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O U T L I N E A N D S C O P E

This cumulative thesis describes contributions to the field of interpretable machine
learning in the healthcare domain. In this thesis, three research articles are presented
that lie at the intersection of biomedical and machine learning research. They illus-
trate how incorporating latent structure can provide a valuable compression of the
information hidden in complex healthcare data.

The included articles provide insights into the entire process: from data processing,
via method and workflow development, to analysis and interpretation of the results.
Articles I and II include models learned from epidemiological data of different cohorts
of the population-based Study of Health in Pomerania (SHIP). These data are extremely
heterogeneous and multicollinear. In contrast, Article III is based on a study of
proteomics, where data are rather homogeneous but the number of biological replicates
is usually very low.

Article I: From heterogeneous healthcare data to disease-specific biomarker networks:
a hierarchical Bayesian network approach.

The core result of this thesis builds on Bayesian networks, a type of probabilistic
graphical model. In Article I, an approach to learn Bayesian networks in a group-based
fashion is developed. The approach overcomes problems in Bayesian network structure
learning that are raised by multicollinearity, heterogeneity, and dimensionality of the
data. In a first step, heterogeneous features are hierarchically clustered around latent
factors. The hierarchical structure is used as a basis throughout the learning process.
It guides the optimization of the grouping with regard to an outcome of interest. An
implementation of the method is available online at the Comprehensive R Archive Net-
work (CRAN) from https://CRAN.R-project.org/package=GroupBN. The approach
is tested on synthetic and example data and is finally used to analyze data from the
SHIP cohort SHIP-Trend with regard to non-alcoholic fatty liver disease (NAFLD) and
hypertension. The advantage of the approach is that the initially purely unsupervised
model can be used with a varying resolution to account for an outcome of interest. The
method helps to create concise yet flexible multivariate and disease-specific models of
biomarker and risk factor interactions.

Article II: Discovering association patterns of individual serum thyrotropin concentra-
tions using machine learning: An example from the Study of Health in Pomera-
nia (SHIP).
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Article II focuses on the prediction of individual serum thyrotropin concentrations, a
key biomarker of thyroid function. Methodologically, we combine random forests with
a post-hoc Bayesian network analysis for improved interpretation. As an ensemble
method, random forests train highly flexible, nonparametric predictors. However, their
interpretability is limited, as multiple decision paths of various trees are combined
for prediction. That is why the interactions of those predictors that are identified as
relevant from the random forest model are additionally analyzed in detail in a Bayesian
network approach. They are finally discussed in the context of recent thyroid research.

Article III: Metabolic cross-talk between human bronchial epithelial cells and internal-
ized Staphylococcus aureus as a driver for infection.

In Article III, temporal proteomic profiles from Staphylococcus aureus (S. aureus)
and human bronchial epithelial cells (HBE) are measured to reveal insight into the
metabolic cross-talk between bacteria and host. In this case, data analysis is compli-
cated because proteomes may vary highly between cells and over time and they can be
measured only indirectly via peptide abundances. For that reason, data are analyzed
using protein-centered regression splines. Furthermore, interpretation is supported by
time-series clustering, which reveals groups of proteins reacting similarly over time.
The clustering also allows the identification of time points at which significant changes
occur.

Methodologically, this thesis gives an overview of interpretable machine learning
and the discovery of latent structure, including clusters, latent factors, graph structure,
and hierarchical structure. Different methods are developed and applied to two main
types of complex healthcare data (cohort study data and time-resolved molecular
data). On the application side, we provide accurate predictive or discriminative models
focusing on relevant medical conditions, related biomarkers, and their interactions.
The presented models focus on non-alcoholic fatty liver disease (NAFLD) (Article I),
hypertension (Article I), thyroid function (Article II), and host-pathogen interaction for
S. aureus and host cells (Article III).

The thesis is structured as follows: Part i contains background information and
summarizes the accomplishments. Here, chapter 1 outlines the opportunities and
obstacles of machine learning in the healthcare domain. Chapter 2 introduces relevant
methodological foundations and puts them into context. First, all included supervised
models are defined and discussed in the context of interpretability. Afterward, different
approaches to latent structure discovery are discussed. Chapter 3 shortly summarizes
the overall results achieved within the included articles. Chapter 4 contains general
conclusions. In Part ii, the three research articles are presented. Parts iii and iv provide
references and supplementary information.
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Part I

R E S E A R C H S U M M A RY





1

B A C K G R O U N D A N D M O T I VAT I O N

1 machine learning in healthcare

In recent years, the collection of high-dimensional healthcare data has become increas-
ingly simple and cost-efficient. This development is accompanied by a strong need for
improved and largely automated data analysis methods to extract hidden knowledge
from complex data to make it accessible. Available classes of statistical models tend to
focus on the accurate prediction of a particular outcome, and they differ considerably
in terms of interpretability.

2 major healthcare data challenges

Healthcare data pose substantial challenges for machine learning, while the demands
for model interpretability and explainability are much higher than in most other
domains. Particular difficulties arise from the diversity of treatments and study
designs, data types, and processing. Data may stem from various sources, including
electronic health records, patient-reported data, medical imaging, molecular data,
cohort studies, and large clinical trials. All of these data sources share a significant
amount of measurement noise and uncertainty that is often as high as true effects.
High noise may also be present in the labeling of a potential target variable, which is
often based on a clinical diagnosis by a physician. Thus, human mistakes cannot be
ruled out and come on top of the general uncertainty in diagnosis.

The integration of different data types causes further obstacles, including hetero-
geneity, incompleteness, imbalance, multicollinearity, and complexity, that inhibit a
straightforward application of established machine-learning methods. Furthermore,
relatively small sample sizes are a common limitation. At the same time, incorrect
prediction comes at an extraordinarily high cost due to high-stakes applications like
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2 background and motivation

clinical decision-making. Thus, healthcare models have to comply with high standards
regarding interpretability, regulation, and accountability (Vellido, 2020; Erickson, 2021).

However, the concept of interpretability is complex, as it is closely tied to the human
(thus subjective) capacity of understanding and lacks a universal, formalized definition
and measure (Lipton, 2018). For example, the key ethical requirements of EU guidelines on
ethics in artificial intelligence request it to “be possible for [AI systems and related human
decisions] to be understood and traced by humans” (Madiega, Madiega). Consequently,
a healthcare machine learning model needs to be both, an accurate depiction of reality
(based on the given data) on the one hand and as interpretable as possible on the other
hand. Only when a good tradeoff is found a model will be practical, accountable, and
applicable.

3 benefits of incorporating latent structure

Interpretability can, for example, be achieved by choosing a model type, which is
intrinsically interpretable, such as a linear model. More complex models can be
made interpretable by visualization of model structures or by partitioning them into
segments. However, even theoretically well interpretable models get hard to explain
if they include a large number of features. For this reason, the approaches presented
in this thesis include additional latent structure to reduce the complexity of the final
models.

Typically, the first sub-task of model building from high-dimensional healthcare
data is an attempt to reduce the number of involved features. The easiest way to
streamline this step is to discard redundant or irrelevant features, known as feature
subset selection (FSS). FSS can be realized by wrapper or filter strategies, or a feature
subset can be selected manually based on prior knowledge (Jović et al., 2015; Hira
and Gillies, 2015). This step, however, may have a high impact and lead to the loss
of potentially useful information, for example, regarding feature interactions (Haury
et al., 2011). As a result, previously unknown or overlooked relations may be discarded,
and mutual effects may not be noticed. On the other hand, dimensionality reduction
can also be achieved by agglomeration, projection, or transformation of the original
features, known as feature extraction (FE) (Hira and Gillies, 2015). In this case, new
informative and non-redundant features are created from the original data, yielding a
compression of the feature space.



4 the role of interpretability for interdisciplinary collaboration 3

Indeed, complex systems are often organized according to a simpler, underlying
structure, for example, in the form of clusters or modules (Murphy, 2012). Latent
structure discovery describes the model-based identification of these underlying patterns
or structures in observed data. Incorporating latent structures may help overcome
problems raised by multicollinearity, heterogeneity, and complexity. Moreover, by
capturing and denoising the main characteristics of the data, the latent structure
may even improve discrimination or prediction (Zhou and Nakhleh, 2012). As deep
latent structure models like deep neural networks tend to be black-boxes, we focus
on identifying interpretable latent structures to offer a compressed representation of
complex data and enhance interpretability.

4 the role of interpretability for interdisciplinary collaboration

This thesis describes contributions to the field of latent-structure-based, interpretable
machine learning in the healthcare domain. Three practical examples from medicine
and healthcare are presented that give an overview of the whole process: from data
preprocessing via model training and validation to the interpretation of the results.
We show how latent structure-based models offer a flexible opportunity to extract
compressed and understandable knowledge from complex data. They appear to be a
good starting point for an in-depth interpretation if they are trained carefully and in a
constant exchange between informaticians and biomedical researchers. For this step,
an intuitive representation of the models is of great advantage.

As a whole, it can be said that AI models in healthcare can only be useful if they
allow bridging back to the research questions and hypotheses that arose before data
collection. Considering that, it gets clear that model interpretability is an essential
characteristic.





2

M E T H O D O L O G I C A L F O U N D AT I O N S

This chapter gives an overview of related methodological foundations. After an intro-
duction to the taxonomy of model interpretability in Section 1, all relevant supervised
model types are briefly presented and discussed in the context of interpretability (Sec-
tion 2). Section 3 gives an overview of different latent structure types: clusters, latent
factors, graph structure, and hierarchical structure. As the core result of this thesis is
based on the concept of Bayesian networks, a model to discover graph structure, this
model family is introduced in greater detail.

1 model interpretability

To interpret a machine learning model means finding meaning in it and being able to
explain how the model works. If a model is based on multiple features, this includes
explaining which features contribute to the model and how. Model interpretability
is partly subjective as it refers to human understanding of the inner processes of a
model. However, as explained above, this understanding is crucial in the application
of models in high-stakes domains like healthcare.

In the literature, model interpretability is defined as the degree to ’which a human can
understand the cause of a decision’ or ’to which a human can consistently predict the
model’s result’ (Linardatos et al., 2021; Masís, 2021; Molnar, 2020; Miller, 2019; Kim
et al., 2016). It is, thus, not directly measurable by a metric, and tools for interpretation
come in appreciably different forms: They vary from feature importance rankings via
surrogate models to visual analytics (Linardatos et al., 2021; Liu et al., 2017; Vellido,
2020; Molnar, 2020).

However, interpretation methods can be vaguely classified according to their type
and aim. For example, a machine learning model is called intrinsically interpretable, if
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6 methodological foundations

interpretability is achieved by restricting the complexity of the model structure. In
contrast, so-called black-box models, use structures and functions that are too complex
for humans to understand. This complexity often arises from models being highly re-
cursive (Rudin, 2019). Such complex models can be made understandable by applying
interpretation methods after training, which is called post-hoc interpretability. Post-hoc
interpretation methods can, for example, be based on summary statistics of model
predictions.

Interpretability methods exist for specific model types (model-specific) or they can be
applicable to any model (model-agnostic). Furthermore, interpretation can either be per-
formed on a local level of individual predictions (local interpretability) or averaged over
entire models (global interpretability) (Molnar, 2020; Miller, 2019; Carvalho et al., 2019).
For a sound introduction to the taxonomy of interpretability for machine learning, see
for example Carvalho et al. (2019); Linardatos et al. (2021).

2 interpreting supervised models

If the data analysis focuses on discrimination or prediction of a certain medical
condition, the applications fall under the task of supervised learning. The respective
medical condition constitutes a response or target variable, that is usually encoded in
the form of a random variable Y. The goal then is to learn a mapping from inputs
X = (X1, . . . , Xn) (also denoted as predictors or features) to the response Y. Observed
data D are usually collected in a matrix with N rows j = 1, . . . , N (samples). A
systematic relationship f between X and Y is assumed

Y = f (X) + ε,

with ε denoting an independent, random error (residuals). If Y is continuous, the
problem is referred to as regression (such as predicting the concentration of a certain
metabolite in blood), in the discrete case as classification (such as predicting the presence
or stage of a disease). The discrepancy between observed data and model predictions
needs to be quantified in order to measure how well a model fits the data. Common
measures are the mean squared error (MSE) for prediction or the classification error rate
for classification problems. The shape of the mapping f encodes model assumptions
and determines the model’s complexity. From a probabilistic view, supervised learning
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Figure 1: Tradeoff between interpretability and flexibility of different machine learning models.
Figure adapted from (James et al., 2013).

refers to determining the conditional probability distribution P(Y|X).

Interpretability vs. Flexibility

It is commonly believed that there is a tradeoff between interpretability and perfor-
mance, such that the restriction to interpretable model structures goes along with
an impairment of predictive accuracy (Bratko, 1997; James et al., 2013; Masís, 2021).
Although this may be theoretically true, it is in reality often possible to make a model
easier interpretable while maintaining its predictive performance on unseen data
(Krakovna, 2016; Rudin, 2019). This applies in particular to models with naturally
meaningful features and limited data basis. Both is true for the projects discussed
here. It is, in this case, more correct to call it a tradeoff between interpretability and
flexibility (or complexity) of a model.

Available machine learning models differ significantly in the shape they offer to
estimate the relation f between predictors and response. Very restrictive shapes of
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f (e.g., linear models) are often ineffective on high-dimensional, complex real-world
data, as the model assumptions are too harsh and the distribution they use is too
inflexible. On the other hand, an increase in flexibility (e.g., achieved by using nonlinear
functional relations or by aggregation of multiple models) may significantly increase a
model’s complexity, complicate its training, and impair its interpretability. Too flexible
models will possibly lead to overfitting, in which case the predictive accuracy on
unseen data will even decrease.

Fig 1 illustrates the tradeoff between interpretability and flexibility for those model
types discussed within this section. It can be argued that the best-suited models are
those that optimally tradeoff interpretability against flexibility. However, what the
optimal tradeoff exactly means remains highly subject to the given constraints, and the
specific application (Lipton, 2018; Hamon et al., 2020).

2.1 Linear Models

A linear model (LM) assumes the mapping f to be linear and, thus, represents the
target as a weighted sum of the predictors

Y = β0 + β1X1 + . . . + βnXn + ε = βTX + ε.

The residual error ε is usually assumed to be normally distributed around zero,
ε ∼ N (0, σ2). The most common way to estimate the parameters β is to compute the
maximum likelihood estimate (MLE) using the normal equation β = (XTX)−1XTY.
An example of a linear model is given in Fig 2.

The linearity assumption makes the model rather inflexible but leads to a straight-
forward interpretation, as linear and additive effects are easy to describe: If Xi is
numerical, increasing it by one unit changes the outcome by βi, given that all other
features remain stable. Similarly, if Xi is binary, changing it from 0 to 1 changes
the outcome by βi. For improved interpretation, the influence of the weights can be
visualized, e.g. in weight or effect plots. As the weights depend on the scale of features,
it can be helpful to standardize features prior to model fitting or to scale the weight by
its standard error after model fitting. Latter results in the t-statistic of the estimated
weight. Moreover, the model as a whole can be interpreted using summary statistics,
like R-squared (R2), which is calculated as the proportion of variance in the data, that
can be explained by the model.
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The strong model assumptions, including homoscedasticity, independence, nor-
mality, and absence of multicollinearity are, however, often violated in reality. The
interpretation of the model can then be inhibited and the manual processing load
increases. For example, feature interactions would have to be handcrafted in form of
interaction terms. In case of large feature sets, regularization (LASSO, ridge, elastic net)
can be used to introduce sparsity to a model and make it easier to interpret (Madsen
and Thyregod, 2010; Faraway, 2016; Murphy, 2012).

generalized linear models The framework of generalized linear models
(GLM) allows the predictors to be related to the response via an additional link function,
such that the residual distribution can be different from Gaussian and the model is
applicable to other data types. Binomial residual distributions and the use of a sigmoid
link function can be used for binary response variables (logistic regression). Coefficients
must then be interpreted as odds ratios. For models of count events, residuals may be
modeled by Poisson distributions (Madsen and Thyregod, 2010; Faraway, 2016).

2.2 Regression Splines

Regression splines do not impose a global structure on the data but divide them into
K separate bins to fit linear or low-degree polynomial functions on each bin. To do so,
the predictors are transformed using basis functions b1, . . . , bn,

Y = β0k + β1kb1(X1) + . . . + βnkbn(Xn) + ε

and weights are determined for every bin k = 1, . . . , K under additional continuity
constraints, as illustrated in Fig 2. The cut points between the bins are called knots.
Splines offer a possibility to smooth discrete input data and overcome hard constraints
on the type of the relationship f .

However, the increase in flexibility goes along with a decrease in interpretability.
The number and positioning of knots are additional hyperparameters that have to
be chosen, and the number of weights gets multiplied by the number of bins in
comparison to linear regression. Also, the influence of the weights depends on the
types of the used basis functions. To improve the interpretability post-hoc, the behavior
of a spline can be summarized, depending on the context of the analysis. Statistical
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Figure 2: Linear model and regression spline fitted to synthetic data sampled from the func-
tional relation Y = 0.5X + sin(4X) + ε with Gaussian residuals. Gray dots represent
sampled data points. The solid blue line shows the fitted linear model (R2 = 0.3)
and the dashed gray line shows a natural regression spline (R2 = 0.65) with 4 knots
located at the boundaries as well as x = ±0.5 and respective 3 bins.

hypothesis tests for properties such as linearity or constancy of a spline can for example
act as such summary metrics.

2.3 Decision Trees

Similar to the idea of regression splines, decision trees divide the data into distinct
regions. By defining separate models on each of these regions, decision trees can adapt
well to heterogeneous data structures. Usually, the mean response µk of data in a
region Rk is used as prediction for each observation that falls in Rk. The resulting
model is then piece-wise constant

Y =
K

∑
k=1

µk · 1(X∈Rk)
+ ε, where K is the number of regions.
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Figure 3: Conceptual visualization of a single decision tree and a random forest
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However, more complex leaf models are possible, e.g., linear or logistic models
(Breiman et al., 2017; Landwehr et al., 2005). As finding the optimal partition into
regions is an NP-hard problem, greedy approaches are used to do successive binary
splits, leading to regions in the form of high-dimensional rectangles. The quality of
a single split can be evaluated based on a cost function (e.g., Gini index, variance,
entropy). Decision trees are able to model highly non-linear and complex feature
relations.

The interpretative strength of decision trees lies in their visualization in the form of
trees: Binary splits can be represented graphically as branches, with leaves representing
the different regions (Fig. 3). Decision trees are popular tools in the healthcare domain,
as their recursive structure is close to human decision-making strategies and makes
it very easy to interpret and explain the model: For each prediction, there is a path
from the root of the tree to a terminal leaf. Such a path consists of a series of decisions
concerning only one specific feature.

However, single decision trees are very unstable (i.e., sensitive even to small changes
in the input data), and they tend to score poorly for complex problems (Murphy, 2012).
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2.4 Random Forests

Random forests (Breiman, 2001) are an ensemble learning method based on decision
trees: Instead of training only a single tree, a multitude of T tree models ft(x) is
learned from random sub-samples of the training data and the predictions of the
individual models are averaged (known as bootstrap aggregation or bagging),

f (x) =
1
T

T

∑
t=1

ft(x).

This approach helps to decrease the variance of the final estimate. In order to decorre-
late the individual trees, for each split, not all but only a random subset of predictors
is considered as candidates for splitting. In addition to the described frequentist
approach, Bayesian approaches are available to learn single trees (e.g., using MCMC
(Wu et al., 2007)) or ensembles of trees (e.g., BART (Chipman et al., 2010)).

Random forests are known to score strongly for very complex and diverse problems
(Caruana and Niculescu-Mizil, 2006; Muchlinski et al., 2016; Santhanam et al., 2020).
However, it is no longer possible to represent the resulting model as a single tree,
so visualization is difficult, and their interpretation gets complicated: Due to the
aggregation, random forests do not belong to the class of intrinsically interpretable
models. Various heuristic post-hoc measures and model-agnostic approaches are
available to interpret a model. Overall feature importance can, for example, be
calculated by measuring the decrease in cost due to splits of a specific feature (Breiman,
2001; Fisher et al., 2018). Feature importance may also be computed for feature groups
(Wehenkel et al., 2018). However, these measures often suffer from biases if features are
heterogeneous or collinear. SHAP values (Lundberg et al., 2018) or surrogate models
(Ribeiro et al., 2016; Molnar, 2020) are other interpretation methods that are often
applied to random forest models for local interpretation.

2.5 Deep Neural Networks

The previously discussed models are based on different forms of direct mappings from
X to Y. In contrast, deep neural networks refer to models with many hidden layers in
between X and Y that learn representations at increasing abstraction levels, inspired
by the visual cortex (Serre et al., 2005; Ranzato et al., 2009). Deep neural network
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models tend to have millions of parameters that acquire a high amount of labeled data
to be properly trained. Moreover, due to their complexity, they are usually black-box
models with the need for further post-hoc methods to achieve interpretability. Suitable
measures are, for example, summarized by Montavon et al. (2018) but imply their own
difficulties, as they might not be faithful to the model they try to explain (Rudin, 2019;
Linardatos et al., 2021).

Deep neural network models perform exceptionally well in image classification,
language processing, and similar approaches, where they detect underlying patterns
through their complex and recursive latent structure. However, in the case of limited,
structured data, they do not tend to be clearly superior in terms of prediction (Caterini
and Chang, 2018). Additionally, in all presented healthcare applications, the number of
features is very high in relation to the sample size. This dimensionality problem further
complicates the training of models with a high number of parameters. To this end, we
focus mainly on intrinsically interpretable models, as they are advantageous under the
described conditions. Specific models for the detection of simpler and interpretable
latent structures are introduced in the following Section 3. For a further introduction
to deep learning, see for example Skanski (2018); Caterini and Chang (2018); Maier
et al. (2019).

3 latent structure discovery

Latent structure discovery refers to the discovery of patterns within a data set (Murphy,
2012). Instead of a mapping f from input X to output Y as before, we aim for a latent
structure Z and its relation to the features X. Here, Z is a latent variable that was
never explicitly observed, so the task belongs to the category of unsupervised learning.
In probabilistic terms, the aim is to describe the unconditional distribution P(X) in
terms of Z.

Latent structure discovery can be coupled with supervised learning, such that
discovered latent structures are used as input data for prediction or discrimination
tasks afterwards. Depending on the shape of Z, different types of latent structures can
be discovered.
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3.1 Discovering Clusters

Clustering describes the approach to discover homogeneous subgroups within data. It
can denote subgroup discovery in the space of observations as well as features. Clusters
can be defined in different ways. The most common definition of a cluster is that
data points within clusters have small distances to each other. Clustering is one of the
simplest forms of latent structure models, as it includes only one single, discrete latent
variable Z that assigns an integer 1, . . . , K representing the cluster number. A formal
definition of model-based clustering can be constructed by the use of finite-mixture
models. Mixture models assume the joint distribution to be a convex combination of K
base distributions

P(X) =
K

∑
k=1

πkPk(X).

Each base distribution Pk corresponds to one cluster and the mixture weights πk

determine the proportion of the clusters. In the case of Gaussian base distributions,
the approach results in a Gaussian mixture model (GMM). The clustering can then be
reconstructed by the use of an expectation-maximization (EM) algorithm.

k-means is the most wide-spread variant of the EM-algorithm for GMMs. Its assump-
tions include fixed covariance Σk = σ2 I and fixed mixture weights πk =

1
K , so that only

the cluster means are estimated. Evaluation measures of the quality of a clustering
include purity, Rand index or mutual information (Hartigan and Wong, 1979; Murphy,
2012). Clusters may be represented by a representative, e.g., the cluster centroids,
thereby reducing the dimensionality of the data and supporting interpretation.

Fuzzy or soft-clustering methods return membership grades between 0 and 1 instead
of a hard cluster assignment. The fuzzy c-Means algorithm is an extension of k-means,
in which such membership scores are used as additional weights. Consequently, the
approach is less sensitive to outliers and noise (Dunn, 1973; Bezdek, 2013).

3.2 Discovering Latent Factors

In clustering, the latent structure consists of the single, discrete variable Z. As an
alternative, Z can be introduced as a random vector Z ∈ RM, referring to M latent
factors (Murphy, 2012). In that case, the idea is to discover a lower number M ≤ n of
latent factors that approximate the original data and take interrelations among features



3 latent structure discovery 15

into account. The projection of the data into the M-dimensional subspace leads to a
dimensionality reduction.

Principal component analysis (PCA) is a latent linear model and the most common
approach for dimensionality reduction (Murphy, 2012; Bro and Smilde, 2014). PCA
identifies orthogonal linear combinations of variables along which most variation oc-
curs and, thereby, allows to summarize a large set of (potentially correlated) numerical
variables by a smaller number of representative variables, that collectively explain
most of the variability. The first principal component of a set of features X1, . . . , Xn is the
normalized linear combination

Z1 = ϕ11X1 + · · ·+ ϕn1Xn

that has the largest variance. ϕ11, . . . , ϕn1 are called loadings of the first principal
component, and they are constrained to sum up to one (Murphy, 2012; Chavent et al.,
2017; James et al., 2013; Bro and Smilde, 2014).

The optimization problem of finding this linear combination can be solved via eigen
decomposition of the covariance matrix. Similarly to the first, the mth component can
be determined by subtracting the first m− 1 principal components from X, followed
by determination of the weight vector which extracts the maximum variance from
the remaining data matrix. Consequently, the first m principal components define the
m-dimensional subspace that is the closest to the data in terms of average squared
Euclidian distance. Thus, principal component analysis offers an approximation of the
data based on orthogonal factors Z:

X = ZΦt + ε,

where Φ is the matrix containing all loadings ϕim, 1 ≤ i ≤ n, 1 ≤ m ≤ M and ε

denotes the residuals. The principal components describe the directions in which
the data vary most. They can be used to produce low-dimensional visualizations of
high-dimensional data. Further, the loadings themselves can be used to explain the
influence of the respective variable on the principal component.

A description of probabilistic PCA can be found in Murphy (2012). A counterpart
of PCA for categorical data is called Multiple Correspondence Analysis (MCA) (Kiers,
1991; Greenacre and Blasius, 2006). Several implementations of a combination of PCA
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and MCA for mixed data have been developed, for example via Generalized Singular
Value Decomposition as described by Chavent et al. (2017).

3.3 Discovering Graph Structure

If the focus lies mostly on the interactions of the variables X = (X1, . . . , Xn), it can be
useful to approach the joint distribution P(X1, . . . , Xn) with the aid of sparse graphs.
In the following, a brief introduction to the field of graphical models is given. Note
that Appendix A provides additional information on the mathematical fundamentals.

Formally, two random variables are (conditionally) independent if their (conditional)
joint distribution factorizes (see Appendix A1-2 for a detailed definition). In probabilistic
graphical models (PGM) each random variable Xi is associated with a node i in a graph
and edges or their absence represent conditional (in-)dependencies. Thus, conditional
independence can be interpreted as separation of nodes in the graph. PGMs allow to
visualize inter-dependencies and perform probabilistic inference through graphical
manipulations. Due to their clear graphical model interface, PGMs achieve interpreta-
tion through visualization. PGMs are advantageous for healthcare problems in many
ways: They are statistically grounded, they allow to inherently model uncertainty or
missingness and its effects, they provide a framework for probabilistic reasoning, and
they have been very actively evolved and adapted to many research questions since
their introduction in the 1980s (Pearl, 1985).

