
����������
�������

Citation: Hertel, J.; Fässler, D.;

Heinken, A.; Weiß, F.U.; Rühlemann,

M.; Bang, C.; Franke, A.; Budde, K.;

Henning, A.-K.; Petersmann, A.; et al.

NMR Metabolomics Reveal Urine

Markers of Microbiome Diversity

and Identify Benzoate Metabolism as

a Mediator between High Microbial

Alpha Diversity and Metabolic

Health. Metabolites 2022, 12, 308.

https://doi.org/10.3390/

metabo12040308

Academic Editor: Leonardo Tenori

Received: 25 February 2022

Accepted: 25 March 2022

Published: 31 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

NMR Metabolomics Reveal Urine Markers of Microbiome
Diversity and Identify Benzoate Metabolism as a Mediator
between High Microbial Alpha Diversity and Metabolic Health
Johannes Hertel 1,* , Daniel Fässler 1, Almut Heinken 2, Frank U. Weiß 3 , Malte Rühlemann 4 , Corinna Bang 4,
Andre Franke 4, Kathrin Budde 5, Ann-Kristin Henning 5, Astrid Petersmann 5,6, Uwe Völker 7 , Henry Völzke 8,
Ines Thiele 2,9,10,11 , Hans-Jörgen Grabe 1,12 , Markus M. Lerch 3,13, Matthias Nauck 5,14, Nele Friedrich 5,14,†

and Fabian Frost 3,†

1 Department of Psychiatry and Psychotherapy, University Medicine Greifswald,
D-17475 Greifswald, Germany; daniel.faessler@uni-greifswald.de (D.F.);
hans.grabe@med.uni-greifswald.de (H.-J.G.)

2 School of Medicine, National University of Ireland, H91 CF50 Galway, Ireland;
almut-katrin.heinken@univ-lorraine.fr (A.H.); ines.thiele@nuigalway.ie (I.T.)

3 Department of Internal Medicine A, University Medicine Greifswald, D-17475 Greifswald, Germany;
ulrich.weiss@med.uni-greifswald.de (F.U.W.); markus.lerch@med.uni-muenchen.de (M.M.L.);
fabian.frost@med.uni-greifswald.de (F.F.)

4 Institute of Clinical Molecular Biology, Kiel University, D-24105 Kiel, Germany;
m.ruehlemann@ikmb.uni-kiel.de (M.R.); c.bang@ikmb.uni-kiel.de (C.B.); a.franke@mucosa.de (A.F.)

5 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald,
D-17475 Greifswald, Germany; kathrin.budde@med.uni-greifswald.de (K.B.);
ann-kristin.henning@med.uni-greifswald.de (A.-K.H.); petersmann.astrid@klinikum-oldenburg.de (A.P.);
matthias.nauck@med.uni-greifswald.de (M.N.); nele.friedrich@med.uni-greifswald.de (N.F.)

6 Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg,
D-26129 Oldenburg, Germany

7 Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics,
University Medicine Greifswald, D-17475 Greifswald, Germany; voelker@uni-greifswald.de

8 Institute for Community Medicine, University of Greifswald, D-17475 Greifswald, Germany;
voelzke@uni-greifswald.de

9 Discipline of Microbiology, National University of Galway, H91 CF50 Galway, Ireland
10 APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland
11 Ryan Institute, National University of Galway, H91 CF50 Galway, Ireland
12 German Center for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald,

D-17475 Greifswald, Germany
13 Faculty of Medicine, Ludwig-Maximilian University Munich, D-80539 Munich, Germany
14 German Centre for Cardiovascular Research (DZHK), Partner Site, D-17475 Greifswald, Germany
* Correspondence: johannes.hertel@med.uni-greifswald.de
† These authors contributed equally to this work.

Abstract: Microbial metabolites measured using NMR may serve as markers for physiological or
pathological host–microbe interactions and possibly mediate the beneficial effects of microbiome
diversity. Yet, comprehensive analyses of gut microbiome data and the urine NMR metabolome from
large general population cohorts are missing. Here, we report the associations between gut microbiota
abundances or metrics of alpha diversity, quantified from stool samples using 16S rRNA gene se-
quencing, with targeted urine NMR metabolites measures from 951 participants of the Study of Health
in Pomerania (SHIP). We detected significant genus–metabolite associations for hippurate, succinate,
indoxyl sulfate, and formate. Moreover, while replicating the previously reported association between
hippurate and measures of alpha diversity, we identified formate and 4-hydroxyphenylacetate as
novel markers of gut microbiome alpha diversity. Next, we predicted the urinary concentrations
of each metabolite using genus abundances via an elastic net regression methodology. We found
profound associations of the microbiome-based hippurate prediction score with markers of liver
injury, inflammation, and metabolic health. Moreover, the microbiome-based prediction score for
hippurate completely mediated the clinical association pattern of microbial diversity, hinting at a
role of benzoate metabolism underlying the positive associations between high alpha diversity and
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healthy states. In conclusion, large-scale NMR urine metabolomics delivered novel insights into
metabolic host–microbiome interactions, identifying pathways of benzoate metabolism as relevant
candidates mediating the beneficial health effects of high microbial alpha diversity.

Keywords: NMR metabolomics; microbiome; large cohort data; alpha diversity; benzoate metabolism

1. Introduction

An incredible wealth of research has highlighted the importance of the gut micro-
biome’s metabolic activity to health and disease [1–5]. Microbial metabolites, such as
short-chain fatty acids or vitamin derivatives, are beneficial for health [6–8], while others,
such as hydrogen sulphide [9,10], secondary bile acids [11–13], or trimethylamine-N-
oxide [14,15], are involved in pathophysiological processes. Yet, our understanding of the
complex interplay between the microbiome and host metabolism is incomplete, in particu-
lar because there is no bijection between gut microbiome composition and its metabolic
activity. As metabolic functions widely overlap across the main bacterial phyla in the
gut, two microbial communities may diverge strongly in their composition but be largely
equivalent in their metabolic functions [16]. Moreover, since the gut microbiome acts within
the unique ecosystem shaped by host factors, such as behaviour [17], genetics [18–21], and
physiology [22,23], two gut microbiomes that are largely equivalent in metabolic function
may lead to different health outcomes. Thus, the question arises regarding how alterations
in composition translate into differences in metabolic host functions.

