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Abstract
Detecting changes in plasmas is compulsory for control and the detection of novelties.
Moreover, automated novelty detection allows one to investigate large data sets to substantially
enhance the efficiency of data mining approaches. To this end we introduce permutation entropy
(PE) for the detection of changes in plasmas. PE is an information-theoretic complexity measure
based in fluctuation analysis that quantifies the degree of randomness (resp. disorder,
unpredictability) of the ordering of time series data. This method is computationally fast and
robust against noise, which allows the evaluation of large data sets in an automated procedure.
PE is applied on electron cyclotron emission and soft x-ray measurements in different
Wendelstein 7-X low-iota configuration plasmas. A spontaneous transition to high core-electron
temperature (Te) was detected, as well as a localized low-coherent intermittent oscillation which
ceased when Te increased in the transition. The results are validated with spectrogram analysis
and provide evidence that a complexity measure such as PE is a method to support in-situ
monitoring of plasma parameters and for novelty detection in plasma data. Moreover, the
acceleration in processing time offers implementations of plasma-state-detection that provides
results fast enough to induce control actions even during the experiment.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Wendelstein 7-X (W7-X) is an optimized, superconducting
stellarator [8, 17, 23] with the main goal of demonstrating
that stellarators are capable of plasma steady-state operation
at fusion-relevant plasma conditions. The optimization was
performed according to different reactor relevant criteria, e.g.
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minimizing losses due to neoclassical transport and maxim-
izing the confinement of fast particles in the plasma center,
while maintaining good magneto-hydrodynamic (MHD) sta-
bility at finite β equilibria. Regardless of the complexity and
challenges that are faced in stellarator research, these devices
are promising for reactor purposes since the magnetic field
topology is formed only by external coils, which means that
the plasma can thus be sustained continuously.

To ensure steady-state operation, it is necessary to detect,
understand and react accordingly to plasma state changes that
could compromise the plasma confinement. For this, nov-
elty/anomaly detection methods based on neural networks
are currently implemented e.g. for the detection of magnetic
instabilities caused by Alfvén eigenmodes [20] and for the
detection of disruption precursors in tokamaks [7]. However,
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these methods can be computationally expensive and may
require large data sets to operate appropriately. Here, we pro-
pose an extremely fast and robust detector based on permuta-
tion entropy (PE) for in-situ detection of transient events, as
well as for offline bulk data analysis. To study the spatio-
temporal evolution of the plasma and demonstrate the feas-
ibility and benefits of the PE analysis, we implemented it on
highly sampled Te and soft x-ray (SXR) data.

2. Measuring predictability in multivariate time
series

Measuring predictability of time series allows a better under-
standing of the characteristics and properties of any under-
lying stochastic processes and the characteristics of dynam-
ical systems. Time series can be regarded to be more or less
ordered. A generic task of time series analysis is to predict a
value frommeasurements, that is e.g. calculating the probabil-
ity to measure a value xt givenmeasurements {. . . ,xt−2τ ,xt−τ}
preceding xt or to unravel characteristic invariants of the time
series. Entropy has been shown to be one of the most powerful
quantities to evaluate the degree of randomness and predictab-
ility of a signal. However, with continuous data, the entropy
of a time series can only be calculated to provide an estima-
tion. The accuracy of which is bound to the advantages and
drawbacks of the method implemented [6]. Various estimat-
ors have been developed, one of these being the PE which
is a statistical measure that takes all statistical dependencies
into account to describe the degree of randomness in a data
set. PE was firstly introduced in [1] and has been successfully
implemented in different science branches e.g. medical sci-
ences [12, 13, 18] and financial economics [10, 24, 25], includ-
ing plasma physics, e.g. for unraveling the chaotic nature of
L-mode edge plasma density fluctuation dynamics [14] and
characterizing low-aspect-ratio reversed-field pinch plasma
through the identification of stochastic and chaotic regions
[19]. In this paper, we apply PE on non-stationary data to char-
acterize plasma states and their evolution. In particular, PE is
employed as a method for time series analysis and the method
is computationally effective to allow one for fast even real-time
characterization.

