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Abstract. A quantum kinetic approach is presented to investigate the energy relaxation of
dense strongly coupled two-temperature plasmas. We derive a balance equation for the mean
total energy of a plasma species including a quite general expression for the transfer rate. An
approximation scheme is used leading to an expression of the transfer rates for systems with
coupled modes relevant for the warm dense matter regime. The theory is then applied to dense
beryllium plasmas under conditions such as realized in recent experiments. Special attention is
paid to the influence of correlation and quantum effects on the relaxation process.

1. Introduction

The recent developments of new methods for the creation and probing of warm dense
matter and strongly coupled plasmas have brought an impressive progress in the experimental
characterization of high energy density matter. For instance, x-ray scattering allows not only
the measurement of equation of state (EOS) data, but also to obtain structural, dynamic, and
collective properties of matter [1, 2, 3, 4, 5]. For the creation of such high energy density states
in the laboratory, one relies on dynamic experiments using intense particle or laser beams to
compress and heat the sample. In any case, this leads to the production of highly nonequilibrium
states first. Although in most experiments not of primary interest, such nonequilibrium states
deserve attention for several reasons. The first one is a practical one for EOS measurements
and the like, as the time delay between pump and probe pulses needs to be greater than
the relaxation time. The second reason is given by the interest to study the processes that
lead from a highly nonequilibrium state towards equilibrium. During the first and shortest
stage of a few femtoseconds, equilibrium distributions are established within the electron and
ion subsystems. Ionisation and recombination is finished shortly thereafter. On a picosecond
timescale, the process of temperature relaxation equals electron and ion temperatures. Apart
from the following hydrodynamic motion of the substance, temperature relaxation takes the
longest time of all relaxation processes and is also experimentally accessible.

An intense discussion about its order of magnitude started when Dharma-wardana & Perrot
[6] found considerably smaller energy transfer rates as predicted by classical Landau-Spitzer (LS)
theory [7, 8] and early computer simulations [9] if coupled electron-ion modes were included.
Indeed, experiments investigating dense plasmas, found strong indications of longer relaxation
times, thus smaller energy transfer rates [11, 12]. One of the shortcomings of the LS approach was
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addressed applying a quantum approach for binary collisions which yields however even larger
rates [13, 14, 15]. Furthermore, considering independent collective modes in the subsystems
within the Fermi-Golden-Rule approach, rates close to the LS results were obtained [16].
Therefore, collective modes seem to be the only candidate to explain the lower electron-ion
energy transfer in dense strongly coupled plasmas.

However, a rigorous description of temperature relaxation requires not only appropriate
transfer rates but has also to involve the interplay of all contributions to the internal energy. In
addition to the kinetic parts, correlations and exchange energies [17, 18, 19], and the ionisation
kinetics including excitations [20, 21, 22] can be important.

Here, we assume ionisation, recombination, and charge transfer processes to be completed and
concentrate on the electron-ion energy relaxation. We use a quantum kinetic description which
enables us to rigorously derive the balance equations and expressions for the transfer rates within
an appropriate approximation scheme. The influence of coupled mode effects on temperature
relaxation are still under discussion (see Refs. [6, 23, 24, 25, 26, 27]). We therefore re-derive
the coupled mode energy transfer rate based on the density operator formalism. Together with
adequate expressions for the internal energies/heat capacities, this enables us to determine the
time evolution of electronic and ionic temperature in a nonideal system with ionic and electronic
correlations and exchange. We demonstrate the effect of the nonideality contributions and the
transfer rates on the evolution of the temperatures, on the relaxation time, and on the final
temperature.

2. The energy balance equation

We consider a spatially homogeneous nonequilibrium plasma. To investigate the relaxation
of the plasma towards thermodynamic equilibrium, balance equations can be used. With the
single particle Hamiltonian Ha and the two-body potential Vab, the mean kinetic and the mean
potential energy of species ”a” can be defined by

