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Introduction 1

1 Introduction

The constant exchange and processing of information of cells with and from their environ-

ment results in the orchestration of essential cellular mechanisms such as survival, homeosta-

sis, development, and cell death. This information, in form of extra- or intracellular signals, is

received by specific receptors, that in turn become activated, enabling the transduction to the

effector molecule(s), which eventually will trigger a precise biological response. One effector

molecule is not specific for one signal transduction pathway, in consequence a signaling path-

way can branch and communicate with other pathways, resulting in the amplification, inter-

connection, and modulation of signals and responses. Signal transduction depends not only on

transducer proteins, i.e. enzymes responsible for the production and/or release of second mes-

senger molecules or the introduction of reversible post-translational modifications in other

proteins, but also on reaction kinetics and thus enzymatic activity.

1.1 Redox signaling

Redox mediated signal transduction occurs by both oxidation and reduction of key mole-

cules as result of the transfer of electrons. In the past, redox modifications were considered to

be simply the result of an imbalance on the ratio of pro- and anti-oxidants within the cell; un-

der so-called ‘oxidative stress’ conditions, the excess of ‘pro-oxidants’ would favor the oxida-

tion of different effector molecules, resulting in many different pathologies and disorders (1–

5). Over the past decade, however, redox-biochemistry has experienced a significant transfor-

mation, as these redox modifications have been increasingly shown to be rapid, reversible,

physiological, and highly specific key mechanisms in cell signaling  (6–8). Moreover, redox

signaling was shown to be compartmentalized, i.e. localized to a single compartment or even

to different regions within a cell at a given time point, which stands in opposition to the view

of the overall cellular redox state as a balance (9,10). The major targets of redox modifica-

tions are the side chains of the sulfur containing amino acids,  i.e. cysteine and methionine

(Fig. 1). Cysteinyl and methionyl residues have been identified in numerous signal transduc-

tion pathways, highlighting their importance in complex organisms. The specificity of the re-

dox modifications, as well as the low reactivity of most sulfur containing amino acid side

chains with hydrogen peroxide, imply that redox signaling requires catalysis by specific en-

zymes, just like phosphorylation signaling requires kinases and phosphatases. While reducing

enzymes of both cysteinyl- and methionyl-derivates have been characterized in great detail
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before, only little is known about oxidizing enzymes. In this thesis, a new concept of protein

oxidation in cell signaling is presented: receptor-induced redox relays.

1.2 Peroxiredoxins

Peroxiredoxins (Prxs) belong to the thioredoxin (Trx)-fold family of proteins. Members of

this protein family share a common structural motif consisting of three α-helices surrounding

a central core of a four stranded β-sheet (11,12). Among the members of this family of pro-

teins are thioredoxins (Trxs), glutaredoxins (Grxs), and Prxs, on which a major focus of this

thesis will lay. Prxs were isolated for the first time from human erythrocytes in 1968 as a re-

sult of their high abundance, named as ‘torins’ by then (13); it was more than 25 years later,

in 1994, when Rhee et al. introduced the term peroxiredoxin (14). Prxs are ubiquitously ex-

pressed in all organisms, tissues, cell types, and organelles, and can account for up to 1% of

soluble cellular proteins (15,16). Prxs were firstly identified as ‘antioxidant’ due to their en-

zymatic activity. In contrast to Trxs and Grxs, which are mainly involved in the reduction of

protein disulfides, Prxs exhibit peroxidase activity and are therefore able to reduce peroxides

Figure  1:  Redox  modifications  of  cysteinyl  and  methionyl  amino  acid  side  chains.  (1)  Nitrosylation  of
cysteinyl residues requires a catalyst that accepts one electron. De- and trans-nitrosylation are catalyzed by
Trxs. (2) Reversible disulfide formation may occur by thiol-disulfide exchange reactions, e.g. with proteins of
the  Trx family.  (3) Reaction  with hydrogen peroxide  can lead to the  formation of  sulfenic  acids,  that  can
further react  to disulfides (4) or, irreversibly,  to sulfinic (5) and sulfonic acids (6). Oxidation of methionyl
residues,  e.g.  catalyzed  by MICAL enzymes,  evinces  methionyl-R-sulfoxides  that  can be  reverted  by  MsrB
enzymes  (7).  Methionyl-S-sulfoxides  (8)  can  be  reduced  by  MsrAs.  Methionyl  sulfoxides  may  also  be
irreversibly oxidized to methionyl sulfone derivates (9). Adopted from Article 1 (page 43).
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to water in presence of suitable electron donors  (17). Despite the difference in the activity

and, therefore, in the reaction mechanisms, Prxs, Trxs, and Grxs play a key role as regulators

in redox signaling and thus the cellular redox state.

Prxs are proteins of 20-30 kDa expressed in different cellular compartments and different

isoforms (18); six Prx isoforms were identified in Homo sapiens: Prx1 is mainly localized in

the cytosol, nucleus, and peroxisomes; Prx2 is present in the cytosol and nucleus, and has

been shown to bind to cell membranes; Prx3 is exclusively targeted to mitochondria; Prx4 is

found in the cytosol and endoplasmic reticulum, and is the only Prx isoform that is actively

secreted; Prx5 is localized in the cytosol, mitochondria and peroxisomes; Prx6 is present in

the cytosol, vesicles, and lysosomes (19). Based on their structure and enzymatic mechanism,

the mammalian Prxs are divided into three groups: 2-Cys Prxs (human Prx1-4), atypical 2-

Cys Prxs (Prx5),  and 1-Cys Prxs (Prx6). All of them contain one conserved, redox-active,

peroxidatic cysteine residue (CP, Fig.  2). 2-Cys and atypical 2-Cys Prxs contain one addi-

Figure 2: Reaction mechanism of 2-Cys Prxs. (1) CP (labeled Sp) is oxidized by H2O2 to sulfenic acid, that is
attacked by the CR (labeled Sr) of other Prx monomer (2), leading to the intermolecular disulfide. The disulfide
is reduced  by Trx as outlined  in  (3-4).  In the  presence  of  H 2O2,  the sulfenic  acid can be further oxidized
(hyper-oxidized) to sulfinic (5) and sulfonic (9) acids.  Sulfinic acid modified Prxs can be recovered by the
ATP-dependent action of Srx (6-8). Adopted with permission from (12). 
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tional so-called resolving cysteine residue (CR) located at the C-terminus of the same subunit,

while 1-Cys Prx lack this CR residue. Most Prxs function as homodimers, although the 2-Cys

