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Abstract: OCT1 and OCT2 are polyspecific membrane transporters that are involved in hepatic
and renal drug clearance in humans and mice. In this study, we cloned dog OCT1 and OCT2 and
compared their function to the human and mouse orthologs. We used liver and kidney RNA to clone
dog OCT1 and OCT2. The cloned and the publicly available RNA-Seq sequences differed from the
annotated exon-intron structure of OCT1 in the dog genome CanFam3.1. An additional exon between
exons 2 and 3 was identified and confirmed by sequencing in six additional dog breeds. Next, dog
OCT1 and OCT2 were stably overexpressed in HEK293 cells and the transport kinetics of five drugs
were analyzed. We observed strong differences in the transport kinetics between dog and human
orthologs. Dog OCT1 transported fenoterol with 12.9-fold higher capacity but 14.3-fold lower affinity
(higher KM) than human OCT1. Human OCT1 transported ipratropium with 5.2-fold higher capacity
but 8.4-fold lower affinity than dog OCT1. Compared to human OCT2, dog OCT2 showed 10-fold
lower transport of fenoterol and butylscopolamine. In conclusion, the functional characterization of
dog OCT1 and OCT2 reported here may have implications when using dogs as pre-clinical models as
well as for drug therapy in dogs.

Keywords: organic cation transporter; SLC22A1; SLC22A2; species differences; ortholog comparison;
gene structure; metformin; trospium; fenoterol; ipratropium; butylscopolamine

1. Introduction

Organic cation transporters OCT1 and OCT2 (gene names SLC22A1 and SLC22A2,
respectively) are polyspecific membrane transporters with partially overlapping substrate
spectra but different patterns of organ expression. OCT1 is predominantly expressed in
human hepatocytes where it mediates the first step in hepatic metabolism or excretion [1,2].
OCT2 is primarily expressed in human renal proximal tubules where it is involved in the
tubular secretion of organic cationic or weakly basic substances [2]. However, species-
specific differences in OCT1 organ expression have been reported. In contrast to human
OCT1, rodent OCT1 is expressed both in the liver and in the kidney [3–5].

OCT1 and OCT2 substrates are clinically relevant drugs like metformin, fenoterol,
sumatriptan, tramadol, ipratropium, and ranitidine [6–15]. The European Medicines
Agency (EMA) and the U.S. Food and Drug Administration (FDA) recommend as a part of
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pre-clinical drug development to evaluate drug-drug interactions involving OCT2 (both
EMA and FDA) and OCT1 (EMA) [16,17]. In 2018, the International Transporter Consortium
(ITC) also acknowledged the clinical relevance of OCT1 and recommended its evaluation
during drug development [18,19].

For efficacy, toxicity, and safety assessment, the FDA and EMA recommend testing
new molecular entities in two independent animal models, usually one rodent and one
non-rodent model [20,21]. Despite efforts to reduce animal testing, next to mice and rats,
the dog remains a highly relevant animal model. Dogs share similarities with humans
in cardiovascular, urogenital, nervous, and musculoskeletal systems and have a natural
tendency to develop cancers that share many characteristics with human malignancies [22].
Furthermore, the dog is a popular pet and thereby relevant as a patient in veterinary
healthcare. Up to 90 million domestic dogs are estimated to live in both Europe and the
U.S., with numbers steadily rising [23,24]. Therefore, a better understanding of the role of
dog OCTs in the pharmacokinetics of veterinary medications could improve drug safety
for these animals.

Despite the role of organic cation transporters in drug transport and the importance of
the dog as a pre-clinical model, there is very little data for dog OCTs in the literature. Drug-
metabolizing enzymes have been studied and some drug transporters, such as OATP1B4,
have been described in dogs [25,26], but there is only very limited knowledge about dog
solute carrier (SLC) transporters. An initial characterization of the expression, regulation,
and transport activity of dog OCT2 in Madin–Darby canine kidney (MDCK) model cells was
published 20 years ago [27]. However, these analyses focused on endogenously expressed
dog OCT2 and on the interaction with model OCT substrates and inhibitors. Meanwhile,
the first dog genome was sequenced and annotated (CanFam3.1, https://www.ncbi.nlm.
nih.gov/assembly/GCF_000002285.3/, accessed on 22 November 2019), but there is little
to no data about the expression and functional characterization of dog OCTs. Furthermore,
to the best of our knowledge, no functional data for dog OCT1 have been reported so far.

Another aspect of potential interest for dog OCTs is that despite extensive research on
OCT1 and OCT2 during the past 25 years, the exact amino acids involved in substrate bind-
ing and/or translocation, and the mechanism conferring their polyspecificity, are unclear.
One strategy for revealing the mechanisms of transport and polyspecificity is the analysis
of the functional differences between OCT1 orthologs in mammals [28]. Using this strategy
for human and mouse OCT1, we identified amino acid differences in transmembrane
helix 2 (TMH2) and TMH3 that confer differences in the affinity for metformin [29], and the
amino acid differences at codons 32 and 36 confer differences in the affinity for trospium
and fenoterol, respectively [30]. The same approach may be applied to the dog orthologs.

The aim of this study was to clone and functionally characterize dog OCT1 and OCT2,
and to analyze their expression in the dog liver and kidney. This will help translate data
involving pre-clinical research on OCT1 and OCT2 in dog animal models to humans,
and improve drug safety for dogs as patients. Moreover, systematic comparisons of dog
OCT1 and OCT2 with their human orthologs may provide new insights into the transport
mechanisms for this group of transporters.