〈Ka(t)〉 = Tr1{Haρa(t)} , 〈Va(t)〉 =
1

2

∑

b

Tr1,2{Vab ρab(t)}, (1)

where ρa and ρab are the one- and two-particle density operators, respectively. Note that
definition (1) implies the symmetric distribution of electron-ion contributions to the internal
energy into the electron and ion subsystems. The reduced density operators are determined by
the following equations of motion which are the first two equations of the quantum version of
the BBGKY hierarchy (time variables dropped) [28]

ih̄
∂

∂t
ρa = [Ha, ρa] +

∑

b

Tr2[Vab, ρab] , (2)

ih̄
∂

∂t
ρab = [Hab, ρab] +

∑

c

Tr3[(Vac + Vbc), ρabc] . (3)

The square brackets denote the commutator [A,B] = AB −BA.
Using the first equation, one can find the following expression for the change of the mean

kinetic energy over time [19]

∂

∂t
〈Ka〉 =

1

2

∑

b

Tr1,2
1

ih̄
{(Ha +Hb)[Vab, ρab]}

+
1

2

∑

b

Tr1,2
1

ih̄
{(Ha −Hb)[Vab, ρab]} . (4)
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The first term on the r.h.s. of Eq. (4) can be transformed using Eq. (3). Then one can show
easily that it is equal to the time derivative of the mean potential energy of species a, i.e.
equation (4) can be cast into [19]

∂

∂t
〈Ka〉 +

∂

∂t
〈Va〉 =

∑

b

Zab , (5)

where Zab defines the energy transfer rate between species a and b

Zab =
1

2
Tr1,2

1

ih̄
{(Ha −Hb)[Vab, ρab]} . (6)

Note that only terms with b 6= a give non-zero contributions to the total rate and that
Zab = −Zba. Summation over species a in Eq. (5) then gives

∑

a

d

dt
〈Ka〉 +

∑

a

d

dt
〈Va〉 =

∑

a,b

Zab = 0 , (7)

which expresses the conservation of the total energy.

3. Energy transfer rate

We write the transfer rate in the form

Zab =
1

2
Tr1,2

1

ih̄
{(Ha −Hb)[Vab, ρaρb + ρcorr

ab ]} , (8)

where ρcorr

ab is the correlation part of the two-particle density operator ρab. Our goal is to derive
an expression for the energy transfer rate for dense nonequilibrium plasmas where collective
phenomena can play an important role. For this purpose, it is useful to apply the following
relation (b 6= a)

〈12|ρcorr

ab (t)|2′1′〉 = ih̄L<
ab(11

′t, 22′t′)|t=t′
. (9)

Here, L<
ab is the correlation function of density fluctuations given by

ih̄L<
ab(11

′t, 22′t′) = 〈ψ†
b(2

′, t′)ψb(2, t
′)ψ†

a(1
′, t)ψa(1, t)〉 − 〈ψ†

b(2
′, t′)ψb(2, t

′)〉〈ψ†
a(1

′, t)ψa(1, t)〉 ,

(10)

with ψ†
a and ψa being the creation and annihilation operators of species a, respectively. Spin

variables will be suppressed for simplicity. With Eq. (9) and using the equations of motion for
the function L<

ab(t, t
′), one can derive the following expression for the energy transfer rate for

spatially homogeneous systems [29],

Zab(t)=−2V Im

∫

d3q

(2πh̄)3

∞
∫

0

dω

2π
ω Vab(q) ih̄L

<
ab(q;ω, t) , (11)

where V denotes the volume, and L<
ab(q;ω, t) is the Fourier transform of L<

ab(r1t1, r2t2) with
respect to the difference variables τ = t1 − t2 and r = r1 − r2.

Expression (11) allows for the determination of the energy transfer rate applying appropriate
approximation schemes for the correlation function of density fluctuations. For this purpose, we
start from the equation for the function Lab defined on the Keldysh time contour [30, 31]

Lab(t, t
′) = Πab(t, t

′) +
∑

c,d

∫

C

dt̄Πac(t, t̄)Vcd Ldb(t̄, t
′) . (12)
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Here, Πab is the polarization function, Vab is the Coulomb potential, and the symbol
∫

C stands for
the integration along the contour. For simplicity, only the time variables were given explicitly.
Applying the well-known techniques originally introduced by Keldysh, the equation for the
correlation function L<

ab can be obtained from Eq. (12) [30, 31]. Furthermore, the equations for
the retarded and advanced functions follow easily.

