, (16)

where F denotes Dawson’s integral which is closely connected
with the confluent hypergeometric function 1F1 (also referred
to as Kummer function) and with the Faddeeva function (or
Kramp function) w [17],

F(x) =
∫ x

0
dt exp

(
t2 − x2

)
= x 1F1

(
1,

3
2

;−x2

)

=

√
π

2
Im w(x). (17)

The latter function is in turn connected to the complementary
complex error function,

w(x) = exp
(
−x2

)
erfc(−ix), (18)

i.e., its real part is given by Re w(x) = exp
(
−x2

)
(x ∈ R).

Therefore, we can combine (16) and (13),

e−
βak2

4 (I1 + I2) = − π

4βa2k

(
2√
π

{
F

[ √
β

2
√

ak

(
w + ak2

)]

− F

[ √
β

2
√

ak

(
w − ak2

)]}

+ i

{
exp

[
− β

4ak2

(
w − ak2

)2
]

− exp

[
− β

4ak2

(
w + ak2

)2
]})

=
iπ

4βa2k

{
w

[ √
β

2
√

ak

(
w + ak2

)]

− w

[ √
β

2
√

ak

(
w − ak2

)]}
. (19)

Inserting the result (19) into the polarization function (9)
we get for the latter quantity

Π(3d)
aa (k,ω) =

1
(2π)2

naΛ
3
a

iπ
4βa2k

{
w

[ √
β

2
√

ak

(
w + ak2

)]

− w

[ √
β

2
√

ak

(
w − ak2

)]}
(20)

= i

√
π

2
na

√
2ma

h̄2k2

1√
kBTa

×
{

w

[
1

2
√

kBTa

√
2ma

h̄2k2

(
h̄ω +

h̄2k2

2ma

)]

− w

[
1

2
√

kBTa

√
2ma

h̄2k2

(
h̄ω − h̄2k2

2ma

)]}
.

We finally use the dimensionless quantities

x =
1
2
ω/ωe

k/κ
, y =

(
h̄2k2

8mekBTa

)1/2

,

s =

(
mh

me

)1/2

, κ =

(
2nee2

ε0εbkBTa

)1/2

,

ωe =

(
nee2

ε0εbme

)1/2

, (21)

where κ and ωe are inverse screening length and plasma fre-
quency of the electrons, respectively. Summing up Πee and
Πhh, one arrives at

ε(k,ω) = 1 − i

√
π

4
κ2

k2

[
w(x + y) − w(x − y)

2y

+
w(sx + y/s) − w(sx − y/s)

2y/s

]
. (22)

For the first time, this result has been derived in [16]. In the
form of (22), it agrees with (19) in [15].

Figure 1 shows real and imaginary parts of ε(q,ω) − 1. We
consider electrons and holes in bulk Cu2O with the parame-
ters: electron mass me = 0.985m0, hole mass mh = 0.575m0,
and dielectric constant εb = 7.507. Since figure 1 serves here
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Figure 1. Real (left panels) and imaginary parts (right panels) of the dielectric function vs wave number q at a frequency of h̄ω = 15 μeV
(upper row) and vs frequency at a wave number of q = 2 μm−1 (lower row) for electrons and holes in bulk cuprous oxide, each for a carrier
density of n = 1012 cm−3 and several temperatures.

mainly for illustration of the considered quantity, we only
briefly mention the contained physical information, i.e., the
dispersion of collective plasma modes (plasmons) given by the
zeros of Re ε and their damping connected with Im ε.

4. Two-dimensional semiconductor structures

In two dimensions, the Coulomb potential is proportional to
log r instead of 1/r as in 3d (corresponding to 1/k instead
of 1/k2). Semiconductor structures like GaAs/AlGaAs quan-
tum wells or TMDC monolayers are quasi-two-dimensional,
i.e., the layer widths are small compared to their in-plane
extension.

One possibility to handle this quasi-two-dimensionality is
to use for the interaction potential Vaa the Rytova–Keldysh
potential [18, 19]. Usually given in its quite complicated form
in configuration space, it reads in momentum space simply
[20]

VRK
aa (q) =

e2

2ε0εsubA
1

q(1 + r0q)
, (23)

where εsub is the mean dielectric constant of the substrates
and r0 the screening length, r0 = d0ε⊥/εsub with ε⊥ being
the dielectric constant of the monolayer and d0 its thickness.

Depending on the latter parameter, the potential (23) interpo-
lates between the limiting cases of bulk material (r0q 	 1) and
true 2d system (r0q → 0).

Another way is to account for the confinement in the third
dimension by the respective eigenfunctions of the carriers in
the quantum well [21, 22],

Vab(q) =
eaeb

2ε0εb,wq

∫ ∞

−∞
dz
∫ ∞

−∞
dz′
∣∣Φa(z)

∣∣2∣∣Φb(z′)
∣∣2

× exp
(
−q|z − z′|

)
, (24)

where Φa/b are the wave functions of the motion in
confinement- (z-)direction, εb,w is the background dielectric
constant in the well, and ee/h = ∓e. An analytical expression
for this effective quasi-two-dimensional potential is derived in
appendix A.

We consider a 2d system again with parabolic carrier dis-
persion. In that case, polar coordinates (q,ϕ) seem to be con-
venient for the integral in (2), however, Cartesian coordinates
(qx, qy) turn out to be the appropriate choice. The polarization
function then reads

Π(2d)
aa (k,ω) =

1
2π

naΛ
2
a exp

(
− h̄2k2

8makBTa

)
I (25)
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with

I =
1

a2kxky

∫ ∞

−∞
dx
∫ ∞

−∞
dy exp

[
−(ux2 + vy2)

]
×
[
eβ(x+y) − e−β(x+y)

]
×
{

w − 2(x + y)
[w − 2(x + y)]2 + ε2

− i ε
[w − 2(x + y)]2 + ε2

}

= I1 + I2, (26)

where we have introduced the abbreviations x = akxqx , y =
akyqy, u = β/(ak2

x), and v = β/(ak2
y).

Like in the previous section, we look at first at the second
(imaginary) contribution I2. Performing the limit ε→ 0 and
substituting s = 2(x + y) (i.e. (x, y) → (x, s)) leads to

I2 =− iπ
2a2kxky

∫ ∞

−∞
dx
∫ ∞

−∞
ds exp

{
−
[

ux2 + v
( s

2
− x

)2
]}

×
[

exp

(
βs
2

)
− exp

(
−βs

2

)]
δ(w − s) (27)

which yields straightforwardly

I2 = − i
√
π3

2
√

βa3k

[
exp

(
βw
2

)
− exp

(
−βw

2

)]
exp

(
− βw2

4ak2

)
.

