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Abstract: The therapeutic efficacy of a cardiovascular device after implantation is highly dependent
on the host-initiated complement and coagulation cascade. Both can eventually trigger thrombosis
and inflammation. Therefore, understanding these initial responses of the body is of great importance
for newly developed biomaterials. Subtle modulation of the associated biological processes could
optimize clinical outcomes. However, our failure to produce truly blood compatible materials
may reflect our inability to properly understand the mechanisms of thrombosis and inflammation
associated with biomaterials. In vitro models mimicking these processes provide valuable insights
into the mechanisms of biomaterial-induced complement activation and coagulation. Here, we
review (i) the influence of biomaterials on complement and coagulation cascades, (ii) the significance
of complement-coagulation interactions for the clinical success of cardiovascular implants, (iii) the
modulation of complement activation by surface modifications, and (iv) in vitro testing strategies.
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1. Introduction

The implantation of a biomaterial disturbs the hemostasis of the surrounding tis-
sue. Consequently, the implant is exposed to blood proteins which rapidly adsorb non-
specifically onto its surface [1,2]. Within minutes, the biomaterial induces a host response
to the implant, which aims to isolate the foreign material from the host immune system [3].
This response can diminish the efficacy of the treatment and eventually determine func-
tionality and clinical outcome [4,5]. In this context, the term “biocompatibility” describes
“the ability of a material to perform with an appropriate host response in a specific appli-
cation” [6]. Given the refined therapeutic approaches for managing biomaterial-induced
adverse reactions, one could question the need to improve the biological performance
of materials. The need is there, yet. Pharmacological management of material-related
thrombosis is associated with a high risk of bleeding and decreases patient safety and
quality of life [7].

A broad field of application of biomaterials is the use of blood-contacting cardiovascu-
lar devices such as stents, artificial heart valves, or vascular prostheses. Under physiologic
conditions, blood contacts the negatively charged endothelium, which is anti-coagulant and
anti-thrombotic. The implantation of a cardiovascular device represents the introduction of
a foreign surface in the circulation, which does not necessarily come with these properties.
Immediately after the first contact with blood, plasma proteins and interstitial fluids adsorb
to the biomaterial surface. The result of such interference may be an inappropriate acti-
vation of the contact and complement systems, which trigger platelets and immune cells
through pro-thrombotic and pro-inflammatory mediators, respectively [8–10]. However,
after surface contact, complement factors stimulate a direct infiltration of immune cells

Int. J. Mol. Sci. 2021, 22, 11390. https://doi.org/10.3390/ijms222111390 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5508-1771
https://doi.org/10.3390/ijms222111390
https://doi.org/10.3390/ijms222111390
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222111390
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222111390?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 11390 2 of 19

to the implant region to destroy or remove the unwanted structures by phagocytosis [11].
To some extent, this host response is essential for healing after the implantation process.
Systemic inflammatory activation, however, may eventually lead to implant failure [6].
Biomaterials are known to act as agonists of complement and leukocyte activation. This
is frequently studied only in the context of inflammation, while most blood compatibility
testing of cardiovascular devices relates to thrombotic responses induced by the biomate-
rial [9]. The association of the complement system and immune cells with the coagulation
cascade and thrombosis is gaining increasing attention.

Cardiovascular biomaterials—metals and their oxides, polymers, pyrolytic, and
diamond-like carbon—encompass a wide range of compounds, from naturally derived
biological macromolecules to synthetic coatings. All of which differ in function and struc-
tural features [4]. The biomaterial can be permanent, intended to stay in the body for a
lifetime, or temporary with degradation times of several months to years. Among the
available polymeric cardiovascular biomaterials, polyesters are the preferred materials
for manufacturing bioabsorbable stents. Poly-(L-lactic) acid (PLLA), polyglycolic acid
(PGA), and poly(D,L-lactide/glycolide) copolymer (PDLA) are some of the most commonly
used bioabsorbable polymers [12,13]. Current absorbable stent technologies rely on the
polymer PLLA [14]. Copolymerization with small amounts of other polymers such as poly-
ε-caprolactone (PCL) optimizes the physical properties [15] and hemocompatibility [16].
However, compared to other polymer materials, these polyesters show only moderate
blood compatibility [13]. Many approaches aim to optimize the biological performance of
polymer surfaces. Yet, a truly biocompatible material has not been identified, nor is the
complex process of host response fully understood [7]. Therefore, most cardiovascular
devices function with little or acceptable risk of complications. This review outlines the
current state of understanding these phenomena with particular reference to polymeric
biomaterials for cardiovascular devices.

