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Abstract: Gas plasma is an approved technology that generates a plethora of reactive oxygen species,
which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred
interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the
possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain
restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if
such materials are altered upon gas plasma exposure. To this end, we generated a new in-house
workflow for three commonly used resin-based composites following gas plasma treatment and
incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by
metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The
inflammatory consequences were assessed using quantitative analysis of 13 different chemokines
and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A
modest but significant cytotoxic effect was observed in the metabolic activity and viability after
plasma treatment for all three composites. This was only partially treatment time-dependent and
the composites alone affected the cells to some extent, as evident by differential secretion profiles
of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6,
IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s
r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells
thereafter could not replicate the effects, pointing to the potential that surface modifications elicited
the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material
surfaces to a certain extent, leading to measurable but overall modest biological effects.

Keywords: atmospheric pressure argon plasma jet; plasma medicine; reactive oxygen species; resin

1. Introduction

Gas plasma is a partially ionized gas capable of generating various reactive oxygen and
nitrogen species (ROS) when in contact with ambient air oxygen and nitrogen [1]. A leap in
innovation in plasma technology development initiated the investigation of gas plasma
sources operated at atmospheric pressure, exhibiting temperatures of only approximately
body temperature [2]. Approximately two decades ago, such tissue-compatible gas plasma
devices were found to exhibit potent antimicrobial effects and were soon after suggested for
biomedical applications [3,4]. Excessive bacterial and fungal growth is an issue, especially
in chronic wounds and ulcers. Subsequently, healing chronic wounds and ulcers using
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gas plasma technology was investigated [5]. Approximately one decade ago, the first
medical plasma devices were approved for clinical application based on experience in
patient studies [6].

Meanwhile, gas plasma applications have also spurred interest in other medical fields,
such as dentistry, where this novel technology may address several clinical challenges.
Gas plasma applications in the oral cavity include the treatment of implant-associated
infection [7], oral candidiasis [8], and periodontitis [9], with the latter having been already
successfully demonstrated in a randomized clinical trial [10]. In addition, improved os-
teoblast adhesion and differentiation have been investigated following gas plasma exposure
of cells or respective materials [11]. In general, gas plasma in the oral cavity either directly
targets tooth structures or is operated in close vicinity to the teeth, such as the gum. Teeth
frequently contain restoration materials for filling cavities, e.g., resin-based composites;
however, it is unknown if the alteration of such structures upon gas plasma exposure
affects nearby cells. For instance, they could be rendered more cytotoxic or change the
inflammatory secretion profiles of cells.

To this end, we tested three commonly used resin-based composite filling materials
(ArabeskTOP, ArabeskFLOW, and GrandioSO) following gas plasma treatment to perform
a biological risk assessment. To provide reproducible treatment, we generated a novel
in-house workflow for composite chip manufacturing and automated gas plasma expo-
sure using a computer-controlled xyz-stage. Subsequently, human HaCaT keratinocytes
were cultured on the gas plasma-treated side of the composite chips, and their viability
and inflammatory secretion profiles were assessed. A keratinocyte cell line was used as
keratinocytes are part of the human oral mucosa, which can be in contact with dental
material. The immortalized but non-malignant cell line has been previously suggested as
a substitute for oral keratinocytes [12] and has been utilized in previous safety studies in
plasma medicine [13]. Our data revealed several cellular perturbations as a consequence of
gas plasma exposure.

