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Abstract. The relaxation of nonideal two-temperature plasmas is investigated with a kinetic
approach. First the energy transfer between the electrons and ions is described using different
approximations: the energy transfer through classical collisions (Landau-Spitzer approach) is
reviewed; quantum diffraction and strong collisions are included by applying the quantum
Boltzmann equation; the influence of collective modes is considered on the basis of the Lenard-
Balescu equation (coupled modes) and with the Fermi-Golden-Rule approach (independent
electron and ion modes). Finally, the evolution of the species temperature is investigated.
In nonideal plasmas, changes in the correlation energy have to be taken into account during the
relaxation. It is demonstrated that ionic correlations can significantly influence the relaxation
(particularly the evolution of the ion temperature).

1. Introduction
Most experimental techniques that are designed to create dense plasmas produce systems in
extreme nonequilibrium states since the energy is mostly coupled into one species. Lasers and
particle beams transfer for instance almost the entire energy to the electrons while shock waves
produce plasmas with energetic heavy particles and cold electrons. Subsequently, the properties
of the plasma are governed by the relaxation towards the equilibrium state. The relaxation
times are also of importance for measurements of equilibrium properties since they determine
the minimum time delay between creation and probing.

In dense plasmas, most properties have reached equilibrium values after a few hundred
femtoseconds. In particular, the particles have established Fermi/Maxwell distributions1, but the
species temperatures are still different. During the following stage the relaxation is determined
by the energy transfer between electrons and ions. However, the temperature equilibration can
also drive changes in the plasma composition or the correlation energy. In turn, the thermal
energy is then modified by the time-dependent binding [3, 4, 5] or correlation energies [6].

The energy transfer between electrons and ions was first described in the seminal works of
Landau and Spitzer (LS approach) [7, 8], where hot, weakly coupled plasmas were considered.
Due to the assumption of classical Coulomb collisions, ad hoc cutoffs had to be introduced.
Comparisons with numerical simulations showed slightly higher or lower energy transfers
depending on the applied cutoffs [9, 10]. To include strong electron-ion collisions and to also

1 Although the momentum distribution is modified in correlated quantum systems, the deviations from the ideal
gas form are very small [1, 2] and will therefore be neglected during the subsequent temperature equilibration.
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Figure 1. Parameter region of interest in
the density-temperature plane. The names
indicate recent dense plasma experiments
[14, 15, 16, 17]. The lines show parame-
ters with constant electron-ion coupling pa-
rameter Γei, electron degeneracy neΛ3

e, and
Coulomb logarithm λC . Γei contains also
degeneracy effects which create a bending
of the curve at high densities; in this re-
gion, the horizontal line of Γei =1 coincides
approximately with rs =0.74.

avoid the ambiguity in the LS approach, a quantum kinetic approach based on a Boltzmann-
type collision integral was applied [11, 3, 12]. Due to the correct description of binary collisions,
the break-down of the LS theory in strongly coupled plasmas could here also be avoided.
Nevertheless, this Boltzmann approach still neglects the collective behavior of the plasma, i.e.,
dynamic screening and collective excitations (plasmons). Recently, Dharma-wardana and Perrot
developed energy transfer models that consider such collective modes [13]. It turned out that the
consideration of coupled collective modes strongly reduces the energy transfer between electrons
and ions.

Compared to the LS approach, recent experimental results showed also strong indications of
a much smaller energy transfer in dense plasmas. Such results have been found in laser- [14] as
well as shock-produced [15, 16] plasmas, i.e. for Te �Ti and Te �Ti. The plasma condition in
these experiments are indicated in Fig. 1 by the names of the first authors2. Obviously, these
plasmas are strongly coupled and partially/highly degenerate. Therefore, the LS approach,
which is only valid for Coulomb logarithms larger than three, has to be generalized towards
strong electron-ion coupling and degenerate systems.