Prxs also form decamers as result of the association of five dimeric subunits. Depending on

different conformations and complex formation, Prxs display different functions. From the

catalytical point of view, these three groups slightly differ from each other. During the reduc-

tion of H2O2 by Prxs, the CP is oxidized to sulfenic acid (CP-SOH). In the case of 2-Cys Prxs,

the CP-SOH reacts with the CR of the other subunit in the homodimer, leading to an inter-

molecular disulfide (Fig. 2 and 6); in atypical 2-Cys Prxs, the CP-SOH reacts with the CR of

the same subunit to form an intramolecular disulfide (15,19,20). Both inter- and intramolecu-

lar disulfides are eventually reduced by the Trx system (see section 1.3). Due to the absence

of a CR in 1-Cys Prxs, the sulfenic acid is, in this case, reduced by other small thiol mole-

cules, e.g. glutathione (GSH). In the situation of an excess of the substrate, Prxs may be hy-

per-oxidized to sulfinic or sulfonic acids (see also Fig. 1) on the peroxidatic N-terminal cys-

teinyl residue, resulting in the inactivation of the enzyme (21). For many years, Prxs hyper-

oxidation was thought to be irreversible,  but in 2003 Biteau and colleagues identified the

ATP-dependent  enzyme sulfiredoxin  (Srx,  Fig.  2)  able  to  restore  the  peroxidase  activity

(22,23).  So far,  Prxs are the only class of  proteins for  which a specific  reductase of  the

sulfinic acid has been described. The peroxidatic cysteine of Prxs is exceptionally reactive to-

wards peroxides,  being thereby oxidized very rapidly with a rate constant in the range of

1·106 to 1·108 M-1·s-1 (24–27), explaining why Prxs are also called peroxide scavengers. This

rate constant is 5 to 7 orders of magnitude higher than the rate constant of other small thiol

groups or any given protein cysteinyl residue, leaving the Prxs as strong competitors of other

target proteins thiol groups. In other words, in order to allow the oxidation of effector pro-

teins with a much slower reactivity towards H2O2, Prxs would have to undergo inactivation,

for instance through hyper-oxidation or phosphorylation  (21,28). In this way, the produced

H2O2 could act as second messenger molecule and oxidize the target protein(s) resulting in an

appropriate response. Given the high abundance of Prxs and the high sensitivity of the Prxs’

CP to H2O2, one other possible scenario would be that redox-regulated proteins are not di-

rectly oxidized by hydrogen peroxide, instead the oxidation of these proteins could be medi-

ated by Prxs. In this case, Prxs would act as sensors and transducers of H2O2 signaling path-

ways. In Manuscript 3 (page 70) this hypothesis, a new example for this function, is presented

and discussed in greater detail. 
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1.3 Thioredoxins

Thioredoxins  (Trxs)  comprise  the

first  branch and the name-giving pro-

teins of the Trx-fold family of proteins

(11,12,29). They were first identified in

1964  as  electron  donor  for  ribonu-

cleotide  reductase  (RNR)  (30). Their

characteristic  dithiol  active  site  motif

CGPC, that is conserved throughout all

kingdoms of life, facilitates the reduc-

tion of the disulfide formed in the cat-

alytic  cycle of the RNR. The reaction

mechanism by which Trxs reduce pro-

tein disulfides is called dithiol mecha-

nism, where both cysteinyl residues in

the active site are involved (31,32), see

Fig. 3 for more details. Briefly, the active site thiol located at the N-terminus initiates the nu-

cleophilic attack on a sulfur atom of the target disulfide, leading to the formation of a mixed

disulfide intermediate. This transient intermediate is then reduced by the C-terminal active

site thiol of the Trx, releasing the reduced substrate. Oxidized Trx is subsequently regenerated

by the flavo- and selenoprotein thioredoxin reductase (TrxR) (33,34), that ultimately receives

the reducing equivalents from NADPH. TrxR exists as a 55-60 kDa homodimer, in which ev-

ery subunit presents a flavin adenine dinucleotide (FAD) domain, a NADPH binding domain,

and an interface domain. It contains two active site motifs: one N-terminal active site motif

Cys-Val-Asn-Val-Gly-Cys, adjacent to the FAD domain, and one located at the C-terminus

with the motif Gly-Cys-Sec-Gly (35,36). The high accessibility and reactivity of the seleno-

cysteine (Sec) residue in the C-terminal active site confers the TrxR a broad substrate speci-

ficity  (34). The mammalian genome encodes two Trx systems: one cytosolic with Trx1 and

TrxR1, and one mitochondrial formed by Trx2 and TrxR2 (37,38). Trx1 is a 12 kDa protein

highly conserved in different species, from human to bacteria. The activity and specificity of

both human and bacteria Trx1 and TrxR are profoundly discussed in Article 2 (page 52).

Figure 3: Reaction mechanism of Trxs. Trxs reduce protein
disulfides  via  the  dithiol  mechanism,  depending  on  both
active site cysteines. The N-terminal active site Cys forms a
covalently  bound mixed disulfide intermediate (1), which is
reduced  by  the  C-terminal  active  site  Cys,  releasing  the
reduced  protein (2).  Oxidized Trx is reduced  by TrxR in a
similar  reaction  sequence  (3-4).  Adopted  with  permission
from (12).
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1.4 Glutaredoxins

Glutaredoxins (Grxs), as the third mem-

ber of the Trx family of proteins, also con-

tain  the  well-characterized  Trx-fold  do-

main (11). The Grx protein family was first

characterized  in  1976  as  GSH-dependent

alternative  electron  donor  for  RNR in  E.

coli, after mutants lacking Trx were still vi-

able  (39–41). Grxs  are  classified  in  two

groups  attending  to  their  active  sites:

CxxC/S-type  Grxs,  with  a  Cys-Pro-Tyr-

Cys/Ser active site motif,  and CGFS-type

Grxs,  with  a  Cys-Gly-Phe-Ser  active  site

motif  (42,43). The key determinant of the

Grx  function  is  a  unique  loop  structure

consisting of five amino acids directly pre-

ceding the active site, which is present in CGFS-type Grxs and absent in CxxC/S-type Grxs.