In a sense, PE estimates the degree of randomness of a sig-
nal. The salient feature of PE is to identify ordinal patterns
of m-tuples separated by a delay time τD [1, 2]. For a PE of
order m, m measurements are analyzed at a time forming a
time comb to determine the ordering of consecutive measure-
ments. To do so, distinct measurements are assigned a rank or
a symbol depending on their relative ordinal arrangement such
that the order pattern π of the m-tuple can be identified. As
an example, for the order m= 3 one could arrange three (dif-
ferent) values into 3! different patterns π. In practice, PE is
determined by counting the number of occurrences of each π
and the calculating the Shannon information Hm of the prob-
ability distribution pπ:

Hm =−
∑
π

pπ logpπ. (1)

The Shannon information varies within 0⩽ Hm ⩽ log2m!.
Hm = 0 is attained for either a monotonously increasing or
decreasing time series. For completely random time series
(independent and identically distributed processes, i.i.d.) each
permutation has probability (m!)−1 leading to Hm = log2m!.
However, if there is some structure in the data, the permuta-
tions are not uniformly distributedHm < log2m!. And themore
irregular the time series is, the closer is Hm/log2m! to one.
For experimental data, an ordinal technique such as PE is less
affected by noise and data outliers.

For a numerical implementation, PE is based on sorting
algorithms rather than distance calculations which are way
faster to compute. The main determinant of the computing
speed of the PE is the permutation order m given that the
sorting algorithm has to assign an order pattern to each m-
tuple from m! distinct possible patterns. The choice of m is
a trade-off between details in ordering pattern and computa-
tional costs: while lowm lead to very small computation times,
a low permutation order does not allow a detailed separation of
ordering patterns and may not accurately describe the under-
lying dynamics. If one is interested in details of the ordering
patterns, a higher m would be required and a larger compu-
tation time is expected. In principle, one wants to ensure that
all possible patterns m! become visible (appear at least once).
From the literature [5, 21] it can be seen that appropriate val-
ues of m can be chosen depending on the length of the time
series to be analyzed, which e.g. for the case of 104 samples,
a permutation order m= 4 would be adequate. The effect of
the hyperparameter τD on the PE will be discussed along a
practical example below.

To further illuminate the PE technique, an analysis of
synthetic data is presented. In this use case, the PE of two
uncoupled systems is calculated, namely of X1(tn) and X2(tn)
defined as:

X1(tn) = ξ1 (2)

X2(tn) = ξ2 +αX2(tn− 1), (3)

where ξi is Gaussian noise with expectation value µi and
standard deviation σi (ξi ∼ Ni(µi,σi)) and α is an autoregress-
ive (AR) coefficient limited to |α|< 1. Both systems con-
sist of random signals, however X2(tn) has an additional first
order AR term creating a dependency between the last and the
upcoming realization. The time traces of the first 100 samples
of both systems are depicted in figure 1. For this example, we
will consider µ1,2 = 0, σ1,2 = 1, α= 0.9 and tn = 1,2, . . . ,104.
From the waveforms it can be seen that X2(tn) (red) is more
structured and seem less random than X1(tn) (blue).

Figure 2(a) shows the probability density functions (PDF)
of the time series in figure 1.We observe that the PDF ofX1(tn)
(blue) is narrower than the one from X2(tn) (red); however,
both PDFs have the same shape (normal distributions). It is
noted here that, from this depiction of the one dimensional
distribution, the degree of randomness of the signals cannot
be determined.

For the assessment of the degree of randomness, the joint
distributions of consecutive realizations from the time series
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Figure 1. Time traces of synthetic data to be analyzed by means of PE. Data consists of the first 100 realizations of systems X1(tn) and
X2(tn) as defined in equations (1) and (3).

Figure 2. Analysis of uncoupled systems X1(tn) and X2(tn) for t= 1,2, . . . ,104. (a) Probability density function estimate of both systems.
(b) Probability distribution of permutation patterns π of 4th order of consecutive measurements (m= 4, τD = 1). The 4-tuples are arranged
from monotonically decreasing to monotonically increasing order patterns such that π1 = (4,3,2,1),π2 = (4,3,1,2), . . . ,π24 = (1,2,3,4).
(c) Permutation entropy of system X2(tn) with varying additional noise source ξ3 ∼ N3(0,σ3). The blue dashed line indicates the entropy of
system X1(tn) (H4 = 4.583bit) and the shaded area illustrates the error with a confidence interval of 99.7%.
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Figure 3. Calculation of permutation entropies of order m= 4 of signals Y(t, f) = sin(2πft)+ ξ, where ξ ∼ N(0,1), for the assessment of
best suited embedding delay τD to detect structures with different frequencies. (a) Time trace of the signal with f = 2 kHz. Minimum and
maximum PE values were achieved with τD = 0.25 ms (red) and τD = 0.50 ms (blue); normalized to the maximum achievable entropy,
H4/log4! = 0.950 and H4/log4! = 0.999 respectively. (b) H4/log4! of signals with varying f and τD. White solid line indicates values of PE
for time series with different f and τD = 0.1 ms; white dotted line, for the specific case f = 2 kHz with color coded markers pinpointing
embedding delays shown in (a).