2. Complement Activation by Biomaterials

The complement system is composed of more than 30 proteins, which are present
as membrane-associated proteins or circulate in the plasma as part of the innate immune
response. Activation of the complement system occurs via three different pathways: the
classical pathway, the lectin pathway, and the alternative pathway (thoroughly reviewed
in [17]). Complement is activated by the same stimuli that launch inflammation when the
danger of infection is detected or when the host tissue is damaged [18]. These situations
are frequently accompanied by activation of the coagulation system. One should consider
that the complement and coagulation cascades act locally at the site of infection and of
bleeding, respectively. However, the systemic activation of these cascades, e.g., by the
presence of an artificial surface, might seriously threaten the host. We will, therefore, focus
on the influence of biomaterials on complement activation.

Complement activation by biomaterials is always associated with rapid binding of
C3 to the adsorbed protein layer on the biomaterial [19,20], followed by conformational
changes, which directly triggers the alternative pathway (Figure 1) [21]. Following comple-
ment activation, C3b covalently binds to the protein layer on the artificial surface which
leads to the generation of more C3b fragments (amplification loop). Once the original
protein layer is covered by these C3b fragments, the release of anaphylatoxins into the
plasma is initiated [2]. These anaphylatoxins are potent chemoattractants that recruit leuko-
cytes to the biomaterial, which in turn recognize surface-bound C3b fragments via ligands
such as CD11b/CD18 (Mac-1) and initiate opsonization and cytokine release [17,22]. In
that respect, the mechanisms of leukocyte adhesion on artificial surfaces are not yet clear.
In vitro work suggests that it is mediated in part by the complement product iC3b, since
inhibition of complement activation significantly reduced leukocyte adhesion [9]. Factor
H regulates complement activation via C3 by inhibiting the formation of C3 convertase
which catalyzes the cleavage of C3 into C3a and C3b [23]. Subsequently, C5 convertase
is generated cleaving C5 in C5a—which is also an anapylatoxin—and C5b. C5b binds to



Int. J. Mol. Sci. 2021, 22, 11390 3 of 19

the foreign surface and initiates the generation of membrane attack complex (C5b-9). As a
result of this process, a series of inflammatory reactions is induced.
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Render.com. 
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Figure 1. Complement activation by biomaterials through the alternative pathway. After first contact with blood, plasma
proteins quickly adsorb to the biomaterial surface. The composition of the adsorbed protein layer subsequently triggers
complement activation by covalent binding of C3b (1.), which activates the amplification loop, generating more C3b
fragments from circulating C3 (2.). Eventually, the C3b fragments conceal the protein layer, which enhances the release
of C3a, C5a, and sC5b-9 into the fluid phase. These fragments are potent chemoattractants that recruit monocytes to
the biomaterial surface (3.). Active monocytes recognize surface bound C3b through CD11b/CD18 (Mac-1) and initiate
opsonization (4.) and cytokine release (5.). Factor H is a major soluble inhibitor of complement activation and negatively
charged surfaces accelerate its binding to immobilized C3b, thus providing a non-activating surface. Created with
BioRender.com.

Biomaterials can be classified as “non-activating” or “activating” surfaces (Figure 1).
Negatively charged groups such as carboxyl and sulfate, sialic acid and bound heparin
seem to promote high-affinity association between bound C3b and Factor H—the major
soluble inhibitor of complement—thereby providing a non-activating surface [24]. On
the other hand, the presence of neutral and positively charged groups such as hydroxyl
groups and amino groups activates the alternative pathway which facilitates covalent
binding of C3b and therefore provides an activating microenvironment [25–27]. However,
even in the absence of these activating groups, some biomaterials are able to activate
complement suggesting that there are other mechanisms of material-induced complement
activation. Of note, non-activating coatings were not found to be useful on their own,
neither in cardiovascular stents nor in other devices [7,28]. There is, however, one stent
available combining such a non-activating coating with drug elution. The cobalt alloy
Endeavor®Resolute is coated with phosphorylcholine, which mimics the surface of cell
membranes. Interestingly, this stent has recorded very low number of late stent thrombosis,
which is proven in numerous clinical trials [29–31]. Phosphorylcholine exhibits excellent
blood compatibility at a molecular level due to the biomimetic structure [32]. Despite the
numerous advantages, current phosphorylcholine-based polymers are, however, typically
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non-degradable [33]. Another approach in biomaterial engineering is the composition of
gelatin-based hydrogels containing variable amounts of lysine diisocyanate ethyl ester [34].
Their physicochemical properties and degradation behavior can be directly modulated
by network formation. That makes them meet most of the criteria defined for good blood
and biocompatibility of coating materials for cardiovascular implants [34,35]. Moreover,
an in vitro and in vivo study demonstrates low inflammatory response and the absence of
toxic effects in the spleen, liver, or kidney for hydrogels prepared with higher amounts of
lysine diisocyanate ethyl ester [34]. A novelty is the incorporation of nanoparticles into
hydrogels to strengthen the network and enhance their physicochemical and biological
advantages [36]. In a recent study, Apte et al. show that Fe3O4 nanoparticle incorporation
into agarose-based hydrogels modulates the response of platelets to the artificial surface
and inhibits platelet adhesion and activation [37]. They found properties such as stiffness,
adhesion force, and wettability—factors which will be discussed below—responsible for
the bio-inert characteristics of their nanocomposite hydrogels.

