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Abstract. We investigate the equilibration of nonideal plasmas from initial states where each
species has already established a Maxwellian distribution, but the species temperatures and
the chemical composition are not in equilibrium. On the basis of quantum kinetic equations,
we derive hydrodynamic balance equations for the species densities and temperatures. The
coupled density-temperature relaxation is then given in terms of the energy transfer between
the subsystems and the population kinetics. We use the Landau-Spitzer approach for the energy
transfer rates and a system of rate equations to describe the nonequilibrium plasma composition.
Nonideality corrections are included in the rate coefficients and as potential energy contributions
in the temperature equations on the simplest level of a Debye shift.

1. Introduction
To investigate the properties of dense plasmas experimentally, it is necessary to deposit a large
amount of energy by means of lasers, ion beams, shock waves, or z-pinches into small targets.
These techniques produce systems in extreme nonequilibrium states. Therefore, the relaxation
towards the equilibrium can be of high importance for the interpretation of these experiments.

The equilibration of the different physical quantities occurs often on separated time scales:
after a few femtoseconds, i.e. within the plasma creation, the electrons establish an equilibrium
momentum distribution function. For the heavier atoms and ions, this process takes about one
or two orders of magnitude longer. Due to the effective energy transfer between same mass
particles, we can however assume that all heavy species have the same temperature after this
time. Often the plasma is also created with a nonequilibrium charge states distribution which
typically equilibrates on a picosecond time scale. A consistent description of the relaxation
process requires then a solution of the coupled equations for the temperature equilibration and
the population kinetics.

The density population [1–4] and the energy transfer rates [5–9] have been mostly studied
separately. Based on a kinetic equation for reacting plasmas [10], Ohde et al. considered the
coupled relaxation for a hydrogen plasma including first-order nonideality corrections [11]. In
this contribution, we will follow this way and extend it to other elements. Since we often find
a separation of time scales for the population kinetics and the temperature equilibration, we
finally derive a scheme which considers the density population on a quasi-stationary level.
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2. Kinetic and balance equations
The basis of our investigations are the kinetic equations for nonideal, partially ionized plasmas
which were derived by Klimontovich and Kremp [10]. For the distributions of free carriers fa,
we have [12]

(
∂

∂t
+ ∇pEa(p,Rt)∇R −∇REa(p,Rt)∇p

)
fa(p,Rt) =∑

b

Iab(p,Rt) +
∑
bc

Iabc(p,Rt) . (1)

The l.h.s. of this equation is the well-known drift term where we have incorporated quasi-particle
energies Ea. The collision integrals on the r.h.s. describe all possible two- and three-particle
collisions. The description of partially ionized plasmas is completed by a similar equation for
the distribution of bound complexes [10].

From Eq. (1), we can derive hydrodynamic balance equations for the species densities and
temperatures. Since elastic two-particle collisions do not change the plasma composition, the
density of free carriers in homogeneous systems is determined by

∂

∂t
na =

∫ dp
(2πh̄)3

∑
bc

Iabc(p, t) . (2)

The bound states density is then easily computed from the conservation of the total particle
number. In a similar way, the temperature evolution can be obtained from Eq. (1) with a
moment p2/2ma

∂

∂t

〈
Ekin

a

〉
=

∫ dp
(2πh̄)3

p2

2ma

{∑
b

Iab(p, t) +
∑
bc

Iabc(p, t)

}

=
∑

b

Zab +
∑
bc

Zelastic
a(bc) +

∑
bc

Z inelastic
a(bc) . (3)

Here, the quantities Zab denote the energy transfer rate between the electron and ion subsystems
due to binary collisions. The three-particle term was split in an elastic and an inelastic part. It
turned out that the energy transfer rate due to elastic three-particle collisions is only important
for weakly ionized plasmas. Therefore, it is omitted in the following calculations. The inelastic
part contains the influence of ionization and recombination processes on the temperature of
species ’a’.

3. Energy transfer rates
The energy transfer between the subsystems is one major input quantity for the coupled density-
temperature relaxation. The binary collision contribution Zab is equivalent to the one calculated
from the quantum Boltzmann equation1. For the energy transfer rates between nondegenerate
electrons and an ion species, we obtain [8]

ZT
eb = −

√
2π

8
π

nenbkB
µeb

me + mb

√
mekBTb + mbkBTe

memb

× (Te − Tb)
(2mekBTe)3

∞∫
0

dp p5 QT
eb(p) exp

(
− p2

2mekBTe

)
. (4)

1 Since the scattering probability is given here by the T-matrix, this approach is further refered to as T-matrix
approach.
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Figure 1. Comparison of the energy
transfer rates in different approxima-
tion schemes. The system is an alu-
minum plasma with an ionization de-
gree of three, an electron density of
ne = 3 × 1020 cm−3, and an ion tem-
perature of Ti =103 K.

Here, the latin index ’b’ denotes the ion species. The main input quantity is the transport
cross section QT . It is calculated by a phase shift analysis that uses numerical solutions of a
Schrödinger equation with a screened potential.

