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Abstract. Collisional absorption of dense fully ionized plasmas in strong high-frequency laser
fields is investigated in the non-relativistic case. Quantum statistical methods are used as well
as molecular dynamics simulations. In the quantum statistical expressions for the electrical
current density and the electron-ion collision frequency – valid for arbitrary field strength –
strong correlations are taken into account. In addition, molecular dynamic simulations were
performed to calculate the heating of dense plasmas in laser fields. Comparisons with the
analytic results for different plasma parameters are given. Isothermal plasmas as well as two–
temperature plasmas are considered.

1. Introduction
An important question in almost all experiments with interaction of intense laser pulses with
matter is the calculation of the energy deposition and the description of the heating connected
with that. If a solid target is irradiated by such an intense laser pulse, dense plasmas can be
created. One of the important mechanisms of energy deposition is inverse bremsstrahlung, i.e.,
laser light absorption via collisional processes between the plasma particles usually described in
terms of the electron-ion collision frequency.

In several papers, various approaches were used to calculate the electron-ion collision
frequency and the dynamic conductivity, respectively, for classical plasmas under different
conditions [1, 2]. An essential further development of the theory has been given also by
Klimontovich [3, 4]. Klimontovich used his powerful technique of second quantization in phase
space to investigate density-density and microfield fluctuations in low- and in high-frequency
fields. He was able to derive collision integrals for classical plasmas in strong fields which take
into account dynamical screening and to derive a complete theory of transport processes [4, 5]. A
result of central importance is an expression for the collisional heating rate and the electron-ion
collision frequency in terms of the imaginary part of the dielectric function [4]. Rather recently,
expressions of the same form were derived again [7].

Quantum mechanical treatments were given by several authors, e.g. [8, 9, 10, 11]. Rigorous
quantum kinetic approaches, however, to the inverse bremsstrahlung absorption in dense plasmas
were missing until recently. Kremp et al. [12, 13] derived a quantum kinetic equation for dense
plasmas in strong laser fields using nonequilibrium Green’s function techniques. In this approach,
the different interaction processes can be taken into account by appropriate approximations
of the generalized field–dependent scattering rates including nonlinear field effects such as
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multiphoton processes and higher harmonics generation. Time–dependent phenomena were
studied by numerical solution of this equation [14, 15] in statically screened Born approximation.

Quantum expressions for the collision term and the electron–ion collision frequency including
dynamic screening were given in [16]. A quantum theory based on the dielectric approximation
[17] lead to similar results.

Generalizations in order to study effects of strong electron–electron and ion–ion correlations
on the collisional absorption rate were given in [18, 19] and in [20].

Simulations of inverse-bremstrahlung absorption were performed by Pfalzner and Gibbon [21]
who used molecular dynamics enforcing a single temperature for electrons and ions. Heating
rates were investigated also in a classical test particle approach [22].

In this paper we will describe collisional absorption within the analytical approach we
developed recently. Results are given for the important case of a two-temperature plasma.
Especially the influence of strong coupling effects on collisional absorption is discussed.
Furthermore, we have performed molecular dynamics simulations. The simulation results agree
qualitatively well with those from the analytical approach.

2. Collision frequency in dense laser plasmas
This is a short summary of the theory we developed elsewhere [16, 18, 19]. For the investigation
of collisional absorption by the dense plasma, it is obvious to start from the balance equation
for the energy and the electrical current resulting from a generalized non-Markovian kinetic
equation. The energy balance reads

dW kin

dt
− j · E =

∑
a,b

∫
d3ka

(2πh̄)3
k2

a

2ma
Iab(ka) . (1)

It was shown that the r.h.s. of Eq. (1) with a non-Markovian collision integral gives just the
contribution of the mean value of the potential energy [16]. Thus the energy balance (1) is given
by

dW kin

dt
+

dW pot

dt
= j · E , (2)

where the r.h.s. is in turn the energy loss of the electromagnetic field due to Poynting’s theorem.
The electrical current density needed in the above equation follows from the general balance

equation for the current density in the following form

d
dt

ja(t) − na
e2
a

ma
E(t) =

∑
b �=a

∫
d3q

(2πh̄)3
eaq
ma

Vab(q)L<
ab(q; t, t) (3)

where ih̄L<
ab(t, t

′) = 〈δρb(t′)δρa(t)〉 denotes the correlation function of the density fluctuations
which can be determined within nonequilibrium Green’s functions methods.

