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Food craving (FC) peaks are highly context-dependent and variable. Accurate prediction

of FCmight help preventing disadvantageous eating behavior. Here, we examine whether

data from 2 weeks of ecological momentary assessment (EMA) questionnaires on stress

and emotions (active EMA, aEMA) alongside temporal features and smartphone sensor

data (passive EMA, pEMA) are able to predict FCs ∼2.5 h into the future in N = 46

individuals. A logistic prediction approach with feature dimension reduction via Best Item

Scale that is Cross-Validated, Weighted, Informative and Transparent (BISCWIT) was

performed.While overall prediction accuracy was acceptable, passive sensing data alone

was equally predictive to psychometric data. The frequency of which single predictors

were considered for a model was rather balanced, indicating that aEMA and pEMA

models were fully idiosyncratic.

Keywords: food cravings, time-lagged, idiographic models, BISCWIT, ecological momentary assessment, passive

sensing, mobile health, eating behavior

INTRODUCTION

Although actual food intake is highly context dependent, for example, on social circumstances,
food availability, and meal planning/dieting, food craving (FC) is an internal state that can vary
partially independent from actual food intake or hunger (1). FC is defined as an intense desire or
urge to consume specific foods (1, 2) that can lead to a loss of control over overeating given fitting
circumstances. The high clinical relevance of FCs comes from their central role in binge eating
in eating disorders (3). FCs are also related to overeating in obesity (4) and often underlie diet
breaches in weight loss dieting (5, 6). FCs are highly contextualized behaviors, meaning that they
are triggered in certain situations more so than in others. Thus, FC might be a valuable target for
intervention and is the central dependent variable in the present report.

With ecological momentary assessment (EMA), internal states and external contexts that
are associated with individual triggers of FCs can be detected (2). EMA is described as
the repeated measurement of real-time data in natural environments of individuals (7)
and thus can yield intensive longitudinal data with high temporal resolution within the
individual. Some further aspects of EMA sampling are also substantial for detecting triggers
of FCs: (1) psychometric items can be formalized concerning the present state and context
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of an individual at the moment of entry, which minimizes
retrospective recall bias (8). (2) Repeated measurements of
real-time states in real-world environments can record person-
specific dynamics (i.e., internal and external states) over time.
(3) Besides actively self-reported data (active aEMA, aEMA),
EMA designs have the potential to passively collect data (passive
EMA, pEMA), such as exact timestamps of data entries or mobile
phone sensor data. From timestamps, a multitude of temporal
components can be derived, such as intraday rhythms or cycles
and global trends across the sampling period (9). In addition,
with mobile phone sensors, a wide variety of parameters can be
captured, such as app usage, accelerometer, Global Positioning
System (GPS) data, screen time, noise, light sensors, etc. These
data may not only function as single predictors on their own
(10) but can also be aggregated to clusters, representing “virtual
situations” that contain information about the environment of
participants (11).

Grown from the tradition of ecological momentary
interventions, so-called just-in-time adaptive interventions
(JITAIs) have recently gained support (12). Such JITAIs can
be adapted to specific needs, both in terms of timing and
content. Thus, they are provided in situations when individuals
need tailored support (13). Moreover, JITAIs are characterized
by a data-driven approach, making use of both aEMA and
pEMA data types, to allow real-time and context-sensitive
interventions (14). Since FCs are sensitive to both, dynamic
internal processes and environmental factors and since JITAIs
have the potential to capture, combine and react to both, a JITAI
approach for FCs seems reasonable. Before implementing a
JITAI approach, however, it has to be tested whether future FCs
are accurately predictable.

The precision of predicting future FCs may crucially depend
on the number and nature of utilized predictors. Further,
which type of data is utilized for prediction models has a
direct impact on the participant issues, such as burden and
compliance. Thus, the present work highlights the distinction
between aEMA and pEMA data. We define aEMA as data where
the active engagement of a participant is required to answer
prompted questionnaires (prompts). aEMA data provide insights
into dynamic idiographic subjective-experiential processes that
could contain so-called tailoring variables for JITAIs. pEMA is
defined as data that contain both temporal facets and mobile
phone sensor data, since this can be tracked in the background
with a much higher temporal resolution than aEMA data
and require minimal participant involvement in the sampling
process. Importantly, pEMA data can determine the exact
time of events and can capture some aspects of the external
context of participants. By combining aEMA and pEMA data, a
comprehensive picture of internal and external states emerges,
which we refer to as full EMA (fEMA).