A Bayesian Network (BN) is a probabilistic graphical model on a directed acyclic graph
(see Appendix A4). A BN consists of the graph structure G (with nodes and edges)
and a parameter set Θ. It has some desirable properties, including the directionality,
which may be interpreted as causal, and a hierarchical order. According to this order,
neighbors of a node are denoted parents and children (or descendants and ancestors if the
connection is indirect). In general, the the connection between nodes is called path. Fig
4A shows an example of a BN structure. Fig 4B and C show two paths consisting of
two edges.

A BN encodes the local Markov property: each variable Xi is assumed to be indepen-
dent of its non-descendants conditioned on its parents, par(Xi), in the graph. This
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property allows to effectively factorize the joint distribution of the random vector X
according to the graph structure G as follows

P(X) =
n

∏
i=1

P
(
Xi |Xpar(i)

)
.

Consequently, the parameter set Θ of a BN consists of the conditional probabilities of
all nodes given its parents

θi = P
(
Xi |Xpar(i)

)
.

The factorization supports model interpretation, as it allows to transition from the
global structure to local (in)dependencies. For a thorough introduction to the Markov
property, see Appendix A7.

In the network structure presented in Fig 4A, also the Markov blanket of the center
node is highlighted. The Markov blanket is a popular concept for feature selection.
Conditioning on all nodes that are part of its Markov blanket makes a node indepen-
dent from all remaining nodes. It can be shown, that the minimal Markov blanket
of a node in an BN includes its parents, children and parents of children (Koller and
Friedman, 2009), as visualized here.

Figure 4: A) A Bayesian network structure. The parents, children and Markov blanket of the
center node are highlighted. B) A network constellation of three nodes and two
edges known as v-structure. C) A network constellation of three nodes and two edges
known as confounding.
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In a Bayesian network, all independence statements encoded by a joint distribution
and the separation of nodes in the graph need to be equivalent. In case of directed
acyclic networks the suitable definition of graph separation is called d-separation (for
directed separation). Two nodes are denoted as d-separated if every path between them
is blocked. A path is called blocked in two scenarios: it contains a v-structure (Fig 4B),
where the central node or its descendants are not observed. Or it contains any other
path type (e.g. confounding; Fig 4C) and the central node is observed. The concept of
d-separation allows to read probabilistic dependencies directly from the graph. For a
more detailed description of d-separation and the validity of theoretical conditions,
see Appendix A6-8.

Learning Bayesian Networks

The inference of Bayesian networks from data D usually happens in two steps in a
Bayesian fashion: First a graph structure G is determined that optimally encodes the
dependence structure that is present in the data. Then, parameters Θ are estimated
given the previously determined graph structure and according to the following
Bayesian factorization

P(G, Θ | D) = P(G | D) ·P(Θ |G,D).

structure learning Bayesian network structure learning is an NP-hard problem
(Chickering et al., 1994). There are two main strategies that algorithms pursue (Koller
and Friedman, 2009).

Constraint-based algorithms use statistical independence tests to determine condi-
tional dependence structures. They usually start with a complete graph and exclude
edges between variables that were found to be conditionally independent. The type
of conditional independence test depends mostly on the type of random variables.
Common choices include mutual information, correlation coefficients or Fisher’s Z
test. Constraint-based algorithms are known to be more accurate on small data sets.
However, in case of high-dimensional, heterogeneous and noisy data, they often pro-
duce networks that are not well connected (Scutari et al., 2019). Then, a propagation of
evidences is difficult.

Score-based algorithms handle the problem using a search-and-score approach. They
try to optimize the data goodness-of-fit P(G | D) by applying local or global, exact or
approximate optimization techniques. Available scores usually penalize the goodness-
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of-fit for the complexity of the network. For example, the Bayesian information criterion
(BIC) is defined as

BIC(G| D) := log P(D |G) +
d
2

log(N),

where d the number of free parameters and N is the number of samples. The BIC
is a common choice, as it is locally and asymptotically consistent, available in closed
form and does not include any hyperparameters (see Section A11). Bayesian scores
are also available (Heckerman et al., 1995). In practice, relatively simple score-based
algorithms tend to be faster than constraint-based approaches and usually lead to
high-likelihood networks with a larger number of edges, that allow for better evidence
propagation (Scutari et al., 2019). Moreover, hybrid approaches are available that couple
both strategies.

Structure learning algorithms are often used in combination with model averaging
techniques to minimize noisy, false positive edges (Koller and Friedman, 2009). Model
averaging describes an approach to identify statistically significant edges. It includes the
determination of several model structures based on bootstrap samples of the original
data. A confidence score for the presence of an edge can be estimated as the proportion
of bootstrap models in which the edge is present (Scutari and Nagarajan, 2013). The
confidence score can be used to distinguish significant from incidental edges. Unlike
for random forests, the bagged models can be integrated into one summarized Bayesian
network relatively easily, so that its interpretability is not inhibited.

parameter estimation Due to the disentangled factorization of the joint dis-
tribution, maximizing the total likelihood is equivalent to maximizing each local
likelihood separately. That is why, unlike structure learning, the estimation of Bayesian
network parameters is straightforward and can happen for each node in parallel. For
discrete nodes, the maximum likelihood estimates (MLE) of the conditional probabili-
ties can be calculated based on relative frequencies. Bayesian parameter estimation
allows to include a prior distribution for each node and may help to prevent overfitting.
It especially prevents an estimation of probability zero for realizations that do not
appear in the training data.

Inference in Bayesian Networks

Once determined, a Bayesian network can be used to answer probability queries.
As shown, the Bayesian network provides a factorization of the joint probability



20 methodological foundations

distribution. To answer a query means to determine the posterior distribution over the
values of one or more query variables Y conditioned on some evidence E

P(Y|E = e) =
P(Y, E = e)

P(E = e)
.

Both parts of the fraction can be determined by summing out all entries in the joint
distribution for which E = e (and Y = y, respectively). Unfortunately, the summation
over the joint distribution fastly gets exponentially complex. Thus, it can be shown
that both, exact as well as approximate inference are NP-hard problems (Cooper,
1990; Dagum and Luby, 1993). However, inference can be effectively implemented by
stochastic simulation, e.g., using likelihood weighting (Koller and Friedman, 2009).
In likelihood weighting, the prior distribution given by the Bayesian network is used
to weight the importance of generated samples. Evidence nodes are fixed and all
remaining nodes are sampled from the network. Finally, each sample is additionally
weighted by the local probability of the evidence nodes (Yuan and Druzdzel, 2006).

Bayesian Network Classifiers

Bayesian network classifiers (BNC) make use of the theory of BNs in order to determine
the conditional probability distribution of a response given input data P(Y|X). The
conditional distribution can be determined by treating X as evidence. In this case,
a network structure is usually fixed beforehand. The simplest Bayesian network
classifier is the naive Bayes (NB) model. The NB model assumes that all features are
conditionally independent given the response variable. The fixed structure defines
accordingly the response variable as parent of all other features. Using Bayes’ rule, the
conditional distribution factorizes to the simple expression

P(Y|X) = P(Y) ·P(X1|Y) ·P(X2|Y) · · ·P(Xn|Y).

Even though the strong and oversimplified assumptions are often violated, the naive
Bayes classifier usually yields relatively good results (Rish et al., 2001; Davies, 2017).
However, due to its a priori fixed dependence structure it does not reveal any informa-
tion about the actual structure, similar to linear models. It also assumes all features to
be related to the response variable, necessitating prior feature selection strategies in
case of high-dimensional data. There are further approaches of less restrictive classifier
model structures that allow additional dependencies among predictors. They are
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reaching from tree-based naive Bayes models via k-dependence models to unrestricted
Bayesian networks (Rubio and Gámez, 2011; Koller and Friedman, 2009). In principle,
every trained Bayesian network structure can be used to predict or classify a chosen
response variable using the inference techniques explained above. The approach of
learning an nonrestrictive model first and deducing a conditional distribution of the
response afterwards can act as regularization and prevent overfitting.

Interpretation of Bayesian Networks

Bayesian networks offer all possibilities for detailed interpretation on a global and
on a local level, as they are intrinsically interpretable, yet highly flexible. The largest
advantage is the implicit visualization in terms of a network structure that is supportive
of human understanding. Additionally, due to the Markov property, it is possible
to deduce from local to global structures and back. Further, an important feature of
BNs is that conditional independence properties of the joint distribution can be read
directly from the graph (see also Appendix A9). However, as for any model, the inner
workings of very large networks may be complicated. That is why, several supportive
explanation methods have been developed in order to support the interpretation of
model output from large models, e.g. by visualizing information flow, by support
graphs, or even by output of natural language explanations (Kyrimi et al., 2020; Lacave
and Díez, 2002; Timmer et al., 2017; Hennessy et al., 2020).

edge directionality and causal interpretation A Bayesian network
model encodes a set of probabilistic dependencies. It is well known that, in general,
observational correlation does not imply causation. Similarly, based on purely observa-
tional data, the directions of edges in a Bayesian network can not be fully determined,
as several differing structures encode the exact same probabilistic dependencies. Such
BNs are denoted Markov equivalent and share their skeleton, which is the undirected
graph that remains if all edge directions are ignored.

However, not all networks with the same skeleton are Markov equivalent. In certain
scenarios, the directions of edges can be correctly inferred from observational data.
That is only the case if more than two variables are involved. The central structure
for inferring directions is the previously described v-structure (Fig 4B; also known as
common effect, head-to-head node, or collider).

It can be shown, that networks must share their skeleton and additionally they
must share the set of v-structures to be Markov equivalent (see Appendix A10).
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Consequently, edge directions in a BN can be specified if they are part of a v-structure
but not otherwise. To make this clear, BN models are often represented as partially
directed networks for further interpretation, where only edges that are part of a v-
structure are directed. These graphs are denoted as completed partially directed acyclic
graphs (CPDAGs). In a large network, usually, multiple v-structures are present so
that the direction of multiple edges can be inferred. If possible, the remaining edge
directions can be determined by additional intervention experiments.

Furthermore, for an interpretation in terms of causal dependence, the causal suffi-
ciency assumption must hold. It says that no latent variables exist (in the domain) that
are a parent of at least one observed variable.

3.4 Discovering Hierarchical Structure

Hierarchical models explain complex patterns of observed data in terms of a latent
hierarchy of successively higher-level, abstract units. Inferring hierarchical latent
structure offers a way to overcome the preliminary specification of the number of
clusters, and its nested structure may be close to the generative process of many
real-world data.

hierarchical clustering Hierarchical clustering is a means to learn not one
but multiple, nested partitions that are hierarchically linked. Most hierarchical cluster-
ing algorithms are deterministic. They take as input a dissimilarity matrix D ∈ Rn×n

with dij measuring the pairwise dissimilarity of Xi and Xj. A hierarchical structure is
then inferred either agglomeratively (bottom-up) or divisely (top-down) (Murphy, 2012).
The merges and splits are in general determined using greedy algorithms. The result
is a dendrogram, that is a binary tree with leafs denoting the observed features. Similar
features fuse ascendingly into branches. For any two features, the height of fusion
represents a degree of (dis-)similarity. By cutting the dendrogram at a certain height, a
hard clustering of the features with arbitrary cluster number is achieved. Conceptually,
there is still only one latent variable Z. Classes at different levels of the hierarchy
correspond to states of this variable at different resolution levels.

It can be useful to aim for a clustering around latent factors (Vigneau and Qannari,
2003). Cluster similarity is then defined based on the joint linkage to such a central
latent factor. In this case, latent factors define natural cluster representatives, and the
participation of features or samples in the cluster can be analyzed by their closeness
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to the cluster center. The R-package ClustOfVar (Chavent et al., 2012) implements this
approach for feature clustering of mixed categorical and continuous data.

Hierarchical Bayesian Networks

Hierarchical Bayesian networks (HBNs) are Bayesian networks with rooted tree struc-
ture, where all internal nodes refer to latent variables (Gyftodimos and Flach, 2002;
Njah et al., 2019). In case of discrete data, they are known as hierarchical latent class
models (LCMs) (Zhang, 2004). They allow for multivariate clusterings but are difficult
to train, due to their potentially deep structure and the high amount of parameters.
Moreover, the presence of (a high number of) latent variables inhibits the factorization
of the joint distribution. It can be shown that HBNs can under some assumptions be
transformed into deep neural networks by reparameterization, so that gradient-based
inference is enabled (Kingma and Welling, 2014).
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R E S U LT S A N D D I S C U S S I O N

The projects that are part of this thesis combine the introduced methods in different
ways in order to extract knowledge from complex healthcare data. Table 1 gives an
overview of the employed data, the applied methodology, and the medical conditions
on which the projects focused.

Article I Article II Article III
Employed Data Cohort Study Data

Time-res. Molecular Data
Methodology Regression Splines

Random Forests
Bayesian Networks
PCA
(Hierarchical) Clustering
Time-Course Clustering

Medical Condition NAFLD
Hypertension
Thyroid (Dys-)Function
Staphylococcal Infections

Table 1: Overview of the employed data, the applied methodology and the medical conditions
on which the thesis projects focused.

1 employed data

Biomedical and healthcare data may be gathered from a vast amount of sources. Two
common types of high-dimensional healthcare data are discussed here.

25
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1.1 Cohort Study Data

Cohort studies represent a fundamental study design of epidemiology and are a par-
ticular form of longitudinal studies. A cohort, which is a group of people sharing a
characteristic, such as a demographic similarity, is recruited, sampled, and followed
over time. Article I and II deal with data from two different cohorts of the Study
of Health in Pomerania (SHIP), which is a population-based cohort study (Völzke
et al., 2011). Objectives of SHIP were the provision of prevalence estimates on a broad
range of diseases, risk, and health factors for the population of Western Pomerania.
Study probands were randomly selected from communities in the region, stratified by
age and gender. In Article I, SHIP-TREND data are used. The SHIP-TREND cohort
comprises 4420 participants, and examinations were performed between 2008 and 2012.
The research in Article II is based on data from the first cohort of SHIP (1997-2001) with
4308 participants. Both data sets are characterized by a wealth of conducted examina-
tions, including nutritional patterns, complete blood counts, sociodemographic data,
health status, mood, medication, electrocardiography, echocardiography, sonography,
neurological screening, blood and urine sampling, and whole-body MRI scans. The re-
sulting feature set is broad and heterogeneous, with a high amount of intra-individual
variation. The broadness allows for the screening of disease-specific patterns while
taking numerous potential confounders into account. For both cohorts, 5-year follow-
ups were performed that are not included in the discussed analyses. However, the
availability of these data opens up the possibility of expanding the presented models
by a temporal component in the future.

1.2 Time-resolved Molecular Data

Article III deals with a second common healthcare data type, which is time-resolved
molecular data. This type of data usually belongs to ’large p, small n’-class, where
the number of features greatly exceeds the number of samples. In the presented
study, the abundance of nh = 3644 human and nsa = 930 staphylococcal proteins
was measured over time, while the number of biological replicates was p = 4 in both
cases. Mass spectrometry was used to quantify peptide abundances using a previously
established library. Samples were collected with high temporal resolution up to 4 days
post infection with the aim of deciphering the interplay of human bronchial epithelial
cells and internalized bacteria.
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Figure 5: Outline of the proposed approach to adaptive refinement of group Bayesian networks.
Features of the input data are grouped using hierarchical clustering, then a group
Bayesian network is learned. Based on the accuracy of the resulting model, the
grouping is refined adaptively downwards along the dendrogram. The output is an
interpretable disease-specific biomarker network based on feature groups, which has
high predictive accuracy. This figure was copied from Becker et al. (2021).
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2 methodology

The methodological approaches differ between the presented articles depending on
data type and goal of the analysis.

2.1 Adaptive Refinement of Group Bayesian Networks (Article I)

In Article I, a workflow to unravel latent interaction networks among feature groups is
established. Its steps are shown in Fig 5. The analysis aimed at identifying biomarker
and risk factor interactions of specific diseases from high-dimensional cohort study
data. Demands on the methodology included the ability to extract relevant predictors
and an understandable representation of interactions between predictors. Moreover,
the prediction of the outcome should be comparable from different instantiated features
based on the same model. Bayesian networks comply with all of these requirements
and were chosen as the desired model type.
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The presented workflow addresses multiple problems: First, Bayesian network
structure learning from high-dimensional data is computationally intractable. Avail-
able structure learning algorithms tradeoff the model complexity (determined by the
number of parameters) with the fit to the data in a generative learning approach.
This generative approach is usually quite robust to overfitting but in the case of
high-dimensional data, a potential outcome variable may get too much out of focus.

Moreover, throughout the learning process, every possible arc is equally important;
thus, the strongest interactions are inserted with priority as they increase the measure
of fit the most. In the presence of multicollinearity and modularity, the strongest
interactions lie within modules of highly similar variables. That leads to a situation
where arcs within modules are learned preferentially and arcs among modules are
ignored. Due to these computational properties, resulting networks consist of many
disconnected modules. The separation into modules inhibits the propagation of
knowledge through the network and may be misleading for interpretation.

In order to overcome these drawbacks, a group-based network learning approach is
developed in Article I. In a first step, feature groups are identified and aggregated. A
Bayesian network structure is then learned among those groups. By this, the complex-
ity of the model is significantly reduced.

However, in broad data sets like SHIP, which contain information on various diseases
and disease states, not one but multiple clusterings may be realistic. The choice of the
optimal grouping depends highly on the focus of the analysis. That is why we propose
an iterative approach for automatic adaptive refinement that is based on hierarchical
feature clustering (Fig 5). The approach uses a hierarchical structure as a basis to
optimize the grouping with regard to the outcome of interest. An implementation of the
method in R was published on CRAN (Becker and Kaderali, 2020). An overview of the
software package can be found in Appendix B. The approach allows to automatically
model essential parts of the network in greater detail, while others stay aggregated.
The resulting group networks are easily interpretable, as the networks are concise and
modules are directly visible. Groups themselves can be analyzed using tools known
from PCA, as groups are centered around and represented by their first principal
components. In Article I, we show that the resulting group networks also achieve a
better prediction on unseen data, than detailed Bayesian networks, logistic regression,
and established biomarker scores.
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Figure 6: Supporting random forest interpretation with Bayesian Networks: After data prepa-
ration, a RF model is trained using nested cross-validation. Relevant predictors are
identified based on two feature importance measures and a mixture model approach.
Lastly, feature interactions among the relevant predictors are examined in a Bayesian
network analysis. This figure was copied from Becker et al. (2021).
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2.2 Supporting Random Forest Interpretation with Bayesian Networks (Article II)

In Article II, the proposed workflow consists of random forests and Bayesian networks
and is represented in Fig 6. We start by training a full-featured random forest regressor.
Random forests internally perform a feature selection while trees are grown. We
use two common feature importance measures to identify features that contributed
to the final model, an external (incremental MSE) and an internal one (node purity).
These measures can be used to produce a ranking. However, both have shortcomings,
especially in the presence of heterogeneity and multicollinearity. Node purity may
be biased towards features with many categories or continuous features, as for those,
potential splits can happen more flexibly than for binary features. The incremental
MSE may especially produce misleading results when features are highly correlated, as
it includes the permutation of one feature alone, which might then produce unrealistic
data instances.

We thus complement the random forest model by a more detailed Bayesian network
analysis. A Bayesian network structure is learned among all features that contributed
to the random forest model. Due to the high dimensionality of the data, it could be
expected that this applies only to a minority of the features. After identification of
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Figure 7: Resulting clusters from time course clustering of bacterial protein abundances. This
figure was copied from Palma Medina et al. (2019).

this feature subset, highly similar features were grouped, similar to the procedure
in Article I. Then, a network structure was learned. The network structure helps
to distinguish between direct and indirect influences and is used to identify broad
association patterns within the feature set.

2.3 Combining Spline Models and Fuzzy Clustering (Article III)

In Article III, the low number of samples did not allow to analyze feature interactions
at individual time-points in more detail using multivariate methods. However, the
temporal resolution and the reduced variation between cells in contrast to patients
offered different options for a robust analysis.

The basic research question in Article III aims at the understanding of the metabolic
cross-talk between host and bacteria; thus, interpretability of the applied analysis was
a key requirement. To smooth the temporal profiles and to reduce data complexity,
natural regression splines were fitted to the time-course of each protein. Afterward,
an (empirical Bayes moderated) F-test was conducted to identify proteins whose
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abundance changes during the measured period (testing for non-constancy of the
spline).

The temporal profiles of the proteins that were identified as significantly altered over
time were additionally clustered. A fuzzy c-means time course clustering was used.
Fig. 7 shows clusters of the bacterial proteins. The data processing and clustering
successfully reveals patterns of protein abundances, identifies time points at which
significant alterations happen, and allows for better interpretation of the data.

3 medical conditions

All reported analyses focus on population-relevant, systemic diseases and related
biomarkers.

3.1 Non-Alcoholic Fatty Liver Disease (Article I)

As the largest inner organ of the body, the liver is responsible for a broad range of
metabolic processes, including lipid metabolism, bile production, protein, and amino
acid synthesis, detoxification, glucose control, the recycling of blood cells, or the storage
of iron, copper, and vitamins. Today, nonalcoholic fatty liver disease (NAFLD) is the
leading cause of chronic liver disease and liver transplantation in Western countries
(Burra et al., 2020). It describes a spectrum of disorders characterized by an increase
of intrahepatic fatty acids (FA). The accumulation of FAs leads to changes in redox
balance and a subsequent increase of reactive oxygen species (ROS) levels. These
changes further promote disease progression from simple steatosis to steatohepatitis,
advanced fibrosis, and subsequently to irreversible liver damage in the form of cirrhosis
or hepatocellular carcinoma (Buzzetti et al., 2016; Drescher et al., 2019).

However, already early-stage NAFLD may cause cell damage, oxidative stress,
proinflammatory cytokines, adipokines, and mitochondrial dysfunction (Cazanave
et al., 2017). These early changes influence the hepatic function mostly without specific
symptoms (Masarone et al., 2018). NAFLD is a multicausal, systemic disease. Its
occurrence is strongly associated with metabolic syndrome and type 2 diabetes, which
seem to have common pathophysiological mechanisms (Buzzetti et al., 2016). However,
its primary causes and triggers of disease progression still lack full understanding.

In Article I, a biomarker network is trained and used to predict and analyze the
occurence of NAFLD based on heterogeneous cohort study data. We show that
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the inferred model identifies reasonable biomarker interactions and outperforms
established biomarker scores.

3.2 Hypertension (Article I)

Blood pressure in arteries is measured by monitoring systolic (contraction) and diastolic
(relaxation) pressure. Hypertension describes the condition of persistently elevated
blood pressure and is typically diagnosed if the systolic pressure exceeds 140 mmHg
or the diastolic pressure exceeds 90 mmHg in repeated measurements. Early detection
and treatment of hypertension is essential, as it is a major risk factor for coronary
artery disease, stroke, heart failure, and overall end-organ damage (heart, kidneys,
brain, and eyes) (Mills et al., 2020; Franceschini et al., 2014; Völzke et al., 2013).

In Article I, a biomarker network of incident hypertension is learned from SHIP-
TREND data. The network identifies many well-known risk factors including obesity,
age, or chronic conditions and puts them into context. It also reveals the substantial
heritability of hypertension.

3.3 Thyroid (Dys-)Function (Article II)

The thyroid gland is the largest endocrine gland in humans. Apart from the thyroid
gland itself, the hypothalamus and the pituitary gland are part of the thyroid homeosta-
sis in terms of a multi-loop feedback system. The thyroid hormones triiodothyronine
(T3) and thyroxine (T4), which are produced directly by the thyroid gland, are of
great importance for the metabolism and functional state of almost any organ. The
hormone thyrotropin (TSH), which constitutes a central biomarker, is secreted by the
pituitary gland, and stimulates the secretion of T4 and T3 in the thyroid gland. T3 and
T4, in turn, inhibit the production and secretion of TSH through a negative feedback
loop so that an equilibrium among thyroid hormones is usually established and the
concentration of thyroid hormones in the blood plasma can be regulated.

The causes and manifestations of thyroid dysfunctions are diverse but can all lead
to dysbalances in this hormone homeostasis (Moini et al., 2020; Taylor et al., 2018).
The two most common types of thyroid dysfunctions are hyper- and hypothyroidism.
They are defined as an increased (or decreased) activity of thyroid hormones. Since
receptors for thyroid hormones are widespread within the body, symptoms may occur
in almost all organ systems.
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In Article II, broad association patterns of individual serum thyrotropin concentra-
tions are analyzed using a machine learning workflow that combines random forests
and Bayesian networks. Single nucleotide polymorphisms (SNPs) were also included
for the analysis to capture possible genetic influences. The presented predictive ran-
dom forest model outperforms existing models and the detailed analysis of association
patterns is in line with state-of-the-art hypotheses on thyroid function.

3.4 Staphylococcal Infections (Article III)

Staphylococcus aureus (S. aureus) is a spherical, Gram-positive bacterium, that is often
arranged in clusters. S. aureus is widespread, occurs in many habitats and belongs to
the normal colonizing flora of the skin and mucosa in humans. In most cases, S. aureus
does not cause any symptoms in humans. However, it is potentially pathogenic and
in case of favorable conditions or a weak immune system of the host, the bacterium
spreads and causes severe symptoms. In addition to skin and soft tissue infections,
it may cause pneumonia, meningitis, endocarditis, toxic shock syndrome and sepsis
(Sakr et al., 2018; Palma Medina et al., 2019).

In Article III, the dynamic interplay between host and bacteria was examined over
time. The time series clustering of host cell and bacterial protein abundances (Fig 7)
reveals significant general changes at 6 and 24 hours post infection, that go along with
metabolic differences between a replicating and a persistent subpopulation of bacteria
in host-cells: While replicating bacteria induce lysis of the host cells within 24 hours
post infection, persistent bacteria adapt to the intracellular environment and reach a
state of dormancy.

In general, the quantification of the change in abundance over time (in terms of one
p-value for each protein) and the clustering of proteins with similar temporal profiles
set the basis for an in-depth analysis. Altered pathways and behavior of bacteria
and host were analyzed in detail. For example, the proteomic profiles revealed the
competition for nutrients of bacteria and host within cells, resulting in altered glucose
uptake and catabolism.
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C O N C L U S I O N

High-throughput technologies and electronic health records allow for the generation
of large volumes of biomedical data. However, especially in the healthcare domain, the
adoption of machine learning methods for data analysis is limited as often the strongly
required transparency is missing. Simultaneously, algorithms need to be adapted to
common data challenges that naturally occur in this domain.

This thesis reflects recent investigations on interpretability and approaches for learn-
ing interpretable models. All presented workflows make use of factorization and
actively include latent structure in the form of subgroups, trends, or graph struc-
ture. The presented studies underline the complexity of interpreting high-dimensional
healthcare data and show that achieving interpretability is a multi-faceted and multi-
disciplinary task. Moreover, the studies underline the importance of methods that
learn feature interactions: The assumption of independence is usually heavily violated
in healthcare data, and interactions of risk factors often play a crucial role in disease
development. At the same time, feature interactions are often unknown or such com-
plex that they cannot manually be introduced to the model.