In a plasma in a strong laser field, the coupling between species with different charges can be
considered to be weak, whereas the coupling between particles with equal charges is not affected
by the laser field. Therefore an approximation in lowest order of Vei seems to be appropriate.
The subsystems, however, may be strongly coupled.

We will assume in the following of this section that the subsystems are in local thermodynamic
equilibrium with temperatures Te and Ti, respectively. The dependence on the electric field can
be made explicite. It has an exponential form and causes thus nonlinear effects like multi-photon
absorption and the occurence of higher harmonics in the current. For a harmonic electric field
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E = E0 cos ωt the exponential pre-factor can be expanded into a Fourier series. The current
balance is given then by

d
dt

je(t) − ne
e2
e

me
E(t)

= Re
∫

d3q

(2πh̄)3
2πeeq
meh̄

V 2
ei(q)

∑
m

∑
n

(−i)m+1Jn

(
q · v0

h̄ω

)
Jn−m

(
q · v0

h̄ω

)
eimωt

×
∞∫

−∞

dω̄

2π

[
See(q; ω̄ − nω)LA

ii(q; ω̄) + LR
ee(q; ω̄ − nω)Sii(q; ω̄)

]
. (4)

with the one-component structure factors and response functions Saa and Laa, respectively
[18, 19]. Jl is the Bessel function of lth order and v0 = (ee/me)E0/ω.

The ion dynamic structure factor Sii and the response function Lii are localized in the low-
frequency region, i.e., for a high-frequency electric field, ω̄ can be neglected in comparison with
nω. In this case, the first term in the brackets in Eq. (4) vanishes because

∫
dω̄LA

ii(q; ω̄) = 0,
and further the static structure factor ni Sii(q) =

∫
dω̄Sii(q; ω̄) can be introduced.

An important quantity is the cycle averaged dissipation of energy 〈j · E〉 which is given by

〈j · E〉 = ni

∫
d3q

(2πh̄)3
V 2

ei(q)Sii(q)
∞∑

n=−∞
nω J2

n

(q·v0

h̄ω

)
ImLR

ee(q;−nω) . (5)

Often there is also the electron–ion collision frequency νei discussed which is defined for the
high-frequency case by (ωp – plasma frequency)

νei =
ω2

ω2
p

〈 j · E 〉
〈 ε0E2 〉 . (6)

Equation (5) is a generalization of the theory developed in [16]. Approximating Sii(q) ≈ 1
and using LR

ee in random phase approximation (RPA), one gets the results of Sec. IV in that
former paper. Now there is included the static stucture factor of the ion component. Further the
function LR

ee is the exact density response function of the electron subsystem, i.e., the electron-
electron interaction can be included on a very high level. Appropriate approximations can be
expressed via local field corrections (LFC), see e.g. [23, 24].

With equations (5) and (6), we are able to describe the collisional absorption for the important
case of a two-temperature plasma. The influence of the ion component with temperature Ti is
accounted for by the static ionic structure factor. Calculations [25] show a considerable influence
of structure factor effects on collisional absorption especially for the case Ti < Te. For high
electron temperatures and Ti � Te, the inclusion of the ion structur factor can reduce the
collision frequency by about 25%.

For strong fields the electron-electron collisions are not efficient enough to establish a
Maxwellian distribution [26]. This behaviour can be described by a so-called super-Maxwellian
distribution [27]. Below we will present also results of calculations [28] with such a distribution
function instead of a Maxwellian.