The latter  catalyze the reduction  of  disulfide bonds in substrates via  the so-called dithiol

mechanism, similar to the one described above in Fig. 3. In this case, however, the oxidized

Grx is regenerated by two GSH molecules (Fig. 4, reaction 1-4), that eventually are reduced

by NADPH via glutathione reductase (GR), also at the expense of NADPH (36,44,45). In ad-

dition,  and as unique feature,  Grxs can also reduce glutathionylated proteins in a process

called de-glutathionylation via the monothiol mechanism, where only the N-terminal thiol of

the active site is involved (Fig. 4, reaction 5-4) (46–48). Human Grx1 and Grx2 belong to this

CxxC/S-type Grxs. On the other hand, CGFS-type Grxs do not possess any oxidoreductase

activity, with few exceptions  (49,50); instead, they are essential in cellular iron metabolism

(42,51,52). Human Grx3 and Grx5 belong to this group of proteins (53–55). Iron is an essen-

tial element for the survival of almost all living organisms, it can be incorporated in heme or

iron-sulfur (FeS) cluster in proteins that are essential for life (56–58). These proteins partici-

pate in the transfer of electrons, are cofactors in enzymatic catalysis, control the stability of

biomolecules, and act as regulatory elements  (42). The first two FeS-Grxs described were

Arabidopsis thaliana GrxC1 (59) and human Grx2 (54,60), with the CGYC and CSYC con-

Figure  4:  Reaction  mechanism of  Grxs. Grxs  reduce
protein  disulfides  via  the  dithiol  mechanism,  being
reduced by two GSH molecules (1-4). In addition, they
reduce  glutathionylated  proteins  via  the  monothiol
mechanism only depending on the N-terminal active site
Cys,  that  attacks  the  GSH moiety  and  forms  a  GSH-
mixed  disulfide  intermediate  (5),  which  is  reduced  by
another  GSH  molecule  (4).  Adopted  with  permission
from (12). 
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sensus active site, respectively, sufficient to allow cluster ligation. The clusters are bridged in

a dimeric holo-complex at the interface of two hardly interacting Grx monomers, where the

N-terminal active site cysteinyl residue of each Grx and also the thiol groups of two non-co-

valently bound GSH molecules are involved  (61,62). Since the  discovery of these two pro-

teins, all CGFS-type Grxs have been characterized as Fe2S2-proteins that bind the FeS cluster

in a very similar way, including the co-ligation by GSH. Because cellular iron levels need to

be tightly controlled, organisms have developed effective regulatory mechanisms,  e.g. iron

regulatory proteins (IRPs) (51,63,64). For instance, in case of iron deficiency, cytosolic IRP1

and IRP2 bind to specific mRNA structures, called iron responsive elements (IRE), that pro-

mote the synthesis of proteins involved in iron homeostasis such as transferrin receptor (TfR),

ferritin, and ferroportin (65). In eukaryotic cells, once the Fe2S2 cluster is synthesized in the

mitochondria by the iron-sulfur cluster assembly machinery (ISC), it is transferred to Grx5 by

the heat shock protein HSP70 chaperone system (58). Subsequently, the cluster is either trans-

ferred directly to Fe2S2 target proteins or to protein complexes involved in Fe4S4 clusters as-

sembly (66,67). Independent of their enzymatic activity, all Grxs use GSH as substrate that

binds to an evolutionary conserved GSH binding site. Among the four different Grxs identi-

fied in mammals, Grx2 merits special mention in this thesis. The human Grx2 gene (GLRX2)

encodes three different protein isoforms by alternative splicing: mitochondrial Grx2a, and nu-

clear and cytosolic Grx2b and Grx2c (68,69). Grx2 contains the uncommon active site motif

CSYC, while its cytosolic counterpart  Grx1 contains the conserved CPYC motif.  The ex-

change of the prolyl residue at the second position in the active site sequence for a seryl

residue in Grx2 has two consequences: first, Grx2 is able to bridge a FeS cluster, resulting in

a dimeric holo-Grx2 inactive as reductase. Certain conditions, for instance a more oxidized

GSH pool, lead to the degradation of the cluster and the activation of the Grx2 monomers,

suggesting a function for Grx2 as sensor in vivo (54). And second, the CSYC sequence results

in an increased affinity for glutathionylated substrates, giving Grx2 the ability to (de-)glu-

tathionylate target proteins, as well as to reduce  protein disulfides (70–72). In this regard,

Grx2c has been identified as specific reductase of the regulatory disulfide in collapsin re-

sponse mediator protein 2 (CRMP2) (72,73) and is therefore included in the model of a spe-

cific redox signaling pathway proposed in Manuscript 3 (page 70). In addition, several studies

have shown the importance of the isoform Grx2c, as it is essential for brain development as
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well  as heart  functionality in zebrafish,  and it  is specifically induced in many cancer cell

lines, promoting cell motility and invasiveness (74,75).

1.5 The Semaphorin signaling pathway

Semaphorins (Sems) are expressed in most – if not all – tissues, although they were ini-

tially  characterized  in  the nervous system  (76–78).  Semaphorins  act  via  a  hetero-dimeric

transmembrane receptor formed by neuropilin (NP)-1 or -2 proteins, and plexin (Plex) pro-

teins of the classes A to D (79,80). The semaphorin signaling pathways are part of the regula-

tory networks controlling the processes that shape the developing nervous system,  i.e. axon

guidance,  synaptic plasticity,  and neuronal migration  (80–82).  Among all  members of the

semaphorin family, Semaphorin 3A (Sem3A) is a prototypical secreted semaphorin present in

neurons, where it is involved in axon repulsion, dendritic branching, and synapse formation

(83–85). For Sem3A in particular, the receptor NP1/PlexA is necessary to mediate the signal

transduction (86–88). Activation of the Sem3A pathway induces growth cone collapse and re-

traction of the outgrowths by controlling the de-polymerization of the cytoskeleton. Effector

proteins include Ser/Thr kinases like cyclin dependent kinase 5 (Cdk5) and glycogen synthase

kinase 3 β (GSK3β) that sequentially phosphorylate CRMP2 (89,90). Terman and colleagues

showed that MICAL proteins (see section 1.6) directly interact with PlexA (91), supporting

the idea that these proteins are involved in the semaphorin-mediated axon repulsion through

the regulation of cytoskeletal dynamics (see Fig.  5, page  17, for an overview of MICALs-

Sem3A  receptor  interactions).  Furthermore,  MICALs  directly  oxidize  actin  and  promote

growth cone collapse and cellular repulsion (91–95).

Both MICAL and CRMP2 interact with the cystosolic domain of PlexA and both are re-

quired for the Sem signaling pathway (91,96). The activity of the MICAL monooxygenases is

required for their function in the pathway, for instance MICALs can produce H2O2 upon acti-

vation of the Sem3A pathway (97). In this thesis, the following pathway and mechanism of

CRMP2 oxidation is proposed: MICAL1 is activated in response to Sem3A signaling, pre-

sumably by direct interaction with the Sem3A receptor. Next, reduced MICAL1 (FADH2) re-

acts fast with molecular oxygen yielding a peroxy-flavin intermediate (FAD-OO-). This im-

mediately decays to H2O2 and oxidized MICAL (FAD). This H2O2 oxidizes transducer pro-

teins, i.e. Prxs, that in turn oxidize CRMP2 (see Manuscript 3, page 70).
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1.6 MICAL proteins