2. Results
2.1. Gene Structure of Dog OCT1 and OCT2

We noticed that the annotated genomic sequence of dog OCT1 (SLC22A1) in the
currently available Canis lupus familiaris genome assembly CanFam3.1 (Breed: Boxer, NCBI)
had one exon less than OCT1 orthologs in other mammals. To validate this annotation,
we bioinformatically analyzed the gene structure of dog OCT1 using RNA-Seq datasets
from dog liver that were already available in the public databases NCBI GEO [31] and EBI
ArrayExpress [32]. The available RNA-Seq datasets were splice-aware mapped onto the
first chromosome of the CanFam3.1 dog genome. The resulting sashimi plot by IGV [33]
showed coverage and presentation of introns verified by splice junctions except between
exons 2 and 3 (Figure 1A,B). Interestingly, a high coverage of reads could be observed in
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the annotated intron 3. Similarly, a high coverage of reads and a missing splice connection
between exons 2 and 3 were observed when analyzing another five dog breeds (Figure S1),
suggesting a misannotation of the OCT1 gene structure or an incomplete dog genome.
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Figure 1. Gene structure of dog OCT1. (A) Sashimi plot showing OCT1 (SLC22A1) RNA-Seq reads
from Beagle dog liver mapped onto chromosome 1 of the CanFam3.1 dog genome assembly. Exon
junctions based on spliced reads are connected by lines, with the number indicating the number of
splice junctions mapped. RNA-Seq dataset PRJEB33381 from ENA at EMBL-EBI was used. (B) Exon-
intron structure of dog OCT1 according to the CanFam3.1 genome assembly (top) and our experimental
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determination (bottom). The experimentally determined structure contains an additional exon
between exons 2 and 3 of the CanFam3.1 genome assembly. (C) Schematic protein sequence alignment
of human OCT1 (green) and dog OCT1 according to CanFam3.1 (grey) and our experimental results
(blue). (D) Comparison of RNA-Seq coverage mapped onto dog OCT1 cDNA sequences according to
CanFam3.1 (grey) and our experimental determination (blue). The x-axis numbering represents the
cDNA sequence based on the experimentally determined dog OCT1 sequence and the exon structure
shown below. RNA-Seq datasets PRJNA396033 (Newfoundlander, Labrador Retriever, and Yorkshire
Terrier) and PRJNA601830 (Boxer) from NCBI GEO were used.

In contrast, when we mapped RNA-Seq datasets from dog kidney for OCT2 using the
same reference genome (CanFam3.1), no differences between the annotated dog OCT2 gene
structure (CanFam3.1) and the RNA-Seq datasets for kidney could be observed (Figure S2).
This suggests first, that the annotation of dog OCT2 in the genome is correct, and second,
verified the methodological bioinformatics approach used.

2.2. Cloning of Dog OCT1 and OCT2 mRNA Transcripts from Dog Liver and Kidney

To verify the observed exon-intron structure of dog OCT1, we cloned OCT1 from dog
liver and OCT2 from dog kidney cDNA and sequenced the complete open reading frames
(ORFs). Compared with the published annotated ORF sequence from the CanFam3.1
genome assembly, an additional 87 bp in the exon 3 region were observed, which code for
an additional 21 amino acids, resulting in a total of 554 amino acids, which is the same
length as the known human OCT1 protein (Figure 1B,C).

To bioinformatically validate the experimentally determined dog OCT1 mRNA se-
quence, the mapping of liver RNA-Seq datasets from different dog breeds were compared
between the annotated (CanFam3.1) and the experimentally determined mRNA sequence.
Four different datasets were used: Boxer, Yorkshire Terrier, Labrador Retriever, and New-
foundlander. As expected, when mapping onto the CanFam3.1 reference, there was a short
stretch without coverage after approximately 500 bp in all four dog breeds analyzed, and
the coverage profile was replaced after this position compared to the reads mapped onto
the bioinformatically validated sequence (Figure 1D). By this approach, we could confirm
that the correct dog OCT1 sequence differs from the annotated dog genome assembly in
the NCBI database (CanFam3.1).

The experimentally determined dog OCT1 sequence shares 80% amino acid identity
with human OCT1, which is greater than the mouse ortholog (which has 77% identity
to human) and leaves 110 non-synonymous amino acids between dog and human OCT1
(compared to 124 between mouse and human; Figure 2).

In contrast to OCT1, the cloned dog OCT2 sequence was identical to the annotated
OCT2 of CanFam3.1 as well as to the contigs from RNA-Seq datasets and encodes a protein
of 533 amino acids. Dog OCT2 shares 81% amino acid identity with human OCT2 and 83%
amino acid identity with mouse OCT2 (Figure 2).
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Figure 2. Protein sequence comparison of OCT1 and OCT2 orthologs of human, mouse, and dog. 
(A) Phylogenetic tree showing the similarities of human, dog, and mouse OCT1 and OCT2 protein 
sequences. Branch lengths not to scale. (B,C) Number of amino acid differences between dog, hu-
man, and mouse OCT1 (B) and OCT2 (C). (D) Alignment of human, dog, and mouse OCT1 pro-
tein Scheme 1. are shown in boxes. Sequences were compared using clone manager suite v.9.0 and 
the BLOSUM62 algorithm. 