The mechanisms conferring the health-promoting effects of high alpha diversity are of
particular interest [24]. Multiple studies have revealed associations of reduced alpha diver-
sity with a wide range of disease phenotypes, including gastrointestinal disorders [25,26],
obesity [27], or diabetes [28–32]. While the hypothesis exists that high diversity implicates a
higher functional redundancy and thus more stable host–microbiome interactions [33], the
concrete metabolic traits underlying the relation between microbial diversity and human
health remain elusive.

A frequently utilised paradigm to shine a light on the complex interplay between
gut microbiome composition and metabolic function in the host is the ‘ome-wide’ asso-
ciation study. In this paradigm, the statistical association pattern between abundances
of taxonomic units and metabolite concentrations in the host is derived via sequential
multivariable regressions. ‘Ome-wide’ association studies can serve as powerful tools for
discovery and hypotheses generation. For example, we previously showed that reduced mi-
crobial diversity is associated with long-term microbiome instability, which is a phenotype
characterised by an increase in the microbial biosynthesis capability for proinflammatory
lipopolysaccharides over time [33]. Moreover, Wilmanski et al. [34] found that blood
metabolites were highly predictive of the gut microbiome alpha diversity with prominent
roles for human–microbial co-metabolites, such as hippurate, cinnamoylglycine, and p-
cresol sulfate. However, microbiome–metabolome association studies on large cohorts are
still scarce such that putative associations are often in need of validation.

Following these lines of research, the overarching goal of this study was to broaden
the understanding of metabolite–microbiome association patterns by using data from the
TREND cohort of the Study of Health in Pomerania [35] (SHIP), which is a population-based
cohort study from North-Eastern Germany, where subsets were characterised by targeted
1H nuclear magnetic resonance (NMR) urine metabolomics and faecal 16S rRNA gene
sequencing. Importantly, rich phenotype data for the SHIP-TREND participants were also
available, allowing for comprehensive covariate adjustments. NMR urine metabolomics
is especially valuable in the context of microbiome research since a wide range of topical
microbiome-related metabolites, such as indoxyl-3-sulphate, trimethylamine-N-oxide, for-
mate, or acetate, can be readily quantified with high accuracy in the human urine through
NMR technology. To the best of our knowledge, no large cohort study has been published
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using NMR urine metabolomics and 16S rRNA gene-sequencing data in conjunction to
explore association patterns between the microbiome and host metabolome.

We herein report (1) the urine metabolite–genus association pattern, (2) the urine
metabolome association pattern with measures of microbiome alpha diversity, (3) the
results of machine learning modelling predicting the urine metabolites from microbiome
abundances, and (4) the clinical association pattern of the microbiome-based hippurate
prediction score in relation to the Shannon diversity. Finally, we explore the relationship
between microbial benzoate metabolism and alpha diversity via functional annotations of
an independent metagenomics dataset. In conjunction, our results highlight the usefulness
of NMR metabolomics in exploring host–microbiome association patterns, while indicating
that benzoate metabolism is one of the mediating metabolic functions underlying the
association between alpha diversity and human health.

2. Results

In SHIP-TREND, gut microbiome quantifications from stool samples using 16S se-
quencing were available for 3637 individuals, from which, 950 were additionally charac-
terised using NMR urine metabolomics. The sample characteristics are given in Table 1.
As known diabetes cases were excluded from NMR characterisation for reasons unre-
lated to the presented study, diabetes-related comorbidities and physiological traits were
under-represented in the sample with NMR characterisation. Thus, the NMR analyses
were performed on a predominantly healthy population. For more information on sample
selection, see the Methods section.

Table 1. Descriptive statistics for the utilised SHIP-TREND-0 sub-cohorts.

SHIP-TREND with Faecal Samples (n = 3637) SHIP-TREND with Faecal Samples and NMR
Metabolite Measurements (n = 951)

Variable Missing Values, % Mean (SD) or Share, % Missing Values, % Mean (SD) or Share, %

Age, years 0.00 51.33 (14.94) 0.00 50.21 (13.63)
Female, % 0.00 51.69% 0.00 56.68%

Body mass index, kg/m2 0.16 28.02 (5.15) 0.00 27.37 (4.57)
Waist circumference, cm 0.27 90.79 (14.35) 0.00 88.08 (12.82)

Current smoking, % 0.25 26.82% 0.11 21.79%
Average alcohol

consumption over the last
30 d, g/d

0.91 8.83 (13.79) 0.63 8.56 (13.31)

Diabetes a 0.16 11.54% 0.00 2.73%
Hypertonia b 0.33 46.43% 0.11 39.58%

HbA1c, % 0.19 5.34 (0.83) 0.11 5.19 (0.56)
eGFR, mL/min 0.16 89.73 (18.81) 0.00 92.12 (17.12)

White blood cell count,
Gpt/L 1.95 6.08 (2.70) 0.21 5.73 (1.48)

Triglycerides, mmol/L 0.16 1.64 (1.24) 0.00 1.42 (0.86)
Ratio of TC/HDL-C 0.16 4.03 (1.26) 0.00 3.93 (1.14)

Fibrinogen, g/L 2.64 3.07 (0.74) 0.95 3.02 (0.73)
CRP (high sensitive), mg/L 4.67 2.52 (3.93) 3.36 2.29 (3.67)

GGT, µkat/L 0.19 0.70 (0.80) 0.00 0.65 (0.63)
ALAT, µkat/L 0.22 0.45 (0.30) 0.11 0.44 (0.29)
ASAT, µkat/L 0.30 0.33 (0.19) 0.21 0.32 (0.17)

a Diabetes is defined by either an HbA1c > 6.5% or intake of antidiabetic medication. b Hypertonia is defined by
the intake of antihypertensive medication or blood pressure higher than 140/90 mmHg; SHIP—Study of Health
in Pomerania, SD—standard deviation, CRP—C-reactive protein, TC—total cholesterol, HDL-C—high-density
lipoprotein cholesterol, HbA1c—glycated hemoglobin, GGT—gamma-glutamyl-transferase, ALAT—alanine-
amino-transferase, ASAT—aspartate-amino-transferase.