MICAL proteins acquired their name after a study that identified a novel ‘molecule inter-

acting with CasL’ in 2002 (98). CasL belongs to the p130 Cas family of proteins (99), it con-

tains an N-terminal SH3 domain followed by a substrate domain, both motifs responsible for

its interaction with many molecules and, thus, for its functions  (100). A couple of months

later in 2002, Terman et al. identified MICALs in Drosophila melanogaster as proteins bind-

ing to the cytoplasmic domain of the semaphorin receptor PlexA (91), suggesting that MI-

CALs are involved in the semaphorin signaling pathway (see section 1.5). MICALs are cy-

tosolic proteins expressed in specific neuronal as well as non-neuronal tissues, such as spleen,

thymus,  lung,  and testis  (98,101).  They are highly conserved from vertebrates to inverte-

brates. The human genome contains three different MICAL genes (MICAL1, MICAL2, MI-

CAL3), and two MICAL-like genes (MICAL-L1, MICAL-L2) also found in mice. In con-

trast, Drosophila has only one MICAL gene and one MICAL-like gene (91,98,102). All MI-

CAL proteins contain a flavin-dependent monooxygenase (MO) domain located at the N-ter-

minus, followed by a calponin homology (CH) domain and a LIM domain. Additionally, a C-

terminal Rab-binding domain (RBD) can be found in some MICALs,  i.e. human MICAL1

and MICAL3 (103,104). Presumably the most interesting feature of MICAL proteins is the

presence of the N-terminal FAD-containing MO domain. Since MICAL-L proteins lack this

domain, they have been excluded from this thesis, in which the main focus resides particu-

larly on the oxidase activity. Nevertheless, it shall be mentioned that some studies point to the

involvement of MICAL-L proteins in processes such as the regulation of cell surface recep-

tors recycling, actin remodeling, or neurite outgrowth  (105–107). The MO domain confers

the ability of MICALs to function as oxygenases, i.e. oxidize targets using molecular oxygen

and NADPH as substrates. The CH domain is typical for actin-binding proteins. There are

three types of CH domains (1-3) (108–110), type 2 is present in MICALs. This type of CH

domain is not sufficient by itself to bind F-actin, however, it is important for the MO domain

to function, as it enhances the binding to actin as well as its catalytic activity (111). The LIM

domain consisting of small cysteine-rich zinc-finger structures is involved in cytoarchitecture

and protein-protein interactions (112–115). The RBD domain includes binding sites for small

GTPases of the Rab family, for instance Rab8, Rab1, or Rab35 (102,116–120). This domain

has been suggested to auto-inhibit the oxidase activity of the MO domain, as the C-term-trun-

cated MICAL1 resulted in a constitutively active enzyme  in vivo, in contrast to full-length
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MICAL1 (121). This domain was formerly named C-terminal domain (CTD), with a proline-

rich region, a glutamic acid repeat, and a coiled coil (CC) motif. The motif PPKPP (Pro-Pro-

Lys-Pro-Pro) present in the proline-rich region interacts with the SH3 domain of CasL, as

mentioned above (98). It is also through this C-terminal domain that MICAL interacts with

vimentin, a protein that is present in intermediate filaments of the cytoskeleton (98). This as-

sociation supports the idea that MICAL may function as regulator of the cytoskeleton.

As a flavoprotein, MICAL has been compared to other FAD-containing proteins. Based on

a high similarity of the MICAL MO domain to the aromatic hydroxylase p-hydroxybenzoate

(pHBH) from  Pseudomonas fluorescens (91,122,123),  the MO domain of  mouse MICAL

(mMICAL) was characterized in great detail  (124). From a structural point of view, the do-

main is folded in two subdomains connected by two  β-strands. The large subdomain, also

called domain-1 or FAD-binding domain,  contains the two consensus sequence motifs  re-

quired for the FAD binding. The first motif is the GxGxxG sequence, commonly found in

FAD-dependent oxidoreductases; the second motif is the GD sequence, conserved among the

hydroxylases. The FAD molecule seats in between the two subdomains and binds to one side

of mMICAL via a hydrogen bond network  (123). In pHBH, the flavin ring can switch be-

tween the  so-called  “out”  and “in”  conformation  depending  on its  oxidized  and reduced

states, respectively.  (125–127). Briefly, in the “out” conformation, the ring occupies a more

solvent-exposed position, away from the substrate; upon NADPH binding, the flavin ring is

reduced and pulled inward into a more buried position (“in”) facing the active site and favor-

ing the catalysis.  According to this nomenclature,  the flavin ring in the crystal  mMICAL

structure was found to adopt the “out” position (123). In the same study they also showed that

mMICAL binds NADPH, which likewise triggers a similar change in the FAD conformation.

In contrast to other hydroxylases and uniquely to mMICAL1, the shift from the “out” to the

“in” conformation leads to the opening of a channel directly connecting the molecular surface

with its active site. This channel opens out on the opposite side of the NADPH binding site,

and it is sufficient in length and width to permit the access of a potential substrate amino acid

side chain (123). A representation of both “in” and “out” conformations of the FAD in mMI-

CAL, as well as the surface open channel can be found in Article 1 (page 43). In Manuscript

3 (page 70) of this thesis, the following reaction mechanism of human MICAL is proposed

(Fig. 6, page 18): firstly, FAD is reduced to FADH2 at the expense of NADPH (Fig. 6, reac-

tion 1). In presence of molecular oxygen, reduced FADH2 is extremely rapid oxidized to the
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transient C4a-hydroperoxide intermediate form of the enzyme (FAD-OO-) (Fig.  6, reaction

2), which decomposes to H2O2 and the oxidized flavin (FAD) (Fig. 6, reaction 3). The shift of

the flavin ring from the “out” to the “in” conformation is crucial for MICAL to act as oxi-

dase, as well as the rate limiting step of the whole mechanism. Generated H2O2 is responsible

for the substrate oxidation, in this case Prxs (Fig. 6, reaction 4). This model mechanism, in-

cluding the kinetic characterization of every step, is shown in Manuscript 3 (page 70). Addi-

tionally,  in vitro experiments included in this manuscript show that indeed MICAL oxidizes

Prxs, noteworthy even in presence of catalase, indicating that the produced H2O2 is not re-

leased, but locally produced instead. This observation suggests that Prxs must bind to MICAL

in very close proximity to the open channel in order to be oxidized.  Once oxidized,  Prxs

would transfer the oxidizing equivalents to a dedicated effector protein, e.g. CRMP2 as pro-

posed in this thesis. According to this model, a quite low reactive thiol group such as CRMP2

Cys504 thiol (128) could be efficiently oxidized by other highly sensitive thiol groups such as

Prxs thiols, that are rapidly oxidized by H2O2, as discussed above. It has been published re-

cently that Prxs, upon oxidation by H2O2, transfer disulfides to redox-regulated proteins, in-

troducing the concept of a “redox relay” (129). Such redox relays have been known for more

than 15 years only in fungi. For instance, S. cerevisiae glutathione peroxidase-like 3 (GPx3),

later named oxidant receptor peroxidase 1 (Orp1), acts as H2O2 receptor and mediates the oxi-

dation of the transcription factor Yap1 (130), and when S. cerevisiae lacks all eight thiol per-

oxidases sensing H2O2, cells are unable to regulate gene expression in response to H2O2 (131).

