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1. Introduction 

1.1. Influenza A virus (IAV) 

1.1.1. Taxonomy 

Influenza A viruses (IAVs) belong to the family Orthomyxoviridae, which also contains the genera 

Influenza Virus B, C, D, Infectious Salmon Anaemia, Quaranjavirus and Thogotovirus. The 

classification is based on variations of the nucleoprotein (NP) and the matrix protein 1 (M1) (Hause 

et al., 2014; ICTV, 2020).  

In both, human and veterinary medicine, IAVs are one of the leading health concerns (Capua and 

Alexander, 2010; Paget et al., 2019). Their evolution in different host species led to the formation 

of distinct IAV lineages. Hence, there are three main avian lineages with viruses from Eurasia, 

North America and Oceania. Similarly, host-specific lineages for human, classical swine and equine 

IAVs exist. Moreover, in pigs, two cross-host lineages, the Eurasian avian-like swine and the swine-

origin human pandemic H1N1 2009 lineage, as well as bat viruses are known (Tong et al., 2013; 

Xu et al., 2011).  

Besides the NP classification, IAVs are subdivided into 18 hemagglutinin (HA) and 11 

neuraminidase (NA) subtypes due to the variable antigenic and genetic properties of the HA and 

NA, respectively (Fouchier et al., 2005; NCBI, 2021; Tong et al., 2013). Furthermore, the H1-H18 

HA and N1-N11 NA subtypes are classified into two distinct phylogroups (Gamblin and Skehel, 

2010).  

1.1.2. Virion structure 

Influenza A viruses are polymorphic with a host-derived double bilayer lipid membrane and mainly 

spherical or rarer filamentous shape. While spherical particles are around 100 nm in diameter, 

filamentous virions have a length of around 300 nm (Bouvier and Palese, 2008; Bruce et al., 2012). 

The core of the virion contains the segmented viral RNA (vRNA) genome. Each RNA segment 

appears as a viral ribonucleoprotein (vRNP) complex consisting of the RNA interacting with the 

polymerase complex and many copies of NP (Elton et al., 1999; Gavazzi et al., 2013; Nayak et al., 

2009; Noda et al., 2006). Virions are packed in a 7+1 arrangement where one vRNP complex in 

the center is surrounded by the other seven vRNPs in a circular manner (Eisfeld et al., 2015; Noda 

et al., 2006). Furthermore, the interior contains M1, the nuclear export protein (NEP) and probably 

the non-structural protein 1 (NS1), which was a long time believed to be located only in host cells 

during infection (Bouvier and Palese, 2008; Hutchinson et al., 2014). M1 locates beneath the viral 

envelope surrounding the particle core and plays an essential role in the architecture and 

morphology of IAVs by linking the vRNPs with the three transmembrane proteins (Elleman and 

Barclay, 2004; Enami and Enami, 1996; Rossman and Lamb, 2011). Besides the integral 

membrane matrix protein 2 (M2), the two glycoproteins HA and NA stud the virus envelope like 
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spikes (Bouvier and Palese, 2008) (Figure 1). Interestingly, the ratio of transmembrane proteins is 

different and can vary between virus strains. Accordingly, one virus particle exhibits 14 to 68 M2 

proteins, while the ratio to HA ranges between 1:10 to 1:100 (Zebedee and Lamb, 1988). Likewise, 

the HA:NA ratio is about 2:1 to 8:1 and varies among viruses too (Webster et al., 1968)  

 

Figure 1: Schematic structure of an influenza A virus. Structural proteins and segmented viral RNA 
are depicted within the viral ribonucleoprotein (vRNP) complex. 

1.1.3. Genome structure 

The segmented RNA genome of IAVs consists of eight distinct single-stranded molecules with 

negative polarity and a total molecular size of around 13.5 kb (Bouvier and Palese, 2008; Calder 

et al., 2010). These RNA segments consist of a non-coding region with highly conserved terminal 

ends, and adjacent segment-specific nucleotides flanking the open reading frames (ORFs) of the 

different genes (Goto et al., 2013; Hoffmann et al., 2001; Muramoto et al., 2006). The terminal ends 

of each segment contain a packaging signal, which plays a crucial role for segmental interaction 

and thus genome selection and packaging (Hutchinson et al., 2010; Muramoto et al., 2006). Each 

segment codes at least for one structural protein. Moreover, segments differ in size from 2341 kb 

to 890 kb and are numbered from 1 – 8 in the order of decreasing length (Bouvier and Palese, 

2008; Ghedin et al., 2005). The three largest segments 1 - 3 encode the viral polymerase subunits, 

which are formed by polymerase basic subunit 2 (PB2), polymerase basic subunit 1 (PB1) and 

polymerase acidic (PA) proteins (Guu et al., 2008; Stevaert and Naesens, 2016).  
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NP as part of the vRNP complex is synthesized through the translation of segment 5. Segment 4 

and 6 encode HA and NA, respectively. M1 and NEP are synthesized from segment 7 and 8 

(Bouvier and Palese, 2008). Additionally, segment 7 also encodes M2 and its subtype-specific 

isoform M42 produced by mRNA splicing (Wise et al., 2012). Segment 8 further encodes for NS1 

(Hutchinson et al., 2014). Beside the structural proteins, the majority of IAVs express non-structural 

proteins PB2-S1, PB1-F2; PB1-N40; PA-X; PA-N155; PA-N182; NS3 or NSP by using alternative 

ORFs or ORF frameshifts, initiation sites, truncations or even the RNA minus strand of the segment 

(Baez et al., 1980; Clifford et al., 2009; Jagger et al., 2012; Muramoto et al., 2013; Vasin et al., 

2014; Wise et al., 2009; Yamayoshi et al., 2016). 

1.1.4. Viral proteins 

All structural proteins are necessary for productive virus replication. The three largest proteins, 

PB2, PB1 and PA, forming the polymerase complex, act synergistically for a successful 

transcription of vRNA into translatable mRNA to synthesize viral proteins (Eisfeld et al., 2015). 

Besides the encapsidation of vRNA, NP has an essential role for vRNA transport to the nucleus 

and transcription initiation (Cros et al., 2005; O'Neill et al., 1995). NS1 serves as an interferon 

antagonist to inhibit the host immune response upon infection (Hale, 2014; Marc, 2014), whereas 

NEP mediates the nucleocytoplasmic export of nascent vRNPs (Gao et al., 2014; Neumann et al., 

2000; O'Neill et al., 1998). Besides its structural and linking properties, M1 plays a crucial role for 

the vRNP release into the cytoplasm and the virus assembly (Bui et al., 1996). In contrast, the M2 

homotetramer forms an ion channel to acidify the interior of the virion (Sugrue and Hay, 1991; 

Wharton et al., 1994). The transmembrane glycoprotein NA facilitates virus spread due to mucin 

breakdown in the respiratory tract, virus motility, prevention of virus particle aggregation and finally, 

the release of the virus from the cell membrane due to a highly conserved sialidase enzyme pocket 

(McAuley et al., 2019; Shtyrya et al., 2009). By contrast, HA is essential for receptor-mediated 

binding, endocytosis and fusion of the viral and host membrane prior to vRNP release into the 

cytoplasm. (Blijleven et al., 2016; Lakadamyali et al., 2004). 

1.1.5. Replication cycle of IAVs 

The replication of IAVs is a complex process where viruses hijack the transport and replication 

machinery of the host cell. Therefore, the replication cycle can be divided into the attachment 

phase, virus entry, uncoating and vRNP release, RNA transcription and translation, 

posttranslational modification, assembly and finally, the virus release (Figure 2). 
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Figure 2: Replication cycle of influenza A viruses. The virion binds via hemagglutinin (HA) to 
receptors on the host cell during the attachment phase (1) and gets internalized by endocytosis (2). The 
virion gets acidified during endosome maturation (3) and consequently, the cleaved HA forces the fusion 
of viral and endosomal membranes (4). Following the fusion pore formation, the viral ribonucleoprotein-
complexes are released into the cytoplasm during the uncoating step (5). After the transport to the 
nucleus, the vRNA gets replicated and transcribed (6). Then the mRNA gets translated and 
posttranslational processing takes place (7) prior to assembly and budding of viruses at the apical 
membrane (8). Finally, nascent virions are released via neuraminidase cleavage from the host cell 
surface (9). 

In the attachment phase, the HA of parental virions binds to receptors on the host cell surface 

(Varki, 2008), further described in paragraph 1.1.6.1. The viral entry phase starts by receptor-

mediated internalization (Matlin et al., 1981; Yoshimura et al., 1982). IAVs hijack different host 

mechanisms usually needed for the uptake of fluids and macromolecules, predominantly clathrin-

mediated endocytosis and macropinocytosis but also clathrin and calveolae independent pathways 

(De Conto et al., 2011; de Vries et al., 2011; Lakadamyali et al., 2004; Rossman et al., 2012; Rust 

et al., 2004). The internalization ends in an early endosome (EE) containing the virus particle 

(Lakadamyali et al., 2004). Subsequently, the transport to the perinuclear region, mediated by 

dynamic actin, takes place. During a rapid dynein-mediated translocation to the perinuclear region, 

the EE starts to mature and acidify by fusion with vesicles from the trans-Golgi network (TGN) and 

from late (matured) endosomes (LEs) (Lakadamyali et al., 2003). The acidification continues and 

the EE evolves to an LE during an intermitted microtubule-mediated movement in the perinuclear 

region. Thereby, the vesicle pH drops from 6.8 – 6.1 to 6.0 – 4.8 using proton pumps (Huotari and 

Helenius, 2011; Perez and Carrasco, 1994). The M2 ion channel enables the proton influx from the 

LE into the virion and subsequently acidifies the virus interior (Sugrue and Hay, 1991; Wharton et 

al., 1994).  
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The low pH forces the activated HA trimers into a conformational change to merge the viral and 

endosomal membranes so that they eventually form a stable fusion pore (Blijleven et al., 2016; 

Maeda and Ohnishi, 1980; Melikyan et al., 1993). A closer look at the membrane fusion is given in 

paragraph 1.1.6.2. Moreover, the drop in pH causes dissociation of M1 from the viral envelope and 

a weaker or even lost binding to NP, necessary for the subsequent release of vRNPs into the 

cytosol (Bui et al., 1996). Therefore, IAVs hijack the host cell aggresome formation and 

disassembly machinery (Banerjee et al., 2014; Fontana et al., 2012; Su et al., 2013). 

Influenza viruses belong to the few RNA viruses that replicate in the nucleus. The transport of the 

released vRNPs is mediated by the nuclear localization signal encoded by NP (Cros et al., 2005; 

O'Neill et al., 1995). Likewise, NP facilitates the vRNP-interaction with the nuclear pore complex. 

However, a successful transfer into the nucleus requires cellular proteins like karyopherin (importin) 

(Babcock et al., 2004). Once in the nucleus, the negative sense vRNA is transcribed by the viral 

RNA-dependent RNA polymerase (RdRp) into complementary positive-sense RNA (cRNA), which 

serves as the template for new vRNA copies (Fan et al., 2019). Furthermore, the viral RdRp 

transcribes the vRNA into mRNA, which is used to translate the viral proteins (Engelhardt et al., 

2005; Lukarska et al., 2017). To initiate synthesis of the viral mRNA, cRNA must be capped and 

polyadenylated to mimic a host mRNA, which gets translated in the cytoplasm by the translation 

machinery (Eisfeld et al., 2015). To that end, a process called “cap snatching” takes place. The 

cap-binding domain of PB2 binds to the 5´ cap structure of host-derived pre-mRNA, which is then 

cut 10 – 13 nucleotides downstream by the endonuclease activity of PA. This “stolen” cap primes 

the PB1 induced transcription of viral mRNA (Dias et al., 2009; Reich et al., 2014). Furthermore, 

each gene segment contains a conserved uracil stretch at the 5 prime end to generate the 3 prime 

mRNA polyadenylation signal. For encapsidation and export of nascent vRNPs, NP, NEP and M1 

are transported back into the nucleus after translation in the cytoplasm (Cros et al., 2005; Gabriel 

et al., 2011; Gao et al., 2014; Neumann et al., 2000; Noton et al., 2007). 

Proteins are synthesized as monomers, but the majority mature to homo- or heteromultimers with 

two, three or four subunits connected by cysteine residues via covalent disulfide bonds (Air, 2012; 

Elton et al., 1999; Kemble et al., 1992; Marc, 2014; Sugrue and Hay, 1991; Varghese et al., 1983). 

Several post-translational modifications are essential for the viral replication. Translated IAV 

proteins are modified by, e.g., phosphorylation, palmitoylation, ubiquitination, sumoylation and 

glycosylation (Hutchinson et al., 2012; Kirui et al., 2016; Tate et al., 2014; Veit and Schmidt, 1993; 

Way et al., 2020). The latter modification is defined by the oligosaccharide transfer to asparagine 

(N) site chains with an amino acid (aa) motif of N-X-S/T, where X can be any aa except proline 

(Tate et al., 2014). It is well established that only HA and NA possess N-glycosylation sites (GS), 

which vary among different viruses/subtypes (Shtyrya et al., 2009; Tate et al., 2014). 

