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Introduction

Microarray experiments have become a major analyzing method in various
fields of research such as biology, medicine or pharmaceutics. Even though
they are used very often, only little is known about the character of their un-
derlying subprocesses. This is a major objection to the validity of inferences
from microarray experiments.

This work is concerned with modeling respective subprocesses of microar-
ray experiments as well as the analysis of the corresponding results including
comparisons to usual inferences by common analyzing methods. It shall help
to understand the character of the underlying subprocesses and thus give
some advice to researchers about the design of microarray experiments and
the choice of analyzing methods.

Characterization of microarray experiments

In this section we will characterize the fields of application and the mode of
operation of microarray experiments. For a more detailed introduction to
this topic see for example [MüNi].

The major purpose of microarray experiments is to discover gene mech-
anisms in organisms. For example, researchers try to answer questions such
as

• Which genes does Bacillus subtilis use to handle salt stress? (biology,
[Hahne])

• Which genes are involved in the generation of breast cancer? (medicine,
[Welch])

• Which human gene expressions are affected by a new drug? (pharma-
ceutics, [Chavan])

More precisely, such genes and respective proteins shall be identified which
are used by a cell during distinct cell states. Cell states are affected by en-
vironmental conditions such as concentrations of chemical substances (salt,

1



2 INTRODUCTION

drugs, hormones,...) in the near neighborhood of the cell and by physical
conditions (temperature, pressure, light,...) as well as by tissue types (skin,
lung, blood,...). Microarray experiments make use of the fact that the same
genes are expressed differently in cells at different cell states. Before describ-
ing the mode of operation we will explain some terms which are important
to understand the biochemical processes linked to microarray experiments.

Genes and DNA

Genes are encoded in DNA (deoxyribonucleic acid) of an organism.1 Typi-
cally, DNA is double-stranded where each strand is a concatenation of nu-
cleotides. DNA nucleotides consist of three portions, a sugar (deoxyribose),
a phosphate and one out of four bases. Possible bases in DNA molecules
are adenine (A), thymine (T), guanine (G) and cytosine (C). The bases of
one strand are able to form two different kinds of pairs (complementary base
pairs) with the bases of another strand, i.e. the A-T pair and the G-C
pair. The former is linked by two and the latter by three hydrogen bonds.
Thus, complementary base pairs are responsible for the linkage of two DNA
strands. For further details see [Camp] and for illustration see Figure 1.
Consequently, DNA molecules with a high percentage of G-C are more sta-

GCT A A

G CA T T

hydrogene bonds

DNA strand

DNA strand

Figure 1: Sketch of the 2-dimensional structure of a DNA molecule.

ble than molecules with lower percentages. This becomes important if one
tries to denature DNA molecules (split the two strands). More energy is
needed to denature DNA with a higher GC content.

The actual genetic information is encoded in the sequence of the bases
within the strands. Since other base pairs than G-C and A-T cannot be
formed the sequence of one strand can be inferred by the sequence of the
other strand and vice versa.

The decoding of the DNA’s information inside an organism is basically
achieved by two processes, transcription and translation. During transcrip-
tion the DNA is copied into mRNA (messenger ribonucleic acid) by comple-

1An exception to this rule are RNA-viruses, whose genetic information is encoded in
strands of RNA (ribonucleic acid).
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mentary base pairing, i.e. the mRNA has the same sequence like one of the
DNA strands with the exception of thymine being substituted by uracil.

At this point it is necessary to give some information on RNA and its
connection to DNA. RNA and DNA are both so-called nucleic acids. Sum-
marizing the differences we find RNA to be single-stranded, the sugar in
RNA is ribose instead of deoxyribose and as already mentioned thymine is
substituted by uracil. An illustration of RNA and DNA nucleotides as well
as of the respective bases can be found in Figure 2. During translation the

Figure 2: The chemical structure of RNA and DNA nucleotides from [WiNu].

mRNA is translated into a chain of amino acids, the protein. Here, the
mRNA’s base sequence determines the sequence of amino acids within the
protein. Proteins are responsible for the reaction on the change of cell states.
So, if an organism reacts to a change with the multiplication of the produc-
tion of a specific protein, in advance there must be a multiplication of the
corresponding mRNA. The change in the amount of mRNA of a certain type
is supposed to be directly proportional to the change of the amount of the
corresponding protein. Subsequently, we will show how microarrays use the
conjecture to infer the change in the amount of proteins an organism synthe-
sizes during a specific cell state. Verifying the conjecture will be one of the
major tasks of this work.

Microarrays

In microarray experiments the change in the amount of mRNA is estimated
in the following fashion. Typically, either a gene library2 of the examined

2A gene library consists of pieces of an organism’s DNA representing the entire genome
or the part of the genome one is interested in. The genome is defined as the entire
hereditary information encoded in DNA.
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organism or artificially synthesized pieces of DNA are fixed to an appropriate
surface. Both cases use single strand DNA. See Figure 3 for illustration.

fixed DNA

surface of the microarray

Figure 3: Sketch of a microarray without hybridizations.

The fixed DNA is called the probe and its sequence is well known, which
is an essential fact as can be seen later. The surface with the immobilized
probes is called the microarray. On the microarray, the probes are organized
in circle objects. These objects are called spots. Each spot contains probes
of a single kind. On many microarrays spots occur doubly to receive more
data and thus grant more reliability. An illustration of the organization of
spots on a microarray can be seen in Figure 4. Microarrays can either be
prepared by the researcher himself or purchased from specialized companies.

probe D

probe A probe B

probe C

probe E probe F

Figure 4: Sketch of the spot organization on a microarray.

The entire mRNA of the organism which has been transcribed during
the respective cell states is extracted and reversely transcribed into cDNA
(complementary DNA), while feeding labeled nucleotides to the reverse tran-
scriptase. The reverse transcriptase is an enzyme (catalytic protein). It is
used to catalyze the transcription process from mRNA to cDNA. cDNA is
called the target. Often used labels are radioactive substances or the fluo-
rescent dyes Cy3 (green fluorescent) and Cy5 (red fluorescent). For a list
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and description of other methods see [Prietz], chapter 4. At this point it is
important to mention that the extracts of the cells originating from different
cell states are kept separately and then are labeled differently. Sometimes
the reverse transcription step is omitted and the mRNA is chosen to be
the target. In this work, reverse transcription is the first subprocess and is
examined accordingly.

If incubated under sufficient heat, cDNA will become single-stranded and
thus during cooling can be hybridized to DNA with a complementary base
sequence fixed on the microarray (see Figure 5). This reaction is called
hybridization and is the second subprocess we will look at. During this step
the targets from the different cell states compete for free probes on the array.

surface of the microarray

fixed DNA

hybridized cDNA

Figure 5: Sketch of a microarray with hybridizations.

Non hybridized targets and other materials are washed off the surface,
while hybridized targets stay on the array due to their linkage to the immo-
bilized probes. This reaction characterizes the third subprocess, the washing.

Next, hybridized cDNAs are detected by scanning for the targets. This is
accomplished by using the physical characteristics of the labels. Radioactive
labels radiate per se whereas fluorescent dyes have to be stimulated by lasers.
This work is restricted to detection with fluorescent dyes since this is the
most commonly used labeling method. The fluorescent reaction is the fourth
subprocess.

The fifth subprocess is the detection itself. It is achieved either by CCD
(charge-coupled device) cameras or by photomultiplier tubes. The results
are signal intensity values, two for each spot due to the two dyes. These
intensities are visualized as shown in Figure 6. This work only deals with
the photomultiplier tube. Here, the spots in the picture represent the spots
on the microarray, maintaining the spatial information. Different spot colors
represent different labels whereas the brightness of spots is directly propor-
tional to the intensity detected. Thus, the genes corresponding to bright
spots are supposed to be expressed strongly.
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Figure 6: Visualization of a microarray from [Alhad].

Goal and structure of this work

The assumption of many researchers is that signal intensities from microar-
rays are directly proportional to the amount of the respective mRNAmolecules
(see for example [Bronch], [ZveBa] or [McLach]). This enables them to use
linear models to describe the output signal (see [Speed] for a detailed overview
or [Ochs] for an example). There are hints which are contradictory to using
linear models. E.g., the dynamic of particles during the hybridization step
might behave non linear. Linear models are still a common tool since their
analysis is simple.

Many publications distance themselves from the assumption of direct pro-
portionality. They propose more complex models to describe the relationship
between the amount of mRNA molecules and detected signal intensities. We
will give two examples. [Held] use an ordinary differential equation to model
the hybridization and washing step. Their model does not only depend on
the amount of mRNA molecules but also on various physical properties.
[DaViHa] use stochastic differential equations to describe the long term be-
havior of binding and release processes such as the hybridization reaction.

The main aim of this work is to mathematically analyze the assumption
of direct proportionality by investigating the five subprocesses, i.e. reverse
transcription, hybridization, washing, fluorescence and detection.

In the first chapter we describe the subprocesses with the help of models
taken from the literature if possible or developed by ourselves. We put the
main focus on the hybridization process since it is the basic principle be-
hind microarray reactions. The idea to model the hybridization by a Markov
process is borrowed from [ReWi]. We extend their model by an additional
transition, which describes the release of targets from the spot. The transi-
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tion rates are adjusted adequately.
The other subprocesses are summarized as residual subprocesses. Here, we

start with the reverse transcription which we describe by a Markov process,
too. We state a binomial model for the washing process. The fluorescence
is divided into two parts, the laser light reaction and the fluorescence it-
self. The laser light is modeled by an ordinary differential equation with
a noise term ([SaTe]) whereas the fluorescence intensity is determined by a
heuristic equation ([Schwedt]). Finally, on the one hand, we describe the
detection and attached noise sources with heuristic results from [SauWei],
[Uiga], [BiSchl] and [SiSu], and on the other hand we use the branching pro-
cess from [MaTeSa] as alternative description.

In the second chapter we analyze the models from chapter one and try
to quantify the noise added to the signal. In the end of each section we will
give a short summary of the results.

Again, starting with the hybridization process as the most important
process of the microarray experiment, in a first step we discuss its parameter
situation. Afterwards, its stationary distribution is calculated for different
parameter settings. Then, we use a result from [Kurtz] to approximate the
Markov process by a deterministic process. The respective stationary points
are determined for the same parameter settings and in general. Then, they
are compared to the stationary distribution. In addition, the existence and
uniqueness of the stationary point is shown. Afterwards, we apply another
limit to approximate the process by a partial differential equation (PDE).
We show that the stationary points from the first limit are consistent to the
distributional solution of the PDE. In a last step the results are verified by
simulating the entire process.

We begin the analysis of the reverse transcription process by investigat-
ing its dependency on the parameters involved. A common perturbation
approach of the rates of the process is applied. A Taylor approximation and
a statistical test are used to examine the impact of the perturbation. In
addition we propose the choice of parameter values by minimizing the area
under the ROC curve of the test. Finally, an estimator for the amount of
input particles of the reverse transcription process is proposed if a certain
output is measured. The distribution of the estimator is determined.

The binomial model of the washing step is analyzed by determining the
mean and the variance of the particle distribution for realistic parameter
situations. We determine these values for increasing detergent intensities
and reproduce observations made by biologists in washing experiments (see
[Drob]). It can be seen that only within a small range of washing intensities
the correct signal can be achieved.



8 INTRODUCTION

We combine the solution of the ordinary differential equation of the laser
light intensity with the heuristic equation of the fluorescence intensity. On
this basis we develop a correction factor which is a measure for the noise
added by the process if two signals are compared. For illustration, we give
an example for two signal intensities and determine the correction factor for
this situation.

Last but not least, the detection model is analyzed. Here, we restrict the
analysis to the branching process. We determine mean, variance, skewness
and kurtosis of the number of output particles with the help of the probability
generating function. These characteristics are used to verify the approxima-
tion by a normal distribution for realistic parameter situations. We give an
example for two signals passing the detection aperture for different param-
eter values. Finally, we investigate the ratio of two signals and derive its
probability distribution.

In chapter 3 we will give an example of the signal passing through all
subprocesses using the models from the first chapter and the results of the
analysis from the second chapter.

For each subprocess the frequencies of the particles involved and of the
respective intensity ratios are determined. In addition the noise due to each
subprocess is specified and respective confidence intervals are determined.
Finally, a conclusion is drawn.

In the last chapter we discuss the results of this work and point out some
weaknesses of the models. Lastly, we give an outlook to future work.



Chapter 1

Modules

In this section the five subprocesses which were described in the introduction
are modeled and an overview to sources of noise is given.

As already mentioned, the main focus of attention will be the hybridiza-
tion process. Its dynamics is responsible for the number of targets hybridized
to the spot. Thus if the other processes do not add too much noise, it will
mainly determine the final signal.

In a microarray experiment the original gene expression level is trans-
formed by different subprocesses into the final signal which is detected.
Knowing only the final signal, a deep understanding of the underlying trans-
formation processes is essential to infer the original gene expression level. In
the sequel of this chapter, we will look at the entire process ranging from am-
plifying the mRNA to detecting the intensities from the microarray. In order
to understand this process, it is divided into five subprocesses (modules).
The modules are:

• reverse transcription,

• hybridization,

• washing,

• fluorescence and

• detection.

In order to motivate the modeling, for each module we will point out some of
the problems, which cause noise and inhomogeneities of the detected signal
at the end of a microarray experiment.

Firstly, we will look at the reverse transcription reaction. This module
is necessary to solve the problem of unstable mRNA by reversely transcrib-
ing it into its more stable version, cDNA. Here, reading errors might occur,

9



10 CHAPTER 1. MODULES

which lead to a wrong sequence of nucleotides. Further, for later detection
of the amount of cDNA, it must be modified during the reverse transcrip-
tion. Often used methods employ the incorporation of dyes into the cDNA.
Mark, different dyes have different incorporation efficiencies which has to be
accounted for.

After reverse transcription, the targets are hybridized to the probes. Only
complementary targets are supposed to bind to the probes on one spot.
In practice, targets with similar sequences also hybridize. This process is
unwanted. It is called cross-hybridization and is considered later. Since
hybridization works with hydrogen bonds between the bases adenine and
thymine (two bonds) and between the bases cytosine and guanine (three
bonds), its strength depends on the number of hydrogen bonds and therefore
on the amount of the different bases, the length of the probes and the length
of the targets. But also the temperature, the time span and the competition
with similar targets might influence the hybridization process.

The next step is the washing procedure. Here, non-hybridized targets and
other chemicals are removed from the microarray with the help of detergents.
But also hybridized targets might be removed if their binding to probes is
not strong enough or the detergent is too strong.

To get a signal from the microarray, the labels which were incorporated
during the reverse transcription step are scanned for. In the case of dye
labels, a stimulation step by a laser light causes fluorescence of the dyes.
Different dyes have different absorption spectra and are therefore stimulated
at different wavelengths. But also the laser power, which is a measure for
the intensity of the laser is important.

The light signal is transformed into an electron current and often multi-
plied by a photomultiplier tube (PMT). Afterwards, the current is detected
by an amperemeter. The strength of the multiplying effect is supposed to be
proportional to the voltage of the PMT. Our modularization of the microar-
ray process is depicted in Figure 1.1.

Above, we listed some of the noise sources which perturb the signal of the
microarray experiment. In order to describe their impact, in the following
we present models for the modules. Due to its importance to the dynamic of
the microarray experiment, we will begin with the hybridization process.

1.1 Hybridization

The DNA probes which are immobilized on a microarray slide are organized
in regions of circular shape, each containing only a single kind of DNA. These
areas are called spots. During the hybridization reaction cDNA molecules
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Figure 1.1: Sketch of the microarray process.

approach a small neighborhood of a spot, which allows them to interact with
the DNA of the spot. According to the number of complementary bases
within the target and probe sequences a target molecule might bind to a
probe molecule on the spot, where the probability of binding should increase
with the degree of complementarity.

1.1.1 A hybridization model from [ReWi]

Let m denote the number of different target types and S the number of
probes per spot. [ReWi] developed a reasonable model which describes the
hybridization reaction on a single spot with the help of a continuous-time
Markov process {N(t) = (N1 (t) , N2 (t) , . . . , Nm (t)) | t > 0} on the discrete
state space

ΣS,m = {N = (N1, N2, ..., Nm) ∈ Nm
0 :

m∑
i=1

Ni ≤ S} (1.1)

where N0 = N ∪ {0}. Let tn denote the event time of the nth event. The
number of events is countable and the respective event times fulfill 0 < t1 <
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t2 < .... In addition, there are finitely many events in a bounded interval. In
the context of the hybridization model, N(tn) = (N1(tn), N2(tn), ..., Nm(tn))
denote the number of different target species 1, 2, ...,m hybridized to the
probes on the spot at time tn. A Markov process is conveniently described
by its transition rates which are in our case defined as follows

ra,b :=
d

dtn
P(N(tn) = b | N(0) = a).

for a transition from state a to state b. For a more detailed theory of Markov
processes see [ChWa]. Figure 1.2 illustrates the state space in two dimensions
including two examples for possible transitions.

0,2 0,3 0,50,1

1,0

2,0

3,0

4,0

5,0

1,2 1,3

2,3

1,41,1

2,1

3,1

4,1

2,2

3,2

0,40,0

hybridization

N1

N2

Figure 1.2: A two dimensional lattice (m = 2) as state space for S = 5 probes
on the spot. Blobs and numbers represent the states of the hybridization process
and lines represent possible transitions between states. Blue arrows are examples
of hybridization events.

Assume, that there are Ti > S cDNAs of type i, i = 1, 2, ...,m. The
resulting percentages pi(n) of type i targets within all non-hybridized targets
and q(n) of non-hybridized probes on the spot are

pi(n) =
Ti −Ni(tn−1)∑m

j=1(Tj −Nj(tn−1))
and

q(n) =
S −

∑m
j=1Nj(tn−1)

S
.
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The inter arrival times tn+1 − tn are independently exponentially distributed
with parameter

r1 = λ
m∑
j=1

(Tj −Nj(tn−1)) ,

where the sum
∑m

j=1 (Tj −Nj(tn−1)) denotes the number of free targets and
λ > 0 is the recruitment rate for a single target.

[ReWi] tried to derive λ with the help of collision theory. They defined λ
to be the ratio of the mean collision time Θ of a single target within a neigh-
borhood D of the spot and the mean sojourn time τ̂(T ) > 0 of this target in
D within a time interval of length T . Unfortunately, free parameters like Θ
could not be motivated. Thus we might as well restrict our considerations to
the model with λ in order to keep the number of free parameters small. We
assume that λ only has an effect on the speed of the process rather than on
the composition of targets on the spot.

Let πj > 0 be the probability of a target of type j binding to a probe
on the spot, whenever there is a collision between these two particles. It
increases with the number of possible hydrogen bonds with the probe.

There are two possible events which might take place whenever a target
comes close to a probe.

1. The probe, which is approached by a target of type i, is not yet hy-
bridized and the target binds to it. The new state will be N(tn) =
N(tn−1) + ei, where ei ∈ Rm is the ith unit vector. The probability for
this transition is

P̂n(i,+1) = πipi(n)q(n),

where (i,+1) denotes the event of one additional target of type i hy-
bridizing to the spot.

2. Nothing happens, i.e. the approaching target does not bind. The new
state will be N(tn) = N(tn−1). The probability for this transition is

P̂n(·) = 1−
m∑
j=1

P̂n(j,+1).

Since already bound targets might dissociate from the probe, the model of
[ReWi] should be extended by the incorporation of dissociation events as
follows.
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1.1.2 A hybridization model with dissociation

We will start with the model from [ReWi] and will add extra transitions
which enable targets to dissociate from the spot. The new process will be
a Markov process, too. We can adopt the same state space ΣS,m but have
to modify the transitions subsequently. The state space in two dimensions
including possible transitions is illustrated in Figure 1.3. Let γj > 0 be

0,2 0,3 0,50,1

1,0

2,0

3,0

4,0

5,0

1,2 1,3

2,3

1,41,1

2,1

3,1

4,1

2,2

3,2

0,40,0

hybridization

dissociation

N1

N2

Figure 1.3: A two dimensional lattice (m = 2) as state space for S = 5 probes
on the spot. Blobs and numbers represent the states of the hybridization process
and lines represent possible transitions (including dissociation events) between
states. Blue and red arrows are examples of hybridization and dissociation events,
respectively.

the rate for a bound target of type j to dissociate. The resulting rate for
dissociations of any of the targets will be

r2 =
m∑
j=1

γjNj(tn−1).

Thus, the rates for the inter arrival times have to be modified in order to
account for the additional transition. The new rate r will be the sum of the
two rates r1, r2 according to superposition of independent Poisson processes
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(see [Hueb], chapter 8)

r = r1 + r2

= λ
m∑
j=1

(Tj −Nj(tn−1)) +
m∑
j=1

γjNj(tn−1). (1.2)

The resulting process is still a Markov process in continuous time but at a
higher rate. Assume the process is in state N(tn−1) at time tn−1. Three
different transitions are possible.

1. A target of type i approaches and binds to a probe, which is not yet
hybridized to another target. The new state will be N(tn) = N(tn−1)+
ei, where ei ∈ Rm is the ith unit vector. The probability for this
transition is

Pn(i,+1) = P̂n(i,+1)
r1
r
. (1.3)

2. Nothing happens, i.e. the approaching target does not bind. The new
state will be N(tn) = N(tn−1). The probability for this transition is

Pn(·) = P̂n(·)
r1
r
. (1.4)

3. An already bound target of type i dissociates from the spot. The new
state will be N(tn) = N(tn−1)− ei. The probability for this transition
is

Pn(i,−1) =
γiNi(tn−1)

r
. (1.5)

This model shall be analyzed in the 2nd chapter. Even though the hybridiza-
tion model is stated for an arbitrary number of different target types, we will
restrict the analysis to the case of only two types. On the one hand, it can
be used to investigate the labeling effect and on the other hand, it is simple
enough to do proper numerical analysis.

1.2 Residual subprocesses

1.2.1 Reverse Transcription

After opening the cells of the organisms of interest, the mRNA is extracted
as an indicator of the gene expression activity. The extracted mRNA is quite
unstable and therefore has to be transformed into a stable molecule, pre-
serving the information of the mRNA sequence. This is achieved by reverse



16 CHAPTER 1. MODULES

transcription. Here, the extracted mRNA is reversely transcribed into cDNA
via complementary base pairing with the help of a viral enzyme. This enzyme
is called reverse transcriptase and is able to merge single deoxy-nucleotides
into single stranded cDNA, complementary to the original mRNA sequence.

In microarray experiments one kind of nucleotide is chosen to be labeled
with a fluorescence dye in order to detect and quantify cDNA molecules.
These nucleotides as well as unlabeled nucleotides (of the same and of the
three other kinds) are fed to the reverse transcriptase to be incorporated
into the cDNA strand. This leads to a competition of labeled and unlabeled
nucleotides. Labeled nucleotides are bigger, i.e. they diffuse slower and are
incorporated less efficiently by the reverse transcriptase. See Figure 1.4 for
illustration.

Figure 1.4: Chemical structure of labeled (with Cy3 and Cy5) and unlabeled
Deoxycytidine triphosphates (dCTP).

In addition incorporation of labeled nucleotides is forbidden if the in-
corporation positions are too close to each other. The reason is a steric
conflict of the three-dimensional structure of cDNA and the shape of labeled
nucleotides. For simplicity, this effect shall be neglected.

1.2.1.1 A reverse transcription model

The following model describes the process of reverse transcription mathe-
matically. We state a continuous time, discrete state Markov process but
eventually we look at the embedded Markov chain in discrete time. During
detection the signal is caused by fluorescence of labeled nucleotides. Thus,
we only have to look at those positions within the mRNA sequence, which
are able to serve as a template for labeled nucleotides. Let m be the number
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of such positions within a certain mRNA strand. Unlabeled nucleotides are
denoted by u and labeled nucleotides by l. The respective state space is
{0, 1, ...,m}. The rates of the process can be derived as follows. Initially,
there are Vi nucleotides of type i, i ∈ {u, l} which are free to react with
mRNA molecules. Assume Vi ≫ m, i ∈ {u, l}. Let z(k) be the kind of
nucleotide incorporated at position k, k ∈ {1, 2, ...,m}. Thus, the number of
l-nucleotides incorporated up to position k (including k) is

Z(k) =
k∑

i=1

1l(z(i))

where 1l(z(i)) denotes the indicator function

1l(z(i)) =

{
1 if z(i) = l,

0 else.

At this moment, the resulting number of free nucleotides is Vu − (k − Z(k))
for the unlabeled and Vl − Z(k) for the labeled type. Single nucleotides of
type i, i ∈ {u, l} are recruited (bound after approaching) by the enzyme with
rate ri. Thus, the rate for recruiting a nucleotide of type i at position k + 1
is the product of ri and the number of free nucleotides of the respective type,
i.e. ru(Vu − (k − Z(k))) for the unlabeled and rl(Vu − Z(k)) for the labeled
type. The resulting probability qi(k + 1, Z(k)) := P (z(k + 1) = i | Z(k)) of
the recruited molecule at position k + 1 being of type i conditional on the
history Z(k) until position k will be the relative rate, i.e.

qi(k + 1, Z(k)) =


ru(Vu−(k−Z(k)))

ru(Vu−(k−Z(k)))+rl(Vl−Z(k))
if i = u,

rl(Vl−Z(k))
ru(Vu−(k−Z(k)))+rl(Vl−Z(k))

, if i = l

with Z(0) ≡ 0. Obviously, qu and ql are probabilities and fulfill

qu(k + 1, Z(k)) + ql(k + 1, Z(k)) = 1.

Since we are not interested in the time, we will restrict further investigations
to the embedded markov chain.

Once a nucleotide of type i, i ∈ {u, l} is recruited by the enzyme, it
can either be incorporated into the cDNA sequence with probability pi or
not with probability 1 − pi. Note, rl < ru as well as pl < pu due to the
size and structure of the labeled nucleotides which are disadvantageous for
the diffusion towards the enzyme and the subsequent incorporation reaction
catalyzed by the enzyme. So, whenever the reverse transcriptase prepares
for the reaction at position k + 1, three different events can occur.
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1. A nucleotide of type u is recruited and linked with the cDNA molecule,
which happens with probability qu(k + 1, Z(k))pu. The enzyme moves
on to position k + 2 and Z(k + 1) = Z(k).

2. A nucleotide of type l is recruited and linked with the cDNA molecule,
which happens with probability ql(k + 1, Z(k))pl. The enzyme moves
on to position k + 2 and Z(k + 1) = Z(k) + 1.

3. The recruited nucleotide dissociates and is not attached to the cDNA
molecule. The enzyme stays at position k and recruits the next nu-
cleotide. The probability for this event is qu(k + 1, Z(k))(1 − pu) +
ql(k + 1, Z(k))(1− pl).

Therefore, if the cDNA sequence is known until position k, the probability
distribution of z(k + 1) can be determined by calculating the limit of the
geometric series

P(z(k + 1) = i|Z(k))

= qi(k + 1, Z(k))pi

∞∑
n=0

(qu(k + 1, Z(k))(1− pu) + ql(k + 1, Z(k))(1− pl))
n

=
qi(k + 1, Z(k))pi

1− (qu(k + 1, Z(k))(1− pu) + ql(k + 1, Z(k))(1− pl))

=
qi(k + 1, Z(k))pi

qu(k + 1, Z(k))pu + ql(k + 1, Z(k))pl
. (1.6)

Remark: Obviously, Equation (1.6) is independent of the third transition.
Thus, if we are only interested in the number of labeled nucleotides which are
incorporated till position k, this transition can be omitted.

Let P(Z(k+1) = i) ≡ 0 if k+1 < i. Thus, the probability for the number
of l-nucleotides incorporated up to position k can be determined recursively
as

P(Z(k + 1) = i) = P(Z(k) = i)P(z(k + 1) = u|Z(k) = i)

+P(Z(k) = i− 1)P(z(k + 1) = l|Z(k) = i− 1) (1.7)

with initial probabilities

P(Z(1) = i) =

{
qu(1, 0)pu if i = 0,

ql(1, 0)pl if i = 1.