Evidence of similar Prx-based redox relays has been reported in mammalian cells, with few

well-documented reports in which  deletion or depletion of human 2-Cys Prxs  compromises

H2O2-dependent thiol oxidation (129,132,133).

Following the identification of MICALs as flavin-dependent enzymes that specifically pro-

duce H2O2 by Nadella et al. (124), the function of MICAL proteins as potential oxidases has

been a subject of great interest. Back in 2002, although Terman and colleagues’ study did not

characterize MICAL as oxygenase, they yet showed growth cone repulsion upon inhibition of

flavo-monooxygenases in vitro, suggesting that MICALs are involved in axon guidance, and

thus semaphorin signaling (91). The collapse of the growth cone induced by semaphorins re-

quires localized de-polymerization of actin. The actin cytoskeleton is crucial for many, if not

all, cellular events, and as such, actin is a meticulously regulated protein. This regulation is

mediated  not  only  by actin  binding proteins,  but  also by post-translational  modifications.
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Actin is susceptible to redox modifications including oxidation, nitrosylation, glutathionyla-

tion and carbonylation (134–136). As they are widely variable, the effects of the redox modi-

fications cannot be grouped together (135). In general, redox mediated alterations have been

found to regulate the polymerization/de-polymerization dynamics of actin, but they are spe-

cific to the cell type, the redox environment, and the crosstalk to other signaling pathways.

Additionally,  these redox mediated alterations are  critically  dependent on the monomeric,

globular (G) or polymeric, filamentous (F) state of actin, as well as the particular amino acid

residues modified,  i.e. cysteinyl or methionyl residues. Unlike cysteine, methionyl residues

do not react rapidly with hydrogen peroxide at physiological pH (137). However, it has been

shown that methionyl residues at position 44 (M44) and 47 (M47) of actin are post-transla-

tionally modified by MICAL (92). In this study, Hung et al. generated mutants of actin where

either  single  or  both  methionyl  residues  were  replaced  by  leucine  (M44L,  M47L  and

M44/47L,  respectively).  All three mutants showed similar polymerization to the wild-type

actin, and all of them were found to bind MICAL. In contrast, actin filaments of wild-type

and M47L de-polymerized in presence of  MICAL and NADPH, while  actin  filaments of

M44L and M44/47L were resistant to de-polymerization under the same conditions, indicat-

ing that the specific oxidation of M44 is sufficient to cause F-actin disassembly and decreased

G-actin polymerization. Both M44 and M47 residues are located within the D-loop, a region

that is essential for actin subunits contact (138). Upon oxidation, the side chain of the sulfox-

ide derivate is no longer flexible and negatively charged, that directly affects the monomer-

monomer interaction region, thus leading to de-polymerization.  Already in 1948, after  the

identification of actin (139), Straub and colleagues suggested that the presence of an oxidiz-

ing agent not only dismantled polymerized F-actin, but also inhibited the polymerization of

G-actin, an observation that was much later confirmed after the failure of MICAL-treated

actin to re-polymerize in vitro (92). Binding to F-actin, but not G-actin, stimulates the enzy-

matic activity of MICAL, resulting in the modification of the actin cytoskeleton in a redox

dependent manner, both in vitro and in vivo (92,140–142).

Methionine is a sulfur-containing amino acid susceptible to oxidation in a unique pattern

(Fig. 1). The addition of an oxygen group on its sulfur atom generates a chiral center and re-

sults in a mixture of two diastereoisomers,  i.e. R- and S-methionine sulfoxide (R-MetO and

S-MetO, respectively) (143). Virtually all aerobic organisms have two distinct types of stere-

ospecific methionine sulfoxide reductases (Msr) that catalyze the reduction of MetO back to
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Met: MsrA specifically reduces S-MetO, while MsrB is specific for the reduction of R-MetO

(144,145). Both Msrs are thioredoxin-dependent enzymes, the oxidized form of Trx produced

in the reduction of MetO to Met is regenerated by TrxR at the expense of NADPH  (146).

Actin M44 was found to be stereospecifically oxidized to the R-MetO isomer by MICAL, that

is reduced specifically by MsrB resulting in restored actin polymerization properties  (147).

For this reason, we focus here on the MsrB family. It shall be mentioned, however, that sub-

stantial evidence has been presented that highlight the importance of MsrA in vivo in a num-

ber of events, for instance Alzheimer’s disease (148),  cells sensitivity to hydrogen peroxide

(149), or lifespan regulation (150,151). MsrB structural genes are highly conserved among al-

most all free-living organisms, and as such they have been identified and characterized in

bacteria  (145,152,153),  yeast  (154),  fly  (155),  and  mammals  (154,156,157).  Human  and

mouse genomes encode three MsrB genes, designated MsrB1, MsrB2, and MsrB3. MsrB1 is a

selenocysteine (Sec)-containing protein, also called selenoprotein R (SelR). Out of the three

orthologs, MsrB1 is the main form in mammals, located in both the cytosol and nucleus. It

possesses the highest catalytic activity (2280 M-1·s-1) due to the presence of Sec on its active

site; the MsrB1 cysteine mutant exhibits an 800- to 1000-fold lower specific activity  (158).

MsrB2 contains a cysteinyl residue on its active site instead, and it is around 2-fold less cat-

alytically efficient than MsrB1. MsrB2 is present in mitochondria of muscle tissues, mainly

heart and skeletal muscle (157). Similar to MsrB2, MsrB3 also has a conserved catalytic cys-

teinyl residue and a 3-fold lower catalytic efficiency compared to MsrB1. The human MsrB3

gene generates two protein variants by alternative splicing, i.e. MsrB3A and MsrB3B, present

in endoplasmic reticulum and mitochondria, respectively  (158). The reaction mechanism as

well as the substrates specificity of these three (seleno)cysteine-containing proteins are de-

picted  in  detail  in  references  (159,160).  Considering the  functions  and cellular  locations,

MrsB genes, together with MsrA, comprise a system with an enzyme- and stereo-specific

function to repair oxidized methionyl residues (161). In particular, MICAL and SelR consti-

tute a reversible cellular redox signaling system that controls actin cytoskeletal organization

(135). MICAL’s ability to destabilize actin cytoskeleton also plays an important role down-

stream of repulsive guidance cues like semaphorins, which have been well characterized for

their disruptive effects on the F-actin cytoskeleton. 
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1.7 CRMP2 and the cytoskeleton

Collapsin response mediator protein 2 (CRMP2), also named dihydropyrimidinase like 2

(DPYSL2,  gene name:  DPYL2),  is  one of  the five  members  of  the  putative  intracellular

CRMP family, which are expressed, among others, in the developing nervous system  (94).

