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Abstract: The early-life microbiome (ELM) interacts with the psychosocial environment, in partic-
ular during early-life adversity (ELA), defining life-long health trajectories. The ELM also plays a
significant role in the maturation of the immune system. We hypothesised that, in this context, the
resilience of the oral microbiomes, despite being composed of diverse and distinct communities,
allows them to retain an imprint of the early environment. Using 16S amplicon sequencing on the
EpiPath cohort, we demonstrate that ELA leaves an imprint on both the salivary and buccal oral
microbiome 24 years after exposure to adversity. Furthermore, the changes in both communities
were associated with increased activation, maturation, and senescence of both innate and adaptive
immune cells, although the interaction was partly dependent on prior herpesviridae exposure and
current smoking. Our data suggest the presence of multiple links between ELA, Immunosenescence,
and cytotoxicity that occur through long-term changes in the microbiome.

Keywords: early-life adversity; early experience; microbiome; bacterial community; oral microbiome;
developmental origins of health and disease; immune system; host-microbe interactions

1. Introduction

Early-life adversity (ELA) is defined by a poor environment and conditions in early life
that induce intense psychophysiological stress [1]. It is mostly observed together with low
socioeconomic status and is pathophysiologically correlated with a lifelong imbalance of
health and disease [2]. The first 1000 days from conception to 2 years is the most vulnerable
life period [3]. At birth, the body is almost fully formed; however, many biological systems
continue to mature over the following years. Research on the lifelong health and disease
balance has shown the significance of the environment during this period on multiple
disease phenotypes [4], including cardiovascular, allergic, and autoimmune disorders, as
well as mental disorders [5–17]. There has been a focus on the molecular mechanisms and
the cellular phenotype behind the effect of stress and adversity on immune and endocrine
systems as well as epigenetic modifications [5,6,18,19].
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ELA has been reported to influence health trajectories via the immune system [18,20,21],
with a clear ELA-associated immunophenotype centred around the activation and func-
tional status of T lymphocytes. In the institutionalisation model of early-life stress, strong
T-cell immunosenescence has been reported [18,21,22]. Immunosenescence is a form of ac-
celerated immune ageing. The CD57 T- and NK- cell immunosenescence marker is absent in
early life and increases with age, with high numbers of such cells in the elderly population.
Immunosenescence is driven by chronic inflammation or recurrent viral infections such
as CMV [23]. NK functionality is also highly impacted by recurrent reactivation of CMV
inducing NK cell exhaustion, increased cytotoxicity, and senescence [24]. Additionally,
such viral infections potentially program the immune system [21,22]. Latent CMV infection
of haematopoietic progenitor cells reduces GR transcription and translation, impacting
immune cell maturation, which can be dependent on CMV reactivation [19,25,26].

The environment is the most critical factor shaping ELA. In the immediate postna-
tal period, the immune system starts maturing and the first body-area-specific microbial
communities are established. Once established, the microbiome modulates the host [27], a
mechanism to protect symbiotic microbial communities, where cases of microbial dysbiosis
can be fatal [28,29]. The ELM plays important roles in an infant’s subsequent develop-
ment [5,6] and a long-term health trajectory [5–11]. Nevertheless, the development of the
ELM is critically impacted by the environment, mode of birth, early-life nutrition, and
environmental exposure, which leave a clear lifelong trace [16,30]. For example, maternal
milk is rich in essential nutrients, protective antibodies, and components essential for the
developing microbiome, such as human milk oligosaccharides (HMOs) and short-chain
fatty acids (SCFAs) [31–36].

The oral microbiome (OM) is composed of various distinct, smaller communities
within the oral cavity [37–41] that are robust, stable, and particularly resilient [42,43],
particularly to antibiotic therapy [43–47]. Moreover, saliva contains actively secreted
components such as cortisol, glucose, lactate, urea, and proteins, such as polypeptides,
glycoproteins (cystatins, mucins, and immunoglobulins) and antimicrobial peptides (his-
tatins, defensins, and immunoglobulins-IgA). Many of these are energy sources for the
OM, and salivary glycoproteins are the principal nutrient source. These substrates are
crucial for the development of multispecies communities and their preservation [41,46,48],
and enhance the resistance of the community to environmental stressors [41,49,50]. The
long-term stability of the OM leads to the hypothesis that, once established in early life, it
remains stable, robust, and resilient, retaining an imprint of the early environment [42,43].

We previously reported higher virally mediated activation and senescence of the
immune system in association with ELA in the EpiPath cohort [22,51]. This cohort consists
of young adults exposed to ELA by either institutionalisation or separation from their
parents at birth, and were subsequently adopted into Luxembourg, while controls were
raised by their biological parents. With the growing evidence of a microbiome–immune–
system interaction, we attempted to identify if institutionalisation left a mark on the OM
of the adoptees. In this study, we sequenced the 16s-rRNA from the buccal and salivary
bacterial communities from our cohort. Integrating this with the full immunophenotype,
we identified associations with various taxa and analysed how the microbiome interacts
with the immune system.