Figure 2. Protein sequence comparison of OCT1 and OCT2 orthologs of human, mouse, and dog.
(A) Phylogenetic tree showing the similarities of human, dog, and mouse OCT1 and OCT2 protein
sequences. Branch lengths not to scale. (B,C) Number of amino acid differences between dog, hu-
man, and mouse OCT1 (B) and OCT2 (C). (D) Alignment of human, dog, and mouse OCT1 protein
Scheme 1. are shown in boxes. Sequences were compared using clone manager suite v.9.0 and the
BLOSUM62 algorithm.
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2.3. Organ Expression of Dog OCT1 and OCT2

We analyzed the expression of dog OCT1 (SLC22A1) and OCT2 (SLC22A2) in liver
and kidney samples using RT-qPCR. Dog OCT1 was highly expressed in both the liver and
the kidney, and therewith, had a similar organ expression pattern as the rodent, but not
the human, OCT1 ortholog. In contrast, dog OCT2 was highly expressed in the kidney,
but not in the liver, and therewith, had similar organ expression as the human and rodent
orthologs (Figure 3).
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Figure 3. Organ expression of OCT1 and OCT2 mRNAs in dog liver and kidney. Expression of OCT1
(light blue) and OCT2 (dark blue) was measured in dog liver and kidney cDNAs using RT-qPCR.
Expression was normalized to the expression of TBP and related to the expression in the kidney.

2.4. Comparative Characterization of Transport Kinetics between Human and Dog OCT1

We functionally characterized dog OCT1 by using stably overexpressing HEK293 cells
(for cell generation and validation, see Supplementary Methods Figure S7). We compared
the uptake of five clinically relevant OCT1 substrates (fenoterol, ipratropium, trospium,
metformin, and butylscopolamine) between dog, mouse, and human OCT1 orthologs.
Concentration-dependent uptake measurements showed substrate-specific differences in
the transport kinetics between the orthologs that affected both the maximal transport
capacity (vmax) and affinity (KM; Figures 4, 5 and S3, Table 1).

Comparing dog and human OCT1, fenoterol and ipratropium were the most extreme
examples. Fenoterol was transported by dog OCT1 with 12.9-fold higher capacity but
14.3-fold lower affinity (higher KM) than human OCT1 (Figures 4 and 5, Table 1). In
contrast, ipratropium was transported by human OCT1 with 5.2-fold higher capacity and
8.4-fold lower affinity than dog OCT1. Similarly, although less extreme than ipratropium,
trospium was transported by dog OCT1 with 1.8-fold higher capacity and 2.3-fold lower
affinity than human OCT1. Interestingly, metformin was transported with similar capacity
but with 5.5-fold higher affinity by dog OCT1 than human OCT1. Butylscopolamine was
the only compound that showed no significant differences in uptake kinetics between dog
and human OCT1.

Comparing dog and mouse OCT1, trospium and ipratropium were the most extreme
examples. Trospium was transported with 3.4-fold higher capacity and 4.4-fold lower
affinity by dog than mouse OCT1 (Figures 4 and S4, Table 1). Similarly, butylscopolamine
was transported with 1.8-fold higher capacity and 2.9-fold lower affinity by dog than mouse
OCT1. In contrast, ipratropium was transported with 2.7-fold higher capacity and 4.1-fold
lower affinity by mouse than dog OCT1. Transport of fenoterol and especially metformin
did not differ substantially between these two orthologs.
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spium, metformin, and butylscopolamine. The total uptake is shown for the overexpressing and 
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Figure 4. Comparative characterization of substrate uptake between dog, human, and mouse OCT1
orthologs. HEK293 cells stably transfected to overexpress dog (blue), human (green), and mouse (red)
OCT1 were incubated for 2 min with increasing concentrations of fenoterol, ipratropium, trospium,
metformin, and butylscopolamine. The total uptake is shown for the overexpressing and control cells
(left hand side). OCT1-mediated uptake (right hand side) was calculated by subtracting the uptake of
control cells (pcDNA5) from the uptake of OCT1-overexpressing cells. The means and standard errors
of the means are shown for at least three independent experiments. An Eadie–Hofstee transformation
of the data is shown in Figure S3.
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Figure 5. Comparison of the transport capacity (vmax, (A)) and affinity (KM, (B)) between dog and
human OCT1 orthologs. The fold change in vmax and KM between dog (blue) and human (green)
OCT1 are shown for the substrates from Figure 4. The means and standard errors of the means are
shown for at least three independent experiments.

To exclude effects of differences in OCT1 protein expression between the cell lines on
the determination of vmax values, we normalized the vmax values to the vmax of metformin,
the best studied substrate of OCT1 and OCT2. This normalization did not change the
differences in transport capacity observed between the orthologs (Figure S4).
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Table 1. Kinetic parameters of OCT1-mediated substrate uptake by dog, human, and mouse OCT1.

vmax [pmol ×min−1 ×mg Protein−1] ± SEM KM [µM] ± SEM CLint [µL ×min−1 ×mg Protein−1] ± SEM

Substrate dOCT1 hOCT1 mOCT1 dOCT1 hOCT1 mOCT1 dOCT1 hOCT1 mOCT1

Fenoterol 1346 ± 134 106 ± 11.8 *** 912 ± 78.3 * 16.8 ± 1.09 1.19 ± 0.09 *** 10.7 ± 1.09 * 80.7 ± 7.76 88.3 ± 3.85 88.5 ± 15.5

Ipratropium 113 ± 1.43 586 ± 42.7 *** 309 ± 18.8 * 1.02 ± 0.20 7.79 ± 0.48 *** 3.77 ± 0.31 ** 122 ± 28.1 75.7 ± 6.33 83.6 ± 10.4

Trospium 835 ± 64.9 1503 ± 103 *** 255 ± 33.2 *** 5.72 ± 0.30 13.3 ± 1.58 ** 1.92 ± 0.85 146 ± 10.3 117 ± 12.7 180 ± 37.5

Metformin 11,373 ± 714 10,465 ± 1306 10,891 ± 1249 204 ± 41.8 1090 ± 297 298 ± 46.9 * 63.1 ± 12.0 11.0 ± 2.05 ** 38.7 ± 6.23