illustrated in figure 1 are shown in figure 2(b). For this, a PE
with m= 4 and τD = 1 is implemented. It can be seen for the
case of X1(tn) (blue) that allm! = 24 possible permutation pat-
terns π have roughly equal probabilities (p(π)≈ 1

24 ). On the
other hand, for X2(tn) (red) some probabilities deviate signific-
antly from an equal distribution indicating that monotonically
decreasing and increasing sequences are more frequent. This
reflects the effect of the AR term (α in equation (3)) leading
to more ordered patterns in X2(tn) (red) compared to X1(tn)
(blue). Calculating the PE of the systems X1(tn) and X2(tn)
results in 4.583bit and 4.359bit, respectively. This indicates a
higher entropy in the time series X1(tn) compared to X2(tn). In
other words, X1(tn) is more random (and thus less predictable)
than X2(tn).

Now, we assess the robustness of PE. To this end, X2(tn) is
exposed to different noise levels, figure 2(c). For this, an addi-
tional i.i.d. signal ξ3 ∼ N3(0,σ3) with varying σ3 is incorpor-
ated into the time series of X2(tn) depicted in figure 1. After
a steep for low values of σ3, it gradually approaches the max-
imum PE value of X2(tn) (blue dashed line,H4 = 4.583bit). At
about σ3 > 4 the entropies ofX1(tn) andX2(tn) are virtually the
same. For this example with normal distributions at σ1,2 = 1,
PE is able to detect autodependencies for noise levels up to
σ3 ≈ 4σ1.

Now we discuss the role of the hyperparameters in the PE
calculation, namely the embedding delay τD and the order
m. The assessment of a well-suited embedding delay τD
leading to the detection of underlying structures at differ-
ent frequencies is presented in figure 3. For this, synthetic
data are generated consisting of noisy sine waves Y(t, f) =
sin(2πft)+ ξ, with frequencies f ∈ [1,11] kHz and ξ ∼ N(0,1).

The waveform of Y(t,2 kHz) is shown in figure 3(a). For
a time window of 10 ms, the PE of order m= 4 is calcu-
lated for varying τD ∈ [0.01,1.00] ms. This results in a min-
imum PE value with τD = 0.25 ms (depicted in red) and max-
imum with τD = 0.50 ms (green). These values, normalized to
the maximum achievable entropy, are H4/log4! = 0.950 and
H4/log4! = 0.999 respectively. This indicates an embedding
delay of τD = 0.25 ms (1/2 of the period T of the sine wave) to
be best suited for the detection of the underlying structure with
f = 2 kHz, whereas an analysis with τD = 0.50 ms = T would
not be able to differentiate between this structure and a signal
fully comprised of white noise. The reason becomes obvious
from figure 3(a): if the time comb samples periodic data at a
fixed phase, a ranking and thus an ordinal pattern cannot be
derived.

The full impact of sampling at a fixed phase is seen in
figure 3(b). First, we follow the dotted line to discuss the vari-
ation of a specific delay time τD. This is equivalent to changing
the extent of the time comb in figure 3(a). For the two indic-
ated time combs, the PE is maximum and minimum respect-
ively. The difference in PE (as depicted by red/green sym-
bols in figure 3(b)) affects cases with the previously discussed
sampling at the same phase of the noisy sine wave (min. PE)
and at the largest variation of phases (max. PE). Expanding
the discussion to an extended range of frequencies, provides
a similar impact of sampling at a fixed phase but at different
frequencies. This result is seen as a consecutive structure of
‘fringes’ in figure 3(b).

In practical application, combinations of frequencies f and
delay times τD leading to normalized PE ≈ 1 are not sensit-
ive to detect irregularities. The white line shows the choice
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made for the analysis in this paper, indicating a ‘blind spot’
for f≳ 9 kHz (but without impact on the results). A strategy
to overcome this deficiency is obvious: adding an additional
PE analysis at a somewhat higher τD does ensure a coverage
at any blind spot for any frequency of interest.

