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Abstract. We present a Green’s function based treatment of the effects of electron-phonon
coupling on transport through a molecular quantum dot in the quantum limit. Thereby we
combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the
electron-phonon self energy in the framework of generalised Matsubara Green functions and
a Landauer-type transport description. Calculating the ground-state energy, the dot single-
particle spectral function and the linear conductance at finite carrier density, we study the low-
temperature transport properties of the vibrating quantum dot sandwiched between metallic
leads in the whole electron-phonon coupling strength regime. We discuss corrections to the
concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a
molecular switch.

1. Introduction

Recent progress in nanotechnology allows for the fabrication of electronic devices with
organic molecules as the active elements, which may constitute an alternative to conventional
semiconductor technology in the search for further miniaturisation. The basic example for
such a device is a single organic molecule contacted with metallic leads. The molecule can
be described as a quantum dot, i.e. as a system of finite size that is coupled to macroscopic
charge reservoirs. The electronic transport properties of such molecular electronic components
depend on the geometry of the molecule and the properties of the molecule-lead contact, as well
as on the average charge of the molecule [1]. Since the molecule is so small, quantisation of
energy levels becomes important. Furthermore, the molecule is susceptible to specific structural
changes in the presence of charge carriers. The energy of these deformations or vibrations
can be comparable to the kinetic energy of passing particles, whose mobility may therefore be
substantially affected. This process seems to play a fundamental role in the observed non-linear
behaviour of basic molecular devices, including negative differential resistance and hysteresis [2].
With strong coupling to vibrational degrees of freedom, current rectification and fast current
switching may be realised [3].
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2. Model

To investigate transport in a molecular quantum dot, we consider the model Hamiltonian

H =
∑

k,a

Ekc
†
kacka + ∆d†d − gω0(b

† + b)d†d + ω0b
†b − td√

N

∑

k,a

(
d†cka + c†kad

)
. (1)

Here c†ka (cka) are creation (destruction) operators of non-interacting electrons with energy
Ek (k = 1, . . . ,N) in the left and right lead (a = l, r). We assume that the leads are semi-
infinite one-dimensional chains with a semi-elliptical density of states ̺(ξ) = 1

N

∑
k δ(ξ −Ek) =

(2/πW 2)
√

W 2 − ξ2 Θ(W 2 − ξ2), where W is the half bandwidth. The quantum dot is modelled
by a single level ∆ with fermionic operators d(†). Working with spinless fermions, we take a
large local Coulomb repulsion at the quantum dot for granted. To describe the deformation of
the molecule, an electron at the dot couples via a Holstein-like term (∝ g) to a local phonon
mode b(†) of energy ω0. The last term in (1) allows for the dot-lead particle transfer (∝ td).

In analogy to Holstein’s small polaron theory [4], we expect – for sufficiently large electron-
phonon (EP) coupling g and frequency ω0 – the formation of a polaron-like state at the dot,
corresponding to an electron with an accompanying phonon cloud. To account for this effect, a
generalised Lang-Firsov-transformation H̃ = UHU † with U = exp{g̃(b† − b)d†d} and g̃ = γg is
applied, where γ ∈ [0, 1] is a variational parameter. The transformed Hamiltonian reads

H̃ =
∑

k,a

Ekc
†
kacka + ∆̃d†d − Cdd

†d + ω0b
†b −

∑

k,a

(
Ct d

†cka + C†
t c

†
kad

)
, (2)

with the renormalised dot-level ∆̃ = ∆ − εpγ(2 − γ) and the polaron binding energy εp = g2ω0.
As γ grows from zero to one, our approach interpolates between a weak coupling ansatz (γ = 0,

H̃ = H), and the complete Lang-Firsov-transformation (γ = 1) restricted to large phonon
frequencies and strong EP coupling, when the direct EP coupling via Cd = gω0(1− γ)(b† + b) is
replaced by a phonon-affected dot-lead transfer term Ct = (td/

√
N) exp{−g̃(b†−b)}. In this way,

we are able to describe the system for a large range of parameter values. Note that the effects
of a finite Coulomb interaction might be included by considering instead of the Hamiltonian (1)
Hubbard/Anderson-Holstein-type models [5, 6]. Here the influence of the phonons is mainly to
suppress the repulsion between the electrons at the molecular orbitals [7]. When the energy
scales set by the Coulomb and EP interactions become comparable bipolaronic states may form
at the quantum dot [5].