Butylscopolamine 1383 ± 112 1249 ± 117 778 ± 59.2 * 18.7 ± 3.32 15.0 ± 1.67 6.60 ± 1.13 * 80.5 ± 12.3 84.4 ± 6.76 131 ± 25.6

* p < 0.05, ** p < 0.005, *** p < 0.001 compared to dOCT1 in a Tukey’s post hoc following ANOVA.
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2.5. Comparative Characterization of Transport Kinetics between Human and Dog OCT2

We functionally characterized dog OCT2 by using stably overexpressing HEK293
cells (for cell generation and validation, see Supplementary Methods Figure S7). We com-
pared the uptake of the same five drugs (fenoterol, ipratropium, trospium, metformin, and
butylscopolamine), this time between dog and human OCT2. Concentration-dependent
uptake measurements showed substrate-specific differences in the transport kinetics be-
tween dog and human OCT2 orthologs (Figures 6 and S6, Table 2) that affected the maximal
transport capacity and affinity.
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HEK293 cells stably transfected to overexpress dog (blue) and human (grey) OCT2 were incu-
bated for 2 min with increasing concentrations of fenoterol, ipratropium, trospium, metformin, and
butylscopolamine. The total uptake is shown for the overexpressing and control cells (left hand side).
OCT2-mediated uptake (right hand side) was calculated by subtracting the uptake of control cells
(pcDNA5) from the uptake of OCT2-overexpressing cells. The means and standard errors of the
means are shown for at least three independent experiments. An Eadie–Hofstee transformation of
the data is shown in Figure S6.

Table 2. Kinetic parameter of OCT2-mediated substrate uptake by dog and human OCT2.

vmax [pmol ×min−1 ×mg Protein−1]
± SEM KM [µM] ± SEM CLint [µL ×min−1 ×mg Protein−1]

± SEM

Substrate dOCT2 hOCT2 dOCT2 hOCT2 dOCT2 hOCT2

Fenoterol n.d. 248 ± 21.7 n.d. 8.81 ± 0.55 n.d. 28.0 ± 0.95
Ipratropium 93.2 ± 12.6 114 ± 10.5 0.35 ± 0.02 0.24 ± 0.04 * 265 ± 35.3 477 ± 31.9 *

Trospium 224 ± 14.6 119 ± 13.1 ** 2.18 ± 0.27 0.49 ± 0.15 ** 106 ± 8.78 278 ± 40.5 *
Metformin 21,578 ± 606 29,650 ± 1457 * 365 ± 11.5 766 ± 95.4 * 59.2 ± 2.76 39.9 ± 5.27 *

Butylscopolamine n.d. 616 ± 52.0 n.d. 7.62 ± 0.85 n.d. 81.6 ± 2.16

n.d., kinetic parameter could not be determined; * p < 0.05, ** p < 0.005 compared to dOCT2 in a Tukey’s post hoc
following ANOVA.

The most prominent differences were observed for fenoterol and butylscopolamine.
In contrast to human OCT2, dog OCT2 showed only a slight increase in fenoterol and
butylscopolamine uptake compared to control cells, especially at low concentrations, and
the data could not be fitted to the Michaelis–Menten equation (Figure 6). Trospium was
transported by dog OCT2 with 5.7-fold lower affinity but similar capacity than human
OCT2. Metformin and ipratropium were transported with similar capacity and affinity by
dog and human OCT2.

2.6. Variability of OCT1 Sequence and Expression among Different Dog Breeds

In addition to the newly identified 87 bp in the exon 3 region, the experimentally
determined dog OCT1 sequence from a Beagle had one amino acid substitution compared
to the published sequence for a Boxer from the CanFam3.1 assembly. This suggested genetic
variability among or within different dog breeds.

To further analyze genetic variability in OCT1 among dogs, dog OCT1 cDNA from
eight dog liver samples originating from seven different breeds was cloned and 13 clones
(comprising three clones from two Dachshund donors, one clone from a Beagle and an
Australian Shepherd, and two clones from one donor for the rest of the breeds) were
completely re-sequenced. The dog OCT1 sequences revealed the same length of 554 amino
acids and very high amino acid identity among the different dogs analyzed (99%; Figure 7).
There were four codons where individual dogs carried an amino acid substitution com-
pared to the validated Beagle OCT1 sequence: codons 80 (extracellular loop), 191 (TMH3),
204 (between TMH3 and 4), and 310 (intracellular loop). The Beagle sequence shared
Ala80 with a Fox Terrier and human and mouse OCT1, whereas the Labrador Retriever,
Portuguese Water Dog, Australian Shepherd, Boxer, and Dachshund possessed Thr80.
Val191 in Beagle OCT1 was shared with an Australian Shepherd dog, as well as with
human and mouse OCT1, while all the other dogs showed Ala191 at this position. At
codons 204 and 310, the Boxer and the Fox Terrier possessed Leu204Pro and Gly310Glu
substitutions, respectively.

