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Abstract. The properties of the ion feature of the Thomson scattering signal are investigated.
Firstly, the description of the atomic form factor by hydrogen-like wave functions is reviewed
and better screening charges are obtained. Then the ionic structure in systems with several ion
species is calculated from the HNC integral equation.

1. Introduction

X-ray Thomson scattering is one of the few potential diagnostic methods applicable for dense
plasmas as they occur in all inertial fusion scenarios. The method is well-tested to yield detailed
information for the plasma properties. Recent experiments with X-rays have demonstrated its
capability to obtain the density, ionization degree and collision rate in solid-density plasmas
[1, 2, 3]. Neglecting the very small contribution directly scattered from the ions, the intensity
of the scattered light is determined by the differential scattering cross section
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where σT is the total Thomson cross section, k and ω denote the shifts in wave number
and frequency, respectively, that the X-ray photons experience. See(k, ω) is the dynamic
electron structure factor. Even for weakly coupled plasmas, that is within the random phase
approximation, the electron structure factor includes properties of the ionic subsystem [4]. For
strongly coupled and partially ionized plasmas, it is given by [5, 6]

Stot
ee (k, ω) = |fi(k) + q(k)|2 Sii(k, ω) + ZfS0

ee(k, ω) + Zc

∫
S̃ce(k, ω − ω′)Ss(k, ω) dω . (2)

The first term considers the electrons co-moving with the ions: fi(k) is the atomic form factor
describing the elastic scattering from bound electrons, q(k) contains the contribution from the
electrons in the screening cloud around the ion. The small frequency scale defined by the
ion-ion structure factor Sii(k, ω) cannot currently be resolved experimentally. It is therefore
sufficient to describe the ion structure with the static structure factor Sii(k). The second term
in Eq. (2) describes the scattering due to free electrons which can be spectrally resolved in the
experiments [3]. The third term describes inelastic excitations within an atom or ion. It can
usually be neglected in low-Z materials as the probed beryllium plasmas.
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Figure 1. Comparison for the bound
electron density around a doubly ionized
beryllium ion. For the hydrogen-like model,
the core charge is used as a fit parameter to
yield agreement with numerical solutions.
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Figure 2. As for Fig. 1, but for a singly
ionized beryllium ion. The effective charge
states of the core that best fit the numerical
data are Zeff = 3.48 for the 1s states and
Zeff =2.55 (2s state).

Although the ion structure results in a well-pronounced peak for low frequency shifts, this
information cannot be used to infer the ion properties yet. The missing link is a reliable
theoretical description of the ion structure and the nonlinear response of the electrons to the ions.
Here, we calculate the ion properties using integral equations known from fluid theory [7]. In
contrast to the often applied Yukawa model or two component calculations [8, 9], the numerical
procedure used is not limited with respect to the number of species treated. In this contribution,
we use this ability to focus on systems with multiple ion species. They always occur in systems
with different chemical elements as plastics and also in plasmas with multiple ionization stages.
Furthermore, we review the calculation of the atomic form factor using hydrogen-like wave
functions.

2. Atomic Form Factor for Light Elements

One of the input quantities for the total electron structure factor (2) and therefore for the
analysis of the Thomson scattering signal is the atomic form factor fi(k). For light elements as
considered in the experiments, such as beryllium, only 1s and 2s electrons occur. The idea for a
fast analysis code is to describe these bound states by hydrogen-like wave functions. However,
one has to consider partial screening of the ionic core if more than one bound electron remains
with the ion. This effects is usually described by an effective core charge.

Present models for the atomic form factor use fits to Hartree-Fock calculations [2]. Here,
we use a different approach by employing solutions of a full (anti-symmetrized) Schrödinger
equation. As before, we then use the effective core charge as a fit parameter to yield hydrogenic
wave functions that reproduce the numerical results.