3. Complement-Coagulation Interplay

Biomaterial-induced thrombosis is usually attributed to blood coagulation initiated
by the contact phase and platelet-related reactions to adsorbed plasma proteins [38]. For
instance, even low levels of fibrinogen adsorption make the biomaterial platelet adhe-
sive [39,40]. However, apart from the traditional role of platelets as mediators of hemostasis,
there is evidence that platelet activation during thrombotic events is closely associated with
the activation of complement eventually leading to “thrombo-inflammation” [8]. Plasma
proteins such as fibrinogen, fibronectin, and vitronectin are prone to bind to biomaterial
surfaces and are potent mediators of platelet adhesion [41,42]. In addition, Factor α-XIIa
generated from auto-activation of FXII and adsorbed onto biomaterial surfaces activates
the contact system pathway of the coagulation cascade, generating thrombin that can, in
turn, intensively activate platelets [43–45] and cleave fibrinogen into fibrin [2,42]. Thereby,
contact cascade is most efficiently activated in contact with negatively charged and/or
hydrophilic surfaces [46]. Additionally, proteins of the complement system, which become
activated upon contact with the biomaterial, support platelet adhesion and activation
by directly enhancing blood clotting properties and by augmenting the inflammatory
response, which, in turn, potentiates coagulation [42] —summarized in Figure 2. Once
activated, platelets release chondroitin sulfate A from α-granules immobilizing various
complement regulators on the platelet surface. Thus, activated platelets serve as ligands
for the tethering of immune cells [47–49]. These findings underline that the two cascades,
which have long been discussed as two entities, appear to modulate each other’s activity
significantly making the appropriate design of a biomaterial even more difficult.

Complement and coagulation cascades act locally—complement is activated at the site
of infection and coagulation at the site of bleeding. In general, biomaterial surfaces lack
complement or coagulation regulators. Once the cascades are activated systemically as a
result of contact to a biomaterial, they can become disorganized, leading to the accumulation
of anaphylatoxins (C3a/b and C5a/b), the activation of immune cells, and the formation of
thrombi which could seriously threaten the host [8]. In this context, Ekdahl et al. summarized
that artificial surfaces that come into contact with blood preferentially activate either the
complement system or the contact system [8,50,51]. In this context, graphene is discussed as a
novel carbon-based material with unique crystal nanostructure and physical properties [52].
Improved blood compatibility compared to currently used materials facilitates the potential
use of graphene coatings for cardiovascular implants [53–55]. A very recent study demon-
strates that graphene coating reduced the activation of blood coagulation cascade in vitro and
ex vivo in a rabbit model but did, however, not reduce complement activation [56].
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Figure 2. Surface-mediated complement-coagulation interplay. Factor XII of the contact system preferentially binds to
negatively charged/hydrophilic surfaces generating Factor α-XIIa, which is also adsorbed onto biomaterial surfaces (1.)
and further activates the contact system pathway of the coagulation cascade, generating thrombin (2.) that can, in turn,
intensively activate platelets (3.). Thrombin cleaves C3 and C5 to C3a/C3b and C5a/sC5b-9, respectively, thus amplifying the
activation of complement (i.) C3a activates platelets, enhancing their aggregation and adhesion. sC5b-9 is incorporated into
the cellular membrane of platelets, inducing an alteration in membrane polarization and, thus, increasing the surface area
on which clotting can occur (ii.). C3b binds to P-selectin and enhances platelet adhesion (iii.). Created with BioRender.com.

Besides polymer coatings, biodegradable metals are under evaluation for cardio-
vascular implants [57]. Very recently, the blood compatibility of a Zinc-based alloy was
determined using human blood. This study considered aspects of coagulation and com-
plement activation. Further, the alloy also showed sufficient performance in vivo [58].
It should be noted, however, that a potential implant is not introduced into a healthy
organism. Pre-existing cardiovascular diseases and risk factors may already activate the
patient’s immune system. In vitro experiments with the blood of corresponding patients
seem appropriate in this context.

4. Modulation of Complement Activation by Biomaterials

The design of biomaterials has been especially dedicated to the development of inert
biomaterials, with the aim of limiting adverse reactions. Although inert biomaterials remain
practically unchanged and tolerated by the host, regulation of cell adhesion to the protein
layer adsorbed to biomaterials may change cell responses leading to improved wound
healing [59,60]. Efforts to modulate the host response to biomaterials have included both
chemical and physical approaches. Chemical approaches focus on preventing complement
and coagulation activation through the reduction of protein adsorption or the incorporation
of pharmacological agents. On the other hand, physical approaches include the modulation
of surface topography and mechanical properties of a biomaterial. Besides these strategies
to overcome adverse effects of biomaterials, an emerging approach is the incorporation of
endogenously expressed biomolecules that naturally modulate the host response to the
biomaterial. Immobilization of growth factors, such as VEGF, TGF-β, and PDGF, control
adhesion, migration, proliferation, and differentiation of various cell types and provide
an anti-thrombotic environment [60,61]. Although some materials are capable of reducing
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protein adsorption and/or cell adhesion, there is currently no material available that
diminishes biomaterial associated thrombo-inflammation.