2. Results
2.1. Composite Manufacturing, Gas Plasma Treatment, and Cell Culture Workflow Setup

To investigate the biological consequences of gas plasma-treated composite material in
a reproducible in vitro setting, several challenges needed to be addressed. Cell cultures are
often performed in 96-well plates with modified bottoms to allow adherent cells to adhere.
To use this existing system, we generated composite chips with approximately the same
area and diameter as the wells of the 96-well plate by filling the liquid composites into a cus-
tomized 3D-printed template (Figure 1a). Simultaneously, the goal was to achieve a small
chip height to save composite material and retain maximal translucency of the material
for imaging experiments. To this end, a glass plate was added to the well plate, ensuring
a similar height across all composite chips generated before these were hardened using a
standard dentistry UV lamp (Figure 2b). In pilot experiments, all three composite types
(Table 1) were added to 96-well plates, and human HaCaT keratinocyte cell suspensions
were given to the composites. Two days later, the cells were washed, fixed, and crystal
violet stained. Cellular presence and growth were found on all three composite types
(Figure 1c). Next, a reproducible and standardized gas plasma exposure workflow was
created. The aim was to perform gas plasma exposure centrally on each chip at precisely
the same height (the distance from the argon plasma jet to the composite surface) and for
exact treatment times. Therefore, a customized 3D-printed template was generated to hold
the composite chips in place during the treatment. Because the chips were lightweight and
the argon gas pressure of the gas plasma jet can be substantial, especially when directly
connected (conductive) to the target [14], some tended to be flip over during the treatment
or the movement of the jet from one chip to another. To solve this, venting slits were added
to the composite chip cavities (Figure 1d). Highly reproducible gas plasma exposure was
achieved by connecting the plasma jet to a motorized and computer-controlled xyz-stage.
This setup allowed the addressing of two questions: Firstly, how are human cells affected by
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gas plasma treatment in comparison to untreated dental composites when cultured directly
on the surface (Figure 1e, left image)? Secondly, is the gas plasma exposure ablating any
surface dental composite material which can diffuse into liquids, and would such liquids
containing ablated material affect cellular properties (Figure 1e, right image)? Several cell
biological assays were performed to address these questions.

Figure 1. Composite chip manufacturing and treatment. (a) rapid prototyping of 3D-printed
96-well schemes for insertion of a defined amount of dental composite material prior to material
hardening using a standard dental UV lamp for a predetermined time; (b) image of a standardized
composite chip generated with the workflow; (c) stereo-microscopy of composite chips incubated
with human HaCaT keratinocytes for 48 h, fixation of the chips and cells, and staining using crystal
violet, providing evidence of cellular material adherent to the chips; (d) xyz-stage automated gas
plasma treatment of the center of each chip added to a customized 3D-printed vented 96-well holder
for the treatment times 30 s, 60 s, and 120 s; (e) experimental schemes of (e) direct and indirect
gas plasma treatment workflows and (24 h, 48 h) incubation times (HCI = high content imaging)
(designed using biorender.com).
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Figure 2. Human HaCaT keratinocyte metabolic activity. (a) representative wells of the resazurin-
based assay as a measure of reduction equivalents present in cell cultures; (b–d) resorufin fluorescence
of human HaCaT keratinocytes cultured in the presence of untreated (0 s) or gas plasma-treated
ArabeskTop (b), ArabeskFlow (c), and GrandioSO (d) in cell culture media in 96-well plates for 24 h
(direct regimen); (e–g) resorufin fluorescence of human HaCaT keratinocytes cultured in the absence
of composite chips but in the presence of cell culture medium incubated for 24 h with untreated (0 s)
or gas plasma-treated ArabeskTop (e), ArabeskFlow (f), and GrandioSO (g) composite chips (indirect
regimen). Hydrogen peroxide (H2O2)-treated composite chips served as a positive control. Data are
normalized to untreated (0 s) conditions and are mean of six independent experiments with three
technical replicates each. Statistical analysis was performed using one-way analysis of variances
with * = p < 0.05, ** = p < 0.01, and *** = p < 0.001 and Dunnett’s post-hoc test for untreated control
conditions (0 s).
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Table 1. Dental-resin composite material used in this study.

Name (Abbrev.) Type Resin Matrix/Filler Size Commercial Provider

ArabeskTop (AT) flowable composite
(low filled, <70%)

BisGMA, TEGDMA,
UDMA/0.05–1.00 µm Voco, Germany

ArabeskFlow (AF) flowable composite
(medium filled, 71–79%)

BisGMA, TEGDMA,
UDMA/~1.00 µm Voco, Germany

GrandioSO (GS) flowable composite
(high filled, >80%)