Now, we will specify our considerations on a two-component plasma consisting of electrons
with density ne and ions of density ni. As a first approximation we assume Πab = δabΠa where
Πa is considered to be the polarization function of the subsystem of species a, i.e. contributions
from the other species are neglected. Then a system of equations follows for the functions Lee,
Lei, Lie, and Lii defined on the contour.

For further considerations, it is useful to introduce the auxiliary functions Le and Li, defined
by

La = Πa + Πa Vaa La , (a = e, i) , (13)

which describe the pure electron and ion subsystems, respectively. Then, the equation for Lei

takes the form

Lei = Le Vei Li + Le Vei Li Vie Lei

= Pei + Pei Vei Lei , (14)

with Pei = Le Vei Li. Here, the equations are written in a compact form where the variables are
suppressed.

The equation for the function L<
ei for physical times can be obtained using the Langreth-

Wilkins rules [32]. In this equation, we introduce difference and sum variables, and we account
for only the terms of lowest order in the gradient expansion [31]. Finally, after Fourier
transformation with respect to the difference variables we get the following expression for the
electron-ion correlation function of density fluctuations [29]

L<
ei(q;ω, t) =

P<
ei(q;ω, t)

∣

∣1 − LR
e (q;ω, t)Vei(q)LR

i (q;ω, t)Vie(q)
∣

∣

2
, (15)

where P<
ei = L<

e Vei L
A
i + LR

e Vei L
<
i with L

R/A
a being the retarded and advanced response

functions of the subsystems (a = e, i).
In the following, a nonequilibrium plasma state is described corresponding to a situation

where the electron and ion subsystems can be considered to be in local equilibrium with the
electron temperature Te and the ion temperature Ti. The correlation functions of the subsystems,
L<

a , can then be expressed in terms of spectral functions Aa and the Bose function as follows

iL<
a (q;ω, t) = Aa(q;ω, Ta)nB(ω/Ta), Aa(q;ω, Te) = −2ImLR

a (q;ω, Ta) , (16)

and nB(ω/Ta) = 1/[exp (h̄ω/kBTa)−1]. Inserting the expression (15) with (16) into the general
expression (11) for the energy transfer rate, we arrive at

Zei(t) = −V

∫

d3q

(2πh̄)3

∫ ∞

0

dω

2π
h̄ω [Vei(q)]

2

×
Ae(q;ω, t)Ai(q;ω, t)

[

nB(ω/Te) − nB(ω/Ti)
]

∣

∣1 − LR
e (q;ω, t)Vei(q)LR

i (q;ω, t)Vie(q)
∣

∣

2
. (17)

Expression (17) has the same structure as that given by Dharma-wardana and Perrot [6] for
systems with coupled modes. If the denominator is set equal to unity, which corresponds to the
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approximation L<
ei = P<

ei , the expression reduces to the Fermi-Golden-Rule formula valid for the
regime of weak coupling between electrons and ions [29, 6]. A detailed discussion of coupled
mode effects compared to the Fermi-Golden-Rule approach is given in [27].

The key quantities in the transfer rate (17) are the density response functions of the
subsystems. Strong correlations in the subsystems can be accounted for by local field corrections
(LFC). Using static local field corrections, the retarded density response function can be written
as

LR
a (q;ω, t) =

Π0
a(q;ω, t)

1 − Vaa(q) [1 −Ga(q, t)] Π0
a(q;ω, t)

. (18)

Π0
a is the retarded polarization function in random phase approximation (RPA)

Π0

a(q;ω, t) =

∫

dp

(2πh̄)3
fa(p, t) − fa(p + q, t)

h̄ω + ǫa(p) − ǫa(p + q) + iε
,

(19)

where fa is the Fermi function for the subsystem of species a being in local equilibrium with
temperature Ta. The local field correction factor Ga is given by [33]

Ga(q, t) = 1 −
kBTa

naVaa(q)

(

1

Saa(q, t)
− 1

)

, (20)

with Saa(q, t) (a = e, i) being the static structure factors of the electron and ion subsystems.
For numerical calculations, it is sometimes convenient to use the coupled mode formula (17) in
another form given in terms of the dielectric functions. For the derivation of this formula, we
refer to Refs. [27, 29].