3. Molecular dynamics simulations
In an alternative approach we calculated the energy absorption with molecular dynamics
simulations. The main difficulty in order to simulate a fully ionized plasma is to model the
attractive electron–ion interaction: the pure Coulomb–potential has a singularity at the origin
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which causes a non–physical behaviour of the system. To avoid this divergence and to include
quantum effects, we used the Kelbg–potential [29] which is given by

Φij =
qiqj

4πε0 r

{
1 − exp(−r2/λ2

ij) +
√

πr/λij [1 − erf(r/λij)]
}

. (7)

This potential has a finite value at the origin, and it is temperature dependent via the thermal
wavelength λij = h̄/

√
2µijkBT , where µij = mimj/(mi + mj) denotes the reduced mass of two

particles of species i and j.
The external electric field was implemented as a homogeneous linearly polarized harmonic

field. The temperature of the species a was defined as 3
2kBTa = Etherm = ma(〈v2

a〉 − 〈va〉2)/2,
where the angles denote an averaging over all particles of species a. This definition takes
into account the undirected motion only. The MD-calculations were performed using periodic
boundary conditions with Ewald summation. The number of particles was between 2000 and
5000.

At the beginning of the simulation, the electrons and ions have the same mean kinetic energy.
The first stage of the simulation is the so-called establishment of correlations [12]. Due to
the mass ratio of electrons and ions, the system can not relax to an equilibrium state in the
following femtosecond, and a two–temperature plasma is produced. In order to have a defined
equilibrium state, the system is thermalized by rescaling the velocities of the particles. The
rescaling corresponds to a coupling to an external heat bath. Then the laser is switched on.
The electrons move nearly collective in a directed motion driven by the external field. Due
to collisions with ions, however, a fraction of the gained directed kinetic energy dissipates into
random directions and the electrons are heated. The transfer of energy to ions is quite small,
thus their temperature remains nearly constant and again a two–temperature plasma is formed.

The further development of the system is shown in figure 1 where the thermal energy of the
electrons is plotted. The raw data (solid) show a steady increase of the temperature. The change
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Figure 1. Time dependence of
the thermal energy of the electrons
in a hydrogen plasma under the
influence of a strong laser field. Laser
frequency: ω/ωp = 3.

of thermal energy is associated with the electron–ion collision frequency for the high–frequency
case via

νei(ω) =
ω2

ω2
p

2
ε0E2

0

dEtherm

dt
. (8)

Thus the determination of heating rates and collision frequencies, respectively, from the
simulation data requires the time derivative of the thermal energy. A fit of the form Etherm =
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A(t − C)B was used to get a smooth function for the thermal energy (dotted line in figure 1).
Keeping in mind Etherm ≡ 3/2kBTe, one can extract now the collision frequency as a function of
the electron temperature. Figure 1 shows that, for a constant field strength, the energy–input
decreases in the region of high temperatures. For comparison, results from the kinetic approach
are shown (dashed line). The agreement with the quantum kinetic approach which was obtained
by time–integration of Eq. 8 is very good in this example. Larger deviations occur for higher
coupling parameters.

In figure 2, the collision frequency normalized to the plasma frequency is plotted as a function
of the coupling parameter Γ = Ze2(4πn/3)1/3/(kBTe). The solid and dotted lines are results
obtained from Eqs. (5) and (6). The solid line denotes the isothermal case with Ti = Te, whereas
the dotted line is the result for a two–temperature plasma with an ion temperature of 1000K.
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frequency as a function of the coupling
parameter Γ for a hydrogen plasma
in a laser field. Quantum statistical
approach: —— isothermal plasma
(Ti = Te), · · · · · · two-temperature
plasma with Ti = 1000K. The
corresponding simulation data are
denoted by and ��, respectively.