Furthermore, we analyzed the variability in dog OCT1 mRNA expression in liver
samples from eleven individual dogs with nine different breeds. Most dogs showed similar
OCT1 expression levels to the Beagle, ranging from 0.85 for Labrador Retriever 1 to 1.57 for
the Australian Shepherd (Figure 8). However, Dachshund 1 had 2.65- and the Fox Terrier
had 3.12-fold higher OCT1 expression than the Beagle.
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Figure 7. Comparison of OCT1 genetic variability among dogs from different breeds and comparison
with human and mouse OCT1s. Dog liver cDNAs from eight individual dogs with seven different
breeds were used for re-sequencing of the whole OCT1 open reading frame. Genetic polymorphisms
corresponding to amino acid substitutions were found in the large extracellular loop, transmembrane
helix 3 (TMH3), and the large intracellular loop. Affected codons are marked in boxes. Exemplary
electropherograms depicting the sequence variation are also shown. The experimentally validated
reference sequence for the Beagle is highlighted in bold. In five cases, two clones from one breed were
sequenced and the second clone is denoted by “#”. For Dachshund, two individual dogs were analyzed.
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Figure 8. Comparison of OCT1 mRNA expression in liver samples from different dogs. Expression of
OCT1 (SLC22A1) was measured in cDNA from eleven liver samples originating from eight different
breeds using RT-qPCR. Expression was normalized to the expression of TBP and Beagle was used as
reference. * Denotes samples that were not cloned and sequenced.
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3. Discussion

In this study, we report a new annotation for the dog OCT1 gene and describe func-
tional differences for cloned dog OCT1 and OCT2 after overexpression in HEK293 cells in
comparison with their human orthologs.

The cloned cDNA sequence of dog OCT1 differed by 87 bp from the predicted mRNA
sequence from the annotation of the primary assembly of dog chromosome 1 in the dog
genome CanFam3.1, which was the dog genome available when we started this study. Both
bioinformatic analyses and experimentally cloned sequences strongly suggested that the
CanFam3.1 genome was incomplete. An additional exon, exon 3, identified experimentally
was missing at the genomic DNA level in the CanFam3.1 genome, suggesting that more
than 87 bp is missing from the CanFam3.1 assembly. Indeed, new dog genome assemblies,
which became available during the preparation of this work (Figure 9), contain an additional
2153 bp sequence. This 2153 bp DNA region harbors the “missing” exon 3 and this sequence
is highly similar to the closely related dingo (Canis lupus dingo), arctic fox (Vulpes lagopus),
and red fox (Vulpes vulpes; Figure 9). Furthermore, the resulting dog OCT1 protein sequence
showed higher homology with the previously known mammalian sequences and the
expected secondary structure with 12 transmembrane helices.
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OCT1 genomic sequence from the CanFam3.1 assembly (dark grey) has a 2153 bp gap in the exon
3 region compared with more recent dog genome assemblies that are identical to our experimentally
determined dog OCT1 sequence. The dog OCT1 exon-intron structure is shown below for orientation.

One important lesson from this part of our work is that in the era of using de novo
synthesis of a whole ORF instead of cDNA cloning, one should be very critical of using
bioinformatics data such as genome annotations without validation. A complete de novo
OCT1 ORF synthesis based on the CanFam3.1 assembly would have led to analyzing
an erroneous protein and incorrect conclusions. On the other hand, we also showed
here that using publicly available bioinformatic resources like RNA-Seq databases can
prevent such errors, and may support experimental data additionally. Breed-specific
genetic variants in dogs have been reported before [34]. In this study, however, Boxer breed-
specific differences cannot account for the “missing” sequence since another Boxer genome
(Dog10K_Boxer_Tasha; Figure 9) and an RNA-Seq dataset from a Boxer (Figure 1D) both
apparently contained the complete sequence. However, inter-individual genetic variability
within the Boxer breed cannot be excluded.

In the second part of this study, we functionally characterized cloned dog OCT1 and
OCT2. This is relevant, since dogs are both pre-clinical animal models and pets that are
treated with drugs as veterinary patients. One limitation of animal models are species-
specific differences in organ expression of drug-metabolizing enzymes and transporters.
Here, we demonstrated that dog OCT1 is equally strongly expressed in kidney and liver
(Figure 3), which is similar to the organ expression of OCT1 in rodents [3–5], but substan-
tially different from humans [1,2,8,35]. Differences in organ expression of OCT1 between
humans and rodents are well known, but this is the first study reporting such differences
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between dog and human OCT1. These differences are one aspect that should be considered
when translating pharmacokinetics data from dogs to humans.

Species-specific differences in substrate selectivity between OCT orthologs have been
suggested before [29,36–38], but systematic comparisons are still scarce. To the best of
our knowledge, this is the first study reporting functional analyses of dog OCT1. The
only study of dog OCTs characterized OCT2 that is endogenously expressed in MDCK
model cells [37]. Dresser et al. suggested differences in dog OCT2 transport characteristics
compared to other orthologs based on the transport kinetics of the model substrate TEA+

compared to previous works. In this study, we confirmed and extended this claim by
analyzing a broader spectrum of clinically relevant drugs as OCT2 substrates.

We also report substantial differences in the transport characteristics between dog and
human OCT1 and OCT2. For OCT1, the strongest differences in both capacity and affinity
were observed in the kinetics of ipratropium and fenoterol transport, and to a lesser extent,
for trospium. However, this may not lead to substantial differences in the pharmacokinetics
of these drugs between the two species. In spite of a 14.3-fold higher affinity for fenoterol,
differences in the transport capacity in the opposite direction (12.9-fold lower) resulted
in very similar intrinsic clearances by dog and human OCT1 (80.7 and 88.3 µL × min−1

× mg protein−1, respectively). Thus, differences in affinity and capacity in the opposite
direction may neutralize each other at clinically relevant (low) concentrations. Interestingly,
the intrinsic clearance of fenoterol of mouse OCT1 is also very similar to that of dog and
human OCT1 (88.5 µL × min−1 × mg protein−1). As a consequence, effects of OCT1
knockout on the hepatic uptake of fenoterol in mice [38] may closely reflect the effects of
OCT1 not just in humans [30] but also in dogs. Compared to human OCT1, dog OCT1 had a
5.5-fold higher affinity but a similar capacity for metformin transport, resulting in a 5.8-fold
higher intrinsic clearance (Figure 4, Table 1). Similar differences in intrinsic clearance were
reported by us for mouse and human OCT1. Based on the differences measured in vitro,
we estimated metformin concentrations in the mouse liver to be up to 11-fold higher than in
the human liver [29]. The data reported here suggest that also for dogs, hepatic metformin
concentrations may be higher than in humans. This warrants attention when interpreting
both mouse and dog data regarding the hepatic mechanism of action for metformin.