It could be shown that identifying latent structures facilitates a subsequent in-
depth analysis. Hereby, visualization and probabilistic model output, as produced by
Bayesian networks (Articles I and II), was found to be advantageous, as it provides an
intuitive framework directly addressing the inherent uncertainty. Adaptive refinement,
as introduced in Article I, offers the possibility to apply even complex latent structure
models to high-dimensional data by varying the resolution in which the latent structure
is modeled. Compression and stratification constitute as well essential tools if data are
time-resolved, like in Article III.
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However, balancing between interpretability and flexibility of a model is often not
straightforward. Also, the interpretation of complex data may be still complex, even if
an interpretable model is used. Thus, it is important that informaticians and biomedical
researchers collaborate closely to define a clear goal and find an optimal tradeoff.
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Abstract

In this work, we introduce an entirely data-driven and automated approach to reveal dis-

ease-associated biomarker and risk factor networks from heterogeneous and high-dimen-

sional healthcare data. Our workflow is based on Bayesian networks, which are a popular

tool for analyzing the interplay of biomarkers. Usually, data require extensive manual prepro-

cessing and dimension reduction to allow for effective learning of Bayesian networks. For

heterogeneous data, this preprocessing is hard to automatize and typically requires domain-

specific prior knowledge. We here combine Bayesian network learning with hierarchical vari-

able clustering in order to detect groups of similar features and learn interactions between

them entirely automated. We present an optimization algorithm for the adaptive refinement

of such group Bayesian networks to account for a specific target variable, like a disease. The

combination of Bayesian networks, clustering, and refinement yields low-dimensional but

disease-specific interaction networks. These networks provide easily interpretable, yet accu-

rate models of biomarker interdependencies. We test our method extensively on simulated

data, as well as on data from the Study of Health in Pomerania (SHIP-TREND), and demon-

strate its effectiveness using non-alcoholic fatty liver disease and hypertension as examples.

We show that the group network models outperform available biomarker scores, while at the

same time, they provide an easily interpretable interaction network.

Author summary

High-dimensional and heterogeneous healthcare data, such as electronic health records or

epidemiological study data, contain much information on yet unknown risk factors that
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are associated with disease development. The identification of these risk factors may help

to improve prevention, diagnosis, and therapy. Bayesian networks are powerful statistical

models that can decipher these complex relationships. However, high dimensionality and

heterogeneity of data, together with missing values and high feature correlation, make it

difficult to automatically learn a good model from data. To facilitate the use of network

models, we present a novel, fully automated workflow that combines network learning

with hierarchical clustering. The algorithm reveals groups of strongly related features and

models the interactions among those groups. It results in simpler network models that are

easier to analyze. We introduce a method of adaptive refinement of such models to ensure

that disease-relevant parts of the network are modeled in great detail. Our approach

makes it easy to learn compact, accurate, and easily interpretable biomarker interaction

networks. We test our method extensively on simulated data as well as data from the

Study of Health in Pomerania (SHIP-Trend) by learning models of hypertension and

non-alcoholic fatty liver disease.

Introduction

High-throughput technologies and electronic health records allow for digital recording and

analysis of large volumes of biomedical and clinical data. These data contain plenty of informa-

tion about complex biomarker interaction systems, and they offer fascinating prospects for dis-

ease research. However, to extract this knowledge from the data and make it accessible, we

need models that are accurate, easily interpretable, and compact. Bayesian networks (BNs) are

popular and flexible probabilistic models that lie at the intersection of statistics and machine

learning and can be used to model complex interaction systems. BNs explicitly describe multi-

variate interdependencies using a network structure in which the measured features are the

nodes and directed edges represent the relationships among those features. Thus, they offer an

intuitive graphical representation that visualizes how information propagates. This interpret-

able structure sets them apart from ‘black-box’ concepts of other machine-learning methods.

Besides, there are well-established algorithms for the automatic learning of Bayesian networks

from data, and they are widely used in Systems Biology, e.g., to model cellular networks [1],

protein signaling pathways [2], gene regulation networks [3–5], or as medical decision support

systems [6]. For a thorough introduction to Bayesian networks see for example Koski and

Noble [7] or Koller and Friedman [8].

However, large volumes of biomedical data raise a challenge for computational inference,

as in addition to their high dimensionality, other difficulties, such as incompleteness, heteroge-

neity, variability, strong feature correlation, and high error rates usually co-occur. Consider-

able manual time and human expertise are therefore necessary to process and format data,

including steps of annotation, normalization, discretization, imputation, and feature selection.

In addition to the related expenses, these preprocessing steps have a substantial impact on the

resulting model [9, 10]. Therefore, we have developed an entirely automated and data-driven

workflow that combines Bayesian network learning with hierarchical variable clustering. Our

approach tackles many of the mentioned issues simultaneously, while in manual processing,

they are usually approached independently. The combination of the two well-established con-

cepts helps to derive precise biomarker interaction models of manageable complexity from

unprocessed biomedical data.

Bayesian network learning usually comprises two separate steps: First, the network struc-

ture (a directed acyclic graph) is inferred, then, local probability distributions are estimated.
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Structure learning can either be carried out using repeated conditional independence tests

(constraint-based learning) or search-and-score techniques (score-based learning) [8]. How-

ever, as the number of possible network structures grows super-exponentially, available algo-

rithms usually do not scale well to more than 50 to 100 variables. Various heuristic approaches

as well as the incorporation of further information, such as sparseness assumptions or more

general restrictions of the search space have led to some progress in learning large Bayesian

networks [11, 12]. However, due to the complexity of the underlying statistical problem (non-

identifiability, non-convexity, non-smoothness), Bayesian network learning from high-dimen-

sional data remains challenging, and often yields inconsistent results. Moreover, the subse-

quent interpretation of a giant network is just as complex. Because of the mentioned

difficulties, published biomedical Bayesian network models are often based on molecular data-

sets with homogeneous variables [13–15], as for them, all features can be processed in a similar

way. Often, the subsequent analysis concentrates mainly on global network properties. Studies

on heterogeneous epidemiological data usually involve smaller models with a preselected set

of features, e.g., of cardiovascular risk [16, 17], renal transplantation [18] or liver diseases

[19–21].

Because of the way in which biomedical data are gathered, they often contain groups of

highly related variables. Some features may be explicitly redundant (like replicated measure-

ments) or multiple features measure the same aspect (like the percentage of body fat and waist

circumference). The underlying interaction network (Fig 1A) is then modular or hierarchically

modular [22, 23]. This modularity complicates the identification and inference of a Bayesian

network even more, as for example many structure learning algorithms penalize for high node

degrees that are present in such modules [8]. However, if the modular organization is known,

it can be used to simplify the original problem. Instead of aiming for a detailed Bayesian net-

work, a network among groups of similar features can be learned (Fig 1C). Such networks are

called group Bayesian networks. Group Bayesian networks are smaller and less connected than

detailed networks. Moreover, results tend to be more consistent, as the grouping and

Fig 1. Hypotetical example Bayesian network with and without variable grouping. (A) Example model of a modular detailed Bayesian network with variables

waist circumference (waist_c), body fat percentage (fat_perc), BMI and three blood pressure measurements (blood_pr1, blood_pr2, blood_pr3) as well as a target
disease. (B) Possible grouping of the variables in the network. (C) Corresponding group Bayesian network among two groups and the target variable.

https://doi.org/10.1371/journal.pcbi.1008735.g001
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aggregation act as denoise filters. Additionally, the abstraction enables the understanding of

the larger picture from a system’s point of view.

Most publications that have addressed the question of how to learn Bayesian networks of

variable groups discuss the problem for a given grouping. This includes the application to

pathway or SNP dependencies given detailed genetic data [24, 25]. However, the determina-

tion of the number and type of variable groups is a crucial question itself, and it is unlikely that

the correct grouping is known for complex and heterogeneous data. On the other hand, there

is the concept of Module Networks, which is well studied, and algorithms are available to learn

modules and their interactions from data [26–28]. But since Module networks were developed

in the context of gene regulatory networks, their structural limitations (variables in modules

share set of parents and local probability distribution) do not apply to data as we consider

here. Likewise, hierarchical Bayesian networks (HBNs) [29] define a related, very general con-

cept of tree-like networks, in which leaf nodes represent observed variables and internal layers

represent latent variables. HBNs are usually strictly hierarchical. This means that, similar to

the architecture of deep neural networks, they restrict all nodes to have parents only in higher

layers [30, 31]. Nevertheless, group Bayesian networks can be seen as a special case of loose

HBNs. Latent variables in HBNs can theoretically be identified from detailed Bayesian net-

works, for example, using subgraph partitioning [32]. However, this approach requires the

computationally intensive inference of a large, detailed network, and it suffers from the diffi-

culties mentioned above.

We, instead, propose to combine Bayesian networks with hierarchical clustering to learn a

grouping of variables as well as the interplay of groups automatically. Hierarchical clustering is

one of the most popular methods of unsupervised learning. The output is a dendrogram,

which organizes variables in increasingly broad categories. We propose to build group Bayes-

ian networks by aggregating groups learned from hierarchical clustering. As both methods,

BNs and clustering, are unsupervised, we enable focusing on a particular target variable of

interest—such as a specific disease or condition—during a step of adaptive refinement. We

present an optimization algorithm, that, starting from a coarse network, refines important

parts of the network downwards along the dendrogram. It zooms automatically into the rele-

vant parts of a network, which are modeled in detail, while other parts stay aggregated. Thus,

refined group Bayesian networks offer a good tradeoff between compactness, interpretability,

and predictive power.

While some published approaches make use of variable clustering in order to speed up the

learning of detailed networks by going from local (within groups) to global (between groups)

connections [4, 33, 34], we are not aware of any study addressing the reverse approach.

Results and discussion

Algorithm

We here introduce a novel algorithm to significantly simplify the use of Bayesian network

models for biomarker discovery (Fig 2). It explicitly integrates a target variable of interest that

guides the search through the biomarker network. Our approach exploits the modular struc-

ture of large biomedical data and models dependencies among groups of similar variables. To

keep the combined search for grouping and network structure feasible, a hierarchical structure

acts as a basis for the following network inference procedure. Initially, a dendrogram of the

feature space is determined via unsupervised, similarity-based hierarchical clustering. A

coarse, preliminary grouping of features is identified, and the data are aggregated in groups

using principal components. Then, structure and parameters of a Bayesian network model are

fitted. The target variable is kept separated during this procedure so that the resulting model

PLOS COMPUTATIONAL BIOLOGY A hierarchical Bayesian network approach to identify biomarker interactions
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can be used for risk prediction and classification. Such groups that were identified to be essen-

tial for the prediction of the target variable (i.e., are part of its Markov blanket) are then itera-

tively refined to smaller clusters. The refinement stops once it no longer helps to improve the

predictive performance of the model. We implemented our approach for the construction and

refinement of group Bayesian networks using a hill-climbing procedure (Algorithm 1 and 2).

The implementation is also available in CRAN from https://CRAN.R-project.org/package=

GroupBN [35].

Evaluating simulated data

We evaluated the proposed approach using simulated data. To generate noisy and heteroge-

neous data with latent group structure, we randomly created two-layered Bayesian networks

(Fig 3A) with one layer of group variables (layer 1) and one layer representing noisy and het-

erogeneous measurements (layer 0). Here, the overall aim was to infer the group structure in

layer 1 from data in layer 0. For the analysis, we split the algorithm into its three key-tasks, that

we evaluated independently: Inference of groups, inference of group network structure, and

prediction of a target variable. In the ‘standard network inference’ approach, the grouping was

disregarded for network learning. Instead, a large, detailed Bayesian network was learned, and

groups as well as their interactions were only afterwards identified from the network. In the

‘group network inference’ approach, we contrarily learned the grouping prior to network

inference using data-based clustering, as proposed above. For group aggregation, we compared

cluster medoids (MED) to first principal components (PC). As a baseline comparison for the

quality of the network structure, we additionally inferred the network structure directly from

data sampled from layer 1 (’using ground-truth grouping’). We used a partition metric to the

ground-truth grouping and the normalized Hamming Distance to the ground-truth network

as measures of quality. Lastly, we iteratively chose each variable as target variable and mea-

sured the average predictive performance of a detailed network, as well as group networks

before and after target-specific refinement. Here, we compared the average prediction error to

the applied noise level.

Fig 2. Schematic outline of the proposed approach to learn group Bayesian networks. Features of the input data are grouped using hierarchical clustering, then a

group Bayesian network is learned. Based on the accuracy of the resulting model, the grouping is refined adaptively downwards along the dendrogram. The output is

an interpretable disease-specific biomarker network based on feature groups, which has high predictive accuracy.

https://doi.org/10.1371/journal.pcbi.1008735.g002
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Influence of network size and sample size. We first analyzed the influence of network

and sample size on the model quality. The results show that the quality of the network struc-

ture is best for high sample sizes and small network sizes (S1 Fig). Overall, the PC-based aggre-

gation is close to the baseline results, followed by the medoid-based aggregation, with the

network-based aggregation performing worst. Based on these results, we decided to run the

remaining simulations with group networks consisting of 20 nodes at layer 0 and a medium

sample size of 500.

Influence of group size. Next, we tested the influence of group size on the inference

results. We ran simulations with groups ranging from 3 to 15 nodes each. The results show

that the identification of variable groups based on a detailed network is impaired with increas-

ing group size. In contrast, data-based clustering enables the detection of the nearly correct

grouping independently of the group size. Moreover, even the existence of small groups

impedes the inference of the network structure from a detailed network significantly. Espe-

cially the number of group connections is underestimated. This effect increases with increasing

group size, approaching scores similar to a model without any arcs (Fig 3B). However, data-

based clustering enabled the detection of the correct grouping independently of the group size.

Aggregation of data before network learning leads to networks that are qualitatively

Fig 3. Results on simulated networks. (A) The basic model structure used to simulate random networks with latent group structure. Group networks with 20 nodes

in layer 1 were learned from simulated data from layer 0 with varying group sizes and noise levels. (B-C) Results from the reconstruction of variable grouping and

group networks for varying group sizes. y-axes showing partition metric and normalized Hamming distance, respectively. Two types of group network inference—

aggregation by principal components (PC) and cluster medoids (MED) – as well a standard network inference approach were used. As a comparison, the ground-truth

grouping was used for network inference. (D-E) Results from the reconstruction of variable grouping and group networks for varying noise levels. y-axes showing

partition metric and normalized Hamming distance, respectively. (F-G) Results from the prediction of a target variable for varying group sizes and noise levels, and

applied noise level as comparison. y-axes showing the average prediction error.

https://doi.org/10.1371/journal.pcbi.1008735.g003
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comparable to networks learned from the group data directly (Fig 3C). Here, the aggregation

based on principal components overall achieves better results than with medoids. The predic-

tion of a target variable is mostly positively affected by the grouping (Fig 3F). The refined net-

works overall perform slightly better when used for predicting the target variable in a cross-

validation setting than the detailed models.

Influence of random noise. Finally, we analyzed the influence of random noise. For this

purpose, we simulated networks affected by different amounts of random noise in layer 1. The

results show that the quality of the inference of groups, as well as group interactions, decreases

with increasing noise levels. Data-based clustering outperforms network-based clustering for

noise levels up to 35% (Fig 3D). Data aggregation by principal components overall leads to bet-

ter networks than the use of medoids (Fig 3E). However, a decrease in quality can be noticed

for both approaches, as the noise level increases. The average error in prediction of a target

variable appears to be in the range of the noise level with slight improvements after target-spe-

cific refinement (Fig 3G).

Discussion of simulation results. The simulation results underline, that the aggregation

of data increases the quality of the network model compared to group networks that were

inferred from detailed networks. This may be explained by the inherent regularization of most

structure learning algorithms, that prioritize intra-group interactions in this setting, as those

are very strong. Thus, groups tend to be disconnected from each other in a detailed network,

even though strong connections are present in the correct network. The proposed combina-

tion of hierarchical clustering and network inference puts importance on the inter-group

interactions, enabling their accurate inference. Moreover, we observed an overall better perfor-

mance of aggregation using principal components. This goes along with earlier results on PCA

preprocessing for Bayesian networks [10].

Toy example: Wine data

As a first illustration using a small, real-world example, we demonstrate the capability of the

proposed method on benchmark data for clustering of heterogeneous variables. The wine data-

set [36, 37] contains data on the sensory evaluation of red wines from Val de Loire. Variables

contain scorings on origin, odor, taste, and visual appearance of the wines. We study the influ-

ence of the wine-producing soil on the properties of the wine.

We examine the difference of 7 wines grown in soil type Env1 to 7 wines of the class Refer-
ence, an excellent wine-producing soil. In order to learn the links among the variables, we clus-

tered the data subset (14 samples, 29 variables) hierarchically (Fig 4A). We chose 5 clusters for

an initial grouping. Fig 4B and 4C show the group Bayesian network model before and after

refinement. Line thickness illustrates the confidence of the learned interaction. The neighbor-

hood of the target variable is modeled more detailed in the refined network (Fig 4C). The

network revealed two factors, that mainly distinguish wines from Soil = Reference and

Soil = Env1; namely Acidity and Aroma.quality.before.shaking. Through these variables, the

target is further indirectly linked to two kinds of odor (fruity, flower), as well as a larger cluster

comprising measures of odor- and aroma intensity. A closer look at the parameters of the

Bayesian network revealed that a wine from the reference soil is typically more fruity, less

acidic, and has a higher score in aroma quality and floral aroma.

The arc with the highest confidence was learned among aroma quality before shaking and

Soil. Given a wine with a good aroma quality before shaking, there is an 85% probability

according to the model, that this wine is from the reference soil and only 15% that it is from

soil class Env1. On the contrary, soil and spiciness or overall balance of a wine are

PLOS COMPUTATIONAL BIOLOGY A hierarchical Bayesian network approach to identify biomarker interactions
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disconnected in the network, indicating that the soil type Env1 does not influence these char-

acteristics significantly.

Validation with healthcare data: Study of Health in Pomerania

(SHIP-TREND)

We further validated the methodology using data from the Study of Health in Pomerania

(SHIP-Trend-0) with focus on two common, multifactorial diseases, non-alcoholic fatty liver

disease and hypertension. SHIP-Trend is a large-scale cohort study on the general population

in Northeast Germany [38]. Interdisciplinary baseline examinations on a total number of 4420

participants were conducted between 2008 and 2012, including a wide variety of assessments.

These assessments involve the recording of socioeconomic factors, a detailed questionnaire,

measurements of molecular data, preexisting conditions, as well as various clinical tests such

as blood counts, imaging techniques, electrocardiography, body impedance analysis and

others.

Application 1: Non-alcoholic fatty liver disease. Non-alcoholic fatty liver disease

(NAFLD) is widely considered a hepatic manifestation of the metabolic syndrome and repre-

sents the most common chronic liver disease worldwide, affecting 15-35% of the general popu-

lation. Hepatic steatosis is the key feature of NAFLD and describes the excessive accumulation

of liver fat. Steatosis is diagnosed if the amount of intrahepatic triglycerides exceeds 5% [39].

Simple hepatic steatosis may progress to non-alcoholic steatohepatitis (NASH), marking the

most crucial step in the development of severe liver dysfunction with poor prognosis. Causes

of the disease, as well as its progression, are still poorly understood. Today, liver biopsy is the

gold standard to diagnose NAFLD [40] and its stage. However, besides its sampling bias, liver

biopsy always involves risk of complications. Apart from that, imaging techniques like ultra-

scan or magnetic resonance imaging are used. The development of cheaper and reliable nonin-

vasive techniques to diagnose NAFLD are of urgent need—also with regard to prevention.

Therefore, several biomarker scores have been proposed in the last years, including the Fatty

Liver index [41], Hepatic Steatosis Index [42, 43], and NAFLD ridge score [44], all of which

combine 3 to 6 different anthropometric parameters and biochemical tests. They allow for a

cheap and noninvasive screening for steatosis in the general population. On their respective

Fig 4. Toy example: Wine dataset. (A) Dendrogram of the wine dataset with 5 groups indicated by colour, and the

target variable Soil separated. (B) Group Bayesian network learned from the wine dataset with 5 groups, colours refer

to the grouping. (C) Group Bayesian network after target-specific refinement.

https://doi.org/10.1371/journal.pcbi.1008735.g004
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original datasets, these scores achieved an area under the receiver-operator curve (AUROC)

between 0.81 and 0.87, thus leaving a substantial proportion of false positive and false negative

results. On the SHIP Trend data, the AUROC lies significantly lower, between 0.67 and 0.78

(Table 1). The area under the precision-recall curve (AUPRC), which has its focus on the

underrepresented class of positive cases, ranges from 0.24 to 0.34.

We applied the proposed group network approach to the SHIP-Trend data. Compared to a

detailed network, the aggregation of data into groups already improved the prediction of stea-

tosis in a Bayesian network (Table 1). The unrefined group network achieved an AUROC

score of 0.79 in a cross validation setting. The score is comparable to the one reached by logis-

tic regression and the FLI, which we found to be the best performing biomarker score on the

SHIP Trend data of the three tested ones. The refinement procedure resulted in an improved

final AUROC score of 0.82 and an AUPRC of 0.42.

We then fit a final model on the complete dataset for interpretation. Hierarchical clustering

of the data revealed 17 groups of features. The final network model (Fig 5 and S4 Fig) has an

average neighbourhood size of 2.5, an average group size of 16 and also achieved an AUROC

of 0.82. Fig 5A shows the complete network structure, in which sex and age are both hubs. Fig

5B shows only the target variable and its surrounding. The group names have been chosen

Table 1. Prediction results of NAFLD models.

Model AUROC ± sd AUPRC ± sd

Hepatic Steatosis Index 0.68 ±0.04 0.24 ±0.04

Fatty Liver Index 0.78 ±0.05 0.34 ±0.05

NAFLD ridge score 0.73 ±0.05 0.29 ±0.04

logistic regression 0.78 ±0.03 0.37 ±0.05

detailed Bayesian network 0.74 ±0.02 0.31 ±0.05

group Bayesian network 0.79 ±0.04 0.35 ±0.05

refined group Bayesian network 0.82 ±0.03 0.42 ±0.04

Evaluation of available steatosis scores, logistic regression and different Bayesian network models on SHIP Trend data in terms of discrimination. The table shows area

under receiver-operator curve (AUROC), and area under precision-recall curve (AUPRC) under 10-fold cross validation (mean and standard deviation). Predictions

from Bayesian network models were obtained using likelihood weighting by taking all nodes but the target as evidence. Best scoring steatosis biomarker score and best

scoring Bayesian network model are highlighted.

https://doi.org/10.1371/journal.pcbi.1008735.t001

Fig 5. Steatosis network model. (A) Structure of the complete, refined group Bayesian network model for hepatic

steatosis. (B) Extract from the group network including the target variable steatosis, its Markov blanket and

surrounding.

https://doi.org/10.1371/journal.pcbi.1008735.g005
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manually according to the included variables. The detailed grouping can be found in S1 Data.

Steatosis has one parent node, which is a group of variables related to body composition,

including body mass index, waist circumference, body fat and others. This group is further

linked to a group including cholesterol and triglyceride levels, as well as a group including raw

results of the body impedance analysis (BIA). The child node of the target comprises different

variables related to serum liver function tests (alanine aminotransferase, aspartate transami-

nase, gamma-glutamyl transferase). Sex and serum glucose levels are indirectly linked to the

group of liver function tests via BIA results.

We further evaluated the distance of the features to the target in the network. In the moral-

ized network, the average distance to the target variable is 2.09. The predictors that have been

used in the liver scores are closer than average, with in average only 1.5 arcs distance to the tar-

get. For the the FLI, three out of the used four predictors (BMI, waist circumference, triglycer-

ides and GGT) are within the Markov blanket (mean distance 1.25). This overlap might

explain the similarity in prediction performance. It shows that meaningful features have been

learned by the network. Moreover, the network illustrates clearly the strong relation of steato-

sis with obesity and the metabolic syndrome. However, different from pure prediction scores,

the interpretability of the proposed model enables the understanding of how and why a predi-

cition is made, and, by this, it shows also what may be overlooked. According to the model,

and consistent with earlier studies, around 10% of steatosis cases do not go along with multi-

organ metabolic abnormalities and obesity [45, 46]. These cases stay hardly detectable without

imaging techniques.

Application 2: Hypertension. As a second example, we analyzed the SHIP-Trend data

with a focus on hypertension. Hypertension describes the condition of persistently elevated

blood pressure in arteries and is a major risk factor for coronary artery disease, stroke, heart

failure, and overall end-organ damage (heart, kidneys, brain, and eyes). Blood pressure mea-

surements monitor systolic (contraction) and diastolic (relaxation) pressures. Hypertension is

typically diagnosed if the systolic pressure exceeds 140 mmHg or the diastolic pressure exceeds

90 mmHg. It is known to have a substantial heritability (estimated in the range of 30–55%)

[47]. Moreover, many risk factors of hypertension are well established, including obesity, age,

stress, or chronic conditions, such as diabetes or sleep apnea.

For our analysis, incident hypertension was defined as blood pressure above 140/90 mmHg

or self-reported antihypertensive therapy. The target variable was not well connected within a

detailed network learned from SHIP-Trend data, which is why a mean AUROC of only 0.55 is

achieved in a cross validation setting for training as well as test sets. The refined group network

model, however, achieves an AUROC score of 0.84 and an AUPRC of 0.81 (Table 2), which is

comparable to other recent hypertension risk-prediction models and results on an earlier

SHIP cohort [48, 49].

Table 2. Prediction results of hypertension models.

Model AUROC ± sd AUPRC ± sd

logistic regression 0.82 ±0.02 0.78 ±0.03

detailed Bayesian network 0.55 ±0.04 0.57 ±0.06

group Bayesian network 0.80 ±0.02 0.76 ±0.04

refined group Bayesian network 0.84 ±0.03 0.81 ±0.02

Evaluation of logistic regression and different Bayesian network models on SHIP Trend data for the prediction of hypertension. The table shows area under receiver-

operator curve (AUROC), and area under precision-recall curve (AUPRC) under 10-fold cross validation (mean and standard deviation). Predictions from Bayesian

network models were obtained using likelihood weighting by taking all nodes but the target as evidence. Best scoring Bayesian network model is highlighted.

https://doi.org/10.1371/journal.pcbi.1008735.t002
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The final group Bayesian network from 28 groups, as determined by the aggregation levels,

is densely connected. After refinement, the network (Fig 6 and S3 Fig) has an average neigh-

bourhood size of 3.5 and an average group size of 9.4. The target variable has three parents in

the network, which are age, sex, and a cluster of more general age- and disease-related mea-

sures (including the number of doctoral visits, and information on employment/retirement).

Further, a cluster of diseases of first degree relatives (including hypertension, heart attack,

stroke, diabetes) and a cluster of measures of body composition are directly attached to the tar-

get. A group around fasting glucose level as well as a group around liver echogenicity are chil-

dren of the target variable in the network. Via body composition, hypertension is further

linked to a group of urinalysis results, as they show frequent consequences of hypertensive kid-

ney injury. The network clearly visualizes the heritability of hypertension, as well as promoting

environmental factors. The detailed grouping can be found in S2 Data.

Conclusion

Bayesian networks provide a powerful and intuitive tool for the analysis of the interplay of var-

iables. In this work, we introduced a novel algorithm to infer Bayesian biomarker and risk fac-

tor networks from heterogeneous and high-dimensional healthcare data. Our approach

combines Bayesian network learning and hierarchical variable clustering. By this means, it

supersedes many of the usually necessary manual preprocessing steps and reduces the com-

plexity of the computations, while preserving model interpretability. We introduced an opti-

mization algorithm for adaptive network refinement, which emphasizes a variable of interest

and enables the automated refinement leading to small yet precise disease-specific models.

