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A. Alvermann and H. Fehske
Institut fiir Physik, Ernst-Moritz-Arndt-Universitat, 17487 Greifswald, Germany

Abstract. Based on distributions of local Green’s functions we present a stochastic approach
to disordered systems. Specifically we address Anderson localisation and cluster effects in binary
alloys. Taking Anderson localisation of Holstein polarons as an example we discuss how this
stochastic approach can be used for the investigation of interacting disordered systems.

1. Introduction

In many cases the influence of crystal imperfections present in any real material can be neglected
in favour of the interactions dominating e.g. electron transport or optical properties. In some
cases however, and especially at low temperatures, interesting physical effects arise from the
specific physical processes induced by scattering on crystal defects. Examples range from the
quantum Hall effect — an intricate problem far beyond the scope of our study — to electrical
transport in polaronic systems. One prominent example is Anderson’s prediction that in a
disordered material itinerant (extended) states can be turned into localised states which do not
carry any current [1]. This transition from extended to localised states is a result of quantum
interference arising from elastic scattering on impurities in a crystal. It leads, roughly speaking,
to spatial confinement of an electron: The electron wave-function decays exponentially with
distance.

This peculiar, essentially quantum mechanical behaviour has motivated lots of research (see
e.g. [2] for a review). As yet, however, many important questions in the field of localisation
physics have not been finally settled, and localisation in interacting systems is still far from being
understood. Progress on this topic requires new techniques which allow for a comprehensive —
necessarily approximate, but reliable — description of disorder and interaction on a microscopic
scale. One possible approach shall be discussed here.

The focus of our study is on substitutionally disordered three-dimensional materials like doped
semiconductors or alloys. We will not be concerned with amorphous materials like glasses which
do not possess a crystal lattice (but see e.g. [3, 4]). Then disorder primarily manifests through
site-dependent local potentials €;. The motion of an electron in such a disordered crystal is
described by the tight-binding Hamiltonian

H= Z eicjcl- - tz cjcj . (1)
i (i.5)

In a perfect crystal, i.e. € = 0, the electron hopping ¢ between nearest—neighbour sites (i, j)
gives rise to a band of width W, e.g. on a cubic lattice Wy = 12t, or Wy = 4¢tv/ K on a Bethe
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lattice with connectivity K. In what follows, we fix the bandwidth Wy = 1, and measure energies
in units of Wy.

To model the stochastic character of disorder the ¢; are considered as random variables
with a given distribution. We demand that they are independently identically distributed with
common distribution P(€;). For such a stochastic Hamiltonian quantities like the (retarded)
Green’s function Gyj(w) = lim, g+ (0[c; [w +in — H ]! c}]0> are random variables in their own
right. It is thus reasonable to ask for their distributions. This is especially true for the local
density of states (LDOS)

pi(w) = —Im G (w)/m . (2)

Its distribution P[p;(w)] gives the statistics of the LDOS in a disordered system, where
translational symmetry is broken and p;(w) varies with ¢. Note that P[p;(w)] does not depend on
the site index i: Translational symmetry is restored on the level of distributions. It is important
to realise that the site-dependence of the LDOS constitutes an eminent aspect of a disordered
system. For an extended state, for example, p;(w) has a finite value on most lattice sites. For a
localised state, in contrast, p;(w) has exponentially small values on lattice sites outside a finite
region, corresponding to the decay of the wave-function. P[p;(w)] will thus be different for
extended and localised states. Obviously the disorder averaged density of states (DOS)

[e.e]

pave(®) = (pi(w)) = / pi Plpi(w)] dp; (3)

0

merely counting the number of states at a given energy w, cannot account for this signature.
Only for the ordered case P(¢;) = d(¢;), when translational symmetry implies that p; does not
depend on 4, the distribution is entirely determined by the DOS, P[p;(w)] = d[pi — pave(w)]. As
we will later see a similar characterisation does not even hold approximatively in a disordered
system. The full distribution can be extremely broad for states in which the electron strongly
scatters at impurities, catching the resulting deviations in p;.