The open squares are the corresponding simulation data for the two–temperature plasma.
In addition, simulations were performed in which the temperature of the ions – by a rescaling
of the ion’s velocities at every time step – was forced to be the same as that of the electrons
(filled squares). The simulation data as well as the analytic calculation show an increase of the
collision frequency with increasing coupling. The agreement between the simulation and the
quantum statistical results is quite good in the region of weak and moderate coupling (about
Γ = 0.3). An important result is the lowering of the collision frequency for a two–temperature
plasma with cold ions which is well confirmed by the MD–simulations. Physically this behaviour
can be interpreted as follows: the cold ions are correlated, electrons do not interact with a single
ion but with a (static) distribution of charges which contributes to screening.

In the region of higher coupling, Γ > 0.3, the deviations between the simulation and the
analytic calculations are growing. One has to keep in mind that the analytic approach adopts
weak coupling with respect to the electron-ion interaction. On the other hand, the effective
potential used in the molecular dynamics has been derived for weak coupling with respect to
quantum effects [29] what may lead to limitations of the range of applicability.

Figure 3 shows the energy absorption rate of a hydrogen plasma for different laser frequencies.
Simulation results are compared with those of the analytic approach for an isothermal and a two-
temperature plasma, respectively. Again, the simulations confirm the lowering of the absorption
rate for a two–temperature plasma with cold ions. The heating rate depends strongly on the
frequency. With increasing frequency the rate decreases very fast. For rather high frequencies,
the agreement between the simulations and the analytic results is quite good. In the low–
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frequency regime the deviations are bigger which is due to the limitation of the analytic approach
to high frequencies whereas the MD simulations have no restriction regarding the frequency.
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Figure 3. Energy absorption rate
as a function of the laser fre-
quency for a hydrogen plasma in the
laser field for Γ = 0.15, v0/vth =
0.2, ne = 1022cm−3. Analytic results:
—— isothermal plasma, · · · · · · two-
temperature plasma with Ti = 1000K.
Corresponding simulation data are de-
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So far, results were presented for rather small field strength. The analytic model has – beside
the restriction to the nonrelativistic case – no limitation on the strength of the field.
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Figure 4. Heating rate of the elec-
trons in a two-temperature hydrogen
plasma (Ti = 1000 K) as a function of
the field strength. The solid lines de-
note the analytic results for two differ-
ent assumptions for the velocity distri-
bution functions. The circles are MD–
results.

Figure 4 shows simulation data of the heating of the electrons as a function of the applied field
strength. These data are compared with results from the analytic approach for the corresponding
two–temperature plasma where the ion temperature was 1000 K. For small field strengths, the
heating rate is proportional to E2

0 . For higher fields the well-known v−3
0 behaviour in the

collision frequency [2] leads to a saturation and even a decrease of the heating rate. Calculations
were performed with different assumptions for the velocity distribution function: we considered
Maxwellian as well as super–Maxwellian distribution functions. There is a better agreement with
the simulation data in the case of the super–Maxwellian indicating that the velocity distribution
of the electrons does not remain Maxwellian under the influence of a laser field, c.f. the so-called
Langdon effect [26].

In order to investigate this issue more in detail, the velocity distribution function was
determined from simulations for different field strengths. Figure 5 shows the velocity distribution
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Figure 5. Velocity distribution function of the electrons (in field direction) under the influence
of an intense laser field. The solid line denotes the simulation data for a field strength of
E = 5.7 GV/cm (left figure) and E = 28.5 GV/cm (right figure), respectively. For comparison
the Maxwell distribution (dashed) is plotted. The little asymmetry in the curves is a numerical
artefact.

in the direction of the strong linearly polarized laser field for a weakly coupled hydrogen plasma.
For a field strength of 5.7 GV/cm (v0/vth = 2), one can see that the field leads to a broadening of
the distribution function in comparison to the respective Maxwellian distribution function. This
is in accordance with results of Pfalzner and Gibbon [21] who considered distribution functions
for field strengths up to v0/vth = 1. If the field strength increases further, a different behaviour
occurs which is in contrast to the Langdon effect. For a much higher field strength, 28.5 GV/cm
(v0/vth = 10), it can be observed that the distribution function is narrowed. It was proven that
this narrowing is due to electron–ion collisions, however, there is no simple interpretation for
this new effect.
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