3. Multivariate measurements on Wendelstein 7-X
for the characterization of plasma states

Now, we analyze data taken from plasma discharges of
Wendelstein 7-X. The specific discharges were conductedwith
magnetic field settings that lead to a comparably low value
of the rotational transform (low ι configuration). Figure 4
shows an overview of the temporal evolution of some plasma
quantities from the plasma discharge 20180829.24. The sali-
ent feature apparent from the waveforms of the electron
temperature is a step-wise increase of Te at the discharge
time t≈ 1.4 s. In this time range, the heating power P and
diamagnetic energy Wdia are roughly constant. The sudden
increase is observed with different diagnostics namely the
electron cyclotron emission (ECE) and the SXR diagnostic
both measurements depending on Te. This has been observed
to occur in various plasma discharges with different plasma
conditions.

To examine the spatio-temporal characteristics of the tem-
perature change, highly sampled data from an ECE radiometer
and from SXR diagnostic have been analyzed by means of PE.
The measurements are described along with the analysis in the
subsequent sections.

3.1. ECE radiometer at W7-X

ECE radiometry is employed to measure the electron temper-
ature and to derive Te profiles in stellarators [9]. The ECE
diagnostic in W7-X measures the second harmonic X-mode
emission at 2.5 T employing a heterodyne radiometer. The
radiometer has a line of sight (LoS) that crosses the plasma
center and consists of 32 signal channels that measure a fre-
quency range from 126 to 162 GHz. With a sampling fre-
quency up to 2 MHz for temperature localized measurements,
the LoS of the radiometer is selected such that the magnetic
field increases monotonically towards the inner side of the
torus. The correspondence of electron gyration frequency and
|B|, allows one a spatial 1D allocation of temperature meas-
urements. Here, the specific assignment of frequencies to |B|
is made by calculating the field with VMEC [11], a 3D MHD
equilibrium code that solves the force balance of ideal MHD
equilibrium.

The ray-tracing code TRAVIS [15] is used to take into
account the radiation transport effects when the temperature
profiles are derived from emissivity signals of the ECE chan-
nels. The complex refraction index along the line of sight
of the ECE radiometer is determined from electron dens-
ity and -temperatures, mapped on magnetic coordinates from

a MHD equilibrium provided by the VMEC code. Tech-
nically, the radiation transport equation is solved such that
the emissivity (and thus the respective temperatures profiles)
contributing to each frequency channel is predicted. TRAVIS
provides the location andwidth of the emissive layer at any fre-
quency. This results in a typical spatial mapping to an effective
measurement location (see figure 5(a)) with a resolution of the
ECE measurements of ∆r≈ 1 cm in the plasma core.

3.2. Analysis of ECE time series

The Te profile for the discharge presented in figure 4 is shown
in figure 5(a). Negative values of the normalized effective
radius ρ represent regions in the high-field side (inboard),
whereas positive values, regions in the low-field side (out-
board). The ECE channel numbers are depicted above each
data point in the profile3. We obtain a peaked Te profile
and also observe that measurements retrieved through ECE
channel-#10 originate near the plasma core, in the high Te
gradient region on the low-field side.

The time series of measurements of channel-#10 (ρ= 0.20)
recorded at a sampling frequency of 1 MHz is displayed in
figure 5(b). Figure 5(b) shows a significant fluctuation level,
partly due to measurement noise and partly due to plasma fluc-
tuations. The signal is seen to fluctuate during the plasma start
up phase, before reaching a stationary state from t≈ 0.4 s to
t≈ 1.4 s. A spontaneous Te increase is observed at t≈ 1.4 s
(red dashed line) and the temperature is maintained at a second
plateau in a stationary phase until t= 2.5 s when the heating
power is modulated.

As a first step analysis, PE was applied to the waveform
shown in figure 5(b). This analysis, as well as all further
PE analysis presented in this paper, is conducted with a per-
mutation order m= 4, an embedding delay τD = 0.1 ms and
a sliding time window of 10 ms of duration for the compu-
tation of each PE value. The calculations are performed in
MATLAB with a code based on the algorithm presented in
[22]. To claim that structures within a signal have been detec-
ted by means of PE, a detection threshold must be defined.
The choice of the threshold is oriented at a significance level
derived from noise data analysis. More specifically this is
done by calculating the PE of 100 time series consisting of
Gaussian noise (ξ ∼ N(0,1)) with the same hyperparameters
(m= 4, τD = 0.1 ms) as for the analysis of experimental data.
Obviously, the most appropriate threshold will depend on the
data to be analyzed, but the method employed here is well-
suited to establish a basis for an analysis that requires minimal
previous knowledge about the nature of the data.