The combination of machine learning methods and
psychological models allow for the prediction of problematic
behavior on a person-specific level. Such behavioral predictions
constitute a promising approach for clinical prevention,
treatment, and aftercare. Bae et al. (10) were able to differentiate
high-risk drinking windows from low-risk windows with an
accuracy of 90.9% with solely temporal and mobile phone sensor

data as predictors. The results of this and the work of Fisher and
Bosley (9) make clear, that cyclic components play a crucial role
in modeling idiographic behaviors and states. The classification
of low-risk vs. high-risk states from Bae et al. (10) was attained
30min after drinking onset, thus leaving some time for setting an
intervention before drinking gets worse. However, a classification
at, or even before the onset of a problematic behavior would be
clearly preferable for various other behaviors, where the behavior
itself is rather short-lived and preventive measures need to be
taken. A so-called time-lagged prediction was implemented by
Fisher and Soyster (15) to predict the presence or absence of
smoking events in the near future. Such time-lagged models
could be the basis of reliable and effective JITAIs, since they allow
setting preventive measures for certain risk states.

The current study employed time-lagged predictions of FCs
to evaluate the potential feasibility of a future JITAI approach.
To do so, we need to estimate the accuracy with which future
FC states can be predicted, given a reasonably sized training
dataset. Technically, we predicted classes of future FCs in the
binary absence (low FC) vs. presence (high FC) separated by an
individual threshold because JITAIs need a “decision point” in
terminology suggested by Nahum-Shani et al. (14). Conceptually
“high FC” would indicate the need for a momentary intervention
such as a tip. Additionally, we were interested in contrasting
the predictive performance of three distinct predictor ensembles:
aEMA (with 18 predictors), pEMA (with 19 predictors), and
fEMA (containing all 37 predictors). For model building, we
performed Best Item Scale that is Cross-Validated, Weighted,
Informative and Transparent [BISCWIT; (16)], since thismethod
allows a minimalized reduction of the predictor space, which
prevents overfitting the training data. We expected above-chance
prediction of FC classes, though not at the prediction accuracy
obtained in alcohol or smoking research as the contextual factors
of FCs are potentially more complex and—because FC was
measured as a subjective state and is not a directly observable
behavior—subject so potentially high measurement error. Lastly,
since BISCWIT exerts feature selection, which includes only a
subset of available predictors to the model, we were interested
in the frequency of selected predictors, reflecting the overall
importance of single predictors.

MATERIALS AND METHODS

Participants
The time series data of participants were drawn from an EMA
study on eating behaviors, stress, and emotions. The study
was registered at the German register of clinical trials (DRKS
ID: DRKS00017493). Participants were included in the study
if they were motivated to pursue a conscious diet (N = 184).
Participants were randomized to an intervention group receiving
daily tips on eating behavior and a control group from which
the present sample was drawn (N = 83) based on the use of an
android device that provided an adequate amount of sensor data
throughout the study to perform clustering procedures. Subjects
with an insufficient completion rate of EMA surveys (<50%)
were excluded from the study. The resulting sample size was
N = 48. Two participants were excluded due to zero variance
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of reported FCs, leaving a total sample size of N = 46. Across
the sampling period of 14 days, retained participants missed
on average 14.7 (SD = 11.6) or 17.5% of all 84 prompts (i.e.,
prompted questionnaires). Participants (82% female) had a mean
age of 22.35 years (SD= 2.67) and amean bodymass index (BMI)
of 23.22 (SD= 3.02).

Procedure
The study and all procedures were approved by the ethics
committee of the University of Salzburg, Austria, and
all participants provided informed consent after receiving
information on the purpose of the study in oral and written
modality prior to data collection.