2. Results

The V4 region of the bacterial 16S gene was successfully amplified from both buccal
swabs and salimetrics oral swabs for the 115 members of the EpiPath cohort, and a total
of 45 Gbp sequencing data were obtained. All samples were successfully processed using
mothur and a total of 288 and 371 genera from 24 phyla were identified for buccal and
salivary samples respectively. The saliva and buccal swabs from the EpiPath cohort
were examined independently as they are two distinct oral communities from the same
participants.
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2.1. Microbial Diversity and Overall Microbial Composition
2.1.1. Salivary Microbiome (α- and β-Diversity)

We identified sequences from all of the 24 principal bacterial phyla in the overall sali-
vary microbial community. Within these 24 phyla, the most abundant in both control and
ELA groups were Actinobacteria, Proteobacteria, Firmicutes, and Fusobacteriota (Figure 1A).
The most abundant genera of the salivary composition were Acinetobacter, Micrococcaceae,
Actinobacillus, Rothia, Corynebacterium, Micrococcus, Actinomyces, Alloprevotela, Porphymonas,
Fusobacterium, Weeksellaceae, Flavobacterium, Bradyrhizobium, Porphyromonas, _ Comamonas,
Olsenella, Fluviicola, Fusobacterium, Absconditabacteriales _(SR1)_ge, Streptobacillus, Fretibac-
terium, JGI_0000069-P22_ge, Capnocytophaga, Pseudarcicella, Tannerella, Prevotella, and Campy-
lobacter (Figure 1B). There was no difference in α-diversity between the controls and
the adoptees in terms of diversity (controls: mean = 13.87872, SD = 7.127721, adoptees:
mean = 14.14869, SD = 6.601899, Wilcoxon rank sum test p = 0.7579) and evenness (controls:
mean = 0.5619667, SD = 0.06864806, adoptees: mean = 0.5646776, SD = 0.06172601, Wilcoxon
rank sum test p = 0.9461). Plotting the Shannon evenness index against the inverse Simpson
diversity index confirmed that there analogous diversity and evenness between the controls
and adoptees (Supplementary Figure S1). Principal coordinate analysis could not detect
systematic differences either (Supplementary Figure S1).

2.1.2. Buccal Microbiome (α- and β-Diversity)

As for the salivary microbiome, we identified sequences from all the 24 principal
bacterial phyla in the buccal microbial community. The most abundant phyla were the
same as in the salivary microbiome: Actinobacteria, Proteobacteria, Firmicutes, and Fusobac-
teriota (Figure 2A). The most abundant genera were Actinomyces, Corynebacterium, Micro-
coccaceae, Rothia, Alloprevotela, Porphymonas, Fusobacterium, Actinobacillus, Bradyrhizobium,
Haemophilus, Methylobacterium-Methylorubrum, Oxalobacteracea, Actinomyces, Neisseria, Pau-
cibacter, Lautropia Cardiobacterium, Brucella, Alysiella, and Campylobacter, therefore revealing
a substantial overlap in the detected genera between the saliva and the buccal microbiome
(Figure 2B).

As for the salivary microbiome, we observed a very similar diversity and evenness
between controls and adoptees as measured by the inverse Simpson index (controls: mean
= 12.85828, SD = 10.117292, adoptees: mean = 14.72315, SD = 8.991065, Wilcoxon rank sum
test p = 0.08803). The Shannon evenness index was similar between adoptees and controls,
and, in both, it was higher than in the salivary microbiome (controls: mean = 0.5137724,
SD = 0.10141122, adoptees: mean = 0.465861, SD = 0.08482336, Wilcoxon rank sum test
p = 0.09024). α-diversity was again similar in the controls and the adoptees in terms of
evenness (Wilcoxon rank sum test p = 0.08803) and diversity (Wilcoxon rank sum test
p = 0.09024). Plotting the Shannon evenness index against the inverse Simpson diversity
index revealed no systematic differences in diversity or evenness between the controls and
adoptees (Supplementary Figure S1). Similarly, principal coordinate analysis indicated no
differences between adoptees and control (Supplementary Figure S1).
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Figure 1. Overall composition of salivary bacterial community. (A) Overall microbial composi-
tion displayed in stacked area bar plot with the percentage relative abundance of all phyla 
found in each participant in both study arms. (B) Top 20 most abundant genera by mean abun-
dance arranged graphically by phyla. Vertical line = mean; rectangle = 1st to 3rd quartile; hori-
zontal lines = 2.5th to 97.5th percentile. Outliers are indicated as individual data points. Blue, 
control group; red, ELA group. 

2.1.3. Salivary and Buccal Microbiomes Are Two Separate Entities 
To ensure that sample collection was performed correctly and that we had two dis-

tinct communities, we compared the diversity and evenness of the salivary and buccal 
samples. We found a low correlation between the salivary and buccal communities in both 
the inverse Simpson diversity index (Figure 3A, p = 0.47, rho = −0.07372058, Spearman’s 
rank correlation test) and Shannon evenness index (Figure 3B, p = 0.8759, rho = 0.01595802, 
Spearman’s rank correlation test), giving evidence in favour of the hypothesis that, despite 
their close physical proximity, they can be seen as distinct communities. Comparing the 
salivary and buccal microbiomes by group, the diversity ratios of the salivary against buc-
cal communities were similar between the controls and adoptees (Figure 3A, controls: p = 

Figure 1. Overall composition of salivary bacterial community. (A) Overall microbial composition displayed in stacked
area bar plot with the percentage relative abundance of all phyla found in each participant in both study arms. (B) Top
20 most abundant genera by mean abundance arranged graphically by phyla. Vertical line = mean; rectangle = 1st to 3rd
quartile; horizontal lines = 2.5th to 97.5th percentile. Outliers are indicated as individual data points. Blue, control group;
red, ELA group.



Int. J. Mol. Sci. 2021, 22, 12682 5 of 21

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 21 
  

 

0.3311, rho = −0.1222465; adoptees: p = 0.7898, rho = 0.04812834; Spearman’s rank correla-
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between the controls and adoptees may be similar, but differences would be seen at the 
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Figure 2. Overall composition of the buccal bacterial community. (A) Overall microbial composition displayed in stacked 
area bar plot with the percentage relative abundance of all phyla found for each participant in both study arms. (B) Top 
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Figure 2. Overall composition of the buccal bacterial community. (A) Overall microbial composition displayed in stacked
area bar plot with the percentage relative abundance of all phyla found for each participant in both study arms. (B) Top
20 most abundant genera by mean abundance arranged graphically by phyla. Vertical line = mean; rectangle = 1st to 3rd
quartile; horizontal lines = 2.5th to 97.5the percentile. Outliers are indicated as individual data points. Blue, control group;
red, ELA group.