Our results may have clinical implications, considering that the dog is a popular pet
and potential patient. Better knowledge of dog OCTs may improve drug therapy in dogs.
Here, we analyzed as a proof-of-principle some drugs that are known substrates for OCTs
in other species [12], but are also commonly used to treat dogs. Butylscopolamine and ipra-
tropium are routinely used as spasmolytic and bronchodilator drugs, respectively, in veteri-
nary medicine. The intrinsic clearance of butylscopolamine and ipratropium by dog OCT1
(122 and 80.5 µL × min−1 × mg protein−1, respectively) is comparably high compared
to the intrinsic clearance of fenoterol by human OCT1 (88.3 µL ×min−1 ×mg protein−1;
Table 1). In humans, OCT1 was shown to have strong effects on the AUC (area under the
plasma concentration time curve) and plasma concentrations of fenoterol [9]. Thus, an
important role for OCT1 in the pharmacokinetics of butylscopolamine and ipratropium in
dogs could also be suggested.

An additional interesting aspect of the data reported in this study is the ability to
draw conclusions about structure-to-function relationships based on substrate-specific
differences in the transport kinetics among OCT1 orthologs. In a recent study, we identified
amino acid differences at codon 32 (Phe vs. Leu) and codon 36 (Cys vs. Tyr) that confer the
differences in the affinities for trospium and fenoterol, respectively, between human and
mouse OCT1 [30]. This was supported by docking fenoterol into the available alphafold
structural models for human and mouse OCT1. In line with this, the results from this study
show that dog OCT1 has a more comparable affinity for trospium and shares Phe32 with
human OCT1 (compared with mouse OCT1 that has Leu32). Similarly, dog OCT1 has a
more comparable affinity for fenoterol and shares Tyr36 with mouse OCT1 (compared with
human OCT1 that has Cys36; Figure 4). In another recent study, we identified differences
at codon 155 (corresponding to codon 156 in mouse; Leu vs. Val) together with amino
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acid(s) located in TMH3 that confer differences in metformin affinity between human and
mouse OCT1 [29]. The results from this study show dog and mouse, but not human, OCT1
have very similar affinity for metformin transport (Figure 4), which supports the suggested
important role for codon 155/156, since dog and mouse share valine, whereas human has
leucine at this position.

There are differences in the affinity for ipratropium between dog and human OCT1
orthologs that cannot be explained by the differences in amino acids at codons 32, 36,
and 155/156. This suggests there are still unknown interactions that warrant further and
more detailed analyses. Functional differences between OCT2 orthologs are completely
unexplored, but are partially very strong, as in the case of fenoterol or butylscopolamine
(Figure 6). More detailed analyses using ortholog or paralog chimeric OCT proteins should
provide further insights into the transport mechanism and polyspecificity of OCT1 and
OCT2.

Additional analyses of the transport characteristics using Eadie–Hofstee transforma-
tion of the data (Figures S3 and S6) do not indicate substantial species-specific differences
in the mode of transport. For most substrates, a linear profile corresponding to the classical
Michaelis–Menten kinetics could be observed. In some cases, such as butylscopolamine
uptake by OCT1 and OCT2, a biphasic profile can be suggested. However, one should be
careful not to overinterpret this data in cases of limited uptake, such as butylscopolamine
by dog OCT2.

Interestingly, the most extreme differences in transport kinetics between dog and
mouse OCT1 were observed for ipratropium and trospium, which are structurally very
similar. Together with butylscopolamine, the tropane alkaloids trospium and ipratropium
share the classical ester of a tropane ring with either one (ipratropium and butylscopo-
lamine) or two phenol rings (trospium) and different N-substitutions. Butylscopolamine
and especially trospium are both transported by dog OCT1 with higher capacity and lower
affinity than mouse OCT1 (Figures 4 and S4) despite their structural differences in the
number of phenol rings. This may suggest that the less bulky N-substitution at the tropane
ring present in ipratropium may be favorable for a higher affinity but lower capacity of
transport by dog OCT1 than mouse OCT1. This approach comparing the transport kinetics
of structurally highly similar compounds (“ligand structure walking”) may be a useful tool
for narrowing down and identifying structural moieties within the ligand that determine
its interaction with OCTs, as we have previously reported for the inhibition of OCT1 by
morphinan opioids [39]. Moreover, combining the comparison of ligands with similar
structures with orthologs that have similar protein sequences may reveal regions that
confer differences in transport kinetics on both the ligand and the protein side for a better
understanding of OCT polyspecificity.

We observed some genetic variability in OCT1 between individual dogs of different
dog breeds that may have clinical relevance. Genetic variability in dog CYP enzymes, such
as CYP1A2 and CYP2C41, or the efflux transporter MDR1/P-glycoprotein leading to a
loss-of function phenotype are well-known for their effect on the efficacy and safety of drug
treatment for dogs [34,40–42]. The most well-known is the severe sensitivity to ivermectin
and other antiparasitic drugs due to a 4-bp deletion in the canine MDR1 gene [43,44]. It
remains to be analyzed whether the genetic variations we observed for dog OCT1 have con-
sequences on OCT1 function and therefore on the pharmacokinetics and efficacy of drugs
that are OCT1 substrates. More detailed analyses of genetic variation and its functional
consequences may provide a better understanding of the OCT1 transport mechanism.