The quantum kinetic theory provides well-developed approximation schemes that allow for
the consideration of strong coupling, collective excitation, and degeneracy. These schemes are
here applied to describe the energy transfer in two-temperature plasmas. In section 3, the
energy transfer due to binary collisions is discussed. First the LS approach is reviewed. Then
expressions for the energy transfer rates valid for strong electron-ion scattering are derived on
the basis of the quantum Boltzmann equation. Collective modes in weakly coupled plasmas
can be described with the Lenard-Balescu equation. In section 4, this kinetic equation is used
to describe the energy transfer through coupled modes. Furthermore, the Fermi-Golden-Rule
approach is discussed. Finally, the influence of the time-dependent correlation energies on the
temperature equilibration is investigated in section 5.

2. Basic Kinetic Description of Temperature Equilibration in Nonideal Plasmas
In the following, the relaxation of a two-temperature electron-ion system is investigated:
electrons and ions have established equilibrium distributions that allow to define electron and

2 More measurements have been done using excited semiconductors with hot electrons. However, the conduction
electrons equilibrate here with the lattice phonons, not with the temperature of an gas- or fluid-like ion component.
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ion temperatures Te and Ti, respectively. The ions are considered to have a fixed charge Zi,
i.e., ionization and recombination events are not included (for the influence of such reactions,
see Refs. [3, 4, 5]). The build up of correlations, in particular the ion-ion correlations, is also
considered to be completed, i.e., the ion-ion correlation energy is in equilibrium with the ion
temperature Ti.

For weakly coupled plasmas, the internal energy of the system is approximately given by the
sum of the electron and ion kinetic energies. Accordingly, the relaxation is fully described by
the energy transfer between the subsystems. In the case of nondegenerate plasmas, one has to
solve the system of equations

3
2
nekB

∂

∂t
Te = − ∂

∂t
Etrans

e→i and
3
2
nikB

∂

∂t
Ti =

∂

∂t
Etrans

e→i . (1)

The energy transfer rates can be derived from kinetic equations. Starting with the definition of
the average kinetic energy, a balance equation for the energy of the particles of species a can be
obtained

∂

∂t
Ea =

∫
dp

(2πh̄)3
p2

2ma

∂

∂t
fa(p, t) (2)

=
∫

dp

(2πh̄)3
p2

2ma
I(p, t) . (3)

In the second step, the kinetic equation with a collision integral I(p, t) was used (homogeneous
plasmas are considered).

These considerations become more complicated for dense, nonideal systems. Here, the
internal energy also includes correlation contributions

Etot = Ekin
e + U ex

ee + Ekin
i + U ex

ii + U ex
ei , (4)

where U ex
ee , U ex

ii , and U ex
ei denote the electron-electron, ion-ion, and electron-ion excess (or

correlation) energies, respectively. In strongly coupled plasmas, these correlation contributions
can be as important or even larger than the kinetic energy terms. Due the occurrence of
the electron-ion term, it is furthermore not obvious how to define the “electron” and “ion”
subsystems. Therefore, four questions have to be answered before a description of temperature
relaxation in strongly coupled plasmas is obtained:

• How can the energy of the electrons and the ionic energy be defined?
• What is the (quasi)-equation of state for two-temperature plasmas?
• How get changes in one term of the internal energy (4), e.g. a decrease of electron

temperature, redistributed between the other four terms?
• How do correlations influence the energy transfer between the electron and ion subsystems?

The energy transfer rates are investigated in the next two sections. Then a model for the
important case of temperature equilibration in plasmas with hot electrons and strongly coupled
ions is introduced in the last section.

3. Energy Transfer Due to Binary Collisions
3.1. Landau-Spitzer Approach
Let us briefly review the Landau-Spitzer approach to temperature relaxation. In their works
[7, 8], they consider weakly coupled electrons and ions that transfer energy through small angle
Coulomb collisions. The electron trajectories are described by straight lines and characterized
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by the impact parameter b and the impact energy. By summing over all impact parameters, the
energy or momentum transfer cross section is obtained in the form [18]

QT
ei(v) =

4πZie
4

mev4
λC , (5)

where v = ve−vi is the velocity of relative motion between the scattering electron and ion.
λC is the well-known Coulomb logarithm, i.e., the logarithm of the ratio of the maximum and
minimum considered impact parameters

λC = ln
(

bmax

bmin

)
= ln

⎛
⎝ λD√

ρ2
⊥ + λ2

dB

⎞
⎠ . (6)

In the second step, the “usual” cutoffs are used: the largest impact parameter is estimated
by the electron Debye length λD = (kBTe/4πe2ne)1/2. To model quantum diffraction effects,
a quadratic interpolation between the deBroglie wave length λdB = h̄/mevth and the distance
of closest approach ρ⊥ = Zie

2/mev
2
th is used for the lower cutoff. vth = (kBT/me)1/2 denotes

here the thermal velocity of the electrons. It should be mentioned again that these cutoffs are
physically motivated, but by no means derived!