The results on simulated data, test data and real-world epidemiological data verify the ability

of the approach to successfully reveal important biomarker and risk factor interactions. More-

over, we showed that the increased interpretability of the model does not restrain its predictive

performance, which was in both biomedical examples equal or better than well-established

purely predictive models. Our method is suitable for an in-depth analysis of biomarker sys-

tems, but apart from this, it can also be used as a quick summary and visualization tool for

large data prior to further evaluation. Our findings add to a growing body of literature on the

use of machine learning and artificial intelligence in medicine, and they facilitate multivariate

data analysis, visualization, and interpretation.

Fig 6. Hypertension network model. (A) Structure of the complete, refined group Bayesian network model for

hypertension. (B) Extract from the group network including the target variable hypertension, its Markov blanket and

surrounding.

https://doi.org/10.1371/journal.pcbi.1008735.g006
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The purpose of this study was to investigate how hierarchical variable grouping and Bayes-

ian network learning can be combined to overcome the limitations of network inference on

high-dimensional and heterogeneous data. The proposed methodology provides the frame-

work to effectively learn Bayesian networks of manageable complexity without manual steps of

feature selection. Our method could be applied to all types of tabular data with many features

and high enough sample size for which the interest lies mainly in feature interactions. A crucial

step in our procedure is the aggregation of groups for network learning. We found that in the

studied data sets, groups of variables were often reflecting highly similar information. The use

of single principal components as cluster representatives was therefore mostly sufficient and

yielded reasonable clusters. However, depending on the complexity and the aim of the applica-

tion, the results may be improved by the use of more sophisticated and more accurate aggrega-

tions, for example using multidimensional cluster representatives. However, higher precision

in the modeling of variable groups would, in turn, significantly increase the computation time

and complicate the interpretation. Note also, that data have to satisfy additional assumptions

in order to be exactly modeled as group networks with two- or more-dimensional nodes, as

studied by Parviainen and Kaski [25]. The same applies to a more complex grouping that

allows overlapping clusters. For future studies, in particular a dynamic generalization of the

approach using dynamic Bayesian networks is planned to enable the use of longitudinal study

data for prognosis. We plan to also include molecular data in order to allow the integrative

analysis of multi-omics and epidemiological data. By this, the proposed methodology offers

the possibility to reveal yet unknown biomarker and risk factor relations, and to gain new

insight into molecular disease mechanisms.

Methods

Group Bayesian networks and adaptive refinement

We implemented an approach to learn group Bayesian networks (Algorithm 1). Prior to the

procedure, a hierarchy of the feature space has to be determined by hierarchical clustering. An

initial variable grouping is determined by cutting the dendrogram into k clusters and cluster

representatives are calculated as first principal components. A target variable can be chosen,

which is kept separated. Then, a Bayesian network structure is learned using the discretized

version of the cluster representatives and parameters are fitted.

Moreover, we implemented a refinement algorithm for such group Bayesian networks via a

divisive hill-climbing approach (Algorithm 2). The current network model is used to predict

class probabilities of the target variable using all remaining nodes as evidence, and a prediction

score is calculated. As usual for hill-climbing approaches, in each step, all neighbouring states

of the current model are evaluated. Those include all models, in which one group was split

into two smaller groups along the dendrogram. From the neighbouring states, the model with

the highest score improvement is chosen. The procedure is repeated until no further improve-

ment is possible. Random restarts and perturbations are possible to escape from local optima.

To reduce the computation time, the tested splits may be restricted to the Markov blanket

of the target variable or a certain maximal distance in the current network. This requires the

initial grouping to be detailed enough, so that all important direct relations could be learned.

The plot of the aggregation levels for different cluster numbers may help to choose an initial

number of clusters that gives a good trade off between data compression and information loss.

If useful, further features besides the target can be chosen to be separated from their groups

as well, as for example sex or age that are well-known confounders in many problems.

Objective function. Throughout the refinement, we use the the cross-entropy as objective

function for a binary outcome, also known as log-loss, weighted by the class proportions. It
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can be calculated as

Hðo; pÞ ¼ �
XN

i¼1

wioi log ðpiÞ;

where o 2 {0, 1}N is the vector of observations, p 2 [0, 1]N is the vector of predicted class proba-

bilities, and w 2 (0, 1)N is the vector of weights with wi ¼
#fo¼oig

N . Using the class proportions as

weights ensures that both outcome classes have an equal share in the total score, independent

of their proportion in the training data. The adjustment is important, as often the target vari-

able is heavily imbalanced. Without these weights, the optimization prioritizes models that pri-

marily predict the majority class, as those have high accuracy. In case of a continuous target

variable the objective function must be respectively altered.

To account for the stochasticity of the probability estimates pi, which are based on likeli-

hood-sampling, we estimate an uncertainty range of H(o, p) over 20 runs and accept a more

complex model only if its score exceeds this range.

Algorithm 1: Group Bayesian network
1: procedure GROUPBN(D, g, t)
2: // D: dataset, g: feature grouping
3: // t: name of target variable
4:
5: Dg  AGGREGATE(D, g) //aggregate data in groups g
6: Dg,t  SEPARATE(Dg, t) //separate t from its cluster
7: S  BNSL(Dg,t) //structure learning
8: P  BNPL(Dg,t, S) //parameter learning
9: M  (S, P)
10:
11: return M //return group BN model
12: end procedure

Algorithm 2 Adaptive Refinement
1: procedure GROUPBN_REFINEMENT(D, H, k, t)
2: //D: dataset, H: feature hierarchy
3: //k: initial number of groups
4: //t: name of target variable
5:
6: g  CUT(H, k) //cut the hierarchy into k groups
7: M GROUPBN(D, g, t) //learn inital group network
8: c LOSS(M, t) //calculate loss function for target
9:
10: repeat //refinement step
11: B MARKOVBLANKET(M) //set of splits to be tested
12:
13: for b in B do //Evaluate all neighbouring models
14: gb  SPLIT(H, g, b) //split cluster b according to H
15: Mb  GROUPBN(D, gb, t) //and learn new model
16: cb  LOSS(Mb, t)
17: end for
18:
19: if min cb < c then //if improvement is possible
20: b�  which.min(cb)
21: g  gb�
22: M  Mb� //Replace M with best model
23: c  cb�
24: else break
25:
26: end repeat
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27:
28: return M //return refined group BN model
29: end procedure

Hierarchical clustering and data aggregation

To identify groups of similar variables, an agglomerative similarity-based hierarchical variable

clustering is used. As the method needs to be applicable to high-dimensional and heteroge-

neous data (qualitative and quantitative variables), we used the algorithm implemented in the

ClustOfVar package in R [50]. A key step of the clustering is the determination of a synthetic

central variable for each cluster, which is calculated as the first principal component from the

PCAmix method [51]. PCAmix combines principal component analysis and multiple corre-

spondence analysis. For this procedure, the data matrices are internally standardized,

concatenated, and factorized respectively. The homogeneity of a cluster is calculated as the dis-

tance of all cluster variables and its representative. This distance is based on squared correla-

tion and correlation coefficient.

Bayesian networks

A Bayesian network (BN) is a pair (G, Θ), where G is the structure that represents a random

vector X = (X1, . . ., Xn) and its conditional dependencies via a directed acyclic graph. Θ is the

set of parameters. The parameter set Θ consists of the local conditional probabilities of each

node Xi given its parents in the graph. Throughout this section, we denote the set of parents of

a node Xi byP(Xi). The parameters are of the form

yi ¼ PðXi jPðXiÞÞ:

In case of discrete random variables they are conditional probability tables. A Bayesian net-

work encodes the local Markov property, that is, each variable Xi is independent of its nondes-

cendants conditioned on its parents. A general factorization of the joint probability

distribution of X1, . . ., Xn is given by

PðX1; . . . ;XnÞ ¼
Yn

i¼1

PðXi jXPðiÞÞ ¼
Yn

i¼1

yi

accordingly. The Markov blanket of a node contains its children, its parents and its children’s

parents. It can be shown, that given the nodes in the Markov blanket, a node is conditionally

independent of all other nodes in the network. It, thus, contains all the nodes that are most

important for predicting the node itself. The moralized counterpart of a Bayesian network is

an undirected graph in which each node is connected to its full Markov blanket. It can be con-

structed by adding arcs between all nodes that have a common child and are not directly

connected.

Data discretization. The majority of the available BN structure learning algorithms

assume that all variables in a Bayesian network are discrete. Hybrid approaches that can handle

a mixture of discrete and continuous features include parametric models (i.e., Conditional

Linear Gaussian Networks), with the drawback that they restrict the type of distribution and

the structure space. More complex nonparametric approaches (see for example Schmidt et al.

[52]) are computationally demanding and do not scale well to high-dimensional data. As an

alternative, continuous features may be discretized. This simplifies the interpretation and

enables the use of well-established algorithms for discrete Bayesian networks. Thus, we

decided to discretize the cluster representatives prior to structure learning. Note that for clus-

tering itself, the unprocessed data are used. As the cluster representatives are often multimodal,
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we use an unsupervised, density-approximative discretization approach. First, significant

peaks in the estimated probability density function of a variable are determined. These peaks

are then used to initialize a one-dimensional k-means clustering. This procedure allows the

binning, and the number of bins itself, to be directly estimated from the data. If only one sig-

nificant peak is present, distribution quartiles are used for binning.

Equivalence classes of Bayesian networks (CPDAGs). As several graph structures

encode the same conditional independence statements (Markov Equivalence), they cannot be

distinguished based on observational data alone. As usual, we use completed partially directed

acyclic graphs (CPDAG) to represent the inferred equivalence class. In a CPDAG, arcs with

undetermined direction are drawn as undirected arcs.

Bayesian network structure learning. Our general approach, does not depend on a spe-

cific structure learning algorithm, but works with every available one. For the reported applica-

tions, we used the score-based hill-climbing algorithm, as implemented in the bnlearn package

[53]. The BIC was chosen as the target function, as it is locally and asymptotically consistent

and does not include any hyperparameters. The BIC of a model structure G is defined as

BIC ðG jDÞ≔ logPðD jGÞ þ
d
2
log ðNÞ;

where d is the model dimension (the number of free parameters) and N is the number of

observations. The BIC is asymptotically and locally consistent and decomposes to parts that

are only dependent on one variable Xi and its parentsP(Xi). For categorical random variables

X1, . . ., Xn, these parts can be calculated as

BIC ðXi;PðXiÞ jDÞ≔ �
X

j

X

k

Nijk log
Nijk
P

jNijk
�
qiðri � 1Þ

2
log ðNÞ; ð5Þ

where Nijk is the number of observations in which Xi = k and PG(Xi) = j, qi is the number of

possible states of the parents PG(Xi) and ri the number of possible states of Xi itself.

Throughout the adaptive refinement steps, the hill-climbing procedure was initialized with

the current network structure and the two new groups, formed by splitting, were embedded

into this structure. To escape from local optima, 10 restarts were performed in each run with a

number of perturbations depending on the total network size (10% of current number of arcs,

at least 1).

Structure learning was repeated 200 times using nonparametric bootstrapping to reduce

the number of false positive arcs and add only arcs with high confidence to the model (model
averaging). The confidence threshold for inclusion of an arc was determined using adaptive

thresholding, as suggested in [54].

Bayesian network parameter learning. A Bayesian parameter estimation was performed

using the previously determined structure. We used a uniform prior and an imaginary sample

size of 1.

Simulating networks

To generate noisy and heterogeneous data with latent group structure, we sampled two-layered

Bayesian networks (Fig 3A) with a layer of (latent) group variables (layer 1), as well as a layer

of noisy child variables, reflecting the information of the group variables plus measurement

noise (layer 0). Arcs among group variables were sampled using Melancon’s and Philippe’s

Uniform Random Acyclic Digraphs algorithm, which generates graphs with a uniform proba-

bility distribution over the set of all directed acyclic graphs. Child nodes were then connected

to every group node. We parameterized the group variables using a randomly chosen Dirichlet
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distribution, whereas the child nodes could have both, a continuous or discrete range, to simu-

late heterogeneity. Random noise was introduced via the parameters. For continuous features,

a Gaussian noise was added; for discrete features, the distribution was respectively altered. We

used these network models to simulate random samples from the joint distribution using for-

ward sampling. By this, several simulated datasets could be created based on the same network

model. They were used to assess the quality of the different approaches of group network infer-

ence under varying group size, noise level, sample size and network size. Data sampling and

network learning were repeated 100 times for each scenario. In the standard network inference

approach, the grouping was disregarded for network learning. Instead, a detailed network

structure was learned among all variables in layer 0, which was afterwards used to identify

groups and group network structure. For identification of the groups, hierarchical community

detection was used. The resulting dendrogram was cut at each level, and the grouping that was

closest to the true grouping in terms of the evaluation metric was chosen. To aggregate the

detailed network into a group network, the ground-truth grouping was applied. As arcs

between variables of different groups were only rarely learned, an arc was added to the group

network, whenever at least one arc between any two variables from two groups was present.

For the group network inference approach, the respective steps of the proposed algorithm

were applied.

Evaluation metrics

Partition metric. To compare different variable groupings, we used an entropy-based

partition metric [55]. It is zero, if two groupings are identical, and returns a positive value

otherwise.

Structural hamming distance (SHD). To compare learned Bayesian network structures

to the true latent structure, we used the Structural Hamming Distance (SHD). The SHD of two

CPDAGs is defined as the number of changes that have to be made to a CPDAG to turn it into

the one that it is being compared to. It can be calculated as the sum of all false positive, false

negative and wrongly directed arcs. In order to evaluate the quality of inferred group networks,

we calculated the SHD of the inferred network and the ground-truth model, and normalized it

to the number of arcs within the ground-truth model.

Area under the curve. To evaluate the discriminative performance of a model, we com-

pared the area under the receiver-operator (AUROC) as well as the precision-recall curve

(AUPRC) in a 10-fold cross validation setting. We calculated the metrics using the PRROC

package [56, 57].

SHIP-trend data preprocessing

The initial set of features was the same for both SHIP Trend examples. As a first step, the set of

participants was reduced to those, for which the related diagnosis was present. Further steps

included the removement of context-specific variables and features with high amounts of miss-

ing values.

NAFLD. As target variable for the NAFLD-specific analysis of the SHIP Trend data, we

chose the presence of hepatic steatosis diagnosed based on liver MRI. An MRI of the liver was

conducted and evaluated for a subset of 2463 participants of the cohort. Probands with a sig-

nificant intake of alcohol (more than 20 g/day in women, more than 30 g/day in men based on

the last 30 days) were excluded from the analysis. Features related to sonography of the liver or

earlier diagnoses of steatosis were removed, too (n = 14). From the original dataset, we further

removed features that contained more than 20% of missing values (n = 59, S4 Fig). The thresh-

old was chosen to remove measurements that were done for specific patient subgroups only
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(like, e.g., hormone measurements, differential haematology). Our final dataset comprises

2311 participants and 407 features. The prevalence of NAFLD is 18%.

Hypertension. In SHIP Trend, blood pressure of each proband was measured three times.

The average pressure of the latter two measurements was used for diagnosis of hypertension.

Probands were classified as hypertensive if their measured systolic pressure exceeded 140

mmHg or the diastolic pressure exceeded 90 mmHg or they reported to receive antihyperten-

sive treatment. Our hypertension model is based on data of 4403 participants (2123 cases of

hypertension). From the original dataset we excluded features, that had more than 20% of

missing values (n = 63, S4 Fig). We removed all features that contain further information on

the blood pressure and earlier diagnoses or treatment of hypertension (n = 35), as well as 54

features related to medication that was related to treatment of hypertension or had extremely

low variance (e.g., multiple forms of beta blockers).

Cross-validation

For comparison of the predictive power of different liver scores, logistic regression and Bayes-

ian network models, we split the data into 10 folds. The liver scores did not have to be trained

and were applied to all 10 folds separately to obtain mean and standard deviation. Bayesian

network models were trained ten times on 9 of 10 folds and tested on the remaining fold, as

usual. As comparison, a regularized logistic regression model was trained and tested. The same

folds were used for all tests

Computations and code availability

All computations were performed using R version 3.6.2 [58] on a Unix workstation with 16

GB RAM and an eight-core Xeon E5-1620 v3 processor running Ubuntu 16.04.6. An imple-

mentation of Algorithms 1 and 2 is available on CRAN [35]. Processing times for Hyperten-

sion and NAFLD-models are given in Table 3.

Supporting information

S1 Fig. Simulation results: Influence of sample size and network size. Results of the recon-

struction of group networks for varying sample sizes. A Group networks with 5 nodes.B

Group networks with 20 nodes. On the basis of these simulations, we decided to run the

remaining simulations with group networks of size 20 and a medium sample size of 500.

(TIF)

Table 3. Processing times.

NAFLD Hypertension

number of features 407 328

number of probands 2311 4403

hierarchical clustering 9m 55s 13m 26s

initial group BN 1m 08s 2m 57s

group BN refinement (per iteration) 2m 34s 5m 11s

Individual processing times are stated for initial hierarchical clustering, learning of an initial group BN, and the

average time needed for one refinement iteration. It must be noted that processing times depend highly on the

chosen structure learning algorithm, the number of groups and the number of neighboured models.

https://doi.org/10.1371/journal.pcbi.1008735.t003
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S2 Fig. Steatosis network. Group Bayesian network with target variable steatosis.

(TIF)

S3 Fig. Hypertension network. Group Bayesian network with target variable hypertension.

(TIF)

S4 Fig. Missing values in SHIP Trend data. Histograms of missing values in % per variable A

for the subset of participants included in steatosis model B for the subset of participants

included in hypertension model.

(TIF)

S1 Data. Steatosis grouping. Grouping of steatosis network. Features are sorted by their cen-

trality in the cluster.

(CSV)

S2 Data. Hypertension grouping. Grouping of hypertension network. Features are sorted by

their centrality in the cluster.

(CSV)
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Abstract 21 

Background:   Thyrotropin, also known as thyroid-stimulating hormone (TSH), is the primary 22 

diagnostic and an important monitoring target in thyroid disease. The main treatment goal of 23 

thyroid dysfunction is the renormalization of the thyroid function, monitored by serum TSH 24 

concentration. However, its strong dependence on external factors makes it challenging to 25 

specify a generally valid optimum. The goal of our study was to discover and decipher 26 

association patterns of individual serum TSH concentrations from broad cohort study data to 27 

complement the study situation with a wholistic view. 28 

Method: We here propose a machine learning workflow that includes random forests and 29 

Bayesian networks to allow for automatic data processing and a more straightforward 30 
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interpretation of complex association patterns. Based on this workflow, we discover and 31 

interpret broad patterns of individual serum TSH concentration using data from the large 32 

population-based Study of Health in Pomerania (SHIP).  33 

Results:  The presented model achieves good predictive accuracy and outperforms existing 34 

models (root mean square error of 0.66, mean absolute error of 0.55, coefficient of 35 

determination of R²=0.15). Moreover, we identify 62 relevant features from the final random 36 

forest model, ranging from general health variables over dietary and genetic factors to 37 

physiological, hematological and hemostasis parameters. A Bayesian network model is used to 38 

put these features into context and make the black-box random forest model more 39 

understandable. 40 

Conclusion: We demonstrate that the combination of random forest and Bayesian network 41 

analysis is helpful to reveal broad association patterns of individual thyrotropin concentrations. 42 

The discovered patterns are in line with state-of-the-art literature. They may be useful for future 43 

thyroid research and improved dosing of therapeutics.44 

 45 

Introduction 46 

Machine learning (ML) based on epidemiological data offers an attractive approach to discover 47 

predictive patterns in complex biomedical systems, such as thyroid homeostasis. However, 48 

many ML models mainly aim at high predictive accuracy and do not offer easy model 49 

interpretability and explainability, which is often necessary for healthcare applications and 50 

research. Random forests (RF) [1] are such an example. They achieve high predictive accuracy 51 

by ensemble learning of a multitude of decision trees. However, in contrast to single decision 52 

trees, RFs may lead to a variety of complex decision paths, which makes them challenging to 53 

interpret. Therefore, they are usually considered black-box models. This work aims at 54 

complementing a black-box RF model with post-hoc Bayesian network analysis.  55 
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Bayesian networks are probabilistic models describing (in-)dependence structures among 56 

random variables. They are well interpretable and offer an intuitive visualization of feature 57 

interactions. The presented combined workflow allows identifying predictive patterns from 58 

epidemiological and clinical data and permits it to visualize and understand the nature of these 59 

patterns. We apply the proposed workflow to data from the Study of Health in Pomerania 60 

(SHIP) [2] in order to identify broad predictive patterns of individual serum thyroid-stimulating 61 

hormone (TSH) concentrations.  62 

TSH is a central component of the thyroid homeostatic system and a major diagnostic as well 63 

as an important therapy monitoring target in thyroid dysfunction. With a prevalence estimated 64 

at around 1-10%, thyroid dysfunction is one of the major endocrine disorders in Europe [3] and 65 

worldwide [4]. It causes a wide range of symptoms, including changes in the gastrointestinal 66 

system, heart rate, mood, skin, sexual function, and sleep. However, due to the mild or 67 

unspecific nature of these symptoms, thyroid dysfunction often stays undetected. Yet, it has 68 

been shown that even mild long-term imbalances of thyroid hormone levels increase 69 

cardiovascular risk, risk of dementia, and bone disorders, amongst others [5,6]. TSH is 70 

produced by the anterior pituitary gland and stimulates the thyroid gland to secrete thyroxine 71 

(T4), which is then further converted to triiodothyronine (T3).  Elevated levels of free T3 and 72 

free T4 in the blood plasma, in turn, inhibit the production of TSH via a negative feedback loop. 73 

Thus, serum TSH is a sensitive and easily accessible indicator of thyroid (dys-) function. 74 

However, TSH is not steadily released from the pituitary gland but follows circadian and 75 

ultradian rhythms [7]. Moreover, TSH levels in serum fluctuate depending on life phases, 76 

reaching exceptionally high levels during periods of growth, stress, or pregnancy. 77 

Consequently, the individual TSH level depends on various external factors, including sex, age, 78 

diet, or stress level [8]. The treatment goal in thyroid dysfunction is the renormalization of the 79 

thyroid function, monitored by the TSH level, but the optimum seems to be highly individual 80 
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and may even be genetically predetermined [9–11]. With TSH being a central marker and 81 

treatment target for thyroid dysfunction, there is considerable interest in investigating patterns 82 

associated with the individual TSH concentration in serum. Identified patterns may be highly 83 

valuable for therapeutic decision-making. 84 

The relation of TSH to other thyroid hormones is complex and nonlinear [12,13]. Such complex 85 

relations can best be investigated by taking advantage of flexible ML models. Consequently, 86 

advanced ML methods, especially RFs, outperform simpler models in predicting TSH, as 87 

recently shown by Santhanam et al. [14]. In their study, the best scoring model was RF and 88 

achieved a coefficient of determination of R2=0.13. The model was based on a small set of 89 

preselected thyroid-related features, including free thyroxine (FT4), free triiodothyronine 90 

(FT3), autoantibodies to thyroid peroxidase (anti-TPO), as well as Body Mass Index (BMI), 91 

age and ethnicity.  92 

Apart from that, in large parts, existing related literature focuses only on the ML-based 93 

classification of thyroid disease [15,16]. However, clinical reference ranges sometimes fail to 94 

distinguish actual disease states from ordinary fluctuations in case of complex, multifactorial 95 

diseases like thyroid dysfunction. Especially since serum TSH levels within the reference range 96 

are also known to vary by age, sex, the applied assay, and the population's background iodine 97 

status [17], labels derived from TSH alone may be imprecise. Therefore, we considered the 98 

problem as a regression problem. Nevertheless, also in the classification case, decision-tree-99 

based algorithms were found to score superiorly.  100 

To date, it is still unclear how to automatize the prediction from high-dimensional clinical data, 101 

and how to present results of a complex ML model, such that it can be interpreted easily by 102 

medical professionals as well as non-experts. The state-of-the-art to interpret RFs is to use 103 

global feature importance (FI). FI measures the global influence of every individual feature on 104 
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the model and may be used to create a ranking. Model internal measures may be used as FI, 105 

such as the increase in homogeneity in the trees' leaves. Apart from that, external measures are 106 

available that evaluate the FI on out-of-bag data. One such example is permutation-based 107 

feature importance, which was introduced initially for RFs and later generalized [18]. However, 108 

all these FI measures neglect feature interactions. Thus, the resulting ranking may suffer from 109 

disruptive effects in the presence of heterogeneity and multicollinearity, as present in SHIP 110 

data: Continuous features or features with many categories offer more flexibility and may gain 111 

higher importance than binary features. Moreover, permutation of one feature alone may result 112 

in unrealistic data instances, so associated features may bias the importance score. Lastly, 113 

indirect effects and confounders cannot be noticed from the ranking alone. To take feature 114 

associations into account and offer an interpretation that goes beyond a ranking, we present a 115 

workflow that complements the RF model by a Bayesian network analysis. As Bayesian 116 

network structure learning from data is highly computationally expensive, we reduce the feature 117 

set by extracting potentially relevant features from the RF model for this step.  118 

The presented workflow allows to identify and explain broad patterns from high-dimensional 119 

data. We apply this workflow to predict the individual serum TSH concentration from clinical 120 

data and to identify broad and interpretable clinical patterns of thyroid functionality from the 121 

model. As a basis, we use data from the Study of Health in Pomerania (SHIP) [2], which 122 

includes nutritional patterns, complete blood counts, sociodemographic data, health status, 123 

mood, medication, and detailed thyroid examinations of 4308 adult individuals. Additionally, 124 

genetic information in the form of single nucleotide polymorphisms (SNPs) is used. While 125 

many of the discovered factors have been analyzed in univariate studies before, to our best 126 

knowledge, this is the first thyroid study applying ML-based algorithms to identify multivariate 127 

patterns of such broadness. 128 

  129 
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Results and Discussion 130 

Workflow 131 

We propose a workflow that complements a RF model with a Bayesian network analysis for 132 

the post-hoc interpretation of inferred global predictive patterns. The network analysis allows 133 

an interpretation that goes beyond a ranking by global feature importance.  134 

The workflow consists of three steps (Fig 1) and starts with careful training of a RF model. 135 

Afterward, relevant features are identified from the model using two different feature 136 

importance measures. Due to the high number of features included, we use a statistical mixture 137 

model approach to distinguish relevant from irrelevant features. The latter are modeled by a 138 

component around a FI of zero. This step is followed by Bayesian network structure learning 139 

among all relevant predictors, yielding an interpretable feature association model.   140 

 141 

Fig 1. Workflow. Schematic representation of the workflow. After data preparation, a RF 142 

model is trained using nested cross-validation. Relevant predictors are identified based on two 143 

feature importance measures and a mixture model approach. Lastly, feature interactions among 144 

the relevant predictors are examined in a Bayesian network analysis. 145 

 146 

Data Description 147 
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The preprocessed dataset includes 602 features and 3,989 probands (49% female, 51% male, 148 

for details on data preprocessing, see Methods). The mean age of study participants is 49 years 149 

(min=20, max=81). In addition to serum TSH, thyroid function evaluation in SHIP includes 150 

FT3, FT4, and anti-TPO measurements. Besides, urinary iodine and enlargement of the thyroid 151 

('goiter') were assessed. Results of a sonography examination of the thyroid were included in 152 

terms of thyroid volume, echogenicity, and the presence of at least one thyroid nodule. 153 

Descriptive statistics about these features are reported in Table 1. Additional features from 154 