In conclusion, functional characterization after cloning and overexpressing of dog
OCT1 and OCT2 revealed species-specific differences in the transport kinetics of several
clinically relevant OCT substrates, which may have implications for the use of the dog as
a pre-clinical animal model as well as drug safety for dogs. Moreover, these differences
in OCT1 function can be used as a tool to study the species-specific interactions with
OCT substrates to better understand OCT transport and the mechanisms underlying
OCT polyspecificity. Finally, this work provides an example where critical evaluation
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and validation of genomic annotations may be warranted before cloning and functional
characterization of membrane transporters.

4. Materials and Methods
4.1. Reagents

Ipratropium bromide and trospium chloride were obtained from Santa Cruz Biotech-
nology (Heidelberg, Germany). Trospium-d8 was obtained from Toronto Research Chem-
icals (TRC, Toronto, ON, Canada). Buformin hydrochloride was obtained from Wako
Chemicals (Neuss, Germany). Fenoterol hydrochloride, fenoterol-d6, metformin hy-
drochloride, butylscopolamine bromide, and atropine were obtained from Sigma-Aldrich
(Taufkirchen, Germany).

Dulbecco’s Modified Eagle Medium (DMEM), Hank’s Buffered Salt Solution (HBSS),
and additives used for cell culturing were obtained from Life Technologies (Darmstadt,
Germany). Poly-D-lysine (1-5 kDa), 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
(HEPES), bicinchoninic acid, and copper sulfate pentahydrate were obtained from Sigma
Aldrich. Twelve-well plates were obtained from Starlab (Hamburg, Germany) and tissue cul-
ture flasks from Sarstedt (Nümbrecht, Germany). Acetonitrile and methanol in LC-MS/MS
grade were obtained from LGC Standards (Wesel, Germany), formic acid (LC-MS/MS
grade) and sodium chloride were obtained from Merck (Darmstadt, Germany). Sodium
dodecylsulfate (SDS, ultrapure) was obtained from AppliChem (Darmstadt, Germany).

4.2. Cloning Dog OCT1 and OCT2 from Dog Liver and Kidney

Dog OCT1 and dog OCT2 were cloned from commercially available cDNA from dog
liver (OCT1) and kidney (OCT2; both AMS Biotechnology, Abingdon, UK) using PCR.
Briefly, primers flanking the 5′ and 3′ end of the mRNA (cDNA) were designed to contain 5′

restriction sites for HindIII or EcoRV for forward and reverse primers, respectively (Table 3),
for subsequent cloning. PCR was carried out using the Hot Start KOD Polymerase Kit
(Sigma-Aldrich) with initial denaturation at 95 ◦C for 2 min, followed by 35 cycles at 95◦

for 30 sec, the individual annealing temperature (see Table 3) for 30 sec, and elongation at
72 ◦C for 2 min, followed by a final elongation at 72 ◦C for 10 min. PCR products were
extracted from agarose gels, cloned into the pCR2.1-TOPO TA vector using the TOPO TA
cloning kit (Life Technologies) according to the manufacturer’s instructions, and the open
reading frame was sequenced using capillary sequencing.

Table 3. Sequences and annealing temperatures of primers used for cloning dog OCT1 and OCT2.

Primer Sequence (5′-3′) Annealing Temperature [◦C]

dOCT1_HindIII_for
dOCT1_EcoRV_rev

GTGATGAAGCTTCTGGCTCCGTTATGCCCACCG 70CCGAGCGATATCTCTCTCTCAGGTGCCGGCACG

dOCT2_for
dOCT2_rev

AGCATCGGAAGCTTTCCTGCCTCCGGAGATAATGCCAACT 50GTATGGAGGATATCAGCTCCCTACCTCTGCATGTTT

For sequencing of dog OCT1 transcripts from a larger group of dogs, surplus material
from diagnostic liver biopsies was collected and stored at −80 ◦C. This procedure was
reviewed and registered by the local Animal Welfare Authorities (Regierungspräsidium
Giessen; registration No: V 54 19 c 20 15 h 02 kTV 3/2022). These biopsies were used for
RNA isolation and cDNA synthesis as described previously [45] and cDNA was subjected
to PCR amplification of the whole open reading frame as outlined above. DNA sequencing
was performed by Sanger sequencing using the BigDye Terminator v1.1 Cycle Sequencing
Kit according to the manufacturer’s instructions and the Genetic Analyzer 3500xL (both
Applied Biosystems) and sequence analysis was performed with Sequencing Analysis
software version 6.0.

For transfection of dog OCT1 and OCT2 into HEK293 cells, the PCR products were
ligated into the pcDNA5/FRT expression vector (Life Technologies) using T4 ligase after
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double digestion with HindIII and EcoRV. The expression vectors were dialyzed using
0.025 µm membrane filters (Merck Millipore), were amplified in E. coli, and extracted using
the Plasmid Plus Midi Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s
instructions.