3. Theoretical approach

Our main interest lies in the single particle spectrum at the dot and the linear conductance in the
case of vanishing voltage bias between the leads. Both of these quantities can be obtained from
the polaronic spectral function Add(ω) = limδ→0+ [Im GR

dd(ω + iδ)], where the retarded Green

function GR
dd corresponds to the (polaronic) operators d(†) in the transformed Hamiltonian in

equation (2). We base our calculations on the equations of motion of generalised Matsubara
Green functions in equilibrium [8, 9]

Gdd(τ1, τ2; {V }) = − 1

〈S〉〈Tτd(τ1)d
†(τ2)S〉 . (3)

The mean value and the time dependences in (3) are determined by H̃ − µN̂ , where µ is the

equilibrium chemical potential of the system and N̂ denotes the particle number operator. The
S-matrix

S = Tτ exp

{
−

∫ β

0
dτ Vt (τ)Ct (τ) + V̄t (τ)C†

t (τ) + Vd (τ)Cd(τ)

}
(4)

describes the coupling to the components of a fictitious external potential {V } .
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3.1. Dot spectral function

Starting from the equations of motion for the dot Green function Gdd and the lead-dot transfer
Green function Gcd;ka, we express the occuring interaction terms by functional derivatives with
respect to {V } [8], e.g.,

〈TτCt (τ1)cka(τ1)d
†(τ2)S[V ]〉

〈S[V ]〉 = −C̄t(τ1; {V })Gcd;ka(τ1, τ2; {V }) +
δGcd;ka(τ1, τ2; {V })

δVt(τ1)
, (5)

with the interaction coefficients C̄
(†)
t (τ ; {V }) ≡ 〈TτC

(†)
t (τ)S〉/〈S〉. The resulting coupled

equations lead to a functional differential equation for the polaronic self energy Σdd(τ1, τ2; {V }) =

G
(0)−1
dd (τ1, τ2)−G−1

dd (τ1, τ2; {V }) (see equation (17) in [9]), which can be evaluated in a two-step

process. First, we neglect terms with functional derivatives of Σdd. We then insert the result,

Σ
(1)
dd , into these derivatives and only keep terms up to second order in C̄

(†)
t . In this way, we find

Σ
(2)
dd (τ1, τ2; {V }) = −C̄d(τ1; {V })δ[τ1 − τ2] +

∑

k,a

C̄t (τ1; {V })G(0)
cc; ka(τ1, τ2)C̄

†
t (τ2; {V }) (6)

+
∑

k,a

G
(0)
cc; ka(τ1, τ2)

[
1

〈S〉〈TτCt (τ1)C
†
t (τ2)S〉 − C̄t (τ1; {V })C̄†

t (τ2; {V })
]

+ G
(1)
dd (τ1, τ2; {V })

[
〈TτCd(τ1)Cd(τ2)S〉 − C̄d(τ1; {V })C̄d(τ2; {V })

]
.

Here G
(1)
dd denotes the Green function determined by the first order self energy and G

(0)
cc; ka is the

free Green function of the lead states. We then let {V } → 0 and calculate the correlation
functions of the interaction coefficients assuming an independent Einstein oscillator. After
Fourier transformation and summation over bosonic Matsubara frequencies, the retarded self
energy follows in the low-temperature approximation βω0 ≫ 1 as [9]

Σ
(2)
dd (ω + iδ) = 2 t2d e−eg2

∫ W

−W
dξ ̺(ξ)

1

ω + iδ − (ξ − µ)
(7)

+ 2 t2d e−eg2
∑

s≥1

(g̃2)s

s!

∫ W

−W
dξ ̺(ξ)

(
nF (ξ − µ)

ω + iδ − (ξ − µ) + sω0
+

1 − nF (ξ − µ)

ω + iδ − (ξ − µ) − sω0

)

+ [(1 − γ)gω0]
2
∫ +∞

−∞

dω′A
(1)
dd (ω′)

(
nF (ω′)

ω + iδ − ω′ + ω0
+

1 − nF (ω′)

ω + iδ − ω′ − ω0

)
.