The calculation of the energy transfer rates using the T-matrix approach is numerically very
extensive. Therefore, we also review the easy Landau-Spitzer (LS) result for the energy transfer
due to classical binary collisions [5, 6]

ZLS
eb =

3
2
nekB

Tb − Te

τeb
with τeb =

3memb

8
√

2πnbZ2
be4 ln Λ

(
kBTe

me
+

kBTb

mb

)3/2

. (5)

Here, ln Λ denotes the Coulomb logarithm. To allow for strong electron-ion collisions, we use
the form [9]

ln Λ =
1
2

ln

(
1 +

r2
0

�2
⊥ + λ2

dB

)
, (6)

where the upper cut-off parameter is given by the electron Debye length r0. For the lower cut-off,
we use a quadratic interpolation between the distance of closest approach �⊥ and the deBroglie
wave length λdB [9].

The main short-coming of the approaches above for the energy transfer rates is the application
of static screening. Therefore, collective excitations like plasma oscillations cannot be described.
The easiest approach that considers such collective excitations is the Fermi-Golden-Rule (FGR)
approach [7]. With response functions in random phase approximation, one obtains for a
nondegenerate plasma [13]

ZFGR
eb = (Te − Tb)

8
√

2πnenbZ
2
b e4

2memb

(
me

kBTe

)3/2

×
∞∫
0

dk
k3(

k2 + r−2
0

)2 exp
(
−1

8
k2λ2

dB

)
. (7)

In Fig. 1, the energy transfer rates according to the approaches above are shown for an
aluminum plasmas. For low electron temperatures, we find large differences. The FGR result
is larger than the T-matrix data since the FGR corresponds to a Born approximation and,
therefore, cannot describe strong electron-ion scattering. The LS approach on the other hand
underestimates the energy transfer due to the classical treatment of the collisions. Nevertheless,
all approaches agree for a wide range of high temperatures or weakly to moderately coupled
systems. We, therefore, will use the easy LS formula in our further calculations.
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4. Ionization kinetics & plasma composition
To describe the equilibration of the charge distribution, we use the following system of rate
equations

∂

∂t
n0 = n2

en1β0 − nen0α0

∂

∂t
n1 = n2

en2β1 − nen1α1 − n2
en1β0 + nen0α0

...
∂

∂t
nZ−1 = n2

enZβZ−1 − nenZ−1αZ−1

−n2
enZ−1βZ−2 + nenZ−2αZ−2 . (8)

The quasi-neutrality results in a relation for the electron density

∂

∂t
ne = −

Z∑
i=1

W i→i−1 with Wi→i−1 =
i−1∑
k=0

∂

∂t
nk . (9)

The rate coefficients αi and βi have to be determined from the quantum kinetic equation (1).
We use the rate coefficients in the form [1]

αi = αid
i exp (−β[∆i+1 − ∆i + ∆e]) and βi = βid

i . (10)

The ideal part of the rate coefficients are calculated using the fit formula of Seaton [14].
Nonideality effects are included by quasi-particle shifts which are used in Debye approximation
with an electron screening length, i.e.,

∆a = −Z2
ae2κ

2
and κ2 =

1
r20

=
4πnee2

kBTe
. (11)

With this system of equations, the population kinetics towards equilibrium can be calculated.
The thermodynamic equilibrium is described by a generalized Saha-equation

ni

ni+1
=

gi

gi+1
exp

(
β

[
µid

e + Ieff
i

])
. (12)

Here, gi are the statistical weights and Ieff
i = |Ei| + ∆i+1 − ∆i + ∆e is the effective ionization

energy of the bound state with a charge Zi.
In Fig. 2, the evolution of the ionization degree is shown for a beryllium plasma. On a

short time scale, one can observe a rapid decrease of the ionization degree: Be4+ recombines
to Be3+. Then lower charge states occur until the equilibrium composition is reached in about
one picosecond. For comparison, the ionization degree that follows from ideal rate coefficients
is shown. One clearly observes a lower ionization and a slightly longer relaxation in this case.
The reason is that the nonideality reduces the effective ionization energy and bound states can
therefore be ionized more easily.

5. Temperature relaxation in reacting plasmas
We start from the hydrodynamic balance equations (2) and (3) to derive explicit equations for
the species temperatures. The evaluation of the collision integrals is done in a similar way as
shown in Ref. [11]. Due to the known inefficiency, we also neglect ionization by ion collisions
and ion assisted recombination.
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Figure 2. Evolution of the ionization
degree for an initially fully ionized
beryllium plasma with a density of
the heavy particles of n = 1022 cm−3.
During the relaxation the temperature
was kept constant at T =5×104 K.