4.1. Surface Chemistry

The interaction of a biomaterial with the adsorbed protein layer is crucial for the body
reaction to an implant. In this context, surface wettability is an important factor affecting
the initial adsorption of blood proteins. Here, hydrophilic—wettable—surfaces are mostly
associated with low surface interactions with blood components. Various approaches aim
to create less adhesive surfaces to control the amount, composition, and conformational
changes of bound proteins [4]. The immune system recognizes hydrophobic parts of
biological molecules as universal damage-associated molecular patterns and subsequently
triggers the processes that lead to their elimination [4]. Thus, it is obvious that hydrophobic
surfaces are more prone to protein adsorption than hydrophilic surfaces and that proteins
show little adsorption to hydrophilic surfaces which might be due to the preservation of
their native state secondary structure [62–64]. In this context, numerous studies report
that white blood cell activation is controlled by surface wettability and dependent on
the cell type [65,66]. While macrophages and lymphocytes are preferentially activated by
hydrophilic/anionic surfaces, hydrophobic surfaces are selective for CD8 T lymphocytes.

Another important surface property is the surface charge, which is determined by the
presence of chemical groups such as positively charged amino (-NH2), negatively charged
carboxyl (-COOH), and neutral hydroxyl (-OH) and methyl (-CH3) groups. Thereby,
hydrophilic amino and hydroxyl groups induce the highest infiltration of inflammatory
cells in vivo [4,67], which might be explained by the ability of C3b to covalently bind
hydroxyl groups [25,68]. Of note, platelets and biological surfaces are negatively charged
and thus attracted to positively charged surfaces [69]. On the other hand, hydrophilic
positively charged amino and negatively charged carboxyl groups both cause stronger
conformational changes of adsorbed proteins and thus may trigger the contact system [70].
Pacharra et al. therefore observed stronger platelet adhesion to modified PCL films, which
present negatively charged carboxyl groups on their surface. However, very low amounts
of PCL copolymerized with PLLA were not sufficient to create a negatively charged surface
and thus reduced platelet adhesion in this study [14]. Further studies applying self-
assembled monolayers of graded hydrophilicity revealed significantly increased fibrinogen
adsorption on hydrophobic methyl groups compared to hydrophilic carboxyl surfaces,
with the same tendency for platelet adhesion [71]. Since the initial cell response is triggered
rather by the adsorbed protein than by the surface itself, the pattern in which blood proteins
adhere determine material-related cellular reactions. Unfortunately, modulating the surface
chemistry is not enough to foresee the behavior of bound proteins on artificial surfaces
and reported results are contradictory [4], depending on the study design and species used
for experiments.

4.2. Topography

The surface of a biomaterial can be modified by different techniques such as particle
deposition, self-assembled monolayers, soft photolithography, blasting, acid etching, and
polymer expansion which finally result in different size geometries, surface protrusions,
or dentations [4,72]. Thereby surface patterning modulates cellular and physiological
processes such as the binding affinity of blood proteins [73,74] and thus host response to
the foreign material [65]. Surface patterns, ranging between 10 and 100 nm, are usually
utilized to directly modulate cell behavior since they directly change surface properties such
as surface charge, energy, and topography and are reported to enhance cellular functions
due to conformational changes of the adsorbed protein [74–76]. Increasing the nanoscale
roughness from 15 nm to 30 nm, for example, induces a significant decrease in protein
binding affinity [74]. Furthermore, in vitro data highlight the importance of nanoparticle
size, charge, and architecture for subsequent complement activation as polymeric and
spherical structures tend to damage the cell membrane of immune cells [77]. For example,
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platelet activation is generally reduced on nanostructured gold nanoparticles and is more
sensitive to nanotopography than surface hydrophobicity [78]. In addition, nanoparticles
carrying native complement receptors such as C5aR were able to block interactions between
C5a and C5aR, thereby reducing neutrophil activation [79].

Overall, these data indicate that surface nanostructure and nano-scaled roughness are
potentially relevant morphological features, which regulate protein adsorption and direct
cellular response to biomaterials. However, the mechanism behind the topography-induced
cellular response is complex and still unclear.