The result of the PE analysis is shown in figure 6(a). For an
intuitive illustration of the results, the complement of the PE

3 It can be seen that the data of channel-#16 (ρ=−0.08) is absent. This is
due to the heating system operating at about the same frequency (≈140 GHz)
as channel-#16 and thus, the measurements obtained through this channel are
not accurate and are therefore neglected.
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Figure 4. Time traces of low iota configuration plasma discharge 20180829.24 in W7-X (configuration B: DBM, ⟨β⟩= 1.02%).
Top-to-bottom: electron cyclotron heating power PECRH, line integrated electron density ne, electron temperature Te and diamagnetic energy
Wdia. Red dashed line pinpoints the instant when a spontaneous Te increase is observed.

Figure 5. (a) Measured radiation temperature mapped to the effective measurement location calculated by TRAVIS in W7-X plasma
discharge 20180829.24 from t= 1.00 s to t= 1.05 s. The number above each data point indicates the respective ECE channel number.
(b) Radiation temperature measurements obtained through channel-#10 for the whole plasma discharge. Red dashed line indicate instant
when spontaneous Te increase is observed.

values normalized through the maximum achievable entropy
is plotted in logarithmic scale. The significance threshold is
log(1− s) = 6.7× 10−4 (magenta line) and this value, multi-
plied by three to prevent random spikes in PE that would yield
false positive detections, results in the detection threshold for

the Te transition (blue line).We observe that the PE (black line)
for t ∈ [0.4,1.4] s is significantly greater than for t > 1.4 s and
is above both thresholds. This is also observed for a moving
average (MA) over a sliding window of 10 ms of the PE sig-
nal (green line). Hence, PE differentiates between the time
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Figure 6. Analysis of ECE measurements obtained through signal channel-#10 from plasma discharge 20180829.24 in W7-X. Red and
white dashed lines indicate instant when spontaneous Te increase is observed. (a) Permutation entropy analysis with permutation order
m= 4 and embedding delay τD = 0.1 ms for a sliding time window of 10 ms of duration: complement of PE values s normalized through
the maximum achievable entropy. Green line depicts moving average over a sliding window of 10 ms, magenta line displays the PE
significance threshold derived from noise data analysis and blue line indicates the Te transition detection threshold. (b) Spectrogram
computed through the short-time Fourier transform.

windows before and after the Te transition (red dashed line).
Other than this distinction, a small fluctuation in the PE ana-
lysis can be seen between the significance threshold and the
Te transition detection threshold, which goes along with the
heating power modulation starting from t≈ 2.5 s. This MA
signal is better suited than the original one to serve as trigger
signal in data mining by avoiding large excursions (compare
black and green lines in figure 6(a)). Figure 6(b) shows spectral
analysis of the same data computed using the MATLAB built-
in function spectrogram [16]. All spectral analysis through-
out this paper are computed through short-time Fourier trans-
forms with hamming windows of 1 ms of duration and 10%
overlap between windows. Through spectral analysis, a quasi
coherent mode structure with a fluctuation frequency between
f ≈ 2 kHz and f ≈ 3 kHz is observed between t≈ 0.4 s and
t≈ 1.4 s, which vanishes once the Te transition occurs (white
dashed line). Comparing figures 6(a) and (b) indicates a smal-
ler PE to result from a more ordered time series as reflected by
the spectral maximum in figure 6(b).

Now, PE and spectral analysis are applied on all signal
channels such that the localization of the structures can be
examined. Both methods identified the same ECE channels
for which the MHD activity was observed (see figure 7).
More specifically, the Te profile is separated in three types
of regions: MHD activity was observed (red shaded area),
no activity was observed (white shaded area) and no fluctu-
ation analysis was possible due to low signal-to-noise ratio
(gray shaded area). Even though, the analysis could not be
performed in all regions, MHD activity is localized in the
core. Thus, through both methods, spectral analysis and PE the

mode activity could be allocated along the radial coordinate
and lies in the high gradient region near the plasma core.

3.3. XMCTS at W7-X

The SXR multi-camera tomography system (XMCTS)
measures emissions through pinhole cameras arranged in
an up-down symmetry in a poloidal plane [3], where the
flux surfaces have a triangular shape as seen in figure 8.
This non-invasive diagnostic consists of 20 SXR cam-
eras arranged poloidally to cover the plasma from multiple
views and each camera is equipped with 18 photodiodes
to measure radiation in the energy range of approxim-
ately 1–12 keV [4]. Figure 8 depicts the flux surfaces for
the low-iota configuration B (DBM, β = 1.02%) and the
line of sight geometry of this diagnostic, specifically, the
region covered by SXR camera 4A (gray shaded region)
and LoS-#8 (white dashed line). The SXR emissions meas-
ured emerge mainly from contributions from bremsstrahlung
(∝ n2e

√
Te), recombination and line radiation. Through high

sampling rate and spatial resolution, this diagnostic is able to
resolve MHD instabilities in a poloidal cross section of the
plasma.