2.1. NMR Metabolomics Revealed Genus Metabolite Associations

The utilised panel of metabolite quantifications contained 60 metabolites, from which,
42 were included in analyses after excluding all metabolites with more than 50% missing
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quantifications. All metabolite concentrations were log-transformed after regression-based
normalisation [36], and outliers, as defined using the 4-SD rule, were excluded from
analyses. The final panel of metabolites included a wide range of metabolites known to
be implicated in host–microbiome interactions. Descriptive statistics for all metabolites
measured can be found in Supplementary Table S1.

The metabolite concentrations were regressed in multivariable mixed linear regressions
on the genus abundances, including known influence factors of the urine metabolome
and the microbiome as covariates to reduce residual confounding and using batch as the
random effects variable (see the Methods section for details). We ran two sets of metabolite
genus associations: (1) we included the genus presence (binary: present vs. absent) as the
predictor of interest, (2) we utilised the genus abundance (dimensional, %) as the predictor
of interest. Those two sets of analyses are not equivalent, as it is known that sometimes
the presence of a certain species or genus may be more informative than its abundance,
especially in the case of keystone species contributing important metabolic capabilities to
the community [37,38].

After correction for multiple testing, we found three genus presence metabolite associ-
ations (Figure 1A,B), with urinary hippurate being positively associated with the presence
of Catabacter and Barnesialla and urinary succinate being positively associated with Eisen-
bergiella. In the domain of genus abundances, we detected ten associations after correction
for multiple testing (Figure 1C,D). Hippurate was associated with nine different genera,
while formate was additionally negatively associated with the Clostridium XIVa cluster
and indoxyl sulfate was positively associated with Escherichia/Shigella. Both sets of asso-
ciations remained stable upon full covariate adjustments (Figure 1B,D). In the sensitivity
analyses, by utilising non-parametric bootstrapping for p-value calculation, all abundance
metabolite associations stayed significant. However, the p-value of the indoxyl sulfate
Escherichia/Shigella association dropped to nominal significance, indicating that this specific
result may need further validation. The summary statistics of the corresponding association
analyses can be found in Supplementary Tables S2 and S3.

2.2. NMR Metabolomics Revealed Markers of Microbial Alpha Diversity

Next, we screened the urine metabolome for markers of alpha diversity to investigate
species richness and the Shannon entropy following the same regression methodology
as above.

After correction for multiple testing, we retrieved two associations regarding Shannon
entropy and three associations regarding species richness. The top hit of the analyses was
hippurate (Figure 2A,B). Additionally, we found two additional markers of microbiome
diversity: formate was positively associated with both species richness and Shannon
entropy, while 4-hydroxyphenylacetate was negatively associated with species richness.
Complete results on metabolite diversity associations can be found in Supplementary
Tables S4 and S5.

2.3. Microbiome-Based Predictions Scores for Urinary Hippurate Mediated the Associations of
SHANNON Diversity to Markers of Metabolic Health

Then, we generated prediction scores for each metabolite using the genus abundance
data as input for elastic net regressions (see the Methods section for details), assessing the
model validity via internal cross-validations. However, the machine learning approach
only led to substantial R-squared values for hippurate (Figure 2C), reaching 12.7% of the
explained variance, whereas, for all other metabolites, the explained variance was below
3%, as determined in cross-validations (Supplementary Table S6). Therefore, we focused
on the microbiome-based hippurate prediction score in further analyses.

Interestingly, the microbiome-based hippurate prediction score was substantially cor-
related (r = 0.53; 95% CI: 0.49, 0.58; p = 1.07 × 10−71) with measures of alpha diversity
(Figure 2C). Furthermore, in fully adjusted models, the microbiome-based hippurate predic-
tion score showed robust negative associations with markers of human diseases (Table 2),
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including inflammation markers (high-sensitive C-reactive protein), triglyceride levels, and,
most prominently, markers of liver injury (plasma concentrations of gamma-glutamyl trans-
ferase (GGT), alanine aminotransferase (ALAT), and aspartateaminotransferase (ASAT)).
Notably, the association pattern was more pronounced than for both the Shannon entropy
and urinary hippurate levels themselves.
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Figure 1. Overview of the significant metabolite–genus associations. (A) Boxplots for genus pres-
ence metabolite association with a false discovery rate < 0.05. The Y-axis denotes the log-transformed
and regression-normalised urinary concentrations. (B) Table displaying the genus presence metabo-
lite associations with FDR < 0.05. (C) Scatter plots of selected genus abundances against urinary
metabolite levels after log-transformation and regression-based normalisation. The red line indicates
the linear regression line, where the dashed red lines display the 95% confidence interval. (D) Table
displaying the genus abundance metabolite associations with FDR < 0.05. FDR—false discovery rate;
b—unstandardised regression coefficients; 95% CI—95% confidence intervals.



Metabolites 2022, 12, 308 6 of 19
Metabolites 2022, 12, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 2. Overview of microbiome alpha diversity–metabolite associations. (A) Scatter plots of 

Shannon diversity or species richness against urinary metabolite levels after log-transformation and 

regression-based normalisation. A red line indicates the linear regression line, where the dashed red 

lines display the 95% confidence interval. All shown associations have an FDR < 0.05. (B) Table 

displaying the alpha diversity metabolite associations with an FDR < 0.05. (C) Scatter plots of Shan-

non diversity or urinary hippurate concentrations (log-transformed and regression-based normal-

ised) against the microbiome-based hippurate prediction score from elastic net regressions. A red 

line indicates the linear regression line, where the dashed red lines display the 95% confidence in-

terval. FDR—false discovery rate; b—unstandardised regression coefficients; 95% CI—95% confi-

dence intervals. 

2.3. Microbiome-Based Predictions Scores for Urinary Hippurate Mediated the Associations of 

SHANNON Diversity to Markers of Metabolic Health 

Then, we generated prediction scores for each metabolite using the genus abundance 

data as input for elastic net regressions (see the Methods section for details), assessing the 

model validity via internal cross-validations. However, the machine learning approach 

only led to substantial R-squared values for hippurate (Figure 2C), reaching 12.7% of the 

explained variance, whereas, for all other metabolites, the explained variance was below 

3%, as determined in cross-validations (Supplementary Table S6). Therefore, we focused 

on the microbiome-based hippurate prediction score in further analyses. 