Obviously, the description above fails for λC < 0 which occurs in dense, strongly coupled
plasmas. This break-down can be traced back to the concept of straight line trajectories. Indeed,
if one uses the known hyperbolic trajectories for the Coulomb scattering, the integral for the
momentum transfer becomes convergent at the lower boundary and, therefore, the lower cutoff
can be set to be zero. The corresponding Coulomb logarithm has the form

λC =
1
2

ln

(
1 +

b2
max

b2
ref

)
. (7)

Here, bref = ρ⊥ denotes a reference impact parameter which can be also used in the form
bref =(ρ2

⊥+λ2
dB)1/2 to model quantum effects.

With these results for the energy transfer cross section, the total energy transfer between the
electron and ion subsystems follows by averaging with the Maxwellian velocity distributions.
Finally, the temperature evolution can be expressed by

∂

∂t
Te =

∑
α

Tα − Te

τ eα
, (8)

where the sum runs over all ion species. For the relaxation time τ ei, one obtains the result [7, 8]

τ eα =
3mαme

8
√

2πnαZ2
αe4λC

(
kBTe

me
+

kBTα

mα

)3/2

. (9)

3.2. Quantum Boltzmann Approach
Now a quantum kinetic approach, that also accounts for strong electron-ion scattering, will be
applied to derive the energy transfer rates in the binary collision approximation. Due to the
full quantum mechanical treatment of electron-ion collisions and the consideration of statically
screened interactions, any arbitrary cutoffs can be avoided. The basis of this approach is given
by the electron-ion collision integral of the quantum Boltzmann equation for nondegenerate
plasmas [19, 20]

Iei(p, t) =
1

V h̄

∑
i

∫
dp′

(2πh̄)3
dp

(2πh̄)3
dp′

(2πh̄)3
2πδ

(
Ee(p)+Ei(p′)−Ee(p)−Ei(p′)

)

×
∣∣∣〈p p′ |TR

ei |p′ p〉
∣∣∣2 {

fe(p, t)fi(p′, t) − fe(p, t)fi(p′, t)
}

. (10)
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Here, the sum runs again over all ion species. Ea(p) = p2/2ma denotes the kinetic energy and
fa is the momentum distribution of species a. The scattering probability is described by the
matrix elements of the retarded T-matrix TR

ei.
The energy transfer rate is then obtained by using this collision integral in the balance

equation (3). To derive an explicit expression, a variable transformation to the momenta of
center of mass and relative motion

P = p + p′ and q =
µei

me
p − µei

mi
p′ (11)

is done. Using the energy conservation and the momentum conservation in the collision, which
is included in the T-matrix, four integrations can be easily performed. With the new variables,
the matrix elements of the T-matrix determine the differential scattering cross section

dσei(q, θ)
dΩ

=
(2π)4h̄2µ2

ei

(2πh̄)6
∣∣∣〈q |TR

ei | q〉
∣∣∣2
q=q

. (12)

Furthermore, it is useful to introduce the transport cross section by

QT (q) = 2π

∫ ∞

0
dθ sin θ(1 − cos θ)

dσei(q, θ)
dΩ

. (13)

With this definition and the known Boltzmann-like distribution functions for both species, one
can analytically perform all integration except one and finally obtains for the energy transfer
rate

∂

∂t
Etrans

e→i = − 16 µei ni ne√
2π mi

kB(Te − Ti)
(2mekBTe)3

(
kBTe

me
+

kBTi

mi

)1/2

×
∫ ∞

0
dq q5 QT

ei(q) exp

(
− q2

2mekBTe

)
, (14)