(28)
In the first (real) contribution to I (26) we apply again the

integration trick (14),

I1 =
1

a2kxky

∫ ∞

0
dz exp

[
−(w2 + ε2)z

] ∫ ∞

−∞
dx

×
∫ ∞

−∞
dy exp

[
−(u + 4z)x2

]
× exp

[
−(v + 4z)y2

]
exp (−8xyz) [w − 2(x + y)]

× {exp [(β + 4wz)(x + y)] − exp [−(β − 4wz)(x + y)]} .

(29)

Now the integrations can be performed subsequently leading
to the result

I1 =
π√
βa3k

exp

(
βak2

4

){
F

[ √
β

2
√

ak

(
w − ak2

)]

− F

[ √
β

2
√

ak

(
w + ak2

)]}
,

where F again denotes Dawson’s integral.
Analogously to (19), we can sum up the real and imaginary

parts and express them in terms of the Faddeeva function w so
that we finally get for the polarization function

Π(2d)
aa (k,ω)

=
1

(2π)2
naΛ

2
a

i
√
π3

2
√
βa3k

×
{

w

[ √
β

2
√

ak

(
w + ak2

)]
− w

[ √
β

2
√

ak

(
w − ak2

)]}

= i

√
π

2
na

√
2ma

h̄2k2

1√
kBTa

×
{

w

[
1

2
√

kBTa

√
2ma

h̄2k2

(
h̄ω +

h̄2k2

2ma

)]

− w

[
1

2
√

kBTa

√
2ma

h̄2k2

(
h̄ω − h̄2k2

2ma

)]}
. (30)

Comparing the 3d and 2d results (20) and (30), we see that
both cases have the same form, but note the different char-
acter and dimension of na—bulk density vs area density, i.e.,
Π(2d)

aa (k,ω) = Π(3d)
aa (k,ω).

A very similar, straightforward calculation in the 1d case
yields the corresponding result (see appendix B), i.e., the
functional form of the RPA polarization function of the elec-
tron–hole plasma in the nondegenerate limit is independent on
the dimensionality of the system.

In all cases considered above we assumed the usual
parabolic approximation for valence and conduction bands
leading to free-particle-like dispersions of electrons and holes.
There are, however, quasi-two-dimensional systems (the prob-
ably most prominent being graphene) where the band structure
gives rise to linear carrier dispersions (E(k) = γk) and exhibits
so-called Dirac cones near the charge neutrality point. The
polarization function in such systems is usually considered
in the highly degenerate limiting case [23–26], however, an
analytical expression for a model system with linear disper-
sion in the case of weak degeneracy can be obtained, too, see
appendix C.

5. Extension to moderate degeneracy

So far, the analysis relied on the assumption of very weak
degeneracy of the carriers which allows to assume Boltzmann
distributions (3). Now we look more closely at the distribution
function. It reads for arbitrary degeneracy (Fermi distribution)

fa(k) =
1

exp
(

h̄2k2

2makBTa
− μa

)
+ 1

, (31)

whereμa is the chemical potential of species a. Introducing the
fugacity z = eβμ and abbreviating the Boltzmann factor b =

exp
(
− h̄2k2

2makBTa

)
one can write

fa(k) =
1

z−1b−1 + 1
=

zb
1 + zb

= zb
(
1 − zb + z2b2 − z3b3 +− · · ·

)
, (32)

where the last equality holds for z < 1, i.e., for weak to mod-
erate degeneracy. The Boltzmann factor to an arbitrary power
j reads

b j = exp

(
− j

h̄2k2

2makBTa

)
= exp

(
− h̄2k2

2makB(Ta/ j)

)
, (33)
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Figure 2. Quantum correction terms of first and second order to the real (left panel) and imaginary (right panel) parts of the dielectric
function of electrons and holes in bulk Cu2O compared to the nondegenerate case vs wave number q at frequency h̄ω = 15 μeV for
temperature T = 2 K and carrier density n = 1012 cm−3. Note the magnification factors of the first and second order terms.

Figure 3. Quantum correction term of jth order to the real part of the dielectric function normalized to the nondegenerate term vs order j for
a temperature of T = 10 K and several carrier densities (left panel) and for log n/cm−3 = 16.5 and several temperatures (right panel).

i.e., it corresponds to a Boltzmann factor with an effective
temperature T/ j. We get

fa(k) = z exp

(
− h̄2k2

2makBTa

) ∞∑
j=0

(−1) jz j

× exp

(
− h̄2k2

2makB(Ta/ j)

)

=

∞∑
j=1

(−1) j−1z j exp

(
− h̄2k2

2makB(Ta/ j)

)
. (34)

The difference of distribution functions occurring in Π (2)
can be calculated in every order of the expansion (34) analo-
gously to (7) (or in the Cartesian analogue leading to (25) and
(26), respectively). Therefore, the calculation in each order is
the same as presented in the previous sections. The result is a
series for Π,

Πqc
aa(k,ω; Ta) =

2

naΛ
d
a

∞∑
j=1

(−1) j−1

jd/2
z j Πaa(k,ω; Ta/ j), (35)

where Πaa denotes the function in the weakly degenerate case
derived in the previous sections. We should note here that this
result is exact within the convergence radius of the series,
i.e., for z < 1, while its validity is restricted by the choice
of approximation for the fugacity. The first few elements of
the series with j � 2 may be regarded as quantum corrections
to the nondegenerate result ( j = 1). We then can write down
the quantum correction of the order j for Π as (i.e., shift the
index by 1)

Πqc(j)
aa (k,ω; Ta) = (−1) j 2

naΛ
d
a

1
( j + 1)d/2

z j+1

×Πaa(k,ω; Ta/( j + 1)). (36)

In order to illustrate the results, we consider in this section
electrons and holes in bulk Cu2O. For the fugacity we use the
nondegenerate limit z = naΛ

3
a/2. Figure 2 shows the first two

quantum correction terms as a function of the wave number
q. They are, obviously, tiny for the chosen parameters even
though those can be regarded as upper (density) and lower
(temperature) bounds, respectively, being relevant for (current)
experiments investigating Rydberg excitons [5, 6].
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Figure 4. Sum of quantum correction terms up to jth order to the real part of the dielectric function normalized to the nondegenerate term vs
order j for a temperature of T = 10 K and several carrier densities (left panel). Same quantity only for the highest density, but up to j = 100
(right panel).