Active EMA Data Collection

The EMA data collection was carried out using the SmartEater
app, which was designed in collaboration with the department
of MultiMedia Technology of the University of Applied Sciences
Salzburg, Austria. Participants were prompted six times (9 am,
11:30 am, 2 pm, 4:30 pm, 7 pm, and 9:30 pm) each day across 14
days with signals being separated by semi-random time intervals
of 150 (±15) min. Thus, a maximum of 84 data points was
available for each participant. Participants could respond to the
signal up to 60min after signal onset and rated items either on
a horizontal visual analog slider (VAS) from 0 (not at all) to 100
(very much) or with Yes/No statements. For the VAS items, only
the extreme values (0 and 100) were labeled. In sum, 18 variables
were collected as aEMA: 10 affect-related items orientated on the
Positive and Negative Affect Schedule (PANAS) scales (17), three
stress and coping-related items based on the Perceived Stress
Scale [PSS; (18); German version by (19)], and five food and
craving-related items. FCs were measured using the item “How
strong is your urge for specific, palatable foods in this moment?”
The items were extracted from literature on EMA studies on
emotions and eating behavior (20). They were chosen based on
comprehensibility, face validity, and a low answering threshold,
so that emotions with low intensity are captured as well. Full lists
containing all items are provided in Supplemental Materials.

Passive EMA Data Collection and Preparation

The pEMA data consisted of temporal variables and aggregated
smartphone sensor data. Temporal components comprised
linear, quadratic, and cubic trends computed both for the whole
14 day sampling periods and within days and sinusoidal and
cosinoidal ultradian and circadian cycles (9). Additionally, binary
time of day variables (e.g., morning, midday, etc.) were derived
from prompt numbering. Sensor data included movement data
from accelerometer sensors, ambient light recorded by the
light sensor of the phone, and ambient noise recorded by
the microphone of the phone. Additionally, app usage, push
notification, text message, phone call occurrence, and screen time
were saved on the device and included in the sensor dataset. The
aggregation of mobile phone sensor data into distinct “virtual
situations” is described below.

Sensor Aggregation and Clustering
The SmartEater application collected data from a variety of
sensors, including accelerometer, audio volume, screen on/off
time, and notifications from other applications. In order to
find reoccurring patterns in the collected data, the raw sensor
values were first aggregated at regular time intervals, which
matched the interval of the daily questionnaires presented to
users. Before the data of a 1-h interval was aggregated, four sub-
intervals of 15min each were aggregated. Continuous data, such
as the accelerometer, audio volume, or screen on/off time, were
aggregated in the form of weighted averages, whereas discrete
data, such as notifications, were counted. The resulting 4 × 4-
dimensional feature space was then reduced to two dimensions
using t-distributed stochastic neighbor embedding [t-SNE; (21)],
and clusters in the reduced data space were then automatically
detected using the spectral clustering (22) with a fixed k-value of
3 [see (23)].

In summary, aEMA data contained 18 variables, pEMA data
contained 19 variables (16 temporal and three cluster variables),
and fEMA combining both predictor ensembles consisted of
37 variables.

Data Preprocessing
Preprocessing with R version 3.6.1 (24) in R Studio (25)
involved missing data imputation for aEMA data using a Kalman
filter (26), linear interpolation for respective time differences,
z-transformation of predictors, and lagging the FC variable
backward for one measurement entry. Thus, for vital time-lagged
models, predictors were not associated with the concurrent FC,
but with the FC one signal ahead. FCs were dichotomized into
classes of high vs. low FC based on the individual mean of
the training data. By defining the threshold of dichotomization
individually, person-specific response tendencies are taken into
account (27).

Idiographic Models Utilizing BISCWIT
The Best Items Scale that is Cross-validated, Unit-weighted,
Informative and Transparent [BISCUIT; (28)] is a simple
correlation-based machine learning technique. Pairwise
correlations between a set of predictors and one or more
criterion variables are calculated. The correlations are cross-
validated, and predictors with the highest average correlation are
retained. Retained predictors are unit-weighted and combined
to a sum score. A modification of BISCUIT is BISCWIT. Here,
the items are weighted by their correlation with the criterion
instead of unit-weighted. Such simple alternatives to more
sophisticated machine learning approaches often perform
comparable to and sometimes even better, especially when
sample sizes and effects are small while measurement error
is high (16, 29–31). In this study, BISCWIT was used instead
of BISCUIT because correlation-weighted models were more
extensively studied and showed more favorable performance
in more recent simulation studies (32). Models were computed
using the bestScales function, again with 10-fold cross-validation,
and correlation-weighted scale scores were obtained by scoreWtd
from the psych package (28). The minimum number of selected
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variables was set to 1, and the maximum number was set to the
total number of predictors available for each model.