4.3. Surface Roughness and Stiffness

Surface roughness refers to the structure and topography of the top surface layer
and is most commonly used to characterize a surface [80]. It is well established that cell
functions are tightly related to the cellular interactions with the extracellular matrix. In
particular, topographical features have the ability to target receptor-driven pathways and
thus mediate the appropriate cellular responses [81]. In this context, matrix stiffness and
surface roughness have been recognized as key factors directly regulating, for example,
cell adhesion [82,83].

Polymeric and metallic implant surfaces are by nature rough at a cellular level, which
accounts for the observed increased thrombogenicity of these materials [69]. With respect
to activation of the coagulation cascade, a recent study demonstrates that increasing surface
roughness positively correlates with the number of adhered platelets [84]. Most studies in
this context are focused on surface roughness and are evaluated on only a few different
roughness values due to the limited manufacturing technologies. Only recently, Hou et al.
presented a high-throughput tool to study the influence of the combined surface roughness
and substrate stiffness on cell adhesion and mechanotransduction of mesenchymal stem
cells using soft and stiff hydrogels with integrated surface roughness gradient [82]. They
clearly demonstrate the synergy of both surface characteristics and their direct influence
on cell behavior. Scott et al. demonstrated that substrate stiffness of polyethylenglycol-
based hydrogels directly impacts macrophage morphology, surface marker expression, and
growth factor production [85]. These properties reflect the influence of matrix stiffness on
macrophage polarization, which will be further specified below. Moreover, it has been
shown that material stiffness influences the composition of the adsorbed protein layer and
that tissue cells are able to sense material stiffness through this layer [86].

It is, however, difficult to precisely predict blood compatibility regarding protein
adsorption, cell adhesion, and activation due to the variety of influencing parameters, as
the processes during the contact of the blood with the biomaterial are complex.

4.4. Immune Modulation Strategies

Over the past decade, evidence has emerged that the immune system plays a critical
role in controlling and determining the nature of the repair process and that the inflamma-
tory response is not an undesirable reaction but an important component of tissue repair
and regeneration [87]. Initiating very specific biological responses through biomaterial
design could therefore be beneficial for both implant integration and performance [4]. By
binding naturally expressed proteins which directly interact with receptors expressed by
immune cells or indirectly modulate immune cells by regulating complement or coagula-
tion cascade, biomaterials can directly influence the host response [23,65]. For example,
peptides were immobilized on surfaces that bind factor H with high affinity, which led to a
significant reduction in circulating C3a- and sC5b-9 in vitro [88].

Local tissue injury at the site of biomaterial implantation may promote neutrophil
and macrophage recruitment through damage-associated molecular patterns, cytokines,
and chemokines. Therefore, immunomodulatory biomaterials are targeted to promote
desirable events, such as the polarization of M1 to M2 macrophages, which have anti-
inflammatory/anti-fibrotic properties [89–91]. M2 macrophages, in turn, contribute to
regeneration via crosstalk with regulatory T cells, which promote a pro-regenerative tis-



Int. J. Mol. Sci. 2021, 22, 11390 8 of 19

sue repair cascade [92]. Impairment in the M1-to-M2 transition, such as prolonged M1
macrophage phenotype, has been implicated in myocardial infarction [93]. Efforts to influ-
ence the immune response to biomaterials include both chemical and physical approaches
modulating macrophage phenotype. These strategies can prevent initial protein adsorp-
tion to diminish downstream activation of complement and coagulation [94]. However,
protein adsorption might not be solely responsible for macrophage activation, since neutral
or hydrophilic surfaces, which exhibit less protein adsorption, induced the secretion of
inflammatory cytokines [95]. The addition of anti-inflammatory agents such as heparin
directs the adaptive immune response by switching from Th1 to Th2 lymphocytes, rapidly
reducing inflammation to promote wound healing [4,96,97].

The mechanisms of material-induced leukocyte activation are still not understood, which
hampers the development of biomaterials and delivery systems that can modulate the immune
system. Inhibitor studies targeting either the complement system at C3 level or interfering
with blood coagulation suggest that both processes play a crucial role [8,23,98,99]. Since most
approaches only affect one of the players in the host’s response to the biomaterial, no single
inhibitor has yet been identified that could be sufficient to provide clinical benefits. Conse-
quently, the requirements for an ideal biomaterial change from “immune-evasive”—aimed
to reduce host responses—to “immune-interactive” enabling the desired immunological
responses for successful integration of the biomaterial and subsequent tissue repair [4].

5. In Vitro Testing

Since the concept of blood compatibility is not properly defined, various standards
concerning different aspects have been proposed for the biological performance of materials.
Most commonly, such approaches track the ability of materials or coatings to resist non-specific
protein adsorption [100] and/or platelet adhesion [101] or to reduce the degree of platelet
and complement activation [7,102]. All three aspects will eventually influence the occurrence
of thrombosis and inflammation because they are highly linked [17,103,104]. The success of
the resulting therapeutic strategies will depend on the extent to which biological processes
are modulated and how current medication influences this regulation [7,105–107]. Systemic
studies addressing these questions are hardly done by only one laboratory and are thus rare.
Importantly, the preparation of the materials and the blood samples is an integral requirement
for standardized and reproducible in vitro testing strategies [108]. Thereby, special attention
is paid to the importance of the availability of endotoxin-free and thoroughly (physically and
chemically) characterized materials since bacterial endotoxins activate blood cells.