3.4. Analysis of SXR time series

The radiation recorded through SXR camera 4A for plasma
discharge 20180829.24 in W7-X is presented in figure 9. The
waveforms in red (figure 9(a)) correspond to measurements
closest to the vessel’s inner wall (high-field side), whereas
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Figure 7. Measured radiation temperature mapped to the effective measurement location calculated by TRAVIS in W7-X plasma discharge
20180829.24 from t= 1.00 s to t= 1.05 s. Red shaded areas indicate regions where MHD activity was observed. In white are regions where
this activity was not observed and, in gray, regions where no fluctuation analysis was possible due to low signal-to-noise ratio.

Figure 8. Setup of the soft x-ray multi-camera tomography system depicting the lines of sight geometry for all cameras installed (1A− 4E)
and the flux surfaces for the low iota configuration B (DBM, β = 1.02%). The shaded area indicates the region from which the radiation
measured through SXR camera ‘4A’ comes from (delimited by the red and blue lines). The white dashed line depicts one of the 18 lines of
sight (specifically, LoS-#8) available for the measurements.

waveforms in blue, correspond to measurements near the
plasma center (low-field side, see figure 8).

The channels showing the innermost lines of sight are
arranged in figure 9(b), where SXR signals measuring sim-
ilar intensities but from opposing locations w.r.t. the plasma
center can be observed. When Te spontaneously rises (black
dashed line), a significant branching between the off-axis

measurements and their respective counterparts is seen. Radi-
ation measurements taken more laterally on the high-field
side (red) drop slightly in intensity, whereas measurements
in the low-field side (blue) increase. The difference in the
temporal evolution of the ECE and SXR signals provides
clear evidence that the emissivity change is localized to the
innermost channels. Moreover, while ECE data showed a

8
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Figure 9. SXR measurements obtained through camera ‘4A’ for low-iota configuration plasma discharge 20180829.24 in W7-X. Black
dashed line indicates instant when spontaneous Te increase is observed. (a) Time series recorded through all 18 photodiodes: red plots
depicting lines of sight closer to the periphery and blue plots, regions near the plasma center (see figure 8). (b) Magnification of (a)
exhibiting bifurcation of signals after Te transition.

Figure 10. Analysis of SXR measurements obtained through camera ‘4A’ LoS-#8, from plasma discharge 20180829.24 in W7-X. Red and
white dashed lines indicate instant when spontaneous Te increase is observed. (a) Permutation entropy analysis with permutation order
m= 4 and embedding delay τD = 0.1 ms for a sliding time window of 10 ms of duration: complement of PE values s normalized through
the maximum achievable entropy. Green line depicts moving average over a sliding window of 10 ms, magenta line displays the PE
significance threshold derived from noise data analysis and blue line indicates the Te transition detection threshold. (b) Spectrogram
computed through short-time Fourier transform revealing two structures around 1–4 kHz.

localized increase of Te, the simultaneously observed increase
and decrease of SXR signal (I∝ n2e

√
Te) allows one to

conclude that the plasma density is also affected in the
transition.

Now we conduct the PE and spectral analysis of dens-
ity and temperature dependent SXR data. The PE analysis
(m= 4, τD = 0.1 ms) as shown in figure 10(a) indicates a clear

detection of structures from plasma start up until the instance
when the Te suddenly rises (red dashed line). From this point
in time onwards, PE (black line) detects structures with values
above the significance threshold (magenta line) and partially
above the Te detection threshold (blue line). The MA signal
also detects structures above the significance threshold after
t≈ 1.4 s, however not above the Te detection threshold. The

9



Plasma Phys. Control. Fusion 64 (2022) 084005 J F Guerrero Arnaiz et al

Figure 11. Localization of MHD activity in the poloidal plane through the analysis of SXR measurements in W7-X from plasma discharge
20180829.24. Dotted lines indicate lines of sight that detected MHD activity. Gray area depicts locations with high density of crossings
between dotted lines suggesting a 2D localization of the activity.

next step is to identify the structures detected by the PE ana-
lysis through spectral analysis as shown in figure 10(b). From
this analysis, two different structures can be observed: a pre-
dominant structure in a frequency range between f = 2 kHz
and f = 4 kHz taking place between plasma start up and the Te
transition (white dashed line), and a weaker in power structure
in the slightly higher frequency range (up to f ≈ 5 kHz) that
extends until the plasma is terminated. The second structure is
observed in the PE analysis, however it lies between the sig-
nificance threshold and the Te transition detection threshold.
Therefore, the distinction between the time windows before
and after the Te transition is in the PE analysis most evid-
ent. The computing times for both of the analysis lie around
tPE = 0.49 s and tFFT = 13.83 s, PE being clearly faster for
the analysis of a ≈5.5 s long time series with a sampling rate
of 2 MHz.