BisGMA, TEGDMA,
BisEMA/20–40 µm Voco, Germany

2.2. Cytotoxicity Analysis of Three Types of Gas Plasma-Treated Dental Composites

Three dental composites (ArabeskTop, AT; ArabeskFlow, AF; GrandioSO, GS) were
gas plasma treated and cultured in the presence of human HaCaT keratinocytes. Twenty-
four hours later, their metabolic activity was analyzed with an assay measuring the total
reduction equivalents within a cell culture vessel (Figure 2a). There was a gas plasma
treatment time-dependent decline in metabolic activity for AT (Figure 2b), albeit that the
120 s conditions seemed somewhat less toxic as compared to the 60 s conditions. The same
phenomena could be observed for AF (Figure 2c), while it was less pronounced when in
GS (Figure 2d). Hydrogen peroxide (H2O2) served as a positive control in all instances
and H2O2-treated composite chips reduced metabolic activity as expected. Altogether,
gas plasma exposure of all three composite types and direct culture of human HaCaT
keratinocytes on the chips’ surface caused significant but overall moderate toxicity in these
cells. Flow cytometry investigations validated these results (data not shown). In contrast,
culturing HaCaT keratinocytes in a cell culture medium incubated with untreated or gas
plasma-treated composite chips for 24 h did not replicate the modest cytotoxicity observed
with direct culturing for either of the types tested (Figure 2e–g). To profile both conditions
to a greater degree, we took advantage of the small height of the composite chips, allowing
for inverted imaging of fluorescently labeled cells on the top side of the dental composite
chips. The fluorescence allowed for the identification of the cells (Figure 3a), while the
addition of the dead-cell fluorescence dye propidium iodide (PI) marks terminally dead
cells (Figure 3b). Each chip in the well plate was imaged at several heights (z-stacks) to
compensate for subtle micrometer-range yet unavoidable differences in absolute heights
for imaging. Quantification of cells using AT revealed significantly higher cell numbers for
the short and intermediate gas plasma treatment times, while viability was not significantly
affected (Figure 3c). Similar results were achieved for GS where, in addition, long plasma
exposure also led to higher cell numbers. For AF, a modest but significant increase was
observed for 60 s for PI. When imaged 48 h post-onset of the cultures, more terminally
dead cells were observed, especially for AT and GS (Supplementary Figure S1). Following
this, these investigations were performed for the indirect regimen, where the cells were
imaged directly on the plastic surface of the 96-well plate (Figure 3d). Again, there was
not much of an increase in PI fluorescence for all three dental composite types in the gas
plasma conditions, while H2O2 showed significantly greater cytotoxicity when compared
to the direct regimens (Figure 3e).
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Figure 3. Quantitative fluorescence imaging. (a) brightfield (left) and fluorescently labeled (DiD)
human HaCaT keratinocytes grown on composite chips cultured in a tissue culture-treated 96-well
plate with each well image being digitally stitched from nine individual fields of view with three
channels (brightfield, DiD, PI) each; (b) representative PI imaged digitally aligned side-by-side for
all gas plasma treatment conditions (in the experiments, each composite chip was exposed to a
single gas plasma treatment time) of composite chips and the positive control H2O2; (c) quantitative
algorithm-driven image analysis of the number of cells (left) and mean fluorescence intensity (MFI)
of PI per cell and well (right) across the three composite chip types investigated in this study of the
direct treatment and culture regimen; (d) representative PI images of a 60 s gas plasma-treated (left)
and H2O2-treated (right) composite chips; (e) quantitative algorithm-driven image analysis of the
number of cells (left) and mean PI intensity per cell and well (right) across the three composite chip
types investigated in this study of the indirect treatment and culture regimen. Data are mean of four
independent experiments with three technical replicates and several fields of view each. Statistical
analysis was performed using one-way analysis of variances with * = p < 0.05, ** = p < 0.01, and
*** = p < 0.001 and the Dunnett post-hoc test for untreated control conditions (0 s).