4. Energy relaxation, temperature relaxation, and quasi equation of state

In order to study temperature relaxation, a connection between temperature and internal energy
needs to be introduced into Eq. (5). This can formally be done via heat capacities and leads
for a two component electron ion system to two coupled differential equation for the temporal
evolution of the temperatures of the species

∂Te

∂t
=

Zei(Te, Ti)

∆

(

∂Ue

∂Ti
+
∂Ui

∂Ti

)

, (21)

∂Ti

∂t
= −

Zei(Te, Ti)

∆

(

∂Ue

∂Te
+
∂Ui

∂Te

)

, (22)

∆ =
∂Ue

∂Te

∂Ui

∂Ti
−
∂Ue

∂Ti

∂Ui

∂Te
. (23)

The internal energies of the subsystems are defined via Ua = 〈Ka〉 + 〈Vaa〉 + 1/2〈Vab〉 with
{a, b} = {e, i} (a 6= b, 〈Vab〉 = 〈Vba〉).

The internal energies for the electron and ion subsystems have to be calculated taking into
account different electron and ion temperatures. This presents some challenges in the general
case (see e.g. discussions in Refs. [10, 6]) and can only fully be overcome by taking one step
back describing the whole process on the basis of kinetic equations.

Here, we need a theory that can handle electron degeneracy and strong ion coupling.
So far, no unified approach that includes electrons and ions on the same basis is able to
achieve this. For our purpose, we therefore use a perturbation expansion in the electron
coupling to approximate the electron-electron internal energy contributions. This part is
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Figure 1. Nonideal temperature relaxation in
a shock produced beryllium plasma at threefold
solid density ρ0 = 1.848g/cm3 . The ion charge
state is Z = 2. The conditions are the same
as in a recent experiment [36]. The energy
transfer rate is in coupled mode approximation
including local field effects for the ions. Heat
capacities as described in Eqs. (4) & (25).
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Figure 2. Energy transfer rate and heat ca-
pacities for the temperature relaxation pre-
sented in Fig. 1. The red solid line with
the left ordinate gives the energy transfer rate.
The heat capacities are plotted in blue (nor-
mal terms) and black (cross terms). The heat
capacities include the factor of 2 from the den-
sities: ne = 2 · ni.

independent of the ion temperature and given in terms of Feynman diagrams to be [34, 35, 31]

Uee = U id
ee + 2 (24)

The terms considered are from left to right the Hartree, Hartree-Fock, Montroll-Ward, and
normal and anomal e4 exchanges terms. This approximation is sufficient for most laser produced
plasmas with hot electrons and also for shock produced plasmas with degenerate electrons.
In both cases, the electron heat capacities resulting are very small compared to the ion heat
capacities. In the first case this is due to the high coupling of the ions, in the second case due to
the degeneracy of the electrons. The pure ion and electron-ion contributions can be evaluated
using the effective one component plasma model [37]. The ions interact via an electronically
linearly screened potential. Using the hypernetted chain approximation the internal energy can
be written as

U corr
ii +Uei =

ni

2

∫

dk

(2πh̄)3

[

φeff
ii (k) − φii(k)

]

+
n2

i

2

∫

dr[gii(r, Ti, Te, ne)−1]φeff
ii (r, Te, ne) . (25)

The pure Coulomb potential is denoted by φ, whereas φeff is the effective interaction. The
cross term can be approximately evaluated by subtracting the contribution that arises in this
equation when using a pure Coulomb potential. It turns out that writing the internal energy
as in Eq. (25) means to give the electron-ion contribution the electron temperature. There
exist further arguments that Eq. (25) misses terms with temperature derivatives [38]. However,
for the physical systems under consideration here, we estimate that those terms are of minor
importance.