Figure 5. Sum of quantum correction terms up to 50th order to the real part of the dielectric function normalized to the nondegenerate term
vs carrier density at a frequency of h̄ω = 5 μeV for several temperatures (left panel) and vs temperature for several densities (right panel;
from bottom to top: log n/cm−3 = 10, 11, 12, 13, 14, 15). The thin solid blue line in the right-hand panel gives a T−3/2 law.

Figure 6. Real part (left panel) and imaginary part (right panel) of the dielectric function vs wave number for a carrier density of
log n/cm−3 = 16.8 and a temperature of 10 K. Comparison of nondegenerate term (dashed blue) and quantum corrected function
(sum of nondegenerate term and quantum corrections up to 50th order; red).

However, there are situations where the quantum degener-
acy is much higher, e.g., in the experiments attempting to prove
the existence of an excitonic Bose–Einstein condensate in bulk
Cu2O. There, electron–hole densities around 1016 cm−3 have
been generated by the optical excitation [27].

For the further analysis, we restrict ourselves to the real part
and look at the magnitude of the quantum correction terms
at fixed wave number and frequency relative to the nonde-
generate case, if not given explicitly, at a wave number of
q = 2 μm−1 and a frequency of h̄ω = 15 μeV. Figure 3 shows

7
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(Re ε( j) − 1)/(Re ε(0) − 1) depending on the order j for sev-
eral densities and temperatures. For a convergent series, the
terms have at least to decrease with increasing order which
is the case (at T = 10 K) only for log n/cm−3 � 16.8 (left
panel) and (at log n/cm−3 = 16.8) only for T � 10 K (right
panel). Indeed, the border of nΛ3 = 1/2 lies for the (lighter)
holes with T = 10 K just at log n/cm−3 = 16.8234 and with
log n/cm−3 = 16.8 just at T = 9.6472 K. For densities or tem-
peratures beyond that border, the series (35) is not convergent
and the terms (36) have no physical interpretation.

The left panel of figure 4 shows the convergence of the
series. It is slower at the border of the covergence area (see
also right panel), however, even summing up 100 terms is
numerically still quite feasible.

Finally, we consider the sum of quantum correction terms
up to 50th order to the real part of the dielectric function nor-
malized to the nondegenerate term as a function of the parti-
cle density for several temperatures and vice versa (figure 5).
While the density dependence is obviously ∝ n, the temper-
ature dependence is ∝ T−3/2, see dashed line in the right
panel.

Figure 6 illustrates the effect of quantum corrections on the
dielectric function by comparing the weakly degenerate limit
and the function including quantum corrections for a system
with quantum degeneracy (of the holes) of 1

2 nΛ3
h = 0.95.

6. Conclusions and outlook

We have derived analytical (RPA) results for the dielectric
response of an electron–hole plasma in the weakly-degenerate
case and demonstrated that the well-tried result for bulk sys-
tems [16] keeps its form also for lower-dimensional structures.
Moreover, it is even in the more complicated case of linear
carrier dispersion, realized, e.g., in graphene and many
topological insulators, possible to derive a result for the
polarization function for excited states in an analytical form
(see appendix C). Since that function determines, in par-
ticular, also the plasmonic properties of bulk and lower-
dimensional semiconductors, its knowledge in analytical form
can be expected of great usefulness for the calculation of these
properties.

In order to generalize the results beyond the weakly-
degenerate case, we have established a method which expands
the polarization function in a series with respect to the fugac-
ity z = eβμ. While the whole series covers the region of weak
and moderate degeneracies up to nΛd/2 = 1, its first terms
can be regarded as quantum corrections to the result in the
nondegenerate limit.

For the parameters relevant in the Rydberg exciton experi-
ments in bulk cuprous oxide [5, 6] (ultralow carrier densities
of n � 1012 cm−3), the nondegenerate limit for ε is a very
good approximation, and the quantum correction terms are
negligible. Obviously, this is not the case for higher densities
as in experiments searching for an excitonic Bose–Einstein

condensate [27]. Moreover, one can expect that quantum cor-
rections will play a much more important role in lower-
dimensional systems, particularly also in those with Dirac cone
functionality.

Acknowledgments

DS gratefully acknowledges support by the Deutsche
Forschungsgemeinschaft (Project Number SE 2885/1-1).

Data availability statement

No new data were created or analysed in this study.

Appendix A. Derivation of the effective quasi-two-
dimensional Coulomb interaction

Starting point is the effective Coulomb potential between two
carriers (electrons and holes) in a quantum well [21],

Vab(q) =
eaeb

2ε0εb,wq

∫ ∞

−∞
dz
∫ ∞

−∞
dz′
∣∣Φa(z)

∣∣2∣∣Φb(z′)
∣∣2

× exp
(
−q|z − z′|

)
. (A.1)

Here, Φa/b are the wave functions of the motion in
confinement- (z-)direction, εb,w is the background dielectric
constant in the well, and ee/h = ∓e.

The wave functions are those of a particle confined in a
one-dimensional quantum well. They read for the case of even
(odd) states [28]

Φa(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηaBa exp

[
κa

(
z +

d
2

)]
, −∞ < z � −d

2

Aa cs(kaz) , −d
2
� z � d

2

Ba exp

[
−κa

(
z − d

2

)]
,

d
2
� z < ∞

(A.2)

with a = e, h, ka =
(

2ma,w
h̄2 E

)1/2
and κa = (2ma,b

h̄2 (V0,a − E) )1/2,

ma,w and ma,b being the masses of carrier species a in the well
and in the barriers, respectively, V0,a the barrier height, and E
the energy of the confined particle. In order to account for even
and odd states of electrons and holes, we introduced the factors
ηa = ±1 for even (odd) states (a = e, h) and the functions

ct(θa) =

⎧⎪⎨
⎪⎩

cot θa

tan θa,
tc(θa) =

⎧⎪⎨
⎪⎩

tan θa

cot θa,

cs(θa) =

⎧⎪⎨
⎪⎩

cos θa

sin θa,
sc(θa) =

⎧⎪⎨
⎪⎩

sin θa

cos θa

(A.3)