Interestingly, the microbiome-based hippurate prediction score was substantially 

correlated (r = 0.53; 95% CI: 0.49, 0.58; p = 1.07 × 10−71) with measures of alpha diversity 

(Figure 2C). Furthermore, in fully adjusted models, the microbiome-based hippurate pre-

diction score showed robust negative associations with markers of human diseases (Table 

Figure 2. Overview of microbiome alpha diversity–metabolite associations. (A) Scatter plots of
Shannon diversity or species richness against urinary metabolite levels after log-transformation and
regression-based normalisation. A red line indicates the linear regression line, where the dashed
red lines display the 95% confidence interval. All shown associations have an FDR < 0.05. (B) Ta-
ble displaying the alpha diversity metabolite associations with an FDR < 0.05. (C) Scatter plots
of Shannon diversity or urinary hippurate concentrations (log-transformed and regression-based
normalised) against the microbiome-based hippurate prediction score from elastic net regressions.
A red line indicates the linear regression line, where the dashed red lines display the 95% confi-
dence interval. FDR—false discovery rate; b—unstandardised regression coefficients; 95% CI—95%
confidence intervals.

Given the strong association of the hippurate prediction score with the Shannon
entropy, we tested whether the hippurate prediction score could mediate the associations
of the Shannon entropy with liver markers (GGT and ALAT) and triglycerides. Indeed, in
all three cases, the microbiome-based hippurate prediction score mediated the associations
nearly completely (GGT: 77.6% of the effect mediated, 95% CI: 56.8%, 119.7%; ALAT: 116.7%
of the effect mediated, 95% CI: 64.6%, 432.1%; triglycerides: 77.9% of the effect mediated,
95% CI: 54.3%, 132.5%). Note that mediation effects of more than 100% indicate that the
direct effect had a different sign than the total effect.

Thus, the microbiome-based prediction score for hippurate contained substantial infor-
mation on markers of human health and mediated the corresponding effects of microbial
alpha diversity.
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Table 2. Biomarker associations from multivariable regressions for urinary hippurate, Shannon
entropy, and the microbiome-based hippurate prediction score.

Urinary Hippurate (n = 951) Shannon Entropy (n = 3637) b Microbiome-Based Hippurate
Prediction Score (n = 3637) b

Marker b (95% CI) * p-Value * b (95% CI) * p-Value * b (95% CI) * p-Value *

Log hs-CRP −0.09 (−0.17, −0.01) 2.40 × 10−2 −0.01 (−0.03, 0.00) 7.55 × 10−2 −0.01 (−0.02, −0.00) 1.65 × 10−2

Fibrinogen −0.02 (−0.09, 0.04) 4.59 × 10−1 −0.00 (−0.02, 0.01) 6.27 × 10−1 0.01 (−0.00, 0.02) 2.05 × 10−1

White blood
cell count −0.15 (−0.28, −0.03) 1.68 × 10−2 −0.00 (−0.01, 0.00) 1.76 × 10−1 −0.00 (−0.01, 0.00) 3.76 × 10−1

Triglycerides −0.02 (−0.09, 0.05) 5.24 × 10−1 −0.03 (−0.04, −0.02) 3.83 × 10−6 −0.03 (−0.04, −0.02) 3.35 × 1014

Ratio of
TC/HDL-C 0.04 (−0.05, 0.12) 3.95 × 10−1 −0.01 (−0.02, 0.00) 1.58 × 10−1 −0.00 (−0.01, 0.01) 8.08 × 10−1

Baseline
glucose −0.03 (−0.09, 0.02) 1.87 × 10−1 0.00 (−0.01, 0.01) 9.32 × 10−1 −0.00 (−0.01, 0.00) 1.67 × 10−1

HbA1c 0.004 (−0.04, 0.05) 8.45 × 10−1 0.01 (−0.01, 0.03) 2.13 × 10−1 0.01 (−0.00, 0.02) 1.69 × 10−1

Log GGT −0.05 (−0.09, −0.01) 2.05 × 10−2 −0.07 (−0.10, 0.04) 1.64 × 10−7 −0.10 (−0.12, 0.08) 4.13 × 1022

Log ALAT −0.03 (−0.06, 0.01) 1.07 × 10−1 −0.04 (−0.07, 0.01) 9.85 × 10−3 −0.07 (−0.09, 0.04) 4.77 × 10−9

Log ASAT −0.03 (−0.06, 0.00) 6.29 × 10−2 −0.02 (−0.06, 0.01) 1.62 × 10−1 −0.06 (−0.08, 0.03) 4.33 × 10−6

* Estimates from multivariable (mixed-effect b) linear regressions including age (nonlinear), sex, age–sex interaction
terms, waist circumference (nonlinear), smoking, hypertonia, years of education, kidney function (nonlinear),
urinary pH, and alcohol intake. b—unstandardised regression coefficient, 95% CI—95% confidence interval,
hs-CRP—high-sensitivity C-reactive protein, TC—total cholesterol, HDL-C—high-density lipoprotein cholesterol,
HbA1c—glycated hemoglobin, GGT—gamma-glutamyl transferase, ALAT—alanine aminotransferase, ASAT—
aspartate aminotransferase. Bold indicates statistical significance.

2.4. Functional Annotations of an Independent Published Dataset Indicated a Direct Relationship
between Microbial Diversity and Benzoate Metabolism

Above, we show the results of the analysed association patterns between urinary
metabolites and microbiome diversity via statistical screening approaches. To strengthen
our findings, we used an independent public dataset with metagenomic gut microbiome
characterisations from Yachida et al. (n = 616) [39] (see Table S7 for sample characteristics)
to analyse the relationship between microbial benzoate metabolism and microbial diversity.
Note that the study of Yachida et al. [39] was a case-control study investigating colorectal
cancer (CRC).