SHIP include nutritional patterns, complete blood counts, sociodemographic information, 155 

health status, and medication. Moreover, we added 67 prefiltered SNPs to examine possible 156 

genetic predispositions [19]. 157 

Table 1. Descriptive statistics of thyroid examination results from SHIP. Mean, standard 158 

deviation, median and skewness are presented for continuous features. For categorical features, 159 

the exact distribution is shown. The analysis is based on n=3,989 probands. 160 

SHIP Variable Description Mean StDev Median Skewness 

tsh Thyroid stimulating hormone 

(TSH) [mU/l] 

0.89 2.28 0.66 25.5 

log_tsh log-transformed TSH -0.45 0.73 -0.41 -0.65 

ft3 free triiodothyronine [pmol/l] 5.25 0.88 5.2 1.24 

ft4 free thyroxine [pmol/l] 12.84 3.82 12.5 1.24 

sd_volg total sonography volume of the 

thyroid 

21.54 12.57 18.8 3.35 

jodid_u Iodide (urine) [μg/dl] 14.42 11.64 12.5 5.1 

tpo_ak anti-TPO antibodies [IU/l] 90.28 294.28 45.1 25.47 

SHIP Variable Description No Yes 

node_s0 presence of thyroid nodule(s) 3299 (77.2%) 975 (22.8%) 

echogenthyr_s0 hypoechoic thyroid pattern 3958 (92.7%) 313 (7.3%) 

goiter_s0 enlargement of the thyroid 

gland 

2660 (62.2%) 1611 (37.8%) 

 161 

Random Forest Predictions  162 
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Our RF model achieves an RMSE of 0.663 (± 0.003), coefficient of determination (R²) of 0.15 163 

(± 0.002), and a mean absolute error (MAE) of 0.55 (± 0.003) on unseen data. For evaluation 164 

purposes, we compared the achieved prediction scores to a baseline model trained on the same 165 

dataset with TSH values randomly shuffled. The shuffling breaks all relations of TSH to the 166 

remaining data; thus, the baseline predictions can be interpreted as scores achieved by random 167 

guessing (Table 2).  168 

 169 

Table 2. Evaluation of the final RF model for the prediction of TSH. As a baseline 170 

comparison, we trained a similar model on the same dataset where TSH values have been 171 

randomly shuffled. The scores given in the column (random) baseline prediction thus represent 172 

scores achieved by random guessing. Average results are presented together with standard 173 

deviations given in brackets. 174 

Evaluation criteria prediction of TSH (± SD) (random) baseline prediction (± SD) 

RMSE Training 0.63 (± 0.041) 0.70 (± 0.004) 

RMSE Test 0.66 (± 0.003) 0.72 (± 0.301) 

R² Training 0.23 (± 0.003) 0.0001 (± 0.002) 

R² Test 0.15 (± 0.002) 0.0004 (± 0.011) 

MAE Training 0.52 (± 0.002) 0.52 (± 0.001) 

Test Test 0.55 (± 0.003) 0.62 (± 0.111) 

Extraction of Relevant Features 175 

We identified 62 from the originally 602 features as relevant in the RF model. For the 176 

identification, we used two different FI measures and a statistical mixture model approach (see 177 

Methods). All relevant features are reported in S1 Table. The highest importance scores were 178 

found for age, FT3, FT4, anti-TPO antibodies, goiter, nodules, and thyroid hypoechogenicity 179 

in sonography (S1 and S2 Fig). The 62 extracted relevant predictors are distributed across the 180 

categories basic patient information (8), information about the general health status (5), thyroid 181 
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examinations (8), metabolism (9), SNPs (3), socioeconomic status (8), diet (5), immune system 182 

(6), hematological and hemostasis parameters (5), hormones (3), and electrolyte levels (2).  183 

Bayesian Network Analysis 184 

In order to investigate the association patterns of TSH, we complement the RF model with a 185 

better interpretable Bayesian network. Whereas RFs are optimized with respect to high 186 

predictive power alone, Bayesian networks are probabilistic models of feature interactions. 187 

They allow examining how features are associated and how these associations affect the 188 

outcome. Their graphical representation allows for intuitive interpretation, also for non-experts. 189 

Based on the methodology described in an earlier study [20], we train a Bayesian network, 190 

including those features that were identified as relevant in the RF model. To reduce the 191 

network's complexity, we aggregated highly collinear features to represent them as one single 192 

node in the network. The network structure among the resulting 54 nodes, which are reported 193 

in S1 Fig, was then learned by a score-based structure learning approach. The final Bayesian 194 

network structure (Fig 2) has 128 edges. The nodes sex and age, number of medications taken 195 

during the last seven days (medic7d_s0), and hip circumference (som_huef) are hub nodes in 196 

the network. Additionally, we identified four different clusters within the network that refer to 197 

the categories socioeconomic status, metabolism, hematological and hemostasis factors, and 198 

thyroid examinations (S1 Table). The Markov blanket of a node in a Bayesian network is the 199 

set of directly dependent variables in the network, i.e., those features that are most important to 200 

predict a particular variable and have a direct influence on it. The Markov blanket of the TSH 201 

level contains the predictors that have also been identified as the most important predictors 202 

based on global feature importance in the RF model. The average Markov blanket size of the 203 

whole network is 7.3, showing a relatively strong association among all predictors. 204 

The extracted relevant features and their associations reveal broad clinical patterns of thyroid 205 

functionality. As expected, the top features include a person's age and thyroid-specific 206 
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examinations (FT3, FT4, anti-TPO, and sonography results, see S1 Table). The strong 207 

association of these features with the individual TSH level is also reflected by their closeness 208 

in the Bayesian network (nodes colored in red, TSH is dark red, Fig 2).  209 

In addition to age, the set of relevant features includes a set of further general patient 210 

information and clinical measures (e.g., sex, body height, hip circumference, heart rate, blood 211 

pressure) as well as measures describing the health status of a person (number of doctoral visits, 212 

subjective physical and mental health, medication). As expected, sex and age influence nearly 213 

every other feature; they are hub nodes in the Bayesian network, as are the amount of 214 

medication and hip circumference (blue nodes, Fig 2).  215 

Moreover, eight of the 62 relevant features describe a person's socioeconomic status and are 216 

related to occupation, education, or family status. The Bayesian network shows that they are 217 

closely tied to a person's age and health status so that their influence on the TSH level is 218 

presumably only indirect (nodes colored in gray, Fig 2).  219 

The same holds for most included dietary factors (amount of grey bread, cake, fresh fruits) that 220 

we found mainly related to health status and age. On the contrary, we found the daily amount 221 

of alcohol influencing the mean corpuscular volume and the liver status, both well-established 222 

markers of alcohol use [21]. Alcohol consumption is thereby indirectly linked to TSH. Also, 223 

coffee consumption was indirectly linked via the serum potassium level. Its association with 224 

the thyroid was studied extensively in targeted studies [22,23]. 225 

Moreover, factors related to the status of liver and kidney, hematological and hemostasis status, 226 

immunity, hormones, lipid and glucose metabolism, as well as electrolyte levels have been 227 

identified as relevant. Three of the 67 SNPs are included as well; two of them are highly related 228 

and occur in the phosphodiesterase 8B gene; the third one is a variant near FOXE1, which is 229 

also known as thyroid transcription factor 2. All three have been associated with altered TSH 230 

levels in earlier studies [19]. The active inclusion of SNPs into the RF model affirms the genetic 231 

component of thyroid (dys-) function. 232 
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The association of TSH with liver and kidney markers can be explained physiologically. It is 233 

well known that thyroid hormones affect renal physiology, hepatic function, and bilirubin 234 

metabolism. We here identified an altered glomerular filtration rate, altered serum creatinine 235 

levels, and levels of serum uric acid as associated with TSH. A correlation in the case of healthy 236 

as well as diseased thyroid states has been observed before [24,25]. With thyroid hormones 237 

regulating the basal metabolic rate of hepatocytes, it is no surprise that changes in the thyroid 238 

homeostatic system also go along with hepatic disorders. In our model, the presence of hepatic 239 

steatosis, serum aspartate-aminotransferase levels, ferritin levels, but also serum glucose, 240 

lipase, and triglycerides appear to be relevant predictors. While an association of liver and 241 

thyroid disease has been examined for a long time, it is still under debate if this correlation is 242 

independent of the metabolic syndrome or can be fully explained by alterations in glucose and 243 

lipid metabolism [26–29]. 244 

In the Bayesian network, the correlation between metabolic measures (nodes colored in yellow, 245 

Fig 2) and thyroid is predominantly explained by health status and hematological and 246 

hemostasis parameters (nodes colored in green, Fig 2). Hematological parameters (like mean 247 

corpuscular volume, hematocrit, number of leukocytes) and hemostasis paremeter (like partial 248 

thromboplastin time and fibrinogen) are widespread general measures for health and disease. 249 

However, it is also well-known that overt hypothyroidism is associated with a bleeding 250 

tendency, while hyperthyroidism leads to increased coagulation and decreased fibrinolysis. 251 

Recent studies suggest that coagulation factors have a mediating role between thyroid and 252 

cardiovascular abnormalities [30,31]. Our Bayesian network model is in line with this 253 

hypothesis, as it links metabolic factors to thyroid hormones mainly via hematological and 254 

hemostasis factors. However, more targeted studies are needed to evaluate this association 255 

further.  256 

Additionally, several included features are related to vaccinations or infections, including 257 

immunity against rubella, measles, toxoplasmosis, or helicobacter pylori. Most of them appear 258 
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to be primarily correlated to age with only minor independent effects on TSH (e.g., insufficient 259 

immunization against rubella or measles is more frequent in older people). However, the level 260 

of antibodies against toxoplasmosis (node colored in orange, Fig 2) is strongly related to thyroid 261 

hormone levels, predominantly to free T3. The association between Toxoplasma gondii 262 

infections and thyroid dysfunction was observed in earlier studies as well, underlining the role 263 

of toxoplasmosis antibodies as an independent predictor of thyroid hormone levels [32,33].  264 

Thyroid function also plays an essential role in the balancing of sex hormones. We identified 265 

serum prolactin, sex hormone-binding globulin, and insulin-like growth factor 1 (IGF-1) levels 266 

as predictors of TSH. Already earlier, subclinical hypothyroidism was shown to increase the 267 

prevalence of overt hyperprolactinemia, particularly in women. It was also shown to indirectly 268 

influence IGF-1 and sex hormone-binding globulin (SHBG) levels [34–36].  269 

 270 

 271 

Fig 2. Inferred Bayesian network structure among the extracted relevant predictors and 272 

the TSH level. The four hub nodes, sex, age, medication (taken during the last seven days), and 273 

hip circumference are colored in blue. Arcs originating from the hub nodes are plotted in light 274 
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gray to make the network more readable. The TSH level is colored in dark red, thyroid-related 275 

examinations in red. Yellow nodes refer to metabolic factors, green nodes to hematological and 276 

hemostasis factors, and grey nodes to socioeconomic parameters. Antibody titer against 277 

toxoplasmosis is presented in orange. Further information on the features can be found in Table 278 

S1. 279 

Random Forest Prediction from Feature Subgroups 280 

To complement the analysis, we examined how well a RF can predict individual TSH 281 

concentrations from one of the identified feature subgroups 'metabolism', 'socioeconomic 282 

status', and 'hematological factors' alone. Table 3 reports the performance scores of predicting 283 

TSH measures when a new RF model was trained using only sex, age, and features from one 284 

category. The best performance was achieved in case of the feature subgroup 'metabolism' (Test 285 

RMSE of 0.703). However, all metrics and (especially R2) decreased considerably due to the 286 

reduced feature sets. 287 

Table 3. RF prediction results for different feature subgroups. Columns refer to models 288 

built based on different feature subgroups. The first two rows show the respective RF 289 

hyperparameters. The remaining six rows contain the prediction metrics achieved by the 290 

models. Average results are stated with standard deviations given in brackets. 291 

Model 

(random) 

baseline 

prediction 

(± SD) 

All Features 

(± SD) 

metabolism 

[yellow nodes] 

(± SD) 

socioeconomic 

status [grey 

nodes] (± SD) 

hematological 

factors [green 

nodes] (± SD) 

RMSE 

Training 

0.703 

(± 0.003) 

0.632 

(± 0.003) 

0.697 

(± 0.003) 

0.702 

(± 0.003) 

0.702 

(± 0.003) 

RMSE 

Test 

0.719 

(± 0.029) 

0.662 

(± 0.032) 

0.703 

(± 0.003) 

0.704 

(± 0.032) 

0.705 

(± 0.032) 

MAE 

Training 

0.599 

(± 0.104) 

0.515 

(± 0.11) 

0.592 

(± 0.105) 

0.598 

(± 0.104) 

0.598 

(± 0.104) 
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MAE 

Test 

0.618 

(± 0.106) 

0.551 

(± 0.11) 

0.599 

(± 0.111) 

0.601 

(± 0.111) 

0.601 

(± 0.111) 

R² 

Training 

0.045 

(± 0.008) 

0.229 

(± 0.0035) 

0.061 

(± 0.002) 

0.046 

(± 0.002) 

0.046 

(± 0.002) 

R² 

Test 

-0.0004 

(± 0.002) 

0.149 

(± 0.023) 

0.042 

(± 0.021) 

0.037 

(± 0.015) 

0.037 

(± 0.015) 

Conclusion 292 

In summary, the presented model successfully predicts individual TSH concentrations from a 293 

broad set of features. We demonstrate that the combination of RF and Bayesian network 294 

analysis is useful to reveal and interpret broad association patterns.  A complementary network 295 

analysis can overcome classical drawbacks of RF interpretation based on feature importance 296 

only and is helpful for high-quality interpretation. The identified predictive patterns are in line 297 

with recent findings and give new insights into thyroid functionality. The most important 298 

predictors included a person's age and thyroid-specific parameters: FT3, FT4, anti-TPO, and 299 

sonography results (S1 Fig). It must be noted that relevant predictors were successfully revealed 300 

automatically from an extensive set of features. Yet, the presented model yields better 301 

prediction results than models built from a small, manually chosen feature set. Sex, age, hip 302 

circumference, and medication intake during the last seven days were further identified as hub 303 

nodes in the Bayesian network of relevant predictors. Based on the network, clusters of related 304 

features could be identified and further tested for their predictive capacity. However, a large 305 

fraction of variance in the data remains unexplained. Possibly, parts of the leftover variance are 306 

due to temporal fluctuations. The inclusion of individual temporal profiles, or at least 307 

measurements at more than one time point, could further increase the accuracy. Due to the large 308 

number of features, the final model lacks validation on external data. Such validation is 309 

challenging, as an appropriate dataset would need to include all of the used features with similar 310 

measurement protocols. However, the discovered patterns are well supported by state-of-the-311 

art literature.  312 
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In contrast to often-used classification models, the presented regression model is independent 313 

of clinical TSH reference limits or the diagnosis of specific dysfunctions. Thus, it may also be 314 

used to detect disease initiation or minor abnormalities. Our study underlines the need for 315 

careful interpretation of complex models. It shows that a ranking by global feature importance 316 

is not enough to interpret intricate predictive patterns and can be misleading. The identified 317 

association patterns may be useful for future thyroid research and improved dosing of 318 

therapeutics. 319 

Materials and Methods 320 

Study Population 321 

The Study of Health in Pomerania (SHIP) is a population-based study carried out in West 322 

Pomerania, the north-east area of Germany [2,37]. A sample from the population aged 20 to 79 323 

years was drawn from population registries. First, the three cities of the region (with 17,076 to 324 

65,977 inhabitants) and the 12 towns (with 1,516 to 3,044 inhabitants) were selected, and then 325 

17 out of 97 smaller towns (with less than 1,500 inhabitants) were drawn at random. Second, 326 

from each of the selected communities, subjects were drawn at random, proportional to the 327 

population size of each community and stratified by age and gender. Only individuals with 328 

German citizenship and main residency in the study area were included. Finally, 7,008 subjects 329 

were sampled, with 292 persons of each gender in each of the twelve five-year age strata. In 330 

order to minimize dropouts by migration or death, subjects were selected in two waves. The net 331 

sample (without migrated or deceased persons) comprised 6,267 eligible subjects. Selected 332 

persons received a maximum of three written invitations. In case of non-response, letters were 333 

followed by a phone call or by home visits if contact by phone was not possible. The SHIP 334 

population finally comprised 4,308 participants (corresponding to a final response of 68.8%). 335 
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Data Preprocessing 336 

In addition to phenotypical features from SHIP (including nutritional patterns, complete blood 337 

counts, sociodemographic data, health status, mood, medication, and detailed thyroid 338 

examinations), additional data about 67 SNPs were included in our analysis, that have 339 

previously been shown to be associated with thyroid dysfunction in a genome-wide association 340 

study (GSWA) [19]. From the original dataset, features with more than 20% of missing values 341 

were removed, and the remaining data were imputed using a nonparametric, RF-based 342 

imputation procedure [38]. We further removed participants under anti-thyroid medication 343 

(n=280) and those for which the information about anti-thyroid medication was missing (n=37). 344 

We also removed participants with extremely high TSH measurements that exceeded 60 mU/l 345 

(n=2). In total, 3989 participants and 602 features (67 SNPs) were used for further analysis. As 346 

the distribution of TSH concentrations is heavily right-skewed, we log-transformed the target 347 

variable for further analysis to make its distribution more symmetric. 348 

Genotyping 349 

Non fasting blood samples were drawn from the cubital vein in the supine position. The samples 350 

were taken between 07:00 AM and 04:00 PM, and serum aliquots were prepared for immediate 351 

analysis and storage at -80 °C in the Integrated Research Biobank (Liconic, Liechtenstein). The 352 

SHIP samples were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. 353 

Hybridization of genomic DNA was done following the manufacturer's standard 354 

recommendations. Genetic data were stored using the database Caché (InterSystems). 355 

Genotypes were determined using the Birdseed2 clustering algorithm. For quality control 356 

purposes, several control samples were added. On the chip level, only subjects with a 357 

genotyping rate on QC probe sets (QC call rate) of at least 86% were included. Finally, all 358 

arrays had a sample call-rate of above 92%. The overall genotyping efficiency of the GWA was 359 
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98.55 %. Imputation of genotypes in SHIP was performed using the software IMPUTE v2.2.2 360 

based on the 1000 Genomes release Mar 2012 ALL populations reference panel. SNPs with a 361 

Hardy-Weinberg-Equilibrium p-value <0.0001 or a call rate <0.8 were removed before 362 

imputation. 363 

Evaluation Criteria 364 

To evaluate the predictive capacity of a model, we use the root mean square error (RMSE), 365 

coefficient of determination (R2), and mean absolute error (MAE). The MAE is the mean of the 366 

absolute differences between data and predictions. It is non-negative, with a value of zero 367 

indicating a perfect prediction. Its value is dependent on the scale of the outcome variable. 368 

Similarly, the RSME can be calculated as the quadratic mean of these differences. Lastly, the 369 

coefficient of determination measures the proportion of the variance that is explained by the 370 

model; it ranges from 0 to 1.  371 

Random Forests 372 

RFs are ensemble models that combine a multitude of decision trees [1]. They output the mean 373 

prediction of the individual trees, which are guaranteed to be decorrelated due to the use of 374 

bootstrap samples and random feature subsets of the training data. RFs are considered black-375 

box models, as it is very difficult to retrace how the model came to a specific prediction. In 376 

order to reduce the bias in model selection, we applied nested 10-fold cross-validation for 377 

hyperparameter optimization. The results from hyperparameter optimization and the final 378 

parameter settings are reported in S3 Fig and S2 Table. For training of the RF model, we used 379 

the R-package randomForest [39]. We optimize the three main hyperparameters, which control 380 

the structure and depth of the forest, based on internal 10-fold cross-validation in a grid-search: 381 

the minimum size of terminal nodes (nodesize, tested values: 15, 40, 65), the maximal number 382 

of terminal nodes (maxnodes, tested values: 15, 40, 65), and the number of variables randomly 383 
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sampled as candidates at each split (mtry, tested values 3-50). External cross-validation was 384 

then applied to evaluate the performance of the final model on unseen data. The RSME was 385 

chosen as an objective function; additionally, MAE and R² of a model are used as evaluation 386 

criteria. 387 

Measures of Feature Importance 388 

Feature importance in the RF model was assessed using two different measures: node purity 389 

and incremental mean square error (IncMSE). Node purity measures the increase in 390 

homogeneity (here in terms of variance) of the labels at the respective node. The final node 391 

purity value of a feature is the sum over all splits in which the feature is chosen, averaged over 392 

all trees. Conversely, the IncMSE is a permutation-based FI measure, and it is calculated as the 393 

difference in the overall out-of-bag error before and after permutation of the feature (S1 Fig).  394 

Extraction of relevant predictors 395 

Due to the high number of included features, likely, most of them are not relevant for the 396 

prediction of TSH in the RF model. Thus, most features have importance scores close to zero 397 

S1 Fig. That is why we used an approach based on linear mixture models to distinguish between 398 

relevant and irrelevant features. We assume that irrelevant features are closely distributed 399 

around zero, with a small amount of variation due to the inherent randomness of the FI 400 

measures. In the case of the IncMSE, we used a normal distribution around zero to model all 401 

irrelevant features (S2 A Fig). As the node purity takes only positive values, we assume it to be 402 

gamma-distributed instead (S2 B Fig). We consider those features as relevant for which the 403 

mean importance is larger than the respective 0.999-quantile, which means they most likely 404 

stem from the set of features with importance greater than zero. Fitting resulted in a mean of 405 

0.1 and a standard deviation of 0.85 for the component around zero in case of IncMSE, and 406 
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shape parameter 0.62 and scale parameter 4.65 for the component around zero in case of node 407 

purity.  408 

Bayesian Network Analysis 409 

We additionally analyze the feature interrelations of relevant features using a Bayesian network 410 

approach. Bayesian networks are a prominent tool for probabilistic reasoning in artificial 411 

intelligence, and they model the joint distribution of a feature set in terms of a directed acyclic 412 

graph. In the graph, the nodes refer to the features (resp. random variables) 𝑿𝟏, … , 𝑿𝒏 and arcs 413 

model conditional (in)dependencies among them. The joint distribution factorizes efficiently 414 

according to the graph structure, allowing for efficient computation and approximate inference. 415 

It can be evaluated based on local probabilities depending only on a node’s parents in the graph:  416 

𝑷(𝑿𝟏, … , 𝑿𝒏) =  ∏ 𝑷(𝑿𝒊 | 𝒑𝒂𝒓𝒆𝒏𝒕𝒔(𝑿𝒊))

𝒏

𝒊=𝟏

                        (𝟏) 417 

The visualization in terms of a network is intuitive even for non-experts and supports human 418 

interpretation. Thus, a Bayesian network structure can help to understand comply associations, 419 

identify confounding factors, and make multicollinearity visible. We use a score-based hill-420 

climbing approach to learn a conditional Gaussian Bayesian network that models heterogeneous 421 

data [40,41]. For the learning of the Bayesian network, we used the Bayesian information 422 

criterion (BIC) as objective function, which is a penalized likelihood criterion. We also apply a 423 

model averaging approach to reduce false-positive arcs [42]. Before learning the network, we 424 

aggregate highly collinear features based on feature similarity for heterogeneous variables to 425 

reduce the network’s complexity [41,43]. A list of features, including aggregated features, is 426 

given in S1 Table.  427 

Computations 428 
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We report the different R packages that were used in our analysis with their version in S3 Table. 429 
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dormant subpopulations. Here
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teria and their host over four
days by quantitative proteomics.
The results highlight metabolic
cross-talk between host and
pathogen as a key driver for mu-
tual adaptation and the outcome
of infection.
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Metabolic Cross-talk Between Human
Bronchial Epithelial Cells and Internalized
Staphylococcus aureus as a Driver for
Infection*□S

Laura M. Palma Medina‡§, Ann-Kristin Becker¶, Stephan Michalik‡,
Harita Yedavally�, Elisa J.M. Raineri§, Petra Hildebrandt‡, Manuela Gesell Salazar‡,
Kristin Surmann‡, Henrike Pförtner‡, Solomon A. Mekonnen‡§, Anna Salvati�,
Lars Kaderali¶, Jan Maarten van Dijl§**, and Uwe Völker‡‡‡

Staphylococcus aureus is infamous for causing recurrent
infections of the human respiratory tract. This is a conse-
quence of its ability to adapt to different niches, including
the intracellular milieu of lung epithelial cells. To under-
stand the dynamic interplay between epithelial cells and
the intracellular pathogen, we dissected their interactions
over 4 days by mass spectrometry. Additionally, we inves-
tigated the dynamics of infection through live cell imag-
ing, immunofluorescence and electron microscopy. The
results highlight a major role of often overlooked temporal
changes in the bacterial and host metabolism, triggered
by fierce competition over limited resources. Remarkably,
replicating bacteria reside predominantly within mem-
brane-enclosed compartments and induce apoptosis of
the host within �24 h post infection. Surviving infected
host cells carry a subpopulation of non-replicating bacte-
ria in the cytoplasm that persists. Altogether, we conclude
that, besides the production of virulence factors by bac-
teria, it is the way in which intracellular resources are
used, and how host and intracellular bacteria subse-
quently adapt to each other that determines the ultimate
outcome of the infectious process. Molecular & Cel-
lular Proteomics 18: 892–908, 2019. DOI: 10.1074/mcp.
RA118.001138.

Staphylococcus aureus is a Gram-positive opportunistic
pathogen of humans, but also a commensal of the human
body. Specifically, S. aureus is commonly found in the anterior
nares of around 30% of the human population (1). Although
most S. aureus carriers do not present any clinical symptoms,
S. aureus can cause a wide range of diseases such as skin

and soft tissue infections, osteomyelitis, septic arthritis and
pneumonia (2, 3). This pathogen has gained notoriety in re-
cent years because of its prevalence in nosocomial infections
and the rise of methicillin-resistant S. aureus (MRSA) (3–5).

Although S. aureus often acts as an extracellular pathogen,
it can evade immune responses and antibiotic therapy by
entering human cells. The latter strategy is also used by the
bacteria as a mechanism to spread to other tissues and both
professional as well as non-professional phagocytic cells are
used for internalization (6–8). After the bacteria have been
taken up by the host cells, they will initially be localized in
vesicles, which subsequently might fuse with lysosomes or be
engulfed by an isolation membrane because of autophagy,
and the bacteria inside them may prevail or escape into the
cytosol. Although the internalization by host cells is potentially
lethal for the bacteria, the survivors will have two options:
proliferation or persistence. In the first case, the bacteria
replicate intracellularly and subsequently induce lysis of the
host cells. The released bacteria search for new host cells to
be infected and spread into new tissues (6–8). In the second
case, the persistent bacteria do not multiply, but adapt to the
intracellular environment and may survive intracellularly with-
out causing clinical symptoms for extended time periods. This
pattern has been linked to relapse of infections or emergence
of small colony variants (SCVs)1 of S. aureus which display
reduced metabolic activity (9–11).

Despite strain-specific differences in overall virulence, all S.
aureus strains, including laboratory strains, can display pro-
liferative and persistent phenotypes. Although this phenome-
non has been known (6), the actual adaptations either ena-
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bling active intracellular proliferation or reduced metabolic
activity and persistence are still poorly understood. The pre-
cise outcome of the interplay between the bacterium and the
host depends on the type of host cell involved and, perhaps
most importantly, the physiological states of both parties (12,
13). The main challenge in obtaining a detailed understanding
of the adaptive behavior of internalized S. aureus lies in the
fact that it is essential to study quantitative changes over an
extended period, not only in one of the two interacting parties
but simultaneously in both. Previous studies have addressed
these aspects only partially either by focusing on the internal-
ized bacteria only, or over only short periods of time post
infection (p.i.) (11, 12, 14–17). Yet, it is important to get the
“complete picture” of such an infection scenario, because the
invasion and destruction of lung epithelial cells is represent-
ative for some of the most serious staphylococcal diseases
possible, especially necrotizing pneumonia.