Within our iterative scheme, the corresponding spectral function A
(2)
dd ≡ Add is evaluated in a

two step process using

A
(n)
dd (ω) = − 1

π
lim

δ→0+

Im Σ
(n)
dd (ω + iδ)

[
ω + µ − ∆̃ − ReΣ

(n)
dd (ω + iδ)

]2
+

[
Im Σ

(n)
dd (ω + iδ)

]2 , (8)

where the first order self energy Σ
(1)
dd is given by the first two terms in (7). The self energy

Σ
(2)
dd ≡ Σdd accounts for multi-phonon processes as well as finite particle densities. As g → 0,

our model (1) reduces to the Fano-Anderson Hamiltonian for a rigid impurity in a 1D lattice.
Then only the first term in (7) remains and gives the exact self energy. For finite EP coupling,
the spectrum contains multiple phononic side bands. If the condition ω0 < W − |µ| is fulfilled,
these bands overlap and ImΣdd 6= 0 along the whole ω-axis. Otherwise, a localised polaron-like
state may exist in the intervals where Im Σdd = 0.
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For the numerical evaluation of the spectral function we keep δ in (8) as a small positive
parameter (δ . 5 · 10−3). This avoids the problematic evaluation of principal value integrals in
ReΣdd for δ → 0. The resulting spectral function fulfils the sum rule

∫
Add(ω)dω = 1, which is

preserved in our approximations.

3.2. Ground state energy

The variational parameter γ is determined by minimisation of the ground state energy E =
〈H̃ − µN̂〉 with respect to γ. We identify the statistical averages in E with expressions like

equation (5), letting τ1 → τ−
2 and {V } → 0. As in the evaluation of Σ

(1)
dd , we neglect the

functional derivatives in equation (5), so that 〈Ct d
†cka〉 ≈ −〈Ct 〉Gcd;ka(τ1, τ2)

∣∣
τ
1
→τ−

2

. Applying

the same approximation to the equations of motion of the Green functions, we determine their
Fourier transforms in the complex plane to first order as

Gcc;ka(z) ≈ G
(0)
cc;ka(z) + 〈C†

t 〉〈Ct 〉
[
G

(0)
cc;ka(z)

]2
Gdd(z) , (9)

Gcd;ka(z) ≈ −〈C†
t 〉G

(0)
cc;ka(z)Gdd(z) . (10)

For the variation of γ we can omit the constant lead energy related to G
(0)
cc;ka. In equilibrium,

〈b†b〉 and 〈Cd〉 vanish as T → 0, and we obtain

E = − 2 t2d e−eg2

∫ µ

−W
dξ ̺(ξ)

∫ +∞

0
dω′ Add(ω

′)

[
2

ω′ − (ξ − µ)
+

ξ − µ

(ω′ − (ξ − µ))2

]

+ 2 t2d e−eg2

∫ W

µ
dξ ̺(ξ)

∫ 0

−∞

dω′ Add(ω
′)

[
2

ω′ − (ξ − µ)
+

ξ − µ

(ω′ − (ξ − µ))2

]

+ (∆̃ − µ)

∫ 0

−∞

dω′Add(ω
′) . (11)

Via Add, ∆̃ and g̃, the energy E, given by equation (11), depends on γ and can be used to
determine the extremal variational parameter γmin.

3.3. Conductance

We finally calculate the linear conductance L starting from the Meir-Wingreen formula [10],
which expresses the current J through the dot in terms of the retarded non-equilibrium Green
function GR

dd of the electronic operators d in (1). For equal coupling to the left and right lead,
and finite voltage bias Φ = −(µl − µr)/e, with e being the elementary (positive) charge, the
current takes the simple form

J = −e t2d

∫ W

−W
dξ ̺(ξ) [nF (ξ − µl) − nF (ξ − µr)] Im GR

dd(ξ) . (12)

Here nF (ξ) = (eβξ + 1)−1 is the Fermi distribution function of the isolated leads in thermal
equilibrium, at respective chemical potential µl/r. For small voltage bias, i.e. µl,r = µ ± δµ/2,
we can express the current as J = −Lδµ/e. Then, the linear conductance L = limδµ→0{−eJ/δµ}
results from (12) as