2.1.3. Salivary and Buccal Microbiomes Are Two Separate Entities

To ensure that sample collection was performed correctly and that we had two distinct
communities, we compared the diversity and evenness of the salivary and buccal samples.
We found a low correlation between the salivary and buccal communities in both the
inverse Simpson diversity index (Figure 3A, p = 0.47, rho = −0.07372058, Spearman’s rank
correlation test) and Shannon evenness index (Figure 3B, p = 0.8759, rho = 0.01595802,
Spearman’s rank correlation test), giving evidence in favour of the hypothesis that, despite
their close physical proximity, they can be seen as distinct communities. Comparing the
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salivary and buccal microbiomes by group, the diversity ratios of the salivary against
buccal communities were similar between the controls and adoptees (Figure 3A, controls:
p = 0.3311, rho = −0.1222465; adoptees: p = 0.7898, rho = 0.04812834; Spearman’s rank
correlation test, Figure 3B; controls: p = 0.9578, rho = 0.009692513; adoptees: p = 0.7898,
rho = −0.04812834; Spearman’s rank correlation test). This suggests that the overall com-
position between the controls and adoptees may be similar, but differences would be seen
at the phyla level.
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and ELA (right). (B) Shannon evenness index of saliva against buccal communities for control (left) 
and ELA (right). No correlation was found between either community for either measure or group 
(Spearman’s rank correlation test, p > 0.47). Grey shaded area: 95% confidence interval. 
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detect systematic differences in the buccal microbiome between the ELA group and the 
controls, the saliva microbiome was structurally different in its composition, with a prom-
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Next, we investigated the impact of environmental factors on the OM to potentially 
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Figure 3. Diversity and evenness of the salivary and buccal bacterial communities in both study
groups. (A) Inverse Simpson diversity index of saliva against buccal communities for control (left)
and ELA (right). (B) Shannon evenness index of saliva against buccal communities for control (left)
and ELA (right). No correlation was found between either community for either measure or group
(Spearman’s rank correlation test, p > 0.47). Grey shaded area: 95% confidence interval.

2.2. ELA Induces Differences in Specific Taxa in Both Salivary and Buccal Communities

Investigating the abundance levels of phyla and genera highlighted differences in the
community composition across the ELA group and healthy controls (Table 1). While there
were no differences in the phyla level in the buccal data, Proteobacteria and Verrucomicrobiota
were significantly lower (FDR < 0.05 for both) in the adoptees in comparison to the controls
(Supplementary Table S1A, Figure 4A,B) in the saliva microbiome as detected in fractional
regression analyses. Analyses of deeper taxonomy revealed two of the most abundant
genera of the Proteobacteria phylum, Comamonas and Acinetobacter, to be significantly lower
in the saliva of adoptees compared to controls alongside Aquabacterium and unclassified
Comamonadaceae (Table S1B, Figure 4C–F). In conclusion, while we could not detect sys-
tematic differences in the buccal microbiome between the ELA group and the controls, the
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saliva microbiome was structurally different in its composition, with a prominent role for
Proteobacteria genera (Figure 4A).

Table 1. An overview of the bacterial taxa associated with all the tested covariates in both saliva and buccal microbiomes.

Saliva Buccal
Number of

Associations
(FDR < 0.05)

Positively
Associated

Taxa

Negatively
Associated

Taxa

Number of
Associations
(FDR < 0.05)

Positively
Associated

Taxa

Negatively
Associated Taxa

Smoking 0 - - 5 -

Pasteurellaceae
(unclassified),

Neisseria,
Capnocytophaga,

Neisseriaceae (unc 1),
Planococcaceae (unc)

ELA vs. control 4 -

Aquabacterium,
Comamonas, Co-
mamonadaceae

(unc),
Acinetobacter

0 - -

Anti-CMV
seropositive 2 -

Pseudomonas,
Oxalobaceraceae

(unc)
9 Alysiella,

Neisseria

Sphingomonas,
Acinetobacter,

Oxalobacteraceae
(unc),

Bradyrhizobium,
Flavobacterium,
Methylorubrum,

Comamonadaceae
(unc)

Anti-EBV
seropositive 0 - - 1 Neisseria -

HSV 0 - - 0 - -

CD4+
CD57+ 2 Selenomonas Oxalobaceraceae

(unc) 4

Selenomonas,
Capnocy-
tophaga,

Campylobacter,
Lautropia

-

CD8+
CD57+ 0 - - 0 - -

Total CTLs 0 - - 0 - -

Total Th cells 0 - - 0 - -
1 unc = unclassified.

2.3. Environmental Covariates

Next, we investigated the impact of environmental factors on the OM to potentially
explain the effects of ELA described above (Table 1).
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Aquabacterium, (D) Comamonas, (E) Comamonadaceae, unclassified and (F) Acinetobacter. All are 
significantly associated with study group; fractional regressions against study group were calcu-
lated to determine significance (FDR < 0.05). Horizontal line = mean; rectangle = 1st to 3rd quartile; 
vertical lines = 2.5th to 97.5th percentile. Outliers are indicated as individual data points. 

2.3.1. Smoking 
As lifestyle has a pivotal role in the development of the microbiome, we assessed the 

effect of smoking on the OM by including smoking status (binary: smokers vs. non-smok-
ers) into the regression modelling (Table 1). No significant genera were detected for the 
salivary community, whereas from the buccal community, we exposed five genera nega-
tively associated with smoking: three from the Proteobacteria phylum, Neisseria, Neisseria-
ceae_unclassified, and Pasteurellaceae_unclassified; 1 from the Bacteroidetes phylum and Cap-
nocytophaga genus; as well as one from the Firmicutes phylum and Planococcaceae_unclassi-
fied genus (FDR < 0.05, Figure 5A–E). In sensitivity analyses, we removed smoking as a 
covariate from the regression equations for the FDR-corrected significant genera to ex-
plore potential effect mediation through smoking, but the results remained virtually un-
changed. The full results for the buccal and saliva microbiomes can be found in Supple-
mentary Table S2. 