2. Local distribution approach

Our goal is to obtain a calculational scheme for the distribution of the LDOS for the models given
by Eq. (1). This scheme must account for the correlations that make up Anderson localisation.
At the same time it should be extendable to incorporate interactions. Naturally this requires
to employ approximations. It is important to guarantee that within these approximations the
mutual influence of interaction and disorder at the microscopic scale is still represented (which
rules out e.g. the coherent potential approximation (CPA), see below). A definite candidate to
meet these demands is what we call the local distribution (LD) approach. It provides a self-
consistent scheme for the distribution P[Gy;(w)] of the local Green’s function G;;(w). We first
describe this approach and its application to disordered systems, and later will combine it with
a treatment of interaction.

2.1. LD approach on a Bethe lattice

It is straightforward to construct the LD approach following the work of Abou-Chacra, Anderson
and Thouless [5]. We briefly repeat their derivation which is carried out on a Bethe lattice (see
Fig. 1). The basic observation is the decomposition of the local Green’s function Gy;(w),

-1

K .
Gi(w) = |w—e—12Y GWw)| . (4)
j=1
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Figure 1. Sketch of the (half-infinite) Bethe
lattice with coordination number K = 2. When
site 7 is removed from the lattice the sites j are
in the same geometrical situation as site ¢ before,
and no path connects them.

g? (w) have to be
calculated for the lattice after site ¢ is removed. For the ordered case we have Gg? = Gji(w) (cf.
Fig 1), and Eq. (4) is a quadratic equation for the Green’s function. Especially we can read off
the semi-circular DOS p(w) = 4/(7W@)/Wg — 4w? of the Bethe lattice [6].

Now the stochastic viewpoint comes into play. For a disordered system, like ¢; all Green’s
functions are stochastic quantities, i.e. random variables, and Eq. (4) determines the random

variable Gj;(w) in terms of K + 1 others, namely ¢; and Gg? (w). On the Bethe lattice the

Green’s functions Gg-? (w) correspond to the same geometrical situation as Gj;(w), hence they

are identically distributed. Furthermore no path connects the sites j = 1,..., K if ¢ is removed.

This implies that the Gg? (w) are independently distributed. Therefore Eq. (4) can be regarded

as a self-consistency equation which determines the distribution of one random variable, the local
(4)
Jj

The sum runs over the K neighbours j of i, and the Green’s functions G

Green’s function G;;(w), or equivalently G
a parameter.

Such a stochastic self-consistency equation can be numerically solved by a Monte-Carlo
procedure (Gibbs-sampling). To this end we represent the random variable G;;(w) through a
sample of N entries (typically N = 10%...107). Each entry of the sample is repeatedly updated
by a new value from Eq. (4), with K values for Gg.zj) (w) randomly drawn from the sample and
a randomly chosen ¢;. The distribution of Gy;(w) is finally constructed like a histogram by

counting the number of entries in the sample with a specific value.

(w). The distribution P(e;) enters this equation as

2.2. LD approach on arbitrary lattices
To put the LD approach in a more general context we will show how to construct it as
an approximative scheme on others than the Bethe lattice, thereby making contact to the
CPA (concerning CPA see e.g. [7]). On an arbitrary lattice the Green’s function can still be
decomposed as
X . -1
Giw)= |w—e 12> GPw)| . (5)
!

J=1

In contrast to the Bethe lattice the Gl(;) (w) which appear in this decomposition do not correspond
to the same geometrical situation as Gj;(w). If we iterated Eq. (5) we would thus end up
with an infinite hierarchy of equations containing many different Green’s functions. As an
immediate consequence the LD approach, relying on local Green’s functions, will provide only
an approximative scheme on general lattices.

A simple approximation is suggested by introducing

K
H (@) =Y Gy (@) (6)
=1
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which is the part of the K hopping contributions in Eq. (5) where the electron leaves site i
through j. Specifically we assume that, for each j, H ](-Z) (w) is determined by the local Green’s
function G;j(w) alone. Moreover, the K Green’s functions G;(w) are taken to be independently
distributed.

To proceed further we write the local Green’s function with a self-energy like in the CPA

Gii(w) = G(w — Bi(w)) , (7)

where GY(w) is the ‘bare’ propagator for the ordered system. In contrast to the CPA the
self-energy ¥;(w) is now site-dependent. Thinking in terms of an effective medium in which
site 7 is embedded this medium is characterised by the distribution of self-energies ¥;(w).
The electron at site i ‘sees’ the effective medium through the K Green’s functions Gj;(w).