Molecules 2022, 27, 4519 7 of 16

2.3. Secretion Profiling of Three Types of Gas Plasma-Treated Dental Composites

Next, to assess the impact of gas plasma-treated dental composites on human Ha-
CaT keratinocytes with regard to the inflammation-related secretion of cytokines and
chemokines, we investigated the supernatants of the cells. When comparing the secretion
profiles between cells cultured in the presence or absence of composite chips, the con-
centration of several soluble mediators was significantly altered (Figure 4a). Consistent
changes between all three dental composites were found for IL8 and IL18, while for CCL2
and VEGF, two out of three materials presented similar results. AT showed the most
differences. Several cytokines were present only at low concentrations or were below the
detection threshold (Figure 4b). An exception was arginase, which is already present in
cell culture medium, but significant changes due to the composite chips were not observed.
Gas plasma exposure of dental composite material had profound effects on the human
HaCaT keratinocyte secretion profiles (Figure 5a). Except for the mediators released only at
or below the detection threshold, all other targets showed increased or decreased levels
in the gas plasma groups. In general, H2O2 showed the most dramatic changes, as evi-
dent by a firm (>2-fold) decrease in at least four cytokines or chemokines for either of the
composite types and direct or indirect regimens. Concerning the gas plasma conditions,
an increase was observed in many samples for IL18, and for the indirect regimens for IL6,
IL8, and GM-CSF. In the direct regimen, gas plasma dental composite treatment mostly
led to decreased levels, especially of CLL2, GM-CSF, IL6, IL8, and VEGF. A non-linear
effect between the gas plasma treatment times was observed in many of our results. In
this regard, the 60 s exposure time often had a more substantial effect than the 30 s, while
the 120 s was more similar to the 30 s. Additionally, the 60 s showed more remarkable
changes in the secretion profiling than the 120 s in many samples, e.g., IL6, IL8, VEGF, and
CCL2. To understand the relation between direct and indirect regimens, we performed
Pearson’s correlation analysis across all composite types and gas plasma treatment times
(Figure 5b). No correlation was found, indicating different mechanisms at play within each
treatment regimen. Finally, we performed correlation analysis for the gas plasma exposure
time-related metabolic reduction rates and total cytokine and chemokine concentrations
in the direct treatment regimen (Figure 5c). IL18, IL8, GM-CSF, and IL6 showed a good
but non-significant correlation, while CCL2 correlation was highly significant (p < 0.05).
Secretion profiling at 48 h for the direct regimen showed similar, although not completely
congruent results (Supplementary Figure S2).

2.4. Composite Particle Release Analysis

To investigate whether gas plasma treatment of composites triggered the release of
composite material, dynamic light scattering analysis was performed in phosphate-buffered
saline in which the materials were incubated for 24 h. In untreated AT, a small peak of
particles at about 50 nm was detected (Figure 6a). Gas plasma treatment yielded a release of
particles substantially larger in a treatment time-dependent fashion, with 120 s of exposure
generating the biggest fraction at approximately 300 nm. This was not the case for AF
(Figure 6b), where untreated composite did not show a second, larger peak, and 30 s and
60 s, but not 120 s, generated particles sized between 10–30 nm. The reason for this remains
to be explored. Similar to AT, untreated GSO showed a small fraction of larger particles,
in this case at approximately 20 nm (Figure 6c). Gas plasma exposure of 30 s, 60 s, and
120 s led to two new particle peaks at approximately 50 nm and 200 nm. Whether these
particles are directly related to the biological effects observed remains to be established in
future work.
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Figure 4. Secretion profiles of cells cultured in presence or absence of composite chips. (a,b) good
to highly abundant (a) and modest to low abundant (b) absolute concentrations of 13 different
cytokines and chemokines in cellular supernatants 24 h after onset of human HaCaT keratinocytes
cultured either on untreated composite chips or in the absence of composite chips in tissue culture-
treated 96-well plates. Data are mean of four technical replicates pooled from six independent
experiments with three technical replicates each. Statistical analysis was performed using t-test.
LOD = (lower) limit of detection. * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.

Figure 5. Cont.



Molecules 2022, 27, 4519 9 of 16

Figure 5. Cellular secretion profiles of gas plasma-treated composite chips. (a) levels of 13 different
cytokines and chemokines in cellular supernatants 24 h after onset of human HaCaT cultures on
gas plasma-treated (30 s, 60 s, 120 s), hydrogen peroxide (H2O2)-spiked composite chips (direct), or
human HaCaT cells cultured in the absence of composite chips but in the presence of cell-culture
medium previously incubated with untreated or gas plasma-treated composite chips (indirect),
normalized to untreated conditions (0); (b) Pearson’s correlation analysis of treatment mode (absolute
direct vs. indirect fold changes in positive numbers of better visualization) for the three composite
types and gas plasma treatment times used in this study; (c) Pearson’s correlation analysis of absolute
chemokine and cytokine levels of the direct treatment regimen supernatants with metabolic activity
data at 24 h of the direct treatment regimen. Data are mean of four technical replicates pooled from
six independent experiments with three technical replicates each.