L = e2π t2d

∫ W

−W
dξ ̺(ξ) [−n′

F (ξ − µ)]Ae
dd(ξ − µ) , (13)

where the electronic spectral function Ae
dd(ω) = − limδ→0+ [Im GR

dd(ω + iδ)]/π is now calculated
in equilibrium. Based on the factorisation of the statistical averages of phonon and polaron
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Figure 1. For model parameters ω0 = 0.05, ∆ = 1, td = 0.25, µ = 0. Panel (a): Linear
conductance L and occupation of the dot n (inset) as functions of εp. At εc

p = 1.03 an abrupt
transition takes place. Panel (b): Dot energy E as a function of γ for several EP coupling
strengths. At εc

p, a second minimum at γ = 1 becomes the global minimum, causing a jump in
the extremal parameter γmin (inset). Panels (c) and (d): Spectral function Add(ω), integrated
spectral weight S(ω) =

∫ ω
−∞

dω′ Add(ω
′) and imaginary part of the self energy Σdd(ω) for εp in

the vicinity of the transition, showing the sudden formation of a long-living polaron-like state.

variables, a relation between Ae
dd and the polaronic Add has been derived in equation (40) of

[11]:

Ae
dd(ω) = e−eg2

∑

s≥0

(g̃2)s

s!
[Add(ω − sω0)Θ(ω − sω0) + Add(ω + sω0)Θ(−ω − sω0)] . (14)

Then, from (13) and (14), the linear conductance in the low-temperature approximation is

L = e2π t2d e−eg2

̺(µ)Add(0) . (15)

As usual, it depends on the accessibility of dot states at the Fermi level. In addition the
conductance exhibits a Lang-Firsov renormalisation t̃d = tde

−eg2/2 of the dot-lead transfer
integral, in accordance with the results for the Holstein model.

4. Numerical results and discussion

With our choice of a semi-elliptical lead density of states, the non-interacting system (ǫp = 0)
is translational invariant if the dot-lead transfer td is equal to the value t = W/2 for electron
hopping along the leads. In the following, we fix t = 1 and set td = 0.25, representing the weak
dot-lead coupling case.

4.1. Adiabatic regime

Let us first consider the adiabatic regime (ω0 = 0.05 < td), where the phononic time-scale is
much slower than the electronic time-scale and the deformation of the dot adjusts quasi-statically
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Figure 2. For model parameters ω0 = 3, ∆ = 1, td = 0.25, µ = 0. Panel (a): Because E has a
single minimum at γmin for all εp, a smooth crossover with γmin ≥ 0.7 occurs (inset). The linear
conductance reaches a maximum at εp ≈ ∆, when the peak in Add is shifted to the Fermi level
(c.f. panel (b)). Panel (c): For large εp, a bound polaron-like state may exist in the intervals
where Im Σdd = 0. Then the electronic spectrum exhibits a multi-peak structure.

to the average electronic occupation. We set µ = 0 and ∆ = 1, so that without EP coupling
(εp = 0) the dot simply acts as an impurity leading to scattering. For these parameters the
conductance L = 3 · 10−3 is small, i.e. far below its value L ≈ 0.16 for ∆ = 0 (see figure 1a). As
εp increases, L and the dot occupation n = 〈d†d〉 grow only marginally. At a critical EP coupling
εc
p = 1.03 a sudden transition to n ≈ 1 takes place, resulting in a drop of L by eight orders of

magnitude. This behaviour can be traced back to a jump in γmin, as figure 1b shows. For small
εp, E(γ) has a single minimum at γmin = 0.02 ≪ 1. Hence there is almost no renormalisation of
∆ or td and L is nearly independent of εp. However, the third term in (7) contributes and the

single peak in A
(1)
dd is added to Im Σdd, resulting in two maxima of equal spectral weight around

ω = ∆ in Add (see figure 1c). At εp = εc
p, when the gain in potential energy overcompensates