Virus assembly and budding occur at the apical plasma membrane. While integrated membrane 

proteins HA, NA and M2 are directed by apical sorting signals (Ohkura et al., 2014), nascent vRNP 
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complexes are translocated via NEP (O'Neill et al., 1998; Paterson and Fodor, 2012). It is assumed 

that vRNP-NEP complexes bind M1, which interacts with the cytoplasmatic tail of HA, NA and M2 

(Noton et al., 2007; Zhang et al., 2000). Finally, every nascent virion must contain all structural 

proteins and one copy of each vRNA segment for assembly and budding (Chou et al., 2012; 

Fournier et al., 2012). The newly-formed viruses are still bound to the cell surface due to sialic acid 

interaction with the newly formed HA protein. For virus release, enzymatic cleavage of the sialic 

acids by NA is required (McAuley et al., 2019; Shtyrya et al., 2009).  

1.1.6. Hemagglutinin of IAVs 

The homotrimeric rod-shaped hemagglutinin is a type I transmembrane protein and the major 

glycoprotein of IAVs (Steinhauer, 1999). Hemagglutinin is synthesized at the rough endoplasmic 

reticulum and transported via the endoplasmic reticulum and the TGN to the plasma membrane for 

assembly with other structural proteins (DuBois et al., 2011; Skehel and Wiley, 2000). During the 

secretory pathway, protein folding, homotrimerization and posttranslational modifications like 

glycosylation and palmitoylation take place (Braakman et al., 1991; Daniels et al., 2003; Tate et al., 

2014; Veit and Schmidt, 1993). Each monomer is synthesized as the naïve but inactive precursor 

HA0 with a molecular size of around 75 kDa, which is activated by proteolytic cleavage at the HA 

cleavage site (HACS) into HA1 (55 kDa) and HA2 (25 kDa) subunits (Steinhauer, 1999; Zhirnov et 

al., 2002). While HA1 exclusively forms the globular head domain, which carries the most 

immunogenic epitopes and the receptor binding site (RBS), HA2 forms the central part of the stem 

domain. It contains the transmembrane domain as well as the hydrophobic fusion peptide 

necessary for membrane fusion and two antiparallel α-helices responsible for the coiled-coil 

structure of the homotrimer. (Steinhauer, 1999; Wilson et al., 1981) (Figure 3A). A conserved 

arginine (R) (rarer lysine (K)), glycine (G) bond forms the HACS and is located in the fusion loop 

that protrudes from the HA stem at the membrane-proximal third of the molecule (Skehel and Wiley, 

2000; Steinhauer, 1999). Depending on the HACS motif or structures adjacent to it, cleavage takes 

place during (1) maturation in the TGN, (2) on the host cell surface or (3) during release or income 

of virions (Bottcher-Friebertshauser et al., 2010; Skehel and Wiley, 2000; Stieneke-Grober et al., 

1992).  

1.1.6.1. Receptor binding  

The receptor binding site is located at the tip of the globular head and is composed of proximal and 

flanking loop regions and a short helix at the membrane distal edge (Figure 3B). Several residues 

like Tyr98, Trp153, His183 and Tyr195 are conserved among all HA subtypes and essential for 

multivalent binding to non-O-acetylated N-acetylneuraminic acids (Neu5Ac) (Gamblin and Skehel, 

2010). This member of the sialic acid (SA) family, present as terminal residue of glycoproteins and 

glycolipids on the cell surface, constitutes the basic determinant of the IAV host range depending 

on the SA linkage to galactose (Byrd-Leotis et al., 2017). Cells in the upper respiratory tract of 

humans predominantly exhibit SA in α2,6 linkage, while the lower respiratory tract possesses both, 
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α2,3-SA and α2,6-SA, conformations (Shinya et al., 2006). In comparison, mice express more α2,3-

SA (Ning et al., 2009). However, the variations among bird species are broader. For instance, while 

ducks have mainly α2,3-SA, terrestrial poultry like chickens and turkeys additionally exhibit α2,6 

linkage (Kimble et al., 2010). Accordingly, human and mammalian viruses preferentially bind α2,6 

linked SA, while avian and equine viruses infect cells predominantly with Neu5Ac in α2,3 

conformation (Connor et al., 1994). Thus, the SA distribution on cells, particularly in the upper 

respiratory and intestinal tracts, can be barriers for interspecies transmission (de Graaf and 

Fouchier, 2014; Suzuki et al., 2000; Webster et al., 1992). Interestingly, some viruses have a dual 

receptor specificity and few animals, known as “mixing vessels,” possess both α2,3-SA and α2,6-

SA in the upper respiratory tract. Since α2,6 orientation of SA is a prerequisite for an efficient 

transmission to mammals, mixing vessels like pigs and quails can support the generation of human-

adapted and pandemic viruses (Ha et al., 2001; Scholtissek, 1990; Wan and Perez, 2006; Zhang 

et al., 2013). Notably, several mutations in the RBS and adjacent residues can alter the preference 

of the receptor type (Table S1) and are discussed in paragraph 1.2.5.1. 

1.1.6.2. Membrane fusion and stability 

After endocytosis, virus particles are transported into endosomes with a steadily increasing acidic 

interior (Lakadamyali et al., 2003). Due to the decreased pH, the fusion of the viral envelope and 

cell membrane starts. Critical residues in the HA get protonated which results in an irreversible 

conformational change of the cleaved HA (Bullough et al., 1994; Han et al., 2001; White and Wilson, 

1987). Accordingly, the N-terminal fusion peptide of HA2 is inserted into the endosomal membrane 

using a hydrophobic pocket and interacts with lipid acryl chains (Chen et al., 1999; Tsurudome et 

al., 1992). Afterwards, large conformational changes and re-organization of helices and the 

interhelix loop of the HA stem bring the membranes in direct proximity to form a “fusion site” (Yang 

et al., 2020) (Figure 3C and 3D). Then, the HA tilts and forces the outer leaflets to interact (Tatulian 

et al., 1995). However, a “fusogenic unit” requires at least three homotrimers to induce lipid 

curvature. The curvature results in a hemifusion stalk which eventually collapses and forms a stable 

fusion pore (Blijleven et al., 2016; Danieli et al., 1996; Melikyan et al., 1993). The optimal fusion pH 

varies among different strains (pH 4.8 – 6.2). The HA stability impacts the virus-host specificity, 

pathogenicity and the infectivity in ex vivo models (Mair et al., 2014; Russell, 2021) and is further 

discussed for avian and mammalian hosts in the paragraphs 1.2.3.1 and 1.2.5.1.  
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Figure 3: Structure and conformational change of hemagglutinin. (A) A hemagglutinin homotrimer 
with one monomer depicted in cartoon style, comprising N-glycosylations and highlighted locations of 
the receptor binding site and the fusion peptide. (B) A detailed view of the receptor binding site with 
framing tertiary structures and critical residue positions for receptor binding and switch in host 
preference– modified from Byrd-Leotis et al. (2017). (C) A schematic depiction of the conformational 
changes of cleaved hemagglutinin (shown as dimer for better visualization) as a result of the drop in pH 
during acidification– modified from Fontana et al. (2012). (D) The progress of HA2 mediated membrane 
fusion and formation of a fusion pore (HA1 is not shown in the intermediate steps for better visualization) 
- modified from Skehel and Wiley (2000). The HA1 subunit is depicted in blue, while the HA2 is shown 
in brown and red. The fusion peptide is presented in yellow. 

1.1.7. Antigenic drift, antigenic shift and recombination 

The evolution and natural gain of functions of IAVs occur by three distinct ways changing the viral 

genome (Shao et al., 2017). Firstly, the “antigenic drift” is defined as single mutations in the viral 

genome caused by the error-prone vRNA RdRp lacking a proofreading function. This can lead to 

aa substitutions and subsequently possible alterations of the protein structure and biological 

functions (Ahlquist, 2002; Chen and Holmes, 2006). Such mutations can be acquired due to 

antivirals, vaccination pressure or spread to other species, and may confer antiviral resistance, 

immune evasion and increased replication in the new host (Carrat and Flahault, 2007; Landolt and 

Olsen, 2007). Interestingly, mutations are often observed in the HA to, e.g., mediate immune 
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evasion or modulate receptor binding specificity. Besides point mutations, swapping whole gene 

segments can occur during co-infections of single host cells by different IAVs (Reid and 

Taubenberger, 2003). Such “reassortments” may result in “antigenic shifts” and the possible 

emergence of pandemic viruses. Accordingly, the pandemic viruses from 1918/1919, 1957, 1968 

and 2009 evolved by reassortment and comprised segments of IAVs derived from different hosts 

(Mostafa et al., 2018). Additionally, non-homologous and homologous “recombination” can occur 

by shuffling parts of host cell ribosomal RNA or IAV gene segments into IAV genes, mainly in the 

HA (Kapczynski et al., 2013; Orlich et al., 1994; Suarez et al., 2004). Hence, the insertion of, e.g., 

basic aa into the HACS enabled the transition of some low pathogenic (LP) to highly pathogenic 

(HP) avian influenza viruses (AIVs) in terrestrial birds (Suarez et al., 2004), discussed in detail in 

paragraph 1.2.3.1. 

1.1.8. Reverse genetics, cloning and mutagenesis 

The term “reverse genetics” defines the generation and modification of recombinant organisms to 

initiate and investigate distinct phenotypes. For IAVs, it means the generation of recombinants from 

cloned complementary DNA (cDNA) to investigate wild-type viruses, mutants and/or reassortants 

and to produce vaccines (Govorkova et al., 2006; Neumann, 2020; Neumann et al., 2005). Thereby 

the breakthrough was to use the eukaryotic RNA polymerase I for the transcription of viral RNA 

(Neumann et al., 1994). Beside its location in the nucleus and the high expression in dividing cells, 

RNA polymerase I initiates and terminates transcription at defined promotor and terminator 

sequences and can synthesize rRNA of >20 kb, enough for IAV segments with 0.9 – 2.3 kb. 

Moreover, transcripts do not possess 5´-cap or 3´-poly(A) structures and resemble vRNA 

(Neumann, 2020). Neumann et al. (1999) cloned cDNAs of all segments individually between a 

human RNA polymerase I promoter and a mice terminator sequence. The eight plasmids were then 

transfected into highly susceptible human embryonic kidney (HEK) 293T cells, together with four 

expression plasmids, which encode for NP and the polymerase complex to initiate virus replication 

and transcription. This approach resulted in the first de novo synthesis of an IAV from cloned cDNA 

in a 12-plasmid system (Neumann, 2020; Neumann et al., 1999). By using HEK 293T and Madin-

Darby Canine Kidney (MDCK) cell co-cultures, a higher virus rescue efficacy was reached. While 

the first cell line (i.e., HEK 293T) facilitates transfection and virus generation, the second cell line 

(MDCK) supports efficient replication of the rescued virus (Hoffmann et al., 2000).  

An improvement of the 12-plasmid system is the bidirectional reverse genetics system, which 

reduces the required plasmids from 12 to 8, and thus increases transfection efficacy and virus 

rescue. In the bidirectional system, the pol I promotor–cDNA–terminator transcription cassette in 

negative sense orientation is flanked by a truncated RNA polymerase II promotor from the human 

cytomegalovirus and from the polyadenylation signal of the gene encoding bovine growth hormone 

in positive sense orientation. Accordingly, the newly designed pHW2000 plasmid vector gives the 

ability to transcribe authentic vRNA and mRNA to synthesize viral proteins and rescue viruses from 
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eight plasmids simultaneous (Hoffmann et al., 2000). Moreover, further modifications on the 

pHW2000 vector enable the efficient, rapid and less laborious rescue of influenza viruses (Stech 

et al., 2008). 

To modify the cDNA by point-mutations, insertions and/or deletions, several site-directed 

mutagenesis methods based on PCR were established (Aiyar et al., 1996; Bachman, 2013; Heda 

et al., 1992; Hemsley et al., 1989; Weiner et al., 1994). For implementation, primers carrying the 

mismatch oligonucleotides are designed either back-to-back or overlapping (Aiyar et al., 1996; 

Hemsley et al., 1989). A commercial kit developed by Agilent (Stratagene) for the overlapping 

design is available (Agilent, 2015; Zheng et al., 2004) where resulting plasmids with or without 

mutations can be directly transformed into competent E.coli cells. 

 

1.2. Avian influenza virus (AIV) 

1.2.1. Classification and assessment of pathogenicity 

Avian influenza viruses contain 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes 

(Alexander, 2015). According to the Terrestrial Code of the World Organization for Animal Health 

(OIE), they can be divided into two pathotypes depending on the severity of clinical signs and 

genetic properties of the HA protein (OIE, 2021a, b). While low pathogenic avian influenza viruses 

(LPAIVs) induce mild or no clinical disease, highly pathogenic avian influenza viruses (HPAIVs) 

(“fowl plague”) cause severe clinical signs with up to 100% morbidity and mortality. Only viruses 

from subtypes H5 or H7 exhibit high virulence in poultry. Such HPAIVs derive directly from LP 

precursors (Richard et al., 2017). A shift in the pathogenicity is mainly associated with changes in 

or around the proteolytic HACS by substitutions, insertions or recombinations. Insertions of basic 

aa (Lys, Arg and rarely His) result in changing the LPAIV monobasic HACS to polybasic motifs in 

the HPAIV (Abdelwhab et al., 2013; Bosch et al., 1981; Richard et al., 2017).  