Progress in Nonequilibrium Green’s Functions IV IOP Publishing
Journal of Physics: Conference Series 220 (2010) 012002 doi:10.1088/1742-6596/220/1/012002

6



2

5

10
4

2

5

10
5

2

T
a[

K
]

10
-4

2 5 10
-3

2 5 10
-2

2 5 10
-1

2 5 1 2 5 10 2

t[ps]

Be, Z=2
3 0

LS
T-M
CM+LFC

electrons

ions
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ion acoustic modes is not fulfilled anymore
(Ti < 0.27Te) [27]. For small times, CM effects
lower the rate. The LS rate (with the Coulomb
logarithm chosen here) is so low because the
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5. Temperature relaxation in compressed Beryllium

Beryllium is of particular interest due to its use in inertial fusion and related experiments
[39, 3, 36]. We therefore study here two examples for temperature relaxation in dense compressed
beryllium. Both cases are chosen with conditions as in the experiment - threefold compression,
final temperature about 13 eV, charge state Z = 2 for the ions. Figure 1 shows the resulting
equilibration from a shock produced state as in Ref. [36]. The initial temperatures are results
of the nonideal relaxation under the boundary condition that the final temperature is 13 eV.
This choice of initial temperatures would have resulted in a final temperature of 8.7 eV in case
of an ideal classical relaxation and in a final temperature of 12.7 eV for an ideal quantum
relaxation. Quantum effects for the electrons are very important as they decrease the electron
heat capacity to almost zero for small times (see Fig. 2). The ideal relaxation using the
quantum heat capacity for the electrons is already very close to the full result, because the
correlation contributions to the heat capacities of electrons and ions partially cancel. The
pure electron-electron heat capacity is always very small as electron degeneracy is very high.
However, as temperature differences between ions and electrons become smaller, the electron-ion
contributions grow faster than the single species terms. Since the electron-ion internal energy
gets distributed evenly between electrons and ions, the electron subsystem receives considerable
heat capacity to balance the massive ion-ion correlation heat capacity. Contributions to the
heat capacity from ∂Ua/∂Tb (a 6= b) terms are small compared to the full heat capacities. The
final temperature is reached after 1.7 ps. This value is sensitive to the choice of energy transfer
rate. In general, coupled mode energy transfer rates predict slower relaxation than T-Matrix or
Fermi Golden Rule transfer rates. Not much can be said about Landau-Spitzer energy transfer
rates as their behavior strongly depends on the choice of Coulomb logarithm. For an extensive
discussion see Refs. [27, 29].
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An overview of the relaxation using different energy transfer rates is given in Fig. 3. In this
case, we study the opposite case to the shock produced plasma of Fig. 1. The hypothetical case
of Fig. 3 assumes a laser produced and compressed state of beryllium. The initial temperatures
are still the same but since the electrons are hot and the ions cold on the outset, the final
temperature is different (13.3 eV). The electronic heat capacity is still dominated by quantum
effects, although the higher temperature increases the ideal electron heat capacity to 88% of the
classical value. In Fig. 3, the T-Matrix relaxation is fastest and the Landau-Spitzer relaxation
slowest. The influence of the heat capacities (correlation contributions) on the relaxation time
is small compared to the influence of the energy transfer rates. In general, correlations in the
heat capacities slow relaxation down and quantum effects (which lower heat capacities) speed
relaxation up. The coupled mode energy transfer rates are the smallest rates up to date which
can be justified quantum statistically. It was therefore predicted that temperature relaxation
using coupled mode rates gives relaxation times much longer than previously obtained. However,
as Figs. 3 & 4 show, the influence of the coupled mode rate is not so much about the relaxation
time as about the time evolution of the relaxation. There are two important factors: Relaxation
is driven by temperature difference - the bigger the temperature difference the bigger the energy
transfer. In Fig. 3 for instance, one has to observe that the temperature difference in the coupled
mode case after about 0.1 ps is an order of magnitude larger than in the T-Matrix case. This
drives a faster relaxation. The second point to make is that the coupled mode effect ceases to
exist for small temperature differences which gives additional increase to the energy transfer.
The relaxation time obtained are 1 ps for T-Matrix rates, 1.7 ps for coupled mode rates, and
16 ps for the Landau-Spitzer calculation. The significance of the Landau-Spitzer result can be
doubted as the classical approximation scheme breaks.

6. Summary & Outlook

Relaxation times in the order of hundreds of picoseconds as seen in experiment [11, 12] cannot be
found with the theoretical methods presented in this paper. Neither the coupled mode energy
transfer rate nor the inclusion of correlation and quantum effects in the heat capacities slow
down the relaxation process on a necessary scale. An improvement of our theory is possible by
inclusion of bound states in the energy transfer rates. It will furthermore be necessary to put
the quasi equation of state theory on a firm theoretical foundation.
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