Figure 6. Resin particle release into buffered solution. (a–c) particle size estimations using dynamic
light scattering (DLS) of untreated and gas plasma-treated (30 s, 60 s, and 120 s) AT (a), AF (b), and
GSO in phosphate-buffered saline, in which the materials were incubated for 24 h prior to analysis.
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3. Discussion

Gas plasma applications targeting various diseases and conditions are of increasing
interest in dentistry. Dental composites are biocompatible materials frequently present
in the oral cavity, but the biological consequences of unintended composite gas plasma
treatment are unknown. To this end, the current study explored the toxicity and inflam-
matory mediator release in human HaCaT keratinocytes cultured on three different gas
plasma-treated composite chips.

We observed a significant but overall modest metabolic activity reduction in ker-
atinocytes cultured directly on the gas plasma-treated composite surface. Gas plasma is
an enabling technology for surface modifications in many industries [15–17]. Hence, such
modifications might account for the reduction in metabolic activity. Our high content
imaging suggested a similar or enhanced number of cells on the surface. This is in line with
previous findings of the plasma jet used in our study, where enhanced HaCaT keratinocyte
growth was observed on gas plasma-treated polystyrene surfaces [18]. In conjunction with
the relatively low increase in the terminal cell death marker PI on cells on the surface of
gas plasma-treated composites, it seems plausible that these surfaces caused growth arrest
rather than cell death. In previous studies, such cell cycle arrest was found in HaCaT
keratinocytes exposed to gas plasma or plasma-treated medium using the current and
other plasma systems [19,20]. The indirect regimen was set up and applied to test the
hypothesis if gas plasma-sputtered composite particles dissolve into liquids and mediate
effects. However, no toxicity was observed in this regime. Hence, we believe most of the
effects to be a consequence of direct composite surface-to-cell interaction. Many other
studies have been performed in the context of gas plasma treatment and its effects on
HaCaT keratinocytes [21–24], indicating that this cell type may be suitable as an indicator
of reactive species and their mediated modifications.

It was interesting to note that culturing the cells in the presence of composite material
compared to plain culturing in tissue culture plastic affected the release of several cytokines
and chemokines, such as CCL2, IL6, IL8, IL18, and VEGF. In untreated vs. gas plasma-
treated composites, the same analytes were found to be released differentially. IL8 (CXCL8)
is increased upon oxidative stress and TNFα-induced keratinocytes differentiation as well
as toll-like receptor engagement [25–27]. It is an alarming factor and chemo-attractant to
spur the immigration of professional phagocytes, mainly neutrophils, into damaged or
inflamed tissues [28,29]. The fact that its baseline release levels decreased in the presence
of composite and decreased even more if composites were gas plasma-treated suggests an
anti-inflammatory effect of both. Accordingly, the indirect regimen only had a minor IL-8
stimulating effect, suggesting the possibility that gas plasma-treated composite-derived
compounds may have diffused into the culture media to mediate modest biological ef-
fects. The IL8 levels highly correlated to the metabolic activity reduction data, underlining
IL8′s sensitivity as a marker molecule. The only marker with a higher correlation was
CCL2, which showed trends similar to IL8 (i.e., reduction in the presence of composite and
gas plasma exposure and mostly unchanged or a modest increase in indirect regimens).
CCL2′s synonym, monocyte-chemoattractant protein 1 (MCP-1), reveals that it attracts
monocytes to inflammation sites to prime their maturation and differentiation [30]. Simi-
larly, granulocyte-macrophage stimulating factor (GM-CSF) supports cell proliferation and
acts as a chemo-attractant for neutrophils and myeloid cells [31,32]. Its release patterns
were highly similar to IL8 and CCL2, suggesting that dental composites reduced overall
cellular activity and inflammatory signaling via cytokine and chemokine release with an ad-
ditional decrease for gas plasma treatment. The only prominent exception to this tendency
was the consistently elevated IL18 levels, a cytokine associated with caspase-1-mediated
pro-IL18 cleavage and inflammasome activation [33]. Increased IL18 release by human
keratinocytes was found in response to thioglycolate-induced reductive stress and UV-B
exposure in vitro [34,35], while reduced levels were found with H2O2-induced oxidative
stress [36], corroborating our study results. It can be speculated that oxidized composite
microparticulate triggered the NLRP3-mediated inflammasome activation that would lead
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to IL18 release, as was recently suggested for microparticles in oral keratinocytes [37]. The
indirect regimen only partially recapitulated the direct regimen’s IL18 release changes,
which may be due to a higher dilution of any particles released from the composite into the
media. Altogether, gas plasma-treated dental composites produced moderate changes in
secretion profiles with both pro- and anti-inflammatory properties.