Figure 4. Taxonomic differences between study groups in the salivary bacterial community. Box plots
of two phyla, (A) Proteobacteria and (B) Verruomicrobiota, as well as four genera: (C) Aquabacterium,
(D) Comamonas, (E) Comamonadaceae, unclassified and (F) Acinetobacter. All are significantly
associated with study group; fractional regressions against study group were calculated to determine
significance (FDR < 0.05). Horizontal line = mean; rectangle = 1st to 3rd quartile; vertical lines = 2.5th
to 97.5th percentile. Outliers are indicated as individual data points.

2.3.1. Smoking

As lifestyle has a pivotal role in the development of the microbiome, we assessed the ef-
fect of smoking on the OM by including smoking status (binary: smokers vs. non-smokers)
into the regression modelling (Table 1). No significant genera were detected for the salivary
community, whereas from the buccal community, we exposed five genera negatively associ-
ated with smoking: three from the Proteobacteria phylum, Neisseria, Neisseriaceae_unclassified,
and Pasteurellaceae_unclassified; 1 from the Bacteroidetes phylum and Capnocytophaga genus;
as well as one from the Firmicutes phylum and Planococcaceae_unclassified genus (FDR < 0.05,
Figure 5A–E). In sensitivity analyses, we removed smoking as a covariate from the re-
gression equations for the FDR-corrected significant genera to explore potential effect
mediation through smoking, but the results remained virtually unchanged. The full results
for the buccal and saliva microbiomes can be found in Supplementary Table S2.
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Figure 5. Taxonomic differences in the buccal bacterial community associated with smoking. Box
plots of five genera: (A) Pasteurellaceae unclassified, (B) Neisseria, (C) Capnocytophaga, (D) Neisse-
riaceae unclassified, and (E) Planococcaceae unclassified. All are significantly associated with study
group; fractional regressions against smoking were calculated to determine significance (FDR < 0.05).
Horizontal line = mean; rectangle = 1st to 3rd quartile; vertical lines = 2.5th to 97.5th percentile.
Outliers are indicated as individual data points.

2.3.2. Prior Viral Infections

We previously reported that viral infections may mediate the early-life immunophe-
notype [22]. Consequently, we tested whether prior viral infection, measured as anti- HSV,
EBV, and CMV seropositivity, affected the oral bacterial communities. We achieved this via
fractional regressions with the antibody titre (binary: positive vs. negative) as the predictor
of interest and the genus abundance as the response variable (Table 1). Due to low case
numbers of positive titre results for CMV, we could not adjust for basic covariates without
inducing numerical instability in the fitting procedure. While HSV titres did not show any
association, a positive EBV titre was positively associated with the abundance of the Neisse-
ria genus in the buccal microbiome (FDR < 0.05, Figure 6A). However, anti-CMV antibody
titres showed a very strong association with the OM. In total, 10 genera had a signifi-
cant association with CMV titres. Nine genera from the Buccal community, eight derived
from the Proteobacteria phylum (Acinetobacter, Bradyrhizobium, Comamonadaceae_unclassified,
Methylobacterium-Methylorubrum, Oxalobacteraceae_unclassified, and Sphingomonas genera)
unveiled a negative association, whereas the genera of Alysiella and Neisseria demonstrated
a positive association. One genus from Bacteroidetes phylum, Flavobacterium, also appeared
to be negatively associated with positive CMV titres (FDR < 0.05, Figure 6B–J). Two genera
of the Salivary community from the Proteobacteria phylum, Pseudomonas and Oxalobac-
eraceae_unclassified, exhibited a negative association (FDR < 0.05, Figure 7A,B). The full
results for the buccal and the saliva microbiome antibody titre associations can be found in
Supplementary Table S3. In a further step of sensitivity analysis, we included a positive
antibody titre as a covariate into the regression models to investigate the differences in the
genus abundances between ELA and controls. However, the results virtually remained
the same, indicating either insufficient statistical power to detect potential mediation or
that CMV exposure does not mediate ELA-related changes in the OM. This suggests that,
unlike increased immunosenescence, the changes we saw in the oral bacterial community
are independent of prior exposure to Herpesviridae.
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Figure 6. Taxonomic differences in the buccal bacterial community associated with anti-
herpesviridiae serological status. Box plots of one genus (A) Neisseria significantly associated with
anti-EBV antibody titres. Nine genera, (B) Neisseria, (C) Sphingomonas, (D) Acinetobacter, (E) Oxalobac-
teraceae unclassified, (F) Bradyrhizobium, (G) Flavobacterium, (H) Methylorubrum, (I) Comamonadeceae
unclassified, and (J) Alysiella, were significantly associated with anti-CMV antibody titres. Fractional
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to 97.5th percentile. Outliers are indicated as individual data points.
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Figure 7. Taxonomic differences in the salivary bacterial community associated with anti-CMV
serological status. Box plots of two genera, (A) Pseudomonas and (B) Oxalobacteraceae unclassified,
which were significantly associated with CMV antibody titres. Fractional regressions against the
presence of anti-CMV antibodies were calculated to determined significance (FDR < 0.05). Horizontal
line = mean; rectangle = 1st to 3rd quartile; vertical lines = 2.5th to 97.5th percentile. Outliers are
indicated as individual data points.