This recursion cannot be simplified in order to determine the probability
distribution of Z(m) in general. But it will be sufficient to determine the
distribution if the parameters of the model are known.
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To approximate the distribution of Z(m), it is possible to simplify the
model as follows. Since Vi ≫ m, i ∈ {u, l}, assume the number of free
nucleotides is constant at all times during reverse transcription. Thus, the
probability for the recruited molecule at position k being of type i will also
be constant, i.e.

qi(k, Z(k − 1)) =
riVi

ruVu + rlVl
=: qi, i ∈ {u, l}.

As a result the distribution of Z(m) becomes a binomial distribution and
thus is given by

P(Z(m) = j) =

(
m

j

)
qjl q

m−j
u . (1.8)

Therefore, Z(m) has mean

E(Z(m)) = mql (1.9)

and variance
Var(Z(m)) = mqlqu. (1.10)

For details see [Kren].
The distribution of Z(m) will be analyzed in Chapter 2.

1.2.2 Washing

Once the DNA has hybridized to the probes on the microarray, non-hybridized
DNA and other materials have to be washed off the array.

For this purpose detergents like SDS (sodium dodecyl sulfate) are used.
These molecules are amphophilic, i.e. they have a hydrophobic part which
binds water-insoluble molecules like DNA and a hydrophilic part which is
water soluble. The water-insoluble molecules are covered entirely by SDS
and a so-called micelle is formed, which can be washed off the surface of the
microarray. See Figure 1.5 for illustration.

Obviously, the degree of efficiency of the washing procedure depends on
the concentration of the detergent. Too low concentrations lead to incom-
plete or missing micelles around the water-insoluble molecules whereas too
high concentrations might even dissolve hybridized cDNAs. Either ways are
accompanied by an improper signal.

But not only the concentration of the detergent is important. The length
of the cDNA molecules and their mixture of the four bases is of major interest
to the strength of binding to the immobilized DNA on the surface of the
microarray. Since targets hybridize to the probes via hydrogen bonds between
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H O2

H O2

H O2

H O2

H O2

H O2

H O2

H O2

H O2

H O2H O2

H O2
water−

insoluble
molecule

SDS

Figure 1.5: A two-dimensional sketch of a micelle covering a water-insoluble
molecule. The blue objects represent SDS molecules with a water soluble end
marked by a circle with a minus (negative charge) and the opposite end which
is water insoluble. The water soluble part sticks to water molecules (H2O) and
the insoluble part to the water insoluble molecule (the pink hexagon). In three
dimensions the micelle is a ball.

the bases, it becomes clear that the number of bonds determines the strength
of binding. Targets and probes with a high GC-content (i.e. the percentage
of G or C within the base sequence) will have more bonds than those with
the same length but a smaller GC-content and thus their binding will be
stronger. So, if a target has hybridized with only a few number of hydrogen
bonds, the concentration of the detergent does not need to be very high in
order to allow single detergent molecules to slip between target and probe
by canceling hydrogen bonds.

A washing model

The following model shall help to understand the main characteristics of the
washing procedure. Acting on the assumption that the detergent concentra-
tion is chosen high enough to dissolve all non-hybridized material, we only
look at the dynamics of hybridized targets. First of all we introduce some
notation. Let Wi(t) be the number of targets of type i which are washed off
the surface by the detergent within a period of time t. According to Section
1.1 m is the number of different target types, Ni, i = 1, 2, ...,m the number
of targets of type i hybridized to the spot and c the detergent concentration.
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Further we assume that within a specified period of time t a certain target
is approached by a random number of detergent molecules D̃(t). Let D̃(t)
be Poisson distributed with intensity λ̃(c)t. Obviously, the intensity λ̃(c)t
depends on the concentration c and the time t. Only a percentage ri of the
approaching detergent molecules will bind a target of type i. This behavior
is governed by the affinity of the detergent to bind a target of type i. Due to
the theory of thinning Poisson processes ([Chung], chapter 7), the resulting
process for the number of bound detergent molecules D(t) is Poisson, too,
with intensity

λi(c) · t = λ̃(c) · rit.

We assume that at least ki detergent molecules have to bind a target of type
i in order to cancel its hybridization energy to the probe, and thus, wash it
off the surface. Let pki := P(D(t) ≥ ki) denote the probability of solving a
target of type i. Since D(t) is Poisson, we get

pki = 1− P(D(t) < ki)

= 1− e−λi(c)·t
ki−1∑
j=0

(λi(c) · t)j

j!
.

Further, the probability of solving l targets of type i, conditional on the total
number of such targets Ni of this type hybridized to the spot, computes to

P(Wi(t) = l | Ni) =

(
Ni

l

)
plki(1− pki)

Ni−l. (1.11)

Since Wi(t) follows a binomial distribution as can be seen from Equation
(1.11), it has mean

E(Wi(t) | Ni) = Ni · pki
and variance

Var(Wi(t) | Ni) = Ni · pki · (1− pki) .

See [Grab] for more details.
We are further interested in the number of targets of type i that stay on

the spot, because this is the input of the fluorescence reaction. It shall be
denoted by Hi and can be easily determined by subtracting Wi(t) from Ni,
i.e.

Hi = Ni −Wi(t).

The washing model, especially the distribution of Hi and its dependency on
the detergent concentration will be investigated in Section 2.2.2.
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1.2.3 Fluorescence

In microarray experiments the so-called laser induced fluorescence (LIF) is
used. Here, laser light of high intensity and a certain wavelength is used to
excite molecules in order to emit light of a different wavelength. To under-
stand this process it is helpful to separately look at the light generated by
the laser and the process of fluorescence itself.

1.2.3.1 Light Amplification by Stimulated Emission of Radiation
(LASER)

Inside a laser device light is amplified. Therefore an active medium with
atoms at two energy levels E1 < E2 is needed. If a photon strikes an atom
which is at level E2 an additional photon is emitted if the energy of the
striking photon hν is approximately E2 − E1, with Planck’s constant h and
the photon’s frequency ν. This process is accompanied by a transition of
the atom’s energy level from E2 to E1 and is called stimulated emission. For
illustration see Figure 1.6.

hν

hν

E2

E1

hν

Figure 1.6: A photon of energy hν stimulates an atom to emit a clone photon by
a transition from energy level E2 to E1. (On the basis of figure 12.2− 4 of [SaTe],
chapter 12.)

Since an atom at level E2 is lost at each transition, external energy is
needed to recover the number of atoms at level E2 by exiting atoms at level
E1 to undergo an upward transition to level E2.

The emitted photon has the same characteristics as the striking photon,
i.e. the same wavelength, direction and polarization. Thus, it is able to
cause further emissions if striking other atoms at level E2. This amplifica-
tion process is continued until the photons reach the end of the laser device.
In addition, photons striking atoms at level E1 might be absorbed and tran-
sitions to level E2 take place.

1.2.3.2 A laser model from [SaTe]

Let N1 and N2 be the number of atoms at level E1 and E2, respectively.
According to [SaTe], chapter 13 the resulting photon flux density ϕ(z) (i.e.
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the number of photons per cm2 and s, traveling in the z-direction) satisfies
the ordinary differential equation

dϕ(z)

dz
= (N2 −N1)σ(ν)ϕ(z), (1.12)

where σ(ν) is the transition cross section that is a measure for the area in
which a photon of frequency ν is able to interact with an atom at energy level
E1 or E2. The transition cross section can be calculated from Schrödinger’s
equation but is usually determined experimentally.

ϕ(z) = ϕ0e
(N2−N1)σ(ν)z (1.13)

solves Equation (1.12) for ϕ(0) = ϕ0. Thus, the ratio of ϕ(d)/ϕ(0) defining
the overall gainG(ν) in a laser device of length d and for photons at frequency
ν is

G(ν) = e(N2−N1)σ(ν)d.

See [SaTe], chapter 12 for more details.

Laser noise: The major noise source in laser devices is spontaneous emis-
sion. Spontaneous emission is due to atoms in energy level E2 which undergo
a transition to energy level E1 without any external stimulation in contrast
to stimulated emission as described in the previous paragraph. During this
process a photon of random direction and polarization is generated. But it
still has a frequency of approximately ν0 = (E2 − E1)/h.

It is possible to filter out some of this noise by using a collection aperture,
a bandpass optical filter and a polarizer. Let dΩ be the angle of collection
from the aperture and B the frequency band of the bandpass filter centered
about the stimulated emission frequency. According to [SaTe], chapter 13,
the resulting number of photons added by spontaneous emission from an
incremental volume of unit area and length dz is ϵsp(ν)dz, where

ϵsp(ν) =
N2BdΩσ(ν)

∫∞
0
σ(ν)ν2dν

c2
∫∞
0
σ(ν)dν

. (1.14)

Since σ(ν) is sharply peaked, it is narrow in comparison with ν2. Therefore
and because of σ(ν) being centered about ν0 (according to [SaTe], chapter
12), ν2 might be replaced by ν20 . This leads to the following simplification of
Equation (1.14):

ϵsp(ν) =
N2BdΩσ(ν)ν

2
0

c2
.
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In order to account for spontaneous emission in the overall gain, Equation
(1.12) has to be modified as follows:

dϕ(z)

dz
= (N2 −N1)σ(ν)ϕ(z) + ϵsp(ν).

The solution of this equation with the initial value ϕ(0) = ϕ0 is

ϕ(z) = − ϵsp(ν)

(N2 −N1)σ(ν)
+

(
ϕ0 +

ϵsp(ν)

(N2 −N1)σ(ν)

)
e(N2−N1)σ(ν)z. (1.15)

Using Equation (1.15) the overall gain G(ν) in a laser device of length d is

G(ν) = − ϵsp(ν)

(N2 −N1)σ(ν)ϕ0

+

(
1 +

ϵsp(ν)

(N2 −N1)σ(ν)ϕ0

)
e(N2−N1)σ(ν)d.

As can be seen here, the gain with spontaneous emission is by the summand

− ϵsp(ν)

(N2 −N1)σ(ν)ϕ0

+
ϵsp(ν)

(N2 −N1)σ(ν)ϕ0

e(N2−N1)σ(ν)d

greater than the gain without spontaneous emission. So, the difference of
the two gains depends on the initial photon flux ϕ0 and the rate for sponta-
neous emission which contributes to ϵsp(ν). Thus, randomness in these two
quantities implicates additional randomness in the overall gain.

Nevertheless, laser devices are electronic components. Thus, they exhibit
the same noise sources as all electronic components do, including Johnson-
Nyquist noise, shot noise and Flicker noise. These noise sources will be
considered in Section 1.2.4.1.

After discussing these noise sources it is clear that it is difficult to make
a good prediction for the intensity of the light which leaves the laser. The
good news about this problem is that the intensity can be measured quite
accurately, so it is not necessary to try to calculate the true value. We tried
to measure the intensity of a laser used in a microarray scanner but failed to
catch enough light to get a significant signal since we were not allowed to open
the scanner. The manufacturer of the scanner did not give any information
on the noise of the scanner. Thus, we will restrict our investigation to the
major noise source, i.e. spontaneous emission.

This model will also be further looked at in Chapter 2.

1.2.3.3 Fluorescence

There are different forms of radiation which emanate from materials. Two
major forms are heat radiation and luminescence. Heat radiation is due
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to kinetic energy of molecules and atoms whereas radiation without release
of thermal energy due to excitation of a material is called luminescence.
According to the source of excitation, luminescence can be distinguished
into ( see [Schwedt])

• radioluminescence, i.e. excitation by nuclear radiation,

• electroluminescence, i.e. excitation by alternating electrical fields,

• triboluminescence, i.e. mechanical excitation,

• sonoluminescence, i.e. excitation by sound,

• galvanoluminescence, i.e. excitation by electrolysis,

• thermoluminescence, i.e. excitation by heat,

• chemiluminescence, i.e. excitation by chemical reactions and

• photoluminescence, i.e. excitation by light.

In the following we are interested in photoluminescence. As mentioned above
it is caused by light. More precisely, it covers all phenomena where molecules
reach an electronically excited state by absorption of a photon and as a
result emit another photon [Haßl]. The detailed mechanisms are illustrated in
Figure 1.7, where the most important excitation and de-excitation pathways
are shown.

Absorption of a photon leads to a transition of an electron from the ground
state to the excited state. In general, these states are singlet states, i.e. the
promoted electron of a pair of electrons does not change its spin s1 and the
spin quantum number, S = s1 + s2, where s1, s2 ∈ {+1

2
,−1

2
}, remains zero.

The term singlet refers to the multiplicity of the total spin quantum number,
M = 2S + 1, which is 1 at singlet states. The ground singlet state is S0

and the excited singlet states are S1, S2, .... Every singlet state is associated
with a number of vibrational states, which are further divided into rotational
levels. The following pathways are possible to return from S1 to S0.

• Internal conversion is non-radiative (i.e. there is no emission of a pho-
ton) and leads directly to the ground state S0.

• Fluorescence leads to the ground state by emission of a photon.

• Intersystem crossing leads to a transition to the triplet state T1. This
process is non-radiative and accompanied by change in spin of the pro-
moted electron.
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Figure 1.7: Perrin-Jablonski diagram [Haßl]. Electronic (thick horizontal lines) and
associated vibrational energy levels (thin horizontal lines) and the most important
excitation and de-excitation pathways are shown. Wavy lines denote absorption
and radiative pathways. Straight lines with arrow-heads represent possible non-
radiative pathways. Abs: absorption; Fluo: fluorescence; Phos: phosphorescence;
IC: internal conversion; ISC: intersystem crossing; S: singlet states; T: triplet state.

• Returning to the ground state is either achieved by internal conversion
as already mentioned or by phosphorescence, i.e. the emission of a
photon at a larger wavelength than the fluorescence photon.

If a molecule is excited to higher singlet states than S1, it will loose the
energy difference to S1 by internal conversion. The de-excitation times of
the different pathways are for internal conversion in the range of 10−14s for
fluorescence between 10−9 and 10−6s for intersystem crossing 10−8s and for
phosphorescence 10−4-100s. For details see [Schwedt] and [Haßl].

The holding time in the excited state is exponentially distributed with
parameter k =

∑
i ki, where the ki are the individual rate constants of the

different de-excitation pathways. The rate constants depend on the molecule
itself and on its micro-environment, such as the refractive index, the pH,
the oxygen concentration, the ion concentration and the temperature [Haßl].
Therefore, it is essential to keep the micro-environment stable during a mea-
surement.

The fluorescence quantum yield pf (which is the probability for the event
that the excited molecule returns to the ground state via fluorescence) is

pf =
kf
k
,
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where kf is the rate constant for fluorescence. According to [Schwedt] the
fluorescence intensity F is given by

F = 2.3pfI0τκl, (1.16)

where I0 is the intensity of the laser light, τ is the molar extinction coefficient,
κ the molar concentration and l the thickness of the layer. According to
[SaTe], the laser light in Equation (1.16) has intensity I0 = hνϕ(d).

In microarray experiments often used fluorescence dyes are the cyanines
Cy3 and Cy5. Cy3 has its absorption maximum at 550 nm, emits maximally
at 570 nm and has a quantum yield of 0.15. In contrast Cy5 has its absorption
maximum at 649 nm, emits maximally at 670 nm and has a quantum yield
of 0.28. For details see [Lako], chapter 3, [EGMW] and [South].

The relations between fluorescence dyes, incoming laser light and induced
fluorescence will be looked at in Chapter 2.

1.2.4 The Detection

As previously mentioned, the signal is multiplied with a PMT (photomulti-
plier tube). A typical PMT is shown in Figure 1.8.

Figure 1.8: Sketch of a photomultiplier tube from [Uiga], chapter 6.

It consists of three main components, the photocathode, several dynodes
and an anode. Photons of the light beam have a specific energy E = h c

λ
,

where λ is the wavelength of the light, h is Planck’s constant and c is the
velocity of light. An electron inside the photocathode is able to absorb the
photon’s energy. If this amount of energy is larger than the work function
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Wc of the photocathode, the electron will be emitted. The work function
depends on the material. Transferred energy exceeding the work function
will be transformed into kinetic energy of the emitted electron according to
Einstein’s equation:

Ekin = h
c

λ
−Wc. (1.17)

Recapitulating, the theoretic number of emitted electrons (i.e. primary elec-
trons) equals the number of incident photons if their energy exceeds the work
function of the photocathode. Therefore, the total number of electrons de-
pends only on the intensity of light and not particularly on its wavelength.
In practice the ratio η of emitted electrons to photons is less than one, since
photons and electrons might be trapped by interacting with other particles.
For details see for example [SauWei]. In addition, the number of striking pho-
tons is not a constant. In fact it stochastically fluctuates around its mean.
This error is called quantum noise ([SauWei]).

The emitted electron is accelerated by the electric field towards the first
dynode with a final energy of eV1 + Ekin, where e is the elementary charge
and V1 is the dynode voltage. When hitting the dynode, the kinetic energy
is used to emit further electrons according to the dynode’s work function
W1. The number Z1 of emitted electrons (i.e. secondary electrons) after a
collision of the electron and the first dynode theoretically is

Z1 =
eV1 + Ekin

W1

. (1.18)

Subsequent dynodes are under progressively higher potential, so the newly
emitted electrons are accelerated towards the next dynode. Further electrons
are emitted. Analogously, the number Zi of emitted electrons after a collision
of a single electron and the ith dynode theoretically is

Zi =
eVi
Wi

. (1.19)

In practice some of the electron’s kinetic energy is transformed into infrared
radiation, oscillation of the atom lattice (resulting in thermal energy, too)
and penetration, i.e. the electron penetrates the dynode and only keeps some
of its kinetic energy. Hence, the realistic number of secondary electrons of the
ith dynode is smaller than shown in Formula (1.18) or (1.19). This number
is denoted by Ni. For reference see [SiSu], chapter 6.

Another problem is the efficiency of an electron in reaching the next
dynode. Some electrons get lost. Let αi be the efficiency of an electron in
finding its way from dynode (i − 1) to dynode i. Thus, the total number
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of emitted electrons by the mth dynode due to one electron emitted by the
photocathode is

Nm = α1Z1 · α2Z2 · ... · αmZm. (1.20)

See [SiSu], chapter 6 for details. These electrons are detected by an anode,
where the current is measured.

Considering dynodes of metal, higher voltage leads to increasing pene-
tration of the dynode’s surface by the striking electron. If this happens,
the efficiency of electron emission will decrease and Equation (1.18) does
not hold. In an NEA-type dynode (negative electron affinity) this effect is
minimized by using semiconductors as dynodes. Figure 1.9 illustrates the
dependance of the number of emitted electrons on the dynode voltage and
the dynode material.

Figure 1.9: Electron gain (Ze) as function of dynode voltage (Vd) for a NEA-type
dynode and a metal dynode (Be-Cu) from [Uiga], chapter 6.

For references see [Uiga], chapter 6 and [BiSchl], chapter 2.
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1.2.4.1 Possible sources of noise of electronic devices

During detection, there are many possible noise sources, which perturb the
signal. Thus, it is essential to understand the relationship between the orig-
inal signal entering the detection aperture and the falsified signal which is
finally detected. Possible noise sources shall be looked at in the following
paragraph. At this point it shall be mentioned, that these sources could be
applied to the electronic devices of the other modules, too.

1. Johnson-Nyquist noise is produced by the thermal agitation of charged
particles in a resistive element. Such resistive elements areR1, R2, ..., R8,
the amperemeter itself and the vacuum envelope in Figure 1.8. But ev-
ery measurement device, including the amperemeter to measure the
current is a resistive element, too. The root mean square voltage VJrms

and current IJrms of disturbance can be calculated as follows

VJrms =
√
4kRT∆f,

IJrms =
√
4kT∆f/R.

R is the resistance, T the temperature, k Boltzmann’s constant and ∆f
the bandwidth over which the noise is measured/the electrical device is
operated at. The noise voltage and current have mean zero. So the root
mean square values are equivalent to the standard deviation. Johnson-
Nyquist noise is white noise (mean 0, constant variance) and follows
a normal distribution. For details see [Uiga], chapter 6, [SauWei] and
[SaTe].

2. Shot noise is caused by the electron multiplication process which is
usually modeled with a Poisson process. The high degree of multiplica-
tion that is achieved, implicates a multiplication of small fluctuations
in the electron current (see [SiSu], chapter 7). The shot noise describes
the deviation of the current from its mean. The root mean square
current ISrms of the shot noise is due to the discrete nature of the gen-
erated photoelectrons. It depends on the average current Iavg and the
bandwidth ∆f (see [SiSu], chapter 7 and [Uiga], chapter 6):

ISrms =
√
2eIavg∆f.

Shot noise is white noise with standard deviation ISrms. For large
numbers of electrons it is approximately normally distributed.

3. Generation-recombination noise. The freeing of electrons (i.e. gen-
eration), which are associated to an atom and the ensuing trapping
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(i.e. recombination) of freed carriers by uncovered acceptors are dis-
crete processes. This leads to a random fluctuation in the number of
free electrons. The root mean square of the current IGRrms is

IGRrms = 2eG
√
ηEA∆f,

where G is the ratio of active electrons to photoelectrons generated, η
the quantum efficiency (the ratio of emitted electrons to photons), E
the radiant incidence and A the detector receiving area. For details see
[Uiga], chapter 6. Generation recombination noise is also supposed to
be Gaussian with mean 0 and standard deviation IGRrms.

4. 1/f or Flicker noise is a phenomenon which occurs in all nonmetal
conductors. Its origin is not clarified. Thus, only a heuristic solution
for the determination of the root mean square of the current of the
flicker noise IFrms exists. It is

IFrms = k
√
Idc

a∆f/f b,

where Idc is the direct current through the conductor, f the operating
frequency and k, a, b are arbitrary constants. k depends on the material
of the conductor and its treatment, whereas a ≈ 2 and b ≈ 1. See
[Uiga], chapter 6 for details. This noise source is considered to be
Gaussian with mean 0 and standard deviation IFrms.

The resulting total equivalent root mean square noise current is (see [Uiga],
chapter 6)

INeq =
√
IJrms

2 + ISrms
2 + IGRrms

2 + IFrms
2. (1.21)

Thus, under the assumption that the shot noise is close to Gaussian we have
a total noise current perturbing the signal which is Gaussian, too. It has
mean 0 and standard deviation INeq.

1.2.4.2 Single type Branching process - a model for the PMT

Due to the various error sources described in the previous paragraph, it is
difficult to describe the process of detection properly. Using stochastic pro-
cesses might help to understand tendencies of the underlying process without
knowing the parameter situations in detail.

Since the process is governed by multiplication of signal carriers within the
PMT, it is reasonable to apply the theory of single type branching processes.
Reference for the following paragraph is [MaTeSa].
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Let Nm be the random variable denoting the number of secondary elec-
trons at the mth dynode and assume that the number of primary electrons
is N0 = 1. Under the assumption that the number of electrons generated at
a certain dynode is independently and identically distributed for each strik-
ing electron, Nm is described by a Galton-Watson process. Thus Nm+1 is
determined by the sum

Nm+1 =
Nm∑
k=1

Z(k)
m

of Nm i.i.d. random variables Z
(1)
m , Z

(2)
m , ..., Z

(Nm)
m , denoting the number of

secondary electrons generated by the electrons of the mth dynode. Each of
the Zi

m, i = 1, ..., Nm has a probability distribution

P
(
Zi

m = k
)
= p

(m)
k , k ∈ N0.

The statistical properties of the distribution of Nm can be derived with the
help of the probability generating function Gm(z) = E

(
zNm

)
which holds the

following recursion:

G0(z) = z,

Gm+1(z) = Gm (Qm(z)) , m ∈ N0, (1.22)

where

Qm(z) =
∞∑
k=0

p
(m)
k zk

is the probability generating function of Z
(i)
m .

[MaTeSa] use the Recursion (1.22) to develop expressions for the mean
E(Nm) of the number Nm of secondary electrons at the mth dynode and its
variance Var(Nm). But at this point, we are only interested in its probability
distribution P(Nm = n) =: pm(n), which is

pm(n) =

[
1

n!

∂n

∂zn
Gm(z)

]
z=0

. (1.23)

A random number of N0 primary electrons is considered next. For illustra-
tion of the following paragraph see Figure 1.10. Let the number of photons
striking the photocathode in a period of time be Poisson distributed with
parameter µ.
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Figure 1.10: Illustration of the branching process in a PMT.

Due to the theory of thinning Poisson processes (see [Chung], chapter
7), the resulting number of primary electrons N0 is Poisson distributed with
parameter ηµ. Recall, η denotes the ratio of emitted electrons to striking
photons.

Let l ∈ N0 be the number of primary electrons and N i
m be the num-

ber of electrons at the mth dynode, generated by the ith primary electron.
Assuming statistical independence of the different offspring paths, the mul-
tiplication process at the dynodes can be considered separately for each of
the l primary electrons. Thus, according to Formula (1.23) the probability
of ki, i = 1, 2, ..., l, secondary electrons at the mth dynode generated by the
ith primary electron is pim(ki) := P(N i

m = ki) = pm(ki).
As a result we can give an expression for the conditional probability of

Nm =
∑

iN
i
m = k secondary electrons at the mth dynode, given that there

are l primary electrons, which is

P(Nm = k | N0 = l) =
∑

k1,k2,...,kl∈N0
k1+k2+...+kl=k

l∏
i=1

pim(ki). (1.24)

Formula (1.24) is derived by convolution of the N i
m. Since we are interested

in the distribution of Nm, we have to determine the marginal distribution
according to N0 as follows.

P(Nm = k) =

∫ ∑
k1,k2,...,kl∈N0

k1+k2+...+kl=k

l∏
i=1

pim(ki)dP(N0) (1.25)

=
∞∑
l=0

P(N0 = l)
∑

k1,k2,...,kl∈N0
k1+k2+...+kl=k

l∏
i=1

pim(ki).
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In Section 2.2.4 we will use this model to examine the randomness of the
number of electrons striking the anode in order to characterize the electron
current measured by the amperemeter.



Chapter 2

Examination of introduced
modules

In this chapter we will explore the statistical behavior of the models intro-
duced in the previous chapter. This helps to derive the underlying laws which
affect the detected signal in the end of the microarray experiment. Thus, it
might serve as a basis to develop a reliable test for the fold change in gene
expression activities.

2.1 Hybridization

The hybridization process without dissociation of targets has already been
simulated by [ReWi]. In Section 1.1 we extended this model by including
dissociation events of targets. The resulting hybridization process with dis-
sociation of targets is the basis of the following analysis.

In a first step simulated the process with realistic parameter situations.
We soon realized that this effort is limited by computational power due to too
large target and probe numbers. For that reason we decided to investigate the
process more analytically by determining its stationary distribution with the
help of the Markov generator Q. This also leads to computational problems
for realistic parameter situations. As a result we applied two different kinds of
limits. With the first limit we received a partial differential equation (PDE)
which has the stationary distribution for large S as solution. The second
limit was applied in order to find a deterministic process which describes the
behavior of the hybridization process for large S, too.

We were able to show that the only solution of the PDE is the trivial
solution where no targets have hybridized at all. This of course is not of
interest. However, we were able to draw closer to the stationary distribution

35
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with the help of the deterministic process. We received a solution which
could be directly associated to the distributional solution of the respective
PDE. The results have been compared to the outcome of the simulation which
corroborated the drawn conclusions.

2.1.0.3 Parameter situation

Before analyzing the process from Section 1.1, we need to clarify its parameter
situation. Even though we only model the dynamic of a single spot, we
will start with the total number of spots per microarray because it helps to
understand other parameters. In the literature, the number of spots ranges
from 1, 536 ([Buhl]) to 25, 392 ([Yats]). Most commonly used values are 6, 000
([Jain]) and 4, 800 ([Alhad]).

On the other hand, the number of different targets types m depends on
the organism observed and the metabolic cell situation. Since every spot
at least hybridizes to two different kinds of targets (the specific targets of
the two colors), the number of targets could be considered about twice the
number of spots. At this point it is necessary to mention that on larger
microarrays (e.g. [Yats]), some spots occur in multiple copies. Nevertheless,
the number of target types stays large. The next important parameter is the
number of probes per spot S. An indication could be found in [Chou], i.e.
a total number of probes per spot ranging from several millions to hundreds
of millions of molecules.

Commonly, the rates of a Markov process are summarized in a quadratic
matrix, the Markov generator Q. Its entry qi,j at row i and column j, i ̸= j,
is the transition rate from state j to i. Its diagonal elements qi,i are the
negative sum of the entries in the respective columns

qi,i = −
∑
j ̸=i

qj,i.