The OIE defines two ways to determine the pathogenic potential of an AIV (Alexander, 2015; OIE, 

2021a): (1) in vivo methods and (2) sequencing of the HACS. For one in vivo method, ten 

susceptible 6-week-old specific pathogen free or seronegative chickens are injected intravenously 

(IV) with allantoic fluid containing the respective virus. Chickens are examined daily for clinical 

signs or death and scores are given according to the severity of clinical signs from 0 (no signs) to 

3 (dead) (Table 1). The average daily mean score divided by the number of observation periods 

(i.e., 10 days) is known as the Intravenous Pathogenicity Index (IVPI). Hence, a value of > 1.2 

specifies an HP phenotype. Additionally, in the USA, high pathogenicity is determined when at least 

6/8 (75%) birds die within 10 days after IV injection with an AIV. 
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Table 1: Scoring system for the clinical assessment of intravenously infected chickens with AIVs 
according to the OIE regulation for the Intravenous Pathogenicity Index (IVPI) 

Score  

0 healthy chicken (no clinical signs) 

1 one distinctive clinical sign 

2 more than one clinical sign 

3 dead chicken 

Birds are considered sick or severely sick if they show one (score: 1) or more than one (score: 2) 

clinical signs like respiratory involvement, depression, diarrhea, cyanosis of the exposed skin or 

wattles, edema of the face and/or head and nervous signs (OIE, 2021a). 

Although the mentioned in vivo methods are useful, they do not mimic the natural infection routes 

and are not suitable to deliver information about bird-to-bird transmission or tissue tropism of a 

virus. Therefore, inoculation via the ocular and/or nasal route and the pathological examination of 

selected birds after a defined incubation time can be carried out. Moreover, the addition of in-

contact or sentinel birds indicates potential transmission events.  

The second method to define an HPAIV is based on determining the aa sequence in the HACS of 

H5 and H7 isolates. As mentioned, HPAIVs specify polybasic cleavage sites (pCS) with several 

basic aa, while LPAIVs carry monobasic cleavage sites (mCS) consisting of only one basic aa. 

Isolates with a pCS motif identical to a previous HPAIV are also designated as highly pathogenic 

irrespective of the pathotyping in chickens. Isolates with novel motifs must be assessed by IVPI 

(OIE, 2021a). 

Together, all influenza A isolates from poultry or wild birds exhibiting mortality rates of at least 75% 

and/or an IVPI between 1.2 and 3 or H5/H7 viruses with a polybasic HACS are HPAIVs and 

notifiable. Additionally, and for the purpose of the Terrestrial Code, all H5/H7 AIVs of low 

pathogenicity should be monitored because of their potential to mutate into a highly pathogenic 

phenotype. Moreover, the detection of sudden and unexpected increases in virulence of LPAIVs in 

poultry, as well as the detection in domestic or captive wild birds of LPAIVs that have been already 

naturally transmitted to humans with severe consequences, are notifiable (OIE, 2021b).  

1.2.2. Natural HPAI outbreaks 

The emergence of highly pathogenic avian influenza viruses is predominantly but not exclusively 

linked to gallinaceous poultry like chickens and turkeys (Richard et al., 2017). It is well-established 

that HPAIVs emerge from low pathogenic progenitors, which spread to terrestrial poultry and evolve 

a highly pathogenic phenotype during circulation in domestic birds for several days or even years. 

However, for the majority of HPAI outbreaks, no precursor virus could be identified (Richard et al., 

2017) but the occurrence and spread of HPAIVs are often linked to migratory flyways of wild birds 

(Gale et al., 2014; Kim et al., 2021).  
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To date, HPAI outbreaks are restricted to H5 and H7 viruses, while fowl plague cases prior to 1959 

were exclusively caused by H7 viruses (Lee et al., 2021). In 1959, the first HPAIV of subtype H5N1 

was isolated in Scotland. Since then, H5 and H7 outbreaks have been documented worldwide and 

caused tremendous economic losses by the death or culling of infected poultry. Furthermore, the 

transmission of LP and HP AIVs to mammals, including humans, has been reported frequently. 

1.2.3. Virulence determinants of AIVs in birds 

1.2.3.1. The role of HA 

The major virulence factor of AIV in birds is defined by sequence variations of the HACS and the 

conformation of the fusion loop, which determines the access of host proteases required for HA 

activation. Similar to human strains, the HACS of LPAIVs are composed of one basic aa Arg or Lys 

(Bosch et al., 1981; Klenk and Garten, 1994b). Those mCS are cleaved by trypsin or trypsin-like 

proteases in the respiratory and/or intestinal tract and lead to local infection and spread via the 

oral-fecal route in birds (Böttcher et al., 2006; Klenk and Garten, 1994b). In contrast, HPAIV 

possess a pCS with at least three basic aa and the consensus motif R-X-R/K-R (X is a random 

residue) (Abdelwhab et al., 2013; Bosch et al., 1981) where Arg at the fourth position from the 

carboxyl terminus of HA1 (P4) is preferential for high virulence (Kawaoka and Webster, 1988; Lee 

et al., 2006). The pCS is cleaved by ubiquitous furin- and subtilisin-like serine endoproteases during 

co-localization with the HA in the TGN (Stieneke-Grober et al., 1992). Thus, this major virulence 

factor can increase tissue tropism and facilitates fatal systemic infections in birds (Klenk and 

Garten, 1994b) (Figure 4). Although, the length of the pCS differs in naturally evolved HPAIVs, its 

composition and the viral background have a higher impact for pathogenicity (Abdelwhab et al., 

2016b; Lee et al., 2021; Thomas, 2002). However, it was shown that recombinant viruses with five 

or more basic aa improved viral fitness by a preferential selection compared to viruses with fewer 

insertions (Luczo et al., 2018). Interestingly, also non-basic residues in or adjacent to the HACS 

can modulate the virulence of AIVs in poultry (Blaurock et al., 2020; Gohrbandt et al., 2011b). Apart 

from H5/H7 subtypes, field isolates of H9 viruses in Bangladesh with tribasic CS were shown to be 

processed by furin-like proteases in a recent study. Although they remained low pathogenic, an 

enhanced replication in ovo compared to other mono- or dibasic H9N2 viruses was observed 

(Parvin et al., 2020).  

Besides the HACS motif, the presence or absence of N-linked glycans can modulate AIV virulence. 

While glycosylation patterns in the head domain vary among subtypes and are the main cause for 

shielding antigenic sites, GS in the stem domain are highly conserved and responsible for folding, 

trimerization and transport of HA (Klenk et al., 2002; Ohuchi et al., 1997b; Roberts et al., 1993; 

Tate et al., 2014). Interestingly, especially the latter were found to occasionally cover the HACS 

and prevent HA from proteolytic cleavage due to sterical hindrance (Kawaoka et al., 1984).  
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Intriguingly, it was shown that cleavage could be restored by an extended pCS motif (Kawaoka and 

Webster, 1989; Ohuchi et al., 1989). Moreover, potential glycosylation sites (pGS) contribute to 

virus replication, pH- and thermostability, chicken-to-chicken transmission and affect H5N1 virus 

pathogenicity in birds (Abdelwhab et al., 2016a; Klenk et al., 2002; Scholtissek, 1985; Zhang et al., 

2015b).  

 

Figure 4: Determination of the pathogenicity of AIVs by the HA cleavage site. A hemagglutinin 
monomer with fusion loop of a (A) low pathogenic avian influenza virus with a monobasic cleavage 
site causes local infections in poultry or (B) highly pathogenic avian influenza virus with the 
consensus sequence of a polybasic cleavage site causes fatal systemic infections in poultry. Blue 
stars depict infiltrated organs and tissue upon infection.- modified from Han (2020) 

1.2.3.2. The role of other gene segments 

Several studies revealed that virulence determinants beyond the HA and the HACS might be 

necessary for highly pathogenic phenotypes in avian hosts (Bogs et al., 2010; Stech et al., 2009). 

The genetic comparison between LPAI progenitor viruses and HPAIVs identified several mutations 

in all segments. However, no specific substitution was found to serve as a prerequisite of HPAIV 

emergence (Richard et al., 2017). Nevertheless, studies showed that mutations in the polymerase 

complex and NP contributed to virulence of H5 and H7 viruses in poultry (Abdelwhab et al., 2013; 

Isoda et al., 2012; Tada et al., 2011; Wasilenko et al., 2008; Youk et al., 2020). Furthermore, 

deletions in the stalk domain of the transmembrane mushroom-shaped NA are frequently identified 

during adaptation of AIVs from aquatic birds to domestic poultry and were found to enhance 

pathogenicity, tissue tropism and chicken-to-chicken transmission (Munier et al., 2010; Stech et al., 

2015). At this point, it is worth mentioning that a functional balance between HA and NA is also 

critical for replication and virus motility (de Vries et al., 2020; Wagner et al., 2002b). Intriguingly, 
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truncations or host restricted motifs at the carboxy-terminal end as well as other mutations were 

found to have an impact on the interferon antagonism function of NS1 and can subsequently 

support a highly pathogenic phenotype and increase the host range of the virus (Keiner et al., 2010; 

Li et al., 2006; Zielecki et al., 2010). Moreover, NS1 of contemporary H5 viruses have deletions at 

positions 80 – 84, which increased virulence in chickens and mice (Long et al., 2008). 

1.2.4. Spread to mammalian hosts 

Although the natural reservoir of AIVs was historically limited to wild birds, some avian viruses 

transmitted and adapted to mammalian hosts (Xu et al., 2011). Recently, two H3 IAVs of different 

origins became endemic in dogs in several locations globally (Harder et al., 2013; Parrish and 

Voorhees, 2019). To date, those lineages are limited to H1, H2, H3 and N1, N2 or N8 subtypes 

(Venkatesh et al., 2020) which were also found to transmit to pet animals. However, spread of AIVs 

from avian hosts to mammals is occasionally reported for different subtypes leading to no or limited 

secondary transmission. Some of these infections were fatal. By now, several avian HA subtypes 

have been reported to infect swine (H1-H6, H9) and marine mammals (H1, H3, H4, H5, H7, H10, 

H13) but were also sporadically isolated from terrestrial mammals like raccoons or minks (Kabel, 

2021; Klingeborn et al., 1985; Mostafa et al., 2018; Roberts et al., 2009). Transmission of AIVs to 

seals, associated with pneumonic clinical signs, have been reported for H7 (Lang et al., 1981) and 

several non-H5/H7 (Anthony et al., 2012; Callan et al., 1995; Hinshaw et al., 1984) subtypes at the 

New England coast of the U.S.A. and more recently for H3N8 (Venkatesh et al., 2020), H5N8 

(Kabel, 2021) and H10N7 (Zohari et al., 2014) in coastal areas of the North Sea. However, until 

now, no indigenous marine mammal IAV lineages have been described (Harder et al., 2013). 

Nevertheless, similar to pigs, seals might act as mixing vessels since the presence of both, avian-

like and human-like receptors in the respiratory tract were confirmed (Anthony et al., 2012). This 

finding highlights a possible role of seals in the evolvement of zoonotic or even pandemic strains. 

Spillover events into humans were reported for H5N1 (Subbarao et al., 1998), H5N6 (He and Duan, 

2015), H6N1 (Wang et al., 2015), H7N2 (Terebuh et al., 2018), H7N3 (Tweed et al., 2004), H7N4 

(Tong et al., 2018), H7N7 (Fouchier et al., 2004), H7N9 (Arima et al., 2013; Zhang et al., 2017), 

H9N2 (Peiris et al., 1999), H10N8 (Chen et al., 2014) and recently H10N3 (Wang et al., 2021) and 

H5N8 (WHO, 2021a). Human infections were acquired mainly by direct contact with infected poultry 

in live bird markets (LBMs) and rarely on poultry farms (Arzey et al., 2012; Chen et al., 2014; Kayali 

et al., 2010; Okoye et al., 2014). Importantly, human-to-human transmissions were only reported 

in few cases (Mostafa et al., 2018). In 1997, the first fatal cases after an infection with HPAIV H5N1 

were reported in China and linked to a poultry outbreak in the Guangdong province a year before. 

In a second wave in 2003, this virus spread to other countries in different continents by migratory 

birds (Gale et al., 2014). Since then, 863 human H5N1 infections have been confirmed worldwide 

(as of 20-08-21), with a high case fatality rate around 53% (WHO, 2021b). Notably, human 

infections by AIVs are linked to subtype H9N2 or its reassortment with other AIVs.  
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For instance, the LPAIV and HPAIV H7N9 strains which circulate in China since 2013 and 2017, 

respectively, and regularly spread to humans, obtained internal genes from contemporary co-

circulating H9N2 (Mostafa et al., 2018). To date, over 1568 human infections with H7N9 strains 

predominantly in China were confirmed (WHO, 2021b). Together, several AIV subtypes were found 

to spread to various mammalian hosts and frequent human infections pose a pandemic risk.  