2.4. Fractional Regression Models of the Immune–Microbiome Interactions

In the next step, we fitted a series of fractional regression models integrating the
relative abundance of the taxonomic levels in the salivary and buccal compositions with
our previously published immune-system profiling. Among the full dataset of 48 immune
cell populations, we identified 11 significant associations with genera, most importantly
for T cells and NK cells (Table 1).

2.4.1. Association with CD4 T-Cell Immunosenescence

Immunosenescence is a common result of adversity. Thus, we decided to look for
possible associations between adversity, microbiome, and accelerated ageing of immune
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cells (Table 1). For screening the OM associations with the share of CD57 -positive CD4 and
CD8 cells, we used multivariable fractional regressions including the genus abundance as
the response variable, and the share of CD57-positive CD4 and CD8 cells as a predictor of
interest and the basic set of covariates. Additionally, we included the study-group variable
as a covariate to control for potential confounding factors related to ELA status. CD8 T
cells were previously reported to be significantly associated with CMV [22], but we found
no associated taxonomic markers from the OM. From CD4 T-cells tests, we identified six
strong taxonomic associations. Two genera from the salivary microbiome, Selenomonas
from the Firmicutes phylum showed a positive association and Oxalobacteraceae_unclassified
from the Proteobacteria phylum showed a negative association. Four genera from the
buccal community: Selenomonas from Firmicutes, Capnocytophaga from the Bacteroidetes
phylum, and Campylobacter and Lautropia from the Proteobacteria phylum, displayed a
positive association (FDR < 0.05, Figure 8A–F). For further exploration, we fit additional
fractional regressions using the number of T-helper cells and T-killer cells as predictors
of interest using the same set of covariates as before, finding no additionally significant
associations after correction for multiple testing. Summary statistics for the buccal and
saliva microbiomes are given in Supplementary Table S4.
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Figure 8. Taxonomic associations in both communities with immunosenescence. Scatter plots with
regression lines for six genera. From the salivary community, two genera, (A) Oxalobacteraceae
unclassified and (B) Selenomonas, as well as four genera from the buccal community, (C) Selenomonas,
(D) Capnocytophaga, (E) Campylobacter, and (F) Lautropia, were all significantly associated with CD4
CD57 cell counts. Fractional regressions against CD4 CD57 cell counts were calculated to determine
significance (FDR < 0.05). Regression lines were derived from fractional regressions with logistic
parametrisation of the conditional mean.

2.4.2. Association with NK Cell Activity

Innate immune cells such as natural killer (NK) cells are the first line of defence
and often interact with commensal bacteria. Adoptees of this cohort showed increased
cytotoxicity on their NK cells [52]; hence, we thought to assess for a potential link with
the microbiome. Through screening the OM for associations with various types of NK
cells, we found three genera associated with cell counts with an FDR < 0.05, while seven
additional associations reached an FDR < 0.1 (Supplementary Table S4), hinting that a
better-powered study may find a broader association pattern. In the buccal community, the
Oribacterium genus showed a negative association with the total number of NK cells and the
total number of mid-maturation NK cells (FDR < 0.05, Figure 9A,B). In parallel, within the
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salivary community, several genera were significantly associated with different stages of
NK maturation. Pseudomonas was found to be positively associated with the total number
of CD25 expressing NK cells, which reflects an association with the global activation of
NK cells (FDR < 0.05, Figure 9C). The abundance of Alloprevotella was positively associated
with the abundance of activated immature CD25CD56hi expressing NK cells (FDR < 0.05,
Figure 9D).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 21 
  

 

with the abundance of activated immature CD25CD56hi expressing NK cells (FDR < 0.05, 
Figure 9D). 

Summary statistics for the buccal and saliva microbiome are given in Supplementary 
Table S4 and bacterial taxa are highlighted in Table 1. 

 
Figure 9. Taxonomic associations in both communities with natural killer cell activity. Scatter plots 
with regression lines for one genus from the buccal community, Oribacterium, was significantly as-
sociated with (A) the total number of NK cells and (B) the total number of mid-maturation NK cells 
as well as two genera from the salivary community: (C) Pseudomonas, associated with CD25+ NK cell 
counts; and (D) Alloprevotella, associated with CD25CD56hi NK cell counts. Fractional regressions 
against NK cell counts were calculated to determine significance (FDR < 0.05). Regression lines were 
derived from fractional regressions with logistic parametrisation of the conditional mean. 

3. Discussion 
In this study, we identified taxonomic differences in the OM 24 years after adversity 

that were common throughout a cohort of diverse cultural and ethnic origins. We identi-
fied genera that had a significantly reduced abundance in the adoptees, which were sig-
nificantly associated with smoking; immunosenescence of CD4 T cells; circulating number 
and activation status of NK cells; and anti-CMV and, to a lesser degree, anti-EBV titres. 
Importantly, we were able to see these differences in both the salivary and buccal micro-
biomes, both of which are readily accessible and both are regularly and easily sampled, 
even if the buccal microbiome is somewhat underexplored to date. Our data highlight the 
distinctness of the salivary and buccal microbiomes in distinct oral niches with unique 
microbial signatures. 

Our findings from the EpiPath cohort closely mirror those of Reid et al. [53], although 
in significantly different microbial communities. We report differences in the abundance 
of taxa associated with early institutionalisation and CMV seropositivity. Considering 
that the gut microbiome (GM) is far more labile to lifestyle and environmental impact than 
the OM [53], our findings build upon those of Ried et al., opening the possibility of much 

Figure 9. Taxonomic associations in both communities with natural killer cell activity. Scatter plots
with regression lines for one genus from the buccal community, Oribacterium, was significantly
associated with (A) the total number of NK cells and (B) the total number of mid-maturation NK cells
as well as two genera from the salivary community: (C) Pseudomonas, associated with CD25+ NK cell
counts; and (D) Alloprevotella, associated with CD25CD56hi NK cell counts. Fractional regressions
against NK cell counts were calculated to determine significance (FDR < 0.05). Regression lines were
derived from fractional regressions with logistic parametrisation of the conditional mean.