Definition 2.1. Let dimS,m(Q) be the dimension of Markov generator Q
which represents the number of states of the hybridization process depending
on the total number of probes per spot S and the number of different target
types m.

Note, dimS,m(Q) = |ΣS,m|.

Theorem 2.2. The size of the state space of the process from Section 1.1,
i.e. dimS,m(Q) increases

a) in S at least as fast as Sm (i.e. dimS,·(Q) ∈ Ω(Sm)) and
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b) in m at least as fast as mS (i.e. dim·,m(Q) ∈ Ω(mS)).

Proof. a) Firstly, the number of states is

dimS,m(Q) =

(
S +m

m

)
. (2.1)

This can be seen as follows. The dimension of Q equals the number of
possible states within the hybridization process. Every state is char-
acterized by the numbers N1, N2, ..., Nm of hybridized targets of each
type. Additionally, the overall number of hybridized targets cannot
exceed S, i.e. N1 + N2 + ... + Nm ≤ S. Thus, the set of states is
{(N1, N2, ..., Nm) ∈ Nm :

∑m
i=1Ni ≤ S} = {(N1, N2, ..., Nm, Nm+1) ∈

Nm+1 :
∑m+1

i=1 Ni = S}. We are interested in the number of elements
of this set, i.e. |{(N1, N2, ..., Nm, Nm+1) ∈ Nm+1 :

∑m+1
i=1 Ni = S}| =

dimS,m(Q). Obviously, dimS,1(Q) = S and dimS,m(Q) holds the fol-
lowing recursion:

dimS,m(Q) =
S∑

Nm+1=0

dimS−Nm+1,m−1(Q). (2.2)

With Equation (2.2) in mind Equation (2.1) can be proved by induction
over m. See [HaHiMo], chapter 2 for detail.

Secondly, the following inequality generally holds for binomial coeffi-
cients ([Steger], chapter 1), (n

k

)k
≤
(
n

k

)
.

Applying this to dimS,m(Q) yields(
S +m

m

)m

≤
(
S +m

m

)
.

Thus,

dimS,m(Q) =

(
S +m

m

)
≥
(
S +m

m

)m

=

(
S

m
+ 1

)m

>

(
1

m

)m

Sm ∈ Ω(Sm).
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b) Since dimS,m(Q) =
(
S+m
m

)
=
(
m+S
S

)
, the same arguments as in a) yield

dimS,m(Q) ∈ Ω(mS).

Thus, the number of states increases too fast. For example, for realistic
parameter values of S ≈ 106 and m ≈ 103 it would be greater than 106,000.
This number is way too large to be considered in a numeric analysis of the
process. So, we restrict the analysis to a total number of 500 probe molecules
and 2 or 4 different target types per spot. These values turned out to be just
manageable in simulations and further analysis. But they are still complex
enough to serve as a simple model for basic considerations.

On the one hand, the case of two target types will be able to show the
basic dynamics of the process if only specific targets are investigated and we
are interested in dye effects. On the other hand, the case of four targets is
able to also model cross-hybridization (see page 10 for an explanation of the
cross-hybridization term). During cross-hybridization specific and unspecific
target types hybridize to the spot. Both types are labeled with the two
different dyes. This makes it impossible to distinguish between the types.
With respect to [ReWi] the case of m = 2 is called the ideal case because
there is no cross-hybridization.

In real hybridization reactions there are about 150 times as many targets
as probes per spot (see [ReWi]). So, we chose the ratio of the sum of targets
to the number of probes per spot to be 150, too.

No indications for hybridization probabilities, dissociation probabilities
and recruitment rates could be found in the literature. Thus, we decided to
investigate the model with rates that are reasonable to our understanding of
the underlying process. The chosen parameter situations of the ideal case
are shown in Table 2.1 and in Table 2.2 for equal and unequal hybridization
and dissociation probabilities and rates, respectively.

Table 2.3 shows the investigated parameter situation for the process in
presence of cross-hybridization.

Subsequently, we will refer to the case of equal hybridization probabili-
ties and dissociation rates as the case of equal probabilities and to the case
of unequal hybridization probabilities and dissociation rates as the case of
unequal probabilities. Our investigation will start with the ideal case.

2.1.1 The stationary distribution

At the beginning of the hybridization process there are no hybridized targets
at all. Thus, the respective Markov process starts in state (0, 0) or in other
words, the probability of the process being in state (0, 0) at time t = 0 is 1



2.1. HYBRIDIZATION 39

binding probabilities
π1 .7
π2 .7

dissociation rates
γ1 .5
γ2 .5

initial target numbers
T1 25, 000
T2 50, 000

number of probes
S 500

exponential clock
λ 2

duration of the experiment
θ .5

Table 2.1: Parameter situation for analyzing the ideal case with equal probabilities
and rates.

and 0 for all other states. At this point recall the state space ΣS,m of the
hybridization process from Formula 1.1.

In the course of time, the probabilities of the process being in certain
states change due to the character of the Markov generator. Under certain
assumptions, which are described later, these probabilities reach an equilib-
rium as time tends to infinity. The vector of probabilities of the process being
in the respective states at equilibrium is called stationary distribution. So, if
the duration of the hybridization reaction is sufficiently large, the hybridiza-
tion process will be expected to be close to its stationary distribution.

Thus it might be useful to calculate the stationary distribution to over-
come the computational limits of too many simulations and a realistic number
of probe molecules per spot (i.e. 6× 108).

The stationary distribution ρ of a continuous time Markov process satis-
fies ([YiZha], Chapter 1)

Qρ = 0,

where Q is the Markov generator of our process.

2.1.1.1 The ideal case (two target types)

The exact structure of Q for the ideal case is described next.
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binding probabilities
π1 .6
π2 .7

dissociation rates
γ1 .6
γ2 .5

initial target numbers
T1 25, 000
T2 50, 000

number of probes
S 500

exponential clock
λ 2

duration of the experiment
θ .5

Table 2.2: Parameter situation for analyzing the ideal case with unequal probabil-
ities and rates.

Let r(M1,M2),(L1,L2) be the rate of a transition from state (M1,M2) to
state (L1, L2), i.e. the entry of the process’ Markov generator Q at position
(L1, L2), (M1,M2). These rates can be derived from Section 1.1 by multiply-
ing the rate r of the process (Equation (1.2)) with the respective transition
probability (Equations (1.3), (1.4)). As already mentioned, the condition for
the stationary distribution ρ is Qρ = 0. Looking at this equation component
wise (here we look at component (L1, L2)) implies:∑
(M1,M2 )̸=(L1,L2)

r(M1,M2),(L1,L2)ρ(M1,M2) − ρ(L1,L2)

∑
(M1,M2 )̸=(L1,L2)

r(L1,L2),(M1,M2) = 0

Adding
ρ(L1,L2)

∑
(M1,M2 )̸=(L1,L2)

r(L1,L2),(M1,M2)

to both sides implies:∑
(M1,M2) ̸=(L1,L2)

r(M1,M2),(L1,L2)ρ(M1,M2) = ρ(L1,L2)

∑
(M1,M2) ̸=(L1,L2)

r(L1,L2),(M1,M2).

Since the number of hybridized targets can only increase or decrease by one,



2.1. HYBRIDIZATION 41

binding probabilities
π1 .7
π2 .6
π3 .2
π4 .15

dissociation probabilities
γ1 .3
γ2 .4
γ3 .8
γ4 .85

initial target numbers
T1 50, 000
T2 50, 000
T3 50, 000
T4 50, 000

number of probes
S 500

exponential clock
λ 2

duration of the experiment
θ .4

Table 2.3: Parameter situation in presence of cross-hybridization.

we end up with the balance equation:

r(L1−1,L2),(L1,L2)ρ(L1−1,L2) + r(L1+1,L2),(L1,L2)ρ(L1+1,L2)

+r(L1,L2−1),(L1,L2)ρ(L1,L2−1) + r(L1,L2+1),(L1,L2)ρ(L1,L2+1)

= (2.3)

ρ(L1,L2)(r(L1,L2),(L1−1,L2) + r(L1,L2),(L1+1,L2)

+r(L1,L2),(L1,L2−1) + r(L1,L2),(L1,L2+1)).

According to Section 1.1, the transition rates of the hybridization process at
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state N = (L1, L2) are given by

r(L1−1,L2),(L1,L2) =

{
π1

T1−L1+1
T1−L1+1+T2−L2

· S−L1+1−L2

S λ(T1 − L1 + 1 + T2 − L2), L1 > 0

0, else

=

{
π1(T1 − L1 + 1)S−L1+1−L2

S λ, L1 > 0

0, else

=: w(L1, L2), (2.4)

r(L1,L2−1),(L1,L2) =

{
π2

T2−L2+1
T1−L1+T2−L2+1 · S−L1−L2+1

S λ(T1 − L1 + T2 − L2 + 1), L2 > 0

0, else

=

{
π2(T2 − L2 + 1)S−L1−L2+1

S λ, L2 > 0

0, else

=: s(L1, L2), (2.5)

r(L1+1,L2),(L1,L2) =

{
γ1(L1 + 1), L1 < S

0, else

=: e(L1, L2) (2.6)

and

r(L1,L2+1),(L1,L2) =

{
γ2(L2 + 1), L2 < S

0, else

=: n(L1, L2). (2.7)

Let

m(L1, L2) := − (w(L1 + 1, L2) + s(L1, L2 + 1) + e(L1 − 1, L2) + n(L1, L2 − 1))

be the negative sum of all rates for exiting the state (L1, L2). The notations
of the rates can be motivated in the following way. Consider the state space of
Figure 1.3 and imagine it was an oriented map. Now, consider state (L1, L2).
The rates are named after the direction where they come from. For example,
(L1 − 1, L2) is west of (L1, L2). So, the respective rate is called w(L1, L2).
The negative sum of the rates which leave the middle (L1, L2) is denoted by
m(L1, L2).
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Using the rates, matrix Q and vector ρ can be displayed as follows

Q =



C0 U0

D1 C1 U1 0
. . . . . . . . .

0 DS−1 CS−1 US−1

DS CS

 ∈ R
1
2
(S+1)(S+2)× 1

2
(S+1)(S+2),

ρ =


b0
b1
...
bS

 ∈ R
1
2
(S+1)(S+2)

with submatrices C0, C1, ..., CS, U0, U1, ..., US−1, D1, D2, ..., DS and subvec-
tors b0, b1, ..., bS of the following types

Ci =



m(0, i) e(0, i)

w(1, i) m(1, i) e(1, i) 0
. . .

. . .
. . .

0 w(S − i− 1, i) m(S − i− 1, i) e(S − i− 1, i)
w(S − i, i) m(S − i, i)


∈ R(S−i+1)×(S−i+1), i = 0, 1, ..., S,

Uj =



n(0, j)
n(1, j)

. . . 0
0 n(S − j − 1, j)

n(S − j, j)


∈ R(S−j+1)×(S−j+1), j = 0, 1, ..., S − 1,

Dk =



s(0, k)
s(1, k)

. . . 0
0 s(S − k − 1, k)

s(S − k, k) 0


∈ R(S−k+1)×(S−k+2), k = 1, 2, ..., S

and

bl =


ρ(0,l)
ρ(1,l)
...

ρ(S−l−1,l)

ρ(S−l,l)

 ∈ RS−l+1, l = 0, 1, ..., S
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Furthermore, from Markov process theory it is well known that a unique
stationary distribution exists for irreducible Markov processes (see [ChNg],
chapter 1 or [Gant], chapter 13). We will restrict the analysis to the case
T1, T2 > 0. The cases T1 = 0 ∨ T2 = 0 are not of interest since they do
not have any interaction between the targets. Further, we will only look at
the process with positive hybridization and dissociation rates. On the one
hand, the case of γi = 0, i = 1, ..,m refers to the model of [ReWi]. On the
other hand, the case of πi = 0, i = 1, ...,m is not relevant because it shows
no hybridizations. The respective Markov processes are not irreducible and
almost all states are transient. Therefore, these cases have infinitely many
stationary distributions.

Theorem 2.3. The ideal case hybridization process with Markov generator
Q is irreducible for T1, T2, π1, π2, γ1, γ2 > 0.

Proof. AMarkov process is irreducible if and only if every state of the process
can be reached from any other state of the process. Therefor, in a first step
we will show that every state can be reached from (0, 0). In a second step
we will show that (0, 0) can be reached from any other state in return.
S = 0:
There is only one state and there is nothing to be proven.
S > 0:
We will use the principle of complete induction over the states of the process.
Base case:
The states (1, 0) and (0, 1) can be reached from (0, 0) since the respective
rates w(1, 0) and e(0, 1) are positive according to Formulas (2.4) and (2.5).
Analogously, the states (2, 0), (1, 1) and (0, 2) can be reached from (1, 0)
and (0, 1) since the respective rates w(2, 0), s(1, 1), w(1, 1) and s(0, 2) are
positive.
Induction step:
Having reached state (i, j), with i, j ∈ N the rates for transitions to (i+1, j)
and (i, j + 1) are also positive as long as i + j < S. Otherwise, no further
states can be reached since i + j = S is at the boundary of the state space
(compare Figure 1.3).
Thus, all states of the hybridization process can be reached directly and
indirectly (via other states) from (0, 0).

On the other hand, for each transition described so far, there is a return
path with positive transition rates. This can be seen equivalently to the
previous consideration. The same arguments as for the forward direction
hold. As a result (0, 0) can be reached from any other state and thus there
is a closed path over all states of the hybridization process.
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Although a unique stationary distribution exists, we still do not know
whether the process converges to it fast enough. To solve this problem we
need to introduce some theory of stochastic processes.

There is a class of Markov processes, where the speed of convergence can
be estimated - the class of reversible Markov processes. Loosely speaking,
reversibility means if we took a film of such a process and then ran the film
backwards, the resulting process would be stochastically indistinguishable
from the original process. We will briefly describe some theory of reversible
Markov processes.

Definition 2.4. (see [Kelly], Chapter 1) A stochastic process X(t) is said to
be reversible if

(X (t1) , X (t2) , . . . , X (tn))

has the same distribution as

(X (τ − t1) , X (τ − t2) , . . . , X (τ − tn))

for all t1, t2, . . . , tn, τ ∈ R.

Lemma 2.1.1. A stationary Markov process with state space Σ and Markov
generator Q = (qi,j)i,j∈Σ is reversible iff its transition rates satisfy

qi2,i1qi3,i2 · . . . · qin,in−1qi1,in = qin,i1qin−1,in · . . . · qi2,i3qi1,i2

for any finite sequence of states i1, i2, . . . , in ∈ Σ.

Proof. See [Kelly], Theorem 1.8.

In other words, a stationary process is reversible iff the product of transi-
tion rates going forward through a cycle of states is equivalent to the product
of going backwards through it.

If the underlying Markov process is reversible, the speed of convergence
can be determined by investigating the eigenvalues of eQ since

∂

∂t
ψ(t) = Qψ(t), ψ(0) = ψ0

has solution ψ(t) = eQtψ0 for any probability distribution ψ(t). According
to [Mitro], the eigenvalues of Q are real. Let λ1 and λ2 be the largest and
second largest eigenvalues of Q. Then, λ∗1 = eλ1 and λ∗2 = eλ2 are the largest
and second largest eigenvalues of eQ. According to [Klen], the second largest
eigenvalue λ∗2 determines the speed of convergence towards the stationary
distribution ρ. It is

∥eQtψ0 − ρ∥ ≤ C|λ∗2|t (2.8)
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for a positive constant C < ∞. Thus, the closer λ∗2 to zero the faster an
initial target distribution will converge to the stationary distribution of the
hybridization process. The constant C can be determined according to the
prove of Theorem 11.2.1 of [Wink].

In the following, the theory of reversible Markov processes shall be used
to examine the hybridization process.

Theorem 2.5. The hybridization process is reversible.

Proof. For an illustration of the state space recall Figure 1.3. We will proof
the theorem by considering all possible sequences i1, i2, ..., in ∈ ΣS,2.

1. Arbitrary states i, j of the hybridization process satisfy qi,j ̸= 0 ⇔
qj,i ̸= 0 since every dissociation event can be canceled by a hybridization
event and vice versa. This is equivalent to qi,j = 0 ⇔ qj,i = 0. Thus,
a zero on the left hand side of Equation (2.8) implies a zero on the
right hand side and Equation (2.8) holds. For that reason we restrict
further considerations to cycles on the lattice graph, where transitions
are characterized by adding or subtracting a single target.

2. Looking at trivial cycles, i.e. i1 and in = i2 are adjacent, Equation
(2.8) always holds, since qi1,i2qi2,i1 = qi2,i1qi1,i2 no matter which process
is considered.

3. Consider 4-cycles i1, i2, i3, in = i4 where il, l = 1, 2, 3, 4 are pairwise
different. We will call cycles whose states are pairwise different disjunct
cycles. For all subsequent considerations we find it useful to transform
Equation (2.8) as follows

qi2,i1qi3,i2 · . . . · qin,in−1qi1,in
qin,i1qin−1,in · . . . · qi2,i3qi1,i2

= 1. (2.9)

W.l.o.g. let i1 be the north western corner of the cycle and let Lp, p =
1, 2 denote the number of hybridized targets of type p in state i1. Fur-
ther, we define ωp := S−1πpλ, p = 1, 2. Using Equations (2.4)-(2.7)
yields

qi2,i1qi3,i2qi4,i3qi1,i4
qi4,i1qi3,i4qi2,i3qi1,i2

= ω1(T1−L1)(S−L1−L2)γ2L2γ1(L1+1)ω2(T2−L2+1)(S−L1−L2+1)
γ2L2ω1(T1−L1)(S−L1−L2+1)ω2(T2−L2+1)(S−L1−1−L2+1)γ1(L1+1)

= 1

Hence, arbitrary disjunct 4-cycles satisfy Equation (2.9).
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4. Consider disjunct cycles i1, i2, . . . , in where n > 4. Since ΣS,2 ⊂ Z2, we
can classify cycles by the area A the corresponding path encloses. For
example, each disjunct 4-cycle encloses an area of A = 1. Arbitrary
disjunct cycles satisfy Equation (2.9). This is now shown by induction
over the enclosed area.
Base case A = 1: This is the case of disjunct 4-cycles shown in No. 3.
Induction step A = m→ A = m+ 1: W.l.o.g let i1 be the northern-
most north western corner (largest L2 component among all north west-
ern corners) of the cycle. We distinguish two cases.

First case: State i3 is southern of i2.

qi2,i1qi3,i2 · . . . · qin,in−1qi1,in
qin,i1qin−1,in · . . . · qi2,i3qi1,i2

=
q2in,i3q

2
i3,in

q2in,i3q
2
i3,in

·
qi2,i1qi3,i2 · . . . · qin,in−1qi1,in
qin,i1qin−1,in · . . . · qi2,i3qi1,i2

=
qi2,i1qi3,i2qin,i3qi1,in
qin,i1qi3,inqi2,i3qi1,i2︸ ︷︷ ︸

disjunct 4-cycle

·
qi3,inqi4,i3qi5,i4 · . . . · qin−1,in−2qin,in−1

qin−1,inqin−2,in−1 · . . . · qi4,i5qi3,i4qin,i3︸ ︷︷ ︸
disjunct cycle of area A = m

= 1 · 1
= 1

Second case: State i3 is eastern of i2.
We denote the state south of i2 by j.

qi2,i1qi3,i2 · . . . · qin,in−1qi1,in
qin,i1qin−1,in · . . . · qi2,i3qi1,i2

=
q2in,jq

2
j,inq

2
i2,j
q2j,i2

q2in,jq
2
j,in
q2i2,jq

2
j,i2

·
qi2,i1qi3,i2 · . . . · qin,in−1qi1,in
qin,i1qin−1,in · . . . · qi2,i3qi1,i2

=
qi2,i1qj,i2qin,jqi1,in
qin,i1qj,inqi2,jqi1,i2︸ ︷︷ ︸

disjunct 4-cycle

·
qj,inqi2,jqi3,i2qi4,i3 · . . . · qin−1,in−2qin,in−1

qin−1,inqin−2,in−1 · . . . · qi3,i4qi2,i3qj,i2qin,j︸ ︷︷ ︸
disjunct cycle of area A = m

= 1 · 1
= 1

Hence, arbitrary disjunct cycles satisfy Equation (2.9).

5. Finally, we have to look at cycles which are not disjunct. These con-
tain states which are visited twice in the forward direction as well as
in the backward direction. Splitting the cycles at these states yields
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components which are either trivial cycles or disjunct cycles. Thus,
rearranging the rates along a cycle which is not disjunct according to
the described split yields Equation (2.9).

Therefore, the hybridization process is reversible.

Due to the reversibility of the hybridization process we can use Equation
(2.8) to analyze the speed of convergence towards its stationary distribution.

The examination of the eigenvalues is summarized in Table 2.4.

equal probabilities unequal probabilities

S λ1 λ2 λ∗
1 λ∗

2 τcomp λ1 λ2 λ∗
1 λ∗

2 τcomp

10 0 −.5002 1 .6064 < 1 0 −.5700 1 .5655 < 1

50 0 −.5004 1 .6063 < 1 0 −.5704 1 .5653 < 1

100 0 −.5005 1 .6062 3 0 −.5706 1 .5652 3

200 0 −.5012 1 .6058 43 0 −.5713 1 .5648 32

500 0 −.5034 1 .6045 2, 164 0 −.5732 1 .5637 1, 915

1, 000 0 −.5067 1 .6025 19, 100 0 −.5766 1 .5618 18, 805

2, 000 0 −.5135 1 .5984 92, 271 0 −.5832 1 .5581 90, 890

Table 2.4: S denotes the number of probes per spot, λ1 and λ2 the largest and
second largest eigenvalues of Q , λ∗

1 and λ∗
2 the largest and second largest eigenval-

ues of eQ. τcomp is the computing time in seconds for calculating the eigenvalues
in MATLAB on a Pentium III, 3.19 GHz, 3 GB RAM. The case of 2, 000 probes
has been calculated on an Intel Core 2 Duo, 2.4 GHz, 4 GB RAM. All values in
the equal probabilities column have been determined for the parameter situation
of Table 2.1 whereas all values in the unequal probabilities column have been de-
termined for the parameter situation of Table 2.2 except for the number of probes
which has been modified according to the first column of the table.

Obviously, all eigenvalues λ∗2 are real and decreasing as S increases. They
are approximately 0.6 which yields quite a fast convergence towards the sta-
tionary distribution. From the investigation of the eigenvalues in Table 2.4
we can also get an idea of how the convergence behaves for increasing probe
numbers. Here we find, that λ∗2 decreases as S increases, i.e. the speed of
convergence increases, too. This aspect will be important for the limit of
Section 2.1.2. Determining the stationary distribution of the hybridization
process is the next step.

The system of linear equations Qρ = 0 has been solved numerically in
MATLAB with the help of Gauss’ algorithm. Unfortunately, common meth-
ods which try to take advantage of the sparse structure of Q fail due to the
unusual pattern of entries in Q.
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As already mentioned, the total number of probes per spot varies between
several millions and several hundreds of millions and the sum of all targets is
even 150 times larger. Solving such a system of equations is impossible due
to computational power. Hence, we solved the system of equations for the
simplified parameter situation. As already mentioned, the speed of conver-
gence increases with increasing probe numbers which can be seen from the
eigenvalues in Table 2.4. Thus, we do not expect any surprises concerning
the convergence for larger probe numbers.

For equal hybridization and dissociation probabilities and target and
probe numbers as shown in Table 2.1 the stationary distribution of the pro-
cess could be calculated in a tolerable time span of about two hours on a
Pentium III, 3.19 GHz, 3 GB RAM. It is shown in Figure 2.1. A peak can be
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Figure 2.1: The numerical stationary distribution of the hybridization process with
parameters as shown in Table 2.1.

seen at about N1 = 166, N2 = 333. It corresponds to a fraction of hybridized
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targets of type 1 to those of type 2 of approximately 1/2 which contributes
to the idea that the ratio of initial free targets is reproduced in the ratio of
hybridized targets.

To calculate ratios is a common method to quantify the number of hy-
bridized targets of the signals coming from the two target types. As can be
seen in Table 2.1, the binding and dissociation probabilities are chosen to be
equal for both targets. Thus, the ratio of the number of hybridized targets
of both types

R(t) =
N1(t)

N2(t)
, t ∈ {0, d}

should be close to 1/2 because there are initially twice as many targets of
the first type than of the second type. The reason for using ratios is that the
intensity values themselves cannot be interpreted in the form of giving an
indication for the amount of hybridized targets. But under the assumption
of intensity values being directly proportional to the number of hybridized
targets, the ratio indicates the fold change between the two intensities. A
more commonly used measure is the so-called log ratio Rlog := log N1(t)

N2(t)
(see

for example [Speed]). It is used to scale down large intensity values. Using
the logarithm, the values are scaled down to smaller values. The log ratio
is numerically unstable for small intensities (compare [Ultsch]). Thus we
concentrate our further analysis on the simple ratio but will also report the
log ratio in some of the tables.

Note, so far we considered the case of equal hybridization and dissociation
probabilities. Subsequently, the behavior of the process shall be investigated
if this assumption does not hold.

Since no realistic values for the hybridization and dissociation probabili-
ties are known we decided to choose the values to be slightly but noticeable
different as shown in Table 2.2. The results are shown in Figure 2.2.

The stationary distribution has a sharp peak at (N1, N2) = (131, 368). It
corresponds to a ratio of R ≈ 0.356 which is contradictory to the ratio of
initial target numbers of 1/2. So, under the assumption of unequal hybridiza-
tion and dissociation probabilities the process has a stationary distribution
which deviates from the one seen in the situation of equal probabilities even
though the initial target numbers are the same. Thus, if inferring the initial
number of targets, it is important to account for unequal probabilities. Oth-
erwise, drawn conclusions are incorrect and do not reflect the true ratio of
initial targets.

The results for the mean µ and the variance σ2 of both parameter situa-
tions are summarized in Table 2.5.

Unfortunately, calculating the solution of the system of linear equations
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Figure 2.2: The numerical stationary distribution of the hybridization process with
parameters as shown in Table 2.2.

is approximately as expensive as the simulation. This is due to the number of
states of the process, which increases too fast inm and S as stated in Theorem
2.2. Approaches to use the sparseness of matrix Q in order to improve the
computational power of the algorithm failed due to the asymmetric structure
of Q. Hence, we have to think of another strategy to come close to realistic
parameter values of about 6× 108 probe molecules per spot.

Substituting the stochastic by a deterministic process and applying the
limit S → ∞ might help to draw near to results of realistic parameter situ-
ations of very large S.

2.1.2 A deterministic limit for the peak of the station-
ary distribution

In this section we will use the approach from [Kurtz] who defines a limit for
a family of stochastic population processes which approaches a determinis-
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µ(N1) σ2(N1) µ(N2) σ2(N2) µ(R) σ2(R) µ(Rlog) σ2(Rlog)
equal prob. 166.3 110.2 332.5 110.6 .5015 .0023 −.6946 .0090
unequal prob. 131.4 96.3 367.2 96.9 .3589 .0013 −1.0300 .0103

Table 2.5: Results from solving Qρ = 0 for the situations of equal (see Table 2.1)
and unequal (see Table 2.2) hybridization and dissociation probabilities).

tic model. The error due to using the deterministic model instead of the
stochastic is estimated and shown to be zero as the population size tends to
infinity. We will use this limit in order to estimate the peak of the stationary
distribution since this can be done much faster than actually calculating the
stationary distribution itself as shown above.

According to [Kurtz], if the rates of a Markov jump process (XS)S∈N can
be rewritten as

q
(S)
k,k+l = Sβl(S

−1k) (2.10)

where k, l ∈ Zd and S is a parameter which is of the same order of magnitude
as the population size, under appropriate conditions the family of processes
{XS} satisfies limS→∞ S−1XS(t) = X(t), in probability, where X(t) is a
solution of the differential equation

Ẋ =
∑
l

lβl(X) =: F (X)

with initial value X(0). The precise formulation is the following theorem by
[Kurtz].