Being part of the effective medium the hybridisation H ]@ (w) associated with G;(w) must fulfil
. -1
Gjjw) = |w—-%; — KHJ@ (w)} . Inverting this equation yields

A W) = 2 (=5 ~ (G ) (®)

The Green’s function Gj;(w) is then given by K other Green’s function Gj;(w) of the same
type:
K - | X T -
Gi(w) = |w—a =3 HPW| = |3 G —a+ 2> %@ . )
j=1 j j=1

Jj=1

Clearly, if all ¢; = 0, this equation reduces to ; = 0, that is Gi;(w) = G%(w).

At last, we have a complete set of equations, which with the same Monte-Carlo-scheme as
before can be solved to determine the distribution of Gj;(w). Note that the approximations we
made are guaranteed to respect causality, in the sense that Im Gj;(w), Im ¥;(w) < 0. Egs. (7)
and (9) are immediately seen to preserve this important property. For Eq. (8), where this
property is not obvious, we can rely on a result from the analyticity proof of the CPA [8], which

states that Im {Z + [G¥w — )] 71} > 0 for Im¥ < 0.

We like to point out that the construction done here is slightly ambiguous. A different
approximation in Eq. (8) would still give a self-consistent scheme for distributions of local Green’s
functions Gj;(w). Anyhow, our scheme incorporates the CPA and reproduces the exact scheme
for the Bethe lattice in a natural way. The CPA results from Eq. (9) for K = oo by the central
limit theorem. Then, the sums over Green’s functions and self-energies are replaced by averages,
yielding the CPA equation for the averaged local Green’s function

CPA( \ _ !
G (w) = <[GCPA(w)]_1 — (e — E(W))> | "

In principle, K is in our scheme no free parameter but the number of neighbours to a lattice site.
If we increase K the bare propagator G°(w) changes, and therefore we shall scale ¢ as t < 1/v/ K
like in the limit of high dimension [9]. Then, for K — oo, our scheme still reduces to the CPA,
which is known to become exact for lattices with infinite connectivity [10]. This implies that
the approximations we made are good for high-dimensional lattices. Actually they turn out
to be good for d > 3. It is commonly known that CPA is the best single-site approximation
for disordered systems. The local Green’s function is obtained on average from an ‘averaged’
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Figure 2. Change of the
probability distribution P[p;(w)]
of the LDOS p;(w) for the
Anderson model, in the band
centre w = 0, with increasing
T e v. Note that the inset has a
logarithmic p;-axes.
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effective medium. The LD approach solves the local problem exactly, while the hybridisation
is calculated from a ‘fluctuating’ effective medium. So to say, the LD approach is the best
single-site approximation if fluctuations are taken into account.

On the Bethe lattice the Green’s function fulfils G%(w) = [w — tQKG?i(w)]_l (this is just
Eq. (4) for ¢; = 0), whereby Eq. (7) reads

Yi(w) — [Gis(w)] !t =w — 2K Gy(w) (11)

Then Eq. (9) reduces to Eq. (4) for the Bethe lattice. The key point is of course that, owing to
the specific Bethe lattice geometry, the non-diagonal contributions G%) are zero, and the H J@
are indeed independently distributed. Then our approximation scheme becomes exact: On the
Bethe lattice the best single-site approximation, with fluctuations, is an exact theory. Note that
for the Bethe lattice K is a free parameter: The ‘free’ DOS in absence of disorder is, for fixed
Wo, independent of K, but choosing K fixes the Bethe lattice used.

As the transfer of the LD approach to other lattices shows, going to the Bethe lattice
basically changes the ‘free’ DOS and introduces approximations to cubic lattices by neglecting
correlations. The essential properties of disordered systems, e.g. localisation, will however be
well described. For the time being we work on a K = 2 Bethe lattice.

3. Disordered crystals

Below we will discuss two models, the Anderson model with a ‘continuous’ probability
distribution, and the binary alloy model with a ‘discrete’ one. While the former is dominated by
the Anderson transition from extended to localised states, the latter is dominated by multiple
electron scattering on clusters of atoms, visible e.g. in the fragmentation of the DOS (see below).