Summary statistics for the buccal and saliva microbiome are given in Supplementary
Table S4 and bacterial taxa are highlighted in Table 1.

3. Discussion

In this study, we identified taxonomic differences in the OM 24 years after adversity
that were common throughout a cohort of diverse cultural and ethnic origins. We identified
genera that had a significantly reduced abundance in the adoptees, which were significantly
associated with smoking; immunosenescence of CD4 T cells; circulating number and activa-
tion status of NK cells; and anti-CMV and, to a lesser degree, anti-EBV titres. Importantly,
we were able to see these differences in both the salivary and buccal microbiomes, both of
which are readily accessible and both are regularly and easily sampled, even if the buccal
microbiome is somewhat underexplored to date. Our data highlight the distinctness of the
salivary and buccal microbiomes in distinct oral niches with unique microbial signatures.
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Our findings from the EpiPath cohort closely mirror those of Reid et al. [53], although
in significantly different microbial communities. We report differences in the abundance of
taxa associated with early institutionalisation and CMV seropositivity. Considering that
the gut microbiome (GM) is far more labile to lifestyle and environmental impact than the
OM [53], our findings build upon those of Ried et al., opening the possibility of much longer-
term studies, as the enhanced stability of the OM suggests that differences may be stable
over many decades [53]. Expanding our analyses to associations with the immunosenescent
CD4 T cells and the activation status of circulating NK cells strengthens the possible role of
microbe–immune cross-talk in ELA and the potentially detrimental outcomes. Furthermore,
at the family taxonomic level, we observed highly similar differences to those reported
by Reid et al. (e.g., Prevotella vs. Alloprevotella, both from the Prevotellaceae family). This
highlights the link between the oral and GMs, as numerous studies provide evidence of
bacteria migrating from the oral cavity and colonising the gut, whereas there is no evidence
of the opposite happening [54–57].

Our current findings show that institutionalised, genetically unrelated individuals
share particular taxa, identifiable 24 years later, independent of the event of adoption. The
buccal community, in contrast to the salivary community, appears to be more prone to
lifestyle habits such as smoking, agreeing with previous reports that the salivary commu-
nity remains stable despite lifestyle-hygiene-related mediations such as flossing [42,43,58].
This agrees with several prior reports of the stability and resilience of oral communities over
time [39,41,43,46,47,59–62]. Although host genetics help to shape microbial communities,
previous reports of low variance between twins suggest that the shared early environment
is the key determinant of the long-term composition [43,60,62]. Longitudinal observations
of twins revealed that the salivary microbiome has a stable core community at the genus
level, and as twin lives diverge over time, environmental differences increase the diversity
between the microbiomes of twins [60,61]. Furthermore, genetically unrelated people with
a shared environment show similar environment-related effects on microbiome composi-
tion in the mouth as well as other communities [43,47,61]. Cohabitation appears to have a
greater impact on the skin microbiome rather than gut and oral communities, persisting
after the cohabitation is terminated [43,58,60,63], an effect that is thought to persist for the
long term despite leaving or changing household [41,48,49].

The importance of the OM should not be underestimated. As for the GM, there is a
direct interaction between the microbiome and both oral and systemic health. Multiple oral
inflammatory microbiome-associated conditions such as periodontitis and carries have
strong epidemiological and mechanistic associations to other systemic and gastrointestinal
diseases [61,64]. Further associations over the years have identified oral marker links to
systemic complications, including cardiovascular, immune, metabolic, respiratory, osteo-
pathic, obstetric, and perinatal complications [64–66]. In both healthy and inflammatory
statuses, viable oral bacteria are often found to travel from the mouth to the gut and are
capable of achieving successful colonisation [54–56]. Schmidt et al. found that more than
half of identified species often found residing in both mouth and gut exhibited signs of
oral–gut transmission for all their study participants. Nearly one-third of these are taxa
known to be highly dominant in oral communities [54,57,67]. Interestingly, this is a one-
way observation: although oral strains can travel to and colonise the gut, the opposite is
unlikely to occur [54,57]. Hence, as dental health research has been suggesting for years,
oral microbial composition hinges on oral and dental health. In contrast to the prevailing
GM, OM shows rising importance as an indicator of systemic health.

Although observational, we report numerous clear associations and correlations in our
statistical model that demonstrate the crosstalk between the microbiome and the immune
system. Microbial transmission across the gastrointestinal tract, direct microbial contact
with tissue-resident innate cells, probable oral bacterial infection, circulating bacterial
toxins, and molecular mimicry are all valid candidate pathways that may explain the
observed relationship [65,66]. The ELM plays a crucial role in educating immune cells
(immune tolerance) that are completely naïve at birth. As immune cells learn to recognise
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host cells, they are also programmed to recognise antigens from the developing beneficial
endogenous microbiome [68]. Tissue-resident dendritic cells harvest microbial antigens
from local microbial communities and present them to other immune cells [68]. In germ-free
mice, the absence of a microbiome during the early-life period alters immune functions and
induces structural defects in lymphoid tissues. In the presence of microbial communities,
these tissue structures form normally. Despite many such observations, it is unclear how
this acts mechanistically to alter the formation of epithelial barriers. Evidence from the gut
suggests that bacteria can direct the glycosylation of luminally exposed surface proteins, a
process whose outcome differs in germ-free mice [69–71]. Initially, Th17 cells are absent in
germ-free mice and only appear upon microbial colonisation [68,69].