Which parameters should be analyzed in vitro to predict in vivo performance of a
biomaterial in contact with blood? ISO 10993-4:2017 [109] recommends tests for hemol-
ysis, coagulation, platelet, complement and leukocyte activation as an initial guide to
blood compatibility testing. However, other aspects should also be considered: the anal-
ysis of surface adsorbed proteins, the establishment of appropriate control systems, the
consideration of blood collection procedures for in vitro tests, and the choice of antico-
agulants [110,111]. Figure 3 gives an overview of possible targets of blood compatibility
testing. ISO 10993-4:2017 provides, however, only recommendations on the in vitro test
strategy. Standardized protocols or standard operation procedures, agreement on reference
materials and experimental conditions (static or dynamic, flow conditions, test duration
depending on the biological processes), and, very importantly, the specification of cell
models are still lacking [108]. For example, the use of blood products or animal blood
should be avoided, due to functional alterations [112] and species-dependent platelet
function [113,114], respectively. Here, Braune et al. recommend using freshly drawn blood
from healthy donors that should be characterized comprehensively [108,115].
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5.1. Protein Adsorption

The vast interactions of the blood with the artificial surface are determined by its
geometry, the shear forces that occur at the blood-contacting surface, and the physical and
chemical properties. In this context, the adsorption of plasma proteins is the initial event
and the basis for all subsequent interactions [105,116,117]. Highly mobile proteins quickly
adsorb onto the biomaterial and are subsequently replaced by proteins with a higher
affinity called the Vroman effect [118]. The composition of the adsorbed protein layer
and the conformation of the proteins are unique for each biomaterial [50]. The methods
applied to detect surface adsorbed proteins are carried out under static conditions and
mainly include spectroscopic and/or mass spectrometric approaches [108,119]. However,
the precise prediction of the dynamics within the protein layer remains challenging [120].

The conformational changes of adsorbed proteins must also be considered in this
context. They directly affect the interactions with blood cells by exposing binding motifs
that are not accessible to the corresponding receptors and enzymatically active blood
components in the native state [121,122]. The unfolding of fibrinogen, for example, exhibits
platelet binding sites at the fibrinogen γ- and α-chains. It has been reported that the degree
of unfolding correlates with the activation and adhesion of platelets to artificial surfaces and
might be unrelated to the actual amount of adsorbed fibrinogen [70]. This makes fibrinogen
likely as the critical ligand for adhesion. The conformation and bioactivity of surface-bound
proteins can be accessed via spectroscopic and microscopic approaches [117,121].

5.2. Contact System, Coagulation Cascade and Platelet Activation

Blood-contacting medical devices may cause thrombo-inflammation due to changes
in physiologic blood flow patterns and contact with foreign materials. The intrinsic coag-
ulation pathway is initiated by Factor XII—the main circulating zymogen of the contact
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system—which recognizes the artificial surface [46,123]. Reports on FXII-mediated interac-
tions demonstrate the impact of negatively charged surfaces, as well as highly wettable
and highly non-wettable surfaces [43]. Interactions with such surfaces result in confor-
mational changes of FXII, which eventually leads to its auto-activation by conversion
into α-FXIIa [43,124]. The immobilized α-FXIIa cleaves circulating FXII to enzymatically
active β-FXIIa, which subsequently converges in thrombin generation and thrombus for-
mation [46,123]. Typically, ELISA techniques are applied to measure the various active
products of contact activation and thrombin generation. Further, microscopy is a common
tool for the analysis of adherent and activated platelets on biomaterials. Conventional
methods only take into account small sections of the entire surface and therefore lack
statistical validity and standardization [108]. Clauser et al. applied image segmentation
and machine learning algorithms to automatically analyze over 100,000 microscopic im-
ages proposing a reliable, comparable, and standardized approach to determine platelet
adhesion and activation on biomaterials [125].

Platelets respond to minimal stimulation and become activated when they contact
any thrombogenic surfaces, such as injured endothelium or artificial surfaces or when flow
patterns are changed. The effect of shear forces on platelets has been studied extensively.
Higher shear rates result in higher platelet deposition, while at lower shear rates the
inverse is true [126,127]. In vitro tests under dynamic conditions differ greatly in their
design and flow dynamics and should, regarding cardiovascular biomaterials, consider
both physiological arterial conditions (pulsatile flow with shear rates >1500 s−1) and
pathological conditions (supra-physiological shear rates >10,000 s−1, turbulent flow, and
recirculation) [16,128–131]. In this context thrombin generation and platelet activation are
both highly dependent on the shear rate. Further, the degree of platelet activation correlates
with both the shear stress magnitude and exposure time [132]. Microfluidic devices provide
an easily adjustable platform to expose cells, proteins, platelets, or whole blood to flow and
shear stress. Such technologies can be easily adapted to specific questions and represent a
significant advance for studying the effects of shear forces on biological processes [132,133].