Theorem 2.6. Let XS be a d-dimensional Markov jump process whose rates
satisfy Equation (2.10). Suppose for each bounded set K ⊆ Rd,∑

l

| l | sup
u∈K

βl(u) <∞

and there exists a finite constant MK > 0 such that for all u, v ∈ K

| F (u)− F (v) |≤MK | u− v | . (2.11)

If the solution of

X(t) = X(0) +

∫ t

0

F (X(τ))dτ

exists for all t ≥ 0 and XS(0) → X(0) in probability, then for all t ≥ 0

lim
S→∞

sup
τ≤t

| XS(τ)−X(τ) |= 0

in probability, too.
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So, in a first step we will have to show that the rates of the hybridization
process are of the form of Equation (2.10).

Lemma 2.1.2. The rates of the hybridization process satisfy Equation (2.10).

Proof. We will show the lemma for a single hybridization and dissociation
rate. The others follow by terms of symmetry.

The hybridization rate w(L1, L2) from Equation (2.4) of targets of type
1 can directly be rewritten as

w(L1, L2) =

{
Sπ1

(T1−L1+1)
S

S−L1+1−L2

S
λ, L1 > 0

0, else.

which is already the form of Equation (2.10). The dissociation rates e(L1, L2)
for targets of type 1 from Equation (2.6) can also be directly rewritten as

e(L1, L2) =

{
Sγ1

(L1+1)
S

, L1 < S

0, else.

Hence, the rates are of the demanded form.

The second step consists of proving whether our process fulfills the condi-
tions of Theorem 2.6. The rates βl are polynomials. Thus, in a bounded set
K they are bounded themselves, i.e. their supremum is finite. Since the num-
ber of possible transitions is also finite (≤ 4), the sum

∑
l | l | supu∈K βl(u)

is finite, too. On the other hand, the components of F (u) are polynomials
and thus F (u) fulfills the Lipschitz condition from Equation (2.11) in K. It
remains to prove XS(0) → X(0). But this trivially is true because XS(0) ≡ 0
for all S, i.e. the process always starts with an unhybridized spot.

So, the rates are of the expected form and the conditions of Kurtz’ The-
orem (Theorem 2.6) are satisfied. Thus, we can apply the limit in order to
estimate the state at time t of our hybridization process, which gives the
initial value problem

Ẋ(t) =
∑
l

lβl(X(t)), X(0) = 0. (2.12)

Solving this equation is as difficult as solving the PDE from Section 2.1.3 as
is shown later. But it might be enough to look at large times, since we are
interested in the long term behavior of the process.

For this purpose it is necessary that the process converges sufficiently
fast to its stationary point. This aspect has been looked at in Section 2.1.1.
Increasing S seems to increase the speed of convergence of the hybridization
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process towards its stationary distribution and therefore to the limit received
with Kurtz’ Theorem (Theorem 2.6). Later on, this will be corroborated by
the simulation results from Section 2.1.4.

For further investigations the limit which is used here shall be stated more
precisely. It is

S → ∞, T1 → ∞, T2 → ∞,

such that

(
T1
S
,
T2
S

)
→ (α1, α2) (2.13)

and

(
L1

S
,
L2

S

)
→ (x, y).

This limit keeps the relative amounts of targets (compared to the number of
probes on the spot) constant at the level of the original relative amounts, i.e.
α1 for the first type and α2 for the second type.

On the one hand, combining the rates w(L1, L2) and s(L1, L2) with Limit
(2.14) yields

β(1,0)(x, y) = π1(α1 − x)(1− x− y)λ

and

β(0,1)(x, y) = π2(α2 − y)(1− x− y)λ.

On the other hand, combining the rates e(L1, L2) and n(L1, L2) with Limit
(2.14) yields

β(−1,0)(x, y) = γ1x

and

β(0,−1)(x, y) = γ2y.

At this point we can specify Equation (2.12) to the ordinary differential
equation of interest

∂

∂t
(x(t), y(t)) =

∑
l

lβl(X)

=(1, 0)β(1,0)(x, y) + (0, 1)β(0,1)(x, y) + (−1, 0)β(−1,0)(x, y)

+ (0,−1)β(0,−1)(x, y)

=(1, 0)π1(α1 − x)(1− x− y)λ+ (0, 1)π2(α2 − y)(1− x− y)λ

+ (−1, 0)γ1x+ (0,−1)γ2y

=(π1 (α1 − x) (1− x− y)λ− γ1x, π2 (α2 − y) (1− x− y)λ− γ2y) . (2.14)
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Subsequently, we will investigate the stationary points of Equation (2.14),
which we get from Ẋ = ∂

∂t
(x(t), y(t)) = 0 and hence

(0, 0) = (π1 (α1 − x) (1− x− y)λ− γ1x, π2 (α2 − y) (1− x− y)λ− γ2y) .

Thus we have to solve the following system of equations,

0 = π1(α1 − x)(1− x− y)λ− γ1x

0 = π2(α2 − y)(1− x− y)λ− γ2y.

Solving the first equation for y and combining it with the second equation
leads to finding the roots of a polynomial of third order in x, i.e.

p(x) := −λπ2
1α

2
1γ2

+π1α1{λπ1γ2 (2 + α1) + γ1 (−λπ2 + λπ2α2 + γ2)}x
+{π2γ21 + π1γ1 (λπ2 (1 + α1 − α2)− γ2)− λπ2

1γ2 (1 + 2α1)}x2

+{λπ1(π1γ2 − π2γ1)}x3. (2.15)

This is quite difficult as long as the parameters π1, π2, α1, α2, γ1, γ2 and
λ are unknown. Here, at least α1, α2, π1λ/γ1 and π2λ/γ2 are free after scaling.
Solving Equation (2.15) yields huge and complex expressions without provid-
ing further insight. See Section A in the appendix for the solution provided
by MATHEMATICA. Once the parameters are specified, the roots can be
found fast with the help of computer algebra programs.

But before, we will investigate some features of the solution. A first
observation leads to the simplex of valid solutions

Σ = {(x, y) ∈ R2 | x+ y ≤ 1 and x, y ≥ 0}. (2.16)

The similarity of the notation to ΣS,m in Equation (1.1) is intended. Via
Limit (2.14) we have Σ = Σ∞,2.
Solving the first equation of System (2.15) for y and placing it in Simplex
(2.16) yields

0 ≤ y =
(1− x)λπ1(x− α1) + γ1x

λπ1(x− α1)
≤ 1− x.

This inequality was solved in MATHEMATICA. It holds for all x ∈ [0, xmax] ,
α1, λ, π1, γ1 > 0 with

xmax =
1

2

(
1 + α1 +

γ1
λπ1

−

√
(α1 − 1)2 +

2(α1 + 1)γ1
λπ1

+
γ21
λ2π2

1

)
∈ (0, 1] .
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Theorem 2.7. There is always a unique solution (x∗, y∗) of Equation System
(2.15) which is in Σ.

Proof. In order to prove the existence of a valid solution of (2.15), we have
to find roots of (2.15) in [0, xmax]. According to Bolzano’s theorem about
roots of a continuous function f(x), there is at least one root x ∈ [a, b], if the
sign(f(a)) ̸= sign(f(b)) (see [Heus]). Polynomials are always continuous. It
remains to prove sign(p(0)) ̸= sign(p(xmax)). It is

p(0) = −λπ1α1γ2 < 0 and

p(xmax) =
π2α2γ1
2λπ1

(
(λπ1 + γ1)

(
λπ1

(√
(α1 − 1)2 +

2γ1(α1 + 1)

λπ1
+

γ2
1

λ2π2
1

−1

)
− γ1

)
+ λπ1α1(λπ1 − γ1)

)
> 0

for α1, α2, π1, π2, γ1, γ2, λ > 0. Thus, there is at least one root in (0, xmax).
Subsequently, we will show that there is exactly one root in (0, xmax). We
know that p(x) is a polynomial of third order and thus has at most three real
roots. So, showing two other real roots exist outside the interval [0, xmax]
will imply that there is exactly one root inside the interval since roots with
imaginary part unequal to zero always occur in pairs. Looking at the behavior
of p(x) as x tends to ±∞ yields:

lim
x→∞

p(x) = ∞ · sign(π2γ1 − π1γ2) and

lim
x→−∞

p(x) = −∞ · sign(π2γ1 − π1γ2).

For π2γ1−π1γ2 > 0 we can use Bolzano’s theorem once more in order to show
that there is a root in (−∞, 0) and another root in (xmax,∞) since p(0) < 0
and p(xmax > 0). But this implies that there is exactly one root in (0, xmax).
Bolzano’s theorem can also help us with the case π2γ1 − π1γ2 < 0. All we
need to do is to switch into the picture for y, which is solving the second
equation of (2.15) for x and combining it with the first equation. This yields
finding the roots of a polynomial of third order in y. The same arguments
as previously used imply that there is exactly one root in (0, ymax) with

ymax =
1

2

(
1 + α2 +

γ2
λπ2

−

√
(α2 − 1)2 +

2(α2 + 1)γ2
λπ2

+
γ22
λ2π2

2

)
∈ (0, 1] .

It remains to look at the case π2γ1 − π1γ2 = 0. Here, we find two real roots
which are

x∗ =
1

2λπ1(α1 + α2)

(
α1

(
λπ1(1 + α1 + α2) + γ1

)
−
√
α2
1(λ

2π2
1(−1 + α1 + α2)2 + 2λπ1(1 + α1 + α2)γ1 + γ21)

)
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and

x+ =
1

2λπ1(α1 + α2)

(
α1

(
λπ1(1 + α1 + α2) + γ1

)
+
√
α2
1(λ

2π2
1(−1 + α1 + α2)2 + 2λπ1(1 + α1 + α2)γ1 + γ21)

)
With the help of MATHEMATICA we verified, that x∗ ∈ (0, xmax) and
x+ ̸∈ (0, xmax).

Consequently, there is exactly one root (x∗, y∗) fulfilling x∗, y∗ ≥ 0 and
x∗ + y∗ ≤ 1.

Now, we will have a look at the quality of this root, i.e. its stability.

Theorem 2.8. The root (x∗, y∗) is asymptotically stable.

Proof. In order to prove stability we will set up the Jacobian matrix for the
right hand side of Equation (2.12), i.e.

J(x, y) =

(
a11 a12
a21 a22

)
=

(
∂
∂x (π1(α1 − x)(1− x− y)λ− γ1x)

∂
∂y (π1(α1 − x)(1− x− y)λ− γ1x)

∂
∂x (π2(α2 − y)(1− x− y)λ− γ2y)

∂
∂y (π2(α2 − y)(1− x− y)λ− γ2y)

)

=

(
(−1 + 2x+ y)λπ1 − λπ1α1 − γ1 −λπ1 (−x+ α1)

−λπ2 (−y + α2) (−1 + x+ 2y)λπ2 − λπ2α2 − γ2

)
.

According to [HeusD], Chapter 10, we need negative real parts of the eigen-
values of J(x∗, y∗) for asymptotic stability. This is equivalent to Tr(J(x, y)) :=
a11 + a22 < 0 and det(J(x, y)) := a11a22 − a12a21 > 0 ([Britt], Appendix B).
We will use the latter condition:

a11 + a22 = (−1 + 2x+ y)λπ1 − λπ1α1 − γ1 + (−1 + x+ 2y)λπ2 − λπ2α2 − γ2

= −λπ1(1− x− y)− λπ2(1− x− y)− λπ1(α1 − x)− λπ2(α2 − y)− γ1 − γ2

< 0,

as well as

a11a22 − a12a21 = ((−1 + 2x+ y)λπ1 − λπ1α1 − γ1) ((−1 + x+ 2y)λπ2 − λπ2α2 − γ2)

− (−λπ1 (−x+ α1)) (−λπ2 (−y + α2))

= λπ2

(
λπ1(x+ y − 1)(2x+ 2y − 1− α1 − α2)− (x+ 2y − 1− α2)γ1

)
− (λπ1 (2x+ y − 1− α1)− γ1) γ2

> 0

since α1, α2, γ1, γ2, π1, π2, λ are positive and 0 ≤ x + y ≤ 1, x ≤ α1, y ≤
α2.
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So, within a small neighborhood all solutions of Equation (2.12) are at-
tracted by the stationary point (x∗, y∗). But we need global convergence
instead of local which is restricted to a small neighborhood, since it is not
obvious that the solution through (0, 0) ever comes close enough to the sta-
tionary point.

Theorem 2.9. Every solution starting in (0, 0) converges to (x∗, y∗).

Proof. As shown above there is only one stationary point within the simplex
of valid solutions

Σ = {(x, y) | x+ y ≤ 1 and x, y ≥ 0}.

In a first step we will show that a solution starting in Σ never leaves it.
Looking at the right hand side of Equation (2.12) at the boundaries of Σ will
tell us whether solutions at the boundaries will leave Σ or will be attracted by
the inside area of Σ. The simplex Σ is shown in Figure 2.3(a) We will look at

x1

y

1

0

Σ

(a) The simplex of valid solutions.

x1

y

1

0

Σ

(b) The simplex including the vector field
at the boundaries corresponding to Equa-
tion (2.12).

Figure 2.3: Simplex Σ of valid solutions of Equation (2.12).

the boundaries and corners of Σ, separately. The first corner is x = 0, y = 0.
Here, the gradient is(

ẋ
ẏ

)
=

(
λπ1(1− x− y)(α1 − x)− γ1x
λπ2(1− x− y)(α2 − y)− γ2y

)
=

(
λπ1α1

λπ2α2

)
.
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Thus, the gradient is positive in both components, i.e. the vector points to
the interior of Σ.

At the second corner x = 0, y = 1 the gradient is(
ẋ
ẏ

)
=

(
0

−γ2

)
.

Consequently, the gradient points into the direction of boundary x = 0, 0 <
y < 1.

Analogously, the gradient at the third corner x = 1, y = 0 points into
the direction of boundary 0 < x < 1, y = 0. It remains to investigate the
boundaries. The gradient at the first boundary x = 0, 0 < y < 1 is given by(

ẋ
ẏ

)
=

(
λπ1(1− y)α1

λπ2(1− y)(α2 − y)− γ2y

)
.

The first component of the gradient is greater than zero, i.e the vector field
points to the inner area of Σ. The same arguments hold for the second
boundary 0 < x1, y = 0.

At the third boundary x+ y = 1 the gradient is given by(
ẋ
ẏ

)
=

(
−γ1x
−γ2y

)
,

i.e. both components are less than zero and thus the vector field also points
to the inner area of Σ. The behavior of the vector field at the boundary of Σ
is illustrated in Figure 2.3(b). Consequently, a solution which starts within Σ
cannot leave it. Thus, it cannot be attracted by one of the stationary points
outside of Σ if such points exist.

In a second step we will show that all solutions which start in Σ are
attracted by the stationary point (x∗, y∗). According to the theorem of
Poincaré-Bendixson (see [Wigg], Chapter 9), all solutions which start in Σ
will be attracted by the stationary point (x∗, y∗), if the following three as-
sumptions hold:

• there is a unique stationary point (x∗, y∗) in Σ,

• the vector field points to the inner of Σ and

• there is no limit cycle in Σ.

The first two assumptions have been shown above. In order to show that
there are no limit cycles in Σ we will use Bendixson’s negative criterion (see
e.g. [JoSm], Chapter 3). It says that there are no limit cycles in Σ if the
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divergence div F = ∂ẋ
∂x

+ ∂ẏ
∂y

is of one sign for all (x, y) ∈ Σ. Indeed the

divergence is

div F =
∂

∂x
λπ1(1− x− y)(α1 − x)− γ1x+

∂

∂y
λπ2(1− x− y)(α2 − y)− γ2y

= −(1− x− y + α1 − x)λπ1 − (1− x− y + α2 − y)λπ2 − γ1 − γ2

< 0

since 0 ≤ x+y ≤ 1, x ≤ α1, y ≤ α2 and α1, α2, γ1, γ2, π1, π2, λ are positive.
So, solutions never leave Σ, there are no limit cycles in Σ and hence the
solution through (0, 0) converges to (x∗, y∗).

On the basis of these results we are able to approximate the peak of the
stationary distribution of the stochastic version of hybridization process for
a large and realistic number of probes and targets.

This shall be done for respective parameter situations according to the
previous examinations. We have to be careful with transforming the param-
eters in the right way due to the applied limit. Both parameter situation
are summarized in Table 2.6. Solving Equation (2.15) yields the stationary

π1 π2 γ1 γ2 α1 =
T1

S
α2 =

T2

S
λ

equal probabilities .7 .7 .5 .5 25,000
500

= 50 50,000
500

= 100 2

unequal probabilities .6 .7 .6 .5 25,000
500

= 50 50,000
500

= 100 2

Table 2.6: Parameter situations after applying the limit from [Kurtz] to the pa-
rameters in Tables 2.1 and 2.2.

point of the initial value problem in Equation (2.12) and thus serves as an
approximation of the stationary distribution of the hybridization process.
The results are shown in Table 2.7. As can be seen, the solution for equal

x =̂ N1 y =̂ N2 R Rlog

equal probabilities ≈ .333 ≈ 166.3 ≈ .665 ≈ 332.9 ≈ .500 −.693

unequal probabilities ≈ .263 ≈ 131.4 ≈ .734 ≈ 367.2 ≈ .358 −1.027

Table 2.7: Results from solving Equation (2.15).

hybridization and dissociation probabilities is as expected R = .500, since
the process was fed with twice as many targets of type 2 than of type 1. But
if we look at the situation of unequal target types we see a deviant value,
i.e. R = .358. Thus, inferring the initial target concentrations would yield
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an overestimation of 39.7% of the second type. This is corroborated by the
results from the simulation as can be seen in Section 2.1.4.

Moreover, the results are very close to those received when using the
stationary distribution in Section 2.1.1 (compare Table 2.5 and Table 2.7).
Hence, the stationary point according to Kurtz serves as a good approxima-
tion for the mean of the stationary distribution and vice versa.

In the next section we will try to expand the solution (x∗, y∗) which is a
single point to a functional which is defined on entire Σ.

2.1.3 Approximation of the solution of Qρ = 0 with a
PDE

In addition to previous approaches, the solution of the system of linear equa-
tions Qρ = 0 for large S can be approximated by a partial differential equa-
tion as follows.

An appropriate partial differential equation is received via two construc-
tion steps. Firstly, we build a difference equation. Secondly we apply Limit
(2.14).

Combining Equations (2.4)-(2.7) with Equation (2.3) and simplifying
yields

π1(T1 − L1 + 1)S−L1+1−L2

S
λρL1−1,L2 + γ1(L1 + 1)ρL1+1,L2

+π2(T2 − L2 + 1)S−L1−L2+1
S

λρL1,L2−1 + γ2(L2 + 1)ρL1,L2+1

= (2.17)(
(π1 (T1 − L1) + π2 (T2 − L2))

S−L1−L2

S
λ+ γ1L1 + γ2L2

)
ρL1,L2

for the case of L1, L2 > 0, L1+L2 < S, i.e. the process is not on the boundary
of the state space. Otherwise, the rates which either lead to a state outside
the state space or originate from outside are omitted according to Equations
(2.4)-(2.7).

Equation (2.17) can be rewritten as an inhomogeneous difference equa-
tion, i.e.:

0 = π1(T1 − L1)
S − L1 − L2

S
λ(ρL1−1,L2 − ρL1,L2) + γ1L1(ρL1+1,L2 − ρL1,L2)

+π2(T2 − L2)
S − L1 − L2

S
λ(ρL1,L2−1 − ρL1,L2) + γ2L2(ρL1,L2+1 − ρL1,L2)

+π1
T1 + S − 2L1 − L2 + 1

S
λρL1−1,L2 + γ1ρL1+1,L2

+π2
T2 + S − L1 − 2L2 + 1

S
λρL1,L2−1 + γ2ρL1,L2+1. (2.18)
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Now, we can apply Limit (2.14). It keeps the relative amount of targets
constant. Thus, it is appropriate to give an approximation of the hybridiza-
tion process with large numbers of targets and probes. We get the following
differential equation.

Let f(x, y) be an arbitrary differentiable function, with f(x, y) = ρ(Sx,Sy) =
ρ(N1,N2). Combining Limit (2.14) with Equation (2.18) and simplifying yields:

0 = (π1(α1 − 2x− y + 1)λ+ π2(α2 − x− 2y + 1)λ+ γ1 + γ2)f(x, y)

+(γ1x− λ(1− x− y)π1(α1 − x))
∂

∂x
f(x, y)

+(γ2y − λ(1− x− y)π2(α2 − y))
∂

∂y
f(x, y) (2.19)

The boundary conditions for this inhomogeneous partial differential equation
can be derived similarly. As shown in Section 1.1 the state space is of trian-
gular shape (compare Figure 1.3). We have to take a look at the three sides
L1 = 0, L2 = 0 and L1 + L2 = S of the triangle.

First corner, L1 = 0, L2 = 0. This is the case of no hybridized tar-
gets at all. Here, rates r(L1−1,L2),(L1,L2), r(L1,L2),(L1−1,L2), r(L1,L2−1),(L1,L2) and
r(L1,L2),(L1,L2−1) can be omitted in Equation (2.17). We receive

γ1(0 + 1)ρ0+1,0 + γ2(0 + 1)ρ0,0+1

=(
(π1 (T1 − 0) + π2 (T2 − 0)) S−0−0

S
λ
)
ρ0,0.

This equation cannot be rewritten as a difference equation. Instead, after
dividing both sides by S the Limit (2.14) can be directly applied, which yields

0 = (π1α1 + π2α2)λ f(0, 0)

and thus

f(0, 0) = 0, (2.20)

since λ, α1, α2, π1, π2 > 0.

Second corner, L1 = 0, L2 = S. This is the case of all probes being
hybridized to targets of type 2. Here, rates r(L1−1,L2),(L1,L2), r(L1,L2),(L1−1,L2),
r(L1,L2+1),(L1,L2) and r(L1,L2),(L1,L2+1) can be omitted in Equation (2.17). We
receive

γ1(0 + 1)ρ0+1,S + π2(T2 − S + 1)S−0−S+1
S

λρ0,S−1

=(
π1 (T1 − 0) S−0−S

S
λ+ γ2S

)
ρ0,S.
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This equation cannot be transformed into a difference equation, either. But
dividing both sides by S and applying Limit (2.14) yields

0 = γ2f(0, 1)

and thus

f(0, 1) = 0 (2.21)

since γ2 > 0.

Third corner, L1 = S, L2 = 0. This is the case of all probes being
hybridized to targets of type 1. The condition for the stationary distribution
at this corner can be derived equivalently to the previous case and therefore
is

f(1, 0) = 0. (2.22)

Subsequently, we will derive the conditions for the stationary distribution
at the inner of the sides of the state space.

First side, L1 = 0, 0 < L2 < S. This is the case where only targets of type
2 have hybridized to the spot. Here, rates r(L1−1,L2),(L1,L2) and r(L1,L2),(L1−1,L2)

can be omitted in Equation (2.17). We receive

γ1(0 + 1)ρ0+1,L2

+π2(T2 − L2 + 1)S−0−L2+1
S

λρ0,L2−1 + γ2(L2 + 1)ρ0,L2+1

=(
(π1 (T1 − 0) + π2 (T2 − L2))

S−0−L2

S
λ+ γ2L2

)
ρ0,L2 .

Rewriting it as a difference equation yields:

0 = −π1T1
S − L2

S
λρ0,L2 + γ1ρ0+1,L2

+π2(T2 − L2)
S − L2

S
λ(ρ0,L2−1 − ρ0,L2) + γ2L2(ρ0,L2+1 − ρ0,L2)

+π2
T2 + S − 2L2 + 1

S
λρ0,L2−1 + γ2ρ0,L2+1. (2.23)

Dividing by S and applying Limit (2.14) to Equation (2.23) then yields:

0 = −π1α1(1− y)λf(0, y). (2.24)

Equation (2.24) holds, iff
f(0, y) = 0, (2.25)

for 0 < y < 1 since π1, α1, (1− y) > 0.
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Second side, 0 < L1 < S, L2 = 0. This is the case where only targets
of type 1 have hybridized to the spot. The condition for the stationary
distribution can be derived equivalently to the previous case which yields

f(x, 0) = 0 (2.26)

for 0 < x < 1.

Third side, L1+L2 = S, 0 < L1, L2 < S. This case describes the situation
where each probe on the spot is either covered by a target of type 1 or by a
target of type 2. Here, rates r(L1+1,L2),(L1,L2), r(L1,L2+1),(L1,L2), r(L1,L2),(L1+1,L2)

and r(L1,L2),(L1,L2+1) can be omitted in Equation (2.17). Furthermore L2 can
be substituted by S − L1. Thus, we receive

π1(T1 − L1 + 1)S−L1+1−(S−L1)
S

λρL1−1,S−L1

+π2(T2 − (S − L1) + 1)S−L1−(S−L1)+1
S

λρL1,S−L1−1

=

(γ1L1 + γ2(S − L1)) ρL1,S−L1 .

This equation cannot be rewritten as difference equation but dividing by S
and applying Limit (2.14) yields

(γ1x+ γ2(1− x)) f(x, 1− x) = 0,

and thus

f(x, 1− x) = 0, (2.27)

for 0 < x, y < 1 since γ1, γ2, x, 1− x > 0.
In summary, Equation (2.19) together with Equations (2.20), (2.21),

(2.22), (2.25), (2.26) and (2.27) yield the partial differential equation

0 = (π1(α1 − 2x− y + 1)λ+ π2(α2 − x− 2y + 1)λ+ γ1 + γ2)f(x, y)

+(γ1x− λ(1− x− y)π1(α1 − x))
∂

∂x
f(x, y)

+(γ2y − λ(1− x− y)π2(α2 − y))
∂

∂y
f(x, y)

in the region
Σ = {(x, y) | x, y ≥ 0, x+ y ≤ 1}

and with Dirichlet boundary condition

f(x, 0) = f(0, y) = f(x, 1− x) = 0.
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In order to solve this equation, we will use the method of characteristics as
introduced for example in [KamII], Chapter 2. The characteristics of the
solution surface satisfy the equations:

dx

dt
= (γ1x− λ(1− x− y)π1(α1 − x))

dy

dt
= (γ2y − λ(1− x− y)π2(α2 − y)) (2.28)

dz

dt
= −(π1(α1 − 2x− y + 1)λ+ π2(α2 − x− 2y + 1)λ+ γ1 + γ2)z

Since the first two equations in System (2.28) do not depend on z, their
solution can formally be written in the form

x = X(t | x(t0) = x0), y(t) = Y (t | y(t0) = y0), (2.29)

with initial conditions given by x(t0) = x0, y(t0) = y0. Now we substitute
Equations (2.29) into the third equation of System (2.28), which yields

dz

dt
= −(π1(α1 − 2X − Y + 1)λ+ π2(α2 −X − 2Y + 1)λ+ γ1 + γ2)z.

This equation can be integrated to yield

z(t) = z(t0)exp

(
−
∫ t

t0

R(τ)dτ

)
, (2.30)

where R(t) := −(π1(α1 − 2X(t)−Y (t)+ 1)λ+ π2(α2 −X(t)− 2Y (t)+ 1)λ+
γ1 + γ2)z.

Obviously, if z(t0) = 0, the z-coordinate of the solution surface is identi-
cally equal to zero, i.e. z(t) = 0 for all t. Thus the only possible continuous
solution is the trivial solution f(x, y) = 0.

The standard approach with power series corroborates this result, since
all coefficients vanish. Numeric approaches like the finite elements method
also always yielded f = 0.

The probable reason is that the normalized (states divided by S) bell
shaped curve of the stationary distribution (compare Figures 2.10(a) and
2.11(a)) narrows (in terms of variance) too fast, i.e. with factor S/S2 =
1/S as observed during the investigation of the stationary distribution when
solving the system of linear equations for different probe numbers. So the
limit might be a distribution which is zero except for one point, where it has
a δ-peak.

As seen in Section 2.1.2 the deterministic limit provides the single point
(x∗, y∗) as long term state of the process. This together with the intuition
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from investigating the variance of the stationary distribution as the number
of states tends to infinity yields an approach for a non trivial solution of the
PDE. Therefor, we will need some aspects of functional analysis, especially
distribution theory. For reference of the next paragraph see [Dobr], Chapter
9 and [Wern], Chapter 8.

Definition 2.10. Let

supp(u) := {x : u(x) ̸= 0}

be the support of function u. Then, let C∞
0 denote the space of infinitely often

differentiable functions with compact support.

Definition 2.11. K ⊂⊂ Ω iff K compact and K ⊂ Ω. We say K is com-
pactly enclosed in Ω.