the loss in kinetic energy, a second minimum of E(γ) appears and becomes the global minimum.
As a result γmin jumps to unity, which corresponds to a complete Lang-Firsov transformation.
The dot level (∆̃ = ∆ − ǫp = −0.03) is shifted below the Fermi level and the dot-lead transfer
is reduced by a factor of exp{−g̃2} with g̃2 ≥ 20, so that L vanishes. Because ω0 ≪ W ,
the spectrum consists of overlapping phononic bands around a pronounced central peak, which
signals the formation of a long-living polaron-like state at the quantum dot. We know from
variational approaches to the polaron problem, that the jump in γmin may be an artefact of
our variational ansatz. In the Holstein model with EP interaction at every lattice site, the
formation of a heavy polaron can occur as a sharp but always continuous crossover for small
phonon frequencies. In contrast, a true phase transition from zero to finite dot occupation n is
found for a single electron at the quantum dot with ∆ > 0 [12]. This phase transition becomes
more pronounced as ω0 gets smaller. In [5], similar behaviour is found in a generalised Holstein-
Hubbard model with site-dependent potentials and EP couplings. Therefore, our results do not
contradict the overall physical picture, and the variational Lang-Firsov transformation simulates
the rapid adiabatic transition by a discontinuous change in γmin.

4.2. Anti-adiabatic regime

In the anti-adiabatic regime with ω0 = 3 ≫ td, the dot deformation adjusts instantaneously to
the presence of an electron. As figure 2a shows, our approach is better suited to this regime:
For µ = 0 and ∆ = 1, E(γ) has a single minimum γmin ≥ 0.7 for all EP coupling strengths and
we find a smooth crossover to n ≈ 1. At the quantum dot, both the renormalisation of td and
∆ affect the transport. Since the phonon number g2 = εp/ω0 is small in the anti-adiabatic case,
the shift of the dot level is the predominant effect. With increasing εp, the repulsive potential

∆̃ is continuously lowered and the conductance L grows, reaching almost the maximum of the

Progress in Nonequilibrium Green’s Functions IV IOP Publishing
Journal of Physics: Conference Series 220 (2010) 012014 doi:10.1088/1742-6596/220/1/012014

6



-0.2 0 0.2 0.4 0.6 0.8
∆

0

0.05

0.1

0.15

L 
/ e

2

εp=0
εp=0.2
εp=0.4
εp=0.5

(a)

-0.4 -0.2 0 0.2 0.4 0.6
∆

0

0.2

0.4

0.6

0.8

1

γ m
in

-0.4 0 0.4 0.80

0.4

0.8

n

(b)

-2 -1 0 1 2 3 4
ω

0

1

2

3

A
dd

-3 -2 -1 0 1 2 3

-0.2

0

Im
 Σ

dd

0

0.2

0.4

0.6

0.8

1

S

(c)
εp=0.2

∆=0.16

-1 0 1 2 3
ω

0

2

4

6

8

10

12

A
dd

-2 -1 0 1 20

1

2

3

A
e dd

0

0.2

0.4

0.6

0.8

1

S

0

0.5

1

(d)
εp=0.5

∆=0.25

Figure 3. For model parameters ω0 = 0.2, td = 0.25, µ = 0. Panels (a) and (b): L and γmin

as a function of the quantum dot level. For small εp = 0.2, we find a smooth crossover. As εp

grows, a jump-like transition occurs and the dot acts as a molecular switch. Panel (c): Spectral
function at the point of maximum conductance in the smooth crossover. Panel (d): Due to
overlapping phononic bands, no bound state exists even for large εp.

∆ = 0 case when εp ≈ ∆. Here the peak in Add is shifted to the Fermi level (see figure 2b) and
we can speak of phonon-assisted transport. Because ω0 > W , the self energy features few non-
overlapping phonon bands (see inset of figure 2b). For large εp, a bound polaron-like state forms

when ∆̃ is located in the intervals with ImΣdd = 0, as figure 2c shows for εp = 3.5 and ∆̃ ≈ −2.5.
The electronic spectrum then exhibits the typical structure of multiple Poisson-weighted peaks
(inset). Note that the delta peaks have finite width due to our numerical parameter δ > 0.

The results show that, as for the Holstein model, the complete Lang-Firsov transformation
is restricted to large phonon frequency and strong electron-phonon coupling. Away from this
limit, γmin significantly differs from one, and our approach allows for important corrections in
the regimes of weak coupling and moderate to small phonon frequencies.