For statistical models to predict future values of a time series,
it is important that they be fit to time-ordered data sets. In this
context, the predictive value of statistical models is derived from
their accuracy in predicting previously unknown data. Models
were thus fit to training data sets that were constructed by taking
the first 75% of time series data (i.e., maximum 63 signals,
representing 10.5 days). The remaining 25% of time series data
(i.e., maximum 21 signals, representing 3.5 days) was used as test
data sets. Models were established for (1) aEMA, (2) pEMA, and
(3) fEMA data, predicting binary classes of FC. To maximize the
reproducibility of our analyses, we set a seed at the beginning of
the analysis script. Note that due to the cross-validation approach
of BISCWIT, results of single models may vary.

Evaluation of Model Performance
To assess the accuracy of built classifiers, the area under the
receiver operating characteristic curve (ROC curve or AUC) was
calculated, representing a well-established measure derived from
sensitivity and specificity scores across possible cutoff thresholds.
Yet, certain aspects of the AUC score can be misleading, such
as the unit weighting of omission and commission errors and
the evaluation of test performance in extreme ROC regions (33).
Thus, we also provide the Brier score, representing the accuracy
of probabilistic predictions. While a value of 0.5 was considered
as a reference for the AUC, a baseline model for the Brier score
constantly predicted the class with the highest occurrence in the
training data. A perfect prediction accuracy would result in an
AUC value of 1 and a Brier score of 0.

RESULTS

Food Craving
Across the 2-week sampling period, the 46 participants exhibited
numeric FCs with a mean of 23.08 (SD = 26.98) ranging from
0 to 100. Individual thresholds (i.e., FC mean of individual
subjects), ranging from 5.05 to 58.23 across the sample, were
calculated from training data of a participant and were used
to categorize both training and test data. FC values above the
mean were classified as “high” FC, and values below the mean
as “low” FC. Dichotomization based on the mean was chosen
because we expected few high-FC states in this non-clinical
sample. Other methods of dichotomization (e.g., one SD above
the mean) would probably have resulted in too low frequency
of these states, making it difficult or even impossible to train a
predictive model. Figure 1 depicts the range of frequency of FC
means in the sample.

Time-Lagged Prediction of Binary Food
Craving Classes
For each of the 46 participants, BISCWIT models predicted FC
classes ∼2.5 h into the future by separately utilizing the three
distinct predictor ensembles (aEMA, pEMA, and fEMA). For
each participant, the AUC and the Brier score were calculated
as measures of classification accuracy. Considering the AUC
measure, models outperformed the baseline model with aEMA

FIGURE 1 | Distribution of individual food craving (FC) thresholds for the whole

sample.

data in 41 cases (i.e., 89%), with pEMA data in 40 cases (i.e.,
87%), and with fEMA data in 39 cases (i.e., 85%). The Brier
score yielded comparably lower results: the baseline model was
outperformed by aEMA data in 32 cases (i.e., 70%), by pEMA
data in 21 cases (i.e., 46%), and by fEMA data in 32 cases
(i.e., 70%).

To assess the overall prediction accuracy, Table 1 shows the
mean prediction accuracy for each predictor ensemble across all
46 participants.

Furthermore, within-subject variability was found regarding
which predictor ensemble classifies best. Consequently,
variability of which predictor type is preferred for classification is
also found at an aggregated level, across all participants. Figure 2
depicts this variability showing exemplary results from five
participants. This illustrates the highly idiosyncratic nature of
FC prediction.

Feature Selection
The BISCWIT employs feature selection by selecting the best
predictors based on cross-validated raw correlations. Tables S2–
S4 show how often the included variables were selected as
predictors for each model across all participants. For all models,
each variable was selected within a range of 2 to 31 times.
Within each predictor ensemble, none of the variables was
overrepresented. Table 2 shows the average number of predictors
that were considered for each model.

DISCUSSION

Although FCs play a key role in enhancing problematic
eating behaviors (4), the present study is the first to establish
idiographic time-lagged models to test whether their prediction
into the future is feasible and acceptably accurate for a JITAI
application. To remedy that, time series data of 46 healthy
participants motivated for weight loss were drawn from an
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TABLE 1 | Accuracy of predictor ensembles in predicting food craving classes.