It is now well-established that the relationship between stress and chronic disease
starts in utero, as susceptibility and occurrence of disease can be predefined by maternal
stress [72]. During this period, the naïve, uneducated, immune system develops [73]. NK
cells are part of the body’s first line of immune defence, interacting with other immune
cells as well as pathogens. In the majority of chronic diseases associated with the early-life
environment, NK cells appear to either have an impaired function or an exaggerated cyto-
toxic activity [74,75]. The most studied NK cell populations are the CD56brightCD16− and
CD56dimCD16bright cells and the associated cytotoxic CD56dim and cytokine-producing
CD56bright cells [76]. NK cell cytotoxicity is initiated by target cell contact and recognition,
which leads to immune synapse formation, resulting in NK-cell-induced target-cell death.
The proliferation and expansion of NK cells depend on CD4+ Th1 cells. Nevertheless, due
to the bidirectional relationship between innate and adaptive immunity, NK cells impact
CD4+ and CD8+ T cells through cytokine production [77]. In the absence of short-chain
fatty acids (SCFAs), metabolites produced from fibre fermentation by the local microbiome
communities, certain CD4 T-cell subsets do not differentiate. Furthermore, naïve CD8 T
cells do not differentiate into memory cells in germ-free mice [68,78,79]. The activation of
NK cells by pathogen-associated molecular patterns (PAMPs) may initiate an unwanted
response in the microbiome and lead to a strong inflammatory response [80]. Similarly,
pathogen-driven activation of NK cells can result in increased on-site cytotoxicity, which
can also be harmful to local microbial communities. Correspondingly, microbiome mem-
bers regulate homeostasis by inducing NK cell expansion and cytokine production or
driving the proliferation of anti-inflammatory cytokine-producing NK cells, a common
event observed with tissue-resident cells and microbiome crosstalk [81]. Furthermore,
immunomodulatory properties of the bacterial community may drive antiviral defences
regulating the outcome of viral infection [82].

The OM is intimately linked to oral health. Poor oral health is often approached in
an eco-social framework, as it is known to be associated with psychosocial adversity [83].
Both epigenetic and behavioural pathways were linked to poor oral health [83]. One of
the most studied causal routes is diet. Affordability and access to a nourishing diet” are
strongly influenced by socio-economic status [83], which in turn is linked to the compo-
sition of the OM. Detrimental shifts in the microbial composition associated with poor
immune responses and mental health were documented for both hospitalised and long-
term care home residents [84]. The multidirectional interconnected relationship between
the microbial composition, the host’s immunological status, and the resulting life-long
health trajectory is most probably highly dependent on constant exposure to particular
irritants [84].

Our observation that psychosocial adversity is associated with changes in the OM
opens many possibilities for future research. The collection of oral samples, primarily
saliva, has been the sampling media of choice for psychobiology, lifestyle, and other social
to clinical research areas for many decades. Saliva has long been recognised as an accurate,
noninvasive, and cost-effective diagnostic approach that can be tailored to personalised
medicine strategies [65,85]. Here, we opened up the possibility of using standard salivary
swabs previously collected for microbiome studies. Such studies have the potential to
provide a more holistic view of host–microbe interactions and the role of the microbiome in
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health, which is a potential that can now be applied in nearly all areas of psychobiology (and
further afield). Our data also provide preliminary mechanistic insights and the perspectives
for future detailed mechanistic studies. We know that early oral microbial colonisation is
associated with IL-17-producing cells [86], and subsequent chronic oral disease is often
initiated by Th17 cells and IL-17 [87–89]. In our EpiPath cohort, there was a strong ELA-
associated increase in immunosenescence-associated chronic inflammation, together with
increased Th17 cell numbers, although this narrowly missed significance (p = 0.06, [51]).
The ELA-associated immunophenotype is centred on immunosenescence [22,51]. Here,
we saw clear associations between Selenomonas, Campylobacter, and Capnocytophaga with
T-cell immunosenescence, and together with the activated immature NK cell-associated
Alloprevotella, these genera were all associated with periodontitis, gingivitis, and T2D.
Diseases such as periodontitis an gingivitis have long been associated with changes in
both the local and peripheral immune systems. This may be mediated by IL-17 from Th17
cells, and it has been implicated in periodontitis-associated distal diseases in many disease
contexts [90,91]. This is directly induced by microbial dysbiosis [92]. Furthermore, direct
microbial interaction with immune cells may underlie this, as loss of Toll-like receptor-2
(TLR2) in antigen-presenting cells reduces IL-17 secretion from Th17 cells that dysregulate
the host immune system in periodontitis [93]. A similar direct link from the microbiome to
the induction of a Th17 cell response was previously reported for Streptococcus [94]. As
such, it is interesting to hypothesise that innate immune signalling from TLRs on immune
cells within the oral cavity may directly mediate microbiome–immune interactions, acting
locally and distally.

As with all investigations, our study is not without limitations. Due to the limited
quantity of the biobanked samples, 16S sequencing was favoured over shotgun sequencing
to ensure good-quality data, leading to a limited taxonomic resolution in comparison
to metagenomics studies. Future metagenomics studies are needed to refine the herein-
presented association pattern, exploring potential differences within one genus. The
EpiPath cohort consists of only 115 participants. This is a considerable number for a
study on ELA, in which a full psychosocial stress test was performed, together with full
immune and psychological profiling. However, this sample size is considered small for
a microbiome studies, where statistical screening leads to multiple testing, reducing the
statistical power for detecting individual associations. Similarly, the reported mediation
analyses lack statistical power, and negative results should not be interpreted as the absence
of effects. Similarly, as EpiPath is an adoption cohort, metadata such as the mode of birth, if
they were ever collected, were never transferred to the adoptive parents. It is also possible
that our data could be interpreted as the early inoculation with different microbiomes
that simply persisted until 24 years later. The invasive nature of the ELA questions meant
that compromise on microbiome-specific metadata, such as dietary habits and oral health
status, was unavoidable if maximum participation in the study was to be ensured. Such
information would have enhanced the mechanistic potential of our dataset. Knowledge
of potential oral complications such as carries or periodontitis will be necessary in future
studies to ensure that mechanistic pathways can be explored [95]. As the cohort consists
of observational human data, causal interpretations of the reported associations should
be treated with care. However, we demonstrated that 16S sequencing, despite its known
limitations, provided clear insight into the long-term effect of ELA on the microbiome.
Follow-up studies using shotgun metagenomics may refine the reported associations on
the species and strain level.