Assuming that SXR data is proportional to n2e
√
Te, the

ECE signals increase only locally and the total energy did not
show any response, the previous observations are an indic-
ation of the redistribution of the electron pressure. Expand-
ing the time series analysis to all available photodiodes from
the SXR cameras, the MHD activity can be localized in a 2D
tomographic reconstruction of a plasma poloidal cross section.
The cameras available for the analysis are shown in figure 11
as well as the lines of sight (black dotted lines) where the
activity preceding the transition was identifiable by means of
PE. From the density of the crossings between these lines of
sight, a rough idea of the spatial location of the activity can
be estimated (gray shaded area). From this simplistic tomo-
graphic approach, we observe that the activity lies near the
plasma center as also observed from the ECE data analysis in
the previous section. Furthermore, the tomographic approach
allows to exclude the occurrence of the MHD activity
on axis.

3.5. Data mining with PE

Now, we investigate the capability of PE for an automated
detection of the temperature transition in a large amount of
data. Purpose of the survey is to identify the temperature
bifurcation using PE at settings used in the previous section
(m= 4, τD = 0.1 ms). The success rate of this data mining
procedure is derived from the number of successful detections
of transitions and the number of false positives. To this end,
ECE data from a full shot-day onW7-X are analyzed to detect
spontaneous Te transitions. Since the ECE signal reflects the
electron temperature rather than a combination of ne and Te,
only the ECE data were chosen for the data mining. The PE
(at fixed settings) was applied on ECE data. Table 1 summar-
izes for which discharges PE detected a temperature transition
at a time tB, and for which discharges no transition could be
revealed. The result from the findings in table 1 is that PE
detects all transitions and no false positives were found, i.e.
PE detected all Te transitions when using a MA of the PE over
a sliding time window of 10 ms as trigger signal as shown in
figures 6 and 10. It is worth mentioning, that the first 100 ms
of every discharge were excluded from the analysis to avoid
the detection of structures due to plasma start-up.

To validate the PE findings, spectrogram were calculated
and the frequency of a accompanying MHD activity is added
to the transition in table 1. The spectrogram confirms the trans-
ition detected by PE but also reveals additional power spectral
densities also at varying frequencies. E.g. in figure 6, a peak
steadily decreasing in the plasma build-ip phase adds signal
contributions that are hard to discriminate. Evenmore ambigu-
ous, the spectrogram of soft-x ray data (figure 10) indicate
spurious power spectral densities even after the Te transition.
Contrasting the more ambiguous findings from spectral ana-
lysis, the PE analysis offered (for the data set in table 1)
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Table 1. Detection of spontaneous Te transitions in bulk data analysis by means of permutation entropy in W7-X plasma discharges. PE
analysis performed on ECE data with permutation order m= 4 and embedding delay τD = 0.1 ms for a sliding time window of 10 ms.
Plasma parameters before the transition are shown, including increment in electron temperature measured through ECE signal channel-#10
∆Te,ch#10 and frequency f of the MHD activity preceding the transition.

Discharge ID PECRH (MW)
´
ndl (1019 m−2) tB (s) Te (keV) ∆Te (keV) fECE (kHz)