Among the 5 homologous cytosolic proteins of the family (CRMP1 to CRMP5), CRMP2 is

the most abundant, as well as the most studied, and it was the first one to be discovered in C.

elegans (162). In addition, CRMP1, 2 and 4 give rise to two different isoforms derived from

alternative splicing, called isoforms A and B, resulting in an alternative N-terminus  (163).

The more C-terminal regions, however, are conserved among the CRMP family members,

and contain the binding sites for the two major proteins of the cytoskeleton, i.e. tubulin and

actin, suggesting that this region determines the main function of the proteins (164,165). In

case  of  CRMP2,  CRMP2B is  considered  as  the  canonical  isoform,  herein  referred  to  as

CRMP2, unless otherwise stated.  CRMP2 has been implied in semaphorin-mediated growth

cone  collapse,  hence  this  protein  has  a  strong  impact  on  cytoskeleton  rearrangements

(166,167). CRMP2 is present in the cytosol as a homo- as well as heterotetramer (168,169),

which  is  extensively  regulated  by  phosphorylation,  e.g. through  Cdk5  and  GSK3β

(89,90,170,171). Briefly, following stimulation of neurons with Sem3A, the CRMP2 tetramer

is recruited to the Sem3A receptor, where it undergoes a conformational change that enables

Cdk5 to phosphorylate CRMP2’s seryl residue at position 522 (Ser522), that allows the sub-

sequent phosphorylation of Thr509, Thr514, and Ser518 mediated by  GSK3β, resulting in

microtubuli disassembly and growth cone collapse  (94). In contrast, in absence of Sem3A,

CRMP2  associates  with  α/β-tubulin  heterodimers  and  stimulates  microtubules  assembly

(172). CRMP2 has also been characterized as promising drug target in the treatment of neu-

rodegenerative pathologies. Lanthionine ketimine and the cell penetrating lanthione ketimine

esters bind to CRMP2 and effect it in a way that improves neuronal plasticity and thus neuro-

regeneration,  for instance in animal models of multiple sclerosis, Parkinson’s disease, and

spinal cord injury (173–176).

The study of Morinaka et al. revealed that MICALs produce H2O2 in vivo upon activation

by Sem3A (97). Schmidt et al. (121) have demonstrated that members of the CRMP family

interact with MICALs when promoted by Sem3A signaling. Together, this points to a com-

mon role of both proteins in the regulation of the cytoskeleton. Even more, CRMP2 has also

been reported to be subject to redox regulation (74). Grx2c (see section 1.4) controls axonal
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outgrowth, survival of neurons, and development of a functional brain via redox regulation of

CRMP2  in vivo.  Apparently, at least some functions of CRMP2 are controlled by a thiol-

disulfide switch characterized in (73). Human CRMP2 contains eight cysteinyl residues at po-

sitions 132, 133, 179, 248, 323, 334, 439 and 504. Treatment with hydrogen peroxide leads to

the oxidation of two adjacent cysteinyl 504 thiol groups and the subsequent formation of an

intermolecular disulfide in the homotetrameric CRMP2 complex. This reversible intermolec-

ular thiol switch involves two distinct conformations of the complex (73): the formation of

the  disulfide  brings  the  C-terminal  regions  of  two  CRMP2 subunits  in  close  proximity,

whereas the reduced CRMP2 tetramer adopts a more open conformation with hydrophobic re-

gions  exposed.  Oxidized  CRMP2 is  a  target  of  Grx2c,  resulting  in  the  reduction  of  the

CRMP2 disulfide via the dithiol reaction mechanism (Fig. 4). Interestingly, also Trx1 is able

to reduce CRMP2 disulfide in vitro. Morinaka and colleagues (97) have even proposed a sta-

ble mixed disulfide between Trx1 and CRMP2. However, their study was mislead by the use

of mutant protein. No stable mixed Trx1-CRMP2 disulfide complex could be detected neither

in vitro nor in vivo. The different pKa values of the active site cysteines and the resulting reac-

tion mechanism and kinetics of Trx1 make a stable complex with CRMP2 highly unlikely to

occur, or rather excluded (31,177). 

The CRMP2 thiol switch has been well characterized  in silico and  in vitro (128). It was

confirmed  that  the transition  between oxidized  and reduced CRMP2 involves  a profound

structural and conformational change in the tetramer, that adopts a more “relaxed” conforma-

tion upon reduction. In this conformation, the phosphorylation sites of CRMP2 are more sol-

vent exposed and favor their phosphorylation by protein kinases as mentioned above, indicat-

ing the tightly connected regulation of CRMP2 by redox and phosphorylation modifications.

The second order rate constant of CRMP2 thiol oxidation by H2O2 was determined to be k =

0.82 M-1·s-1 (128). This rate constant is seven to eight orders of magnitude lower than the rate

constant of the most H2O2 reactive proteins in the cell,  i.e. Prxs, which indicates that the

CRMP2 thiol group is very unlikely to be oxidized by H2O2 directly in competition with these

highly  abundant  peroxidases.  Instead,  this  thesis  supports  the  idea  that  the  CRMP2 thiol

switch is specifically oxidized by dedicated enzymes, i.e. a specific Prx. The potential oxida-

tion of CRMP2 by Prxs has been suggested before (129,178). Noteworthy, MICAL proteins

have also been identified as interaction partners of CRMP2 (121). Co-immunoprecipitation

assays showed that full-length MICAL1 failed to interact with CRMPs. In contrast, a trun-
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cated version of MICAL1 lacking the C-terminal region does interact, suggesting that CRMPs

bind rather to the N-terminal region including the MO and LIM domains. No direct interac-

tion of CRMP with the LIM domain or MO domain alone was detected, which suggests that

multiple residues located at the N-terminal region may be involved in CRMP binding, rather

than a specific linear chain of amino acids (121). Despite the described interaction between

CRMP2 and MICAL, no study has linked the oxidation of the CRMP2 thiol switch to the MI-

CALs. As a proof of concept, in vitro experiments included in the supplementary material of

Manuscript 3 (page 70) failed to show a direct CRMP2 oxidation by MICALs. Hence, at least

one more protein must be involved in this oxidation mechanism. 