4.3. mRNA Expression Analysis of Dog OCT1 and OCT2

Expression of OCT1 and OCT2 mRNA in dog liver and kidney samples or overexpress-
ing cells was quantified using real-time qPCR. Total RNA from tissues was isolated using
TRIzol (Sigma-Aldrich) according to the manufacturer’s instructions and as described pre-
viously [45]. Total RNA from overexpressing cells was isolated using the RNeasy Plus Mini
Kit (QIAGEN) according to the manufacturer’s instructions. Beagle cDNA was purchased
commercially (AMS Biotechnology, Abingdon, UK); cDNA from all other dog breeds was
synthesized using the SuperScript III First-Strand Synthesis System (Life Technologies)
according to the manufacturer’s instructions and as described previously [45]. The cDNA
from overexpressing cells was synthesized using the High-Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems) according to the manufacturer’s instructions. Real-time
qPCR was standardized at the mRNA level. Expression of mRNA was analyzed using
TaqMan Gene Expression Master Mix and TaqMan assays (Cf02728707_m1 for dog OCT1,
Cf02671927_m1 for dog OCT2, Cf02637231_m1 for dog TBP, and M55654.1 for human
TBP from HEK293 cells; all Thermo Fisher) in a total volume of 7 µL according to the
manufacturer’s instructions. Samples were measured in triplicate with the QuantStudio
12K Flex Real-Time PCR System and analyzed using QuantStudio 12K Flex software v.1.2.2.
Expression of OCT1 and OCT2 were normalized to the expression of the housekeeping
gene TATA-box binding protein (TBP) and to the expression in Beagle using the 2−∆∆Ct

method [46].

4.4. Cell Lines and Cell Culturing

HEK293 cells stably overexpressing human OCT1 or OCT2, mouse OCT1, and dog
OCT1 or OCT2 were generated by targeted chromosomal integration using the Flp-In™
system (Life Technologies) as described in detail previously [29,47,48]. For generation
and characterization, see the Supplementary Methods, Figure S7, and [29,47]. Cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS,
100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C and 5% CO2. Cells were
passaged twice a week.

4.5. Cellular Uptake Experiments

At 48 h prior to the experiment, 6 × 105 cells were seeded per well in 12-well plates
pre-coated with poly-D-lysine.

Cellular uptake experiments were performed at 37 ◦C and pH 7.4 using Hanks’
Buffered Salt Solution (HBSS) supplemented with 10 mM HEPES (referred to as HBSS+
in the following). Cells were washed with 1 mL pre-warmed (37 ◦C) HBSS+ and uptake
was initiated by adding 400 µL of pre-warmed HBSS+ containing the substrate. Uptake
was allowed for exactly 2 min and stopped by adding 2 mL ice-cold HBSS+. Cells were
washed twice with 2 mL ice-cold HBSS+ then lysed with 80% acetonitrile supplemented
with internal standard. The intracellularly accumulated substrate concentrations were
measured using LC-MS/MS as described in the following and normalized to the amount
of total protein in the samples as measured using the bicinchoninic acid assay [49].

4.6. Quantification of Intracellular Substrate Concentration by LC-MS/MS

Intracellular substrate concentrations were quantified using LC-MS/MS. To this end,
the cell lysate was centrifuged at 16,000× g for 15 min and 350 µL of supernatant was
evaporated to dryness under nitrogen flow at 40 ◦C. The pellet was reconstituted with
200 µL 0.1% formic acid and between 5 and 10 µL was injected into the LC-MS/MS system
(Table S2).
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An API4000 QTRAP tandem mass spectrometer with ESI interface (AB SCIEX, Darm-
stadt, Germany) coupled to a Shimadzu Nexera X2 UHPLC system with LC 30AD pumps
and SiL 30AC autosampler (Shimadzu, Duisburg, Germany) was used for analysis. Samples
were separated on a Brownlee SPP RP-Amide column (4.6 × 100 mm, 2.7 µm, PerkinElmer,
Rodgau, Germany) using a mobile phase of 0.1% (v/v) formic acid and varying concentra-
tions of organic solvent (Table S2).

4.7. Mapping of RNA-Seq Datasets on Dog OCT1 and OCT2 Reference

For splice-aware mapping of RNA-Seq datasets we used the tool HISAT2 [50], and
for the coverage of reads, the tool NextGenMap [51]. As reference, we used the genome
assembly of CanFam3.1 (GCF_000002285.3 from NCBI) [52,53]. RNA-Seq datasets have
been downloaded from the NCBI Gene Expression Omnibus (GEO; [31]) and ArrayEx-
press [32]. The datasets used for this study were deposited in the NCBI GEO under
accession numbers PRJNA415552 (Beagle kidney; [54]), PRJNA396033 (Newfoundlander,
Labrador, Yorkshire Terrier, Belgian Malanois), and PRJNA601830 (Boxer) or in the Eu-
ropean Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB33381
(https://www.ebi.ac.uk/ena/browser/view/PRJEB33381, accessed on 1 April 2020). For
mapping, we used default parameter sets from the two tools to perform a mapping to
the full reference genome as well as the single genes of interest OCT1 (SLC22A1, gene ID
484068) and OCT2 (SLC22A2, gene ID 403655). Afterwards, the BAM and SAM files were
sorted by Picard tools (http://broadinstitute.github.io/picard/, accessed on 10 February
2020) and indexed for visualization by integrative genomics viewer (IGV; [33]). IGV was
also used to create the sashimi plots to identify splice junctions and compare the exon-
intron structures with the help of HISAT2 output. SAMtools [55] was used with default
settings for the basepair coverage of different dog breeds for the two OCT1 and OCT2 gene
structures.

4.8. Data Analyses

Kinetic transport parameters vmax and KM were calculated by non-linear regression
with the Michaelis–Menten equation using GraphPad Prism version 5.01 (GraphPad Soft-
ware Inc., LaJolla, CA, USA). Intrinsic clearance CLint was calculated by dividing vmax
by KM for each experiment. Kinetic parameters were compared between OCT1 orthologs
using an ANOVA followed by Tukey’s honestly significant difference post hoc comparisons
in SPSS Statistics version 28 (SPSS Inc., IBM, Chicago, IL, USA).

Supplementary Materials: The following supporting information can be downloaded at: https:
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