1.2.5. Virulence determinants of AIVs in mammals 

1.2.5.1. The role of HA 

As mentioned in paragraph 1.1.6.1, the major virulence factor for the transmission of AIVs to 

mammals are changes in the HA-affinity to linkage variants of the terminal Neu5Ac sialic acid of N-

glycans onto host cells. A few residues in or adjacent to the HA receptor binding site can alter this 

binding preference from avian-like (α2,3-SA) to human-like (α2,6-SA) receptors (Byrd-Leotis et al., 

2017). Many studies revealed different mutations in the RBS, which contributed to a switch in 

receptor affinity and increased virulence in mammals (Table S1). However, substitutions at 

positions 138, 155, 183, 186, 190, 226 and 228 (H3 numbering) were frequently observed in 

different H5/H7- and non-H5/H7 subtypes. Moreover, mutations at positions 133,135 or 158 and 

160 (H3 numbering) can form glycosylation sites and were found to induce α2,6-SA binding by loss 

of this N-glycans in the head domain (Chang et al., 2020; Lee et al., 2018; Wang et al., 2010).  

Like in avian hosts, HA stability plays a crucial role for adaptation to mammals, though with higher 

impact. Likewise, several studies revealed mutations predominantly in the stem region, which affect 

the pH of fusion and thermostability (Russier et al., 2016; Sun et al., 2019; Zaraket et al., 2013b). 

Thereby a decreased pH of fusion goes along with increased stability and enhanced transmissibility 

to and virulence in mammalian hosts due to species and cell-specific properties and adjustment of 

the optimal fusion time. 

In contrast to avian hosts, fatal outcomes in mammals after AIV infections are rarely associated 

with a pCS. Individuals instead suffer from local respiratory disease symptoms like pneumonia 

(Karasin et al., 2000; Zohari et al., 2014) due to cleavage of mCS by tissue-restricted trypsin-like 

proteases, e.g., Transmembrane serinprotease 2 (TMPRSS2) and the human airway trypsin-like 

protease (HAT or TMPRSS11D), similar to human strains (Bottcher-Friebertshauser et al., 2010; 

Böttcher et al., 2006; Klenk and Garten, 1994a). Nevertheless, there is evidence that a pCS 

increase virus replication, transmission and pathogenicity in mammalian hosts caused by virus 

infiltration in tissues and organs beyond the respiratory tract (Suguitan et al., 2012; Sun et al., 

2016). Interestingly, a recent study revealed an impact on HA stability and pH fusion by the tribasic 

motif in H9N2, which affected virulence in mice (Zhang et al., 2021).  
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1.2.5.2. The role of other gene segments 

Beside HA, adaptation and virulence markers for mammals were identified in almost all structural 

and some accessory proteins (Suttie et al., 2019). Especially mutations in proteins of the RNP-

complex improve polymerase activity and contribute to the increased replication and virulence in 

mammalian hosts (Suttie et al., 2019). Many substitutions may affect the polymerase activity, 

particularly PB2: E627K, D701N, A588V; PB1: N105S, K577E; PA: T97I and NP: I109T, N319K 

(Cheng et al., 2014; Gabriel et al., 2008; Suttie et al., 2019; Xiao et al., 2016). Intriguingly, 

combinations of polymerase substitutions, especially E627K of PB2, with adaptive HA mutations 

resulted in airborne transmitting viruses after adaptation in ferrets (Herfst et al., 2012; Sutton et al., 

2014). Nevertheless, mutations in the PB1-F2, PA-X, and NP, were shown to modulate the 

virulence in mammalian (and avian) hosts without changes in the polymerase activity (Suttie et al., 

2019). Similar to avian hosts, virulence determinants like stalk deletions of NA or C-terminal 

truncation of NS1 are also associated with an increased virulence in mammals. Moreover, a few 

substitutions in M1 and NEP are linked to enhanced viral replication in mammalian cells and 

increased pathogenicity (Suttie et al., 2019). 

 

1.3. Non-H5 and H7 subtypes 

1.3.1. H1-H4, H6, H8-H16 

Similar to LPAI H5 and H7 viruses, the main reservoir of other AIVs are waterfowl like ducks, geese 

and swans, but also gulls and shorebirds. Exceptions are H13 and H16 subtypes which have a 

limited host range and evolved to gull-adapted lineages (Verhagen et al., 2021). Like mammalian 

adaptation markers, preferences of the receptor binding site exist for different bird species but are 

more finetuned and depend on glycan binding conformation and composition next to the terminal 

galactose. According to surveillance studies in mallard ducks, one of the major reservoirs of AIVs, 

the most prevalent HA subtypes are H4, followed by H3. H6 and H10 viruses are at the fourth and 

fifth place (Verhagen et al., 2021). Nevertheless, all non-H5/H7 subtypes were isolated from 

domestic poultry where they mainly caused, if any, mild to moderate infections with low mortality 

and limited spread (Mostafa et al., 2018). Intriguingly, outbreaks with high mortality rates in 

domestic birds caused by subtypes other than H5 or H7 have been rarely reported. In these 

outbreaks, co-infections with bacteria or other avian viruses like the Newcastle disease virus were 

described (Samy and Naguib, 2018). However, some non-H5/H7 strains naturally evolved a high 

virulence according to OIE regulations without such co-infections, as discussed in paragraph 1.3.2. 

1.3.2. Natural shift of non-H5/H7 viruses to high virulence 

Despite the frequent spread from wild birds to domestic poultry and the continuous circulation, non-

H5/H7 viruses remain low pathogenic and only cause self-limiting outbreaks with mild to moderate 

clinical symptoms. However, there are few exceptions where non-H5/H7 expressed high lethality.  
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For example, in 1975, an H4N8 virus caused severe clinical symptoms in a commercial layer flock 

in Alabama. After consecutive passages in cell culture and chickens, a re-evaluation of this virus 

unveiled a highly pathogenic phenotype by killing more than 75% of intravenously infected birds 

and plaque formation in the absence of trypsin (Brugh, 1992). Further investigations determined 

that birds died from acute severe renal damage (Shalaby et al., 1994). Moreover, an H9N2 virus 

caused a massive drop in egg production, symptoms of HPAIVs and 10 - 30% mortality on an 

Indian layer poultry farm (Jakhesara et al., 2014). Another H9N2 virus with two additional, 

engineered basic aa in the CS evolved a highly pathogenic phenotype by killing over 75% of 

intravenously infected chickens after ten consecutive passages. Strikingly, the virus remained 

avirulent via natural routes, although it could replicate in the absence of trypsin (Soda et al., 2011). 

Likewise, several H10 viruses with moderate to severe virulence after intravenous infection in 

chickens and lethality in the field have been identified (Alexander and Spackman, 1981; Bonfante 

et al., 2014; Karunakaran et al., 1983; Wood et al., 1996; Zhang et al., 2016). The IVPIs of these 

viruses ranged from 1.27 to 1.90 (2.40 in 3-week old chicken). Like for the H4N8 virus, the deaths 

of birds were mainly caused by extensive replication and lesions in the kidneys (Slemons and 

Swayne, 1992). However, all these H10 viruses lacked a naturally evolved pCS and except for one 

H10N1 strain with a mortality rate of 47.6%, no non-H5/H7 virus caused lethality after inoculation 

via natural routes (Table 2). 

1.3.3. High virulence of recombinant non-H5/H7 viruses 

Besides naturally evolved viruses with high virulence, a few studies investigated recombinant 

viruses with engineered pCS in non-H5/H7 viruses (Table 2). Accordingly, Veits et al. (2012) 

investigated the virulence of different non-H5/H7 subtypes after the insertion of a pCS mimicking 

the cleavage site of an HPAIV H5N2 virus and gene segments from an HPAIV H5N1 virus. 

Interestingly, the modified HA-subtypes H2, H4, H6, H8 and H14 showed a highly virulent 

phenotype after oculonasal infections in chickens. Strikingly, the reassortants of subtype H2, H4, 

H8 and H14, which showed a mortality rate of 100% via the natural route, revealed IVPIs between 

2.30 and 2.85 comparable to HPAIV H5 or H7 strains. Moreover, Gohrbandt et al. (2011) followed 

a similar approach for the H9 subtype and revealed high pathogenicity with an IVPI of 1.23 after 

reassortment with HPAIV H5N1 and insertion of its pCS (Gohrbandt et al., 2011a). However, both 

studies determined no shifts to high virulence when engineered HAs were expressed in the 

background of LPAIVs. In contrast, Munster et al. (2010) investigated an H6N1 virus with a 

synthetic pCS similar to an HPAIV H5N1. Surprisingly, the recombinant virus exhibited systemic 

spread upon intranasal inoculation and an IVPI of 1.40 in the parental virus background. This 

indicates the possibility of non-H5/H7 viruses to shift to high virulence via natural routes in the 

appropriate viral background.
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Table 2: Recombinant and naturally evolved non-H5/H7 AIVs with high virulence in chicken 

Subtype Gain of 

function 

HACS* Viral Background / 

Reassortment 

Pathogenicity 

index (PI) 

Mortality** IVPI Reference 

H2N5 recombinant PQRRRKKR/G A/Swan/Germany/R65/2006 (H5N1) 2.23 100% 2.79 (Veits et al., 2012) 

H4N6 recombinant PQRRRKKR/G A/Swan/Germany/R65/2006 (H5N1) 2.05 100% 2.37 (Veits et al., 2012) 

H4N8 naturally 

evolved / 

consecutive 

passages 

IPEKATR/G A/chicken/Alabama/7395/75 (H4N8) - 75% (IV) - (Brugh, 1992; Shalaby et al., 

1994; Slemons and Swayne, 

1992) 

H6N2 recombinant PQRRRKKR/G A/Swan/Germany/R65/2006 (H5N1) 1.58 75% - (Veits et al., 2012) 

H6N1 recombinant ETRRRKKR/G A/Mallard/Sweden/81/02 (H6N1) - 0% 1.41 (Munster et al., 2010) 

H8N4 recombinant PQRRRKKR/G A/Swan/Germany/R65/2006 (H5N1) 2.40 100% 2.85 (Veits et al., 2012) 

H9N1 recombinant SRRRRKKR/G A/Swan/Germany/R65/2006 (H5N1) 2.35 100% 1.23 (Gohrbandt et al., 2011a) 

H9N2 naturally 

evolved 

PARSSR/G A/chicken/UP/India/2543/2004 

(H9N2) 

- 10 – 30% - (Jakhesara et al., 2014) 

H9N2 engineered 

HACS / 

consecutive 

passages 

PARKKR/G A/chicken/Yokohama/aq-55/2001 

(H9N2) 

- 75% - (Soda et al., 2011) 

H10N1 naturally 

evolved 

PEIMQGR/G 

 

A/mallard/Italy/4518/2007 (H10N1) - 47.6% 1.90 – 

2.40 

(Bonfante et al., 2014) 

H10N3 naturally 

evolved 

PEIMQGR/G A/duck/Fujian/1761/2010 (H10N3) 0.00 0% 1.60 (Zhang et al., 2016) 
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H10N4 naturally 

evolved 

PEIMQGR/G A/turkey/England/384/79 (H10N4) - 70% (IV) 1.34 - 

1.62 

(Alexander and Spackman, 

1981; Wood et al., 1996) 

H10N5 naturally 

evolved 

PEIMQGR/G A/mandarin duck/Singapore/805/F-

72/7/93 (H10N5) 

0.00 0% 

80% (IV) 

1.56 – 

1.76 

(Wood et al., 1996) 

H10N7 naturally 

evolved 

PEVVQGR/G A/turkey/Minnesota/5/1979 (H10N7) - 31% - (Karunakaran et al., 1983) 

H10N7 naturally 

evolved 

PEIMQGR/G A/duck/Shanxi/3180/2010 (H10N7) 0.00 0% 1.27 (Zhang et al., 2016) 

H10N7 naturally 

evolved 

PEIMQGR/G 

 

A/duck/Italy/1398/2006 (H10N7) - - >1.20 (Bonfante et al., 2014) 

H14N3 recombinant PQRRRKKR/G A/Swan/Germany/R65/2006 (H5N1) 1.63 100% 2.61 (Veits et al., 2012) 

* Hemagglutinin cleavage site of indicated viruses: basic amino acids Arginine (R) and Lysine (K) are shown in bold letters; underlined motifs mark 

engineered amino acid insertions 

** Mortality after natural infection (e.g., oculonasal or intranasal), mortality upon intravenous infection are indicated with (IV).
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1.3.4. H4Nx viruses in birds and mammals 

H4 is one of the most common HA subtypes and belongs to the LPAIVs. Since the first isolation in 

1956 from a duck in former Czechoslovakia (Song et al., 2017), those viruses have been reported 

to be widely circulating in Asia, Europe and North America. H4 viruses showed a broad host range 

in wild and domestic avian species as well as in mammals (Brugh, 1992; Hinshaw et al., 1984; Hu 

et al., 2017; Karasin et al., 2000; Okuya et al., 2017; Reid et al., 2018; Roberts et al., 2009). 