This study addressed the potential safety concerns of plasma technology application
in biomedicine. This is in line with several previous studies on the safety of medical gas
plasma applications, especially concerning the plasma jet kINPen used in this study. The
jet was considered to be safe for applications in humans, based on several patient studies
and long-term follow-ups [38–40]. This includes a lack of excessive thermal effects on
tissues; an absence of any deficient wound healing or scar formation, safe electric and (UV)
light emission profiles; and reproducible results in terms of stability of the generating gas
plasma. The recommended kINPen plasma treatment time for chronic wounds and ulcers
is 30 s per cm2 while moving the jet at a speed of approximately 5 mm per second over
the treatment target. This is much less than in our experimental study, where the jet was
only pointed (but not moved) towards a target, leading to much longer treatment cycles
to a relatively smaller area without any movement. Considering that in oral applications,
dental composite gas plasma treatment would be accidental (i.e., nearby the treatment
target being, for instance, mucosa, dental implants, or tooth root canals) rather than the
main focus, our experimental conditions were intentionally overdosed for the shortest
treatment time to explore any biological effects, which were overall minor at 30 s gas plasma
exposure time. Regarding the oral cavity, a recent, comprehensive in vivo study with more
than 400 mice investigated and gas plasma-treated for 12 months alone or in combination
with potential carcinogens concluded that repeated oral exposure to the kINPen plasma is
safe and potentially even protects from carcinogenesis [41]. Another one-year follow-up
study in mice that had received gas plasma-assisted wound healing support also did not
indicate any tumor formation or scaring [42]. Finally, several studies have shown that gas
plasma exposure in vitro, independent of the plasma device investigated, does not induce
genotoxic effects [43–45]. Additionally, human mucosa exposed to gas plasma ex vivo did
not show any damage [46]. However, a limitation of our study was a lack of resin surface
analysis following gas plasma exposure, which will need to be addressed in future research
using polished material.

Collectively, our data suggest significant but overall moderate biological effects of
experimentally overdosed gas plasma-treated dental composites on human keratinocytes
in vitro. While there were individual differences between the three composite filling mate-
rials investigated, their overall effects on cells were mostly similar, pointing to commonly
employed fillers as potential mediators of the findings presented. A clinical trial is currently
set up with a novel gas plasma jet device for intraoral applications for implant biofilm
removal [45], indicating the importance of further studying the safety and efficacy of this
novel yet promising medical technology.

4. Materials and Methods
4.1. Resin-Based Composite Chip Manufacturing

All three types of composite material (ArabeskTop, AT; ArabeskFlow, AF; GrandioSO,
GS) tested in this study and with different properties (Table 1) [47] were purchased com-
mercially (Voco, Cuxhaven, Germany). The restoration material was portioned in similar
amounts in customized 3D-printed 96-well templates. The entire template was tightly
covered with a glass plate, squeezing the composite chips to similar heights across all
cavities. Subsequently, composites were hardened manually using a dental UV light device
for the time frames indicated for each composite type.