3.1. Anderson model
In the Anderson model, with disorder strength v > 0, the ¢; have a box distribution

Ple) = (1/7)0(7/2 = |el) - (12)

Fig. 2 shows the change of the distribution P[p;(w)] of the LDOS with increasing disorder,
as obtained from our Monte-Carlo scheme. We find the behaviour indicated in the introduction.
For small disorder the distribution is rather Gaussian, but becomes strongly asymmetric
and extremely broad as 7 increases. The (averaged) DOS pave(w) is not indicative of these
distributions. If 7 exceeds a critical value v.(w) [v.(w = 0) ~ 3.0] the distribution becomes
singular while paye(w) is still finite. At this point the transition from extended to localised
states takes place. To determine v.(w) numerically we have to study the scaling of appropriate
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e Figure 3. The figure displays,

108F Pae 1 for localised states (y = 1.5,
P | w = 0.9), the change of Plp;]

— = with decreasing 7. The inset
EQ T shows that pave is constant for
10°F ] n — 0, but a typical moment,

. the geometrically averaged DOS

_2:129 Pgeo = eXp<1H pi>7 goes to

o - n=10® zero. For extended states we

10 10° get distributions like in Fig. 2,

independent of (a small) 7.

quantities, like for any phase transition. Here we employ the different behaviour of P[p;(w)]
when the imaginary part n in the energy argument of G;;(w + in) goes to zero: For extended
(localised) states the distribution is stable (instable) for n — 0 (see Fig. 3). This behaviour is
again not caught by pave(w), which is finite for n — 0 for both extended and localised states. But
suitable moments of the distribution, like the geometric average, drop to zero just for localised
states (see inset in Fig. 3). With this criterion which numerically tests whether the distribution
is singular or not we can very precisely distinguish extended and localised states [11]. Fig. 4
shows the phase diagram of the Anderson model on the Bethe lattice obtained by means of
the limit n — 0. It displays two important features of localisation. First, the existence of
a critical disorder v.(w = 0) above which all states are localised due to the strong impurity
scattering. Second, before complete localisation occurs, states towards the band centre are
extended while states towards the band edges are localised, these states being separated by
the so-called mobility edges. Furthermore the mobility edge trajectory reveals that for small
disorder the electron tunnels between impurities, giving rise to extended states outside the band
[—Wo/2,Wy/2] of the ordered system.

Let us finally contrast the LD result for paye(w) (Fig. 4) with the CPA. The CPA reproduces
the DOS very good inside the band — only here P[p;(w)] is a Gaussian — but fails closer to the
band edges where it misses the (Lifshitz) tails in the DOS. These tails result from states at the
band edges which come along with repeated scattering of the electron on clusters of impurities
with a large (or small) potential ¢;. Since multi-scattering is not accounted for in the CPA these
states cannot be described.

3.2. Binary alloy
Multi-scattering becomes rather important for ‘discrete’ distributions like

Ple;) = ead(e; + A/2) + (1 — ca)d(e — AJ2), (13)

describing a two-component binary alloy made of ‘A-atoms’ with potential —A /2 and ‘B-atoms’
with potential +A /2. Thus we have two parameters, the concentration c4 of the A-species and
the energy separation A.

Exemplarily we consider the case c4 = 0.1 when the A-atoms form the minority species in a
bulk of B-atoms, and A = 2.0 when the A-atoms are energetically well-separated from the band
of the B-bulk. Fig. 5 shows the corresponding DOS, contrasting the LD and CPA results. The B-
band is rather smooth and almost reproduced by the CPA, which nevertheless misses important
features. In the energy range of the A-atoms we do not find a band but a strongly fragmented
set of peaks. Each of these peaks can be attributed to a specific cluster of A-atoms, as indicated
in the figure. Due to the low concentration c4 of A-atoms, and the large energy separation
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Figure 4. Left panel: Mobility edge trajectory, i.e. the phase diagram, of the Anderson model,
obtained in the limit 7 — 0. The dashed lines indicate the band edges +(W/2 + v/2). Right
panel: DOS for the Anderson model at v = 1.5 for w < 0, calculated with CPA and LD approach.
Both the DOS and the phase diagram are symmetric under w — —w.