For functional annotations, we mapped the species abundances as reported in the
supplement of Yachida et al. [39] onto AGORA2 [40]. AGORA2 is a resource of over
7000 genome-scale reconstructions of gut microbes that were semi-automatically generated
and manually curated to match the experimental behaviour of the microbes. We then
calculated reaction abundances for all microbial reactions that either produced or degraded
benzoate (Figure 3A). Benzoate is the precursor of the human metabolite hippurate, which
is predominantly produced in the liver through glycine conjugation (Figure 3A). Note that
reaction abundances are not equivalent to gene abundances, as several genes may facilitate
the same reactions and one gene may catalyse different reactions.

Then, we calculated the association between microbial diversity measured through
the Shannon entropy and the reaction abundances of reactions either degrading, producing,
or transporting benzoate (Figure 4A,B). Surprisingly, in all cases, we found a negative asso-
ciation between reaction abundances and Shannon entropy, which was most pronounced
for the benzoate exchange reaction. In the sensitivity analyses, we tested whether these
findings held up in both study groups of the Yachida et al. study (healthy controls and
CRC patients), finding that this is a robust result regarding health and at least one disease
known to alter the gut microbiome profoundly.
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Figure 3. Microbe–host interactions regarding benzoate metabolism. (A) Microbe–host benzoate
co-metabolism, as noted in AGORA2 and the Virtual Metabolic Human database (https://www.
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panel) and absolute number (right panel).
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Figure 4. Overview of the results regarding reaction abundances after functional annotation of
the Yachida et al. dataset using AGORA2. (A) Scatter plots of reaction abundances against the Shan-
non entropy of metagenomes after mapping onto AGORA2. A red line indicates the linear regression
line, where the dashed red lines display the 95% confidence interval. All displayed associations had a
false discovery rate < 0.05. (B) Table displaying the reaction abundance Shannon entropy associations
for benzoate-producing, -degrading, or -transporting reactions noted in AGORA2. OR—odds ratio;
95% CI—95% confidence interval.

Furthermore, we utilised AGORA2 to retrieve the three biomarkers (benzoate, formate,
and 4-hydroxyphenylacetate) of microbial diversity from the list of strains included in
AGORA2 with the capacity to produce them (Supplementary Table S8). The results per
phyla for benzoate are given in Figure 3B. Notably, benzoate production capabilities are dis-
tributed across several of the main phyla in the gut, including Actinobacteria, Bacteroidetes,
Proteobacteria, and Firmicutes.
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In conclusion, our functional analyses of the published data from Yachida et al. in-
dicated a direct relationship between microbial diversity and benzoate metabolisation.
However, the indicated relationship was negative with highly diverse communities show-
ing lower reaction abundances of reactions transporting, degrading, or producing benzoate.

3. Discussion

Although immense research efforts have been undertaken, we are still at the beginning
of understanding the multitude of effects the microbiome has on human health and disease.
One key to understanding the relationship between the host and microbiome is to unravel
the metabolic interplay between human metabolism and microbiome metabolism. This
study contributed to the latter by investigating the urine metabolome via NMR technol-
ogy [41] in conjunction with 16S rRNA gene sequencing of stool samples stemming from a
large population-based study.

To date, a wide range of studies associating the urine metabolome with the gut
microbiome have been performed, revealing a rich association pattern between the two
types of omics data in various setups [42–48]. However, only a few studies have so far
utilised NMR technology, and those studies were small studies relying on small-to-medium
sample sizes [49–52]. Our present work was, to the best of our knowledge, the largest study
so far that made use of NMR metabolomics to reveal the association patterns between the
urine metabolome and the gut microbiome.

As NMR technology allows for quantifications of a wide range of microbiome-related
metabolites, such as dimethylamine, formate, methanol, and acetate, which are normally
not included in mass-spectrometric analyses, we could deliver novel insights while repli-
cating earlier results, in particular the associations of urinary hippurate with measures of
alpha diversity [34,51,52].

With formate and 4-hydroxyphenylacetate, we identified two novel urinary markers
of microbial alpha diversity. Formate is a known microbial fermentation product of a
wide range of microbes across various phyla [53,54] (Table S8). However, formate is also a
product of human metabolism, e.g., as a by-product of multiple human pathways, such as
tryptophan degradation, sterol metabolism, and one-carbon metabolism [53]. Thus, while
it is plausible that urinary formate is a marker of microbial diversity, the relatively small
effect size indicates that most of the variance in urinary formate concentration was due to
host factors. Yet, urinary formate may be an interesting candidate for further research into
host–microbiome metabolic interactions.

4-Hydroxyphenylacetate is an intermediate of tyrosine metabolism, both in humans
and in microbes. However, the production of 4-hydroxyphenylacetate is a rather rare
capacity among the microbes in AGORA2 (333 strains noted; in comparison, 6010 strains
can produce formate and 1552 can produce benzoate; for complete lists, see Supplemen-
tary Table S8). Moreover, several important opportunistic pathogens are among the 4-
hydroxyphenylacetate-producing species, such as Burkholderia cepacia [55], Acinetobacter
baumannii [56], Clostridioides difficile [57], and Pseudomonas aeruginosa [58]. Notably, the
association between microbiome diversity and urinary 4-hydroxyphenylacetate was neg-
ative, allowing for the speculation that 4-hydroxyphenylacetate is a metabolic marker of
dysbiosis, in particular given the prominence of pathogens in the list of microbes capable of
producing 4-hydroxyphenylacetate. Nevertheless, urinary 4-hydroxyphenylacetate may be
largely determined by host factors, as we failed to predict a substantial amount of variance
in urinary 4-hydroxyphenylacetate levels using genus abundances. However, it should
be noted that small intestinal bacterial overgrowth in children has been associated with a
marked increase in 4-hydroxyphenylacetate in urine [59].

A further result was the association between Escherichia/Shigella and indoxyl-3-sulfate,
although sensitivity analyses indicated that this specific result needs careful interpretation.
Escherichia/Shigella is a Gram-negative opportunistic pathogen [60], which is implicated in
a variety of intraabdominal infections and is linked to gut microbiome instability [33]. It
is also an important producer of pro-inflammatory lipopolysaccharides [61]. Indoxyl-3-
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sulfate is a metabolite produced by the liver through sulfation of the microbial fermentation
product indole, which is produced during tryptophan degradation by various microbes,
including members of the genera Escherichia and Shigella. Thus, while not reported pre-
viously, the association is plausible given the known metabolic traits of the associated
genera. Importantly, indoxyl-3-sulfate is a known uremic toxin that accumulates in chronic
kidney disease and is also said to be pro-inflammatory in general [62]. Thus, our re-
sults corroborated the role of Escherichia/Shigella, one of the most important opportunistic
pathogens in the gut microbiome, in the production of indoxyl-3-sulfate with potential
adverse clinical implications.