The main input quantity in this expression is the transport cross section. For an exact
calculation, a phase shift analysis is applied. Here, the cross section is computed from momentum
and angular momentum dependent scattering phase shifts δl(k) [21]

QT (q) =
4π

q2

∞∑
l=0

(l + 1) sin2 (δl(q) − δl+1(q)) . (15)

The scattering phase shifts are obtained from numerical solutions of the Schrödinger equation
where statically screened Coulomb potential

V (r) = −Zie
2

r
exp(−r/λD) (16)

is used to describe the electron-ion interaction. For weakly coupled plasmas or large relative
momenta k, the transport cross section can be also used in first Born approximation [21].

3.3. Results for the Energy Transfer Rates
As already mentioned, the quantum kinetic scheme for the energy transfer rates (14) with the
cross section (15) avoids all the usual approximations. The two assumptions are that electrons
and ions exchange energy only through binary collisions and that the electron-ion interaction is
given by the statically screened Coulomb potential (16). The results of this approach can be
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Figure 2. Energy transfer
rates in different approxima-
tions versus plasma density.
The system is an aluminum
plasma with an electron tem-
perature of Te = 5 × 105 K.
The ion charge is fixed to be
Zi =10.

therefore used as a reference for a discussion of the validity of further approximations. It can
be particularly tested under which conditions the numerical effort can be significantly reduced
since the easy-to-use LS scheme is applicable.

Results for the energy transfer rates between the electron and ion subsystems in different
approximations are shown in Fig. 2. The Born approximation for the transport cross section
leads, for the considered dense plasmas, to an overestimation of the energy transfer rate (14).
Agreement with the full binary collision theory, that uses cross sections calculated by the
phase shift approach (15), is only reached for much higher electron temperatures. The usual
LS approach shows the known break-down at dense, more strongly coupled plasmas. Here,
the Coulomb logarithm (6) becomes negative and the approach is no more applicable. The
LS-like scheme that uses hyperbolic electron trajectories (7) avoids this behavior, but still
underestimates the energy transfer. Nevertheless, both LS approaches give good results in
the weakly coupled, low density regime.

4. Consideration of Collective Modes
The major short-coming of the theory presented in the previous section is that each electron
and ion is considered as an independent particle which undergoes only binary collisions. The
collective behavior of the plasma particles, in particular plasma waves, are therefore not included.
How such collective modes can be included in the theory and how they influence the energy
transfer between electrons and ions is investigated in this section on two approximation levels:
first the fully coupled electron-ion system is considered. Since the numerical evaluation of
the derived expression for the energy transfer rates is very complicated, the Fermi-Golden-Rule
(FGR) as the easiest approach that includes collective electron and ion modes is then considered
in the next subsections.

4.1. Coupled Collective Modes
There exists a well-developed approach that describes the collective behavior of weakly coupled
plasmas. The corresponding kinetic equation is the Lenard-Balescu equation [22, 23], where the
dynamic response of the particles is described in random phase approximation (RPA). Since
electrons and ions are treated as one system in this approach, the influence of the electrons on
the ion response and vice versa (coupled collective modes) is naturally included. The basis for
the derivation of the energy transfer rates on this level will be here the quantum version of the
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Lenard-Balescu equation with the collision integral given by [19]

Iei(p, t) =
1
h̄

∑
i

∫
dp′

(2πh̄)3
dp

(2πh̄)3
dp′

(2πh̄)3

∣∣∣∣ Vei(p − p)
εR (p − p, Ee(p) − Ee(p), t)

∣∣∣∣
2

× 2πδ
(
Ee(p) + Ei(p′) − Ee(p) − Ei(p′)

)
(2πh̄)3 δ

(
p + p′ − p − p′

)
×

{
fe(p, t)fi(p′, t) [1 − fe(p, t)] [1 − fi(p′, t)]

−fe(p, t)fi(p′, t) [1 − fe(p, t)] [1 − fi(p′, t)]
}

.