The present study was designed to close the current knowl-
edge gap on the interplay between S. aureus and lung epi-
thelial cells by a time-resolved analysis of both parties over
the longest possible period. The limits for such an analysis are
set by the amount of material that can be extracted for bac-
teria- and host cell-specific analyses, and the parameters to
be measured. This led us to a proteomics approach, where
adaptations of the bronchial epithelial cell line 16HBE14o-
and S. aureus were followed up to 4 days p.i. using a data
independent acquisition (DIA) method. Importantly, our find-
ings highlight dynamic adaptive changes, in both the host and
the internalized pathogen, and describe the active cross-talk
between them at different stages of infection. Additionally, we
correlate these adaptations with the intracellular localization
of the bacteria p.i. and the epithelial cells’ response. The
observations suggest that, after a period of violent conflict,
both parties reach an equilibrium phase where they are ap-
parently at peace and the bacteria have reached a persister
status.

MATERIALS AND METHODS

Bacterial Strains—S. aureus strain HG001 (18) was used to perform
all experiments. The bacteria carried plasmid pJL-sar-GFP to consti-
tutively express the green fluorescent protein (GFP; Liese et al., 2013).
For the immunostaining protocols, a spa mutant was used to prevent
unspecific binding of marker antibodies to protein A. The HG001 �spa
strain was kindly provided by Dr. Jan Pané-Farré, University of Grei-
fswald. Cultivation of bacteria was performed in prokaryotic minimal
essential medium (pMEM): 1x MEM without sodium bicarbonate (In-

vitrogen, Karlsruhe, Germany) supplemented with 1x non-essential
amino acids (PAN-Biotech GmbH, Aidenbach, Germany), 4 mM L-glu-
tamine (PAN-Biotech GmbH), 10 mM HEPES (PAN-Biotech GmbH), 2
mM L-alanine, 2 mM L-leucine, 2 mM L-isoleucine, 2 mM L-valine, 2 mM

L-aspartate, 2 mM L-glutamate, 2 mM L-serine, 2 mM L-threonine,
2 mM L-cysteine, 2 mM L-proline, 2 mM L-histidine, 2 mM L-phenylala-
nine and 2 mM L-tryptophan (All from Sigma-Aldrich, Schnelldorf,
Germany), adjusted to pH 7.4 and sterilized by filtration. One day
before the infection of epithelial cells, bacterial overnight cultures in
pMEM supplemented with 0.01% yeast extract (Sigma-Aldrich) and
10 �g/ml erythromycin (Sigma-Aldrich) were prepared by serial dilu-
tions (1�10�6 up to 1�10�10) of a 100 �l glycerol stock of a bacterial
culture with an OD600 of 1.2. Incubation was performed at 37 °C and
220 rpm. The following day, the main culture was inoculated from an
overnight culture with an OD600 between 0.3 to 0.8. The starting
OD600 of the main culture was set to 0.05 and it was incubated for �2
h in a shaking water bath at 150 rpm and 37 °C until it reached the
mid-exponential phase at an OD600 of �0.4 (supplemental Fig. S1).
The bacteria were then harvested and used for preparation of the
master mix for infection as explained below in the Internalization
Experiments” paragraph.

Cell Line—The human epithelial cell line 16HBE14o- is a trans-
formed bronchial epithelial cell line originally derived from a 1-year-
old heart-lung transplant patient (20). This cell line is known for its
ability to form tight junctions and to differentiate. The cells were
cultured at 37 °C in 5% CO2 in eukaryotic minimal essential medium
(eMEM): 1� MEM (Biochrom AG, Berlin, Germany) supplemented
with 10% (v/v) fetal calf serum (FCS; Biochrom AG), 2% (v/v) L-glu-
tamine 200 mM (PAN-Biotech GmbH) and 1% (v/v) nonessential
amino acids 100x (PAN-Biotech GmbH). The splitting of cells was
carried out every 3 days with 0.25% trypsin-EDTA (Gibco®, Grand
Island, NY). After thawing of frozen stocks (in liquid N2) the cells were
maintained for 20 additional passages. The cell lines stocks used are
not authenticated.

Experimental Design and Statistical Rationale—Four independent
biological replicates of the infection set-up were used for quantifica-
tion of bacterial and host cell populations, and for mass spectrometry
measurements. The number of replicates was selected to ensure that
at every time point there were at least three consistent measurements
for every protein. The sampling of each independent infection con-
sisted of 8 samples taken over the course of 4 days, including a 0 h
sample which is the control condition. In total, 32 samples of the
cytosolic proteome of bacteria and 32 samples of the human bron-
chial epithelial cell proteome were measured. To avoid measuring
replicates of the same condition sequentially, the measuring order of
each set of samples was determined by assigning a random number
between 1 and 32 to each sample (function sample in R version 3.4.4
(21)). Additionally, samples for imaging were collected from three
independent infection experiments.

To determine changes over time in protein abundance, an empirical
Bayes moderated F-test was conducted for each protein profile. This
test also evaluates the similarity of the replicates. The moderated p
values were corrected for multiple testing using Benjamini and Hoch-
berg’s multiple testing correction.

Internalization Experiments—Internalization experiments were per-
formed essentially as described by Pförtner et al. (22). Briefly, inter-
nalization was performed using a confluent 16HBE14o- cell layer
seeded at a density of 1�105 cells/cm2 in 12-well plates, 3 days
before infection. The infection was carried out at a multiplicity of
infection (MOI) of 25 bacteria per host cell. The master mix for
infection was prepared from a mid-exponential (OD600 of 0.4) culture
of S. aureus HG001 diluted in eMEM, buffered with 2.9 �l sodium
hydrogen carbonate (7.5%, PAN-Biotech GmbH) per ml bacterial
culture added. The growth medium over the confluent epithelial layer

1 The abbreviations used are: SCVs, small colony variants; p.i., post
infection; DIA, data independent acquisition; GFP, green fluorescent
protein; pMEM, protein minimal essential medium; eMEM, eukaryotic
minimal essential medium; FCS, fetal calf serum; MOI, multiplicity of
infection; LC3, microtubule-associated protein 1A/1B-light chain;
LAMP-1, lysosomal-associated membrane protein 1; PFA, para-form-
aldehyde; TEM, transmission electron microscopy; ROS, reactive ox-
ygen species; RNS, reactive nitrogen species; BCAAs, branched-
chain amino acids.
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was replaced with the master mix, and the coculture was incubated
for 1 h at 37 °C in 5% CO2. Afterward, the medium was collected
(non-adherent sample) and replaced with eMEM medium containing
10 �g 47 ml of lysostaphin (AMBI Products LLC, Lawrence, NY). The
medium was replaced every 2 days.

For collection of the proteome samples, the culturing medium was
aspirated, and the epithelial cell layers were treated for 5 min at 37 °C
with UT buffer (8 M urea, 2 M thiourea in MS-grade water; Sigma-
Aldrich) to generate samples for analysis by mass spectrometry (MS).
If samples were intended for the collection of bacteria, the disruption
of epithelial cells was performed for 5 min at 37 °C in 0.05% sodium
dodecyl sulfate (SDS; Carl Roth, Karlsruhe, Germany). Samples were
collected at 2.5 h, 6.5 h, 24 h, 48 h, 72 h, and 96 h p.i.

To monitor changes in the abundance of human and bacterial cells,
counting was performed at the times of sample collection. Epithelial
cells were counted after staining with trypan blue dye using a Count-
ess® system (Invitrogen). Quantification of intracellular bacteria and
infected epithelial cells was performed with a Guava® easyCyte flow
cytometer (Merck Millipore, Darmstadt, Germany) by excitation of the
GFP with a 488 nm laser and detection at 510–540 nm.

Preparation of Proteome Samples—After disruption of epithelial
cells with 0.05% SDS, two million liberated bacteria were sorted by
flow cytometry using a FACSAria IIIu cell sorter (Becton Dickinson
Biosciences, Franklin Lakes, NJ) per time point. The recognition of
bacteria was carried out by excitation with a 488 nm laser and the
emission was detected in the range of 515–545 nm. The bacterial
cells were collected on low protein binding filter membranes with a
pore size of 0.22 �m (Merck Millipore). These bacteria-containing
filters were immediately placed in Eppendorf tubes that were then
frozen by transferring them to a �20 °C freezer for the course of the
experiment and then kept at �80 °C until use. The bacteria on the
filter were lysed by incubation for 30 min at 37 °C with 7.4 �g/ml
lysostaphin in 50 mM ammonium bicarbonate (Sigma-Aldrich) (23).
Digestion of bacterial proteins on the filter was performed overnight at
37 °C with 0.1% Rapigest SF surfactant (Waters, Eschborn, Germany)
and 0.3 �g of trypsin (Promega, Madison, WI).

For human proteome analyses, the protein content of samples was
quantified using a Bradford assay (Bio-Rad, Hercules, CA). Four �g of
protein per sample were prepared for MS measurements by reduction
with 2.5 mmol/L dithiothreitol (Thermo Fisher Scientific, Idstein, Ger-
many) for 1 h at 60 °C and alkylation with 10 mmol/L iodoacetamide
(Sigma-Aldrich) for 30 min at 37 °C. Then, the samples were digested
overnight with trypsin (protein/trypsin 25:1) at 37 °C.

The following 16HBE14o- samples were used for the construction
of the spectral library of the host: a confluent cell layer cultured in a 10
cm dish for 3 days, an apoptotic cell layer in a 10 cm dish cultured for
a week, non-polarized cells cultured for 3 days over Transwells®, and
lastly polarized cells cultured for 11 days over Transwells® (Corning,
Schnelldorf, Germany). The last two conditions were grown over 12
mm inserts with 0.4 �m pores, and with media volumes of 400 �l on
the apical side and 1300 �l on the basal side of the cultures. Further-
more, to expand the host proteome library, published reads (24) of the
bronchial epithelium cell line S9 were also used. These cells are
immortalized cells isolated from a patient with cystic fibrosis that were
transformed with a hybrid virus adeno-12-SV40 (ATCC® number
CRL-2778) (25). For the construction of the host proteome spectral
library, aliquots of the different samples of whole cell lysates of
16HBE14o- in UT buffer were mixed, and then 25 �g of the extract
mixture was fractionated by SDS-PAGE. The gel was partitioned into
ten protein-containing pieces that were destained by 15 min washes
with ammonium bicarbonate solution (200 mM) in 50% acetonitrile
(Mallinckrodt Baker, Inc., Deventer, Netherlands) at 37 °C and 500
rpm. Then, the gel pieces were dehydrated by incubation with ace-
tonitrile at 37 °C and 500 rpm. The supernatant was discarded after-

ward. Proteins in each gel piece were in-gel digested overnight at
37 °C with 20 �l of trypsin (10 ng/�l) and 30 �l ammonium bicarbon-
ate solution (20 mM). Lastly, the peptides were extracted by addition
of 0.1% acetic acid (Carl Roth) and incubation in an ultrasound bath
for 30 min. Afterward, the supernatant was collected, 50% aceto-
nitrile with 0.05% acetic acid were added to the gel pieces for
another 30 min incubation, and both supernatant fractions were
united. Two of the supernatants of the ten SDS-PAGE fractions
were mixed to generate five final samples with essentially the same
protein quantity, which were then used for further processing and
DDA-measurements.

The tryptic peptides derived from bacterial or human proteins were
concentrated and purified using C18 ZipTip columns (Merck Millipore).
All samples were resuspended in a buffer consisting of 2% acetoni-
trile and 0.1% acetic acid in MS-grade water. Indexed Retention Time
(iRT) peptides (Biognosys AG, Schlieren, Switzerland) were added to
the samples for feature alignment, peak calibration and signal quan-
tification. The spike in of the samples was carried out according to the
manufacturer�s instructions assuring that the injected volumes have
one IE (injection equivalent) of iRT peptide mix. The final volume of the
samples and the injection volumes were set to 12 �l and 10 �l for S.
aureus samples, 20 �l and 5 �l for 16HBE14o- samples, and 20 �l
and 4 �l for the spectral library samples, respectively.

Mass Spectrometry Measurements—Tryptic peptides were sepa-
rated on an Accucore 150-C18 analytical column of 250 mm (25 cm �
75 �m, 2.6 �m C18 particles, 150 Å pore size, Thermo Fischer
Scientific, Waltham, MA) using a Dionex Ultimate 3000 nano-LC
system (Thermo Fischer Scientific). Peptides were eluted at a con-
stant temperature of 40 °C and a flow rate of 300 nL/min with a 120
min linear gradient (2% to 25%) of buffer (acetonitrile in 0.1% acetic
acid).

To design a spectral library MS/MS data were recorded on a Q
Exactive mass spectrometer (Thermo Fischer Scientific) in data de-
pendent mode (DDA). The MS scans were carried out in a m/z range
of 300 to 1650 m/z. Data was acquired with a resolution of 70,000 and
an AGC target of 3�106. The top 10 most abundant isotope patterns
with charge �2 from the survey scan were selected for fragmentation
by high energy collisional dissociation (HCD) with a maximal injection
time of 120 ms, an isolation window of 3 m/z, and a normalized
collision energy of 27.5 eV. Dynamic exclusion was set to 30 s. The
MS/MS scans had a resolution of 17,500 and an AGC target of 2�105.

MS/MS analyses of samples were performed in data independent
mode (DIA) on a Q Exactive Plus mass spectrometer (Thermo Fischer
Scientific) following the method described by Bruderer et al. (26).
Briefly, the data was acquired in the m/z range from 400 to 1220 m/z,
the resolution for MS and MS/MS was 35,000, and the AGC target
was 5�106 for MS, and 3�106 for MS/MS. The number of DIA
isolation windows was 19 with 2 m/z overlap. For further details to the
instrumental setup and the parameters for LC-MS/MS analysis in
DDA and DIA mode see supplemental Tables S1 and S2.

Immunofluorescent Confocal Microscopy—Time-lapse imaging
was carried out with a DeltaVisionRT deconvolution microscope (GE
Healthcare Europe GmbH, Freiburg im Breisgau, Germany). To per-
form the imaging, the actual infection experiment was carried out on
a glass bottom 35-mm plate (MatTek, Ashland, MA). After a change of
media with lysostaphin, the plate was transferred to the microscope
base under incubation conditions. Imaging of the epithelial layer was
performed by light microscopy, whereas GFP fluorescent bacteria
were observed by excitation with a 490/20 nm mercury vapor lamp
and detection of fluorescence at 528/38 nm. Image acquisition was
performed every 5 min for the first 48 h, then from 48 h to 72 h and
finally from 92 h to 96 h. Picture processing was performed with Fiji
(http://fiji.sc/Fiji).
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Subcellular localization of microtubule-associated protein 1A/1B-
light chain (LC3) and lysosomal-associated membrane protein 1
(LAMP-1) by immunofluorescence microscopy was performed using
a Leica TCS SP8 Confocal laser scanning microscope (Leica Micro-
systems B.V., Amsterdam, Netherlands). The cells were seeded over
coverslips of 18 mm diameter 3 days before infection as described
above. However, in this case a HG001 �spa mutant was used to avoid
aspecific IgG binding. The samples were collected at 0 h, 1 h, 2.5 h,
6.5 h, 24 h, 48 h, 72 h, and 96 h by fixation with 2% para-formalde-
hyde (PFA, Merck Millipore) for 20 min at room temperature. Prepa-
ration of the samples for the actual microscopy was performed si-
multaneously after conclusion of the experiment. The samples were
permeabilized with 0.5% Tween 20 (Sigma-Aldrich) for 30 min at room
temperature and then nonspecific binging sites were blocked with 1%
bovine serum albumin, 10% FCS in 0.07% Tween 20 for 120 min at
room temperature. All antibodies were diluted in blocking solution.
Primary rabbit anti-LC3B (Cat. No. 1384; Novus Biologicals, Oxon,
England) and mouse CD107a (LAMP-1; Cat. No. 555798; BD,
Drachten, Netherlands) antibodies were used at 1:500 and 1:100
dilutions, respectively. The incubation was carried out simultaneously
for 1 h at room temperature in a humidified chamber. The secondary
Goat anti-rabbit antibody conjugated with Alexa Fluor 594 (A11012;
Invitrogen) and goat anti-mouse antibody conjugated with Alexa Fluor
647 (A-21236; Invitrogen) were used, both, at a 1:500 dilution with
incubation for 1 h at room temperature. Lastly, the DNA was stained
with 4�,6-diamidino-2-phenylindole (DAPI), the slides were mounted
with Mowiol® 4–88 mounting medium (EMD Chemical, Inc., Te-
mecula, CA) and stored at �20 °C until microscopic visualization.

Transmission Electron Microscopy (TEM)—After the invasion as-
say, 16HBE14o- cells were fixed with 0.2% glutaraldehyde Poly-
science, Inc.,Warrington, PA and 2% PFA in 0.1 M sodium cacodylate
buffer (pH 7.4; Sigma-Aldrich) for 10 min. Subsequently, the fixative
solution was replaced with new fixative solution and incubation was
continued for 30 min at room temperature. The cells were rinsed twice
for 5 min each in 0.1 M cacodylate buffer at room temperature fol-
lowed by post-fixation in 1% Osmium tetroxide (Electron Microscopy
Sciences, Hatfield, PA)/1.5% potassium ferrocyanide (Merck Milli-
pore) in 0.1 M sodium cacodylate at 4 °C for 30 min. The 16HBE14o-
cells were then incubated with 1% tannic acid in 0.05 M of sodium
cacodylate buffer for 5 min to enhance the color of the 16HBE14o-
cell membranes and demonstrate the internalization of S. aureus.
The cells were washed with Milli-Q water, dehydrated through serial
incubation in graded ethanol (30%, 50%, 70%, and 100%) and lastly
embedded in EPON resin (Hexion, Columbus, OH). Ultrathin sections
(80 nm) were cut with an UC7 ultramicrotome (Leica, Vienna, Austria)
and contrasted using 5% uranyl acetate for 20 min, followed by
Reynolds lead citrate for 2 min. Images were recorded with a FEI
CM100 transmission electron microscope operated at 80 KV using a
Morada digital camera.

Identification and Quantification of Proteins—Human proteins were
identified using SpectronautTM Pulsar 11 (v11.0.18108.11.30271)
software (Biognosys AG) against a human bronchial epithelial cell line
generated from data-dependent acquisition measurements of
16HBE14o- samples and 12 additional data sets of the cell line S9
that were previously published (24). The spectral library construction
was based on a Comet database search using a human protein
database in a target-decoy approach using the trans-proteomic-
pipeline (TPP) version 4.8.0 PHILAE (27, 28). The raw files were
converted to mzML files with msconvert (Proteowizard version
3.0.11537; November 31, 2017) using a vendor peak picker on spec-
tra with MS level 1–2. Then, the mzML files were searched with the
Comet search engine (2014.02 rev. 0) against a human data base that
comprised 20.217 Uniprot-reviewed entries (February 2018), 102
cRAP common contaminants entries (https://www.thegpm.org/crap/)

and 1 entry for the concadenated iRT peptides. The target-decoy
version of this database was generated by adding all reverse entries
resulting in 40.640 entries in total. The target-decoy search was
performed with a parent mass error of �20 ppm, fragment mass error
of 0.01 Da, and allowing full-tryptic peptides (trypsin/P cleavage rule)
with up to two internal cleavage sites. The search included fixed
modification of �57.021464 for carbamidomethylated cysteine and
variable modification of �15.9949 for oxidized methionine. The
search results were scored using PeptideProphet (29) and iProphet
(30) with a minimal peptide length of 7 amino acids. The global protein
FDR calculation of 0.01 was assessed with MAYU (31). The filtered
peptide spectrum matches were used to generate the ion library in
SpectronautTM v11.0.15038.14.27660 (Asimov; Biognosys AG, Swit-
zerland) setting the m/z mass range from 300 to 1.800, 6 to 10
fragments per peptide, removing fragments smaller than 3 amino
acids, no segmented regression, and a minimum root mean square
error of 0.5.

The S. aureus ion library used in this study was generated previ-
ously (32). Briefly, the data sets used for the construction of this
library comprise samples of the cytosolic and exoproteomes of S.
aureus HG001 and the isogenic �rho mutant ST1258. This ion library
was constructed with a similar protocol as the one applied for the host
library. The Comet database search was based on the fasta file from
AureoWiki (33). This database comprises 2852 S. aureus protein
entries. The final database used for the target-decoy approach con-
tains 5944 entries in total (including cRAP contaminats). The peptide
spectral matching was performed using the trypsin/P digest rule
with a number of tolerable termini (NTT) of 2, a parent mass error of
�30 ppm, fragment mass tolerance of 0.01 Da, variable modifica-
tion of �15.9949 for methionine oxidation and fixed modification of
�57.021464 for carbamidomethylation (sample preparation-de-
pendent). The generation of the ion library in SpectronautTM

v11.0.15038.14.27660 resulted in a constructed library consisting
of 2154 proteins with 38,570 tryptic peptides.

The Spectronaut DIA-MS analysis was carried out using dynamic
MS1 and MS2 mass tolerance, dynamic XIC RT extraction window,
automatic calibration, dynamic decoy strategy (library size factor 	
0.1, minimum limit 	 5000), protein Q-value cutoff of 0.01, precursor
Q-value cutoff of 0.001. The search included variable modifications of
�15.9949 for oxidized methionine, and if reduction and alkylation was
used, fixed modifications of �57.021464 for carbamidomethylated
cysteine. A local cross run normalization was performed using com-
plete profiles with a Q-value 
 0.001. The MS2 peak area was
quantified and reported. Missing values were parsed using an iRT
profiling strategy with carry-over of exact peak boundaries (minimum
Q-value row selection 	 0.001). Only nonidentified precursors were
parsed with a Q-value � 0.0001. Ion values were parsed when at least
25% of the samples contained high quality measured values. The
settings for the SpectronautTM analyses are available in supplemental
Table S3. Afterward, parsed values were filtered out again, if they
were more than 2-fold higher than the measured values preventing
false positives because of parsing. For further analyses proteins with
at least two identified peptides were considered. The identified pro-
teins were annotated based on the Uniprot database and the gene
names for S. aureus were extracted from AureoWiki (33).

Statistical Testing of Changes in Protein Abundances Over Time—
Peptide intensities were normalized by the mean of all time points.
The time-course data of each protein were then calculated as the
median of all normalized peptide data belonging to that protein.
Subsequently, the protein data were analyzed using the LIMMA pack-
age version 3.34.9 (34) in R version 3.4.4 (21). First, a natural regres-
sion spline with four degrees of freedom was fitted for each protein,
considering that expression changes smoothly over time. Then, a
linear model (35) with eight parameters was fitted to the data, includ-
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ing an intercept, four spline parameters and three parameters corre-
sponding to comparability of the four replicates. An empirical Bayes
moderated F-test was conducted for each protein, which can detect
very general changes over time while simultaneously testing for sim-
ilarity of the replicates. Because of general differences in replicate 1
data at 6.5 h and 24 h, these 16HBE14o- cell samples were excluded
for the testing only, but not for calculating the median values. The
moderated p values were corrected for multiple testing using Benja-
mini and Hochberg’s multiple testing correction. Finally, proteins with
an adjusted p value below � 	 0.01 were assumed to be significantly
changed during the time course of infection. For further analyses, the
data were averaged over the replicates using the median for each
protein and shifted to start in zero at time point 0 h.

Afterward the time course data of all significantly changed proteins
were clustered using a noise-robust soft-clustering (fuzzy c-means)
implemented in the Mfuzz package version 2.38.0 (36, 37) in R version
3.4.4 (21). Because the clustering is performed in Euclidian space, the
expression values of proteins were standardized for clustering only to
have a standard deviation of 1, so that only the dynamics were
considered. The optimal number of clusters was chosen using both a
cluster validity index (minimum centroid distance) and a manual val-
idation of biologically meaningful groupings.

RESULTS

S. aureus Population Displays a Dormant State After 48 h
p.i. in Human Epithelial Cells—To analyze physiological
changes in S. aureus internalized by 16HBE14o- lung epithe-
lial cells over an extended period of time, we applied a pre-
viously established infection assay (22) and assessed the
longest time span over which bacteria could be reproducibly
isolated from the infected cells in sufficient amounts to enable
proteome profiling. Pilot experiments showed that this is pos-
sible for at least 96 h, which was therefore, selected as the
end point for all further analyses. During these 96 h, the fate of
the infected cells and the internalized bacteria was recorded
through time-lapse microscopy as shown in the three Supple-
mental movies and illustrated through snapshots in Fig. 1A.
Additionally, the abundance of the bacterial population during
infection was measured by quantification of the mean fluores-
cence intensity (Fig. 1B). These data show that the internal-
ized bacteria do not multiply significantly during the first 8 h
p.i. Subsequently, most bacteria start to proliferate leading to
lysis of their respective host cells. Of note, in the applied
experimental setup, host cell lysis is suicidal for the bacteria
because of the presence of lysostaphin in the medium. Ac-
cordingly, the liberated bacteria disappear and cannot rein-
fect other cells. After �30 h p.i., nonreplicating bacteria re-
main detectable within the surviving host cells until the end of
the experiment at 96 h p.i. These findings were corroborated
by flow cytometric counting of the bacterial numbers (Fig. 1C).
Notably, two distinctive bacterial phenotypes were observed
over time, namely one involving high rates of intracellular
bacterial replication and another one involving internalized
bacteria in a dormant state. Further, although the number of
host cells remains essentially constant during the first 24 h
p.i., this number increases during later stages (Fig. 1C). The
percentage of host cells that contain bacteria gradually de-

creases over time, starting with a maximum of �27% at 2.5 h
p.i. and ending with �13% at 96 h p.i.

As microscopy and flow cytometry cannot reveal the intri-
cacies of the processes occurring in host cells and internal-
ized bacteria, we employed quantitative proteomics profiling.
This approach has the advantage of quantifying many differ-
ent proteins belonging to the adaptive processes in bacteria
and the human host cells with good reproducibility. Thus,
changes in each protein’s abundance can be followed over
time and compared. Through data-independent acquisition,
application of an in-house built S. aureus HG001 spectral
library (24, 32) and human cell line spectral libraries, we
achieved a complete data collection for 3644 human and 930
staphylococcal proteins at all time points during 96 h p.i.
(supplemental Tables S6 and S7). Because the bacterial pop-
ulation displays two different phenotypes with different prom-
inence at the different stages of infection, the observed
proteome dynamics describe the adaptive changes in the
bacteria at each stage and the final “shape” of the persistent
bacteria. Likewise, these measurements record the influence
of the intracellular bacteria on the host’s physiological state
over time. To determine the weight of the observed changes,
the generated bacterial and host proteome data were fitted to
spline lines and tested against constant linearity. This linearity
test considers the replicates’ variability, rendering it an indi-
cator of the reliability of the observed changes. Furthermore,
all proteins that show significant changes were clustered de-
pending on their behavior over time, thereby marking the
stages p.i. at which important changes take place (supple-
mental Fig. S2).