1.8 Hypothesis

The main hypothesis of this paper was: CRMP2 thiol switch is oxidized via a receptor-in-

duced redox relay that involves MICAL and Prx proteins.  As discussed above, Prxs are ex-

tremely reactive towards H2O2 and possess the ability to transfer the oxidizing equivalents to

redox-regulated target proteins (129,130,179–181). In addition, we identified Prxs as interac-

tion partners of both MICAL and CRMP2. Together, these findings made the Prxs strong can-

didates for the proposed redox relay, facilitating the transmission of the oxidation from a re-

ceptor-induced MICAL protein to CRMP2. Such a relay would ideally fulfill  the require-

ments for a specific redox signaling pathway as introduced above (section 1.1). The primary

aim of this thesis was to identify and characterize the components of this redox relay (Article

1, page 43, and Manuscript 3, page 70).

Specificity in (redox) signaling must be mediated through specific protein-protein interac-

tions. We also propose that the basis for the specific protein-protein interactions is compati-

ble electrostatic surface potentials that mediate recognition and the formation of an encounter

complex between the two proteins. The second aim of this thesis was to analyze the impor-

tance of electrostatic complementarity using the Trx1/TrxR1 system as model (Article 2, page

52).
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2 Conclusions

2.1 Article 1: Signal-regulated oxidation of proteins via 
MICAL

In this review, MICAL proteins and their

role as specific oxidases in signal transduc-

tion were presented and discussed. MICALs

structure, reaction mechanism as well as re-

activities  were  summarized.  The  human

genome  encodes  three  different  MICAL

isoforms (MICAL1-3), while only one gene

has  been  identified  in  Drosophila

melanogaster.  Virtually  all  MICAL  pro-

teins  contain  a  monooxygenase  (MO) do-

main with FAD as prosthetic group. Simi-

larly  to  aromatic  hydroxylases  and  amine

oxidases, they reduce molecular oxygen to

hydrogen peroxide in presence of NADPH. The produced hydrogen peroxide might act as

signaling molecule (Fig.  5). So far, only methionyl residues of actin filaments,  i.e. F-actin,

have been identified as MICAL substrates. MICAL proteins bind to F-actin and oxidize me-

thionyl residues M44 and M47 in a stereospecific manner, yielding the R diastereoisomer of

the methionine sulfoxide (R-MetO), which is eventually reduced back to methionine by me-

thionine sulfoxide reductase B (MsrB). The oxidation of actin M44 and M47 leads to fila-

ments de-polymerization, thus affecting cytoskeletal dynamics, and explaining why MICALs

have been also linked to semaphorin signaling pathways. This paper was the basis for the

main hypothesis of this thesis (see 1.8)

2.2 Article 2: Molecular basis for the interactions of human
thioredoxins with their respective reductases

In general, thioredoxins (Trxs) are characterized by their highly conserved active site with

two cysteinyl residues (CPGC), which are crucial for the reversible catalysis of thiol-disulfide

exchange reactions. After the release of the reduced substrate, oxidized Trx is eventually re-

Figure  5:  Signaling networks  with  mammalian
MICAL proteins as transducers. Semaphorin acts  via
NP1/PlexA  receptors  activating  MICAL  transducer
proteins,  that  are also regulated  by small  GTPases of
the Rab family. MICALs’ monooxygenase activities lead
to the oxidation of actin and potentially other cysteine-
containing  effector  proteins.  Adopted  from  Article  1
(page 43).
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duced by its  reductase TrxR at  the expense of  NADPH.  The interaction  between human

thioredoxin 1 (hTrx1) and its counterpart, the NADPH-dependent seleno-enzyme thioredoxin

reductase 1 (hTrxR1), was proposed to be controlled by electrostatic complementarity. In this

work we demonstrated that hTrx1 binds to its reductase independent of its redox state, as the

redox inactive hTrx1 mutant C32/35S still binds to the reductase,  i.e. the redox state of the

substrate does not seem to have a major influence on the recognition and formation of the

complex  with  its  reductase.  The study of  engineered  mutants  of  hTrx1  with  electrostatic

changes within and outside the contact area with hTrxR1 gives insight in the electrostatic

complementarity as a key force for the formation of an encounter complex between the pro-

teins. The change of potential in hTrx1 within the contact area with the reductase decreased

the affinity of the enzyme for its substrate, while electrostatic potential changes outside the

immediate contact area may have a strong influence on the catalytic efficiency.

2.3 Manuscript 3: NADPH-dependent oxidation of CRMP2 
through a MICAL1-Prx1 redox relay controls neurite 
outgrowth

Fine  balanced  cell-cell  communication

and  signal  transduction  pathways  control

cytoskeletal dynamics ensuring, among oth-

ers,  neuronal  development  and  plasticity.

Changes  of  the  intracellular  redox  milieu

have been associated with various stages of

these processes.  CRMP2/DPYL2 is  an ef-

fector  protein  in  the semaphorin  signaling

pathway that effects both actin and tubulin

dynamics,  thus  linking  cell  surface  signal

reception to processes such as neuronal de-

velopment  and  cell  migration.  CRMP2 is

subject to a complex network of post-trans-

lational  modifications  including  a  regula-

tory  dithiol-disulfide  switch.  The  mecha-

nisms of reduction of this redox switch were established, the signal-induced oxidation of the

Figure  6:  Proposed  reaction  mechanism of  MICAL-
catalyzed  Prx  oxidation. (1)  The  FAD  in  MICAL  is
reduced by NADPH. (2) FADH2 reacts with molecular
oxygen  yielding  peroxy-flavin.  (3)  Fast  decay  of  the
peroxy-flavin  to  H2O2 and  FAD.  (4)  H2O2 is  not
released,  but  directly  channeled  to  the  peroxidatic
cysteine  (CP)  of  a  MICAL-bound  Prx  dimer.  The
resulting  sulfenic  acid  is  attacked  by  the  resolving
cysteine  (CR)  yielding  the  intermolecular  disulfide
between two Prx monomers. Adopted from  Manuscript
3 (page 70)
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switch, however, remained unclear. Here, we report the oxidation of CRMP2 through a redox

relay in the semaphorin pathway that involves the signal-regulated flavin monooxygenase

MICAL1 and the peroxidase Prx1 as specific signal transducers. Using molecular oxygen and

electrons provided by NADPH, MICAL produces hydrogen peroxide and specifically oxi-

dizes Prx1 (Fig. 6). This reaction does not require hydrogen peroxide to be released into the

surrounding, i.e. it occurs through direct interaction between the two proteins. Subsequently,

Prx1 is responsible for the oxidation of the CRMP2 redox switch, thus modulating its biologi-

cal activity. The lack of any component of this proposed redox relay causes the same dysreg-

ulation of neurite outgrowth in a cellular model of neuronal differentiation.  An intriguing

consequence of our findings is that both the oxidation and the reduction of the CRMP2 thiol

switch require reducing equivalents in the form of NADPH (Fig. 7).