However, there is currently no standardized in vitro test protocol to evaluate device
thrombogenicity [134]. Addressing this problem, Braune et al. conducted a unique prospec-
tive, randomized, and double-blind multicenter study demonstrating that standardization
of in vitro test protocols allows a reproducible assessment of platelet adhesion and activa-
tion from fresh human platelet-rich plasma [135]. In five independent German test centers,
platelet density, platelet covered surface area, and area per platelet were determined on
three different polymers using a stringently standardized in vitro test protocol. The remark-
able results show that a reproducible evaluation of the adhesion and activation of human
platelets on polymer-based biomaterials is possible. Although blood donors (n = 10 for each
center) were not age- and/or gender-matched and processes, such as blood preparation,
were not harmonized, the scoring for the thrombogenic potential of the materials was equal
for all participating centers. This is an important aspect that should be considered by the
scientific community, in the future.

5.3. Complement and Leukocyte Activation

Human blood contains 4.3–10 × 103 leukocytes/µL, such as granulocytes, lympho-
cytes, and monocytes. Monocytes make up only 1–6% of all leukocytes, and neutrophilic
granulocytes are the most abundant at 50–70%. When foreign material is detected, these
immune cells are rapidly activated by the complement system. Products of the complement
cascade lead to an increased permeability of blood vessels, attract and activate neutrophils
and monocytes and thus stimulate the release of Tissue Factor, which initiates the coagula-
tion cascade [23]. In endothelial cells, products of the complement cascade lead to increased
expression of cytokines, chemokines, and adhesion molecules [99,136]. To determine com-
plement activation, ISO 10993–4:2017 recommends the in vitro determination of C3a, C5a,
and sC5b-9 by ELISA assay. Moreover, Engberg et al. demonstrated a direct correlation
between downstream biological effects and the proteins initially adhering to an artificial
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surface after contact with blood [50]. They found strong correlations between the ratio of
C4 to its inhibitor C4BP. However, the levels of complement activation products C3a and
C5a/sC5b-9 correlated only weakly or not at all, questioning their predictive value.

While the importance of flow has been recognized, our current understanding of its
mechanisms is focused mostly on platelets. Interestingly, platelets can initiate comple-
ment activation by generating C5b-9 proportional to increasing shear stress and exposure
time [103,137]. Further, physiological shear stress antagonizes the activation of comple-
ment and coagulation cascade via the expression of the inhibitory proteins in endothelial
cells [138,139]. In contrast, non-physiological flow patterns (turbulent and oscillatory flow)
induce endothelial expression of high amounts of properdin, a known activator of the
alternative pathway of the complement cascade [140]. Finally, neutrophilic granulocytes
contribute to the activation of the complement cascade via NETosis. NETosis is a host
defense mechanism involving the extrusion of DNA-rich nucleic material, histones, and
enzymes, so-called neutrophil extracellular traps (NETs) [141]. Originally, NETosis was
described as a mechanism to clear pathogens from the blood [142]. However, shear-induced
NETosis promotes complement activation as well as products of complement activation
stimulate NETosis, eventually cumulating in thrombo-inflammation [143,144]. The impact,
which biomaterials might have on NETosis, is rarely the subject of investigations. Only
one study demonstrates that neutrophils are sensitive to changes in biomaterial surface
properties and exhibit differential activation in response to a titanium surface [145].

In vivo, contact with cardiovascular devices activates both neutrophils and monocytes.
More recently, Witherel et al. presented an in vitro model for macrophage interaction
with biomaterials that claimed to apply to a wide range of biomaterials [92]. There is
an imminent need for comparable in vitro models to overcome the lack of standardized
operating procedures for blood cell activation.

5.4. Leukocyte-Platelet Aggregates

Activated leukocytes contribute to thrombosis through pro-coagulant properties such
as the formation of leukocyte-platelet aggregates [38]. Such interactions are a new aspect
in the study of blood compatibility. However, the effects of this association are largely
unknown. For example, leukocyte-platelet aggregates could contribute directly or indirectly
to thrombin generation via monocyte tissue factor [9].