[upper (lower) functions for even (odd) states].
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In order to determine the normalization constants Aa

and Ba, we apply the normalization condition of the wave
functions,

1 =

∫ ∞

−∞
dz
∣∣Φa(z)

∣∣2

= B2
a

∫ −d/2

−∞
dz exp

[
2κa

(
z +

d
2

)]
+ A2

a

∫ d/2

−d/2
dz cs2(kaz)

+ B2
a

∫ −∞

d/2
dz exp

[
−2κa

(
z − d

2

)]

=
B2

a

κa
+

A2
ad
2

(
1 + ηa

sin kad
kad

)
. (A.4)

Further information can be obtained by making use of the
boundary conditions at z = ±d/2, i.e., of the continuity of
wave functions and particle fluxes [29]. One gets

Ba = Aa cs

(
kad
2

)
and

Baκa

ma,b
= ηa

Aaka

ma,w
sc

(
kad
2

)
.

(A.5)

The first relation already allows to eliminate one of the two
constants. Even more importantly, both relations together lead
to

ηa
ma,wκa

ma,bka
= tc

(
kad
2

)
, (A.6)

i.e., a condition for the possible energies of the particle’s
motion in z-direction. The solutions can be illustrated most
easily by abbreviating

θa =
kad
2

, θa,0 =
ka,0d

2
,

ka,0 =

(
2ma,w

h̄2 V0,a

)1/2

, αa =
ma,w

ma,b
(A.7)

which renders (A.6) into

ηa
√
αa

(
θ2

a,0

θ2
a

− 1

)1/2

= tc(θa). (A.8)

We proceed now with the further evaluation of (A.4). Insert-
ing (A.5)–(A.7) one obtains

1 =
A2

ad
2

[
1 + ηa

αa

θa
ct(θa) + ηa

1 − αa

θa
cos θa sin θa

]
,

(A.9)
i.e., the normalization constant Aa follows to be

Aa =

(
2
d

)1/2 1(
1 + η a

αa
θa

ct(θa) + ηa
1−αa
θa

cos θa sin θa

)1/2 .

(A.10)
Now we go back to (A.1). Inserting the wave function (A.2),

the potential consists of three parts,

Vab(q) =
eaeb

2ε0εb,wq
(I1 + I2 + I3) (A.11)

with

I1 = B2
aB2

b

∫ −d/2

−∞
dz
∫ −d/2

−∞
dz′ exp

[
2κa

(
z +

d
2

)]

× exp

[
2κb

(
z′ +

d
2

)]
exp

(
−q|z − z′|

)

= B2
aB2

b

⎧⎨
⎩
∫ −d/2

−∞
dz′
∫ z′

−∞
dz exp

[
2κa

(
z +

d
2

)]

× exp

(
2κb

(
z′ +

d
2

)]
exp

[
−q(z′ − z)

]

+

∫ −d/2

−∞
dz′
∫ −d/2

z′
dz exp

[
2κa

(
z +

d
2

)]

× exp

[
2κb

(
z′ +

d
2

)]
exp

[
−q(z − z′)

]⎫⎬⎭
= B2

aB2
b

κa + κb + q
(κa + κb)(2κa + q)(2κb + q)

. (A.12)

Using the relation (A.6) and the abbreviations (A.7) (fur-
thermore Q = qd/2), and inserting (A.5) and (A.10), one
arrives at

I1 =
αaαb cs2(θa) cs2(θb)(

1 + ηa
αa
θa

ct(θa) + ηa
1−αa
θa

cos θa sin θa

)(
1 + ηb

αb
θb

ct(θb) + ηb
1−αb
θb

cos θb sin θb

)
× ηa αb θa tc(θa) + ηb αa θb tc(θb) + αaαbQ

(ηa αb θa tc(θa) + ηb αa θb tc(θb)) (2ηa θa tc(θa) + αaQ) (2ηb θb tc(θb) + αbQ)
. (A.13)

The calculationof I3 runsanalogouslywith theresult I3 = I1.
For I2 one gets

I2 = A2
aA2

b

∫ d/2

−d/2
dz
∫ d/2

−d/2
dz′ cs2(kaz) cs2(kbz′) exp

(
−q|z − z′|

)

=
d
2q

A2
aA2

b

{
1 + ηa

sin(kad)
kad

+ ηb
q2

4k2
b + q2

×
[

sin(kbd)
kbd

+ ηa
sin((ka + kb)d)

2(ka + kb)d
+ ηa

sin((ka − kb)d)
2(ka − kb)d

]

9
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− 1
qd

[
1 − e−qd + ηa

q2

4k2
a + q2

(
cos(kad)

(
1 − e−qd

)

+
2ka

q
sin(kad)

(
1 + e−qd

))]
(A.14)

×
[

1 + ηb
q2

4k2
b + q2

(
cos(kbd) − 2kb

q
sin(kbd)

)]}
.

Using now again the relations (A.6) and (A.10) and the
abbreviations (A.7) and Q = qd/2, one finally arrives at

I2 =
1
Q

1(
1 + ηa

αa
θa

ct(θa) + ηa
1−αa
θa

cos θa sin θa

)(
1 + ηb

αb
θb

ct(θb) + ηb
1−αb
θb

cos θb sin θb

)

×
{

1 + ηa
sin(2θa)

2θa
+ ηb

Q2

4θ2
b + Q2

[
sin(2θb)

2θb
+ ηa

sin(2(θa + θb))
4(θa + θb)

+ ηa
sin(2(θa − θb))

4(θa − θb)

]

− 1
2Q

[
1 − e−2Q + ηa

Q2

4θ2
a + Q2

(
cos(2θa)

(
1 − e−2Q

)
+

2θa

Q
sin(2θa)

(
1 + e−2Q

))]

×
[

1 + ηb
Q2

4θ2
b + Q2

(
cos(2θb) − 2θb

Q
sin(2θb)

)]}
. (A.15)

We insert the results for I1 = I3 and I2 into (A.11) and obtain for the effective Coulomb interaction in a quantum well

Vab(Q) =
deaeb

4ε0εb,wQ
1(

1 + ηa
αa
θa

ct(θa) + ηa
1−αa
θa

cos θa sin θa

)(
1 + ηb

αb
θb

ct(θb) + ηb
1−αb
θb

cos θb sin θb

)