Because of the low pathogenic character, outbreaks of H4Nx viruses often remain unnoticed or are 

self-limiting, and their isolation depends on comprehensive surveillance studies (Hollander et al., 

2019; Kang et al., 2013).  

Several studies revealed a high prevalence of H4 infections, particularly in LBMs in Asia, North 

American and European countries (Teng et al., 2012; Wisedchanwet et al., 2011; Xu et al., 2014). 

Also, reassortments of H4 viruses with other AIV subtypes have been frequently reported (Bui et 

al., 2012; Teng et al., 2012; Wu et al., 2014; Xie et al., 2017; Yuan et al., 2015). Transmissions to 

domestic birds are often associated with the migratory flyway of wild birds, while some studies 

showed that contaminated water might play a role (Hollander et al., 2019; Hu et al., 2017; Ornelas-

Eusebio et al., 2015; VanDalen et al., 2010). Despite the general low pathogenicity of H4Nx viruses, 

they rarely cause disease or even mortality in birds under field conditions, as discussed in 

paragraph 1.3.2 (Brugh, 1992; Yuan et al., 2015).  

Furthermore, a few avian H4 isolates were able to transmit and replicate in mice and guinea pigs 

without prior adaptation and even led to significant body weight losses and severe respiratory 

diseases with the eventual death of some mice (Bui et al., 2012; Hu et al., 2017; Kang et al., 2013). 

Interestingly, passaging of an avian H4N6 virus in mice led to aa exchanges in PB2 and HA, 

enhancing polymerase activity and/or increased virulence (Xu et al., 2019).  

Naturally occurring interspecies transmissions of avian H4 viruses to mammals have been reported 

for seals (Gulyaeva et al., 2018; Hinshaw et al., 1984), raccoons (Roberts et al., 2009) and pigs 

(Abente et al., 2017; Karasin et al., 2000; Ninomiya et al., 2002) with low to fatal respiratory 

diseases. Notably, in one study, the sequence comparison of two H4N6 viruses revealed two critical 

aa substitutions (Q226L, G228S) in the receptor binding domain of the HA responsible for human-

like receptor preference of the swine isolate (Song et al., 2017). This indicates the potential of H4Nx 

to cross species barriers and possibly adapt and spread to humans. Nevertheless, to date, no H4 

virus was isolated from humans. However, serological studies of adults regularly exposed to 

poultries indicated previous infections with H4 viruses (Kayali et al., 2011; Kayali et al., 2010). 
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1.3.4.1. A/Quail/California/D113023808/2012 (H4N2) 

In August 2012, an AIV from subtype H4N2 designated A/Quail/California/D113023808/2012 

(hereafter QU/CA12) was isolated from farmed quails in California with a mortality rate of less than 

1.6%. Sequence and phylogenetic analyses revealed that the genes coding for both surface 

glycoproteins closely matched with a low pathogenic H4N2 strain from Peking duck isolated already 

six years earlier in the same U.S. state. Strikingly, the unique feature of the quail virus was the 

acquisition of a pCS, the major virulence marker usually seen in H5 and H7 AIV strains only. 

Compared to the LP H4 precursor carrying the monobasic CS motif PEKTTR/G, QU/CA12 

exhibited the polybasic motif PEKRRTR/G. However, virus replication in avian and mammal cell 

cultures remained trypsin-dependent. No morbidity or mortality was observed after intranasal or 

intravenous infection of experimental chickens, indicating a typical LP phenotype (Wong et al., 

2014).  

1.3.5. H10Nx viruses in birds and mammals 

The first-ever isolated LPAIV was of subtype H10N7 and derived from a chicken in Germany. This 

so-called “Dinter virus” was isolated in 1949 (Lee et al., 2021). Since then, H10 viruses have been 

isolated from wild birds and poultry worldwide and were associated with all possible NA N1-N9 

subtypes (Wille et al., 2018). Surveillances in LBMs in China identified many H10 viruses and 

determined the risk of reassortment with other strains and subtypes (Deng et al., 2015; Hu et al., 

2015; Ma et al., 2015; Wu et al., 2015a). In poultry, H10 viruses are generally LP with few 

exceptions (see above) (Abolnik et al., 2010; Alexander and Spackman, 1981; Bonfante et al., 

2014; Karunakaran et al., 1983; Wood et al., 1996; Zhang et al., 2016). There are several reports 

on the potential of H10Nx viruses to spread to mammals. In 1984, an H10N4 virus was isolated 

from a mink in Sweden. In contrast to the chicken isolate from 1949, this virus had the ability for 

multiple-cycle replication in mink airways with a critical role for the different NS1 to evade the initial 

host immune response (Englund, 2000; Klingeborn et al., 1985; Zohari et al., 2010). Furthermore, 

several H10 viruses were detected in pigs, dogs and raccoons (Hall et al., 2008; Su et al., 2014; 

Wang et al., 2012). Notably, in spring and summer 2014, infections with an H10N7 virus were 

reported after mass death of harbor and grey seals due to severe pneumonia upon bacterial co-

infection in northern Europe (Bodewes et al., 2015; van den Brand et al., 2016; Zohari et al., 2014).  

Under laboratory conditions, several H10Nx viruses caused moderate to severe pathogenicity in 

mice (El-Shesheny et al., 2018; Qi et al., 2014; Wu et al., 2015a, b). Genome sequencing of 

mammal-adapted H10 viruses unveiled several adaptation markers like PB2 E627K, PA T97I and 

HA G409E (Wu et al., 2016; Zhang et al., 2016). Experimental investigations of mammalian and 

bird isolates revealed specificities for avian α2,3 receptors by H10 viruses, but some strains 

exhibited a dual receptor binding specificity with a preference for α2,6-SA and showed an elevated 

NA activity similar to human IAVs (Sutton et al., 2017; Vachieri et al., 2014; Wu et al., 2016; Yang 

et al., 2015a). A recent study with TMPRSS2 deficient mice determined a critical role for this 



1. Introduction   

22 

 

protease regarding the proteolytic activation of H10 viruses in mammals (Lambertz et al., 2019). In 

late 2013 and early 2014, the first human cases with a fatal outcome after infection with an H10N8 

virus in South China were reported (Chen et al., 2014; Ma et al., 2015). All segments derived from 

an avian origin H10 after a multiple reassortment with an HxN8 virus and six internal genes of 

H9N2. Notably, H10N8 maintained an avian-like receptor binding preference. However, 

mammalian adaptation markers in HA, M1, NS1 and PB2 could be determined (Chen et al., 2014; 

To et al., 2014). Recently, another human infection caused by an H10N3 virus was confirmed. Initial 

sequencing data revealed the G228S mutation in the HA, indicating a preference for human-like 

receptors (Wang et al., 2021). This suggests that H10 viruses are able to cross species barriers 

and can lead to fatal infections in mammals and humans. 
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2. Objectives 

Avian influenza viruses infect a wide range of host species and exhibit low or high pathogenicity 

phenotypes in birds and mammals. In poultry, natural HPAIVs are predominantly restricted to H5 

or H7 subtypes with a pCS in the hemagglutinin that can be cleaved by ubiquitous furin- and 

subtilisin-like proteases and thus facilitates systemic infections with significant economic and 

ecologic losses in terrestrial and aquatic birds. Therefore, HPAIVs are notifiable to the OIE and 

infected flocks should be culled to control the spread of the virus. Conversely, non-H5/H7 viruses 

are frequently isolated from wild birds and poultry without causing apparent clinical signs, though 

losses in poultry flocks were also reported after the infection with, e.g., H3, H4, H6 and H9 viruses. 

Therefore, non-H5/H7 viruses are not notifiable to the OIE and no countermeasures have to be 

implemented to eradicate the infected flocks. Consequently, many non-H5/H7 AIVs are endemic in 

poultry worldwide. To date, non-H5/H7 viruses did not evolve to HP in nature and mostly retained 

the mCS. The H4N2 virus isolated from quails in California in 2012 represents one of the few 

exceptions for non-H5/H7 due to the presence of a natural pCS. Several laboratory experiments 

showed the ability of some non-H5/H7 viruses to shift to high virulence after the acquisition of 

synthetic polybasic HACS and gene segments from an HPAIV H5N1. Therefore, there was a need 

to assess the risk for the transition of this unique H4N2 to an HPAIV. 

Moreover, beside H5 and H7 strains, non-H5/H7 AIVs are transmitted frequently from wild or 

domestic birds to mammals, including humans and pose a potential pandemic risk. Although 

several key mutations are linked to mammal adaptation, many studies were based on H5, H7 or 

H9 and less is known about adaptation markers of other non-H5/H7 AIVs in mammals. In 2014 an 

H10N7 virus caused mass death in harbor seals in northern Europe and its HA showed 98 – 99 % 

identity to an H10N4 virus from mallards. Nevertheless, compared to AIVs of avian-origin, the seal 

virus possessed unique mutations in the HA1 domain, including the receptor binding site and 

HACS. The impact of these mutations on virus replication, fitness and receptor binding affinity can 

give new insights into the adaptation of non-H5/H7 AIVs to mammalian hosts.  

In this dissertation, genetic determinants for high virulence and adaptation of H4N2 and H10N7 

viruses in birds and mammals respectively were studied. In the first and second publication, the 

impact of mutations in or adjacent to the HACS with or without the reassortment with HPAIVs H5/H7 

on the virulence of the unique H4N2 virus in chickens was assessed. The third publication studied 

the biological impact of HA1 mutations on the potential adaptation of seal H10N7 viruses in 

mammals. Using reverse genetics, H4N2 and H10N4 with specified mutations or genetic 

constellations were rescued. The recombinant viruses were characterized in vitro and/or in vivo. 
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Supplementary Table S1: Prevalence of potential N-glycosylation in the N-terminus 

of HA1 in different AIV subtypes 

Subtype Hx N2* N18 

H1 100% (808/808) 99.6% (811/814) 

H2 100% (504/504) 99.8%(503/504) 

H3 98.9% (1832/1852) 99.5% (1882/1892) 

H4 98.1% (1424/1452) 99.9% (1461/1463) 

H5 99.9% (6881/6886) 99.7% (6925/6948) 

H6 99.9% (2012/2014) 99.9% (2019/2021) 

H7 99.2% (2220/2239) 99.5% (2228/2240) 

H8 100% (204/204) 0% (0/204) 

H9 96.8% (7415/7657) 0% (0/7657) 

H10 99.5% (772/776) 99.2% (777/783) 

H11 100% (811/811) 99.8% (809/811) 

H12 100% (335/335) 0% (0/335) 

H13 99.7% (363/364) 0% (0/364) 

H14 83.9% (26/31) 100% (31/31) 

H15 100% (14/14) 100% (14/14) 

H16 99.4% (166/167) 0% (0/167) 

Total 98.7% (25787/26114) 66.9% (17460/26114) 

* Percent of number of sequences with a potential N-glycosylation site/total number of 

sequences retrieved from GISAID and GenBank to 27-01-2020. The prevalence of N-

linked glycosylation at the first two positions in HxNx viruses (equivalent to H4 positions 

N2 and N18) was predicted by N-X-S/T motif, where X is any amino acid except proline.  
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5. Discussion 

Avian influenza viruses have their natural reservoir in wild aquatic birds and occasionally spread to 

terrestrial poultry and mammalian hosts. While most of the 16 hemagglutinin subtypes remain low 

pathogenic in poultry, H5 and H7 viruses can evolve to highly pathogenic viruses by acquiring a 

polybasic cleavage site in the HA as a major virulence factor (Bosch et al., 1981; Richard et al., 

2017). Less is known about the potential requirements of non-H5/H7 viruses to exhibit a highly 

pathogenic phenotype in poultry. Furthermore, some AIVs were reported to cross species barriers 

to mammals, partially with fatal outcomes. Although several studies showed that alterations in 

receptor binding preferences and virus stability mediated by mutations in the HA protein are crucial 

for AIV adaptation to mammals (Byrd-Leotis et al., 2017; Russier et al., 2016), mutations that confer 

adaptation of AIVs to aquatic mammals are largely unknown. Therefore, it is important to 

understand the genetic determinants for virulence and adaptation of non-H5/H7 AIVs in birds and 

mammals.  

In this thesis, the virulence of H4N2 with a natural polybasic HACS was studied in chickens after 

removing glycosylation sites in the HA stem or adding basic aa in the HACS with and without 

reassortment with HPAI H5 or H7 viruses (Papers I and II). Furthermore, the role of HA1 mutations 

in the potential adaptation of H10N7 AIV isolated from seals was investigated in vitro. (Paper III). 