Model Predictor type AUC mean AUC range Brier mean Brier range

Baseline 0.50 0.50–0.50 0.42 (SD = 0.26) 0.05–0.86

aEMA 0.65 (SD = 0.13) 0.36–0.95 0.27 (SD = 0.08) 0.05–0.50

BISCWIT pEMA 0.63 (SD = 0.13) 0.41–0.90 0.25 (SD = 0.07) 0.05–0.37

fEMA 0.63 (SD = 0.14) 0.44–1.00 0.27 (SD = 0.08) 0.03–0.45

BISCWIT, Best Items Scale that is Cross-validated, Weighted, Informative and Transparent; AUC, area under the ROC curve; Brier, Brier score. The table presents average accuracy

measures across 46 idiographic prediction models with time-lagged dichotomous food craving classes as the criteria. Food cravings were split by the individual food craving mean.

FIGURE 2 | Exemplary AUC scores for aEMA, pEMA and fEMA data obtained

from 5 participants.

TABLE 2 | The average number of selected predictors for BISCWIT models

across 46 participants.

Model Predictor ensemble Average number of selected predictors

aEMA 6.50 (SD = 2.31)

BISCWIT pEMA 6.96 (SD = 2.08)

fEMA 7.28 (SD = 1.63)

BISCWIT, Best Items Scale that is Cross-validated, Weighted, Informative

and Transparent.

EMA study on eating behaviors, stress, and emotions. For each
participant, three prediction models were established, utilizing
either aEMA, pEMA, or fEMA data for the prediction of FC
classes. Importantly, all models were time-lagged, meaning that
each prediction referred to the upcoming signal (roughly 150min
into the future). Furthermore, models were built on training
data, and out-of-sample generalizability was assessed on test
data. It was hypothesized that FC states of upcoming signals can
accurately be predicted, and that predictor ensembles differ in
precision. Due to the fully individualized FC prediction method,
we cannot provide a mechanistic or theoretical explanation for
the observed relationship between certain sensor clusters and
FC. This is in line with the highly individual pattern of craving
states. According to conditioning accounts (34), FC occurs in

situations that were paired with palatable food intake in the
past. Situational influences on FCs are highly idiosyncratic. It
was not the intention of this study to derive a generalizable
pattern of craving predictors but to depart from this in building
individualized machine learning models that allow the prediction
of individual FC patterns.

Prediction Accuracy of Predictor
Ensembles (aEMA, pEMA, and fEMA)
The pragmatic goal of contrasting distinct predictor ensembles
was to show how accurate pEMA data, which require minimal
sampling effort, can predict FCs compared to aEMA/fEMA,
which requires substantially more sampling effort, especially
for longer sampling periods and higher sampling frequencies.
On average, all models outperformed the baseline models;
however, neither aEMA, pEMA, nor fEMA models differed in
their precision. This finding implies that on average pEMA
data perform comparably to fEMA; therefore, aEMA adds no
additional precision for predicting FCs. For studies that solely
aim for precision accuracy, aEMA could be left out, which lowers
participant burden and thusmay increase compliance. This result
also corresponds with existing findings that FC is associated
with both, internal psychological states (aEMA) and certain
contextual factors and follows temporal patterns (pEMA) (2). On
an idiographic level, however, we saw that it can make crucial
differences regarding which ensemble (e.g., aEMA or pEMA) is
used for FC prediction (as indicated by Figure 2). This represents
an unexpected variability regarding which ensemble is preferred
within each participant. Further research could detect differences
between certain population groups for whom aEMA and for
whom pEMA predicts FCs best. For example, personality traits
could moderate the extent to which FCs are triggered by internal
processes vs. external contexts. Note that also in other research
areas such as substance use, differences regarding the prediction
performance of aEMA and pEMA are to date unexplored. In
this study, aEMA data included mainly affect- and stress-related
items. Future studies could further improve the precision of
aEMA data by examining a broader set of predictors, validating
and expanding them by involving stakeholders (35). Similarly,
the set of pEMA predictors could be expanded by including
a wider variety of sensor data, possibly adding physiological
measures like heart rate or skin conductance response. By
using techniques like the Lombard–Scargle periodogram, more
individualized cyclic temporal predictors could be extracted
directly from psychometric time series.
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Prediction Accuracy and Feature Selection
of BISCWIT
The BISCWIT originates from nomothetic personality research
and is used, to the best knowledge of authors, for the first
time for idiographic prediction models. BISCWIT was chosen,
since some models had a statistically questionable feature-to-
observation ratio (e.g., 37 predictors with 50 observations),
which required a dimensionality reduction of the feature space.
BISCWIT aggregated the cross-validated best predictors of FC
into a single scale, leaving a maximally parsimonious model with
a single predictor. Since BISCWIT exerts feature selection, we
investigated the variables selected by the models as contributing
non-redundant information to the prediction. The fact that
the frequency at which each variable was considered for a
model seemed evenly distributed (see Tables S2–S5) suggests
that each participant has its own unique set of variables
predicting FC. Therefore, it was not possible to identify key
predictors among all 37 available variables. Scientifically, this is
noteworthy: it actually suggests that there is no generalizable
pattern in variable importance, but prediction models are fully
idiosyncratic. The constellation of variables being important for
craving prediction of participant 1 allows no extrapolation to
the potential constellation in participant 2. It is also noteworthy
that the presence or absence of a specific virtual cluster from
mobile phone sensor data did also contribute to predicting
FCs. Thus, high-dimensional mobile phone sensor data can be
aggregated to meaningful, virtual clusters that are associated
with internal subjective states and behaviors (11, 23). This
comes with the clear advantage of gathering predictive variables
in the background, without increasing participant burden.
Additionally, it is worth mentioning that global trend variables
were frequently considered as predictors, which indicates non-
stationarity in some time series data and could reflect one reason
why estimates for out-of-sample data were rather imprecise (9).