20180829.5 5.0 ± 0.2 4.0 ± 0.1 — — — —
20180829.6 5.02 ± 0.02 3.43 ± 0.03 3.7 ± 0.1 3.35 ± 0.02 0.25 ± 0.02 7.5–10
20180829.7 3.71 ± 0.02 3.01 ± 0.03 2.1 ± 0.1 3.47 ± 0.03 0.33 ± 0.03 7–10
20180829.8 3.62 ± 0.02 2.60 ± 0.03 0.9 ± 0.1 4.04 ± 0.02 0.17 ± 0.02 7–8
20180829.9 3.72 ± 0.03 2.21 ± 0.02 0.9 ± 0.1 4.22 ± 0.04 1.00 ± 0.04 7–8
20180829.12 3.5 ± 0.2 2.0 ± 0.2 — — — —
20180829.15 2.0 ± 0.1 2.0 ± 0.2 — — — —
20180829.16 5.01 ± 0.02 5.01 ± 0.02 1.6 ± 0.1 2.79 ± 0.02 0.64 ± 0.02 2.5–3.5
20180829.17 4.83 ± 0.03 3.61 ± 0.03 1.2 ± 0.1 2.83 ± 0.01 0.18 ± 0.01 8–9
20180829.18 3.50 ± 0.02 4.10 ± 0.02 1.7 ± 0.1 2.81 ± 0.02 0.38 ± 0.02 8–9
20180829.19 3.5 ± 0.2 4.0 ± 0.2 — — — —
20180829.20 2.42 ± 0.03 4.02 ± 0.02 2.6 ± 0.1 1.94 ± 0.03 0.37 ± 0.03 2–2.5
20180829.21 3.55 ± 0.02 4.34 ± 0.01 1.2 ± 0.1 3.02 ± 0.02 0.37 ± 0.02 2–3
20180829.22 1.5 ± 0.1 4.0 ± 0.2 — — — —
20180829.23 2.0 ± 0.1 4.0 ± 0.1 — — — —
20180829.24 4.97 ± 0.04 6.23 ± 0.04 1.4 ± 0.1 2.81 ± 0.03 0.85 ± 0.03 2–3
20180829.25 5.04 ± 0.03 6.33 ± 0.03 1.1 ± 0.1 1.81 ± 0.03 0.31 ± 0.03 2–3
20180829.26 5.00 ± 0.04 6.30 ± 0.04 1.4 ± 0.1 2.94 ± 0.03 0.88 ± 0.03 2–3
20180829.27 3.61 ± 0.03 6.04 ± 0.03 2.5 ± 0.1 2.57 ± 0.03 0.41 ± 0.03 4–5
20180829.28 3.6 ± 0.2 6.0 ± 0.5 — — — —
20180829.31 3.5 ± 0.2 6.5 ± 0.4 — — — —
20180829.32 2.04 ± 0.02 3.98 ± 0.02 2.1 ± 0.1 1.75 ± 0.02 0.25 ± 0.02 3–4
20180829.33 2.05 ± 0.02 3.96 ± 0.02 2.1 ± 0.1 1.82 ± 0.03 0.25 ± 0.03 3–4
20180829.34 2.05 ± 0.01 4.05 ± 0.02 2.0 ± 0.1 1.74 ± 0.03 0.23 ± 0.03 2–4
20180829.35 2.02 ± 0.01 3.73 ± 0.01 2.3 ± 0.1 1.80 ± 0.03 0.25 ± 0.03 1–4
20180829.37 5.0 ± 0.2 4.3 ± 0.1 — — — —
20180829.38 5.4 ± 0.2 3.5 ± 0.1 — — — —
20180829.39 5.36 ± 0.04 2.08 ± 0.01 1.6 ± 0.1 4.81 ± 0.04 1.21 ± 0.04 6–7
20180829.40 5.51 ± 0.03 2.02 ± 0.03 3.1 ± 0.1 5.02 ± 0.03 1.06 ± 0.03 5–9
20180829.41 5.3 ± 0.2 2.1 ± 0.1 — — — —
20180829.42 5.3 ± 0.1 2.3 ± 0.2 — — — —
20180829.43 5.3 ± 0.2 2.6 ± 0.2 — — — —
20180829.48 3.0 ± 0.3 3.5 ± 0.1 — — — —
20180829.49 3.1 ± 0.2 3.0 ± 0.1 — — — —
20180829.50 3.2 ± 0.2 3.1 ± 0.2 — — — —

a straight forward setting to define a statistically based PE
threshold for systematically detecting previously unrevealed
temperature bifurcation.

4. Discussion and conclusions

The applicability of PE as a first step analysis on plasma data
over a wide range of plasma conditions is broad and serves
as a tool to rapidly and robustly detect underlying dynamics
in time series. This method allowed an automated analysis of
bulk data, which resulted in the detection of localized Te fluc-
tuations in low-iota configuration discharges in W7-X. PE as
a data mining tool allowed one to discriminate shots with and
without Te transitions. The results of the PE analysis were sup-
ported by spectral analysis, however, the former was shown to
be at least 25 times faster to compute for this case. We con-
clude that PE can be used to report changes of the plasma state

as fast as ∼0.1 ms which is much faster than the energy con-
finement time (∼100 ms). It is concluded that PE has a large
potential for real-time detection of changes to, e.g. induce
interlocks or other control interventions.
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