The differences in bacterial and host replication rates as
observed by microscopy are mirrored in the abundance of the
respective ribosomal proteins (Fig. 1D–1E). Consistent with
their unimpaired growth, the host cells do not show major
regulatory changes in ribosomal protein abundance over the
time course of infection. In contrast, the amounts of bacterial
proteins that make up the small and large ribosomal subunits
start to decrease after internalization, being detectable at
substantially lowered amounts at 48 h p.i. This time point
correlates with the absence of bacterial growth observed in
the live cell imaging. An exception to this general trend is
the “Staphylococcus aureus hibernation promotion factor”
(SaHPF), which shows significantly increased levels right from
the start of infection (Fig. 1E). This protein represses transla-
tion, and therefore, it is important for survival in the stationary
phase and during conditions of nutrient deprivation (38, 39).

Nutrient Competition Affects Primarily S. aureus, but Staph-
ylococcal Persistence Triggers Changes in Host Metabolism
at 48 h p.i.—The acquisition of metabolites and their subse-
quent conversion to cellular constituents is a fundamental
feature of all living organisms. This implies that different or-
ganisms residing in the same system are likely to compete for
nutrients. Accordingly, internalized S. aureus will compete
with the host for carbon sources. This is clearly reflected in the
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proteins required for central carbon metabolism, both in the
bacteria and the host. At first instance, the proteins related to
the bacterial glycolytic pathway remain fairly stable after in-
ternalization displaying similar levels as encountered in expo-
nentially growing bacteria (Fig. 2). Yet, at 6.5 h p.i., the patho-
gen displays changes in the levels of most of the proteins
related to the glucose activation phase. Correspondingly, the

host presents similar changes, but only from 48 h p.i. on-
wards, which coincides with transition of the S. aureus pop-
ulation into a dormant state. Remarkably, during the entire
course of infection, neither the pathogen nor its host regulates
proteins related to the production of acetyl-CoA from pyru-
vate. During nutrient-rich conditions, S. aureus will produce
acetate from acetyl-coA, thereby providing the NAD� neces-

FIG. 1. After internalization two subpopulations of S. aureus can be distinguished by differences in replication rate. The progression
of the infection was followed by time-lapse microscopy (A; Supplemental videos; scale bar � 20 �m) and the GFP fluorescence
intensity was quantified to elucidate the dynamics of the bacterial population (B). Most of the bacteria replicate intracellularly during the
first day of infection, but a secondary subpopulation remains in a dormant state during the whole time of observation. The red dots indicate
the time points of sample collection for further experiments. Counting of bacterial cells, and infected and uninfected host cells, as jointly
presented in (C) confirmed the changes in both populations. Average values of four replicates are presented (B-C). Mass spectrometry
quantification of ribosomal proteins of the host (D) or S. aureus (E). The list of proteins presented in the line plots is available in supplemental
Table S8. The levels of the proteins were calculated based on the mid-exponential phase or the 0 h time point as reference, for the bacteria
and the host, respectively. The SaHPF protein detected in higher amounts is colored in red.
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sary for the glycolysis process (40). Our analysis shows that,
after internalization, the bacteria repress some of the respective
enzymes, but this regulation is reversed 48 h p.i., suggesting
that the dormant bacteria restart the production of acetate.
Proteins involved in the TCA cycle do not mirror this behavior,
displaying increased levels after internalization and remaining at
a constant increased level over the whole duration of the ex-
periment. This strategy would supply the bacteria with enough

metabolic energy under conditions of low glucose availability.
The strongest level increase takes place around 24 h p.i., which
corresponds to the transition in subpopulation predominance
from the replicating to the dormant phenotype of the bacteria.
The two proteins of this pathway that do not display increased
levels (SAOUHSC_01266, and SAOUHSC_01267) are 2-oxogl-
utarate oxidoreductases, which participate in the reverse TCA
cycle and synthetize 2-ketoglutarate. In contrast to the bacteria,

FIG. 2. Quantification of proteins related to the central carbon metabolism. Proteins were grouped depending on their main function in
the different pathways, and boxes mark selected central metabolites. The proteome data from S. aureus are depicted on the left side of the
diagram and the proteins without assigned gene symbol are labeled according to their locus tag without the “SAOUHSC_” identifier. The host
data are shown on the right side of the diagram. Protein trends that deviate (p value 
0.01) from constant linearity over time were fitted to
clusters according to their behavior (supplemental Fig. S2). Clustering assignment is shown in the last column “C.” The color coding is based
on the standard deviation of each set of data. �S. aureus 	 2.34 and �HBE 	 0.33. The ratios were obtained from the measurements of four
biological replicates.
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most TCA cycle proteins from the human host cells show no
changes in abundance, except for those involved in the metab-
olism of fumarate and �-ketoglutarate. Of note, these com-
pounds are key intermediates in amino acid metabolism.

After the first 2.5 h p.i., the bacteria activate pathways
related to energy acquisition from alternative sources, like
fatty acids, as can be inferred from the elevated levels of S.
aureus proteins involved in the catabolism of glycerol and
fatty acids (Fig. 3). This increased level of fatty acid degrading
enzymes becomes even stronger after the bacteria are pre-
dominantly in a dormant state, suggesting that the persistent
bacteria prefer fatty acids over glycerol. This effect is not
observed in the host proteome, where the levels of most
proteins related to fatty acid degradation do not show major
modifications.

Oxygen is a key factor limiting bacterial metabolism during
infection because of the microaerobic environment they are
exposed to after internalization (13, 17). This is clearly re-
flected by the mild increase in S. aureus proteins related to
fermentation after internalization (Fig. 3), but the major rise
takes place after 24 h p.i. On the other hand, most proteins
related to the electron transport chain present a peak of
upregulation at 24 h p.i., after which their abundance de-
creases. Conversely, the host proteome does not show major
changes regarding the possible competition for oxygen. Only
four proteins related to fermentation and oxidative phosphor-
ylation present some regulation (Fig. 3). In addition, the pro-
teins Elongin-B (ELOB), Elongin-C (ELOC), and Cullin-5
(CUL2), which are involved in the degradation of the Hypoxia-
Inducible Factor (HIF�) remain constant over time, indicating
that there is no increase in the abundance of this factor and
suggesting that the host cells do not perceive a reduction of
the available oxygen.

Amino acids are major alternative sources for carbon and
nitrogen, which may play a role in adaptations of a pathogen
to the intracellular milieu. Arginine, asparagine, and trypto-
phan have gained interest because of their relevance in the
host’s and bacterial defense mechanisms (41, 42). The path-
ways for biosynthesis and degradation of amino acids are
complex because they are interconnected. Nevertheless, the
proteomics data purport that S. aureus employs most path-
ways needed for amino acid metabolism during the entire
course of infection. Conversely, the host proteome is geared
toward utilization of amino acids that are primarily linked to
the TCA cycle (Fig. 4).

Bacterial enzymes linked to the degradation of histidine,
serine, cysteine and threonine show increased levels right
from the moment of internalization, even preceding the start
of intracellular replication. These proteins are related directly
with the generation of precursors of pyruvate and the one-
carbon metabolism. Nevertheless, because there is no repli-
cation of bacteria after 48 h p.i., the degradation of histidine,
serine, cysteine, and threonine is most likely used to access
an alternative carbon source. On the contrary, the infected

host cells induce the GLYM protein at later stages of infection,
which is directly related to the conversion of serine into gly-
cine and 5,10-methylenetetrahydrofolate. The latter molecule
is an indispensable building block for purine biosynthesis (43,
44). This finding is fully consistent with the continuing growth
of the human cell layer once the internalized pathogen pre-
dominantly presents a state of dormancy after 48 h p.i.

Branched-chain amino acids (BCAAs; Valine, Leucine, Iso-
leucine) are essential for human cells and, thus, need to be
ingested from the environment. Consequently, the human
proteins handling these amino acids are all involved in their
degradation. Only at the last time point p.i. the human pro-
teins addressing BCAAs have slightly increased levels (Fig. 4).
On the other hand, the BCAAs play a crucial role in the
regulation of S. aureus metabolism, because they serve as
cofactors for CodY. This regulator also represses the produc-
tion of the IlvA1, IlvE, and IlvC proteins, which have all in-
creased abundance to participate in the biosynthesis of
BCAAs (45). In parallel, the observed upregulation of the Ald1
and Ald2 proteins involved in the degradation of alanine im-
plies that also this amino acid is used as an alternative carbon
source during infection.

The amino acid catabolic pathways related to the TCA cycle
are mostly needed to generate the intermediate molecules
�-ketoglutarate, oxaloacetate and fumarate. S. aureus in-
creases levels of proteins from the urea cycle (RocADF;
ArcAC) to degrade arginine and to produce �-ketoglutarate
from glutamate (GudB). Therefore, these substrates are used
to feed the TCA cycle. Of note, the degradation of arginine is
carried out by two pathways. First, the arginase pathway will
produce glutamate (46) and presents upregulation right from
the beginning of the infection (RocADF). Similarly, the arginine
deaminase pathway (ArcAC), converting arginine to ornithine
(47), expresses higher levels from the beginning of the infec-
tion but its highest quantities are found in the dormant bac-
terial population. Further, upregulated proteins associated
with aspartate metabolism are dedicated to the production of
lysine, as was also observed by Michalik et al. and Surmann
et al. (13, 24). In contrast to the internalized bacteria, the
amino acid metabolism in the infected host cells is geared
toward the biosynthesis of amino acids for protein production.
Specifically, the glutamate and aspartate metabolic pathways
are upregulated in relation to the formation of collagen
(PLOD2, PLOD3, P4HA1, P4HA2), and the synthesis of aspar-
agine (ASNS), L-proline (OAT, P5CR1) and spermidine (SPEE).
With exception of ASNS and SPEE, all these regulatory events
start to take place after 48 h p.i. with a constant increment.

Staphylococcus aureus Escapes Degradative Compart-
ments, Leading to a Persistent Population Residing in the
Cytosol—Because S. aureus can reside in different intracel-
lular niches, we determined the subcellular location of the
bacteria over time through confocal immunofluorescence mi-
croscopy (Fig. 5A; supplemental Fig. S3). Inspection of the
colocalization of the GFP-positive bacteria with LAMP-1 and

Cross-talk of Bronchial Cells and S. aureus During Infection

Molecular & Cellular Proteomics 18.5 899



FIG. 3. Proteins related to alternative carbon sources and respiration. Assignment of proteins to pathogen (S. aureus) and host (HBE) is
indicated on top of the respective protein groups. Because of limited carbon sources post infection, alternative pathways for energy
consumption are upregulated. Substrates like glycerol and fatty acids are being consumed during intracellular conditions. Another major
adjustment is related to oxygen availability which affects the pathways related to fermentation and oxidative phosphorylation. The protein
quantities were derived from the mass spectrometry measurements of four biological replicates. Time trends with significant changes (p
value 
 0.01) were fitted into different clusters depending on their behavior (supplemental Fig. S2). The assigned cluster is presented in the
column “C.” The color coding is based on the standard deviation of each set of data. �S. aureus 	 2.34 and �HBE 	 0.33. HIF: Hypoxia-Inducible
Factor.
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LC3 revealed that, during the first 24 h p.i., most of the
bacteria are located inside membranes. Specifically, the rep-
licating population resides inside LAMP-1- or LC3-associated
compartments, whereas individual bacteria or small bacterial
clusters are detectable in the cytosol from 2.5 h p.i. with
increasing frequency over time. Ultimately, at the last time
points, most observed bacteria do not colocalize with the
membrane markers, suggesting a cytosolic localization of
the persistent subpopulation. To substantiate these findings,
we performed transmission electron microscopy (Fig. 5B;
supplemental Fig. S4), highlighting that the replicating bacte-
ria localize inside so-called “light phagosomal compartments”
or “dark degradative compartments,” which are possibly lyso-
somes, during the first 48 h p.i. Further, at 72 h and 96 h p.i.
all bacteria are no longer enclosed by a membrane, ultimately
showing that the persister population resides in the cytosol.
Of note, all bacterial clusters found inside phagocytic mem-
branes are in dying host cells (Fig. 5B, supplemental Fig. S4).

Considering that the escape of S. aureus from the vesicles
relies on toxins (48), we inspected the possible presence of
staphylococcal virulence factors. Consistent with the ob-
served changes in the subcellular localization of bacteria, the
toxins HlgB, HlgC, Hla, LukH, and LukG are upregulated after
24 h p.i. (Fig. 5C; supplemental Table S8). These pore-forming
proteins have been correlated with escape and subsequent
host cell lysis (48). Of note, all these toxins are regulated by
the Agr and/or SaeSR systems that positively or negatively
regulate many more proteins involved in pathogenesis (49).
Accordingly, the surface-bound protein Spa, which is nega-
tively regulated by Agr, is present in decreased amounts after
internalization with a minimum at 6.5 h p.i. A similar but less
pronounced trend is observed for the surface-bound proteins
ClfA and ClfB, the expression of which relies also on other
regulators, such as the sigma factor B (SigB) in case of ClfA.

As the physicochemical conditions within different subcel-
lular compartments differ substantially, bacteria within these
compartments need to respond appropriately to different
stresses. This is particularly true for lysosomes and phago-
somes, which represent acidic compartments. In addition, the
phagosomes are known to produce massive amounts of re-
active oxygen species (ROS). Such conditions have a strong
propensity to damage bacterial macromolecules, such as
DNA and proteins. Indeed, the levels of many bacterial pro-
teins involved in the prevention of oxidative damage are al-
tered over time. These include KatA, SodA, SodM, AhpC,
GapB, Hmp, and Dps (Fig. 5D; supplemental Table S8). In
particular, the latter three proteins present a strong upregu-
lation. GapB increases the production of NADPH, which is

needed to keep antioxidant proteins in a reduced state to
allow them to reduce ROS and keep cytoplasmic proteins in a
reduced state. The nitric oxide dioxygenase Hmp is involved
in NO detoxification (50), whereas the ferroxidase Dps pre-
vents DNA damage by binding iron and thus inhibiting hy-
droxyl radical formation (51). Of note, the upregulation of
these proteins is triggered at 24 h p.i., a time point at which
the growing bacteria are escaping from the cells (Fig. 1A, 1B)
and the shift toward dormant/latent cells is taking place.
Interestingly, the levels of these proteins remain high at later
time points p.i. Similarly, proteins involved in the response to
DNA damage, XseA and AddA, are upregulated after internal-
ization (Fig. 5E), whereas other DNA damage-inducible pro-
teins such as UvrB and UvrB2 are upregulated after 24 h.
These observations imply that the bacteria are probably ex-
posed to ROS and reactive nitrogen species (RNS) until 96 h
p.i. and, remarkably, that this upregulation is not specifically
related to the compartment in which they reside.

Intracellular S. aureus Persisters Induce a Nonapoptotic
Reaction of the Host—During the live cell imaging, it was
observed that host cells lyse as a consequence of the repli-
cation of intracellular bacteria. This raised the question
whether any indicators related to the mode of cell death could
be identified. Indeed, the host cell proteome showed strong
regulation of particular proteins implicated in cell death (Fig.
6). Of note, most regulators involved in the so-called apopto-
tic and pyroptotic pathways are kinases, which require acti-
vation to perform their functions, therefore their abundance
does not correlate with host responses. Consequently, we
investigated the cell death mechanisms by looking at other
modulators of these pathways not requiring activation. These
include the BAX, BAD, DBLOH, UACA, APAF, and ACS pro-
teins that promote the initiation of apoptosis by stimulating
caspase production. However, most of these proteins present
no regulation, likely leading to the observed mild abundance
changes of pro-apoptotic caspases CASP3, CASP7, and
CASP8. However, CASP3 and CASP8 still display moderately
increased abundance at early time points until 24 h p.i., hint-
ing at potential apoptotic events occurring during bacterial
replication. CASP6, on the other hand, is upregulated during
the entire course of infection. Another pathway that can trig-
ger apoptosis of the host cells depends on activation of P53.
Its respective activators (BAG6, DDX5) are upregulated at
early time points p.i., but their abundance decreases at 48 h
p.i. On the other hand, anti-apoptotic proteins, such as TFIP8,
2CL1, NOC2L and BNIP2, display upregulation after infection
(Fig. 6). Consistent with the latter observation, the Calpain 1
and 2 proteins, which are regulated in response to apoptosis,

FIG. 4. Progression of the pathways related to amino acid metabolism. Assignment of proteins to pathogen (S. aureus) and host (HBE)
is indicated on top of the respective protein groups. The catabolism of amino acids after infection would provide resources to compensate for
the lack of carbon and nitrogen sources. Moreover, the anabolism of these molecules is likewise required for some defensive functions of either
the bacteria or the host. The represented ratios are the average of four biological replicates. Proteins with significant changes (p value 
0.01)
were clustered in groups depending on their general behavior and their assigned cluster is showed in column “C.” The color coding is based
on the standard deviation of each set of data. �S. aureus 	 2.34 and �HBE 	 0.33.
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FIG. 5. The persistent subpopulation of S. aureus is mostly found in the cytosolic environment of the host. Intracellular localization
of S. aureus was examined by colocalization with the protein markers LC3 for phagosomes, and LAMP-1 for lysosomes (A; scale bar:
20 �m). After internalization of S. aureus by the HBE cells, most of the bacterial population is located inside closed compartments. Still, the
percentage of bacteria that escapes the vesicles (white arrow heads) increases over time and most of the bacteria are found in a cytosolic
environment by the end of the infection. These results were corroborated by electron microscopy (B; scale bar 	 2 �m). During the first hours
of infection most bacteria are located inside degradative vesicles (dark compartments) or phagosomes (light compartments), but single
bacteria escaped the closed compartments as early as 2.5 h p.i. (supplemental Fig. S4). By the end of the time of observation, at 72 h and 96 h
p.i., all observed bacterial clusters are cytosolic. The displayed images are representative of different time points, additional images are provided
in supplemental Figs. S3 and S4. The escape from the compartments could be induced by proteins related to pathogenesis, including toxins
regulated by Agr and SaeRS (C). Moreover, this escape might have an impact on the production of stress proteins related to oxidative stress (D)
and DNA repair (E). The list of proteins included in the line plots is available in the supplemental Table S8. A selection of significantly (p value
0.01)
regulated proteins is displayed in orange and blue. The mass spectrometry data represents the average of four biological replicates.
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show no altered levels over the entire time course of infection.
Lastly, it is noteworthy that CASP4 is the only caspase that
shows consistent upregulation post internalization. This pro-
tein is related with the activation of the inflammasome or py-
roptosis. Another protein involved in this pathway is NF-kB,
whose upregulation appears synchronized with CASP4. None-
theless, so-called pro-NF-kB proteins like TF65, ARHG2,
TRADD and TRAF2 show no significant regulation. Lastly, pro-
teins related to the activation of the inflammasome on the ca-
nonical or non-canonical pathways (52) were present at lower
levels at the end of the infection, starting at 48 h p.i., indicating
that these pathways are not activated. Altogether, these obser-
vations are consistent with apoptotic events that occur exclu-
sively during the early stages of infection, when the bacteria still
replicate.

DISCUSSION

During the infectious process, S. aureus has the option to
evade the human immune defenses, or to invade nonprofes-
sional phagocytic cells to hide from the host immune system
and to evade antibiotic therapy. After internalization, the
pathogen needs to adapt to the intracellular conditions so that
it can survive, replicate, eventually leave the host cell and
spread to other tissues. To optimize its fitness, the internal-
ized pathogen displays population heterogeneity, where a
fraction of the internalized bacterial population starts to rep-
licate while another fraction displays low growth rates and
reaches a state of dormancy (53). These two populations
reflect the two main objectives of the internalized bacteria,
where the replicating bacteria will ultimately disrupt epithelial
cells to invade and infect the underlying tissue, whereas the
dormant bacteria will persist intracellularly for an extended
period.

Right from the moment the bacteria are internalized by a
host cell, both host and pathogen need to adapt to the new
situation, and then they will start to compete for resources.
Importantly, such adaptations at the bacterial end are not
limited to the production of virulence factors or mounting of
defense mechanisms, but they also involve an optimized
management of resources and the sensing of changes in the
intracellular environment because of host cell adaptations
(41). A clear example of this is the observed downregulation of
bacterial ribosomal proteins, which relates to the formation of
the alarmone ppGpp because of the induction of the stringent
response after nutrient starvation and exposure to various
stresses. The ppGpp molecule is synthesized from GTP, and
the resulting decrease in GTP is sensed by the CodY regula-
tory system of S. aureus (50). Of note, CodY is a major
modulator of S. aureus central carbon and amino acid metab-
olism and it also influences staphylococcal virulence (54).
Consistent with the idea that the observed downregulation of
ribosomal proteins is a consequence of ppGpp production,
we observed an upregulation of the CodY-regulated proteins
PycA, AcsA, ButA, Hom, metE, SerA, ThrC, Asd, DapABD,

FIG. 6. Death of the host cells is not caused by induction of the
classical apoptotic pathway. Mass spectrometry data of human
proteins associated with different apoptosis-related pathways are
presented in the figure. From top to bottom the presented groups of
proteins include: kinases, regulators of caspases, the caspases, ac-
tivators of P53, proteins related to caspase-independent activation of
apoptosis, anti-apoptotic proteins, proinflammatory and pro-NF-kB,
and lastly pyroptosis. The color coding is based on the standard
deviation �HBE 	 0.3.
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and ArgG. In this context, the activation of the ilv-leu operon
is particularly noteworthy as this will result in the synthesis of
BCAAs, which are cofactors of CodY (50). Of note, the inac-
tivation of CodY may also result from reduced amino acid
supply, and induction of the biosynthetic operons will coun-
teract this shortage. However, high levels of BCAAs would
then lead to repression again, but it remains unclear whether
intracellularly such high BCAA levels are reached.

Importantly, the biological pathways in the internalized bac-
teria and their host cells are not isolated from each other
despite their physical separation by the bacterial cell enve-
lope. Accordingly, changes in pathway regulation at either
end will impact the whole biological system. Thus, host cell
homeostasis will change in response to the presence of in-
ternalized bacteria. This is exemplified by the observed opti-
mization of glucose uptake and catabolism in the host cells
from 48 h p.i. onwards, once they predominantly carry dor-
mant bacteria. Interestingly, this correlates with the observed
shift of the bacterial intracellular localization from an encap-
sulated state in vesicles to a free state in the cytosol. There-
fore, this relocalization event could very well be a trigger for
direct competition for nutrients that has a significant impact
on the host cells’ energy metabolism. Similarly, under nutri-
ent-deprived conditions, the regulation of metabolic pro-
cesses plays a crucial role in the adaptation of S. aureus to the
altered conditions intracellularly. This is underpinned by the
observed upregulation of proteins that are crucial for survival
of the bacteria, such as PckA, AckA, FumC, SdhA, SucC,
SucA and GudB, or proteins that promote their proliferation,
such as Ald1, Ald2, Pyc, AspA, Mqo1, GltA, AcnA, Icd, RocA,
RocD, and PutA. In fact, this observation is reminiscent of an
in vitro study by Halsey et al. (55), who reported that under
glucose restriction several of the afore-mentioned proteins
have an impact on the fitness of the pathogen.

A fermentative phenotype combined with inactivation of the
electron transport chain has been associated with the devel-
opment of SCVs that are often observed on intracellular per-
sistence of S. aureus (40). Although we did not observe the
emergence of such SCVs by plating intracellular bacteria dur-
ing our experimental setup, the observed changes in the
bacterial proteome from 24 h p.i. onwards are indicative of a
metabolic shift toward fermentation. Some of the proteins
involved in bacterial electron transport become less abundant
at late stages p.i compared with their levels during replication,
whereas major proteins involved in the fermentation of pyru-
vate and acetate catabolism are constitutively upregulated
throughout till the end of the infection. We observe a shift from
terminal oxidases that require high oxygen concentrations to
those that need lower concentrations, but do not pump H�

anymore, which is consistent with microaerobic intracellular
conditions. Further, it is known that the formation of SCVs is
linked to SigB, which is an important factor for intracellular
persistence (11). Indeed, a clear role for SigB in reaching the
dormancy state is indicated by changes in the abundance of

58 predominantly SigB-dependent proteins during the late
stages of infection, among them Asp23, CidC, ClpL, FdhA,
GapA, OpuBA, and SpoVG (supplemental Table S6). In this
respect, it is noteworthy that S. aureus strains defective in
SigB are unable to catabolize acetate (56).

Besides the changes in the central carbon metabolism of
the host, the host’s amino acid metabolism is also altered,
altering the outcome of infection. Contrary to bacteria, which
degrade amino acids mostly for the acquisition of carbon and
nitrogen, the TCA-related amino acid production by the host
cells is not related to an optimization of energy production but
rather to the production of other molecules like purines, pro-
line and collagen. However, some of the regulated proteins
may also affect other pathways. For example, the observed
asparagine synthase (ASNS) upregulation could be related to
“infection stress.” This idea would be consistent with a pre-
vious study on group A streptococcal (GAS) infection, where
the pathogen was shown to induce pores in the host mem-
branes, leading to Ca�2 influx into the cytoplasm. In turn, this
led to an upregulated synthesis of asparagine, which was then
utilized by the pathogen (57). In our experimental setup, the
ASNS abundance peaks at 24 h p.i., which correlates with the
highest production of pore-forming toxins and escape of
growing bacteria from the host cells, suggesting a similar
regulatory mechanism as proposed for GAS.

Importantly, we observed that S. aureus induces its two
pathways for arginine degradation right after internalization. It
has been reported that arginine depletion by the pathogen
induces death of the host cell (42). Moreover, competition for
arginine with the host protein iNOS reduces the production of
NO, which serves in the host’s antibacterial defense. Lastly,
the deaminase pathway produces NH3 and ATP, which sup-
ports the intracellular survival of the bacteria. In particular, the
ammonia produced increases the pH of the intracellular en-
vironment thereby preventing fusion of the endosome with the
lysosome (41, 42), whereas the production of ATP generates
a source of energy during hypoxic conditions or when the
electron transport system is deficient (58). The degradation of
arginine usually occurs in environments with a high proline
concentration (46). Interestingly, proteins related to produc-
tion of proline are upregulated in the host proteome after 48 h
p.i., when the bacterial machinery for arginine catabolism
becomes massively upregulated. The host cell death induced
by arginine starvation is regulated by activation of AMPK,
which suppresses the master regulator mTOR and could lead
to autophagy (42). In this context, it is noteworthy that sper-
midine is implicated in autophagy as well (59), and the SPEE
protein, responsible for spermidine synthesis, is part of the
same host pathway that also leads to the synthesis of gluta-
mate, glutamine, proline, and arginine. As for ASNS, the abun-
dance of SPEE peaks at 24 h p.i., which correlates well with
the localization of the bacteria in phagocytic membranes as
observed by fluorescence microscopy and TEM. These re-
sults underpin a connection between host amino acid starva-
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tion and autophagy, as suggested by a recent study (60).
Although the roles of arginine and asparagine metabolism in
infectious processes have been studied previously, the pres-
ently observed regulation of amino acid metabolism focuses
additional attention on proline, glutamate, and alanine as po-
tential modulators of infection.

Membrane-enclosed bacteria can be observed within the
host cells up until 48 h p.i. as evidenced by TEM. This
time-span covers the bacterial replication phase in the in-
fectious process (i.e. until 24 h p.i.), but also nonreplicating
bacteria can escape from lysosomes and phagosomes
which is most clearly evident from 48 h p.i. onwards. Con-
sequently, once the bacteria have entered the dormant
state, they will persist intracellularly in the cytosol. These
findings contrast with what has been found in other models
that investigated S. aureus infection of other human cell
types, where the cytosolic bacteria proliferated after pha-
gosomal escape (61).