In this context, the effect of shear stress on blood cell activation is well known. It is as-
sumed that physiological shear rates cannot activate leukocytes [16,146]. The presence of a
biomaterial might very well be a potential stimulus for blood cells triggering the formation
of leukocyte-platelet aggregates even under physiological shear rates. Recent data of our
group show that the presence of PLLA induces more circulating monocyte-platelet aggre-
gates under flow conditions, which is accompanied by an enhanced platelet and monocyte
activation [16]. Chang also observed significant material-induced leukocyte-platelet aggre-
gation, and tissue factor expression in response to pathological shear rates [147]. Overall,
we show a complex interaction of hemodynamic forces and the underlying polymers
regarding blood cell activation and leukocyte-platelet interaction which is possibly in-
fluenced by surface wettability and protein adsorption. Circulating leukocyte-platelet
aggregates are frequently analyzed and quantified by flow cytometry. Special attention
must be paid to the selected surface markers, depending on which subpopulation is to be
considered [16,148].

Data of clinical trials prove the involvement of leukocytes and cytokine secretion in
thrombotic complications [149], and in vitro studies suggest that the intrinsic pathway
alone might not be primarily responsible for platelet activation [9,38]. In the context
of blood compatibility testing, leukocyte adhesion/activation and formation of platelet-
leukocyte aggregates might thus possess a stronger predictive power than platelet activa-
tion alone [16].
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5.5. Proteomic Approaches

Proteomics-based approaches are particularly well suited to provide a more compre-
hensive picture of biological processes by examining the entire proteome of a biological en-
vironment rather than each protein individually and are thoroughly reviewed in [119,150].
Understanding the global cellular and molecular context of the interactions of biological
systems with biomaterials may lead to a better prediction of material behavior from in vitro
to in vivo.

It is commonly accepted that initial protein adsorption determines the performance
of a biomaterial [151]. Proteins adsorbed to the material surface facilitate and control cell
adhesion and the subsequent cellular events, including cell proliferation and differentia-
tion [152]. The quantity and properties of the adsorbed proteins are highly dependent on
the surface properties [121]. The first layer of attached proteins, thereby, determines the
formation and content of subsequent protein layers, affecting the fate of the material itself,
in terms of blood compatibility and degradation [150]. Particularly competitive protein
adsorption to a biomaterial is an important issue, which cannot be addressed properly by
commonly used techniques (see Section 5.1) [119]. Using proteomics it is now possible to
characterize the composition of an adsorbed protein layer regarding the identity of different
proteins and their concentration in a complex biological system [153]. Milleret et al. high-
lighted the importance of surface properties by demonstrating that neutrophil adhesion to
a cobalt chromium alloy pre-coated with fibrinogen is mediated by protein orientation and
conformation rather than the amount of adsorbed protein [154]. Regarding plasma protein,
fibrinogen, albumin, and immunoglobulin γ are the most frequently studied proteins due
to their high abundance [39]. However, proteomic analyses identified other low abun-
dance plasma proteins such as serum amyloid P [155], complement components [50,156]
as a potential mediator of implant failure. Moreover, Swartzlander et al. identified 245
inflammatory proteins (out of 300 identified proteins) adsorbed on poly-ethylene glycol hy-
drogels [157]. In a recent study, Ndumiso et al. compared the protein corona of PLGA and
PCL nanoparticles incubated with human serum and demonstrated that each biomaterial
shows a unique proteome fingerprint, which is influenced by surface characteristics such as
wettability and by thermodynamics of protein binding [158]. Regarding the foreign body
response, Buck et al. demonstrated that polystyrene surfaces containing carboxyl groups
adsorbed more proteins associated with pathways that are involved in wound healing
and implant integration than, for example, surfaces containing amino groups [159]. It
seems evident that proteomics is a powerful approach to assess protein-binding dynamics
and the composition of adsorbed monolayers [119,150]. However, it needs to be comple-
mented with other state-of-the-art analytical tools to complete the understanding of host
biomaterial interactions.

6. Concluding Remarks and Open Questions

The complexity of the interactions between blood and material explains why it has
not yet been possible to develop truly blood compatible materials. Currently, we are far
from describing a complete mechanism of the material-induced host response. Simplifying
the system neglects many aspects of the complex material-blood interaction and has not
yielded any real progress. The passivation of an artificial surface intends to minimize
protein adsorption since cells interact with pre-adsorbed proteins and not with the bare sur-
face. Despite large efforts in developing non-activating stent coatings, the host responses
and subsequent blood cell activation and adhesion lead to incompatibility reactions often
limiting the functionality of a device. To overcome unfavorable material-related biological
responses surface modification strategies that enable biological processes (bioactive coat-
ings) are designed to regulate complement and coagulation activation. However, newly
developed designs have to be tested thoroughly in vitro in a more strategic and stan-
dardized fashion than in the past. Moreover, expertise on the individual procedures and
techniques should be pooled, as comprehensive in vitro testing cannot be performed in a
single laboratory. Since future blood compatible surfaces will target much more specifically
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the intended biological responses and suppress undesired cellular and molecular reactions,
they require a detailed understanding of the physiological activation pathways and their
intercorrelations. The use of more physiological experimental designs should result in
significant advances in our knowledge on the effect of mechanical factors on thrombosis
and hemostasis.
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