(17)

Here, the same notation is used as for the Boltzmann approach (10). Furthermore, Vab(k) =
4πZaZbe

2/k2 denotes the pure Coulomb potential between particle of species a and b and the
retarded dielectric function is given in RPA by

εR(p, E, t) = 1 +
∑
a

Vaa(p)χ0
aa(p, E, t) . (18)

The dielectric function in RPA was here expressed in terms of the density response function of
free particles [24]

χ0
aa(p, E, t) =

∫
dp′

(2πh̄)3
fa(p′ + p, t) − fa(p′, t)

E + Ea(p′) − Ea(p′ + p) + iε
, (19)

which is determined by the time-dependent distribution function.
The energy transfer rates are now obtained by inserting the collision integral (17) into the

relation (3). For practical reasons, it is now useful to introduce the momentum and the energy
transfer during the collision, i.e.,

k = p − p and ω = Ee(p) − Ee(p) , (20)

and use the relations between Fermi-distributions of the plasma species and the Bose functions
na

B(ω)=[exp(h̄ω/kBTa) − 1]−1

fa(p) [1 − fa(p + k)] = [fa(p + k) − fa(p)] na
B

(
Ea(p) − Ea(p + k)

)
, (21)

fa(p + k) [1 − fa(p)] = [fa(p) − fa(p + k)] na
B

(
Ea(p + k) − Ea(p)

)
. (22)

The set of distribution functions in the collision integral (17) becomes then{
f ′s

}
= [fe(p + k) − fe(p)] [fi(p′) − fi(p′ + k)][

ne
B(−ω)ni

B(ω) − ne
B(ω)ni

B(−ω)
]
, (23)

and we obtain for the energy transfer rate

∂

∂t
Etrans

e→i = − 1
h̄

∑
i

∫
dp

(2πh̄)3
dk

(2πh̄)3
dω

2π
Ee(p + k)

∣∣∣∣ Vei(k)
εR(kω, t)

∣∣∣∣
2 [

fe(p + k) − fe(p)
]

× 2πδ
(
ω − Ee(p + k) + Ee(p)

)[
ne

B(−ω)ni
B(ω) − ne

B(ω)ni
B(−ω)

]
×

∫
dp′

(2πh̄)3
[fi(p′) − fi(p′ + k)] 2πδ

(
ω − Ei(p′ + k) + Ei(p′)

)
.

(24)
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The last line in this expression is just the definition of the imaginary part of the free density
response function for the ionic subsystem Imχ0

ii(kω). The difference of Bose functions in the
second line determines now the direction of the energy transfer. After a change of variables
defined by

ω′ = −ω, k′ = −k, and p′ = p − k′ (25)

in the second term, this term has the same form as the first one, except that the energy in front
of the screened potential is Ee(p) instead of Ee(p−k). Using the energy conserving δ-function,
the difference of energies is

Ee(p + k) − Ee(p) = ω . (26)

Now the remaining electron distributions and the energy conserving δ-function also give the
definition of an imaginary part of the free density response function, i.e. Imχ0

ee(kω). The energy
transfer rate is now given by

∂

∂t
Etrans

e→i = − 4h̄
∑

i

∫
dk

(2πh̄)3

∞∫
−∞

dω

2π
ω

∣∣∣∣ Vei(k)
εR(kω, t)

∣∣∣∣
2

× Im χ0
ee(kω) Imχ0

ii(kω)ne
B(−ω)ni

B(ω) . (27)

If we now use the symmetry of the Bose and density response functions ([1/2−nB(ω)] and
Im χ0

aa(ω) are odd functions), the energy transfer between the electron and ion subsystems can
be also written in the form

∂

∂t
Etrans

e→i = − 4h̄
∑

i

∫
dk

(2πh̄)3

∞∫
0

dω

2π
ω

∣∣∣∣ Vei(k)
εR(kω, t)

∣∣∣∣
2

× Im χ0
ee(kω) Im χ0

ii(kω)
[
ne

B(ω) − ni
B(ω)

]
. (28)

This expression gives the energy transfer including the effects of coupled collective modes in the
electron-ion system. It is applicable for weakly coupled plasmas without any restriction with
respect to the degeneracy of the plasma.