4.2. Cell Culture

Human HaCaT keratinocytes (DKFZ, Heidelberg, Germany) were cultured in fully
supplemented cell culture medium consisting of Roswell Park Memorial Institute medium
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(RPMI 1640; Corning, Kaiserslautern, Germany) containing 10% fetal bovine serum (FBS;
Sigma-Aldrich, Taufkrichen, Germany), 1% L-glutamine (Corning, Kaiserslautern, Germany),
and 1% penicillin and streptomycin (Corning, Kaiserslautern, Germany). Cells were incubated
at 37 ◦C, 95% humidity, and 5% CO2. For the experiments, 5 × 103 cells in 125 µL of fully
supplemented cell culture medium were added to a composite chip embedded dry (i.e.,
without any liquid) in a well of a tissue culture-treated flat-bottom 96-well plate (NUNC,
Roskilde, Denmark). This was referred to as the direct regimen, as the cells sinking onto the
composite chip came in direct contact with the gas plasma-treated surface. In the indirect
regimen, untreated or treated composites chips were incubated in cell culture medium for
24 h, and human HaCaT keratinocytes were cultured in these media. As a reference control,
each plate contained wells without composite chips where human HaCaT keratinocytes in
naïve media (i.e., not in contact with composite chips) attached to the uncovered bottom of
the 96-well plate. Cells and supernatants were analyzed 24 h or 48 h later.

4.3. Gas Plasma Setup and Exposure

For gas plasma treatment, the atmospheric pressure plasma jet kINPen (neoplas,
Greifswald, Germany) was used with argon (purity 99.9999%; Air Liquide, Stralsund,
Germany) as a carrier gas. The chemical and physical characteristics are well-described and
are previously summarized [48]. For gas plasma exposure of composite chips, a customized
and vented 3D-printed template was used, and the chips were placed within the cavities.
Reproducible gas plasma treatment was achieved by connecting the argon plasma jet to a
high-precision xyz-stage (CNC, Geldern, Germany) that was programmed to hover above
the center of each composite chip, traveling down and visually connecting the gas plasma
effluent to the composite chip surface for a predetermined time (30 s, 60 s, or 120 s), before
rising and automatically traveling to the adjacent well of the template.

4.4. Stereo Microscopy

To provide evidence of HaCaT keratinocyte adhesion and growth on the composite
chips, 1 × 104 cells were incubated for 48 h in fully supplemented cell culture medium.
After that, the medium was removed, and the cells were fixed using 4% paraformaldehyde.
Following this crystal violet staining was performed. Subsequently, composite chips
were imaged by stereo microscopy (M165 FC; Leica, Wetzlar, Germany) using a 2× Plan
Apo corrected objective. Image acquisition was performed using LAX X software (Leica,
Wetzlar, Germany).

4.5. Metabolic Activity

The metabolic activity of cells was assessed using the resazurin assay 48 h after
direct incubation with the plasma-treated composites or incubation with the cell cul-
ture media that had been in contact with the plasma-treated composites before. Briefly,
100 µM of 7-hydroxy-3H-phenoxazin-3-on-10-oxid (resazurin; Alfa Aesar, Kandel, Ger-
many) were added to the cells following incubation for 4 h at 37 ◦C and 5% CO2. Viable
cells metabolize non-fluorescent resazurin to fluorescent resorufin. Fluorescence was
measured at λex 535 nm and λem 590 nm using a multimode plate reader (F200; Tecan,
Männedorf, Switzerland).

4.6. High Content Imaging

The thickness of the composite chips was sufficiently low as to restore their semi-
translucent property. This allowed for quantitative fluorescence imaging with inverted
microscopy mounted in a high-content imaging device (Operetta CLS; PerkinElmer, Ham-
burg, Germany) harboring a micrometer-precision xyz-stage carrying the plate containing
the specimens to the optics. DiD (ThermoFisher, Bremen, Germany) fluorescently labeled
human HaCaT keratinocytes cultured on the top surface of the composite chips were im-
aged using a 5x air (NA = 0.15) objective (Zeiss, Jena, Germany) at three different z-planes
(50 µm apart) at λex 630 nm and λem 708 ± 52 nm. Propodium iodide (PI; Sigma-Aldrich,
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Taufkirchen, Germany) was assessed in parallel at λex 550 nm and λem 610 ± 40 nm. Nine
fields of view were imaged for each well, covering the entire well area. For data analysis,
all z-stacks were merged into a single maximum intensity projection, and all nine fields of
view were digitally stitched into a single global image. Using the higher autofluorescence
of the composite chip borders, an image region was segmented using algorithm-driven un-
supervised image analysis. In this particular image region, for each field of view separately,
the DiD-positive human HaCaT keratinocytes were segmented to retrieve the number of
cells per image. In the individual segmented cells, the mean fluorescence intensity (MFI) of
PI was quantitatively assessed, and the PI MFI was averaged across all cells for each field of
view per well. Image and cell segmentation across a total of more than 15,000 microscopy
images in this study were performed using algorithms created with Harmony 4.9 software
(PerkinElmer, Hamburg, Germany).