The main results of our study, however, were with respect to the metabolite hippu-
rate. This metabolite was found to have a strong positive association with microbial alpha
diversity, as well as a rich association pattern with various genera. These results provide
an additional validation of earlier studies [34,51,52]. Thus, cumulative evidence points
towards hippurate being a marker of alpha diversity and gut microbiome metabolism.
Moreover, hippurate was also shown to be associated with metabolic health [63,64], and cer-
tain experimental evidence exists showing beneficial effects in mice models of diabetes [52].
Hippurate is produced via glycine conjugation of benzoate (Figure 3B), predominantly
in the liver, although the pathway was also reported for the kidney [65]. Benzoate can
either be directly ingested through the consumption of benzoate-containing food, such
as berries, seafood, and dairy products, or produced by the microbiome by metabolising
other phenols [66]. However, benzoate is also degraded by microbes in various pathways,
including pathways that feed benzoate into central carbon metabolism [61]. Notably, the
pathways for benzoate production and benzoate degradation co-occur in microbes [38].
Previous studies have shown that the gut microbiome has a clear effect on human benzoate
pools [61]. Thus, the question arises whether the microbiome is a net consumer or producer
of benzoate. In this respect, the analyses of the metagenomic data from Yachida et al. [39],
which we functionally annotated using the AGORA2 resource [38], pointed towards the
gut microbiome being a net consumer of benzoate. As our analyses demonstrated, highly
diverse communities had lower reaction abundances of benzoate-transporting reactions.
Thus, it follows plausibly that the higher the diversity, the lower the capacity to metabolise
benzoate. Less benzoate consumption by the gut microbiome could then result in more
benzoate being transported through the portal vein to the liver for hippurate formation. An
important observation in this context is that benzoate exhibits antimicrobial activity such
that high benzoate diets may lead to microbiomes with high-benzoate-metabolising capaci-
ties [66]. Although this hypothesis needs further validation, it would have consequences
for interventional studies aiming at promoting human health through the microbiome. Our
analyses would indicate that reducing microbial benzoate metabolism could be beneficial
through the effects of hippurate.

Finally, our results indicated that the microbiome-related metabolic traits associated
with urinary hippurate were of interest for human health, as they were robustly associated
with markers of inflammation, liver injury, and metabolic health. As such, they fully
mediated the effects of microbial diversity on the same markers, indicating that microbial
benzoate metabolism is one of the metabolic functions underlying the rich associations of
microbial diversity to human health.

Although our study successfully replicated known findings while expanding the
scope of knowledge regarding metabolome–microbiome relations, certain strengths and
limitations have to be kept in mind. First, while our study was of reasonable size, the
statistical power of finding associations was low for rare genera and metabolites with
missing quantifications. Moreover, since the human microbiome shows strong regional
differences, generalisations of our results towards other regions are not guaranteed, and
an independent validation investigating the herein-reported biomarkers is needed [67,68].
Moreover, due to the usage of 16S rRNA gene sequencing, the taxonomic resolution was
limited to the genus level in most cases. Therefore, it was not possible to investigate
species or strain-specific microbe–metabolite associations. Importantly, our analyses were
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cross-sectional in design, and while we could adjust for a wide range of covariates relevant
to metabolomics and microbiome data, there was still the risk of unmeasured confounding.
Moreover, our analyses of metabolite–microbiome relations were performed on a predom-
inantly healthy population, which limits the ability to detect associations with manifest
diseases. As our study was a fasting study, certain aspects of diet–microbiome-host in-
teractions could not be investigated. In relation to microbial benzoate metabolism, it can
be conceived that our current knowledge is still incomplete [61]. Thus, the hypothesis
regarding the relationship between benzoate metabolism and alpha diversity based on
functional annotations representing our current knowledge base needs further validation,
preferably in an experimental set-up.

In conclusion, our study demonstrated the usefulness of NMR urine metabolomics in
the assessment of host–microbiome interactions in the domain of metabolism. As NMR is
inherently robust, reproducible, non-destructive, and involves minimal sample preparation,
we believe NMR metabolomics will have a future in the emerging field of microbiome–host
interaction in health and disease.

4. Materials and Methods
4.1. Study Population

Data of SHIP-TREND (recruited 2008–2012, n = 4420) was used, consisting of indi-
viduals from the region of Pomerania, North-Eastern Germany. The SHIP cohorts were
designed to investigate the prevalence and incidence of clinical and subclinical phenotypes
and their risk factors. For detailed information on the design, biomaterials, and available
data, see [35].

In the presented study, we focused on the sub-cohort of SHIP-TREND with available
16S rRNA gene-sequencing data of stool samples (n = 3637) and the sub-cohort with
NMR urine metabolomics (n = 996). Both 16S rRNA gene sequencing data and NMR
metabolomics were available for 951 individuals. Due to the design of the SHIP-TREND
study, individuals with known diabetes were not characterised using NMR metabolomics.
This was the only exclusion criteria. However, as a consequence, the SHIP-TREND NMR
sample was healthier than the average population, as diabetes-related comorbidities and
traits were underrepresented.

The institutional review board of the University of Greifswald approved the survey
and methods of the SHIP studies and all analyses followed the Declaration of Helsinki.
Written informed consent was provided by all participants.

4.2. Assays and Phenotypes

The medical history and sociodemographic factors of each participant were evaluated
using a computer-assisted face-to-face interview. Next, participants underwent extensive
medical examinations, including measurements of the waist circumference, body height
weight, and blood pressure. Waist circumference was used as an indicator of abdominal
fat in all analyses. Participants were asked to bring their medication prescription sheets or
packing containers of all medication they have been taken within the last seven days. By
counting the number of alcoholic beverages that had been consumed on average per day
over the last 30 days, alcohol consumption was estimated.