4. Materials and Methods

Participants For this study, we used our previously reported EpiPath cohort of 115
adults aged 20 to 25 years [19,22,51,96]. A total of 75 control participants were brought up
by their biological parents and 40 participants were adopted in Luxembourg from insti-
tutions worldwide. The median age at adoption was 4.3 months (IQR 0–15 months) [51].
Basic immunoprofiling was available for all cohort members [22,51]. Furthermore, detailed
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NK cell profiling was available for 76 participants (19 cases and 57 controls), and im-
munosenescence profiles were available for 79 participants (19 ELA and 60 controls) [22,52].
Biobanked oral swabs were available for 98 participants (33 ELA and 65 controls) and
buccal swabs for all 115 participants (40 ELA and 75 controls). For one participant without
immunosenescence profiling, the body mass index and sex were missing. This individual
was excluded from statistical analyses, where the BMI and/or sex were used as covariates.

Oral samples Saliva samples were collected using Salimetrics Oral Swabs (Salimet-
rics, Cambridge, UK). Salivary cortisol levels have previously been reported from these
samples [19,96]. Buccal swabs were collected with Isoxelix Buccal Swabs (Isohelix, Har-
rietsham, U.K.). Microbial DNA was extracted using Qiagen DNA from a body fluids
kit (Qiagen, Venlo, The Netherlands) according to the manufacturer’s protocol. Samples
were quantified with Qubit 1.2 (Invitrogen, Merelbeke, Belgium) and quality was assessed
with a Nanodrop (Thermofisher, Merelbeke, Belgium). The V4 region of the 16S gene
was amplified from bacterial DNA using 515F [97] and 806R [98] forward and reverse
primers (Eurogentec, Seraing, Belgium). The amplification reagents and library preparation
were performed using a Quick-16S kit and its equivalent dual indexes (BaseClear, Leiden,
The Netherlands) using the manufacturer’s low microbial DNA concentration protocol.
Libraries were quantified with Qubit, 1.2, 1.4 (Thermofisher, Merelbeke, Belgium); quality
and size were assessed using a BioAnalyser (Agilent, Diegem, Belgium). Sequencing
was performed on an Illumina MiSeq system with v2 sequencing chemistry and 500 bp
paired-end reads, as well as 10% PHIX control according to the manufacturer’s protocol.

Bioinformatic analyses Fastq files were processed, aligned, and classified using
mothur 1.41v [99]. Alpha (inverse Simpson diversity index and Shannon evenness index)
and beta diversity (Jaccard Index) were further calculated in the same pipeline. Sequences
classification was aligned based on the Silva v138 database [100]. Further integration of
microbiome data into the immunophenotype and metadata as well as visualisations were
performed with R.

Statistical analyses For descriptive statistics, nominal variables are described by pro-
portions, while metric variables are described by means and standard deviations. Evenness
and Shannon entropy metrics were calculated for the OM as measures of alpha diversity
and compared between ELA cases and controls with Wilcoxon rank sum tests. Additionally,
diversity measures were compared across the OM using rank correlations. For investigat-
ing statistical associations between taxonomical units and immune-cell numbers, relative
abundances for all genera were checked for outliers. Observations that were outliers both in
immune-cell numbers and relative abundances (more than four standard deviations away
the mean) were excluded from the analyses, when analysing genus–immune-cell associa-
tions. Only genera, or phyla, detected in more than 50% of all cases, were analysed. The
microbial abundance data were analysed using fractional regressions [101,102]. Fractional
regressions are semiparametric methods not relying on distributional assumptions, and
are specifically designed for the analyses of relative abundance data, making them suitable
for the analysis of microbiome data, as different species abundances may not be sampled
from the same class of distributions. Fractional regressions can be parametrised by odds
ratios, allowing for easy interpretation of the regression coefficients in terms of the chance
that a certain sequence read is assigned to a taxonomic unit [102]. All fractional regression
models, if not specified otherwise, included age, BMI, and sex as covariates, and were
performed separately for the OM communities. The basic covariates were included mainly
to reduce residual variance and thereby increase statistical power to detect associations
with the predictor of interests. Using fractional regressions, we screened the microbiome
for associations with the study group variable, basic covariates (age, sex, body mass index
(BMI), and smoking), antibody titres for Epstein–Barr virus (EBV), cytomegalovirus (CMV),
and the herpes simplex virus (HSV), immunosenescence markers, as well as immune cell
counts. All p-values are reported two-tailed. Statistical analyses were performed in STATA
16/MP (College Station, TX, USA), and correction for multiple testing was performed
by applying the false discovery rate (FDR) [103]. An FDR < 0.05 was considered to be
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significant. Summary statistics of the performed analyses are given in Supplementary
Tables S1–S4.

5. Conclusions

Our data show a clear link between ELA and the OM that was visible 24 years later.
The two oral communities investigated were clearly associated but distinct. We previously
reported that ELA induced higher activation and senescence of the immune system. The
taxonomic differences in the oral composition were not only associated with ELA but also
with the immunosenescence of CD4 T cells, circulating numbers and activation status of NK
cells, and anti-CMV titres. Although we do not yet have a detailed mechanistic explanation,
our data suggest the presence of multiple links between ELA, immunosenescence, and
cytotoxicity that persist through long-term changes in the microbiome.
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