×
(

αaαb cs2(θa) cs2(θb) (ηa αb θa tc(θa) + ηb αa θb tc(θb) + αaαbQ)
(ηa αb θa tc(θa) + ηb αa θb tc(θb)) (2ηa θa tc(θa) + αaQ) (2ηb θb tc(θb) + αbQ)

+
1
Q

{
1 + ηa

sin(2θa)
2θa

+ ηb
Q2

4θ2
b + Q2

[
sin(2θb)

2θb
+ ηa

sin(2(θa + θb))
4(θa + θb)

+ ηa
sin(2(θa − θb))

4(θa − θb)

]

− 1
2Q

[
1 − e−2Q + ηa

Q2

4θ2
a + Q2

(
cos(2θa)

(
1 − e−2Q

)
+

2θa

Q
sin(2θa)

(
1 + e−2Q

))]

×
[

1 + ηb
Q2

4θ2
b + Q2

(
cos(2θb) − 2θb

Q
sin(2θb)

)]})
. (A.16)

For illustration we consider the case of GaAs quantum wells
embedded in AlxGa1−xAs barriers. This system has the follow-
ing parameters [30, 31]: electron masses me,w = 0.063m0 and
me,b = (0.063 + 0.083x)m0, hole masses mh,w = 0.51m0 and
mh,b = (0.51 + 0.25x)m0 (i.e., αe = 0.717 and αh = 0.872),
dielectric constants εb,w = 12.90 and εb,b = 12.90–2.84x, and
energy gap mismatch ΔEg = 365.5 meV (which splits onto
electrons and holes like 0.65/0.35 so that V0,e = 237.575 meV
and V0,h = 127.925 meV). We use in the following x = 0.3
and a well width of d = 20 nm.

Figure A1 shows the graphical solution of (A.8). The elec-
trons exhibit three even and two odd bound states, the holes
exhibit six even and five odd bound states. Remember that
d = 20 nm here. The number of bound states increases with
increasing well width.

The effective Coulomb potential (A.11) is shown in
figure A2 for various even electron bound states in the well.
[Keep in mind that here single-particle bound states in the
well are meant. They must not be confused with electron–hole
(two-particle) bound states, i.e. excitons.] We denote them by

the quantum number pairs [e, e] with e = 1, 2, 3. Remember
that Q = qd/2 in (A.11).

In the right panel, the effective potential is compared to
the limiting cases for two (V2d

ee ∝ 1/q) and three dimensions
(V3d

ee ∝ 1/q2).

Appendix B. Derivation of the polarization
function in the one-dimensional case

In a 1d system, the polarization function is given by

Π(1d)
aa (k,ω) =

1
2π

naΛa exp

(
− h̄2k2

8makBTa

)
I (B.1)

with

I =
∫ ∞

−∞
dq e−βaq2 (

eβakq − e−βakq
)

×
[

w − 2akq
(w − 2ax)2 + ε2

− i ε
(w − 2akq)2 + ε2

]

= I1 + I2. (B.2)

10
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Figure A1. Graphical solution of (A.8) for even (above the abscissa)
and odd states (below the abscissa): rhs (black solid lines) and lhs
for electrons (red dashed), and holes (blue dotted).

We introduce the abbreviations x = akq and u = β/(ak2) mak-
ing the integral easier readable,

I =
1
ak

∫ ∞

−∞
dx e−ux2 (

eβx − e−βx
)

×
[

w − 2x
(w − 2x)2 + ε2

− i ε
(w − 2x)2 + ε2

]

= I1 + I2. (B.3)

The second (imaginary) contribution I2 can again be cal-
culated straightforwardly. Performing the limit ε→ 0 leads to

I2 = − iπ
ak

∫ ∞

−∞
dx e−ux2 (

eβx − e−βx
)
δ(w − 2x)

= − iπ
2ak

exp

(
− βw2

4ak2

) [
exp

(
βw
2

)
− exp

(
−βw

2

)]
. (B.4)

In the first (real) contribution to I (B.3) we proceed as before
applying the integration trick (14),

I1 =
1
ak

∫ ∞

−∞
dx e−ux2 (

eβx − e−βx
)

(w − 2x)

×
∫ ∞

0
dz exp

(
[(w − 2x)2 + ε2]z

)

=
1
ak

∫ ∞

0
dz exp

(
−(w2 + ε2)z

) ∫ ∞

−∞
dx exp

(
−(u + 4z)x2

)
×
(
e(β+4z)x − e−(β−4z)x

)
(w − 2x)

=
1
ak

∫ ∞

0
dz exp

(
(w2 + ε2)z

)
I(xy)
1 (z). (B.5)

The result of the x- and y-integrations is simple compared to
the 2d case,

I(xy)
1 (z) =

√
π

(u + 4z)3/2

{
(uw − β) exp

[
(β + 4wz)2

4(u + 4z)

]

− (uw + β) exp

[
(β − 4wz)2

4(u + 4z)

]}
. (B.6)

We insert (B.6) into (B.5) and perform the limit ε→ 0, yielding
finally

I1 =

√
π

ak

∫ ∞

0
dz e−w2z 1

(u + 4z)3/2

×
{

(uw − β) exp

[
(β + 4wz)2

4(u + 4z)

]

− (uw + β) exp

[
(β − 4wz)2

4(u + 4z)

]}

=

√
π

ak
exp

(
β2

4u

)[
F

(
uw − β

2
√

u

)
− F

(
uw + β

2
√

u

)]

=

√
π

ak
exp

(
βak2

4

){
F

[ √
β

2
√

ak

(
w − ak2

)]

− F

[ √
β

2
√

ak

(
w + ak2

)]}
(B.7)

with Dawson’s integral F.
Therefore, the final result for the sum of real and imaginary

parts again can be expressed in terms of the Faddeeva function
w,

e−
βak2

4 I = e−
βak2

4 (I1 + I2)

= − π

2ak

(
2√
π

{
F

[ √
β

2
√

ak

(
w + ak2

)]

− F

[ √
β

2
√

ak

(
w − ak2

)]}

+ i

{
exp

[
− β

4ak2

(
w − ak2

)2
]

− exp

[
− β

4ak2

(
w + ak2

)2
]})

=
iπ

2ak

{
w

[ √
β

2
√

ak

(
w + ak2

)]

− w

[ √
β

2
√

ak

(
w − ak2

)]}
, (B.8)

and the polarization function reads

Π(1d)
aa (k,ω) =

1
(2π)2

naΛa
iπ

2ak

{
w

[ √
β

2
√

ak

(
w + ak2

)]

− w

[ √
β

2
√

ak

(
w − ak2

)]}
(B.9)

= i

√
π

2
na

√
2ma

h̄2k2

1√
kBTa

×
{

w

[
1

2
√

kBTa

√
2ma

h̄2k2

(
h̄ω +

h̄2k2

2ma

)]

− w

[
1

2
√

kBTa

√
2ma

h̄2k2

(
h̄ω − h̄2k2

2ma

)]}
.