Fig. 1 shows a comparison of different calculations for a doubly charged beryllium ion.
Clearly, just adding two hydrogen wave functions for the full charge of the nucleus does not
yield agreement with the solution from the Schrödinger equation (thick full line). Even the
screening charge of Zscr = 0.19, which reproduces the Hartree-Fock calculations and is used in
present models [2], cannot sufficiently describe the exact solution. We have to increase the
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Figure 3. Pair distribution functions for
the ions in a CH4 plasmas with fully ionized
hydrogen ions and four-fold ionized carbon.
The plasma temperature is T =2.5×104 K
and the ion densities are nC = 1023 cm−3

and nH =4×1023 cm−3.

screening charge to Zscr =0.45 (dots than can be barely seen next to the full solution) to obtain
agreement. This has quite an effect, especially, for larger k values used for back-scattering.

Similar results follow for beryllium ions with three bound electrons. Here, the third electron
screens the core even further yielding Zscr = 0.55 as the best fit for the 1s electrons. The 2s
electrons are further out and are best described by an effective charge of Zeff = 4−Zscr = 2.55.
However, one can already observe in Fig. 2 that this approach does not yield perfect results and
the use of hydrogenic wave functions should be limited to ions with very few bound electrons.

3. Ionic Structure: Multi-Component Hypernetted Chain Equations

We now turn to the calculation of the ionic structure factor in multi-component plasmas. The
approach is based on integral equations known from fluid theory that describe the strong coupling
between and within the components. The first equation is the Ornstein-Zernicke relation [7]

hij(r) = cij(r) +
∑
k

nk

∫
dr̄ cik(r̄)hkj(|r − r̄|) . (3)

This equation connects the direct correlation functions c(r) with the total correlation function
h(r)=g(r)−1, where g(r) is the pair distribution or, in a fluid, the radial distribution function.
As a second equation serves the hypernetted chain closure relation

gij(r) = exp(−βVij(r) + hij(r) − cij(r)) (4)

which is known to yield reliable results for moderately coupled Coulomb systems [7].
The above system of equations can be solved iteratively. For such a procedure, it is useful

to transform the Ornstein-Zernicke relation into Fourier space, where it becomes an algebraic
Matrix equation

H̃(k) = C̃(k) + C̃(k)D̃H̃(k) . (5)

For the arbitrary number of components considered here, this equation must be solved by
numerical matrix inversion for each k value. After rearranging the data into new total correlation
functions and a fast Fourier transformation, the closure relation (4) can be used to obtain better
direct correlation functions c(r). These functions are in turn transformed back to wave number
space and used again in the Ornstein-Zernicke relation (3) until convergence is achieved.

Fig. 3 shows results for a strongly coupled CH4 plasma, where the electrons are treated within
linear response yielding a Debye potential between the ions. As expected, the higher charged
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Figure 4. Pair distribution functions for
the ions in a partially ionized aluminum
plasma with T = 4×103 K at solid density.
The ions have been artificially distributed to
four charge states from Z =1 to Z =4 giving
the extremes four times less weight.
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Figure 5. Static structure factor for the
ions in an aluminum plasma with the same
plasma parameters as in Fig. 4. Note the
huge relative difference between the full and
the one component calculation at small wave
numbers.

carbon ions show a more distinctive structure than the protons or the cross term. However,
the proton subsystem by itself would show almost no structure although it has only 20% less
ions than the full CH4 system. This demonstrates the highly correlated behaviour allowing the
carbon ions to impose their structure on the protons.

An aluminum plasma with four different charge states is considered in Figs. 4 and 5 which
display partial pair distributions and structure factors Sab(k)= δab+

∫
[gab(r)−1] exp(−ik·r) dr,

respectively. Again, we consider ions that interact via statically screened forces. The thick
full lines show the average over all partial functions. It should be mentioned that all partial
gab lie in between the lines shown. However, Sab for a 6= b displays quite a different behaviour
since the Kronecker δab is missing in this case. These contributions are also responsable for
the fact that the average static structure factor S(k) = (1/16)

∑
ab Sab(k) is for small wave

numbers k much lower than the partial functions plotted. For comparison, results from an one
component calculation for ions with an average charge state of Z̄ =2.5 is given. Although both
calculations consider the same average charge state, the average pair distributions and static
structure factors are quite different; particularly, the experimentally important structure factors
at small wave numbers. Accordingly, the ion peak predicted in the total structure factor (2)
shows large relative discrepancies.
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