Definition 2.12. Let Ω ⊂ R2 and (ϕk) be a sequence in C∞
0 (Ω). We say,

(ϕk) converges to ϕ ∈ C∞
0 (Ω) (denoted by ϕk

D→ ϕ), if there is a compact
set K ⊂⊂ Ω with supp(ϕk), supp(ϕ) ⊂ K and if Dαϕk → Dαϕ uniformly
in Ω for all multi-indices α. C∞

0 together with this convergence definition is
denoted D(Ω). ϕ ∈ C∞

0 (Ω) is called test function.

Definition 2.13. T : D(Ω) → C is called a distribution if T is linear and it
satisfies

ϕk
D→ ϕ⇒ T (ϕk) → T (ϕ).

For our PDE we set Ω = Σ ⊂ R2.

Theorem 2.14. The delta distribution defined by

δ(x∗,y∗)(ϕ) := ϕ(x∗, y∗) ∀ϕ ∈ D(Σ)

solves the PDE from Equation (2.19), where (x∗, y∗) is the solution of Equa-
tion (2.15).

Proof. To prove this theorem we will use the following lemma.

Lemma 2.1.3. According to [Dobr], Chapter 9, the delta distribution fulfills

pδ(x∗,y∗)(ϕ) = p(x∗, y∗)ϕ(x∗, y∗) for p ∈ C∞(Σ) (2.31)

and its derivatives fulfill

Dβδ(x∗,y∗)(ϕ) = (−1)|β|Dβϕ(x∗, y∗) (2.32)

for all multi indices β, with β = (β1, β2), |β| = β1 + β2 and β1, β2 ∈ N0 =
N ∪ {0}.
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Subsequently, we will use the following abbreviations:

c1(x, y) := (π1(α1 − 2x− y + 1)λ+ π2(α2 − x− 2y + 1)λ+ γ1 + γ2)

c2(x, y) := (γ1x− λ(1− x− y)π1(α1 − x))

c3(x, y) := (γ2y − λ(1− x− y)π2(α2 − y)).

Rewriting Equation (2.19) in a distributional manner yields

0 = [c1(x, y)δ(x∗,y∗)](ϕ(x, y))

+[c2(x, y)
∂

∂x
δ(x∗,y∗)](ϕ(x, y))

+[c3(x, y)
∂

∂y
δ(x∗,y∗)](ϕ(x, y)).

for all test functions ϕ. The coefficients c1(x, y), c2(x, y) and c3(x, y) are
polynomials and thus are in C∞(Σ). Using Lemma 2.1.3 leads to

0 = c1(x
∗, y∗)ϕ(x∗, y∗)

−
[
∂

∂x
(c2(x, y)ϕ(x, y))

]
(x∗, y∗)

−
[
∂

∂y
(c3(x, y)ϕ(x, y))

]
(x∗, y∗)

⇐⇒
0 = c1(x

∗, y∗)ϕ(x∗, y∗)

−
[
∂c2(x, y)

∂x
ϕ(x, y) +

∂ϕ(x, y)

∂x
c2(x, y)

]
(x∗, y∗)

−
[
∂c3(x, y)

∂y
ϕ(x, y) +

∂ϕ(x, y)

∂y
c3(x, y)

]
(x∗, y∗)

⇐⇒
0 = (π1(α1 − 2x− y + 1)λ+ π2(α2 − x− 2y + 1)λ+ γ1 + γ2)ϕ(x

∗, y∗)

−(γ1 + π1λ(α1 − x∗) + π1λ(1− x∗ − y∗))ϕ(x∗, y∗)

−(γ1x
∗ − λ(1− x∗ − y∗)π1(α1 − x∗))

∂ϕ(x, y)

∂x
(x∗, y∗)

−(γ2 + π2λ(α2 − y∗) + π2λ(1− x∗ − y∗))ϕ(x∗, y∗)

−(γ2y
∗ − λ(1− x∗ − y∗)π2(α2 − y∗))

∂ϕ(x, y)

∂y
(x∗, y∗)

⇐⇒

0 = −(γ1x
∗ − λ(1− x∗ − y∗)π1(α1 − x∗))

∂ϕ(x, y)

∂x
(x∗, y∗)

−(γ2y
∗ − λ(1− x∗ − y∗)π2(α2 − y∗))

∂ϕ(x, y)

∂y
(x∗, y∗). (2.33)
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Equation (2.33) holds for all test functions ϕ if and only if the coefficients of
the derivatives of ϕ vanish. This yields

0 = (γ1x
∗ − λ(1− x∗ − y∗)π1(α1 − x∗))

0 = (γ2y
∗ − λ(1− x∗ − y∗)π2(α2 − y∗)). (2.34)

Equation System (2.34) is equivalent to Equation System (2.15) from the
deterministic limit. Since (x∗, y∗) solves Equation System (2.15) it solves
Equation System (2.34), too. Thus, the delta distribution solves the PDE
from Equation (2.19).

Thus, Theorem 2.14 confirms the result which we received from the de-
terministic limit in Section 2.1.2, because δ(x∗,y∗)(ϕ) corresponds to the dis-
tribution received via Kurtz’ Theorem (Theorem 2.6) where the entire mass
is concentrated in (x∗, y∗).

Summarizing the results shows that the stationary distribution of the
hybridization process converges to a distribution with the entire mass con-
centrated in (x∗, y∗) as the number of probes per spot tends to infinity. So,
on the one hand, if we wait long enough and the number of probes is suf-
ficiently large, the hybridization process will have a computable stationary
distribution. But on the other hand, we still do not know what long enough
and sufficiently large really means. For that reason we will investigate the
convergence to the stationary distribution by simulating the hybridization
process for different parameter situations.

2.1.4 Simulation results

Two different cases have been looked at, i.e. the number of different targets
is m = 2 or m = 4.

The process has been simulated with the help of the Gillespie algorithm
([Gill]). Limited by computational power we were able to simulate the process
100 times with parameters as shown in Tables 2.1, 2.2 and 2.3. Already, this
almost took 8 hours for the two target case and 21/2 days for the four targets
case in MATHEMATICA on a Pentium III, 3.19 GHz, 3 GB RAM.

2.1.4.1 The ideal case

This case shall be looked at for two different parameter situations. On the
one hand we are interested in the behavior of the process for equal binding
and dissociation probabilities. This is an assumption, most biologists make
when analyzing microarrays. On the other hand the behavior of the process
for unequal binding and dissociation probabilities is examined in order to
account for dye effects.
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Equal probabilities Again, we will start with the case of equal hybridiza-
tion and dissociation probabilities with parameter values from Table 2.1.

As could be seen in earlier investigations where the system has been solved
directly for its stationary distribution and a closely related deterministic
process has been derived, the scales of the probe and initial target numbers
affect the variance of the results but not the ratio of hybridized target types
to each other.

The ratio of hybridized targets should be close to 1/2 since there are
initially twice as many targets of type 1 than of type 2. In Figure 2.5 the
path of R(t) is shown for the time interval (0, θ] and for a single simulation.
Most of the variation in the figure appears during the first 2, 500 iterations.
This is illustrated in Figure 2.4.

25001250

iteration

0.45

0.5

0.55

0.6

0.65

0.7

R

Figure 2.4: The ratio R(t) of hybridized targets for a single simulation of the first
2, 500 iterations according to the ideal case with parameters as shown in Table 2.1

At this moment, approximately all probes are hybridized to a target for
the first time. Afterwards, the ratio settles down at about 1

2
. It has mean

µ̂(R(t)) ≈ 0.4892 and variance σ̂2(M) ≈ 0.00014. The corresponding graphs
for the number of bound targets are shown in Figure 2.7.

All subsequently calculated values for single simulations (those, which
depend explicitly on t) correspond to the simulation in Figures 2.5, 2.7(a)
and 2.7(b). N1(t) has mean µ̂(N1(t)) ≈ 162.1 and variance σ̂2(N1(t)) ≈
133.9, whereas N2(t) has mean µ̂(N2(t)) ≈ 331.9 and variance σ̂2(N2(t)) ≈
518.7. As can be seen, the numbers of hybridized targets of type 1 and of
type 2 rapidly reach their characteristic values of 1

3
S and 2

3
S, respectively.
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Figure 2.5: The ratio R(t), t ∈ (0, θ) of hybridized targets for a single simulation
of 74, 376 iterations according to the ideal case with parameters as shown in Table
2.1.

Afterwards, the process seems to have a random walk like structure with
equal rates for both directions. Another realization of the process is shown
in Figure 2.6. At the beginning large values of R are reached. Afterwards
the process decreases slowly to R = 1/2. Various other possible paths have
been observed. For this reason it is useful to investigate all simulations.

Looking at the result of all simulations in Figures 2.7(c) and 2.7(d) gives
an idea of the variation within the process. Here the number of hybridized
targets of both types N1(θ), N2(θ) (Figure 2.7(c)) and the ratio R(θ) (Figure
2.7(d)) at the end of the experiment θ are shown for each simulation. N1(θ)
has mean µ̂(N1(θ)) ≈ 164.1 and variance σ̂2(N1(θ)) ≈ 117.7, whereas N2(θ)
has mean µ̂(N2(θ)) ≈ 334.5 and variance σ̂2(N2(θ)) ≈ 116.4. R(θ) has
mean µ̂(R(θ)) ≈ 0.4921 and variance σ̂2(R(θ)) ≈ 0.00235. Under the null
hypothesis µ̂(R(θ)) = 1/2, a Student’s t-test does not lead to a significant
deviation of R(θ) from its expected value 1

2
. Obviously, in terms of the

initial fraction of target concentrations T1/T2 = 1
2
, µ̂(N1(θ)) and µ̂(N2(θ))

are close to the expected values of E(N1(θ)) = 166.6 and E(N2(θ)) = 333.3.
This contributes to the idea that the fraction of hybridized target numbers is
approximately equal to the fraction of initial target numbers, and thus serves
as a good approximation of the actual ratio T1/T2 and the corresponding
mRNA species.

The more interesting case is where the two dyes for labeling cause different
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Figure 2.6: The ratio R(t), t ∈ (0, θ) of hybridized targets for a single simulation
of 74, 819 iterations according to the ideal case with parameters as shown in Table
2.2.

binding and dissociation probabilities. So far researchers assume the results
of the hybridization process to show correct ratios, i.e. an x-fold in the ratio
of hybridized targets is supposed to correspond to an x-fold in the associated
number of the respective mRNAs. For that reason it shall be interesting
to examine whether unequal binding and dissociation probabilities affect the
ratio of hybridized targets or not. This case shall be looked at in the following
paragraph.

Unequal probabilities Assume the parameters from Table 2.2. The bind-
ing probability of type 1 is chosen to be less than of type 2, whereas the
dissociation probability of type 1 is greater than of type 2. As a result one
would expect less hybridized targets of type 1 for this case than for equal
probabilities. This should result in a ratio R(θ) less than 1/2.

Looking at the result of the simulation (Figure 2.8) one can see, that
indeed R(t) < 1/2 for all t ∈ (0, θ) for a single simulation. This is due to
the number of hybridized targets of type 1 and of type 2. As can be seen in
Figure 2.9(a), the number of hybridized targets of type 1, N1(t), is always
less than 149 whereas the number of hybridized targets of type 2, N2(t), is
almost always greater than 348 (see Figure 2.9(b)). The resulting ratio R(t)
has mean µ̂(R(t)) ≈ 0.3865 and variance σ̂2(R(θ)) ≈ 0.0004.

Looking at all 100 simulations corroborates this result. Here we find a
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(a) The process N1(t), t ∈ (0, θ) of the
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a single simulation of 74, 376 iterations.
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(c) Number of hybridized targets N1(θ)
(blue) and N2 (green) for each of the 100
simulations.
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(d) The ratio R(θ) at the end of the pro-
cess θ for each simulation.

Figure 2.7: Number of hybridized targets for a single simulation and for 100 sim-
ulations with parameters as shown in Table 2.1.

mean µ̂(R(θ)) ≈ 0.4095 and variance σ̂2(R(θ)) ≈ 0.0014. For illustration
see Figures 2.9(c) and 2.9(d). This is a significant deviation from the null
hypothesis µ̂(R(θ)) = 1/2. N1(θ) has mean µ̂(N1(θ)) ≈ 143.7 and vari-
ance σ̂2(N1(θ)) ≈ 93.9. N2(θ) has mean µ̂(N2(θ)) ≈ 354.9 and variance
σ̂2(N2(θ)) ≈ 90.2.

In this case, if an analyzing method was used, which does not account for
different binding and hybridization probabilities, it would underestimate the
actual ratio of targets by almost 20%.

Assume targets of type 1 are generated under normal environmental con-
ditions and targets of type 2 are generated under stress. Without accounting
for different probabilities, we would infer, that under stress the respective
mRNA was produced approximately 2.5 times as often as without stress in-
stead of 2 times as its actual relation is. For a summary of the results see
Table 2.8.

Also noticeable in this context is the way the ratio R behaves. As can
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Figure 2.8: The ratio R(t), t ∈ (0, θ) of hybridized targets for a single simulation
of 74, 604 iterations according to the ideal case with parameters as shown in Table
2.1 together with Table 2.2.

be seen in Figure 2.8, the ratio inclines rapidly. Its actual maximum is
8/11 ≈ 0.73 which corresponds to the state where 8 targets of the first type
and 11 targets of the second type are hybridized. This is characteristic for all
simulations observed. It is due to the fact, that as long as the hybridization
of targets is not restricted by the number of free probes, almost no compe-
tition between the target types takes place. Once all probes are covered for
the first time, we observe that the ratio is closer to the actual ratio of 1/2
than almost ever after. Then, the dissociation comes into play and the ratio
decreases further. As can be seen in Figure 2.8 the process of decrease does
not seem to be finished yet. This behavior can be observed in almost all sim-
ulations, i.e. the process has not reached its stationary distribution yet. This
observation will be corroborated if we compare the stationary distribution
with the histogram of the simulation. See Figures 2.10 and 2.11.

For example, looking at the case of unequal probabilities, we find the
peak of the histogram at approximately (N1(θ), N2(θ)) = (144, 355) whereas
the peak of the stationary distribution can be seen at about (N1(θ), N2(θ)) =
(131, 367). So, the process has not yet reached its stationary distribution.
This phenomenon has also been observed in Figures 2.8, 2.9(a) and 2.9(b).

Thus, the time point of stopping the hybridization reaction is important
to the experimenter for the situation of unequal probabilities. If it is chosen
too early, the process might be far away from the stationary distribution
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(d) The ratio R(θ) at the end of the pro-
cess θ for each simulation.

Figure 2.9: Number of hybridized targets for a single simulation and for 100 simu-
lations with parameters as shown in Table 2.1 and unequal probabilities as shown
in Table 2.2.

and therefore we cannot infer the initial amounts of targets. As already seen
during the examination of the eigenvalues of the process’ generator Q, this
effect will cancel out if waiting long enough. Quantifying this time span is
hard due to the unknown size of hybridization and dissociation rates. Once
these parameters could be determined we would be able to give advise for
the duration time of the hybridization experiment in the case of two target
types.

In the next paragraph we will give a short introduction to the case of four
targets by looking at its simulation.

2.1.4.2 Investigation in presence of cross-hybridization

As already mentioned, non specific targets might hybridize and thus contami-
nate the spot signal. Therefore, it is interesting to include cross-hybridization
into the model of the previous paragraph. A simple way is to define two
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a single simulation 100 simulations
equal prob. unequal prob. equal prob. unequal prob.

µ̂(N1) 162.1 137.5 164.1 143.7
σ̂2(N1) 133.9 101.2 117.7 93.9
µ̂(N2) 331.9 356.4 334.5 354.9
σ̂2(N2) 518.7 652.9 116.4 90.2
µ̂(R) .4892 .3865 .4921 .4060
σ̂2(R) 1.4× 10−4 3.5× 10−4 2.3× 10−3 1.5× 10−3

µ̂(Rlog) −.7210 −.9515 −0.7138 −.8792
σ̂2(Rlog) 9.8× 10−4 2.1× 10−3 9.7× 10−3 9.7× 10−3

Table 2.8: Summary of the simulation results for a single simulation and 100
simulations of the ideal case. The parameters are according to Table 2.1 for the
case of equal probabilities and Table 2.2 for unequal probabilities. The values for
a single simulation are calculated over all t ∈ (0,Θ] whereas the values for 100
simulations are calculated over the result of all simulations at time Θ.

pairs of targets. Each pair represents a certain mRNA type, i.e. specific and
unspecific targets. The members of each pair are labeled with two differ-
ent fluorescence dyes according to their respective environmental condition.
This model has also been simulated in MATHEMATICA 100 times. The
parameters of this simulation can be seen in Table 2.3. The first pair is cho-
sen to be the specific pair and the second pair to be the non-specific pair
which might cause cross-hybridization events. This is modeled by greater
binding probabilities and smaller dissociation probabilities for the specific
pair in comparison to the non specific pair. As can be seen in Table 2.3 the
probabilities within each pair are also chosen to be slightly different, which
shall model the dye effect on hybridization and dissociation. Starting off
with 50, 000 targets of each type, it is going to be interesting to see how
the different probabilities will affect the number of hybridized targets. The
results of the simulation can be seen in Figure 2.12.

Looking at the number of hybridized targets for a single simulation in
Figure 2.12(b) shows that greater hybridization probabilities cause larger
numbers of hybridized targets of the respective type. Thus, even starting off
with equal initial numbers of free targets results in a considerable difference
in hybridized targets.

In contrast, greater dissociation probabilities seem to have a rather long
term effect, i.e. the respective targets seem to vanish from the spot. Thus it
seems to be important at which time the hybridization process is stopped by



76 CHAPTER 2. EXAMINATION OF INTRODUCED MODULES

0
100

200
300

400
500

0

100

200

300

400

500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

bound targets of type 1

3−dimensional plot of the stationary distribution

bound targets of type 2

pr
ob

ab
ili

ty

(a) stationary distribution

simulational distribution

0

200
300

400
500

bound targets of type 10

200
300

400
500

bound targets of type 2

0

2

4

6

8

10

12

frequency

200
300

400
500

bound targets of type 1

0

2

4

6

8

10

(b) histogram

Figure 2.10: The numerical stationary distribution and the histogram derived from
100 simulations of the hybridization process with parameters as shown in Table
2.1.

the biologist for scanning the signals. Stopping at the middle of the process
leads totally different ratios compared to stopping at the end. This can be
seen in Figure 2.12(a). Here, R is calculated as follows

R(t) =
N1(t) +N3(t)

N2(t) +N4(t)
,

since N1(t), N3(t) are scanned in the first and N2(t), N4(t) in the second
channel during detection.

The respective stationary distribution and limit according to Kurtz’ The-
orem (Theorem 2.6) have not been determined. This would be even more
difficult than for the case of two target types. Further analysis of the hy-
bridization model is suggested. At this point we will restrict the analysis to
the simulation, which at least gives an idea of the behavior of the four targets
case.

2.1.5 Résumé

Simulating the hybridization process as well as calculating its stationary
distribution are computational expensive. Determining the limit from Kurtz
is very fast and approximates the peak of the stationary distribution quite
well. By the analysis of the eigenvalues of the Markov generator Q, we
were able to show, that the process converges sufficiently fast towards Kurtz’
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Figure 2.11: The numerical stationary distribution and the histogram for 100
simulations of the hybridization process with parameters as shown in Table 2.1
together with Table 2.2.

limit. For certain parameter situations, this observation was corroborated by
comparing the values of the simulation, the determination of the stationary
distribution and of Kurtz’ limit. With the help of another limit we received
a PDE. Its solution is a distribution which also corresponds to the limit from
Kurtz.

Unfortunately, Kurtz’ limit is a deterministic process and thus does not
yield the variance of the hybridization process. But as already mentioned,
we also looked at the behavior of the stationary distribution as the number
of probes S increases. We observed a fast narrowing of the stationary dis-
tribution which means that the variance almost vanishes for large S. So,
inferring the hybridized target numbers via Kurtz’ limit is a useful method.
Unfortunately, many parameters values are unknown. Thus, further experi-
ments are recommended to determine the parameter values of the model.

Result: In the parameter situation of unequal hybridization and disso-
ciation probabilities a dye effect as well as a cross-hybridization effect (in
the case of four targets) is visible. One is interested in the initial target
ratio. Considering Limit (2.14), this ratio is α1/α2. From Equations (2.15)
and (2.15) we can see that it depends on the ratios of hybridized targets in
a nonlinear way. In contrast, most microarray statistical methods use linear
models to describe the impact of the parameters on the intensity values (see
[Speed] for more details or [Ochs] for an example). Thus, it is desirable to
implement analyzing methods which account for these nonlinearities. We see
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(d) The ratio R(d) at the end of the pro-
cess θ for each simulation.

Figure 2.12: Ratio and number of hybridized targets in presence of cross-
hybridization for a single simulation and for 100 simulations with parameters as
shown in Table 2.3.

no direct way how to accomplish this.
In addition, the stopping time of the experiment should be chosen suffi-

ciently large in order to be able to infer the initial target relations via the
stationary point of Kurtz or the stationary distribution ρ, Qρ = 0.

In practice, the problem of dye effects is known quite well to researchers,
who try to cancel it out by using various normalizing methods (see for exam-
ple [Speed]). We have verified and quantified the dye effect in theory, which
might help to improve the normalizing methods, once all parameters of the
model are determined.
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2.2 Residual subprocesses

2.2.1 Reverse transcription

In a first step we will analyze the original model from Section 1.2.1. In a
second step this model is modified by a perturbational approach.

2.2.1.1 Analysis of the original model

Subsequently, the reverse transcription process shall be investigated with the
help of the model from Section 1.2.1. Realistic parameters of the model
were found in the literature (e.g. [ToHo] or [Sing]). The length of a target
molecule ranges from 25 bases on oligonucleotide arrays to complete cDNAs
(see [ToHo]). We will look at the range from 25 to 100 bases, since these val-
ues are most common. During reverse transcription a mixture of nucleotides
is used to build the cDNA. It consists of unlabeled nucleotides of all four
kinds and the additional labeled nucleotides of a single kind. We are only in-
terested in those sequence positions of the target which are potentially able to
hybridize to a labeled nucleotide. Thus, we roughly divide the probe length
by four and add some error which yields a range for the sequence length of
about 5 to 40. These values shall be investigated. Looking at typical pro-
tocols for reverse transcription reactions we find a ratio of 3 : 2 labeled to
unlabeled nucleotides. For details see the protocol of a reverse transcription
reaction from [Sing] in Section B in the appendix.

Thus, we have a distinct number of sequence positions on each target able
to hybridize to labeled nucleotides. In addition there is a mixture of labeled
and unlabeled nucleotides approaching the target.

We are interested in the probability distribution of the number of labeled
nucleotides for a target of a certain length. With the help of the model from
Section 1.2.1 this distribution shall be determined. We set up the global
parameter situation of the model in Table 2.9.

target length binding sites m ratio labeled to unlabeled
25− 100 bp 5− 40 3 : 2

Table 2.9: Parameter situation of the reverse transcription process.

In order to use the model from Section 1.2.1 four more parameters are
needed: the recruitment rates ru and rl as well as the total numbers of
nucleotides Vu and Vl. In the literature no values for the recruitment rates
could be found. However, we know that on the one hand the basic approach
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of researchers working with microarrays is ru = rl and that on the other hand
the size of the recruitment rates only affects the timescale. For these reasons
we chose rates which seemed to be reasonable in size. The exact values are
mentioned whenever they come into play.

In addition to this parameter setting we will investigate the case of un-
equal recruitment rates since we assume the polymerase enzyme to be more
likely to recruit an unlabeled nucleotide than a labeled one due to steric prob-
lems. The reason for these problems is that labeled nucleotides are larger
than unlabeled as shown in Figure 1.4.

In contrast to the recruitment rates the total number of nucleotides is
known quite well from the protocol [Sing]. Here we find 15 mmol labeled and
10 mmol unlabeled nucleotides. Multiplying these numbers with Avogadro‘s
constant yields the total numbers of labeled and unlabeled nucleotides. Ac-
cording to [EKMPW] Avogadro’s constant is

ηA = 6.0221367 · 1023mol−1.

The resulting numbers of labeled and unlabeled nucleotides are
Vl = 9.03320505 · 1021 and Vu = 6.0221367 · 1021. Since Vl, Vu ≫ m we are
able to restrict the investigation of the model to its binomial approximation
in Equation (1.8).

Looking at the distribution of Z(m), m ∈ {5, 6, ..., 40} yields Figure 2.13.

This figure illustrates the dependency of the process on the number of
binding sites m. As can be seen, the mean and the variance of the number
of hybridized nucleotides Z(m) shifts to larger numbers as m increases. This
observation is corroborated by Figure 2.14.

Here, we can even see, that both, mean and variance linearly depend on
m. This can also be seen directly from Equations (1.9) and (1.10) since the
success probability ql is independent from m.

In microarray experiments, those expression values are compared, which
correspond to one gene and to one target length, respectively. Thus the de-
pendency on the target length is not so important for the examination, since
both signals come from probes with the same length. But because it has an
effect on the variance it will be looked at nevertheless for further investigation
in this work. Another reason is the occurrence of cross-hybridizations. The
length of non specific targets is most likely to be different from the length of
specific targets.

Subsequently, the dependency on the recruitment rates and thus on the
steric structure shall be investigated. See Figures 2.15(a) and 2.15(b) to
receive a first impression.
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Figure 2.13: Probability distributions of hybridized labeled nucleotides for different
numbers of potential binding sites.

For fixed numbers of hybridization sites of labeled nucleotides one ob-
serves, that the larger the difference ru − rl, the smaller the mean of hy-
bridized nucleotides. This effect seems to become stronger as m increases.
So, a rough tendency is that with an increasing hybridization rate for un-
labeled nucleotides the actual number of hybridized labeled nucleotides de-
creases. On the other hand, in Figure 2.15(b) the variance almost seems
to be independent from the difference ru − rl and for fixed m. The exact
dependencies shall be investigated next.

The mean seems to be constant on straight lines whereas the variance
seems to have a more complex dependency. The exact dependency can be
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Figure 2.14: Mean (blue diamonds) and variance (red stars) of the number of
hybridized nucleotides in dependency on the number of hybridization sites for
labeled nucleotides m.

determined as follows. Using Equation (1.8) yields

E(Z(m)) = const1 = mql = m
rlVl

rlVl + ruVu

⇐⇒ ru =
rlVl

const1Vu
m− rlVl

Vu

and

σ2(Z(m)) = const2 = mqlqu = m
rlVl

rlVl + ruVu

ruVu
rlVl + ruVu

⇐⇒ ru =
rlVl

(
(m− 2const2)±

√
m (m− 4const2))

)
2const2Vu

.

So, indeed, the mean is constant on straight lines whereas the variance is
constant on branches of root functions. The dependency on the recruitment
rates shall be investigated further.
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(a) Heatmap of the mean E (Z (m)). (b) Heatmap of the variance σ2 (Z (m)).

Figure 2.15: Heatmaps for mean and variance of Z(m) for rl = .5, ru ∈
{.50, .55, ..., .7} and m ∈ {5, 6, ..., 40}.

2.2.1.2 A perturbation approach for the recruitment rates

As already mentioned, labeled nucleotides are larger molecules and thus are
recruited slower than unlabeled nucleotides. The difference in the recruit-
ment rate is supposed to be small. For this purpose let rl be a perturbation
of ru such that

rl = (1− ε)ru

with 1 ≫ ε > 0. The resulting formulas for the mean and the variance are

Eε(Z(m)) = m
(1− ε)Vl

(1− ε)Vl + Vu
:= µ(ε)

σ2
ε(Z(m)) = m

(1− ε)VlVu

((1− ε)Vl + Vu)
2
:= σ2(ε) (2.35)

Thus, both values only depend on the ratio rl
ru

= 1− ε. For an illustration of
the dependency on the perturbation ε and the number of hybridization sites
m see Figure 2.16.

(a) Heatmap of the mean E (Z (m)). (b) Heatmap of the variance σ2 (Z (m)).