5.1. Adaptation and virulence of H4N2 in chickens 

HPAI H5 and H7 viruses exhibit IVPI > 1.2 and/or polybasic HACS. To date, only a few naturally 

evolved AIVs of non-H5/H7 subtypes caused lethality in domestic poultry. However, these isolates 

revealed only moderate pathogenicity after intravenous infections and no or low mortality via natural 

routes under experimental conditions (Table 2). Moreover, none of these isolates specified a pCS 

motif and high virulence was only induced after acquisition of an engineered HACS and/or virus 

passages for some strains (Brugh, 1992; Soda et al., 2011). The emergence of HPAIV H4Nx 

viruses is more likely than other non-H5/H7 viruses. In 1975, an H4N8 virus caused severe clinical 

symptoms in a commercial layer flock in Alabama and induced high mortality after consecutive 

passages in chickens (Brugh, 1992; Slemons and Swayne, 1992). In August 2012, an LPAIV of 

subtype H4N2 with a four-basic aa HACS motif was isolated from a quail farm in California. 

Therefore, H4 viruses should be monitored carefully to avoid the emergence of HPAIVs. To assess 

the potential risk for the transition of this unique virus to HP phenotype, we used two molecular 

approaches: removal of glycosylation sites in the HA stem domain adjacent to the HACS, or 

increasing the number of basic amino acids and reassortment with HPAIVs H5/H7. 

Deglycosylation of the HA stem described in Gischke et al. (2021) increased trypsin-independent 

replication of H4N2 virus in avian cells, increased cell-to-cell spread and caused broader organ 

tropism in chicken embryos. Therefore, it is likely that the removal of glycosylation sites in the HA 
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stem domain enables the access of host-derived proteases for HA proteolytic activation, as seen 

in different H5 subtypes (Horimoto and Kawaoka, 1995; Kawaoka et al., 1984; Kawaoka and 

Webster, 1989). In contrast to our results, equivalent glycosylations in other HPAI H5 and H7 

viruses are necessary for efficient infectivity and virus replication (Scholtissek, 1985; Wagner et al., 

2002a; Yin et al., 2017) and may indicate a strain-dependent effect for N-glycans in the stem 

domain of AIV on virus fitness. Moreover, and despite the improved replication and dissemination 

of H4N2 in ovo, the sequence analysis revealed high conservation of N-terminal pGS in the HACS 

vicinity for almost all AIV subtypes including H4Nx viruses (Gischke et al., 2021). These findings 

suggest the importance of the HA stem glycosylations for thermal and acid stability as reported for 

HPAI H5 and H7 viruses (Ohuchi et al., 1997a; Yin et al., 2017). It is known that glycosylations 

stabilize HA at elevated temperatures, e.g., in the intestinal tract of birds, during fever or high 

ambient temperatures and stabilize the metastable state due to interactions with the 

oligosaccharides after HA cleavage (Scholtissek, 1985). Notably, the membrane fusion alters 

intracellular host responses and a rapid fusion at low acidic pH may enhance early virus replication 

before triggering the host immune response. However, less acid stability affects the persistence ex 

vivo and may influence transmissibility (Russier et al., 2016).  

The extension of the naturally evolved pCS by substitutions of T327 (328, H3 numbering), 

investigated in Gischke et al. (2020), also resulted in a broader organ tropism. However, virus 

infiltration and tissue damage in chickens remained at lower levels compared to the H4N2 carrying 

seven gene segments from HPAIV H5N1. The increased tropism due to changing threonine at 

residue 327 to basic amino acids arginine or lysine was HAT and TMPRSS2 independent and was 

probably due to HA activation by ubiquitous furin or furin-like proteases by matching the consensus 

motif of HPAIVs (Abdelwhab et al., 2013; Bosch et al., 1981). In previous studies, it could be shown 

that some H9N2 viruses with mono-, di- or tribasic HACS can be activated by HAT or TMPRSS2. 

However, the activation by furin was blocked until the insertion of additional basic aa despite the 

presence of a consensus sequence (e.g., R-X-R-R) (Baron et al., 2013; Bottcher-Friebertshauser 

et al., 2013). We found that H4N2 with K327 exhibited broader tropism than H4N2 with R327. The 

sequence analysis of 38 different cleavage sites revealed a preferential cleavage by furin for motifs 

carrying K at P2 (Thomas, 2002). These findings suggest that K327 is cleaved by additional or 

more specific furin-like proteases (Lee et al., 2021; Richard et al., 2017).  

Remarkably, the authentic HA4 exhibited an IVPI of 2.1 after reassortment with H5N1 segments 

and is therefore classified as an HPAIV according to the OIE regulations (Alexander, 2015; OIE, 

2021a). However, the same virus caused no mortality and slight morbidity in chickens via 

oculonasal inoculation. The presence of certain furin-like enzymes in the blood, not in the 

respiratory tract, which activated H4N2 virus with authentic HACS may explain this observation.  
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Munster et al. (2010) generated a highly pathogenic H6N1 virus after the introduction of an 

engineered pCS only. In contrast, as represented in this thesis, neither deglycosylations in the HA 

stem domain nor additional basic aa in the HACS alone induced high pathogenicity of H4N2 in 

chickens. Interestingly, additional basic aa in the HACS of H4N2 had a detrimental effect on virus 

fitness apparent from decreased shedding and low chicken-to-chicken transmission. These results 

indicate that other non-HA genes contribute to virus fitness and virulence. 

Indeed, H4N2 virus fitness was restored after reassortment with segments of HPAIV H5N1 and 

induced high pathogenicity with massive infiltration and damage in organs of chickens, especially 

after extension of the natural pCS motif. It has been shown that virulence determinants reside not 

only in the HA but also in other gene segments of this HPAIV H5N1 (Bogs et al., 2010; Stech et 

al., 2015). Similarly, HPAIV H5N1 gene segments supported the emergence of HP H2, H4, H6, H8, 

H9 and H14 subtypes carrying an artificial pCS (Gohrbandt et al., 2011a; Veits et al., 2012), which 

further confirmed the critical role for additional virulence factors in other viral segments. For 

instance, H5N1 exhibits adaptive markers like NP S377N (Tada et al., 2011), NS1 deletion 80-84 

(Long et al., 2008) or PB1 V14A (Suzuki et al., 2014) are associated with an increased 

pathogenicity and transmission in chickens. It is highly likely that similar mutations improved the 

fitness of H4N2 and were necessary to infiltrate the endothelium of vital organs and caused 

systemic spread with multiorgan dysfunction and eventual death of birds, similar to natural HPAIVs. 

Conversely, it also suggests that H4N2 is less adapted to chickens than HPAIV H5N1. Accordingly, 

responsible gene segments and virulence determinants of H5N1, which are required for increased 

virulence and adaptation of H4N2 in chickens, remain to be identified. In contrast, reassortment 

with the HPAI H7N7 virus caused no shift in virulence for H4. Scheibner et al. (2019) showed that 

the polybasic HACS, independent of other gene segments, is the main virulence determinant of 

this HPAIV H7N7 in chickens. Therefore, non-HA gene segments from HPAIV H7N7 did not 

increase the virulence of H4N2. Another possible explanation is that H4 and N7 are less compatible 

and exchanging gene segments e.g. disturbs the essential HA:NA balance for efficient virus 

replication (de Vries et al., 2020; Wagner et al., 2002b).  

The conclusion from Paper I and II is that the removal of N-terminal glycosylations in the vicinity of 

the HACS or additional basic aa in the pCS of H4N2 alone did not induce high pathogenicity in 

chickens, neither after intravenous infection nor via the natural route. Although, deglycosylations in 

Gischke et al. (2021) increased the trypsin-independent replication and systemic spread in chicken 

embryos, they reduced virus stability. Moreover, the extended pCS motif in Gischke et al. (2020) 

compromised the virus excretion and bird-to-bird transmission, which were restored after 

reassortment with HPAIV H5N1, but not H7N7, indicating a critical role for certain non-HA gene 

segments in the transition of LP to HP. Given the wide spread of H4 viruses in wild birds and LBMs, 

and their high reassortment capacity (Teng et al., 2012; Verhagen et al., 2021; Wisedchanwet et 

al., 2011; Xu et al., 2014), similar H4/H5 genetic constellations might occur in the field.  
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5.2. Adaptation of H10N7 to seal 

Although wild birds are the natural reservoir of AIVs, spill-overs from avian hosts to mammals, 

including humans, have been reported and occasionally caused fatal infections (Klingeborn et al., 

1985; Mostafa et al., 2018; Roberts et al., 2009). Severe AIV outbreaks in seals were repeatedly 

associated with non-H5/H7 subtypes and caused substantial ecologic losses (Anthony et al., 2012; 

Callan et al., 1995; Hinshaw et al., 1984). 

In the spring and summer of 2014, an H10N7 virus caused mass deaths in harbor and grey seals 

in northern Europe. In Dittrich et al. (2018), we identified prevalent HA1 mutations of H10N7seal 

and investigated their impact in the fitness of an avian H10N4 virus. The low prevalence of identified 

H10seal mutations, mainly located in the globular head domain which is known to alter the host 

range by substitutions of a few residues (Byrd-Leotis, Cummings, and Steinhauer 2017) (Table 

S1), implies specific adaptive mutations of H10N7 as a result of the interspecies transmission to 

seal. This assumption is supported by the facts that selective pressure acts first on the surface 

glycoproteins of IAVs and that previous studies revealed a close relation of H10N7seal to avian 

H10 viruses (Bodewes et al., 2016; Krog et al., 2015; van den Brand et al., 2016). Therefore, a 

direct transmission from birds to seals is likely.  

A shift in receptor affinity depends on the SA binding orientations onto host cell receptors and 

depicts a key role for adaptation and interspecies transmission from avian to mammalian hosts 

(Byrd-Leotis et al., 2017). Interestingly, the receptor preference analysis of H10N7seal unveiled a 

dual binding affinity, however, with a higher preference for avian-like receptors. Similar results were 

determined for an avian H3N8 virus that infected harbor seals in 2011 (Hussein et al., 2016; Yang 

et al., 2015b). Notably, the majority of mammalian and bird H10Nx isolates revealed specificities 

for avian α2,3 receptors. However, similar to H10N7seal, several strains exhibited a dual receptor 

binding, some even with a preference for α2,6-SA (Sutton et al., 2017; Vachieri et al., 2014; Wu et 

al., 2016; Yang et al., 2015a). Remarkably, the glutamine to leucine substitution at position 220 

(226, H3 numbering) resulted in the highest increase for α2,6-SA binding, while completely 

abolishing α2,3-SA affinity and significantly increasing replication in human lung cells. This 

observation is in accordance with findings from a recent study by Herfst et al. (2020), where L220 

enabled H10N7seal a limited ferret-to-ferret transmission. Moreover, several studies identified 

analogous substitutions in various subtypes, including non-H5/H7 AIVs, as a critical mutation for 

the shift in the receptor binding preference and for interspecies transmissions to mammalian hosts 

(Table S1). Q226L often appears in combination with alterations of residue 228 (H3 numbering). 

Therefore, it is likely that an additional substitution at this position further enhances the α2,6-SA 

affinity of H10N7seal and improves adaptation to mammalian hosts (Chen et al., 2014; To et al., 

2014). At this point, it is worth mentioning that an H10N3 virus has recently spread to humans and 

its S228 residue indicates a preference for human-like receptors (Wang et al., 2021). Moreover, 

two mutations of H10seal disrupted the GS motif 236NIT238. The loss of glycosylation in the head 
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domain, e.g., at N133 or N158 (H3 numbering), increased the binding to α2,6-SA for some H5, H7 

and H9 viruses (Chang et al., 2020; Lee et al., 2018; Wang et al., 2010). Conversely, substituting 

the glycosylated N236 (242, H3 numbering) residue revealed no impact on the α2,6-SA affinity and 

suggests another role of I238 (244, H3 numbering) for the increased binding. Equivalents to the 

avian T238 and T165 (also altered in H10seal) were recently predicted to facilitate the intrasubunit 

contact for H2 and H6 HAs and may increase the availability for glycan-modifying enzymes to N-

glycans in the head domain during maturation. The improved access may lead to more complex 

compositions than high mannose glycan structures, which might affect the receptor binding 

preference. On the contrary, high mannose structures foster the virus removal by the pulmonary 

surfactant protein D from the lungs similar to human strains (Parsons et al., 2020). Furthermore, 

additional residues of H10seal, e.g., S113N (122, H3 numbering), also increased the affinity to 

α2,6-SA. A similar mutation was found for an H5N1 vaccine virus and contributed to its dual 

receptor specificity (Wang et al., 2010). In contrast to H10N7seal, the H10N8 virus that caused a 

fatal human case in China maintained the avian-like receptor binding preference. However, it 

expressed other mammalian adaptation markers in HA, M1, NS1 and PB2 (Chen et al., 2014; To 

et al., 2014). These findings indicate that despite the important role of an altered receptor binding 

affinity, other biological features are necessary for the efficient transmission of AIVs to mammals. 

One of the essential properties required for efficient replication of AIVs in mammals is 

thermostability and HA cleavability (Herfst et al., 2012; Sutton et al., 2014). Besides the affinity to 

α2,6-SA, especially two H10seal residues induced a remarkably increased stability at elevated 

temperatures, which may contribute to the spread between seals. Previous reports revealed a 

contribution to virulence by non-basic aa adjacent to the cleavage site (Blaurock et al., 2020; 

Gohrbandt et al., 2011b). However, V321 in the HACS of H10seal had no role for proteolytic 

activation in MDCKII cells. Notably, the hypothetic cleavability by proteases apart of MDCKII cannot 

be excluded. For instance, HAT and TMPRSS2 were found to cleave the V-S-S-R motif of H9, 

which is remotely similar to the HACS of H10N7 (Baron et al., 2013). Moreover, a recent study with 

TMPRSS2 deficient mice determined a critical role for this protease in the proteolytic activation of 

H10 viruses (Lambertz et al., 2019). 