The bacterial escape from vesicles is most likely because of
the production of pore-forming toxins that are regulated by
SaeRS and Agr (50). The latter regulator is itself regulated by
CodY, which also regulates most of the carbon resource
management as described above (62). Nevertheless, some
bacteria remain in vesicles until the very end of the present
experiment. Together, these observations suggest that the
bacteria-containing vesicles are possibly not fully functional.
This intriguing idea is supported by the observed bacterial be-
havior, where oxidative stress and DNA-damage-induced re-
sponses are observed right from the beginning till the end of the
experiment without a detectable peak. In fact, the abundance of
some proteins related to these stress responses increased
more strongly from 24 h p.i. onwards, when most bacteria have
already been liberated from vesicular captivity. A possible ves-
icle malfunction could be because of the aforementioned pro-
duction of pore-forming toxins. The latter idea is supported by
the fact that the production of these toxins seems to be reduced
at the last time points of infection where most intracellular
bacteria are no longer enclosed in a membrane.

Lastly, our present proteome analyses reveal that apoptosis
of the host cell could occur from 6.5 h until 24 h p.i., suggest-
ing that the replicating bacteria employ this mechanism to es-
cape from their host cells as captured by live cell imaging. In
addition, we observed upregulation of Caspase 4 and NF-kB
indicating activation of the inflammasome from 6.5 h p.i. Nev-
ertheless, the abundance profile of other proteins implicated in
the so-called pyroptosis does not support the activation of this
self-destructive pathway. This suggests that the bacterial pres-
ence, even in dormancy, somehow leads to suppression of
pyroptosis, which would lead to host cell lysis. Whether this is
directly related to the bacterial actions, or indirectly to the re-
sponse of the host to the bacterial presence is unclear.

Taken altogether, the present proteomics dissection of in-
teractions between human bronchial epithelial cells and inter-
nalized S. aureus highlights the dynamic adaptive changes in

the two interacting systems over an unprecedented period.
This was necessary to obtain a proper understanding of the
levels at which the two systems collide and eventually reach
an equilibrium. Importantly, although in the past years host-
pathogen interaction studies have focused attention on the
roles of bacterial virulence factors and immune evasion, our
present observations place dynamic host-pathogen interac-
tions at the metabolic level in the limelight. Clearly, pore-
forming toxins have a crucial role in giving the invading bac-
teria access to the resources that are hidden within the host
cells, but it is the way in which these resources are used by
the bacteria and how the host and the bacteria subsequently
adapt to each other that determines the ultimate outcome of
the infectious process.
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Niemann, S., Geraci, J., Van de Vyver, H., Fraunholz, M. J., Cheung,
A. L., Herrmann, M., Völker, U., Sordelli, D. O., Peters, G., and Löffler, B.
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emann, S. (2016) Post-invasion events after infection with Staphylococ-
cus aureus are strongly dependent on both the host cell type and the
infecting S. aureus strain. Clin. Microbiol. Infect. 22, 799–809

13. Surmann, K., Michalik, S., Hildebrandt, P., Gierok, P., Depke, M., Brink-
mann, L., Bernhardt, J., Gesell Salazar, M., Sun, Z., Shteynberg, D.,
Kusebauch, U., Moritz, R. L., Wollscheid, B., Lalk, M., Völker, U., and
Schmidt, F. (2014) Comparative proteome analysis reveals conserved
and specific adaptation patterns of Staphylococcus aureus after inter-
nalization by different types of human non-professional phagocytic host
cells. Front. Microbiol. 5, 392
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Z., Meyer, T. C., Surmann, K., Pförtner, H., Hildebrandt, P., Weiss, S.,
Palma Medina, L. M., Gutjahr, M., Hammer, E., Becher, D., Pribyl, T.,
Hammerschmidt, S., Deutsch, E. W., Bader, S. L., Hecker, M., Moritz,
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Messner, S., Ehrenberger, T., Zanotelli, V., Butscheid, Y., Escher, C.,
Vitek, O., Rinner, O., and Reiter, L. (2015) Extending the limits of quan-
titative proteome profiling with data-independent acquisition and appli-
cation to acetaminophen-treated three-dimensional liver microtissues.
Mol. Cell. Proteomics 14, 1400–1410

27. Deutsch, E. W., Mendoza, L., Shteynberg, D., Slagel, J., Sun, Z., and
Moritz, R. L. (2015) Trans-proteomic pipeline, a standardized data proc-
essing pipeline for large-scale reproducible proteomics informatics. Pro-
teomics Clin. Appl. 9, 745–754

28. Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., Lam, H., Tasman,
N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., Eng, J. K., Martin, D. B.,
Nesvizhskii, A., and Aebersold, R. (2010) A guided tour of the trans-
proteomic pipeline. Proteomics 10, 1150–1159

29. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical
statistical model to estimate the accuracy of peptide identifications made
by MS/MS and database search. Anal. Chem. 74, 5383–5392

30. Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K., Sun, Z., Tasman, N.,
Mendoza, L., Moritz, R. L., Aebersold, R., and Nesvizhskii, A. I. (2011)
iProphet: multi-level integrative analysis of shotgun proteomic data im-
proves peptide and protein identification rates and error estimates. Mol.
Cell. Proteomics MCP 10

31. Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M., Schmidt, A.,
Buhmann, J. M., Hengartner, M. O., and Aebersold, R. (2009) Protein
identification false discovery rates for very large proteomics data sets
generated by tandem mass spectrometry. Mol. Cell. Proteomics 8,
2405–2417

32. Nagel, A., Michalik, S., Debarbouille, M., Hertlein, T., Gesell Salazar, M., Rath,
H., Msadek, T., Ohlsen, K., Dijl, J. M. van, Völker, U., and Mäder, U. (2018)
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scriptional activator RocR in the arginine-degradation pathway of Bacil-
lus subtilis. Mol. Microbiol. 24, 825–837

47. Ryan, S., Begley, M., Gahan, C. G. M., and Hill, C. (2009) Molecular
characterization of the arginine deiminase system in Listeria monocyto-
genes: regulation and role in acid tolerance. Environ. Microbiol. 11,
432–445

48. Jarry, T. M., Memmi, G., and Cheung, A. L. (2008) The expression of
alpha-haemolysin is required for Staphylococcus aureus phagosomal
escape after internalization in CFT-1 cells. Cell. Microbiol. 10,
1801–1814

49. Geiger, T., Goerke, C., Mainiero, M., Kraus, D., and Wolz, C. (2008) The
virulence regulator Sae of Staphylococcus aureus: promoter activities
and response to phagocytosis-related signals. J. Bacteriol. 190,
3419–3428

50. Horn, J., Stelzner, K., Rudel, T., and Fraunholz, M. (2018) Inside job:
Staphylococcus aureus host-pathogen interactions. Int. J. Med. Micro-
biol. 308, 607–624

51. Oogai, Y., Kawada-Matsuo, M., and Komatsuzawa, H. (2016) Staphylococ-
cus aureus SrrAB affects susceptibility to hydrogen peroxide and co-
existence with Streptococcus sanguinis. PLOS ONE 11, e0159768

52. Liu, X., and Lieberman, J. (2017) in Advances in Immunology, ed Alt FW
(Academic Press), pp 81–117

53. Fisher, R. A., Gollan, B., and Helaine, S. (2017) Persistent bacterial infec-
tions and persister cells. Nat. Rev. Microbiol. 15, 453–464

54. Pohl, K., Francois, P., Stenz, L., Schlink, F., Geiger, T., Herbert, S., Goerke,
C., Schrenzel, J., and Wolz, C. (2009) CodY in Staphylococcus aureus: a
regulatory link between metabolism and virulence gene expression. J.
Bacteriol. 191, 2953–2963

55. Halsey, C. R., Lei, S., Wax, J. K., Lehman, M. K., Nuxoll, A. S., Steinke, L.,
Sadykov, M., Powers, R., and Fey, P. D. (2017) Amino acid catabolism in
Staphylococcus aureus and the function of carbon catabolite repression.
mBio 8, e01434-16

56. Somerville, G. A., Saïd-Salim, B., Wickman, J. M., Raffel, S. J., Kreiswirth,
B. N., and Musser, J. M. (2003) Correlation of acetate catabolism and
growth yield in Staphylococcus aureus: implications for host-pathogen
interactions. Infect. Immun. 71, 4724–4732

57. Baruch, M., Belotserkovsky, I., Hertzog, B. B., Ravins, M., Dov, E., McIver,
K. S., Le Breton, Y. S., Zhou, Y., Youting, C. C., and Hanski, E. (2014) An
extracellular bacterial pathogen modulates host metabolism to regulate
its own sensing and proliferation. Cell 156, 97–108

58. Makhlin, J., Kofman, T., Borovok, I., Kohler, C., Engelmann, S., Cohen, G.,
and Aharonowitz, Y. (2007) Staphylococcus aureus ArcR controls ex-
pression of the arginine deiminase operon. J. Bacteriol. 189, 5976–5986

59. Minois, N. (2014) Molecular basis of the “anti-aging” effect of spermidine
and other natural polyamines - a mini-review. Gerontology 60, 319–326

60. Bravo-Santano, N., Ellis, J. K., Mateos, L. M., Calle, Y., Keun, H. C.,
Behrends, V., and Letek, M. (2018) Intracellular Staphylococcus aureus
modulates host central carbon metabolism to activate autophagy.
mSphere 3, e00374-18

61. Grosz, M., Kolter, J., Paprotka, K., Winkler, A.-C., Schäfer, D., Chatterjee,
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P probability distribution
ε residuals
Θ set of parameters
G graph
R2 R-squared metric
X random vector
Y target variable
Z latent random variable or vector

AI artificial intelligence

BART Bayesian additive regression trees
BIC Bayesian information criterion
BN Bayesian network
BNC Bayesian network classifier

CPDAG completed partially directed acyclic
graph

CRAN Comprehensive R Archive Network

DAG directed acyclic graph

EM expectation-maximization algorithm

FA fatty acids
FE feature extraction
FSS feature subset selection

GLM generalized linear model
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GMM Gaussian mixture model

HBE human bronchial epithelial cells
HBN hierarchical Bayesian network

LCM latent class model
LM linear model

MCA multiple correspondence analysis
MCMC markov chain monte carlo sampling
ML machine learning
MLE maximum likelihood estimate
MSE mean squared error

NAFLD non-alcoholic fatty liver disease

par(i) set of parent nodes
PC principal component
PCA principal component analysis
PGM probabilistic graphical model

RF Random Forest
ROS reactive oxygen species

S. aureus Staphylococcus aureus
SHIP Study of Health in Pomerania
SNP single nucleotide polymorphism

T3 triiodothyronine
T4 thyroxine
TSH thyrotropin
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Part IV

A P P E N D I X





A
A D D I T I O N A L N O T E S O N B AY E S I A N N E T W O R K S

The concept of Bayesian networks lies at the intersection of statistics, graph theory and
machine learning. In addition to the brief description that is part of the cumulative
thesis, this chapter summarizes some of the fundamentals and basic concepts upon
which the theory builds.

1 conditional probability and bayes theorem

We denote with P(A) the probability that an event A is true. The conditional probability
of an event A given B is defined as

P(A|B) = P(A, B)
P(B)

if P(B) > 0.

Further, the combination of the definition of conditional probability with the product
and sum rules of probability yields the following:

P(A|B) = P(B|A)P(A)

P(B)

which is known as Bayes Theorem.

For the following, we consider an index set V = {1, 2, . . . , n} and a related random
vector XV = (X1, X2, . . . , Xn). We denote by P(Xi) the marginal distribution of Xi, and
by P(X1, . . . , Xn) the joint distribution of XV .
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2 (conditional) independence

Two random variables Xi and Xj are conditionally independent given a set of random
variables XS ⊂ XV , if their joint distribution factorizes into the product of the conditional
marginals

P(Xi, Xj | S) = P(Xi | S)P(Xj | S).

We write Xi á Xj | S . It means that the realization of Xi does not affect the distribution
of Xj. Accordingly, more than two random variables are called mutually conditionally
independent, if their joint distribution can be written as the product of all conditional
marginals. Further, two random variables Xi and Xj are said to be directly dependent if
they are not conditionally independent given any other subset of V \ {Xi, Xj}.
These definitions generalize to subsets of random variables A1 and A2 ⊂ V .

3 factorization by chain rule

According to to the chain rule of probability, the joint distribution of XV factorizes to a
product of conditionals:

P(XV) = P(X1)P(X2|X1)P(X3|X1, X2) · · ·P(Xn|X1, . . . , Xn−1).

4 graph terminology

A graph is the formal representation of a network and consists of nodes and edges. Here,
we denote a graph G as a pair G = (V, E), where V is a set of nodes V = {1, . . . , n},
and E is a set of edges E ⊂ V ×V between the nodes. A graph is called directed if the
edges have an orientation.

A path in a graph G is a finite number of edges connecting a sequence of nodes. A
directed path is a path consisting of directed edges with the property that the ending
node of each edge in the sequence is the starting node of the next edge in the sequence;
a directed path forms a directed cycle if the starting node of its first edge equals the
ending node of its last edge.
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If there is an edge between node i and j in E, we call i and j neighbors in the graph G.
We denote by nbrs the map which assigns each node to its neighbors

nbrs : V −→ V; i 7−→ nbrs(i) := {j ∈ V | i is neighbour of i in G}.

The number of neighbors is called degree of a node. In a directed graph, if E contains
the directed edge from node i to node j, then we call i a parent of j and j a child of i. We
denote by par(i) the map which assigns each node to its parents. A node without any
parent nodes is called root of the network. More general, if there is any directed path
from i to j, we say that i is an ancestor of j, i ∈ an(j), and j is a descendant of i, j ∈ de(i).
The non-descendants of a node i are defined as the set nd(i) = V \ {i ∪ de(i)}.

A directed acyclic graph (DAG) is a directed graph G that has no directed cycles. Its
key property is that there is an inherent topological ordering that places parents before
children. The skeleton of a DAG is an undirected graph that is obtained by replacing all
directed by undirected edges. The moralization of a DAG is its skeleton with additional
edges between nodes that have a common child (’marrying all parents’).

5 bayesian networks

In probabilistic graphical models (PGM), random variables are referred to as nodes in a
graph and edges encode (in)dependencies between these variables. For a set of nodes
V = {1, . . . , n}, each node i is associated with a random variable Xi. A Bayesian network
is a directed probabilistic graphical model on a directed acyclic graph. It makes use of
the topological ordering and the Markov property to factorize the joint distribution
simpler than according to the chain rule. Fig. 8 shows an example of a Bayesian
network and its encoded independence statements.

6 v-structures and d-separation

In a DAG, two nodes can be connected via a third one via three patterns that are
shown in Fig 9: Head-to-head, head-to-tail or tail-to-tail. Head-to-head nodes, also
known as v-structures, are central structures in Bayesian networks, as they differ from
the two other possibilities in terms of the implied conditional independencies.

We will see, that an unobserved tail-to-tail node or a head-to-tail node leaves a path
unblocked. If it is observed, it blocks the path in terms of conditional independence
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1 2

3

4 5

X1 á X2

X4 á X1 |X3

X4 á X2 |X3

X5 á X1 |X3

X5 á X2 |X3

X4 á X5 |X3

⇔

directed acyclic graph independencies

Figure 8: Example Bayesian network structure and encoded independence statements.

(and the flow of information). By contrast, a head-to-head node blocks a path if it is
unobserved but once the node, and or at least one of its descendants, is observed the
path becomes unblocked.

i

j

k

(a) tail-to-tail

i

j

k

(b) head-to-tail

i

j

k

(c) head-to-head

Figure 9: Three basic DAG structures consisting of three nodes and two edges.

In Figure 9(a) a DAG consiting of three nodes with a tail-to-tail node is shown. We
show that Xi and Xk are not independent but conditionally independent given Xj.

P(Xi, Xj, Xk) =P(Xi |Xj)P(Xk |Xj)P(Xj)

P(Xi, Xk) = ∑
Xj=xj

P(Xi, Xj = xj, Xk) 6= P(Xi)P(Xk) ⇒ Xi 6á Xk

P(Xi, Xk |Xj) =
P(Xi, Xj, Xk)

P(Xj)
= P(Xi |Xj)P(Xk |Xj) ⇒ Xi á Xk |Xj
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In Figure 9(b) a DAG consiting of three nodes with a head-to-tail node is shown. We
show that Xi and Xk are not independent but conditionally independent given Xj.

P(Xi, Xj, Xk) =P(Xi)P(Xj |Xi)P(Xk |Xj)

P(Xi, Xk) = ∑
Xj=xj

P(Xi, Xj = xj, Xk) 6= P(Xi)P(Xk) ⇒ Xi 6á Xk

P(Xi, Xk |Xj) =
P(Xi, Xj, Xk)

P(Xj)
= P(Xi |Xj)P(Xk |Xj) ⇒ Xi á Xk |Xj

In Figure 9(c) a DAG consiting of three nodes with a head-to-head node is shown. We
show that Xi and Xk are independent but not conditionally independent given Xj.

P(Xi, Xj, Xk) =P(Xi)P(Xk)P(Xj |Xi, Xk)

P(Xi, Xk) = ∑
Xj=xj

P(Xi, Xj = xj, Xk) = P(Xi)P(Xk) · 1 ⇒ Xi á Xk

P(Xi, Xk |Xj) =
P(Xi, Xj, Xk)

P(Xj)
6= P(Xi |Xj)P(Xk |Xj) ⇒ Xi 6á Xk |Xj

The concept of d-separation translates the concept of separation to directed graphs
accordingly: Nodes i and j are d-separated by nodes S if every path connecting node
i and node j is blocked by at least one node in S . Or more detailed: Nodes i and j
are d-connected by nodes S along a path from i to j if every head-to-head node along
the path is in S or has a descendant in S and none of the other nodes (head-to-tail,
tail-to-tail) is in S . Nodes i and j are d-separated by nodes S if they are not d-connected
by S along any path from i to j.

7 markov properties

A central assumption of PGMs is the Markov property that can be defined in increasing
strength levels. We start with the discussion of undirected graphs and discuss the
application to directed graphs afterwards.

With relation to an undirected graph G = (V, E) an independence model satisfies
the

137



(i) pairwise Markov-property, if the absence of an edge implies conditional indepen-
dence:

ij /∈ E⇒ Xi á Xj |XV\(i,j).

(ii) local Markov-property, if all nodes are conditionally independent of non-neighboured
nodes given their neighbours in the graph:

Xi á XV\(nbrs(i)∪i) |Xnbrs(i) for all i ∈ V.

(iii) global Markov-property, if separation in the graph implies conditional indepen-
dence: For any A, B, C disjoint subsets of V,

C separates A and B in G ⇒ XA á XB |XC.

The assumptions are arranged in order of increasing strength. If a distribution
satisfies the global Markov property associated to the graph G, it necessarily satisfies
the local Markov property on the graph G. And if a distribution satisfies the local
Markov property on the graph G, it necessarily satisfies the pairwise Markov property.
The reverse implication is not true in general. It can however be shown, that if the
joint distribution P of X is such that it satisfies the Intersection Axiom, then all three
properties are equivalent. In particular, this is the case if P is strictly positive.

The Markov-properties translate to the directed case as follows.
With relation to a directed graph G = (V, E) an independence model satisfies the

(i) directed pairwise Markov-property, if the absence of an edge implies conditional
independence:

(i, j) /∈ E⇒ Xi á Xj |Xnd(i)\j.

(ii) directed local Markov-property, if all nodes are conditionally independent of
their non-descendants given their parents in the graph:

Xi á X(nd(i)\Π(i)) |XΠ(i) for all i ∈ V.

(iii) directed global Markov-property, if d-separation in the graph implies conditional
independence: For any A, B, C disjoint subsets of V with

C d-separates A and B in G ⇒ XA á XB |XC.
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Again, global implies local and local implies pairwise Markov property. Additionally,
it can be shown, that local and global directed Markov-property are equivalent. That
is why it is enough to require the fulfillment of the local Markov property in order to
profit from the global condition (Drton et al., 2008; Koller and Friedman, 2009).

8 faithfulness

Due to the pairwise Markov condition the absence of an edge implies that there is
no direct dependency between two random variables. However, the existence of an
edge does not necessarily imply that there is a dependency, which is the reversal of
the global Markov-property. Full equivalence between graph and distribution can be
achieved by choosing faithful distributions.

An independence model P is said to be faithful to a DAG G if G and P imply exactly
the same set of conditional independencies. A distribution P admits a faithful DAG
representation if P is faithful to some DAG (Drton et al., 2008; Koller and Friedman,
2009).

Note that not every distribution admits a faithful DAG representation. However,
Meek (1995) showed that for every DAG G it exists a multinomial or respectively
a multivariate normal distribution that is faithful to G. Also, the set of unfaithful
distributions is of Lebesque-measure zero.

If P is faithful to G, then conditional independence and d-separation in the graph
become equivalent

Xi and Xj are conditionally independent given S
⇔ i and k are d-separated by S in G.

This generalizes to sets of variables. If PG is faithful to G, then

A1 and A2 are conditionally independent given S
⇔ i and k are d-separated by S in G for all i ∈ A1 and k ∈ A2.
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9 reading conditional independencies from a network

Under the assumption of Faithfulness and local Markov property, independence
and d-separation become equivalent. Independence statements encoded by Bayesian
networks can then be read from the graph using the criterion of d-separation. The
easiest way to do this is to transform the according subgraph into an undirected graph,
as d-Separation is equivalent to separation in the moralized ancestral graph, which
consists of all nodes (involved in an independence statement) and its ancestors.

The following steps can be used to check if two nodes are d-separated by a given set
of variables:

1. Determination of ancestral graph (remove all nodes that are not involved in the
independence statement or are ancestors of such nodes)

2. Moralization of the ancestral graph (marrying all parents with a common child)

3. Disorientation of the ancestral graph (Remove all directions)

4. Deletion of the features which are evidence

If two variables are now separated, that means no path is left, they are conditionally
independent.

10 markov equivalence

Two DAGs G and G′ are said to be Markov-equivalent if they imply the same set of
conditional independence statements, that is, for every Bayesian network B = (G, ΘG)

there exists a Bayesian network B′ = (G′, ΘG′) such that B and B′ define the same
probability distributions, and vice versa. This implies that G and G′ have the same
d-separations. Markov equivalence is an equivalence relation on the set of network
structures. Two DAGs G1 and G2 are Markov equivalent iff they have the same skeleton
and the same set of v-structures.

140



11 bayesian information criterion and its properties

The BIC of a BN structure G is a common choice as scoring metric. It is defined as

BIC(G| D) := log P(D |G) +
d
2

log(N),

where d the number of free parameters and N is the number of samples.

Whereas the first part increases linearly with N, the second part increases loga-
rithmically. That means, as N grows large, the model fit is weighted more than the
complexity. It decomposes to parts which are only dependent on one variable and its
parents, allowing for efficient computations.

BIC(G | D) = − log P(D |G) +
d
2

log(n)

= ∑
i

∑
j

∑
k
−Nijk log

Nijk

∑′j Nij′k
+ ∑

i

qi(ri − 1)
2

log(N)

= ∑
i

BIC(Xi, XparG(i)
| D),

where Nijk is the number of observations in which Xi = k and ΠG(Xi) = j, qi is the
number of possible states of the parents XparG(i)

and ri the number of possible states
of Xi itself. The family score BIC(Xi, ΠG(Xi) | D) can be calculated as

BIC(Xi, XparG(i)
| D) := −∑

j
∑
k

Nijk log
Nijk

∑′j Nij′k
− qi(ri − 1)

2
log(N).

The BIC is globally and locally consistent. If a score is globally consistent, it means
that in the limit as the number of observations grows large, the model with the lowest
complexity, that represents the generative distribution exactly, is preferred. Conversely,
local consistency refers to consistency in case of local perturbations.

Consider a DAG G and denote by G′ the DAG which results from adding an arc
Xi → Xj to G. A scoring metric S is locally consistent if it holds that

i) Xi 6á Xj |XparG(i)
⇒ S(G′|D) > S(G|D)

ii) Xi á Xj |XparG(i)
⇒ S(G′|D) < S(G|D)
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Note that also the following holds: if G and G′ are DAGs from the same Markov
equivalence class, they are also score-equivalent.

Thus, if we consider a DAG G and G′, where G′ results from G by adding one arc
j→ i, then it holds

BIC(G′ | D)− BIC(G | D) = BIC(Xi, XparG′ (i)
| D)− BIC(Xi, XparG(i)

| D).

So that the score of a new network resulting from perturbing one arc, can be calculated
using local calculations and the known score of the old network, only. This property is
used in greedy search algorithms.
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B
A D D I T I O N A L N O T E S O N R - PA C K A G E G R O U P B N

GroupBN
CHEAT SHEET GroupBN Learning

ClustOfVar::hclustvar(X.quanti, X.quali)

plot(hierarchy)

plot(hierarchy, type=„index“)

Clustering of heterogeneous data with
ClustOfVar:

Handling Bayesian networks in R with
bnlearn:

GroupBN Adaptive Refinement

see: https://CRAN.R-project.org/package=ClustOfVar

an R package for feature clustering of heterogeneous data

an R package for Bayesian network learning and inference 

see: https://www.bnlearn.com/

An object of class bn is a list containing at least the 
components:

• learning (a list with information about the algorithm)

• nodes (list)

• arcs (two-column matrix)

Central S3 classes:

Class bn

An object of class bn.fit is a list whose elements 
correspond to the nodes of the Bayesian network

Each element contains information about parents, children 
and parameters (format dependent on network type)

Class bn.fit

GroupBN::groupbn(hierarchy, k, target, separate, X.quali, X.quanti)

GroupBN::groupbn_refinement(res, hierarchy, 
refinement.part=„mb“)

GroupBN evaluation

GroupBN::groupbn.output.table

GroupBN::groupbn.vis.html.plot

takes a hierarchy (output of hclustvar), a number k of initial clusters, the 
name of target variables and potential additional special variables (like sex, 
age) and data split to quantitative and qualitative variables and learns a 
group Bayesian network

the output is an object of S3 class groupbn (contains the grouping and 
grouping parameters, Bayesian network structure and parameters, 
predictive metrics and additional information) 

takes a groupbn object and a hclustvar hierarchy and refines the grouping 
adaptively in order to optimize the network’s predictive performance 

A refinement part can be chosen from the options Markov blanket (mb), 
second order Markov blanket (mb2) or all nodes (all).

wind wind wind

creates a table with one column per node,

sorts the features by importance, importance
scores can be added

Creates an interactive html network object with visNet

GroupBN::predict
Predictions for new data

S3 methods for class groupbn

GroupBN::print
prints a summary of the groupbn object

GroupBN::is.groupbn
test if an object is of class groupbn

GroupBN::plot
basic network plot, 
use bnlearn::graphviz.plot
for nicer visualizations

additional functions

GroupBN::cross.en
Calculates the weightes cross-entropy / log-loss
for a vector of observations and predicted target
probabilities

GroupBN::discretize.dens
Density approximative data discretization

RStudio® is a trademark of RStudio, Inc. •  Ann-Kristin Becker•  annkristinbecker@web.de • Learn more at https://CRAN.R-project.org/package=GroupBN •  package version  1.1.0 •  Updated: 2020-12

an R Package for fitting and automatic adaptive 
refinement of group Bayesian network models
based on hierarchical variable clustering

Syntax builds on two external packages:

GroupBN::groupbn_refine_manually(res, hierarchy, refine=„cl2“)

manually choose a group of variables to be refined

Figure 10: “Cheatsheet” for R-package GroupBN
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