The expression (28) is equivalent to the coupled mode formula given by Dharma-wardana
& Perrot [13] even though it was derived here for weakly coupled plasmas. The extensions
toward strong coupling in the formula given in Ref. [13] are the use of a pseudo-potential for the
electron-ion interactions to model strong scattering effects and a generalized dielectric function
that includes local field corrections.

4.2. Fermi-Golden-Rule
Since an evaluation of the coupled mode expression (28) is extremely difficult, the Fermi-Golden-
Rule (FGR) approach to temperature equilibration will be considered here, too. The FGR
expression to the energy transfer rates follows from the decomposition of the system Hamiltonian
according to

H = He + Hi + Vei with Ha = Ka + Vaa , (29)

and the assumption that the electron-ion term Vei is small compared to the other terms. The
collective behavior of the subsystems is accounted for in this approximation, too. However, the
influence of the electrons on the ion modes (and vice versa) is neglected.

For the energy transfer between the electron and ion subsystems, one obtains with the FGR
approach [13]

∂

∂t
Etrans

e→i = −4h̄
∑

i

∫
dk

(2πh̄)3

∞∫
0

dω

2π
ω |Vei(k)|2 Im χee(kω) Im χii(kω)

[
ne

B(ω) − ni
B(ω)

]
, (30)
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where Im χaa(kω) denote the full density response function of the species a. In RPA, this
function is given by

Im χee(kω) =
Imχ0

ee(kω)
|1 − Vaa(k)χ0

ee(kω)|2
. (31)

The last relation demonstrates that the response functions Im χaa are sharply peaked at
the excitation energies of the collective modes. Therefore, a numerical evaluation of the FGR
expression (30) involves the same difficulties as in the case of the coupled mode expression (28).
Nevertheless, it can be significantly simplified since the ω-integration in Eq. (30) is effectively
limited by the spectrum of the ionic response function Imχii(k, ω). This fact justifies the
following two approximations that are valid for almost all situations (see also Ref. [25]):

(i) a linearization of the Bose functions, i.e.,

na
B(ω/Ta) = (exp(h̄ω/kBTa) − 1)−1 ≈ kBTa

h̄ω
. (32)

Obviously, this approximation is applicable as long as the upper limit of the ω-integration
is small compared to the thermal energies.

(ii) an evaluation of the electron response function at zero frequency, i.e.,

Im χee(k, ω)
ω

≈ Im χee(k, ω)
ω

∣∣∣∣∣
ω=0

= const. (33)

Since the ionic response function rapidly decreases at low frequencies (shortly above the ion
plasma frequency), the effective range of the ω-integral in Eq. (30) is very small compared
to the energy scale of the electron response function. The latter can therefore be used in
the low frequency limit.

The remaining ω-integral can now be exactly evaluated using the f-sum rule

∞∫
0

dω

2π
ω Im χii(k, ω) =

nik
2

4mi
. (34)

Since this is an exact relation, no approximation concerning the ion-ion coupling strength has
to be made here.

With the upper approximations, one finally gets for the energy transfer rates using the FGR
approach

∂

∂t
Etrans

e→i = −
∑

i

kB(Te − Ti)
h̄ni

mine

∫
dk

(2πh̄)3
k2 |Vei(k)|2 Im χee(k, ω)

ω

∣∣∣∣∣
ω=0

. (35)

This formula is much easier to evaluate than the original FGR expression since it contains only
a single integral over smooth functions instead a double integral over sharply peaked functions.

4.3. Energy Transfer for Classical and Degenerate Plasmas using the FGR Approach
Now the energy transfer rates given by the FGR formula (35) will be investigated in more detail
for two important cases: hot, classical plasmas and systems with highly degenerate electrons.