Figure 7: NADPH-dependent redox relays in both the oxidation and reduction of the CRMP2 thiol switch
control axonal outgrowth. Adopted from Manuscript 3 (page 70)
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3 Summary

Survival, development, and function of cells depend on numerous signaling pathways or-

chestrating the response to external and internal stimuli. Besides the well-established signal-

ing through reversible phosphorylation, the concept of specific, spatio-temporal redox modifi-

cations of protein cysteinyl and methionyl side chains that regulate the biological function of

these proteins is supported by an overwhelming amount of data. Members of the thioredoxin

fold family of proteins,  e.g. glutaredoxins (Grxs),  thioredoxins (Trxs),  and peroxiredoxins

(Prxs),  are widely characterized to catalyze thiol-disulfide exchange reactions.  One of the

most studied proteins of this family is mammalian Trx1, that, together with its reductase, the

NADPH-dependent seleno-enzyme thioredoxin reductase (TrxR) 1, forms the cytosolic Trx

system. This Trx system is required as electron donor  e.g. in DNA synthesis, proliferation,

and protection against apoptosis. In [Article   2  ], we analyzed the interactions between Trx1

and TrxR1 using a combination of molecular dynamics simulations and in vitro analysis with

recombinant proteins. In vitro analysis using numerous Trx1 mutants confirmed that the tran-

sient protein-protein interactions during the formation of the encounter complex are indepen-

dent of the subsequent redox reaction, but are controlled by electrostatic compatibility within

the interaction area. Electrostatic complementarity outside of this contact area can have an in-

fluence on the catalytic efficiency.

Although the specific  reduction  of  protein  redox modifications has been studied inten-

sively, the oxidation of protein side chains was thought to be a result of so-called ‘oxidative

stress’. However, this term has been increasingly challenged, since signaling pathways de-

pend on specific, spatio-temporal oxidation of target proteins, most likely catalyzed by spe-

cific enzymes. The discovery of MICAL (molecule interacting with CasL) proteins evinced

the first examples of specific oxidases in signal transduction in the redox regulation of cellu-

lar functions. In [Article   1  ], we discuss the signal regulated oxidation of proteins by MICAL,

taking recent discoveries into account. As part of the semaphorin signaling pathway, MICAL

proteins were characterized to stereo-specifically oxidize methionyl residues in actin, thereby

regulating actin de-polymerization, a process important in neurogenesis and cell migration.

This oxidation can be reversed by the specific methionine-R-sulfoxide reductase B1. Besides

the regulation of actin dynamics, MICALs are involved in the regulation of cell proliferation

and apoptosis, and the production of hydrogen peroxide may qualify them as specific oxi-

dases also for cysteinyl residues.
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In [Manuscript 3],  we identified and characterized the NADPH-dependent oxidation of

collapsin response mediator protein (CRMP) 2 through a MICAL1-Prx1 redox relay.  The

monooxygenase MICAL1 is able to produce hydrogen peroxide, in a NADPH and oxygen de-

pendent manner. MICALs are involved in the semaphorin signaling pathway, and therefore

important for the regulation of axonal outgrowth, guidance, and repulsion. CRMP2, also an

effector in the semaphorin signaling pathway, is regulated by reversible phosphorylation and

the formation of an intermolecular disulfide between two adjacent cysteinyl 504 residues in

the tetrameric complex. Based on molecular dynamics simulations, in vitro and in vivo analy-

sis, we confirmed the specific oxidation of Prx1 by MICAL1, most likely through the local

production of hydrogen peroxide,  that is directly channeled to Prx1’s active site cysteinyl

residue,  and  the  subsequent  transfer  of  the  oxidizing  equivalents  to  the  effector  protein

CRMP2. CRMP2’s thiol-disulfide switch is efficiently reduced by cytosolic Grx2 or Trx1,

oxidoreductases that are reduced by glutathione and glutathione reductase or TrxR1, respec-

tively, also at the expense of NADPH.

In synopsis, the results presented and discussed in these papers support the concept of spe-

cific redox signaling through specific protein-protein interactions and the importance of elec-

trostatic complementarity for these. With MICAL1, so far only known for the oxidation of

methionyl residues, and Prx1, we demonstrated the first redox relay that oxidizes CRMP2’s

thiol-disulfide switch, that in turn can be re-reduced by Grx2c. One of the most surprising re-

sults of this thesis is that both the reductive and oxidative pathways of this redox switch rely

on electrons provided by NADPH. Misinterpretations or errors in specific redox regulated

signaling pathways may contribute to pathological alterations, i.e. CRMP2’s redox switch is

essential for neuronal development and the progression of cell migration and invasiveness.

Identification of further target proteins of MICAL as well as the identification and analysis of

other potential specific oxidases will be subject of future investigations.
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5 Abbreviations
CC Coiled coil (motif)

Cdk5 Cyclin dependent kinase 5

CH Calponin homology (domain)

CP Peroxidatic cysteinyl residue

CR Resolving cysteinyl residue

CRMP Collapsin response mediator protein

CTD C-terminal domain

D-loop Deoxyribonuclease I binding loop

DNA Deoxyribonucleic acid

DPYSL2 Dihydropyrimidinase like 2

F-actin Filamentous actin

FAD Flavin adenine dinucleotide

FeS Iron-sulfur cluster

G-actin Globular actin

GR Glutathione reductase

GPx Glutathione peroxidase

Grx Glutaredoxin

GSH Glutathione

GSK3β Glycogen synthase kinase 3 beta

GTPase Guanosine triphosphate hydrolase

hTrx1 Human thioredoxin 1

hTrx1R Human thioredoxin reductase 1

HSP70 Heat shock protein 70

IRE Iron responsive elements

IRP Iron regulatory protein

ISC Iron-sulfur cluster assembly machinery

LIM LIN-11, Isl-1, and MEC-3 like (domain)

MICAL Molecule interacting with CasL

MICAL-L MICAL-like

mMICAL Mouse MICAL

MO Monooxygenase (domain)

mRNA Messenger ribonucleic acid

Msr Methionyl sulfoxide reductase
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NADPH Nicotinamide adenine dinucleotide phosphate 

NP Neuropilin

Orp1 Oxidant receptor peroxidase 1

pHBH para-hydroxybenzoate hydroxylase

PlexA Plexin A

Prx Peroxiredoxin

R-MetO R-methionyl sulfoxide

RBD Rab binding domain

RNR Ribonucleotide reductase

S-MetO S-methionyl sulfoxide

Sec Selenocysteine

SelR Selenoprotein R

Sem Semaphorin

SH3 Sarcoma homology 3 (domain)

Srx Sulfiredoxin

TfR Transferrin receptor

Trx Thioredoxin

TrxR Thioredoxin reductase

Yap1 Yes-associated protein 1
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