4.3. Intermediate phonon frequency

Next we investigate the intermediate regime, where phononic and electronic energies become
comparable (ω0 = 0.2). We consider an experimentally relevant situation by keeping the EP
coupling fixed and varying the dot level (gate voltage). In the case of a rigid quantum dot
(εp = 0), scattering off the dot potential reduces the conductance. Therefore, in figure 3a, L
exhibits a maximum at ∆ = 0 and decreases symmetrically as |∆| grows. For finite EP coupling
εp = 0.2, this maximum is shifted to ∆ > 0, where the repulsive dot potential is compensated
by the EP interaction. The spectral function then shows a peak at the Fermi level and two
phonon satellites (see figure 3c). As we see from figure 3b, the optimal variational parameter is
a continuous function of ∆ taking values from 0.1 to 0.9. Therefore, the effective renormalisation
of t̃d and ∆̃ depends, via γmin, on the dot level ∆ itself. In contrast to the result for a complete
Lang-Firsov transformation with fixed γ = 1 (cf. figure 5 of [13]), the conductance maximum
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is shifted by less than εp, and L decreases asymmetrically away from this point. In accordance
with Galperin et al [13] and Mitra et al [14], we find no phonon side peak in L(∆). If εp is set
to larger values (εp = 0.4 and 0.5), a transition in the dot occupation appears which is again
related to a jump in γmin. La Magna and Deretzis [2] found a similar behaviour: for intermediate
phonon frequencies and strong EP coupling their variational ansatz showed bistabilities causing
a sudden occupation of the quantum dot (cf. figs. 2c and 2d in [2]). As the dot level falls below
a critical value, the charging of the quantum dot is accompanied by a drop in the conductance.
In this way the quantum dot acts as a simple molecular switch. Now the spectrum shows a
pronounced maximum at ∆̃, which is below the Fermi level. Note that, due to overlapping
phonon bands, no bound state exists even for large εp (figure 3d).

5. Conclusion

In the present contribution we studied transport through a deformable quantum dot, realised
e.g. by an organic molecule in contact to leads. Our treatment is based on Green’s functions
equations, with the dot Green’s function as the central quantity of our calculation. EP
interaction significantly affects the shape of the associated dot spectral function. Since at low
temperature the conductance of the quantum dot is determined by the spectral weight close to
the Fermi energy, it changes accordingly. The basic effect, with dramatic consequences for the
conductance, is the formation of a ”localised” polaron-like dot state. Similar to the Holstein
polaron, this effect can be captured in a Lang-Firsov approach. The virtue of our analytical
approach lies in the variational determination of the Lang-Firsov parameter. This allows us to
account for the basic polaronic effects both in the adiabatic and anti-adiabatic regimes, which
are distinguished by their different influence on the spectral function and, accordingly, on the
conducteance (briefly summarised in figure 4). Particularly for comparable phonon and electron
time-scales we find interesting physical behaviour, which motivates further investigation of the
quantum dot system, e.g. with respect to applications as a current switch.

The limitations of our study suggest two directions for improvements. First, the inclusion
of Coulomb interaction at the dot. Many interesting effects we present here arise from the
competition between electron-phonon interaction and a repulsive dot potential. Coulomb
interaction gives rise to an effective repulsive dot potential, whose strength depends on the
dot population. This may allow for even stronger non-linear behaviour, as then the transition

η

A A ddddN

ω0

−g 2 −g 2

ee

ω0 d << t>> t d

µ µ

Figure 4. Sketch of the basic polaronic effects on transport through a vibrating quantum dot.
In addition to a renormalisation of the dot-lead transfer integral, in the anti-adiabatic regime,
a continuous lowering of the dot potential towards the Fermi level enhances the transport. In
the adiabatic regime, the sudden formation of a quasi-localised polaron state causes a drop of
the conductance.
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between an effectively attractive or repulsive dot depends on the dot population through both
interaction mechanisms. Second, all our approximations neglect correlations between phononic
and polaronic degrees of freedom (note however that the Lang-Firsov transformation introduces
strong correlations between the phononic and electronic degrees of freedom). In this way, the
variational Lang-Firsov transformation can be used to map the entire problem approximately
onto a purely electronic problem, as in reference [2]. This reference reports results similar to ours,
e.g. for the dot population, but also for articifial bistabilities corresponding to different local
minima of the groundstate energy, which are a common feature of these variational approaches.
As a first step towards the reintroduction of electron-phonon correlations our treatment includes
the weak-coupling contribution to the self-energy, which partly accounts for retardation of
electron-phonon interaction at finite phonon frequencies. A detailed comparison of our results to
those presented in reference [2] has to be given elsewhere, and the improvement of our treatment
along the lines indicated is the subject of future work.
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