Figure 2.16: Heatmaps for mean and variance of Z(m) for ε ∈ [0, 1] and m ∈
{5, 6, ..., 40}.
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In these figures, the mean is constant at

ε =
const1Vu

(const1 −m)Vl
+ 1

and the variance at

ε =
2const2(Vl + Vu)−mVu ± Vu

√
m(m− 4const2)

2const2Vl
,

where const1 denotes the respective constant value of the mean and const2
denotes the respective constant value of the variance.

2.2.1.3 Taylor expansion of µ and σ

To investigate the dependency on ε more precisely, we use the first-order
Taylor expansion of µ and σ of Equation (2.35). This is a common tool to
examine small perturbations.

µ and σ still depend on Vu, Vl and m. Hence, absolute changes of µ and
σ cannot be interpreted without relating them to the starting point where
ε = 0. Therefore, we will look at relative changes, i.e. µ(0+ε)

µ(0)
and σ(0+ε)

µ(0)
. Here,

the division by µ(0) normalizes the values and thus causes independency from
the scale. Mark, µ(0) and σ2(0) correspond to the case of equal hybridization
rates ru = rl. Starting with absolute changes of µ yields:

µ(ε) = µ(0) + µ′(0)ε+O(ε2) (2.36)

Terms of higher order can be neglected since the perturbation ε is assumed
to be very small. In order to receive relative changes we divide Equation
(2.36) by µ(0):

µ(ε)

µ(0)
≈ 1 +

µ′(0)

µ(0)
ε.

Consequently, the relative change of µ is dominated by the coefficient of ε,
i.e. µ′(0)

µ(0)
. For this reason it shall be examined further. Using Equation (2.35)

yields

µ′(0)

µ(0)
= − Vu

Vl + Vu
∈ [−1, 0] .

So the relative change of the mean µ depends on the ratio of unlabeled
nucleotides within all nucleotides. Its absolute value is minimal at Vu = 0,
Vl > 0 and maximal either at Vl = 0, Vu > 0 or for the limit Vu → ∞,
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Vl = const. Based on the fact that in microarray experiments almost always
Vu, Vl > 0, for small Vu the relative change of µ is almost independent from
ε, i.e. changing ε does not have any effects on µ. But, if Vu ≫ Vl, the
dependency on ε will be strong. For this reason, it is recommended to keep
the number of unlabeled nucleotides as small as possible. Looking at an
example might help to understand the effect of ε on µ.
Example: Consider the parameter situation from Table 2.9. Here, Vu = 2

3
Vl.

Thus,
µ(ε)

µ(0)
≈ 1−

2
3
Vl

2
3
Vl + Vl

ε = 1− 2

5
ε.

So, if the perturbation ε of the recruitment rate was 10%, the mean of hy-
bridized labeled nucleotides would decrease by approximately 4%.

In a next step we will investigate the dependency of the coefficient of
variation CV (0) := σ(0)

µ(0)
on ε. Again, we start with the Taylor expansion of

the absolute change but this time with the change of the standard deviation:

σ(ε) = σ(0) + σ′(0)ε+O(ε2)

Dividing by µ(0) and neglecting terms of higher order yields

σ(ε)

µ(0)
≈ σ(0)

µ(0)
+
σ′(0)

µ(0)
ε. (2.37)

Combining Equation (2.37) with Equation (2.35) yields

σ(ε)

µ(0)
≈ Vu√

mVlVu
+

Vu√
mVlVu

· Vl − Vu
2(Vl + Vu)

ε

≈ Vu√
mVlVu

(
1 +

Vl − Vu
2(Vl + Vu)

ε

)
≈ CV (0)

(
1 +

Vl − Vu
2(Vl + Vu)

ε

)
.

Consequently, the coefficient of variation increases by CV (0) Vl−Vu

2(Vl+Vu)
ε. CV (0)

and ε are considered to be constant. Thus, it is sufficient to investigate
the behavior of Vl−Vu

Vl+Vu
to understand the dependency of CV on ε. Vl−Vu

Vl+Vu
is

continuous, its global minimum is −1, its global maximum is 1 and it has
its root at Vu = Vl. The minimum is reached at Vu ̸= 0, Vl = 0 while the
maximum is reached at Vu = 0, Vl ̸= 0. Both cases are boring since they are
due to a parameter situation with only one type of nucleotides. But there
are other parameter situations where Vl−Vu

Vl+Vu
comes close to its extrema. On

the one hand, if we consider the limit Vl → ∞, Vu = const. the function will
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approach its maximum and on the other hand if Vu → ∞, Vl = const. it will
approach its minimum. So, if Vl ≫ Vu the coefficient of variation will increase
rapidly in ε whereas it will decrease with the same velocity if Vu ≫ Vl. It
will not change at all, if Vu = Vl. Hence, in contrast to the results from the
mean a high number of labeled nucleotides is disadvantageous as it increases
the noise. Because of this contradiction it is necessary to look at the process
from a different point of view.

2.2.1.4 Testing the impact of the perturbation

Subsequently, we will use a statistical test to examine the impact of a per-
turbation of the recruitment rates on the dye effect. This is a more sensible
approach since the whole distribution comes into play, not only the mean
and the variance.

Consider the following setting. Two cell cultures of the same organism
have been exposed to different environmental conditions. The mRNA of
both cultures has been extracted, separately reverse transcribed and also
separately labeled. The result is two fluids, each containing the labeled tar-
gets according to one environmental condition but one labeled with color 1
and the other labeled with color 2. Thus, the reverse transcription process
in the first fluid depends on a perturbation ε1 and in the second fluid on a
perturbation ε2. We will look at a single target type. Due to our model, the
number of labeled nucleotides within a single target is approximately binomi-
ally distributed. Generally, there is not only a single target of a specific type
but thousands or even hundreds of thousands. All contribute to the signal
during detection if being hybridized to the microarray. Let n1, n2 be the
number of targets of this specific type in the respective fluid. Furthermore,
let Σ1 be the average number of labeled nucleotides per target in the first
fluid and Σ2 the respective average number in the second fluid. Expressed in
a formula:

Σj =
1

nj

nj∑
i=1

Z
(j)
i (m), j = 1, 2

(2.38)

where Z
(j)
i (m) is the number of hybridized labeled nucleotides to target i of

length m in fluid j = 1, 2.
According to the Theorem of de Moivre-Laplace, for i.i.d. Z

(j)
i (m), the

sum
∑n1

i=1 Z
(1)
i (m) is asymptotically normally distributed with mean n1µ(ε1)

and variance n1σ
2(ε1) whereas

∑n2

i=1 Z
(2)
i (m) is asymptotically normally dis-

tributed with mean n2µ(ε2) and variance n2σ
2(ε2) (for details see [Kren],



2.2. RESIDUAL SUBPROCESSES 87

Chapter 1 or [Grab]). Consequently, for large n1 and n2, Σ1 as well as Σ2

satisfy approximately

Σj ∼ N

(
µ (εj) ,

√
1

nj

σ (εj)

)
, j = 1, 2

where N(a, b) denotes the normal distribution with mean a and standard
deviation b. Following, we assume these relations to hold exactly.

Let D := Σ1 − Σ2 be the difference between the average numbers of
nucleotides per target. Obviously, D is a random variable which is nor-
mally distributed with mean E(D) = µ(ε1) − µ(ε2) and variance Var(D) =
1
n1
σ2(ε1) +

1
n2
σ2(ε2).

At this point we have everything we need for a simple statistical test. We
will test the null hypothesis

H0 : E(D) = E(Σ1)− E(Σ2) = µ(ε1)− µ(ε2) = 0.

In other words H0 states that the perturbation and the difference in environ-
mental conditions do not have a visible effect on the incorporation of labeled
nucleotides.

We are interested in the power of this test in dependency on ε1 and ε2,
i.e.

Power(ε1, ε2) := 1− β,

with type II error β. The power of a test is the probability to make the cor-
rect decision of rejecting H0 if indeed H0 is false. In other words, our test has
a good power whenever the difference in the mean numbers of incorporated
labeled nucleotides is likely to be detected by the test. Thus, the effect of a
perturbation is visible and influences the ratio of signal intensities.

Let Φ denote the probability distribution of the standardized normal dis-

tribution and d
(0)
α
2

and d
(0)
1−α

2
denote the α/2 and (1 − α/2) quantiles of the

probability distribution of D under H0, i.e. E(D) = 0. Depending on the
level of significance α ∈ [0, 1] (type I error), the power can be determined as
follows

Power(ε1, ε2) = 1− β

= 1− P
(
D ∈

[
d
(0)
α
2
, d

(0)
1−α

2

])
= 1− P

D − E(D)√
Var(D)

∈

d(0)α
2

− E(D)√
Var(D)

,
d
(0)
1−α

2
− E(D)√

Var(D)


= 1− Φ

d
(0)
1−α

2
− E(D)√

Var(D)

+Φ

d
(0)
α
2

− E(D)√
Var(D)

 . (2.39)



88 CHAPTER 2. EXAMINATION OF INTRODUCED MODULES

Subsequently, let α = 5%.
For the parameter situation of Table 2.10 the type II error and the power

are illustrated in Figure 2.17 for ε1, ε2 ∈ [0, .1].

Vl Vu m n1 n2

9.03320505× 1021 6.0221367× 1021 20 25, 000 50, 000

Table 2.10: Parameter situation for Figure 2.17.
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0

0.02

0.04

0.06

0.08

0.1

Ε1

0

0.02

0.04

0.06

0.08

0.1

Ε2

0.2
0.4

0.6

0.8

1

Power

0

0.02

0.04

0.06

0.08
Ε1
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Figure 2.17: Type II error and power in dependency on perturbations ε1 and ε2
for parameters as shown in Table 2.10.

As can be seen, if the perturbations are equal, the power will be zero.
This is reasonable since ε1 = ε2 implies equal dye incorporation rates in the
two fluids and thus a test cannot see a difference in the labeling efficiency.
But, leaving the situation of equality yields an increase in the power of the
test. So, if the dyes are incorporated at different rates, the test finds this
difference at a higher probability. This means, the perturbations ε1 and ε2
have a remarkable impact on the number of labeled nucleotides in the two
fluids.

On the other hand, if we fix ε1 and ε2 we can have a look at the depen-
dency on n1, n2 ∈ [1; 100, 000], i.e. the initial target numbers. The results
for the parameter situation of Table 2.11 are shown in Figure 2.18.

Obviously, small target numbers of either type cause a low power of the
test whereas large target numbers yield a high power. Thus, for realistic
target numbers, the difference in dye incorporation between the fluids is
visible in a sense that it has to be considered if inferring the initial target
amounts.
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Vl Vu m ε1 ε2
9.03320505× 1021 6.0221367× 1021 20 .04 .05

Table 2.11: Parameter situation for Figure 2.18.
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Figure 2.18: Type II error and power in dependency on the numbers of targets
within the fluids for parameters as shown in Table 2.11.

Analogously, we can examine the dependency on the numbers of initial
labeled nucleotides in the fluids. See Table 2.12 for the parameter situation
and Figure 2.19 for the results in dependency on Vl, Vu ∈ [1, 1022].

n1 n2 m ε1 ε2
25, 000 50, 000 20 .04 .05

Table 2.12: Parameter situation for Figure 2.19.

The power is close to one as long as Vu ≈ Vl or for large Vu, Vl. Thus, for
realistic parameter situations of large numbers of nucleotides there is also a
visible dye effect. But, we can also see, that using only labeled nucleotides
would lead to a power of zero. Thus, we suggest to use labeled nucleotides
only.

Lastly, we will look at the dependency on the number of nucleotides
within the specific target type. We will use the parameter situation from
Table 2.13. The results are illustrated in Figure 2.20 for m ∈ [1, 40].

The power of the test increases in m. So, the larger a specific nucleotide
the stronger the dye effect in labeling.
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Figure 2.19: Type II error and power in dependency on the numbers of initial
nucleotides within the fluids for parameters as shown in Table 2.12.

n1 n2 ε1 ε2 Vl Vu
25, 000 50, 000 .04 .05 9.03320505× 1021 6.0221367× 1021

Table 2.13: Parameter situation for Figure 2.20.

Concluding, we see, that if we have realistic parameter situations, the dye
effect is always visible as soon as we have different perturbations associated
to the different dyes within the two fluids. So, if one wants to infer the initial
number of targets, the dye effect has to be accounted for. This aspect is
going to be discussed in the résumé on page 94.

Another tool to rate a test is the ROC curve, which comes from signal
detection theory. This topic is looked at in the next paragraph to give advice
on improving the parameter choice.

2.2.1.5 Parameter choice due to the ROC curve

For details of the theory of this paragraph see [ZwCa] and [Faw]. The Re-
ceiver Operating Characteristic (ROC) curve is a true positive rate (TPR)
vs. false positive rate (FPR) plot for the test looked at and for all possible
levels of significance α. The true and false positive rates in our model are as
follows:

TPR = 1− β

FPR = α.

(2.40)
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Figure 2.20: Type II error and power in dependency on the number of nucleotides
within the fluids for parameters as shown in Table 2.13.

E.g., for the parameter situation of Table 2.13 and m = 20 binding sites for
labeled nucleotides within the target, the ROC curve is illustrated in Figure
2.21.

It can be interpreted as follows. The steeper its incline is to the value of
1, the better is the test in means of showing difference in color effects. So, a
perfect distinction can be made with a test which has a ROC curve constant
to 1. Or, in other words, the area under the ROC curve has to be large (close
to 1) for good tests.

For example, the area under the ROC curve in Figure 2.21 is ≈ 0.965.
I.e. for this parameter situation the dye effect is clearly visible.

Our aim is not a good test but rather a small color effect. So we are
looking for parameter settings, which minimize the area under the ROC
curve.

For this purpose, we will look at the situation scientists will be faced
with, if performing the reverse transcription step. Once the labels have been
chosen, the perturbations ε1, ε2 have to be considered constant for a given
target. Also, the number of hybridization sites for labeled nucleotides for
a certain target type cannot be influenced as well as the number of targets
which originate from the two fluids. So, the interesting parameters for mini-
mizing the area under the ROC curve are the numbers of labeled nucleotides
and unlabeled nucleotides fed to the reverse transcription reaction. For sev-
eral parameter situations the minimum and the values of Vl and Vu have been
calculated with MATHEMATICA. The results are summarized in Table 2.14.

Having a minimum of .5 is equivalent to guessing the color of a tar-
get, i.e. the test cannot distinguish between the colors of the targets. For
all four parameter situations of Table 2.14 we discovered a flat minimum,
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Figure 2.21: ROC curve for the test described in the previous section with param-
eter values from Table 2.13 and for m = 20.

i.e. the value of approximately .5 has been observed for Vl ∈ [1, 108] while
Vu ∈ [1015, 1022]. So, as long as there are much more unlabeled than labeled
nucleotides, the test does not see any color effect. But, a much larger number
of unlabeled than labeled nucleotides is not realistic since we need enough
labeled nucleotides to detect the signal. This phenomenon is corroborated
by the previous examination of the power of the test. Here, we could also
see that very asymmetric numbers of labeled and unlabeled nucleotides led a
bad power. Looking at Figure 2.22 which illustrates the area under the ROC
curve in dependency on Vl and Vu yields the same conclusion.

The area under the ROC curve as well as the power are small as soon as
Vl ≫ Vu or Vu ≫ Vl.

Optimization for the worst parameter situation, i.e. there is a maximally
visible color effect or area under the ROC curve, yields the values of Table
2.15.

As can be seen, the optimal parameter values are close to realistic param-
eters. This means, for realistic parameters, the color effect is visible quite
well. So, as already mentioned, it has to be accounted for. A possible ap-
proach to estimate the initial numbers of targets including the color effect is
discussed in the subsequent paragraph.
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n1 n2 m ε1 ε2 Min Vl Vu

25, 000 50, 000 20 .04 .05 .5 ≈ 1 ≈ 6× 1021

25, 000 50, 000 20 .01 .02 .5 1 1× 1022

2.5× 106 5× 106 20 .04 .05 .5 ≈ 9 1× 1022

2.5× 106 5× 106 20 .01 .02 .5 ≈ 3 ≈ 7× 1020

Table 2.14: Parameter situations for the parameters n1, n2, m, ε1 and ε2 for
determining the minimum Min of the area under the ROC curve. Additionally,
the table contains Min itself and the position Vl, Vu where it is reached. The
nucleotide numbers were restricted to Vl, Vu ∈

[
1, 1× 1022

]
.

Max n1 n2 m ε1 ε2 Vl Vu
1 ≈ 903, 327 ≈ 34, 731 ≈ 27 ≈ .097 ≈ .006 1022 ≈ 2.6× 1021

Table 2.15: Parameter situation calculated with MATHEMATICA, where the
maximum Max of the area under the ROC curve is reached for n1, n2 ∈

[
1, 106

]
,

ε1, ε2 ∈ [0, .1], Vl, Vu ∈
[
1, 1× 1022

]
and m ∈ [1, 100].

2.2.1.6 A simple approach for estimating the initial target num-
bers

The usual case in microarray experiments is, that n1, n2 are unknown and
one tries to estimate their ratio or log ratio. After motivation of the neces-
sity to account for dye effects under the perturbation model, we will try to
estimate the number of initial targets n1, n2 given the numbers of hybridized
nucleotides S1, S2 which are realizations of Σ1 and Σ2, respectively. Using
the method of moments (see [Grab]) results in the following equation

µ(εj) =
1

nj

nj∑
i=1

Z
(j)
i (m), j = 1, 2.

Since
∑nj

1=1 Z
(j)
i (m) = Sj, j = 1, 2, rearranging yields the estimator

n̂j ≈ Sj

µ(εj)
, j = 1, 2,

which is according to the previous considerations of Σj, j = 1, 2 asymptoti-
cally normally distributed with

n̂j ∼ N

(
nj,

√
nj

µ (εj)
2σ (εj)

)
, j = 1, 2.
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Figure 2.22: Area under the ROC curve for the test described in the previous
section with parameter values from Table 2.12.

Thus, once the parameters of the model are known it will be easy to determine
the initial number of targets and thus the ratio of the amount of mRNA
corresponding to the two different environmental conditions. Note however,
the results of the estimation are error prone since the estimators are random
variables. So, confidence intervals or similar statistics have to be looked at
to draw reliable conclusions.

2.2.1.7 Résumé

In this section we have seen that a color effect is visible for realistic parameter
situations in the reverse transcription model from Section 2.2.1. This has
been verified by looking at the mean and the variance of the number of
hybridized labeled nucleotides for the original model as well as for the model
of perturbed recruitment rates. This observation has been corroborated by
looking at the Taylor expansion for perturbation ε and by developing a simple
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test to analyze the impact of the perturbation on the dye effect. In addition,
by determining the minimum of the area under the ROC curve for this test,
we were able to recommend a parameter situation for the numbers of initial
nucleotides which would yield an almost invisible color effect. Unfortunately,
this parameter situation is not realistic. But the investigation of the power
led to another suggestion. From Figure 2.19 it is theoretically advisable to
use labeled nucleotides only. But practically, the labeling of nucleotides is
not perfect. So, we suggest to keep the amount of unlabeled nucleotides as
small as possible.

Summarizing the results of this section, we have to say, that for realistic
parameter situations, the color effect is visible in a sense of influencing the
number of fluorescence molecules attached to the targets. This effect has to
be incorporated into the inference of initial target concentrations. State of
the art normalizing methods try to overcome this problem by establishing
the same mean or median of all the intensities or of a selection of intensities
due to one dye compared to the other dye. The selection of genes either
corresponds to housekeeping genes (considered to be equally expressed during
the different cell states, see [Speed]) or to genes which are artificially added to
the microarray (spike-in method, see [Rydén]). Note, using only a selection
of genes implies a small bias but a large variance compared to the situation
of using all genes.

In contrast, we solved this problem by using the knowledge about the
reverse transcription model. For this purpose we proposed a simple approach
to estimate the initial target numbers which might be used after determining
the parameter values of the model.

2.2.2 Washing

In the following section we will analyze the washing model which has been
introduced in Section 1.2.2.

First of all, let us recall some notations from Section 1.2.2 which we will
need in this section, too. Let Ni and Hi be the total target numbers of
type i on the spot before and after washing and let Wi = Ni − Hi be the
number of targets which were washed off. In addition we will use λi(c) and
pki . The former is the rate for the event of detergent molecules binding to a
target and the latter describes the probability of solving a target of type i.
Here, c denotes the detergent concentration and ki the number of detergent
molecules needed to dissolve a target of type i.

We begin with deriving the mean and the variance of Hi.
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Fixation of Ni yields

E(Hi | Ni) = Ni − E(Wi(t) | Ni)

= Ni −Ni · pki
= (1− pki)Ni (2.41)

and thus
E(Hi) = (1− pki)E(Ni). (2.42)

Using the computational formula for the variance yields

E(H2
i | Ni) = E(Hi | Ni)

2 + Var(Hi | Ni)

= (1− pki)
2N2

i + Var(Ni −Wi(t) | Ni)

= (1− pki)
2N2

i + Var(Wi(t) | Ni)

= (1− pki)
2N2

i +Nipki(1− pki)

and therefore

E(H2
i ) = (1− pki)

2E(N2
i ) + E(Ni)pki(1− pki).

Again, with the help of the computational formula for the variance we receive

Var(Hi) = E(H2
i )− E(Hi)

2

= (1− pki)
2E(N2

i ) + E(Ni)pki(1− pki)− (1− pki)
2E(Ni)

2

= (1− pki)
2Var(Ni) + pki(1− pki)E(Ni). (2.43)

The mean and the variance of Hi shall be investigated for different parameter
situations. Both depend on the output of the hybridization process Ni and
through pki on the intensity λi(c)t.

First of all we will discuss the nature of λi(c). The intensity should
be increasing with the concentration of detergent molecules. On the one
hand it should not be smaller than zero and on the other hand a maximal
intensity λmax

i (c) should not be exceeded. Many function satisfy these crite-
ria, especially cumulative distribution functions. We picked the cumulative
distribution function of the Maxwell-Boltzmann distribution (see [Papou])
because of its close relation to the movement of particles and multiplied it by
λmax
i (c) in order to rescale its values to the interval [0, λmax

i (c)]. The result is
the following intensity function:

λi(c) = λmax
i (c)

[
2Φ

(
c

ai

)
−
√

2

π

ce−c2/(2a2i )

ai

]
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with standard normal distribution function

Φ(z) =

∫ y

−∞

1√
2π
e−

1
2
u2

du

and parameter ai which is useful for calibrating the shape of the intensity
function. A larger ai implies a slower growing λi(c). See Figure 2.23 for an
illustration.
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Figure 2.23: λi(c) for λ
max
i (c) = 10 and ai = 1 (black), ai = 2 (green) and ai = 3

(blue).

Next, we will have a look at the washing model for different parameter
situations following those from the hybridization model. We will start with
the setting from Table 2.16, i.e. we have a single cDNA type, labeled with two
different colors according to two different cell states. The values of λmax

i (c)
and ki, i = 1, 2 are chosen arbitrarily since no values could be found in
the literature. Both only affect the time scale. The only difference between
the two target types is the attached label. Therefore, they are supposed to
behave similarly. For that reason both parameters are chosen to be equal.
We will look at two different cases. The first case, where we have no color
effect, i.e. a1 = a2 = 1 and the second with an effect, i.e. a1 = 1, a2 = .99.

Obviously, E(N1) and E(N2) as well as Var(N1) and Var(N2) are chosen
according to the solution of Qρ = 0 with Markov generator Q and stationary
distribution ρ for the equal probabilities case from Table 2.5 of the hybridiza-
tion process.

Figures 2.24 and 2.25 show the mean and the variance of the number
of hybridized targets Hi, i = 1, 2 in dependency on the concentration of
detergent molecules.
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maximal detergent intensities
λmax
1 (c) 10
λmax
2 (c) 10

detergent concentration
c ∈ [0, .22]

duration of the washing procedure
t 900

mean number of initially hybridized targets
E(N1) 166.3
E(N2) 332.5

variance of the number of initially hybridized targets
Var(N1) 110.2
Var(N2) 110.6
detergent molecules needed for solution

k1 10
k2 10

Table 2.16: Parameter situation for the case of one cDNA type labeled with two
different colors.

As can be seen all curves are constant at the initial level until reaching a
characteristic value of about c = 0.12. Here, the targets start to dissociate
from the spot and the mean of the number of hybridized targets approaches
zero. The variance shows a slightly different behavior. On the one hand
Var(H1) also decreases similarly after reaching the characteristic value, but
on the other hand, Var(H2) increases approximately until c = 0.15 before
decreasing to zero as well.

So, besides a small range of concentrations, the variance decreases with
the mean, which is good since their ratio (coefficient of variation) character-
izes the randomness of the distribution.

So far we have not yet looked at the dependency on the parameters a1
and a2. Even though there is a difference, we cannot see it by comparing
Figures 2.24(a) and 2.24(b). We can make it visible by looking at the ratio

R = E(H1)
E(H2)

and the log ratio LR = log E(H1)
E(H2)

, which are illustrated in Figures
2.26 and 2.27.

Here, one sees a constant ratio and log ratio until the characteristic value
of approximately c = 0.12 is reached in both cases. Afterwards, these values
stay at this constant level in the case of a1 = a2 but increase in the case of
a1 ̸= a2. Thus, as soon as there is a small color effect, there will be an in-
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(b) a1 = 1, a2 = .99.

Figure 2.24: The mean of the number of hybridized targets after washing at dif-
ferent detergent concentrations.

0.05 0.1 0.15 0.2
c

20

40

60

80

100

120

VarHH1L

VarHH2L

(a) a1 = a2 = 1.

0.05 0.1 0.15 0.2
c

20

40

60

80

100

120

VarHH1L

VarHH2L

(b) a1 = 1, a2 = .99.

Figure 2.25: The variance of the number of hybridized targets after washing at
different detergent concentrations.

creasing error to the ratio and log ratio of the numbers of hybridized targets
if the detergent concentration is past its characteristic value. Hence, wash-
ing too stringently will lead to a false signal. Therefore, it is recommended
to find out the characteristic values of the detergent concentration for the
different target types and as a consequence not to exceed these levels during
the washing step.

Washing in presence of cross-hybridized targets The simplicity of the
washing model makes it possible to analyze the more complex case of cross-
hybridized targets. Assume the most simple case, where we have two different
kinds of cDNA, both labeled with two fluorescence dyes. This yields four
target types. One of the cDNAs hybridizes to the spot because of a complete
consensus sequence to the probe sequence and the other one hybridizes due to
a short partial consensus sequence. The corresponding targets to the latter
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Figure 2.26: The ratio of the mean numbers of hybridized targets of both types
after washing at different detergent concentrations.
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Figure 2.27: The log ratio of the mean numbers of hybridized targets of both types
after washing at different detergent concentrations.

case are called cross-hybridized targets. Those corresponding to the former
case will have a much stronger binding to the spot than cross-hybridized
targets. As a consequence less detergent molecules are needed to dissolve
cross-hybridized targets.

We have determined the mean number of hybridized targets for the four
types for the parameter situation of Table 2.17. Target types 1 and 2 belong
to the first kind of cDNA and types 3 and 4 are targets which have cross-
hybridized to the spot.

The parameters of target types 1 and 2 are chosen to be equal to the situ-
ation of Table 2.16. Since types 3 and 4 are supposed to be cross-hybridized
targets, we assume that they can be dissolved more easily with only three
detergent molecules. Further we assume less targets of types 3 and 4 being
hybridized to the spot than those of types 1 and 2.

The trend of the mean number of hybridized targets for all four types
after washing in dependency on different detergent concentrations is shown
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maximal detergent intensities
λmax
1 (c) 10
λmax
2 (c) 10
λmax
3 (c) 10
λmax
4 (c) 10

detergent concentration
c ∈ [0, .22]

duration of the washing procedure
t 900

mean number of initially hybridized targets
E(N1) 166.3
E(N2) 332.5
E(N3) 50
E(N4) 100
detergent molecules needed for solution
k1 10
k2 10
k3 3
k4 3

parameter a
a1 1
a2 .99
a3 .5
a4 .45

Table 2.17: Parameter situation for the case of two cDNA types labeled with two
different colors.

in Figure 2.28.
Again, one observes a characteristic value where the behavior of the curves

changes. It is about c = 0.12 for target types 1 and 2 whereas types 3
and 4 start to dissociate at approximately c = 0.03. Until reaching their
characteristic values the target numbers are constant at the initial level from
Table 2.17 and tend to zero afterwards.