Blood samples were drawn between 07:00 a.m. and 12:30 p.m. Fasting time was
assessed by asking for the last time the participants ate or drank beverages other than
water. In SHIP-TREND, participants were explicitly asked not to eat or drink before blood
sampling. Fasting time was an average of 13:28 h, standard deviation (SD) = 1:32 h. Blood
samples were taken from the cubital vein and analysed directly or stored at −80 ◦C in the
Integrated Research Biobank of the University Medicine Greifswald [69]. Spontaneous
urine specimens were collected and immediately stored at −80 ◦C. White blood cell count
(WBC), red blood cell count (RBC), and thrombocytes count (PLT) were measured on the
XE 5000 from Sysmex (Sysmex Deutschland GmbH, Norderstedt, Germany). Glycated
hemoglobin (HbA1c) concentrations were determined using high-performance liquid chro-
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matography (Bio-Rad Diamat, Munich, Germany). Highly sensitive CRP, triglycerides, total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), GGT, ASAT, ALAT, and creatinine (Jaffé) were determined on the
Dimension VISTA 1500 according to the recommendations of the manufacturer (Siemens
Healthcare Diagnostics GmbH, Eschborn, Germany). From the serum creatinine, the esti-
mated glomerular filtration rate (eGFR) was calculated using the Modification of Diet in
Renal Disease equation, as described before [35]. All requirements of the corresponding
guideline according to quality specifications were at least fulfilled. Plasma fibrinogen con-
centrations were assayed according to Clauss (BCS, Siemens Healthcare Diagnostics GmbH;
Eschborn). Exocrine pancreatic function was determined using a pancreatic elastase ELISA
(BIOSERV Diagnostics, Greifswald, Germany) based on faecal samples, as described before.

4.3. 16S rRNA Gene Sequencing and Taxonomic Assignments

Stool sample sequencing followed established procedures, as outlined before in de-
tail [70]. Briefly, study participants collected faecal samples at home and stored them in
a tube containing a stabilising DNA buffer. Next, faecal samples were transported to our
laboratory. Then, DNA from the faecal samples was extracted (PSP Spin Stool DNA Kit;
Stratec Biomedical AG, Birkenfeld, Germany) and stored at −20 ◦C until analysis using 16S
rRNA gene sequencing of the V1–V2 region utilising a MiSeq platform (Illumina, San Diego,
CA, USA). For taxonomic assignments, DADA2 16 (V.1.10) was employed for amplicon
data processing, enabling single-nucleotide resolutions of amplicons. All samples were
normalised to 10,000 16S rRNA gene read counts.

4.4. NMR Measurements in SHIP-TREND

After thawing, urine specimens were centrifuged for 5 min at 3000× g, and the
supernatant was used for spectroscopic analysis. To this purpose, we mixed 450 µL of urine
with 50 µL of phosphate buffer to stabilise the urinary pH at 7.0 (±0.35). The buffer was
prepared with D2O and contained sodium 3-trimethylsilyl-(2,2,3,3-D4)-1-propionate (TSP)
as a reference. Spectra were recorded on a Bruker DRX-400 NMR spectrometer (Bruker
BioSpin GmbH, Ettlingen, Germany) at a 1H frequency of 400.13 MHz. The instrument was
equipped with a 4 mm selective inverse flow probe (FISEI, 120 µL active volume) with a
z-gradient. Specimens were automatically delivered to the spectrometer via flow injection.
The acquisition temperature was set to 300 K. A standard one-dimensional 1H-NMR pulse
sequence with suppression of the water peak (NOESYPREAST) was used: RD − P(90◦) −
4 µsec − P(90◦) − tm − P(90◦) − acquisition of the free induction decay (FID). The non-
selective 90◦ hard pulse P(90◦) was adjusted to 9.4 µsec. The relaxation delay (RD), mixing
time (tm), and acquisition time were set to 4 s, 100 msec, and 3.96 s, respectively, resulting
in a total recycle time of ~8.0 s. Low-power continuous-wave irradiation on the water
resonance at a field strength of ~25 Hz was applied during RD and tm for pre-saturation.
After the application of 4 dummy scans, 64 FIDs were collected into 65,536 (64 K) complex
data points using a spectral width of 20.689 parts per million (ppm). FIDs were multiplied
with an exponential function corresponding to a line broadening of 0.3 Hz before Fourier
transformation. Spectra were processed within TOP-SPIN 1.3 (Bruker BioSpin, Billerica,
MA, USA).

The NMR spectra were analysed by Chenomx Inc. (Edmonton, AB, Canada) and man-
ually annotated by spectral pattern matching using the Chenomx Worksuite 7.0 (Chenomx
Inc., Edmonton, Canada) to deduce absolute urinary metabolite concentrations. The
method of Chenomx’s patented NMR-based metabolomics platform is based on software
and an extensive reference database that contains a compound list of over 300 metabolite
models and was used for the analysis. Manual phasing, baseline correction, and targeted
metabolic profiling using the Chenomx library were performed. This resulted in a list of
60 identified metabolites (including creatinine, which was used for normalisation) and their
concentrations in millimoles per liter (mM). The spectrum regions of water (δ = 4.6–5.0)
and the regions below δ = 0.0 and above δ = 10.0 were removed from the analysis for all
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groups in order to prevent variation in each sample. Each NMR variable was normalised
to the total area in order to allow for a spectrum-to-spectrum comparison.

4.5. Data Normalisation and Outlier Detection

For statistical analyses, regression-based normalisation was performed on the log-
transformed urinary concentrations based on probabilistic quotient normalisation using
restricted cubic splines, as described in [36]. Regression-based normalisation leads to
slightly higher statistical power, and it accounts for potential metabolite-specific dilution–
concentration dependencies [36]. Details on regression-based normalisation can be found
in Hertel et al. [36]. After the regression-based normalisation, outliers based on the 4-
standard-deviation rule were excluded.

4.6. Statistical Analyses in SHIP-TREND

For descriptive statistics, metric variables were described using means and standard
deviations, while categorical and ordinal variables were described using proportions.
All reported p-values were two-tailed, and multiple testing correction was performed
via applying the false discovery rate (FDR). All major routes of analysis were performed
through multivariable regressions from the class of generalised linear models. All regression
analyses included a basic set of covariates if not specified otherwise, consisting of age, sex,
age–sex interaction terms, and waist circumference. Furthermore, we included smoking,
hypertonia, HbA1c, years of education, the eGFR, urinary pH, and alcohol intake as
covariates for the full adjustment. Age, waist circumference, and eGFR were introduced as
restricted cubic splines using four knots at the 5% percentile, the 33% percentile, the 66%
percentile, and the 95% percentile of the respective distributions. Nonlinear modelling for
these variables was chosen, as previous analyses indicated nonlinearity in respect to basic
covariates [71].