4.7. Flow Cytometry

To confirm cytotoxic effects on a single cell level in pilot experiments, human HaCaT
keratinocytes were harvested in FACS tubes using accutase. Cells were washed three times
with cold FACS washing buffer (Miltenyi Biotec, Mönchengladbach, Germany), and cellular
viability was determined by adding 1 µM 4′,6-diamidino-2-phenylindole dihydrochloride
(DAPI; BioLegend, Amsterdam, The Netherlands). Flow cytometry experiments were
performed using a CytoFLEX LX device (Beckman-Coulter, Krefeld, Germany), and data
were analyzed using Kaluza 2.1 software (Beckman-Coulter, Krefeld, Germany).

4.8. Chemokine and Cytokine Analysis

Supernatants of human HaCaT keratinocytes cultured in the presence or absence
of untreated or gas plasma-treated composite chips of three different types were har-
vested at 24 h, partially at 48 h, and stored at −20 ◦C until longitudinal analysis. Prior
to quantifying 13 different cytokines and chemokines, similar supernatants were pooled
from all independent experiments and technical replicates, and four technical replicates
were assessed (LegendPLEX; BioLegend, Amsterdam, The Netherlands) per condition
and analyte (up to 60 different conditions). The panel consisted of chemokine ligand 2
(CCL), granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-gamma
(IFNγ), tumor necrosis factor-alpha (TNFα), vascular endothelial growth factor (VEGF),
and interleukin-1 beta (IL1β), IL4, IL6, IL8, IL10, IL13, and IL18. In addition, arginase,
a hydrolase abundantly present in fully supplemented cell culture media, was analyzed.
Analysis was performed using flow cytometry (CytoFLEX S; Beckman-Coulter, Krefeld,
Germany) and quantification was calculated against a 5-log standard with specific upper
and lower limits of detection (LOD) for each analyte.

4.9. Statistical Analysis

All experiments were performed three to six independent times, with at least three
technical replicates for each treatment condition, composite type, and incubation time.
Graphing and statistical analysis were performed using Prism 9.4.0 (GraphPad Software,
San Diego, CA, USA). Statistical comparison of two samples was performed using t-test.
Statistical comparison of two or more samples was performed using one-way analysis of
variances (ANOVA) and Dunnett’s post-hoc testing against the untreated control composite
sample (0 s). Correlation analysis was performed using Pearson’s correlation coefficient.
Levels of significance were indicated as follows: α = 0.05 (*), α = 0.01 (**), α = 0.001 (***).

4.10. Photon Correlation Spectroscopy

Photon correlation spectroscopy measurements were performed using a ZS90 dy-
namic light scattering (DLS) device (Malvern instruments, Kassel, Germany) equipped
with a helium–neon laser light source (632 nm). Media incubated with untreated or gas
plasma-treated resins were measured in low-volume disposable cuvettes (ZEN0040). DLS
measurements were performed at a set angle of 90◦ and attenuator at 11. The size was mea-
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sured at 22 ◦C, with an equilibration time of 120 s and cuvette position at 3 mm. Backscatter
angled detection was performed at 173◦ with a scattering collection angle of 147.7◦.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27144519/s1, Supplemental Figure S1. Cellular viability
at 48 h. Quantitative image analysis of the mean propidium-iodide (PI) signal intensity of fluorescently
labeled HaCaT keratinocytes incubated on the top, gas plasma-exposed composite chip side for 48 h.
Data are mean of three independent experiments with three technical replicates and several fields of
view each. Statistical analysis was performed using one-way analysis of variances with * = p < 0.05,
** = p < 0.01, and *** = p < 0.001 and Dunnett’s post-hoc test for untreated control conditions (0 s).
Supplemental Figure S2. Cellular secretion profiles at 48 h. levels of 13 different cytokines and
chemokines in cellular supernatants 48 h after onset of human HaCaT cultures on gas plasma-treated
(30 s, 60 s, 120 s) or hydrogen peroxide (H2O2)-spiked composite chips normalized to untreated
conditions (0). Data are mean of four technical replicates pooled from three independent experiments
with three technical replicates each.
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