If one considers the plasma electrons as free classical particles, the density response in the
low frequency limit is given by

Im χee(k, ω)
ω

∣∣∣∣
ω=0

=
Im χ0

ee(k, ω)
ω

∣∣∣∣∣
ω=0

=
√

π

2Te/me

ne

Tek
. (36)
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Using this approximation, the k-integral in formula (35) becomes
∫

dk k−1, i.e., divergent at the
lower and upper boundary. If one uses ad hoc cutoffs for the integration limits, an equivalent of
the LS formula follows from the FGR approach

∂

∂t
Etrans

e→i = −
∑

i

kB(Te − Ti)
4
√

2πniZ
4
i e4

mime

(
me

kBTe

)3/2

ln
(

kmax

kmin

)
. (37)

The divergencies of the Coulomb integral are a result from the classical treatment and the
consideration of free particles (neglect of screening). The generalizations for nondegenerate,
weakly coupled plasmas are obvious: the electron response function should be used in RPA and
include quantum diffraction effects [24]. In the needed low frequency limit, the electron response
is then given by

Imχee(k, ω)
ω

∣∣∣∣
ω=0

=
∣∣∣Re εRPA

e (k, 0)
∣∣∣−2 Im χ0

ee(k, ω)
ω

∣∣∣∣∣
ω=0

=

(
k2

k2 + κ2
D

)2 √
π

2Te/me

ne

Tek
exp

(
−1

8
k2λ2

dB

)
. (38)

Here, κ2
D = 4πe2ne/kBTe is the square of the inverse electron Debye screening length, and

λdB = h̄/
√

mekBTe is the deBroglie wave length of the electrons. The energy transfer rate that
corresponds to this approximation can then be calculated by

∂

∂t
Etrans

e→i = −
∑

i

kB(Te − Ti)
4
√

2πniZ
4
i e4

mime

(
me

kBTe

)3/2

×
∞∫
0

dk
k3

(k2 + κ2)2
exp

(
−1

8
k2λ2

dB

)
. (39)

Obviously, no ad hoc cutoffs are necessary here. The quantum diffraction and screening result
in smooth “cut-offs” at long and short wave lengths, respectively. It turned out that the energy
transfer rates corresponding to Eq. (39) coincide with the one of the Boltzmann approach (14) if
the transport cross section is used in first Born approximation (see Fig. 2). The reasons for this
fact are that the FGR approach is also a first Born approximation concerning the electron-ion
interaction and that the FGR formula (39) does not include the ion response function anymore
(independent ions give therefore the same results than highly correlated ions).

For systems with degenerate electrons, the upper response functions are not applicable since
they neglect exchange effects. If one considers only the response of a system with noninteracting
electrons (see Ref. [24] for the response function), the low frequency behavior for any degree of
degeneracy needed in Eq. (35) is determined by

Im χ0
ee(q, ω)
ω

∣∣∣∣∣
ω=0

=
m2

e

4πh̄3k
fe(k/2, µe) , (40)

where fe(k, µe) denotes the electron (Fermi) distribution with the chemical potential of the
electrons µe. The consideration of screening on the RPA level is similar to the nondegenerate
case, except that the screening length has now to be determined by the relation

κ2
e = 2

e2me

h̄2π

∑
sz

∞∫
0

dkfe(k, µe) , (41)
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where µe is the chemical potential of the electrons. In the limit of nondegenerate systems, this
formula yields the classical inverse Debye length, whereas for highly degenerate electrons the
inverse of the temperature-independent Thomas-Fermi screening length κ2

TF = 4e2mekF /(πh̄2)
follows. The energy transfer rates are then given by

∂

∂t
Etrans

e→i = −
∑

i

kB(Te − Ti)
2
π

Z2
i e4nim

2
e

h̄3mi

∞∫
0

dk
k3

(k2 + κ2
e)2

f(k/2, µe) . (42)

Again we find smooth “cutoff” that ensure a convergent integration. For systems with highly
degenerate electrons, the upper cut-off in k-space is now twice the Fermi momentum and the
lower cut-off is Thomas-Fermi screening parameter. It should be mentioned that the formula
derived here is significantly different than the one given by Brysk [26] which is a product of the
LS results and a Fermi distribution.