In the first set of regression models, we screened urinary metabolite concentrations
on associations with genus abundances. We included only metabolites and genera with
at least 50% non-zero measurements, resulting in 1681 metabolite–genus combinations
tested. This rather strict criterion was applied to filter out metabolite–genus combinations
with low case numbers and thus low statistical power. The regressions then included
normalised metabolite concentration as a response variable, while the genus abundance
was utilised as a predictor of interest adjusting for the set of basic covariates. Lastly, we
used the 16S rRNA gene-sequencing batch variable as a random effect variable to account
for batch effects. The herein identified metabolite–genus pairs with FDR < 0.05 were then
subject to sensitivity analyses using the full list of covariates. Furthermore, we utilised
non-parametric bootstrapping (2000 replications) for recalculating p-values, ensuring that
our results are not biased by certain distributional features of the microbial abundances. In
the main text, we report the fully adjusted effects, whereas Supplementary Tables S2 and S3
contain the summary statistics for all regressions performed.

In the second set of analogous regression models, we exchanged the genus abundance
with a binary variable indicating genus presence or absence. Here, we included all genera
that were found in at 20% of the samples and maximally in 80% of the samples. This led to
1848 genus–metabolite pairs. As before, these combinations were screened on significant
metabolite–genus associations using the basic set of covariates, and significant associations
were then re-tested using the full adjustment.

Third, to test the associations between the urine metabolome and metrics of gut micro-
biome alpha diversity, we ran mixed-effect regression models as before. However, now the
predictor of interest was either the Shannon entropy or the species richness, as calculated
via the Vegan R package [72]. Multivariable linear mixed regressions were performed for
the 42 metabolites having more than 50% non-zero measurements testing on associations
between metabolites and alpha diversity measures, both for the basic adjustment and the
full list of covariates. After graphical examination of the results indicating the presence of
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nonlinear diversity, we furthermore checked on nonlinear associations via restricted cubic
splines as before.

Fourth, we explored the predictive value of the microbiome for each of the 42 metabo-
lites that was measured in more than 50% of the cases. To this end, we used an elastic net
regression methodology, which is a machine learning approach from the class of penalised
regressions based on the objective function

Q =
1

2n

n

∑
i=1

(
yi − β0 − xiβ

′)2
+ λ

p

∑
j=1

(
1− α

2
β j

2 + α|β j|
)

(1)

where n is the sample size, y is the response variable (the normalised metabolite concentra-
tion), x is the vector of predictors (genus abundances), p is the number of predictors, β is
the regression coefficients, and λ and α are the penalty parameters. Then, a grid search over
various λ and α values was performed using internal cross-validation to find the parame-
ters with the lowest prediction error. Note that if α = 1, the elastic net is equivalent to the
Lasso, while with α = 0, it becomes equivalent to the Ridge regression. We performed a grid
search on α = {0, 0.1, . . . , 1} and using the default parameters for λ in the STATA 17/mp
elasticnet function. We utilised 10-fold cross-validation and utilised the out-of-sample
R-squared value as an indicator of model fit. Full results for all 42 metabolites can be found
in Supplementary Table S6.

As only the microbiome-based prediction score for urinary hippurate explained the
substantial proportions of variance, we explored the information encoded in this prediction
score further. To this end, we utilised linear mixed-effect regressions with either the
normalised urinary hippurate concentrations, the Shannon entropy, or the microbiome-
based hippurate prediction score as a response variable, the full set of covariates, and
one additional clinical parameter as a predictor of interest. In this way, we screened
inflammation markers (high sensitivity CRP, fibrinogen, white blood cell counts), markers
of metabolic health (triglycerides, ratio of total cholesterol and HDL cholesterol, HbA1c),
and markers of liver injury (GGT, ASAT, ALAT) on the association with urinary hippurate
concentration, the Shannon entropy, and the microbiome-based hippurate prediction score.
Finally, we performed mediation analyses following the procedure of Hicks et al. [73]
to test whether the microbiome-based hippurate prediction score mediates the effects of
microbiome diversity on markers of human health.

4.7. Statistical Analyses on Yachida et al.’s Metagenome Data

To enlighten the relation between microbial benzoate metabolism and microbial al-
pha diversity further, we went on to analyse a public metagenomics dataset (n = 616,
see Yachida et al. [39] for details) with functional annotations based on the AGORA2
platform [40]. In brief, species abundances were retrieved via the MetaPhlaN2 pipeline
and then mapped onto AGORA2. AGORA2 is a collection of semi-automatically derived
and manually curated genome-scale reconstructions of microbes that was curated against
known experimental data reflecting the true metabolic capacities of the microbes [40]. We
utilised the genome-scale reconstructions to analyse which microbes were able to secrete
benzoate, formate, and 4-hydroxyphenylacetate. Moreover, we calculated reaction abun-
dances for all reactions involving benzoate based on the AGORA2 functional annotations
using established pipelines [74] for all metagenomes measured in Yachida et al. [39]. Then,
we regressed the reaction abundances via fractional regressions on the Shannon entropy
including age, sex, body mass index, and the case–control status as covariates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12040308/s1, Table S1: Descriptive statistics on urinary
metabolites that were included and excluded from the analyses; Table S2: Association analyses
between genus presences and urinary metabolite concentrations; Table S3: Association analyses
between genus presences and urinary metabolite concentrations; Table S4: Summary statistics for
metabolite Shannon diversity associations; Table S5: Summary statistics for metabolite species
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richness associations; Table S6: Overview on performances on predicting metabolite concentrations
from genus abundances via elastic net regression methodologies; Table S7: Sample characteristics of
the utilised metagenomic data from Yachida et al. (2019); Table S8: Lists of strains from AGORA2
producing benzoate, formate, and 4-hydroxyphenylacetate.
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