A, states at these clusters do not hybridise and form a continuous band, but are essentially
confined to the clusters and contribute discrete peaks to the DOS. The CPA is by construction
unable to identify those cluster states and therefore entirely misses band fragmentation. With
increasing A these signatures become more prominent, while CPA suggests that the bands, being
well separated, less influence each other (see right panel in Fig. 5). The CPA is of course able
to depict gross features as band splitting, but replaces the complex spectrum by semi-circular
bands with weight ¢4 and 1 — c4. Then, e.g., the minority A-band has spectral weight outside
the CPA band: Replacing this band by a semi-circular one while conserving the overall spectral
weight ¢4 results in a clearly reduced CPA bandwidth.

We think that the binary alloy is a particular instructive example how, using the distribution
of G;;(w), one manages to account for multi-scattering events which are absent in a CPA
description relying on averaged values. With a proper treatment of multi-scattering like in
the LD approach both quantum interference leading to Anderson localisation and formation of
cluster states is correctly described.

4. Electron-Phonon Coupling

Anderson localisation arises from elastic electron-impurity scattering. Coherence which is
maintained during elastic scattering is the important precondition for localisation. To
understand which role localisation plays in a real solid we must therefore understand how it
is affected by inelastic scattering, which naturally arises from the interaction of the electron
with lattice vibrations, i.e. phonons. A model to study the competition between localisation —
related to coherence— and electron-phonon (EP) interaction —related to incoherence— is provided
by the Anderson-Holstein Hamiltonian

H = Z eiczci —t Z cl-Lcj — V/Epwo Z:(b;t + bi)c;rci + wo Z bzbi , (14)
‘ (i.3) i i

which adds a Holstein-type of interaction to the Anderson model, the ¢; being distributed

according to Eq. (12). Here blm denote bosonic operators describing dispersionless optical

phonons with frequency wg which are locally coupled to the electron density cZT

the dimensionless phonon frequency @y = wo/Wy, and a coupling constant A = 2¢,/Wj.
Moreover we consider one electron at 7' = 0.

¢;- We introduce
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Figure 5. Left panel: DOS for the binary alloy model at A = 2.0, ¢4 = 0.1, contrasting the
CPA and LD results. Arrows mark different peaks in the DOS which arise from the clusters
indicated (e.g. A-BB indicates the contribution from an A-atom which is surrounded by two
B-atoms.) We used in the figure an arbitrary n = 1072 to broaden the peaks. Right panel: Kind
of a phase diagram for the binary alloy model at ¢4 = 0.1, showing the DOS for various A. The
dashed curves show the CPA band edges, and the dotted lines mark w = £A /2 4+ W, /2 (figures
taken from [12])

Besides introducing incoherent motion, EP coupling in this model can lead to the formation of
a new quasiparticle. Sufficiently strong EP coupling binds the electron to the lattice deformation
at the electron’s site, forming a new compound entity, the polaron (see e.g. [13]). A polaron
is strongly mass-enhanced and therefore very much affected by disorder. However, a polaron
is not just a heavy electron. Due to inelastic scattering and retardation of the EP interaction
in most cases the internal structure of the polaron will play a crucial role, leading to different
localisation properties. Moreover if inelastic scattering dominates, leading to incoherent motion
of the polaron, localisation will be suppressed. Then a polaron can be less easy to localise than
the free electron, although its mass is still increased.

4.1. Extending the LD approach to interacting systems
Like in the standard Green’s functions formalism interaction is incorporated in the LD approach
by an interaction self-energy EZ-I]- (w) [14]. The ‘disorder’ self-energy ¥;, as introduced in Eq. (7),
is local. The interaction self-energy will be approximated to be local as well. The Green’s
function Gy;(w) is then obtained as

, K " ! T » ” 1 X !
Ga(w)=|w =& =) =3 H (@) =323 G —a=-S{w)+ > %)

7j=1 7j=1 ]:1
(i5)

replacing Eq. (9). Like for the disorder part one should demand [15] that the interaction self-
energy is obtained as the ‘best’ local self-energy which amounts to use the dynamical mean field
theory (DMFT) (for a review see [16]). Within DMFT the interaction self-energy is a functional
Y (w) = 2![F;(w)] of the local propagator

-1

Filw) = |w—a—_ Hw) (16)
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which does not contain X/ (w). With the DMFT self-energy inserted into the equations still the
Monte-Carlo scheme applies. Since the interaction couples different energies each entry of the
sample now represents a local Green’s function Gy;(w) on a set of w (e.g. Matsubara frequencies).
Note that during each update of an entry one has to evaluate X/ [F;(w)]. Without disorder, for
€; = 0, this scheme reduces to standard DMFT.