5. Temperature Relaxation in Nonideal Plasmas
The energy transfer between the electron and ion subsystems discussed in the previous sections
describes the evolution of the species temperatures only in the case of ideal plasmas sufficiently.
Additionally, the influence of the correlation energies has to be a taken into account for the
relaxation of nonideal plasmas (see Sec. 2). Here, the important case of laser-produced plasmas
with hot electrons and highly ionized ions will be considered. In this case, contributions from
the electron-electron and the electron-ion interaction can be neglected since the kinetic energy
of the electrons is much larger. However, the ion-ion interaction can be strong. Therefore, the
energy of the ionic subsystem is the sum of the kinetic and the ion-ion correlation energies. The
charge state of the ions is here considered to be constant (for the effects of a time-dependent
plasma composition see Ref. [5]). The ionic correlation energy is therefore only changing with
the ion temperature.

5.1. Correlation Energy for Strongly Coupled Ions
The build up of ionic correlations occurs typically on a time scale of the inverse ion plasma
frequency. This is often much faster than the time for the temperature equilibration. The ionic
correlations can then be assumed to be instantaneously in equilibrium with the ion temperature.

For the classical ion subsystem, the excess ion-ion correlation energy can be calculated by3

U ex
ii =

n2
i

2

∫
dr[gii(r) − 1]Vii(r) , (43)

where Vii is the ion-ion interaction potential and gii is the ionic pair distribution. In the limit
of weakly coupled plasmas, this correlation energy is U ex

ii =κe2/2, where κ=(κ2
e + κ2

i )
1/2 is here

the full inverse Debye length that contains electron and ion contributions.
For strongly coupled plasmas, the pair distribution gii(r) has to be evaluated numerically.

Since the build up of ionic correlations is assumed to be instantaneous, an equilibrium treatment
can be applied to compute gii(r). Here, the well-known Ornstein-Zernicke equation with the
HNC-closure relation is used [27]. This approach is able to describe the effects of strong coupling
and the results are known to agree well with molecular dynamics and Monte Carlo simulations
up to coupling parameters of about Γ=100 [27].

3 Here, a term which arises from the neutralizing background, i.e. the electron-ion correlation energy, is included.
Since this terms is constant, it does not affect the relaxation.
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Figure 3. Temperature re-
laxation in an argon plasma
with ni = 1023 cm−3 and an
ion charge of Zi = 8. The ini-
tial electron and ion tempera-
tures are Te(0) = 2.2 × 106 K
and Ti(0) = 3 × 104 K, respec-
tively. For simplicity, the en-
ergy transfer rates are calcu-
lated with the Landau-Spitzer
formula that considers hyper-
bolic orbits.

5.2. Equilibration of the Species Temperatures
For hot, high-Z materials, the electron temperature changes little during the equilibration of
the species temperatures. Changes in the ionic correlation energy due to the time-dependent
screening length are therefore negligible. Since we can also neglect the contributions from
electron-electron and electron-ion correlations in the considered case, the evolution of the
electron and ion temperatures is determined by the set of equations

∂Ti

∂t

(
3
2
nikB +

∂U ex
ii

∂Ti

)
=

∂

∂t
Etrans

e→i , (44)

3
2
nekB

∂Te

∂t
= − ∂

∂t
Etrans

e→i . (45)

Fig. 3 shows the solution of these equations for an argon plasma with hot electrons and an
ion charge state of eight. For comparison, the figure contains two different calculations: the
first neglects the contributions of ionic correlations and shows therefore the relation of an ideal
plasma. The second solves the equations (45) and, therefore, contains the ionic correlations.
In the given example, the coupling strength in the ionic subsystems changes from Γii = 533 to
Γii =8.6. Related to this decrease of coupling strength is a strong decrease of ionic correlation
energy with represents a large sink for the energy that is delivered from the electrons to the ions.
As a result, the ions heat much slower (in particular in the beginning of the relaxation) if the
ionic correlations are taken into account. This behavior affects also the electron temperature,
which is faster decreasing, since the temperature difference and therefore the energy transfer
between the species is larger now. Furthermore, the equilibration is slightly slower (about a
factor of 1.5) than for the ideal calculation. Due to the different underlying equation of state
model in the two calculations (ideal plasma versus Yukawa model), the final common plasma
temperature differs significantly, too. Since the ionic correlations become less negative, the full
calculation reaches a lower plasma temperature than the ideal one.
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