Comparing this with the 3d and 2d results (20) and (30), we
find that Π(1d)

aa (k,ω) = Π(2d)
aa (k,ω) = Π(3d)

aa (k,ω).

11
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Figure A2. Left panel: effective quasi-two-dimensional Coulomb potential (A.11) between even states of electrons vs wave number q (aX is
the (3d) excitonic Bohr radius and RX the (3d) excitonic Rydberg energy), right panel: same quantity times square of the wave number q
compared to the 2d and 3d limiting cases.

Appendix C. Derivation of the polarization
function for linear carrier dispersion

We consider the case of quasi-two-dimensional systems with
linear carrier dispersions, E(k) = γk, without an energy gap
between ‘valence’ and ‘conduction’ band which resemble the
Dirac cones of relativistic massless fermions. In such a sys-
tem, interband transitions have to be taken into account, and
the expression for the dielectric function (1) has to be modified
into

ε(k,ω) = 1 − Vee(k)
∑
a,b

Πab(k,ω) (C.1)

where a, b = ±1 denote electrons in the upper (+) and lower
(−) cone, respectively. The polarization function reads

Πab(k,ω) =
2

(2π)2

∫
d2qFab(k, q)

× fb
(∣∣k

2 − q
∣∣)− fa

(∣∣k
2 + q

∣∣)
w + Eb

(∣∣ k
2 − q

∣∣)− Ea

(∣∣k
2 + q

∣∣)+ iε

=
1

2π2

{
P
∫

d2qFab(k, q)

× fb
(∣∣ k

2 − q
∣∣)− fa

(∣∣k
2 + q

∣∣)
w + Eb

(∣∣ k
2 − q

∣∣)− Ea

(∣∣k
2 + q

∣∣) (C.2)

− iπ
∫

d2qFab(k, q)

×
[

fb

(∣∣∣∣k2 − q

∣∣∣∣
)
− fa

(∣∣∣∣k2 + q

∣∣∣∣
)]

× δ

(
w + Eb

(∣∣∣∣k2 − q

∣∣∣∣
)
− Ea

(∣∣∣∣k2 + q

∣∣∣∣
))}

.

The band overlap factor Fab(k, q) arises from degenerate
bands like in graphene, i.e.,

Fab(k, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(1 + ab cos θq,k+q) if band overlap

is considered

1 otherwise.
(C.3)

Obviously, the energy differences are given by

E±(k) − E±(k′) = ±γ(k − k′), E±(k) − E∓(k′) = ±γ(k + k′),
(C.4)

i.e., Eb(k) − Ea(k′) = bγ(k − abk′). Concerning the occupa-
tion of the bands we consider the case of weak excitation
above the ground state with μ = 0, i.e., a small number of elec-
trons is excited from the lower into the upper cone, e.g., by a
laser. Then we have in the upper cone an electron distribution
which can be well approximated by a Boltzmann distribution,
f +(k) ≈ nΛ2

2 e−βγk, and the distribution of the electrons in the

lower cone is given by f −(k) = 1 − f +(k) ≈ 1 − nΛ2

2 e−βγk.
First we look at the imaginary part of Πab (last summand

of (C.2)). After inserting the distribution function and energy
differences, the expression does not look much more compli-
cated than in the case of parabolic dispersion (cf (9)), how-
ever, the absolute values of wave number differences turn into
square roots, and the expression cannot be integrated straight-
forwardly. Instead, we first introduce an additional auxiliary
integration by substituting the variables

γ

(
k
2
− q

)
= x, γ

(
k
2
+ q

)
= y , i.e., x + y = γk.

(C.5)
ImΠab then reads

ImΠab(k,ω) = − 1
2πγ2

∫
d2x

∫
d2y [ fb(x) − fa(y)]Fab(x, y)

× δ[w + b(x − aby)] δ(y − (γk − x)) (C.6)

12
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with

Fab(x, y) = Fab(x, y, cos ϕ)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2

(1 + ab cos θ−x,γk−x)

=
1
2

[
1 + ab

γk cos ϕ

(γ2k2 + x2 − 2γkx cos ϕ)1/2

]

1

(C.7)

(see (C.3)), where ϕ = ϕx = �(k, x).
The expression (C.6) is easier to handle, however, the last

delta function has to be considered very carefully. We intro-
duce polar coordinates (the abscissa for the x-integration is
chosen in k-direction):

ImΠab(k,ω)

= − 1
2πγ2

∫ ∞

0
dx x

∫ ∞

0
dy y

∫ 2π

0
dϕx

∫ 2π

0
dϕy

× [ fb(x) − fa(y)]Fab(x, y, cos ϕx)

× δ[w + b(x − aby)]
1
y
δ(y − |γk − x|)δ(ϕy − ϕx)

= − 1
2πγ2

∫ ∞

0
dx x

∫ ∞

0
dy
∫ 2π

0
dϕ [ fb(x) − fa(y)]

×Fab(x, y, cos ϕ)δ[w + b(x − aby)]

× δ
[
y −

(
γ2k2 + x2 − 2γkx cos ϕ

)1/2
]
. (C.8)

To perform the ϕ-integration we use the last delta function,

δ
[
y −

(
γ2k2 + x2 − 2γkx cos ϕ

)1/2
]

=

2∑
i=1

1
| f ′(ϕ)|ϕ=ϕi

δ(ϕ− ϕi) (C.9)

with

cos ϕ1/2 =
1

2γkx
(γ2k2 + x2 − y2),

| f ′(ϕ)| = γkx | sin ϕ|(
γ2k2 + x2 − 2γkx cos ϕ

)1/2 , (C.10)

| f ′(ϕ)|ϕ=ϕ1/2
=

{[
(x + y)2 − γ2k2

] [
γ2k2 − (x − y)2

]}1/2

2y
.