The functional dependence ZZ-I [Fi(w)] is not explicitly known but requires, despite the
approximations made, the solution of a quantum-mechanical many-particle problem. Solving
this model constitutes the main part of a DMFT implementation. Concerning disordered
interacting system the evolved calculation of Y/[F;(w)] poses a severe problem. So far system
with a finite charge carrier density like a disordered Hubbard model could only be addressed
in limiting cases [15]. For a single electron in the Anderson-Holstein model we are fortunate to
explicitly know the functional X! [F;(w)], given as an infinite continued fraction for ' = 0 [17, 18]:

lepwo

>l (w) = PR (17)

[Fj(w — 1wo)] ' =

Fiw — 2wp)] L — 5520

The p-th level of this continued fraction corresponds to the emission of p virtual phonons, shifting
the energy argument of F; by pwg. Originally this expression has been obtained as an extension of
the CPA to describe dynamical interaction effects (concerning dynamical CPA, see [17]). In the
spirit of the CPA the interaction can be mapped onto an effective Hamiltonian which is related
to the original problem via a consistency condition on the Green’s function [19]. This mapping
can be combined with the LD construction on the Bethe lattice whereby the consequences of
the approximations concerning interaction and disorder become very explicit [11]. It turns out
that the interaction induced correlations between local Green’s functions are almost treated on
the same level of correctness as the disorder induced correlations. In particular one finds that
the extended LD approach comprises cooperative effects which arise from the mutual interplay
between interaction and disorder. This is why the LD approach excels approaches which try
to replace the interacting disordered system by an effective non-interacting disordered system.
The interaction is there mimicked by effective transfer integrals or local potentials, but the
feedback of disorder on interaction is not accounted for. The same objection applies if the
interacting disordered system is replaced by an effective interacting system, mimicking disorder
by effective coupling constants. The price to be paid on using the LD approach is the rather
involved numerical implementation combining a repeated solution of the DMFT problem with
a Monte-Carlo scheme.

4.2. Polaron localisation
Within the extended scheme just described we can study how the electron is affected by disorder
and EP interaction. We will only touch on this question and focus on two significant cases where
we compare parts of a phase diagram for polaron localisation to that of the Anderson model.
The reader should be aware that we encounter a very complicated physical situation. Already
without disorder the Holstein EP interaction displays rich, and very distinct, physics in different
parameter regimes. With disorder, cooperative effects like the formation of polaron defect states,
come into play. These effects do hardly fit into a ‘universal’ phase diagram of polaron localisation
but demand a more concrete description, depending on the specific case studied. A more detailed
discussion of this and related issues can be found in [20].

In Fig. 6 the DOS for two choices of polaron parameters as obtained by DMFT is shown.
We used the n — 0 — criterion to obtain the mobility edges for the lowest polaron sub-
band in each of the two cases. The comparison to the mobility edges of the Anderson model
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Figure 6. DOS p(w) without disorder (v = 0), obtained within DMFT. Im ¥(w) is displayed
downwards. Left panel: The strong-coupling, large phonon-frequency case A = 9.0, @wg = 0.5625
can be understood from the atomic limit (independent boson model), treating ¢ as a perturbation.
The DOS shows narrow bands which are separated by wg. The bandwidth of the lowest band
(magnified in the bottom row) is W/Wj = 3.45 x 1074, i.e. the polaron being extremely heavy.
Right panel: For weak coupling (©p = 0.05, A = 0.25, upper row) EP interaction essentially
leads to inelastic motion of the electron (Im3(w) < 0). For stronger coupling (A = 1.0, same
@o = 0.05) a polaron has formed. The lowest polaron band (W/Wy = 8.123x 1073) is asymmetric
revealing the different character of the polaron to the lower and upper band edge.
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(Fig. 7) demonstrates that only in special cases the localisation properties of the polaron can be
understood as the mere result of the mass renormalisation of the quasiparticle.