Note that further prediction algorithms than BISCWIT were
also performed in this study (Elastic Net Regression and
Support Vector Machines). Since their results did not surpass
BISCWITs precision (see Tables S4, S5), the focus remained on
the simplest algorithm.

Practical Implications and Limitations of
the Study
Although models for some participants exhibited almost perfect
classification scores (AUC scores of 0.8–1.0), the overall above
chance information within predictions remains low relative to
other behaviors and maybe too low for a real-world JITAI
application. This lack of prediction accuracy may be the result of
the following two considerations: (a) the interval of 2.5 h between
questionnaire prompts could be too wide to allow models
detecting temporal lagged relationships between predictors at
t1 and FCs at t2 and (b) this study predicted an internal state
measured by a single item, whichmay lead to an unwanted signal-
to-noise ratio. As a consequence, more accurate predictions could
be obtained by considering multiple aspects of FC instead of one
single item. Further research is needed to determine individually
and a priori which type of data might produce the highest

prediction accuracy and for whom a time-lagged prediction in
general works. Similar to the prediction of mood profiles (9), FC
profiles could be generated by employing established instruments
such as the Food CravingQuestionnaire (36) or predicting a score
calculated from such questionnaires. Also, a sampling period
exceeding 14 days would provide more within-person data for
prediction algorithms to make better estimates of future FCs, but
would, of course, increase burden.

The present study separated classes of FCs using the individual
mean, which accounts for personalization and individual
differences in response behavior. However, and since we analyzed
healthy participants, we cannot claim that such a threshold can
differentiate between the absence and presence of a clinical risk
state as, for example, uncontrolled binge eating. The definition of
a threshold that indicates the need for a personalized intervention
has to be empirically validated, especially for clinical participants.
The results of this work suggest, that no predictor ensemble
outperforms the other in overall prediction accuracy of FC.
As a consequence, researchers may decide whether aEMA or
pEMA data should be sampled depending on whether participant
burden should be minimized or on other technical requirements
and data processing steps. Pragmatically, the present results
suggest that pEMA would be sufficient for acceptable predictions
in just about half of the participants.

CONCLUSION

Results of the present work demonstrate that a time-lagged
prediction of FC classes, in general, is feasible. We found
that aEMA does not provide any additional accuracy over
pEMA data and that simple models such as BISCWIT can
be considered for high-dimensional data. A challenge for
future research would be combining individual prediction
models with theory based, between person predictors
such as age, gender, BMI, or trait-level emotional eating
scores or FC as done in multilevel-based prediction
models (20, 37).
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