From the conditions for real solutions (i) |cosϕ1/2| � 1 and
(ii) positive radicand in the last line of (C.10), we find the
restriction |γk − x| � y � γk + x.

Inserting now (C.9) and (C.10) into (C.8), we obtain

ImΠab(k,ω) = − 2
πγ2

∫ ∞

0
dx
∫ γk+x

|γk−x|
dy [ fb(x) − fa(y)]

× δ[w + b(x − aby)]

× x yFab(x, y){[
(x + y)2 − γ2k2

] [
γ2k2 − (x − y)2

]}1/2

(C.11)

with

Fab(x, y) =

⎧⎨
⎩

1
2

[
1 +

ab
2xy

(γ2k2 − x2 − y2)

]
1.

(C.12)

Introducing dimensionless sum and difference variables,
z = (x + y)/(γk) and t = (y − x)/(γk), respectively, and
abbreviating u = βγk/2 and v = w/(γk), (C.11) turns into

ImΠab(k,ω) = − 1
πγ2

γk
4

∫ ∞

1
dz
∫ 1

−1
dt

×
[

fb

(
z − t

2

)
− fa

(
z + t

2

)]

× δ

(
v − b

{
t
z

})
(z2 − t2)Fab(z, t)[

(z2 − 1)(1 − t2)
]1/2

(C.13)

with

Fab(z, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z2 − 1
z2 − t2

, ab = +1, intraband transitions

1 − t2

z2 − t2
, ab = −1, interband transitions

1 , no band overlap considered,
(C.14)

so that the last fraction in (C.13) reads

(z2 − t2)Fab(z, t)[
(z2 − 1)(1 − t2)

]1/2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
z2 − 1
1 − t2

]1/2

, ab = +1, intraband

[
1 − t2

z2 − 1

]1/2

, ab = −1, interband

[
z2 − 1
1 − t2

]1/2

+

[
1 − t2

z2 − 1

]1/2

, no band overlap.

(C.15)

13



J. Phys.: Condens. Matter 33 (2021) 475501 D Semkat et al

In the following, we consider the case with band over-
lap only. Inserting (C.15) and the difference of distribution
functions into (C.13), we obtain for the intraband contributions
to ImΠ

Im Π++(k,ω) = −nΛ2

πγ2

γk
8

∫ ∞

1
dz e−uz

√
z2 − 1

×
∫ 1

−1
dt

eut − e−ut

√
1 − t2

δ(v − t)

= −nΛ2

πγ2

γk
8

K1(u)
u

euv − e−uv

√
1 − v2

Θ(1 − v)Θ(1 + v)

= ImΠ−−(k,ω), (C.16)

where K0 and K1 denote modified Bessel functions of the sec-
ond kind, also referred to as MacDonald functions or modified
Hankel functions (i.e., Hankel functions with imaginary argu-
ments, Kν(x) = π

2 iν+1H(1)
ν (ix) [17]). For the interband contri-

butions we get

ImΠ+−(k,ω) =
nΛ2

πγ2

γk
8

∞∫
1

dz
e−uz

√
z2 − 1

δ(v − z)

×
1∫
−1

dt
[
eut + e−ut

]√
1 − t2

− 1
πγ2

γk
4

∞∫
1

dz
1√

z2 − 1
δ(v−z)

1∫
−1

dt
√

1−t2

=
1
γ2

γk
4

{
nΛ2 e−uv

√
v2 − 1

I1(u)
u

− 1
2

1√
v2 − 1

}
Θ(v − 1), (C.17)

ImΠ−+(k,ω) = −nΛ2

πγ2

γk
8

∞∫
1

dz
e−uz

√
z2 − 1

δ(v + z)

×
1∫
−1

dt
[
eut + e−ut

]√
1 − t2

+
1

πγ2

γk
4

∞∫
1

dz
1√

z2 − 1
δ(v + z)

1∫
−1

dt
√

1 − t2

= − 1
γ2

γk
4

{
nΛ2 e−uv

√
v2 − 1

I1(u)
u

− 1
2

1√
v2 − 1

}
Θ(−v − 1), (C.18)

where In denotes the modified Bessel function of first kind
(i.e., Bessel functions with imaginary arguments, Iν(x) =
i−νJν(ix)) [17].

Looking back at (C.15), in the case without band overlap,
there would occur the double number of terms in the contribu-
tions to ImΠ considered above. However, the additional terms

lead to divergencies which casts the physical sense of this case
into doubt.

The real part of the polarization function can be obtained
either via Kramers–Kronig transformation of the imaginary
part or, equivalently, directly from (C.2). Since the calculation
runs analogously, we have only to replace the remaining delta
functions in (C.13) or (C.16)–(C.18), respectively, by the cor-
responding denominator, e.g., δ(v − t) → 1

v−t etc. Obviously,
then one integral remains in each case,

ReΠ++(k,ω) =
nΛ2

π2γ2

γk
8

K1(u)
u

P
∫ 1

−1
dt

eut − e−ut

√
1 − t2

1
v − t

= ReΠ−−(k,ω), (C.19)

ReΠ+−(k,ω) = − 1
πγ2

γk
4

{
nΛ2 I1(u)

u
P
∫ ∞

1
dz

e−uz

√
z2 − 1

1
v − z

− 1
2
P
∫ ∞

1
dz

1√
z2 − 1

1
v − z

}
, (C.20)

ReΠ−+(k,ω) =
1

πγ2

γk
4

{
nΛ2 I1(u)

u
P
∫ ∞

1
dz

e−uz

√
z2 − 1

1
v + z

− 1
2
P
∫ ∞

1
dz

1√
z2 − 1

1
v + z

}
. (C.21)

Combining intraband and interband contributions, respec-
tively, we obtain

ReΠintra(k,ω) = ReΠ++(k,ω) + ReΠ−−(k,ω)

= − nΛ2

π2γ2

γk
4

K1(u)
u

P
∫ 1

−1
dt

eut − e−ut

√
1 − t2

1
t − v

= − nΛ2

π2γ2

γk
4

K1(u)
u

R(u, v), (C.22)

ReΠinter(k,ω) = ReΠ+−(k,ω) + ReΠ−+(k,ω)