For strong-coupling and large phonon-frequency A = 9.0, @y = 0.5625 (circles in Fig. 7),
the polaron in the lowest band is basically a heavy particle which moves fully coherent but
within an extremely narrow band. It localises like a bare electron with a rescaled bandwidth,
and the internal structure of the polaron does not play a role. Due to the strong coupling the
relevant energy scale for localisation has however changed by four orders of magnitude, making
the polaron extremely susceptible to disorder. }

For intermediate coupling and small phonon-frequency A = 1.0, @9 = 0.05 (squares in Fig. 7),
the polaron motion is, already without disorder, different at the lower and upper band edge.
At the lower band edge the polaron is rather mobile, while at the upper band edge it tends
to be immobile. Concerning the localisation properties the polaron at the lower band edge is
thus almost unaffected by disorder and does not readily localise. At the upper band edge, in
contrast, it is easily localised. Note that the lowest polaron band is again coherent: localisation
is not just affected by incoherent motion but intricately depends on the internal structure of
the polaron. Be also aware that disorder is measured in units of the renormalised band width:
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the polaron at the lower band edge is more difficult to localise than a bare electron only with
respect to the relevant energy scale W, i.e. the polaronic bandwidth.

In Fig. 7 we have only shown data for moderate disorder, i.e. below v.(w = 0) when, for
the bare electron, all states become localised. In the first (strong-coupling) case we can indeed
localise all states in the lowest polaron band and obtain the respective 7.(w = 0) which has the
value of the bare electron renormalised by W/Wj. Here disorder induced mixing with excited
polaron states is prevented by the large gap to the next band (W < wyp). In the second (adiabatic
intermediate-coupling) case, however, with increasing disorder the lowest band merges with the
next polaron band before it is completely localised. Then the relevant energy scale for v changes
by one order of magnitude to the joint bandwidths of the two lowest bands. Hence an equivalent
to ve(w = 0) does not exist. Apparently we can only draw parts of a phase diagram for polaron
localisation. Again, EP interaction changes the localisation properties in a more complicated
way than thinking only in terms of mass renormalisation would suggest.

5. Summary

In disordered systems Green’s functions emerge as stochastic, random quantities. It is reasonable
to take this stochastic character serious and to incorporate distributions of those quantities in
a description of disorder. Following [5] the proposed LD approach is based on distributions of
the local Green’s function. Being exact on a Bethe lattice, approximate on general lattices, it
accounts for quantum interference leading to Anderson localisation, and multiple scattering on
clusters like in a binary alloy.

The LD approach is an extension of the CPA including fluctuations. Conversely, it contains
the CPA in the limiting case when fluctuations are replaced by averages. We can then understand
that the CPA results are good if — and only if — the distribution of the LDOS is characterised
by its average. This condition does not mean that the disorder is weak: Even for small v in the
Anderson model states at the band edges are localised, and beyond the scope of the CPA. A
similar restriction exists for the minority band in the binary alloy model.

The great challenge is however not disordered, but interacting disordered systems. Here
the LD approach can provide a description of the microscopic interplay between interaction
and impurity scattering. Locally, both interaction and impurity scattering are treated in the
best approximation possible: DMFT is the best single-site approximation to interaction; and
impurity scattering is exactly treated (on general lattices at least locally exact).

The LD approach depends on the accuracy of the DMFT self-energy. A deep understanding
of this part of the problem is important. How the involved numerical methods (quantum
Monte-Carlo, exact diagonalisation, density matrix renormalisation group, to mention a few)
or approximative schemes (e.g. iterative perturbation theory (IPT)) used for the calculation of
the DMFT self-energy [16] cope with the considerable fluctuations in the local propagator Fj(w)
induced by disorder is by no means clear (e.g. the perturbative expansion in the IPT is best for
weakly varying Fj(w)). Since we largely understand the LD approach’s application to disorder,
how to guarantee for the quality of these methods is still the biggest problem — the computational
costs for their implementation in the Monte-Carlo scheme notwithstanding. Our results for the
localisation of a single Holstein polaron, where these objections are absent, demonstrate that the
LD approach by itself allows for a comprehensive description and detailed study of interacting
disordered systems. Physically we learned how intricate and rich the interplay of interaction
and localisation can be. Future work will certainly support and extend this observation.
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