5.1. Ideal hydrogen plasmas
Let us first consider the most easy case of an ideal hydrogen plasma. As demonstrated by
Ohde et al. [11], the reaction part on the r.h.s. of the temperature balance equation (3) can be
expressed in terms of the rate coefficients α and β if the adiabatic approximation is used. Due to
this approximation, the binding energy is fully contributed to the electron system and reactive
processes do not directly influence the temperature of the heavy particles. If we assume that all
heavy particles have the same temperature Th, the system is described by

∂

∂t
Te =

2
3kBne

{(
3
2
kBTe − E1

)
W 1→0 + Zei(Te, Th)

}
,

∂

∂t
Th =

2
3kBn

Zie(Te, Th) ,

W 1→0 = − ∂

∂t
ne = nenen1β0(Te) − nen0α0(Te) . (13)

The equilibration of an initially fully ionized hydrogen plasma described by these equations
is shown in Fig. 3. Since the released binding energy flows completely into the electrons, the
electron temperature rises in the first 30 femtoseconds where the relaxation is dominated by
the density population. The temperature equilibration occurs then on a time scale of several
picoseconds. During this time the ionization degree and the electron temperature are in
equilibrium which results in the decreasing electron density with falling electron temperature.

Often (e.g. in Fig. 3) the composition changes only parametrically with electron temperature
during the stage of temperature equilibration. This separation of time scales motivates a quasi-
stationary ansatz for the plasma composition

∂

∂t
na(t) =

∂

∂Te
na(Te)

∂

∂t
Te(t) , (14)

where ∂na(Te)/∂Te is calculated from the generalized Saha equation (12). Results from this
approach are shown in Fig. 3, too. Of course, the quasi-stationary ansatz cannot describe
the beginning of the relaxation correctly. However, we find a good agreement with the full
approach (13) after the first recombination stage is completed. Furthermore, it gives the correct
temperature evolution for the heavy particles.

5.2. Nonideal plasmas
In this section, we investigate the coupled density-temperature relaxation in nonideal plasmas.
It is well known that kinetic equations for quasi-particles cannot describe the correlation
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Figure 3. Relaxation of an initially
fully ionized ideal hydrogen plasma
with ne(0) = 1022 cm−3, Te(0) = 105 K,
and Th(0) = 103 K: the system is de-
scribed with the full dynamic composi-
tion (13) and the quasi-stationary ap-
proach (14).

contributions to the total energy correctly [15]. Accordingly, the temperature equations, that
result from the kinetic equation (1), lead to a violation of the energy conservation (only a half of
the correlation energy is considered [11]). This problem might be avoided by the extended quasi-
particle approximation [15], but no three-particle collision integral exists in that approximation
yet. For this reason, we will use here a phenomenological ansatz to describe the relaxation in
nonideal systems.

We start from the total energy of weakly coupled, nondegenerate plasmas [16]

ε =
∑
a

(
3
2
nakBTa + na∆a

)
+

Z−1∑
i=0

niE
bound
i , (15)

where Ebound
i denotes the binding energy per ion for a charged state of ’i’ and Z is the charge

of the ionic core. This approach allows also for a description of heavier elements than hydrogen.
We now divide the total energy into an electron and an ion/atom part

εe =
3
2
nekBTe + ne∆e +

Z−1∑
i=0

niE
bound
i and εh =

3
2
nkBTh +

Z∑
i=1

ni∆i , (16)

where we have assumed that all heavy particles have established a common temperature Th. As
for ideal plasmas, the binding energy is assigned to the electron part. The energy transfer
between these subsystems defines then the change of total energy in the electron and ion
subsystems. Using the self-energy shifts in Debye approximation (11), explicit equations for
the species temperatures can be found

∂

∂t
Te =

[
3
2
nekB − ∆e

2
ne

Te

]−1
{

Z∑
i=1

(
3
2
kBTe − Ei +

3
2
∆e

)
W i→i−1 + Zei

}
,

∂

∂t
Th =

−2
3nkB

{
∆e

2

Z∑
i=1

i2ni

(
1
ne

∂

∂t
ne −

1
Te

∂

∂t
Te +

2
ni

∂

∂t
ni

)
+ Zei

}
. (17)
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Figure 4. Coupled density-tempe-
rature relaxation in a nonideal beryl-
lium plasma with a total ion density
of n=5 × 1022 cm−3. The initial tem-
peratures are Te(0) = 4 × 105 K and
Th(0)=2×105 K.

In addition, the rate equations have to be solved selfconsistently. The full system consists
therefore of Z+2 differential equations. As in the case of ideal plasmas, the time scales of the
density population and the temperature equilibration are often very different. Therefore, the
quasi-stationary approach (14) seems to be appropriate for nonideal plasmas, too.

In Fig. 4, the coupled relaxation of the densities and the temperatures in a nonideal beryllium
plasma is shown using the full dynamic and quasi-stationary approach. One can clearly observe
the separation of the relaxation phases in this case, too. The consideration of nonideality
corrections leads here to a decrease of the ion temperature and a weaker increase of the electron
temperature in the recombination phase. After this stage both the dynamic and the quasi-
stationary approach principally coincide.
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