The generally lower replication in human lung cells shows a poor adaptation of H10N7seal to 

mammalian host cells. Notably, I238 played a critical role in the reduced replication at temperatures 

resembling conditions in the upper respiratory tract of mammals (Suttie et al., 2019). According to 

Herfst et al. (2020), this substitution occurred, together with an E to D exchange in HA2 at position 

74 (HA0: 398; 403, H3 numbering) in late infected seals, suggesting an ongoing adaptation of 

H10N7 during the outbreak. This may explain the relatively low prevalence for T238I between the 

considered isolates in Dittrich et al. (2018). Interestingly, both substitutions enhanced the acid 

stability of HA similar to pandemic strains and facilitated efficient transmission in ferrets. It is known 

that acid-induced changes are related to the thermal stability of HA (Remeta et al., 2002). 
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Accordingly, the increased stability facilitated by I238 (and D398) may stabilize the metastable state 

upon cleavage and acidification of HA at lower temperatures, and could explain the significantly 

reduced replication at 33°C. These findings suggest adaptations of H10N7seal to increase HA 

stability and subsequently facilitate efficient transmission between mammalian hosts (Russier et 

al., 2016) due to a better persistence ex vivo, but at high fitness costs. Additional mutations in the 

HA or other gene segments could restore the low viral fitness in mammals (Suttie et al., 2019). The 

genome sequencing of mammal-adapted H10 viruses revealed several adaptation markers like 

PB2 E627K, PA T97I and HA G409E (Wu et al., 2016; Zhang et al., 2016). For example, H10N7seal 

maintained E627 in PB2. A substitution would possibly lead to an increased replication, especially 

at lower temperatures in the upper respiratory tract of mammals and raise the zoonotic potential of 

this non H5/H7 AIV  

In conclusion, H10N7seal developed a dual receptor binding specificity mainly forced by the 

mammalian adaptation marker L220 (226, H3 numbering). However, it remained more adapted to 

avian host cells. Nevertheless, the occurrence of this substitution suggests a stepwise adaptation 

from birds to seals. Although controversially discussed, seals may act as mixing vessels (Anthony 

et al., 2012; Ito et al., 1999) and consequently, could give rise for viruses with zoonotic or even 

pandemic potential, like the pandemic H1N1 virus in 2009 (Russier et al., 2016). Additionally, 

further mutations were identified to modulate receptor binding specificity and virus stability, and 

possibly contributing to adaptation in the mammalian hosts. Therefore, H10N7seal is a 

representative example how AIVs can adapt to and evolve in aquatic mammals.  
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6. Summary 

Avian influenza viruses (AIVs) have their natural reservoir in wild aquatic birds but occasionally 

spread to terrestrial poultry. While AIVs of subtypes H5 and H7 are well known to evolve highly 

pathogenic avian influenza viruses (HPAIVs) during circulation in domestic birds, non-H5/H7 

subtypes exhibit only a low to moderate pathogenicity. Furthermore, spillover events to a broad 

range of mammalian hosts, including humans, with self-limiting to severe illness or even fatal 

outcomes, were reported for non-H5/H7 AIVs and pose a pandemic risk. The evolution of high 

virulent phenotypes in poultry and the adaptation of AIVs to mammalian hosts are predominantly 

linked to genetic determinants in the hemagglutinin (HA). The acquisition of a polybasic cleavage 

site (pCS) is a prerequisite for the evolution of HPAIVs in poultry, while changes in the receptor 

binding preference and virus stability are essential for adaptation of AIVs to mammals.  

In August 2012, an H4N2 virus with the pCS motif 322PEKRRTR/G329 but preserved trypsin 

dependend replication and low pathogenicity in chickens was isolated on a quail farm in California. 

In the first two publications, we followed different approaches to investigate virulence factors and 

the potential risk for the transition of H4N2 to high virulence in chickens. The loss of N-terminal 

glycosylations in the vicinity of the pCS resulted in decreased binding to avian-like receptors and 

dramatically decreased virus stability. On the other hand, one deglycosylation increased virus 

replication and tissue tropism in chicken embryos but did not alter virulence or excretion in 

chickens. Furthermore, additional basic amino acids in the natural pCS motif improved the trypsin-

independent cleavage of HA and caused slightly increased tissue tropism in chickens. However, 

the engineered motifs alone did not affect virulence in chickens. Intriguingly, they even had a 

detrimental effect on virus fitness, which was restored after reassortment with segments of HPAIV 

H5N1. Together, the results show the importance of HA glycosylations on the stability of H4N2 and 

reveal the important role of non-HA segments in the transition of this virus to high virulence in 

poultry. 

The transmission of another non-H5/H7 AIV of subtype H10N7 from birds to seals resulted in mass 

deaths in harbor seals in 2014 in northern Europe. The third publication describes nine mutations 

in the HA1 subunit of seal isolates compared to avian H10Nx viruses. We found that some of these 

mutations conferred a dual specificity for avian and mammalian receptors and altered 

thermostability. Nevertheless, the H10N7seal remained more adapted to avian host cells, despite 

of the alteration in the receptor binding specificity. 

Altogether, this thesis demonstrates that naturally evolved AIVs beside H5 and H7 subtypes 

support a highly pathogenic phenotype in the appropriate viral background and alter virulence and 

host receptor specificity by few amino acid substitutions in the HA. These findings improve our 

knowledge of the potential of non-H5/H7 AIVs to shift to high virulence in birds and the adaptation 

in mammals.
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7. Zusammenfassung 

Aviäre Influenzaviren (AIVs) haben ihr natürliches Reservoir in wilden Wasservögeln, werden 

jedoch auch auf Landgeflügel übertragen. Im Gegensatz zu AIVs der Subtypen H5 und H7, welche 

hochpathogene aviäre Influenzaviren (HPAIVs) während der Zirkulation in domestizierten Vögeln 

entwickeln können, verursachen nicht-H5/H7 Subtypen lediglich eine niedrige bis moderate 

Pathogenität. Infektionen von Säugetieren, darunter Menschen, mit nicht-H5/H7 AIVs führten 

zudem zu selbstlimitierenden bis schweren Krankheitsverläufen teils mit tödlichen Folgen und 

stellen somit ein pandemisches Risiko dar. Die Entwicklung hochvirulenter Phänotypen in Geflügel 

und die Anpassung von AIVs an Säugetierwirte sind vorrangig auf genetische Faktoren im 

Hämagglutinin (HA) zurückzuführen. Der Erwerb einer polybasischen Spaltstelle (pCS) ist eine 

Voraussetzung für die Bildung von HPAIVs in Geflügel, wohingegen Veränderungen der 

Rezeptorbindungspräferenz und der Virusstabilität für die Anpassung an Säuger maßgeblich sind. 

Im August 2012 wurde ein H4N2 Virus mit dem pCS Motiv 322PEKRRTR/G329 auf einer 

Wachtelfarm in Kalifornien isoliert, welches jedoch weiterhin Trypsin-abhängig replizierte und eine 

niedrige Pathogenität in Hühnern aufwies. In den ersten beiden Publikationen verfolgten wir 

verschiedene Ansätze zur Untersuchung von Virulenzfaktoren und dem Potenzial von H4N2, eine 

hohe Virulenz in Hühnern zu induzieren. Der Verlust N-terminaler Glykosylierungen in Umgebung 

der pCS führte zu reduzierten Bindungspräferenzen für vogelartige Rezeptoren und geringen 

Virusstabilitäten. Eine Deglykosylierung führte zu einer verbesserten Virusreplikationen und 

verbreiterten Gewebetropismen in Hühnerembryonen, hatte jedoch keinen Einfluss auf die Virulenz 

oder Ausscheidung in Hühnern. Zusätzliche basische Aminosäuren im natürlichen pCS Motiv 

führten zu Trypsin-unabhängigen HA-Spaltungen und gesteigerten Gewebetropismen, hatten 

allein aber keinen Einfluss auf die Virulenz und sogar einen nachteiligen Effekt auf die Virusfitness, 

welche allerdings durch Reassortierung mit HPAIV H5N1 Segmenten wiederhergestellt wurden.  

Die Ergebnisse zeigen sowohl die Bedeutung von HA-Glykosylierungen für die Stabilität von H4N2, 

als auch die Relevanz für Nicht-HA Segmente bei der Ausbildung hoher Virulenzen auf.  

Die Transmission von Vögeln auf Seehunde eines anderen nicht-H5/H7 AIV vom Subtyp H10N7 

führte 2014 zu einem Massensterben von Seehunden in Nordeuropa. Die dritte Publikation 

beschreibt neun Mutationen der HA1-Untereinheit in Seehundisolaten im Vergleich zu aviären 

H10Nx Viren. Wir fanden heraus, dass einige dieser Mutationen eine duale Spezifität für aviäre 

und Säugetierrezeptoren verleihen und die Thermostabilität verändern. Trotz der veränderten 

Rezeptorspezifität ist H10N7seal jedoch weiterhin stark an aviäre Wirtszellen adaptiert. 

Zusammengefasst demonstriert die vorliegende Arbeit, dass natürliche AIVs, neben H5 und H7 

Subtypen, einen hochpathogenen Phänotyp im geeigneten viralen Hintergrund unterstützen und 

die Virulenz sowie die Wirtsrezeptorspezifität durch Substitution weniger Aminosäuren im HA 

beeinflusst werden. Diese Forschungsergebnisse verbessern unsere Kenntnisse zum Potenzial 

von Nicht-H5/H7 AIVs, hohe Virulenzen in Vögeln zu entwickeln und an Säugetiere zu adaptieren. 
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9. Appendix 

9.1. Supplementary 

Table S1: Adaptive hemagglutinin mutations found to modulate replication, transmission and virulence in mammals 

Mutation 

H3 numbering 

Phenotype Subtype  Host  

Isolated /tested 

References 

Y17H Increase pH of fusion, decreased HA stability, 

Decrease virulence in mice and ferrets 

H1N1 Human isolate, Mice, 

Ferrets 

(Russier et al., 2016) 

Y23H Increase pH of fusion, decreased HA stability, 

Decrease virulence in mice 

H5N1 Mice (Zaraket et al., 2013b) 

H24Q Decrease pH of fusion, increased HA stability H5N1 Mice (Zaraket et al., 2013b) 

D101N Increase affinity to α2,6-SA, increase fusion activity in 293T cells H5N1 Human isolate  (Su et al., 2008) 

S125N Increase affinity to α2,6-SA (dual receptor specificity) H5N1 Ferrets  (Wang et al., 2010) 

N133T Increase affinity to α2,3 and α2,6-SA due to loss of glycosylation 

Decrease pathogenicity in mice  

H9N2 In ovo adaptation, Mice (Lee et al., 2018) 

A135T Decrease affinity to α2,6-SA due to gain of glycosylation H7N9 Immune escape mutant 

in ferrets 

(Chang et al., 2020) 

S137A Increase affinity to α2,6-SA  H5N1 Human isolate (Yang et al., 2007) 

A137V Increase affinity to α2,6-SA, increase virulence in mice H5N8 Adaptation in mice after 

passaging 

(Wu et al., 2017) 

A138S Increase affinity to α2,6-SA H5N1 

H7N9 

Swine isolate 

Human isolate 

(Nidom et al., 2010) 

(Kageyama et al., 2013) 

A138V Increase affinity to α2,6-SA  H5N1 Human isolate (Kongchanagul et al., 2008; 

Naughtin et al., 2011) 
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G143R Increase affinity to α2,6-SA H5N1 Human isolate (Yamada et al., 2006) 

I155T Increase affinity to α2,6-SA H5N1 

H9N2 

Human isolate, Mice (Watanabe et al., 2011) 

(Li et al., 2014) 

G/S158N Decrease affinity to α2,6-SA when glycosylated 

enhance viral productivity, exacerbate the host response in mice 

H5N1 Ferrets, Mice (Ilyushina et al., 2008; Wang et al., 

2010; Zhao et al., 2017) 

N158D Decrease virulence in mice H9N2 Immune escape mutant 

in mice  

(Jin et al., 2019) 

S159N Increase affinity to α2,6-SA  H5N1 Ferrets  (Wang et al., 2010) 

T160A Increase affinity to α2,6-SA, Increase transmission in guinea 

pigs, 

loss of glycosylation at N158 

H5N1 Human isolate, Mice, 

Ferrets, Guinea pigs  

(Chen et al., 2007; Gao et al., 

2009; Wang et al., 2010) 

A160T Decrease affinity to α2,6-SA due to gain of glycosylation 

Decrease thermal HA-stability 

H7N9 Immune escape mutant 

in ferrets 

(Chang et al., 2020) 

H183N Decrease affinity to α2,3-SA and α2,6-SA H9N2 Poultry isolate (Li et al., 2014; Matrosovich et al., 