While measuring fluorescence intensities of a single dye, there is no dis-
tinction between cross-hybridized and not cross-hybridized targets. The re-
sulting curves are displayed in Figure 2.29.

If not accounting for cross-hybridization, we will receive a false signal for a
wide range of detergent concentrations. Only the interval c ∈ [.08, .12] yields
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Figure 2.28: The mean numbers of hybridized targets after washing at different
detergent concentrations and in presence of cross-hybridization.
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Figure 2.29: The sum of the mean numbers of hybridized targets according to one
fluorescence dye after washing at different detergent concentrations.

the correct signal. So, again it is important to find out the behavior of the
observed targets at different detergent concentrations and find the interval
which yields the correct signal. The behavior described in Figure 2.29 has
also been observed by biologists. See Figure 2.30 from [Drob].

The experimentally produced curves in subfigure (F) show a similar shape
as those from our model in Figure 2.29, including the characteristic plateau
where all cross-hybridized targets are washed off the spot. So, indeed the
cross-hybridization effect has a practical meaning, which underlines the im-
portance of washing at the right detergent concentrations. There is a large
number of spots on a microarray. Each spot has its own interval of detergent
concentrations which yield the characteristic plateau. Since the microarray
is washed at a single concentration, we have to intersect the intervals of the
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Figure 2.30: ([Drob]) Comprehensive assessment of shapes of fractionation curves
from normalized data. Fragments of the cluster tree representing different types
of fractionation curves for Cy5-labeled testis cDNA hybridization are shown. (A)
Part of the hierarchical tree with genes having sharp transitions from the hy-
bridized to non-hybridized state near 62% formamide that cluster together. (B)
As (A) but with genes that have a sharp transition near 55% formamide. (C)
Normalized signal intensities (y-axis) over increasing formamide concentrations
(x-axis) of the same 27 genes as in (A). The vertical line indicates the transition
stringency (TS), the mid-point of the transition from hybridized to dehybridized
signal intensities. (D) Fractionation curves (x-axis, normalized signal intensities;
y-axis, formamide concentration) of the same 21 genes as in (B). Vertical line in-
dicates the transition stringency (TS) in this cluster of fractionation curves. (E)
Cluster of 14 fractionation curves having broad transition regions. (F) Cluster of
10 fractionation curves having a two-step transition from the hybridized to non-
hybridized state.

different spots in order to find the concentration which yields a characteristic
plateau for all spots. The final interval might be very small or it might even
vanish. This aspect should be considered in microarray experiments.

We will also look at the ratio and log ratio of the fluorescence intensities
which are illustrated in Figure 2.31.

As can be seen, both start at a constant level, increase at the characteristic
detergent concentration of target types 3 and 4, reach a local maximum at
about c = 0.05, then decrease to another plateau before increasing after
passing the characteristic detergent concentration of target types 1 and 2.
The second plateau can be found at the level, which characterizes the actual
ratio and log ratio of initially hybridized targets of types 1 and 2. Thus it is
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Figure 2.31: The ratio and log ratio of the mean numbers of hybridized targets of
both colors after washing at different detergent concentrations.

recommended to wash at a detergent concentration of this plateau in order
to correctly infer the initial target levels.

We have to keep in mind, that the interesting ratio of regularly hybridiz-
ing targets E(N1)

E(N2)
= 166.3

332.5
is approximately 1/2. Too stringent washing and

cross-hybridization significantly disturb the signal. This can be seen if look-
ing at the respective figures of the ratio of hybridized targets after washing.
This effect could be eliminated by washing at the right detergent concentra-
tion. So, finding out the right concentration should be of major interest to
scientists before committing the washing step. Otherwise, inferring initial
target numbers could not be conducted efficiently.

2.2.2.1 Résumé

In this section we have derived expressions for the mean and for the variance
of the number of hybridized targets after the washing procedure from Sec-
tion 1.2.2. These were used to determine the dependency of the model on the
stringency of washing. In the case of two target types we could discover a
small dye effect which will perturb the signal if the detergent concentration is
too large. In addition, the case of four targets revealed a cross-hybridization
effect. On the one hand, this effect was shown to be canceled out in the
case of washing at a concentration which is strong enough to wash off cross-
hybridized targets but leaves regularly hybridized targets on the spot. On
the other hand it could be shown, that the cross-hybridization effect will
yield completely wrong inferences if washing at other detergent concentra-
tions. Thus, washing at the right concentration should be of major interest
to researchers.
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2.2.3 Fluorescence

Several noise sources contribute to the output of the fluorescence module,
where spontaneous emission is considered to be the main noise source in laser
devices. Other noise sources can be neglected. Thus, we will concentrate on
spontaneous emission. As described in Section 1.2.3.2 it can be considered to
be non random. Thus, it does not cause fluctuations in the intensity of the
laser light. From Equation (1.15) we can determine the photon flux density
including spontaneous emission. Combining it with

I(z) = ϕ(z)hν

yields the intensity of the laser light (see [SaTe])

I(z) = hν

(
− ϵsp(ν)

(N2 −N1)σ(ν)
+

(
ϕ0 +

ϵsp(ν)

(N2 −N1)σ(ν)

)
e(N2−N1)σ(ν)z

)
.

In our context, the laser noise cannot be valuated without considering its im-
pact on the fluorescence intensity. According to Equation (1.16), the impact
of the laser light intensity on the intensity of fluorescence is

F = 2.3pfI(z)τκl. (2.44)

For the sake of simplicity let

a := 2.3pfτ l.

Further, let
Iu(z) = hνϕ0e

(N2−N1)σ(ν)z

denote the laser light intensity without spontaneous emission according to
Equation (1.13). Subtracting Iu(z) from I(z) yields the intensity due to
spontaneous emission

Isp(z) = I(z)− Iu(z)

= hν
ϵsp(ν)

(N2 −N1)σ(ν)

(
e(N2−N1)σ(ν)z − 1

)
.

So Equation (2.44) can be rewritten as follows:

F = a(Iu(z) + Isp(z))κ.

In general, two different laser devices are used to excite the fluorescence
dyes in microarray experiments. Therefor, all symbols will get an additional
superscript index if we want to distinguish between the two devices. The
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value of interest is the ratio of target concentrations R = κ1

κ2 . So far, F 1

and F 2 are measured and their ratio F 1

F 2 (or log ratio log F 1

F 2 ) is calculated
and considered to be equal to R. Obviously, this assumption does not hold,
because

F 1

F 2
=
a1(I1u(z) + I1sp(z))κ

1

a2(I2u(z) + I2sp(z))κ
2
.

So, the ratio has to be corrected by the factor

CF =
a2(I2u(z) + I2sp(z))

a1(I1u(z) + I1sp(z))
. (2.45)

A general analysis of the impact of CF on the fluorescence intensity is quite
difficult due to the large quantity of parameters it depends on. But, it can
be determined quite easily once the parameter values are known. In this
case the ratio must be corrected by CF . But instead of accounting for it,
researchers so far normalize microarray data for example by establishing the
same mean or median of fluorescence intensities for the two dyes and all
spots. The idea behind this procedure is that a vast majority of genes does
not change its expression level and thus the mean or the median should
almost stay constant. This works fine as long as the gene expression activity
does not change too much between the cell states. Thus, another alternative
only uses the intensity values of a selection of genes which are supposed to be
constantly expressed during the different cell states (so-called housekeeping
genes) or those which are artificially added to the microarray experiment
(spike-in method). These two methods are better since they do not include
the intensity effects of those genes which are differentially expressed and thus
yield a more reliable correction. For details concerning the housekeeping
gene methods see e.g. [Speed] and for an overview of spike-in methods see
[Rydén]. The advantage of using all genes of the array is that the variance of
the correction would be quite small compared to using a selection of genes.
On the other hand, the bias due to all genes would be larger than the bias
caused by a selection of genes. As a consequence, the mean of a normalization
received from a selection of non-differentially expressed genes will be quite
good but will have a large variance. In contrast, a normalization due all
genes would have a small variance but a biased mean. The results from this
section might help to overcome this problem.

Our model enables researchers to normalize microarray data non heuris-
tically with the help of the correction factor CF . We suggest a study which
compares the effectiveness of heuristic normalizing methods and our method.
Subsequently, we will give an example of how to use our method.



2.2. RESIDUAL SUBPROCESSES 107

Example: The parameters ϕ0, N1, N2, ν and the functions σ(ν) and ϵsp(ν)
vary between different laser devices. Some of them can be found in the
literature. Others have to be asked for at the manufacturer of the device
of interest. Many scanners use an Argon ion laser exciting Cy3 (green) at
a wavelength of 514nm and a Helium Neon laser exiting Cy5 (red) at a
wavelength of 633nm (see [Ramp]). We will use their parameter values to
examine the spontaneous emission error. We assume, target types 1 and 3
to be labeled wit Cy3 and the others with Cy5. The parameter setting is
summarized in Table 2.18.

parameter values found in the literature
Argon ion laser HeNe laser

ν .515µm .6328µm
σ(ν) 3× 10−12 cm2 1× 10−13 cm2

parameter values not found in the literature
ϕ0 4× 1015 photons/cm2s 5× 1015 photons/cm2s
N1 .4× 1010 cm−3 .1× 1010 cm−3

N2 .6× 1010 cm−3 .9× 1010 cm−3

dΩ π/24 π/24
c 299.792458× 106m/s 299.792458× 106m/s
pf 1/3 1/4
τ 104m2/mol 104m2/mol
l 10−4m 10−4m
d .1m .1m

Table 2.18: Parameter situation for Argon and Helium Neon lasers. Some of the
parameter values could be found in the literature (see [SaTe], Chapter 13). Others
have been assigned values which are reasonable to our understanding.

Using the parameter values of Table 2.18 yields CF = .89 according to
Equation (2.45). Thus, if not modifying the ratio F 1/F 2 by CF would lead
to an overestimation of the ratio of target concentrations κ1/κ2 of about 12%.

2.2.3.1 Résumé

With the help of the model from Section 1.2.3, we were able to show that
using different lasers and dyes affects the fluorescence intensity. We derived
the correction factor CF to normalize signal intensities. It uses physical
properties of the laser devices to adjust the fluorescence intensities from the
two colors. If we do not use the correction factor, the fluorescence intensities
will be biased.
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Unfortunately, most of the parameters had to be guessed. At this point,
further analysis is recommended in order to determine the unknown parame-
ter values of the model and to verify the correction factor by measurements.

2.2.4 Detection

In order to determine the noise due to detection one could measure the noise
due to shot, generation-recombination, Johnson-Nyquist as well as Flicker
noise and then determine the total noise according to Equation (1.21).

Instead, in this section we will analyze the single type branching pro-
cess from Section 1.2.4 in order to understand the behavior of the detection
process and to quantify the error which is due to this module.

A photon striking the photocathode causes emission of a single primary
electron with an efficiency proportional to its frequency (energy). Due to
the nature of either causing emission or not, we define the number of pri-
mary electrons caused by a single photon as a Bernoulli variable with success
probability λp. The success probability can be identified with the quantum
efficiency which is the number of primary electrons per photon. It takes val-
ues between 1% and 20%. The number of striking photons can reach values
up to 108. For details see [Lako] and [Pawl]. Additionally, let the number of
secondary electrons emitted by the ith dynode due to a single striking elec-
tron be Poisson distributed with intensity λs. This implies equal probability
distributions at the different dynodes and thus is a restriction of the more
general model from Section 1.2.4. We will only look at this case because we
assume equal dynodes within a PMT (photomultiplier tube). Furthermore,
we assume to have l = 10 dynodes which multiply the electron stream. This
is a common number for PMTs ([WeAa], Chapter 14). [WeAa] also suggests
λs = 5.

In the end of the multiplication process the secondary electrons are col-
lected by the anode and the current is measured by the amperemeter, which
is not able to display every single fluctuation in the current. Moreover it
displays the sum of all electrons which hit the anode within a certain period
of time. Let Nl,k be the number of secondary electrons emitted by the lth
dynode which are due to k photons striking the photocathode within this
time span. These electrons hit the anode and thus cause the signal in the
amperemeter. Our aim is to determine the probability distribution of Nl,k in
order to be able to estimate the error in the amperemeter due to the branch-
ing process. For this purpose, we will determine the probability generating
function (p.g.f.) of Nl,k. According to the assumptions above, the number of
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primary electrons due to a single photon has p.g.f.

Q0(z) = (1− λp) + λpz.

The number of secondary electrons due to an electron striking the mth dyn-
ode has p.g.f.

Qm(z) =
∞∑
i=0

λis
i!
e−λszi = eλs(z−1)

for m ∈ {1, 2, ..., l}. Combining Recursion (1.22) with

h(z) := eλs(z−1) and

f(z) := (1− λp) + λpz

yields the p.g.f.
Gl(z) =

(
f ◦ h ◦ h ◦ . . . ◦ h︸ ︷︷ ︸

l times

)
(z)

for the number of secondary electrons Nl,1 from the lth dynode. The resulting
p.g.f. of Nl,k is

Gk
l (z) = E(zkNl,k) = E(zNl,1)E(zNl,1) · . . . · E(zNl,1)︸ ︷︷ ︸

k times

= Gl(z)
k (2.46)

for k independent photons causing k independent multiplication paths (see
[Grab]).

In practice, combining Equation (2.46) with Equations (1.24) and (1.26)
yields functions which cannot be evaluated efficiently due to computational
power. Thus, we will use some properties of the p.g.f. to estimate a distri-
bution of Nl,k.

We will determine the mean E(Nl,k), the variance Var(Nl,k), the skewness
γ1(Nl,k) and the kurtosis γ2(Nl,k) from the p.g.f. as follows. The mean and
the variance can be expressed as (see [Grab])

E(Nl,k) =
∂

∂z
Gk

l (z)

∣∣∣∣
z=1

Var(Nl,k) =
∂2

∂z2
Gk

l (z)

∣∣∣∣
z=1

+
∂

∂z
Gk

l (z)

∣∣∣∣
z=1

−
(
∂

∂z
Gk

l (z)

∣∣∣∣
z=1

)2

.

(2.47)
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The skewness and kurtosis are the third and fourth standardized moment
and are defined as (see [FrHH])

γ1(Nl,k) :=
E(Nl,k − E(Nl,k))

3

Var(Nl,k)3/2
and (2.48)

γ2(Nl,k) :=
E(Nl,k − E(Nl,k))

4

Var(Nl,k)2
. (2.49)

The following theorem will help to express γ1 and γ2 in terms of G.

Lemma 2.2.1. ([SchmK], Chapter 16) Let X be a random variable. If there
is an a ∈ (0,∞) with MX(t) = E(etX) < ∞ for t ∈ (−a, a) the following
equation holds

E(Xk) =
∂k

∂tk
MX(t)

∣∣∣∣
t=0

.

MX(t) is called moment generating function. Obviously, with z = et

follows
MX(t) = E(etX) = E(zX) = GX(z) (2.50)

where GX(z) is the probability generating function of X. Thus GX(z) < ∞
implies MX(t) < ∞. The probability generating function from Equation
(2.46) is a composition of finitely many exponential functions and thus has
always finite values within a finite interval (−a, a). So Theorem (2.2.1) is
useful to determine the moments of Nl,k.

For simplicity, let Nl,k =: X and Gk
l (z) = g(z). The moments are

E(X) =
∂

∂t
MX(t)

∣∣∣∣
t=0

=
∂

∂t
g(et)

∣∣∣∣
t=0

= etg′(et)
∣∣
t=0

= g′(1) (2.51)

as already seen above,

E(X2) =
∂2

∂t2
MX(t)

∣∣∣∣
t=0

=
∂2

∂t2
g(et)

∣∣∣∣
t=0

=
(
etg′(et) + g′′(et)e2t

)∣∣
t=0

= g′(1) + g′′(1), (2.52)
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E(X3) =
∂3

∂t3
MX(t)

∣∣∣∣
t=0

=
∂3

∂t3
g(et)

∣∣∣∣
t=0

=
(
etg′(et) + 3g′′(et)e2t + g′′′(et)e3t

)∣∣
t=0

= g′(1) + 3g′′(1) + g′′′(1) (2.53)

and

E(X4) =
∂4

∂t4
MX(t)

∣∣∣∣
t=0

=
∂4

∂t4
g(et)

∣∣∣∣
t=0

=
(
etg′(et) + 7g′′(et)e2t + 6g′′′(et)e3t + g(4)(et)e4t

)∣∣
t=0

= g′(1) + 7g′′(1) + 6g′′′(1) + g(4)(1). (2.54)

Remark: The coefficients in front of the derivatives of the p.g.f. seem to be
the sterling numbers of second kind. And indeed, this assumption could be
verified with the help of the literature (see [Renyi], Chapter 3). However, for
further considerations this is not relevant.

Equations (2.51) and (2.52) can be used to derive the expressions for the
mean and the variance as displayed above. With the help of all four equations
we will derive the formulas for the skewness and the kurtosis. Expanding
Equations (2.48) and (2.49) and using the linearity of the mean yields

γ1(X) =
E(X3)− 3E(X2)E(X) + 3E(X)E(X)2 + E(X)3(

E (X2)− E (X)2
)3/2 and (2.55)

γ2(X) =
E(X4)− 4E(X3)E(X) + 6E(X2)E(X)2 − 4E(X)E(X)3 + E(X)4(

E (X2)− E (X)2
)2 .

(2.56)

Combining Equations (2.55) and (2.56) with (2.51)-(2.54) yields

γ1(X) =

g′(1) + 2g′(1)3 + 3g′′(1)− 3g′(1) (g′ (1) + g′′ (1)) + g′′′(1)(
g′ (1) + g′′ (1)− g′ (1)2

)3/2
,

(2.57)

γ2(X) =

g′(1)− 3g′(1)4 + 7g′′(1) + 6g′(1)2 (g′ (1) + g′′ (1)) + 6g′′′(1)− 4g′(1) (g′ (1) + 3g′′ (1) + g′′′ (1)) + g(4)(1)(
g′ (1) + g′′ (1)− g′ (1)2

)2
.

(2.58)
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Equations (2.57) and (2.58) enable us to determine the skewness and the
kurtosis of the distribution of Nl,k with the help of its p.g.f.. Both charac-
teristics help to evaluate the similarity to a normal distribution.

Skewness is a measure of symmetry, where values close to zero indicate
symmetric distributions. The peakedness of a distribution can be measured
with the help of the kurtosis. The normal distribution has a kurtosis of 3
whereas larger values indicate a higher, more acute peak and fatter tails than
those of a normal distribution. Smaller values indicate a lower, wider peak
and thinner tails than those of a normal distribution.

The probability distribution of Nl,k should only be positive in the first
quadrant since Nl,k < 0 cannot occur. Thus, E(Nl,k) must be positive. If
we want to identify this distribution with a normal distribution, we must
choose a positive mean and a variance that is small enough to keep almost
all of the values in the first quadrant. ”Almost all” can be verified quite well
for normal distributions. 99.7% of the values of a normal distribution can be
found within [µ− 3σ, µ+ 3σ] where µ is its mean and σ its standard deviation
(see [Grab]). Thus, we propose a normal distribution with µ = E(Nl,k) and
σ =

√
Var(Nl,k) which has an area under curve of almost 1 within the first

quadrant. More precisely, we receive the condition

µ− 3σ > 0

which is equivalent to

CV = CV (Nl,k) :=
σ

µ
<

1

3
,

where CV denotes the coefficient of variation.
Following we will summarize the conditions which must be satisfied by

the distribution of Nl,k:

µ > 0, (2.59)

CV <
1

3
, (2.60)

γ1(Nl,k) ≈ 0, (2.61)

γ2(Nl,k) ≈ 3. (2.62)

The four characteristics mean, variance, skewness and kurtosis as well
as the coefficient of variation have been determined for different parameter
situations in order to classify regions where the distribution of Nl,k can be
substituted by a normal distribution. These regions must satisfy the four
Conditions (2.59)-(2.62).
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The detection model has four parameters, i.e. the number of striking
photons, the quantum efficiency, the intensity of the branching process at
the dynodes and the number of dynodes within the PMT. For the entire
examination we fix the number of dynodes to be l = 10. The characteristics
have been investigated by keeping two other parameters constant and the
fourth variable.

For constant λp, λs and variable k, the results are shown in Figure 2.32.
We observe a fast decline of the CV below the critical value of 1/3. In fact,
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(a) The mean E(Nl,k).
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(b) The standard deviation
√
Var(Nl,k).
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(c) The skewness γ1(Nl,k).
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(d) The kurtosis γ2(Nl,k).

Figure 2.32: Mean, standard deviation, skewness and kurtosis for λp = .1, λs = 5
and k ∈

[
0, 107

]
.

at k = 104 the CV falls below 1/3 for the first time. Thus, beyond k = 104,
the normal distribution is almost only concentrated in the first quadrant
and thus might serve as a good approximation of Nl,k whereas the case of
k < 104 photons is not of major interest because it corresponds to very small
fluorescence intensities.

We also have to analyze the shape of the distribution. As can be seen in
Figure 2.32(c), the skewness descends to zero rapidly. This indicates a very
symmetric distribution. For example, the value for k = 103 photons is already
.119. From Figure 2.32(d) we also know, that the kurtosis fast descends to
3. This indicates that the peakedness of the distribution is close to a normal
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Figure 2.33: The coefficient of variation for λp = .1, λs = 5 and k ∈
[
0, 105

]
.

distribution. For example, the kurtosis at k = 100 has already descended to
3.147. In summary, the distribution of Nl,k can hardly be distinguished from
a normal distribution with mean E(Nl,k) and standard deviation

√
Var(Nl,k)

for k greater than 103 or 104. Thus in the case of fixed λp and λs this normal
distribution is a good approximation.

The observation for fixed k and λs is shown in Figure 2.34. Again, we
see a linear dependency of the mean and a much smaller standard deviation
for larger quantum efficiencies λp. The coefficient of variation in Figure
2.35 confirms this result. It can be seen that it decreases fast below the
critical value of 1/3. Precisely, it falls below 1/3 after passing λp ≈ 1.12 ×
10−4. So for realistic quantum efficiencies, almost the entire mass of the
normal distribution with parameters µ and σ will be concentrated in the
first quadrant.

Furthermore, for realistic quantum efficiencies of 0.05 and greater, the
skewness is smaller than 0.02. The kurtosis instantaneously declines to 3.
Hence, also for fixed k and λs the distribution of Nl,k can be approximated by
a normal distribution with mean E(Nl,k) and standard deviation

√
Var(Nl,k).

The last case of constant k and λp looks similar. The results are shown
in Figure 2.36. Mean and standard deviation increase exponentially but the
variance is again some orders of magnitude smaller. This is corroborated
by Figure 2.37. Here, the coefficient of variation falls below 1/3 for λs ≥ 1.
Thus for all possible parameter situations, the normal distribution will be
concentrated almost entirely in the first quadrant.

Skewness and kurtosis fulfill the Conditions (2.61) and (2.62) for λs ≥ 1.
Thus, for this case, the normal distribution with mean E(Nl,k) and standard
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(a) The mean E(Nl,k).
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(b) The standard deviation
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(c) The skewness γ1(Nl,k).
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(d) The kurtosis γ2(Nl,k).

Figure 2.34: Mean, standard deviation, skewness and kurtosis for k = 105, λs = 5
and λp ∈ [0, 1].

deviation
√
Var(Nl,k) is an appropriate approximation of the distribution of

Nl,k, too.
The knowledge of the previous section enables us to approximate the dis-

tribution of the number of secondary electrons hitting the anode by a normal
distribution. Assuming that these electrons directly cause the signal in the
amperemeter and neglecting noise in the amperemeter yields the distribution
of the signal which is finally detected.

Example for two signals Subsequently, we will give a simple example.
Assume for one gene the fluorescence intensities from the two colors are
detected. We look at two different situations. The first situation deals with
very small signals whereas the second situation considers large intensities.
We will approximate the distribution of Nl,k by a normal distribution as
described in the previous section. Figures 2.38(a) and 2.38(b) show the two
normal distributions due to the parameter situations of the first and of the
second row in Table 2.19, respectively.

Obviously, the distributions in Figure 2.38(a) can be distinguished quite
well even though they have a remarkable overlap. Here, we looked at very
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Figure 2.35: The coefficient of variation for k = 105, λs = 5 and λp ∈ [0, 1].

k1 k2 λp λs

small intensities 200 400 .1 5
large intensities 2, 000 4, 000 .1 5

Table 2.19: The parameter situations of small and large fluorescence intensities
are displayed in the first and second row, respectively.

small intensity values which are not of major interest in microarray experi-
ments. On the other hand, Figure 2.38(b) shows two distributions of larger
but still quite small intensities. Here, no overlap is visible. A one sided Gauss
test at a significance level of 5% has a power of almost 1 for this parameter
situation. In Figure 2.39 we can see the power of this test in dependency on
k, where the first signal consists of k photons and the second of 2k photons.

After passing k = 300, the power reaches about 1. Thus, a twofold in
signal intensities will be detected almost surely if the smaller intensity is due
to a number of striking photons larger than 300.

Behavior of the intensity ratio Another question is whether the ratio of
striking photons is displayed in the current at the amperemeter? To answer
this, we will have a look at the mean E(Nl,k) and its dependency on the
number of striking photons k.
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(b) The standard deviation
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(c) The skewness γ1(Nl,k).
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(d) The kurtosis γ2(Nl,k).

Figure 2.36: Mean, standard deviation, skewness and kurtosis for k = 105, λp = .1
and λs ∈ [0, 15].

Let ζl(z) be the composition of h(z) for l times, i.e.

ζl(z) := h ◦ h ◦ . . . ◦ h︸ ︷︷ ︸
l times

(z).

Lemma 2.2.2. ζl(z) has derivative λ
l
s at z = 1.

Proof. We prove this lemma by induction over l.
l = 1 :

∂

∂z
ζ1(z)

∣∣∣∣
z=1

=
∂

∂z
h(z)

∣∣∣∣
z=1

=
∂

∂z
eλs(z−1)

∣∣∣∣
z=1

= λse
λs(z−1)

∣∣
z=1

= λ1s
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Figure 2.37: The coefficient of variation for k = 105, λp = .1 and λs ∈ [0, 15].
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to the first row in Table 2.19.
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(b) Two detection distributions according
to the second row in Table 2.19.

Figure 2.38: Normal distributions to approximate the distribution of Nl,k.

l → l + 1 :

∂

∂z
ζl+1(z)

∣∣∣∣
z=1

=
∂

∂z
h(ζl(z))

∣∣∣∣
z=1

=
∂

∂ζl(z)
h(ζl(z))

∂

∂z
ζl(z)

∣∣∣∣
z=1

=
∂

∂ζl(z)
h(ζl(z))

∣∣∣∣
z=1

∂

∂z
ζl(z)

∣∣∣∣
z=1

= λse
λs(ζl(1)−1)λls

= λsλ
l
s

= λl+1
s
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Figure 2.39: The power in dependency on the number of photons k of a one sided
Gauss test for two normal distributions generated at a parameter situation of
l = 10, λp = .1 and λs = 5. The first distribution is due to k and the second to 2k
striking photons.

Theorem 2.15. The mean of the number of electrons Nl,k after passing the
PMT aperture is

E(Nl,k) = kλpλ
l
s. (2.63)

Proof.

E(Nl,k) =
∂

∂z
Gk

l (z)

∣∣∣∣
z=1

=
∂

∂z
Gl(z)

k

∣∣∣∣
z=1

= kGl(z)
k−1 ∂

∂z
Gl(z)

∣∣∣∣
z=1

= kGl(z)
k−1 ∂

∂z
f(ζl(z))

∣∣∣∣
z=1

= kGl(z)
k−1 ∂

∂ζl(z)
f(ζl(z))

∂

∂z
ζl(z)

∣∣∣∣
z=1

= kGl(1)
k−1λpζl(1)λ

l
s

= k1k−1λp1λ
l
s

= kλpλ
l
s
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Using Formula (2.63) for two different numbers of striking photons k1, k2
yields a ratio of the means

E(Nl,k1)

E(Nl,k2)
=
k1λpλ

l
s

k2λpλls
=
k1
k2
, (2.64)

which is equal to the original ratio. Thus, ratios or even log ratios of the
signals from the amperemeter display the ratio of striking photons. Therefore
they can be used to infer the ratio of fluorescence intensities. At this point it
is important to mention, that Equation (2.64) uses means and not the signals
themselves. The signals are realizations from the normal distributions and
thus are error prone according to the size of the variance. In the previous
paragraphs we saw that in the case of large signals the variance is very
small compared to the mean. Hence, the ratio of signal intensities is almost
independent of the variance. Therefore, the variance can be neglected.