= − 1
πγ2

γk
4

{
nΛ2 I1(u)

u
P
∫ ∞

1
dz

× e−uz

√
z2 − 1

[
1

v − z
− 1

v + z

]

− 1
2
P
∫ ∞

1
dz

1√
z2 − 1

[
1

v − z
− 1

v + z

]}

= − 1
πγ2

γk
4

{
nΛ2 I1(u)

u
S(u, v)

+
π

2
1√

1 − v2
Θ(1 − v)

}
. (C.23)

The remaining integrals R(u, v) and S(u, v) in (C.22) and
(C.23) are very interesting mathematical objects. To further
analyze them, we convertS(u, v) into a similar shape asR(u, v)
by substituting t = 1/z,

S(u, v) =
1
v
P
∫ 1

−1
dt

e−
u
|t|

√
1 − t2

1
t − 1

v

. (C.24)

14
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Resistant against all efforts to solve them analytically, R(u, v)
andS(u, v) turn out to be equivalent to a certain kind of integral
transformation between Chebyshev series of first and second
kind. We use the following relation [32]:

If f (y) ∼
∞∑

n=1

anTn(y) and g(x) ∼ π
∞∑

n=1

anUn−1(x) then

g(x) = P
∫ 1

−1
dy

f (y)√
1 − y2(y − x)

, (C.25)

Tn and Un are the Chebyshev polynomials of first and sec-
ond kind, respectively [17]. Note that (C.25) holds only for
|x| � 1.

Most importantly, the expansion coefficients of the series
are the same on both sides. Therefore, if one knows the Cheby-
shev series (of first kind) of the numerator function, the series
(of second kind) of the sought function is known, too.

InR(u, v), the numerator function is just the hyperbolic sine
function. The coefficients of the Chebyshev series of first kind
of f (z, u) = sinh uz are given by [32]

a(R)
n (u) =

2
π

∫ 1

−1
dz sinh uz

Tn(z)√
1 − z2

=

{
0 if n = 2k

2In(u) if n = 2k + 1,
(C.26)

where In again denotes the modified Bessel function of first
kind [17].

The relation (C.25) has to be modified for |x| > 1. In that
case, g(x) has to be complemented according to

g(x) ∼ π

∞∑
n=1

an

[
Un−1(x) − Tn(x)√

x2 − 1

]
. (C.27)

Therefore, one obtains for R(u, v) with (C.25)–(C.27):

R(u, v) = 4π
∞∑

k=0

I2k+1(u) {U2k(v)Θ(1 − v)Θ(1 + v) (C.28)

+

[
U2k(v) − T2k+1(v)√

v2 − 1

]
Θ(v − 1)Θ(−v − 1)

}
.

In S(u, v), the numerator function is e−
u
|t| . The coefficients

of the Chebyshev series of first kind have to be determined
from

a(S)
n (u) =

2
π

∫ 1

−1
dz e−

u
|z|

Tn(z)√
1 − z2

, (C.29)

and S(u, v) is then given by

S(u, v) =
π

v

∞∑
k=1

a(S)
k (u) {Uk−1(1/v)Θ(1 − 1/v)Θ(1 + 1/v)

+

[
Uk−1(1/v) − Tk(1/v)√

1/v2 − 1

]

×Θ(1/v − 1)Θ(−1/v − 1)} . (C.30)

Summarizing all contributions to imaginary and real
parts of the polarization function of a graphene-like two-

dimensional semiconductor structure, we have

Im Π(k,ω) =
∑
a,b

Im Πab(k,ω)

=
1
γ2

γk
4

⎧⎪⎪⎨
⎪⎪⎩

nΛ2

π

e−
β h̄ω

2 − e
β h̄ω

2√
1 −

(
h̄ω
γk

)2

K1

(
βγk

2

)
βγk/2

×Θ

(
1 − h̄ω

γk

)
Θ

(
1 +

h̄ω
γk

)

+

⎡
⎢⎢⎣nΛ2 e−

β h̄ω
2√(

h̄ω
γk

)2
− 1

I1

(
βγk

2

)
βγk/2

− 1
2

1√(
h̄ω
γk

)2
− 1

⎤
⎥⎥⎦

×
[
Θ

(
h̄ω
γk

− 1

)
−Θ

(
− h̄ω

γk
− 1

)]}
, (C.31)

ReΠ(k,ω) =
∑
a,b

ReΠab(k,ω)

= − 1
γ2

γk
4

{
nΛ2

π2

K1
(
βγk

2

)
βγk/2

R
(
βγk

2
,

h̄ω
γk

)

+
nΛ2

4π
I1
(
βγk

2

)
βγk/2

γk
h̄ω

S
(
βγk

2
,
γk
h̄ω

)

+
1

2

√
1 −

(
h̄ω
γk

)2
Θ

(
1 − h̄ω

γk

)
Θ

(
1 +

h̄ω
γk

)⎫⎪⎪⎬
⎪⎪⎭ ,

(C.32)

where R(u, v) and S(u, v) are given by (C.28) and (C.30).

Imaginary and real parts of the polarization function are
depicted in figure C1 in the form

Π(k,ω) =
1

4βγ2
[π1(k,ω) + iπ2(k,ω)] (C.33)

for a temperature of 1/β = 0.5RX and different frequencies ω
and degrees of quantum degeneracy χ = nΛ2/2. Note that, in
this representation, π1 and π2 are independent on the specific
material, its properties enter only via the excitonic Rydberg
energy RX and the overall prefactors.

The quantities exhibit the well-known principal behavior
of Π for graphene-like systems (see, e.g., [23–26]), see left
column in figure C1. The actual form of the curves, how-
ever, varies sensitively with the degree of quantum degener-
acy. In the limiting case of vanishing degeneracy (equivalent
to vanishing occupation of the upper cone), the remaining
contributions (only from interband transitions) in (C.31) and
(C.32) agree with the μ = 0 ground state case derived, e.g., in
[23, 26]. The corrections proportional to the degree of degen-
eracy modify the spectral structures both inside (|h̄ω| > γk)
and outside the cones (|h̄ω| < γk) considerably as shown in
the right column of figure C1.
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Figure C1. Imaginary (upper row) and real parts (lower row) of the polarization function for a two-dimensional system with linear carrier
dispersion vs γk/RX for a quantum degeneracy of χ = 0.05 and several h̄ω (left panels) and for h̄ω = 1RX and several χ.
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