2001) 

G186V Increase affinity to α2,3-SA  H7N9 Human isolate (Dortmans et al., 2013) 

N186K/D Increase affinity to α2,6-SA  

 

H5N1 Human isolate, Ferrets, 

Guinea pigs 

(Chutinimitkul et al., 2010b; Gao et 

al., 2009; Kongchanagul et al., 

2008; Yamada et al., 2006) 

V186N Increase affinity to α2,6-SA, Decrease affinity to α2,3-SA  H13N6 - (Lu et al., 2013) 

P186L Decrease affinity to α2,3-SA H6N1 Human isolate  (Wang et al., 2015) 

D187G slightly increase affinity to α2,6-SA H5N1 in vitro isolation (Chen et al., 2012) 

E190D Increase affinity to α2,6-SA  H1N1 Human isolate (Glaser et al., 2005) 

E190G Slightly increase affinity to α2,6-SA, Maintain affinity to α2,3-SA;  

Decrease virulence in mice 

H5N1 in vitro isolation, Mice  (Chen et al., 2012) 

(Han et al., 2015) 
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E190V Increase affinity to α2,6-SA  

Decrease affinity to α2,3 and α2,6-SA 

H6N1 

H6N2 

Human isolate 

Guinea pig  

(Wang et al., 2015) 

(Qu et al., 2017) 

T190V Enhanced binding affinity to and replication in mammalian cells 

(no change in specificity to α2,6-SA) 

H9N2 Mice  (Teng et al., 2016) 

A/I190E/D Increase affinity to α2,6-SA  H9N2 Human isolate (Peacock et al., 2017) 

T192I Increase affinity to α2,6-SA  H5N1 Human isolate (Yang et al., 2007) 

K193R/T Increase affinity to α2,6-SA  

(dual receptor specificity) 

Transmission among ferrets 

H5N1 Ferrets  (Wang et al., 2010) 

 

(Peng et al., 2018) 

Q196R/H Increase affinity to α2,6-SA 

Decrease affinity to α2,3-SA 

H5N1 in vitro isolation, Human 

isolate 

(Chen et al., 2012; Gao et al., 

2009; Watanabe et al., 2011; 

Yamada et al., 2006) 

N197K Increase affinity to α2,6-SA H5N1 Human isolate (Yamada et al., 2006) 

V214I Increase affinity to α2,6-SA H5N1 Human isolate (Watanabe et al., 2011) 

D222G Increase affinity to α2,6-SA  

(dual receptor specificity) 

H1N1 Human isolate (Chutinimitkul et al., 2010a) 

G225D Increase affinity to α2,6-SA 

Complete loss of affinity to α2,3-SA 

H1N1 

H6N1 

Human isolate (Glaser et al., 2005) 

(de Vries et al., 2017b) 

Q226L Increase affinity to α2,6-SA 

Airborne transmission among guinea pigs 

Strain dependent increased or decreased affinity to α2,6-SA  

Increase affinity to α2,3-SA 

Decrease affinity to α2,6-SA 

 

H4N6 

H6N2 

H5N1 

 

H7N9 

 

Swine isolate 

Guinea pig  

Human isolate  

 

Human isolate   

 

(Song et al., 2017) 

(Qu et al., 2017) 

(Chutinimitkul et al., 2010b; 

Stevens et al., 2006) 

(Li et al., 2014; Ramos et al., 2013; 

Sang et al., 2015; Wan and Perez, 
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Increase affinity to α2,6-SA  

Enhance replication in mammalian cells and ferrets  

Contact transmission among ferrets 

Increase affinity to α2,6-SA 

Decrease affinity to α2,3-SA, no affinity to α2,6-SA 

 

H9N2  

 

 

H10N7 

H10N8 

 

Ferrets  

Adaptation in mice after 

passaging Guinea pig  

Seal isolate 

Human isolate  

2007; Wan et al., 2008; Xu et al., 

2013)  

(Herfst et al., 2020) 

(Tzarum et al., 2017; Zhang et al., 

2015a) 

L226Q Increase affinity to α2,3-SA 

Enhanced acid and thermal HA-stability 

H7N9 Immune escape mutant 

in ferrets 

(Chang et al., 2020) 

L226I Decrease affinity to α2,3-SA H7N9 Human isolate (Xu et al., 2013) 

S227N/Q Increase affinity to α2,6-SA  

 

H5N1 

 

 

H9N2 

in vitro isolation, Human 

isolate 

 

Human isolate 

(Chen et al., 2012; Chutinimitkul et 

al., 2010b; Gambaryan et al., 2006; 

Kongchanagul et al., 2008) 

(Sun et al., 2020) 

G228A/S Increase affinity to α2,6-SA (dual receptor specificity) H4N6 Swine isolate (Song et al., 2017) 

G228S Increase replication in mammalian cells and mice 

 

Increase affinity to α2,6-SA  

Decrease affinity to α2,3-SA 

 

 

Decrease affinity to α2,3-SA and 2.6 SA  

 

 

Decrease affinity to α2,3-SA, no affinity to α2,6-SA 

H1N2 

 

H5N1 

 

 

H6N2 

H6N1 

H7N9 

H10N3 

H10N8 

Adaptation in mice after 

passaging  

Human isolate 

 

 

Guinea pig  

 

Human isolate 

Human isolate 

Human isolate 

(Yu et al., 2019) 

 

(Chutinimitkul et al., 2010b; 

Stevens et al., 2006; Wang et al., 

2010) 

(Qu et al., 2017) 

(Wang et al., 2015) 

(de Vries et al., 2017a) 

(Wang et al., 2021) 

(Zhang et al., 2015a) 

S239P Slightly increase affinity to α2,6-SA H5N1 Human isolate (Watanabe et al., 2011) 
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E255K Increase affinity to α2,6-SA  H5N1 in vitro isolation (Chen et al., 2012) 

K/R304R Airborne transmission among ferrets H7N1 Adaptation in ferrets 

after passaging 

(Sutton et al., 2014) 

326 – 329 pCS 

Increase virus replication, pathogenicity and transmission 

 

Increase virulence in mice, impact on HA stability 

H5Nx 

 

 

H7Nx 

 

H9N2 

Human isolate, Ferrets,  

Mice 

 

Human isolate, Ferrets, 

Mice,  

Mice 

(Schrauwen et al., 2012; Subbarao 

et al., 1998; Suguitan et al., 2012; 

Zhang et al., 2012) 

(Chan et al., 2020; Sun et al., 2016; 

Sun et al., 2019; Zhu et al., 2017) 

(Zhang et al., 2021) 

K387I Decrease pH of fusion, increased HA stability  

Increase replication efficiency and virulence in mice and ferrets 

H5N1 Mice, Ferrets (Krenn et al., 2011; Zaraket et al., 

2013a; Zaraket et al., 2013b) 

K393E Increased pH of fusion, decreased HA stability 

Decreased virulence in mice 

H7N9 Human isolate, Mice (Sun et al., 2019) 

G409E Increase virulence in mice H10N7 Adaptation in mice after 

passaging 

(Wu et al., 2016) 

F430L Increase virulence in mice H5N5 Adaptation in mice after 

passaging 

(Yu et al., 2018) 

Combination of mutations that are linked to mammalian adaptation 

H17Y, R435K Decrease pH of fusion, increased HA stability  

Increase replication efficiency and virulence in ferrets  

Cause airborne transmission in ferrets 

H1N1 Ferret adapted 

revertant 

(Russier et al., 2016) 

P78L, H354Q Decrease pH of fusion, increased HA stability  

Increase virulence in mice 

H1N1 Mice (Koerner et al., 2012) 

E83K, S128P, 

N197K, R496K 

Increase affinity to α2,6-SA H5N1 Human isolate (Yamada et al., 2006) 
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H110Y, T160A, 

Q226L, G228S 

Increase affinity to α2,3-SA and α2,6-SA 

Airborne transmissible among ferrets 

H5N1 Adaptation in ferrets 

after passaging 

(Herfst et al., 2012; Linster et al., 

2014; Stevens et al., 2008; Wang 

et al., 2010) 

I111T, A146S, 

pCS 

Increased virulence in mice H7N7 Adaptation in ferrets 

after passaging, Mice 

(Dreier et al., 2019) 

S114R, T115I Increased virulence in mice (and chicken), Increased pH of fusion H5N1 Mice  (Wessels et al., 2018) 

L129V (H5 

numbering)* 

A138V 

Increase affinity to α2,6-SA H5N1 Human isolate (Auewarakul et al., 2007) 

L129del (H5 

numbering)*, 

I155T 

Increase affinity to α2,6-SA H5N1 Human isolate, Mice 

 

(Watanabe et al., 2011)  

A135T, A160T Loss of α2,6 binding ability H7N9 Immune escape mutant 

in ferrets 

(Chang et al., 2020) 

S137A, T192I Increase affinity to α2,6-SA H5N1 Human isolate (Yang et al., 2007) 

G143R, N186K 

Q196R, Q226L, 

S227N, G228S 

Decrease affinity to α2,3-SA 

Increase affinity to α2,6-SA 

H5N1 Determination by 

sequence alignment 

(Chen et al., 2012; Chutinimitkul et 

al., 2010b; Yamada et al., 2006) 

H156N, S263R Increase virulence in mice H6N6 Adaptation in mice (Tan et al., 2014) 

N158D, N224K, 

Q226L, T318I 

Droplet transmissible among ferrets H5N1 (in 

background 

of pH1N1) 

Adaptation in Ferrets  (Imai et al., 2012) 

N158S, Q226L, 

N248D 

Increase affinity to α2,6-SA H5N1 - (Ilyushina et al., 2008) 
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S159N, T160A, 

S227N 

Increase affinity to α2,6-SA 

Decrease virulence in mice 

H5N1 Human isolate, Ferrets, 

Mice 

(Wang et al., 2010; Yen et al., 

2009) 

T160A, K193T, 

N224K, Q226L 

Increase affinity to α2,6-SA H5N1 Ferrets  (Peng et al., 2018) 

P186L, E190V, 

G228S 

Decrease affinity to α2,3-SA , Increase affinity to α2,6-SA H6N1 Human isolate (Wang et al., 2015) 

V186N/K; K/G,  

K193T, N224K, 

N/G228K/S 

Increase affinity to α2,6-SA (dual receptor specificity) H7N9 Determination by 

sequence alignment 

(de Vries et al., 2017a) 

E187G, E190D, 

K193R/S, 

Q226L, G228S 

Increase affinity to α2,6-SA H5N1 Determination by 

sequence alignment 

(Maines et al., 2011; Stevens et al., 

2008) 

E187G, E190G, 

Q226E/L, 

S227N, G228S 

Increase affinity to α2,6-SA H5N1 in vitro isolation (Chen et al., 2012) 

T189A, G192R Enhanced replication in 

ferrets, droplet transmisable among ferrets 

H9N2 ( 

background 

of human 

H3N2) 

Adaptation in Ferret  (Sorrell et al., 2009) 

A190V, T212I Increase affinity to α2,6-SA 

Increase virulence in mice 

H9N2 In vitro isolation, Mice (Yang et al., 2017) 

V216G, E439D Increased replication in mice H9N2 In ovo adaptation, Mice (Lee et al., 2018) 

K222Q, S227R Increase a2.3 and a2.6 H5N1, H5Nx 

 

Determination by 

sequence alignment 

 

(Guo et al., 2017) 
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*Residue deleted in A/H3 

Q226L,  

G228S 

Increase affinity to α2,6-SA 

Increase affinity to α2,6-SA 

Decrease virulence in guinea pigs 

 

 

 

 

 

Increase affinity to α2,6-SA 

 

Loss of affinity to α2,3-SA, no gain of affinity to α2,6-SA 

H4N6 

H5N1 

 

 

 

 

 

 

H7N7 

H7N9 

H10N8H10N8 

Swine isolate 

Guinea Pig 

 

 

 

 

 

 

Human isolate 

Human isolate 

Human isolate 

(Song et al., 2017) 

(Ayora-Talavera et al., 2009; Chen 

et al., 2012; Chutinimitkul et al., 

2010b; Gao et al., 2009; Harvey et 

al., 2004; Ilyushina et al., 2008; 

Maines et al., 2011; Stevens et al., 

2008; Stevens et al., 2006; Wang 

et al., 2010) 

(Srinivasan et al., 2013) 

(Ramos et al., 2013) 

(Tzarum et al., 2017) 

(Zhang et al., 2015a) 

Q227P, D375E Increase affinity to α2,3-SA α2,6-SA 

Transmissible among guinea pigs (D375E increase 

thermostability) 

H9N2 Adaptation in guinea 

pigs 

(Sang et al., 2015) 

T244I, E403D Decreased pH of fusion, increased HA stability H10N7 Seal isolate (Herfst et al., 2020) 

L331I, G453R Increase virulence in mice H4N6 Adaptation in mice after 

passaging 

(Xu et al., 2020) 

G396S, S442F Enhance the pH-dependent, HA membrane fusion  H1N1  Adaptation in swine 

after passaging 

(Bourret et al., 2017) 
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