In the next paragraph we will look at the distribution of the intensity
ratio. This includes the case of smaller signals where the variance is not
small compared to the mean.

2.2.4.1 The distribution of the ratio of intensities

E. C. Fieller [Fiell] developed probability density functions of ratios of cor-
related random variables. We will use the more recent version of his results
from [Hink] to derive the probability density function of

RN :=
Nl,k1 +Nl,k3

Nl,k2 +Nl,k4

, (2.65)

which is the ratio of signal intensities in the case of cross-hybridization
with normally distributed signals Nl,k1 , Nl,k3 of the first color and signals
Nl,k2 , Nl,k4 of the second color.

The number of striking photons and secondary electrons is supposed to
be very small compared to the number of atoms in the photocathode and
in the dynodes. Hence, there is almost no competition of these particles for
the atoms. Therefore, we will assume independently distributed Nl,k1 , Nl,k2 ,
Nl,k3 and Nl,k4 . Thus, we have X := Nl,k1 +Nl,k3 and Y := Nl,k2 +Nl,k4 are
normally distributed with means E(X) := E(Nl,k1) + E(Nl,k3) and E(Y ) :=
E(Nl,k2) + E(Nl,k4) and variances Var(x) := Var(Nl,k1) + Var(Nl,k3) and
variance Var(Y ) := Var(Nl,k2) + Var(Nl,k4), respectively.
Before stating the result of interest we will give some definitions.
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Definition 2.16. Let

a(w) =

(
w2

Var(X)
− 2ρw√

Var(X)Var(Y )
+

1

Var(Y )

)1/2

,

b(w) =
E(X)w

Var(X)
− ρ(E(X) + E(Y )w)√

Var(X)Var(Y )
+

E(Y )

Var(Y )
,

c =
E(X)2

Var(X)
− 2ρE(X)E(Y )√

Var(X)Var(Y )
+

E(Y )2

Var(Y )
,

d(w) = exp

(
b(w)2 − ca(w)2

2(1− ρ2)a(w)2

)
,

Φ(z) =

∫ z

−∞

1√
2π
e−

1
2
u2

du,

where ρ is the coefficient of correlation of the normally distributed random
variables X and Y .

Lemma 2.2.3. The probability density function of the quotient X/Y of two
normally distributed random variables X, Y with coefficient of correlation ρ
is

f(w) =
b(w)d(w)√

2πVar(X)Var(Y )a(w)3

[
Φ

(
b(w)√

1− ρ2a(w)

)
− Φ

(
b(w)√

1− ρ2a(w)

)]

+

√
1− ρ2

π
√
Var(X)Var(Y )a(w)2

exp

(
− c

2(1− ρ2)

)
.

([Hink]) Assuming independence of X and Y implies ρ = 0. Combining
this with Definition 2.16 and Lemma 2.2.3 yields the following simplified
definition and lemma.

Definition 2.17. Let

a(w) =

(
w2

Var(X)
+

1

Var(Y )

)1/2

,

b(w) =
E(X)w

Var(X)
+

E(Y )

Var(Y )
,

c =
E(X)2

Var(X)
+

E(Y )2

Var(Y )
,

d(w) = exp

(
1

2

b(w)2

a(w)2
− 1

2
c

)
,

Φ(z) =

∫ z

−∞

1√
2π
e−

1
2
u2

du



122 CHAPTER 2. EXAMINATION OF INTRODUCED MODULES

for independently, normally distributed random variables X and Y .

Lemma 2.2.4. ([Hink]) The probability density function of the quotient X/Y
of two independent normally distributed random variables X,Y is

f(w) =
b(w)d(w)√

2πVar(X)Var(Y )a(w)3

[
2Φ

(
b(w)

a(w)

)
− 1

]
+

1

a(w)2π
√
Var(X)Var(Y )

exp

(
−1

2
c

)
.

Using this result, we have a look at the probability density functions for
the two signals from the first and the second row of Table 2.19 which are
illustrated in Figure 2.40.
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(a) The ratio distribution according to
Lemma 2.2.4 and row one in Table 2.19.
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(b) The ratio distribution according to
Lemma 2.2.4 and row two in Table 2.19.

Figure 2.40: The ratio distributions ofRN of two detection signals and two different
parameter situations according to Lemma 2.2.4.

The distribution of Figure 2.40(a) has a mean of ≈ 0.5158 and variance
of ≈ 0.0252. Approximately 99.2% of the values can be found between 0 and
1. The distribution of Figure 2.40(b) has a mean of ≈ 0.5015 and variance
of ≈ 0.0022. Here, 99.8% of the values can already be found between 0.35
and 0.65.

On the one hand, both means are close to the initial ratio of 1/2 which
corroborates the previous results. On the other hand it can be seen that the
variance strongly depends on the strength of the signal. Smaller numbers of
striking photons imply a larger noise. For that reason, the detection scale
has to be looked at critically.

2.2.4.2 Résumé

In a first step we looked at the p.g.f. of the number of detected electrons Nl,k

at the amperemeter and tried to determine the probability distribution of
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Nl,k. This failed for concrete parameter values due to computational power.
Thus, we approximated the distribution by a normal distribution. Again
with the help of the p.g.f., we derived the four moments mean, variance,
skewness and kurtosis as well as the coefficient of variation. We used these
values to verify the approximation for realistic parameter values.

Afterwards the respective normal distribution was used to give an exam-
ple for two different signal intensities striking the photocathode. We could
see, that there was a rather large overlap for small intensities compared with
larger intensities.

This behavior was corroborated by looking at the power of a simple test,
which even helped to find a kind of minimal intensity to separate two signals.

Finally, we derived the distribution of the intensity ratio and could see
that its variance depends on the strength of the signals, too.

Summarizing the results from this section, we could see that the signal
within a PMT is amplified very well and the noise due to the amplification
process does hardly affect the power of distinguishing two different signals as
long as the number of striking photons is sufficiently large. In this case, using
PMTs is a good method to make photon streams visible without perturbing
the ratio of the photon stream intensities. In the case of small signals a PMT
is not an advisable detection aperture.
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Chapter 3

The compound model

In this chapter we will analyze the way of the signal through the entire
microarray process by simulation. We will make use of the previous results
in order to state a model which concatenates the modules. This model shall
be called the compound model.

We will simulate the models of the hybridization including dissociation,
the washing and the reverse transcription modules. During the fluorescence
step we will use the reciprocal of the correction factor CF from Equation
(2.45) to account for fluorescence noise. To simulate the branching process
from the detection module is computational too expensive. Thus we will use
the results from Section 2.2.4 and approximate the distribution of electrons
detected at the amperemeter by a normal distribution. Mean, standard de-
viation and histograms of the particle distributions within each step shall
be determined in order to identify major noise sources. We will finish this
chapter by comparing the input signal (mRNA) with the detected output.

Since simulation is possible for four target types we can skip the case of
two types and directly look at the case which includes cross-hybridization.
Target types 1 and 2 are specific to the spot whereas types 3 and 4 are
supposed to be unspecific as summarized in Table 3.1.

specific target types unspecific target types
Cy3 labeled 1 3
Cy5 labeled 2 4

Table 3.1: Specification of target types.

The reverse transcription process labels each target with a random num-
ber of dye molecules. The result is a large number of target types. Simulating

125
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the hybridization process with such large numbers is impossible due to com-
putational power. Thus, during the hybridization and the washing process
as stated in Chapter 1 we summarize all targets into four different classes,
the target types, instead of considering each target as a single type. As a re-
sult, both processes are de facto independent of the number of dye molecules
attached to the targets. Thus, it does not matter at which point in time
the dyes are incorporated. Since it is much easier, we will simulate the la-
beling after the hybridization and washing process. One could imagine, that
we randomly labeled the nucleotides bound to the array with the respective
color according to their target type. For that reason, in this chapter will use
the term labeling process instead of reverse transcription process.

In detail, we will investigate the compound model by following order
modules:

1. hybridization,

2. washing,

3. labeling process (reverse transcription),

4. fluorescence and

5. detection.

We will determine mean, standard deviation, histogram and intensity
ratios of the particles involved. The ratio of interest for all modules is

RP =
P1 + P3

P2 + P4

, (3.1)

where Pi, i = 1, 2, 3, 4 is the placeholder of particle or value i after the
respective module. E.g., in the hybridization module it is the placeholder
of Ni.
We will look at two different scenarios. During the first scenario, we start
the analysis of the compound module with the initial target numbers Ti, i =
1, 2, 3, 4 from Table 3.2. The respective initial ratio is RT = 1. The second
scenario uses the same parameter situation besides a doubled number of type
2 targets. This yields an initial target ratio of RT = 2/3 considering all targets
and an initial ratio of 1/2 if only considering specific targets.

In addition, for each module we will determine the significance of the
distortion of the ratio of particles by looking at its empirical 95% confidence
interval.

In the following, we consecutively analyze the modules.
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3.1 Hybridization

We will start with 100 simulations of the hybridization process with four
target types from Section 1.1 at the parameter setting from Table 3.4.

binding probabilities
π1 .7
π2 .6
π3 .2
π4 .15

dissociation probabilities
γ1 .3
γ2 .4
γ3 .8
γ4 .85

initial target numbers
T1 10, 000
T2 10, 000
T3 10, 000
T4 10, 000

number of probes
S 100

exponential clock
λ 2

duration of the experiment
θ 1.5

Table 3.2: Parameter situation in presence of cross-hybridization for the compound
model.

Regarding the situation of Section 2.1.4, we scaled down the probe and
the target numbers but increased the duration of the experiment. The down-
scaling has hardly any effects on the ratio of target types as could be seen
in Section 2.1.4 whereas through the extension of the duration the process
is supposed to be closer to its stationary distribution. The hybridization
reaction has been simulated with Gillespie’s Algorithm ([Gill]).

Figure 3.1 shows the histograms of the four hybridized target numbers.
Obviously all four types have hybridized to the spot with different effi-

ciencies. It seems, there are two main factors which influence the efficiencies.
On the one hand, specific target types have hybridized better than unspe-
cific. On the other hand, targets labeled with the first color (types 1 and
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(c) Histogram of N3.
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(d) Histogram of N4.

Figure 3.1: Histograms for the four target types after the hybridization process at
the parameter situation of Table 3.2.

3) seem to have hybridized better than those of the second color (types 2
and 4). This behavior is not surprising, we even expect it. The reasons can
be found in the difference in the rates and probabilities of hybridization and
dissociation.

The respective means and standard deviations of the four types are sum-
marized in Table 3.3 and underline the observation from the histograms since
their means indicate the same ranking of hybridization efficiencies. Recall

µ(N1) σ(N1) µ(N2) σ(N2) µ(N3) σ(N3) µ(N4) σ(N4)
49.21 4.69 36.86 3.98 7.98 2.62 5.85 2.35

Table 3.3: Mean and standard deviation of the four target types after the hy-
bridization reaction.

that before the hybridization process the ratio of initial target numbers was
RT = 1. After the hybridization module we have a mean µ(RN) ≈ 1.37 and
a variance σ2(RN) ≈ 0.067. Using the 2σ−rule leads to a 95% confidence in-
terval for the real mean of [0.85, 1.89]. So, the deviation of the ratio from 1 is
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not significant. Using the 2σ−rule implies a normal distribution of the ratio
([Grab]). That this assumption is not too bad can be seen in the respective
histogram (see Figure 3.2). In order to avoid errors made by the assumption
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Figure 3.2: Histogram of the ratio RN of the output of the hybridization reaction.

of a normal distribution, we will derive the confidence interval from the or-
dered list of the 100 ratio values, empirically. For this purpose we determine
the 2.5%- and 97.5%-quantiles. In between we find 95% of all observed ra-
tios. The respective interval is the empirical 95% confidence interval. The
analysis of subsequent modules shall be restricted to this interval.

Looking at the ordered list of ratio values after hybridization yields a
2.5%-quantile of about 0.96 and a 97.5%-quantile of about 1.94. This leads
the empirical 95% confidence interval of about [0.96, 1.94].

Summarizing the results, the hybridization module adds about 37% error
on average to the initial ratio. But, this deviation is not significant. Next,
we will look at the washing module.

3.2 Washing

We will simulate the washing model from Section 1.2.2 by drawing a random
number of dissolved targets from its probability distribution in Equation
(1.11). The input of the washing module shall be the 100 data sets which
have been generated by the hybridization module in the previous paragraph.
We will use the model from Section 1.2.2 and the parameter setting of Table
3.4 to simulate the washing procedure separately for each data set.

The parameter values are chosen to be equal to the consideration from
Section 2.2.2 besides the detergent concentration which is fixated at a value
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maximal detergent intensities
λmax
1 (c) 10
λmax
2 (c) 10
λmax
3 (c) 10
λmax
4 (c) 10

detergent concentration
c .1

detergent molecules needed for solution
k1 10
k2 10
k3 3
k4 3

parameter a
a1 1
a2 .99
a3 .5
a4 .45

Table 3.4: Parameter situation during the washing module of the compound model.
It models the case of two cDNA types labeled with two different colors.

in the interval where unspecific targets dissociate from the spot but specific
targets are still hybridized. This implies the assumption that the microarray
is always washed at the right detergent concentration. Looking at detergent
concentrations outside of this interval either yields a washing process without
effect (too low concentrations of the detergent) or a complete removal of all
targets (too high concentrations of the detergent). The former case would
leave the ratio from the hybridization model unchanged whereas the latter
case would imply a ratio of target types which does not display the ratio
of initial target numbers at all and thus falsifies the signal entirely. These
conclusions correspond to Figure 2.31 from Section 2.2.2 where only a small
bandwidth of washing intensities leads the correct ratio.

Figure 3.3 shows the histograms of hybridized targets after washing.
The washing step seems to work quite well. As can be seen in the his-

tograms, all cross-hybridized targets are washed off and the histograms of
specific targets are left almost unchanged. This observation can also be ver-
ified by looking at the means and standard deviations of the target numbers
which are summarized in Table 3.5.

Here, the means and standard deviations of the first two target types do
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(d) Histogram of H4.

Figure 3.3: Histograms for the four target types after the washing process at the
parameter situation of Table 3.4.

µ(H1) σ(H1) µ(H2) σ(H2) µ(H3) σ(H3) µ(H4) σ(H4)
49.21 4.70 36.85 3.98 0 0 0 0

Table 3.5: Mean and standard deviation of the four target types after the washing
reaction.

hardly change (compare Table 3.3). Those of the types 3 and 4 vanish.
Determining the ratio yields µ(RH) ≈ 1.36 and σ2(RH) ≈ 0.069. This

implies a deviation of 36% on average from the initial ratio which is a slight
improvement compared to the ratio of the previous module. So, indeed, the
washing procedure might help to reduce the noise of the signal. Looking at
the ordered list of washing ratios yields the empirical 95% confidence interval
of approximately [0.95, 1.90] of the real ratio.

So, the deviation of the ratio from 1 is still not significant. See Figure 3.4
for the histogram of ratios.
Due to washing, there are no hybridized targets of types 3 and 4. Thus,
there cannot be any labeled nucleotides hybridizing to such targets during
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Figure 3.4: Histogram of the ratio RH of the output of the washing reaction.

the labeling process. Consequently, there will not be any labeled nucleotides
at targets of types 3 and 4 either, which might fluoresce in order to be
detected. For that reason, the number of particles of types 3 and 4 will
be zero in all subsequent modules. Thus, we only keep them in mind to
determine the particle ratios.

The 100 data sets from the output of the washing module are used as
input for the reverse transcription process.

3.3 Labeling process (reverse transcription)

As mentioned in the introduction of this chapter, we will use the output
of the washing module as input for the labeling process. The process will
be simulated by drawing a random number of labeled nucleotides from a
binomial distribution for each hybridized target according to Equation (1.8).
Since there are no hybridized targets of types 3 and 4, after washing we will
omit the simulation of these types.

We restrict the simulation to the parameter situation of Table 3.6.

Vl Vu m1 rl ru
9.03320505× 1021 6.0221367× 1021 30 .45 .5

Table 3.6: Parameter situation for the labeling transcription module of the com-
pound model.

The initial numbers of labeled and unlabeled nucleotides are chosen ac-
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cording to the protocol from the Appendix (see B). The number of potential
binding sites for labeled nucleotides and for the recruitment rates are chosen
in agreement with Section 2.2.1.

The detection signal is caused by all labeled nucleotides from one target
type. Summing up the number of labeled nucleotides which are attached to
targets of a certain type yields the histograms from Figure 3.5
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(a) Histogram of L1.
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(b) Histogram of L2.

Figure 3.5: Histograms for the numbers of labeled nucleotides to the targets of
remaining types 1 and 2 after the labeling process with the parameters of Table
3.6.

where

Li :=

Hi∑
j=1

Zi(m)

is the total number of hybridized nucleotides to all targets of type i, i =
1, 2. The means and the standard deviation of the two remaining types are
summarized in Table 3.7.

µ(L1) σ(L1) µ(L2) σ(L2)
851.42 84.69 634.12 70.85

Table 3.7: Mean and standard deviation for the total numbers of labeled nu-
cleotides of the four target types after the labeling reaction.

The respective ratio has mean µ(RL) ≈ 1.37 and variance σ2(RL) ≈ 0.074.
So, the deviation of the ratio after the modules of labeling, hybridization and
washing is about 37% on average. Thus, it hardly changed, compared to the
previous modules. This means almost all of the noise so far is due to the
hybridization module. The histogram of the ratio is shown in Figure 3.6.
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Figure 3.6: Histogram of the ratio RL of the output of the labeling reaction.

Moreover, we find the empirical 95% confidence interval to be [0.90, 1.97].
So, the change still is not significant.

In the next section, we will discover the influence of the fluorescence
reaction.

3.4 Fluorescence

We use the numbers of labeled nucleotides as input of the fluorescence mod-
ule. During Section 1.2.3 we derived the correction factor CF which describes
the ratio of output signals if two different lasers and dyes are used to induce
fluorescence.

Generally, one should leave the input of types 2 and 4 unchanged whereas
the input of types 1 and 3 is multiplied by CF−1. This produces values of all
four types which are proportional to the real output and shall be sufficient
since we are interested in ratios instead of absolute values. As a results, the
output will be dimensionless.

The CF has been determined with the parameter setting from Table 2.18
and Equation (2.45). This yields CF = 0.89. Since type 3 has vanished, the
correction factor has to be applied to type 1 only.

The resulting histograms of the fluorescence values Fi, i = 1, 2 of the two
remaining types can be found in Figure 3.7.

The respective means and standard deviations are summarized in Table
3.8.

The values of the first type have increased whereas all others stay the
same. Thus, the ratio changes as follows. The mean is µ(RF ) ≈ 1.54 and the
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Figure 3.7: Histograms for the fluorescence values of the two remaining types after
the fluorescence process at the parameter situation of Table 2.18.

µ(F1) σ(F1) µ(F2) σ(F2)
956.66 95.16 634.12 70.85

Table 3.8: Mean and standard deviation for the fluorescence values of the two
remaining target types after the fluorescence reaction.

variance σ2(RF ) ≈ 0.093. Looking at the ordered list of fluorescence ratios,
we find the empirical 95% confidence interval for the ratio to be [1.01, 2.21].
This is underlined by the histogram of the fluorescence ratio in Figure 3.8.

The total noise added to the ratio by the previous modules including
fluorescence is 54% on average. This implies a total increase of 17% due to
fluorescence. Here, for the first time the deviation is significant if looking at
the 95% confidence interval.

3.5 Detection

The output of the fluorescence module are values which are no longer par-
ticles. But, these values are proportional to the numbers of particles which
are some orders of magnitude higher. Since we are only interested in ratios,
we will use the fluorescence values as input for the branching process. These
values shall be denoted by k1 and k2 as previously described in Section 2.2.4.

To directly simulate the branching processes with ten branchings is al-
most impossible due to computational power. In Section 2.2.4 we have seen
that for interesting parameter situations it is possible to approximate the
distribution of the number of secondary electrons at the anode Nl,k by a
normal distribution with mean E(Nl,k) and standard deviation

√
Var(Nl,k).
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Figure 3.8: Histogram of the ratio RF of the output of the fluorescence reaction.

The mean and the standard deviation are determined with the help of the
p.g.f. of Nl,k according to Equations (2.51) and (2.52). For the simulation
we will pick a random realizations from the normal distribution for each of
the 100 data points according to the parameter setting of Table 3.9.

λs λp l
5 .1 10

Table 3.9: Parameter situation of the detection reaction.

Since the input values for the cross-hybridized targets is zero, we can
assume that the respective values in the branching process stay zero. Thus,
we only consider types 1 and 2.

Figure 3.9 shows the histograms for the simulations of type 1 and 2. The
respective means and standard deviations are summarized in Table 3.10.

µ(Nl,k1) σ(Nl,k1) µ(Nl,k2) σ(Nl,k2)
9.485× 108 1.483× 108 6.210× 108 1.049× 108

Table 3.10: Mean and standard deviation for the detection values of types 1 and
2 after the detection reaction. The parameters k1 and k2 denote the numbers of
photons striking the photocathode as described in Section 2.2.4.

Obviously, the values of the first two types have been multiplied by
the branching process. However, the more interesting question is, whether
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Figure 3.9: Histograms for the detection values of types 1 and 2 after the detection
process at the parameter situation of Table 3.9. The parameters k1 and k2 denote
the numbers of photons striking the photocathode as described in Section 2.2.4.

the values of the ratio have been influenced or not. The ratio has mean
µ(RN) ≈ 1.58 and variance σ2(RN) ≈ 0.180. Thus, the variance has doubled
compared to the previous module. This increases the uncertainty attached to
the data. The empirical 95% confidence interval underlines this observation.
It is approximately [0.93, 2.59]. This can also be seen in the histogram of the
detection ratio in Figure 3.10.
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Figure 3.10: Histogram of the ratio RN of the output of the detection reaction.

So, an extra noise of approximately 4% is added on average. We return
to the situation of non-significance due to the increase in variance which
influences the confidence interval. As a result, the true ratio could still be 1
or even less.

Looking directly at the histogram, we see that most of the values are
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larger than one. For these values, experimenters would infer a change in the
expression of the respective gene.

For an overview of the error propagation of the modules see the box plots
in Figure 3.11.

RN RH RL RF RNl,k

1

1.5

2

2.5

Figure 3.11: Box plots of the ratio values after each module. Lower and upper
bounds of the boxes are the 25%- and 75%- quantiles, respectively. Whiskers
denote the minimum and maximum of the values.

Obviously, the noise added by the hybridization process hardly changes
during the two following modules, washing and labeling. Afterwards, the
noise increases fast. This observation underlines the importance of correctly
accounting for the shifts in the ratio which are caused by the modules of hy-
bridization, fluorescence and detection. Looking at Figure 3.12 corroborates
this result.
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Figure 3.12: Confidence intervals of the ratio values after each module. Upper and
lower bounds of the bars represent the bounds of the confidence interval whereas
small diamonds on the bars are the means of the respective ratios.

Here, the confidence intervals for the ratios of each module are illustrated.
They show a similar behavior as the respective box plots. We also see that
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the confidence interval of the fluorescence ratio is the only one which is
completely above 1.

3.6 A different starting point

At this point one could ask for the behavior of the compound model in the
case of unequal numbers of initial targets. We will briefly look at this case,
too, in order to see whether initial fold changes of the ratio might vanish. For
this purpose we will ceteris paribus increase the number of initial targets of
type two to T2 = 20, 000. This yields an initial ratio of RT = 2/3 if accounting
for cross-hybridizing targets and a ratio ofRT = 1/2 if only considering specific
target types 1 and 2. In figures 3.13 and 3.14 we find the box plots and
confidence intervals of the five modules.
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Figure 3.13: Box plots of the ratio values after each module. Lower and upper
bounds of the boxes are the 25%- and 75%- quantiles, respectively. Whiskers
denote the minimum and maximum of the values.

In both figures we see that the module of hybridization (RN) adds a
lot of noise to the ratio. In Figure 3.14, its confidence interval touches 1.
Thus, to a level of significance of 5% a deviation of the ratio from 1 even is
not significant. The module of washing (RH) reduces the noise to a small
amount, but, enough to ensure the significance of the deviation by bringing
the confidence interval down below 1. During the labeling process (RL), the
noise is hardly enlarged. But the fluorescence (RF ) and the detection (RNl,k

)
modules add a lot of noise and even bias the mean of the ratio. For both
modules we find the deviation from one to be insignificant. So, starting with
a fold change of two might result in a detected ratio which is close to one.
This is equivalent to a constant gene expression comparing the different cell
states. Obviously, this is not true.
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Figure 3.14: Confidence intervals of the ratio values after each module. Upper and
lower bounds of the bars represent the bounds of the confidence interval whereas
small diamonds on the bars are the means of the respective ratios.

3.7 Résumé

We found that hybridization, fluorescence and detection contributed the most
noise in the compound process. We also observed that on average 37%, 17%
and 4% are added to the true ratio. We also could observe that the variance
of the measured ratios increased within the scope of these three modules.
This yields an increasing uncertainty during the inference of initial ratios.

Recall, the initial ratio of target types was 1. By sending the signal
through the five modules we have transformed the ratio to an average of
1.58. We found that this increase is not significant to a level of 5%. This
also illustrates the amount of noise a microarray experiment can add to a
true ratio of initial targets. Assuming a symmetric 95%-confidence region
our example also contains a ratio of 2.

As a major result it should be clear, that at least for small x, an x−fold in
mRNA amounts cannot be inferred precisely by the microarray experiment
due to the natural randomness which influences the signal. Inferring initial
target ratios is noise afflicted. The noise should be quantified by determining
the standard deviation or confidence intervals for the true values of initial
target ratios in order to give a measure of reliability of the estimated ratio.



Chapter 4

Discussion and outlook

During this chapter we discuss performance, limitations and weaknesses of
each module. We further propose expansions of the modules and suggest
directions of future work on our approach.

4.1 Hybridization

The hybridization process was modeled by extending the discrete state, con-
tinuous time model proposed in [ReWi]. This was achieved by adding disso-
ciation events (Section 1.1).

This extended version was analyzed in Section 2.1. Firstly, we determined
its parameter situation and discussed its complexity. Then we established its
stationary distribution for the case of two targets. We soon realized that the
computation was limited by too large numbers of probes and targets. Thus,
we used a theorem from [Kurtz] to develop a limit which approximates the
Markov process by a deterministic process for large numbers. We determined
its stationary point and proved its uniqueness. In another approach we ap-
proximated the process by a PDE. We proved that the stationary point from
the first limit is consistent to the distributional solution of the PDE. In a
last step the solution of the limit was compared to the result of simulating
the Markov process. We could see that both correspond to each other. All
solutions revealed a notable bias added to the initial ratios of targets. This
bias has to be accounted for in the analysis of microarray data.

During the analysis of the compound module in Chapter 3, we saw that
the hybridization process adds most of the noise to the signal which is even-
tually detected. For that reason, its importance and preferred position in
this work are corroborated.

The hybridization model itself has been stated for an arbitrary number of
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target types. But, the investigation of the model has been restricted to two
target types with a short preview of the four target case. Thus we suggest to
expand the investigation to more complex cases of at least four target types.
For this purpose some of the methods we used should be applicable, too. In
addition, the choice of dissociation and hybridization parameters as well as
the recruitment rate could not be determined realistically. This should also
be done in future work.

However, after fixation of the unknown parameters in the two target case,
we were able to examine the underlying process to a satisfying amount as
described above. With the help of this case we are able to declare the color
effect of labels. We could see that the output signal nonlinearly depends
on the number of initial targets. This dependency is contradictory to using
linear models to describe signal intensities.

In addition, the deterministic limit via Kurtz’ theorem provides the right
values of the distribution of target types for the long term behavior of the
process. The calculation of this limit can be done very fast and enables us
to do a simple inference without statistics. To develop the analogous limit
for the four target case should be a major goal.

4.2 Residual subprocesses

4.2.1 Reverse transcription

In Section 1.2.1 we modeled the reverse transcription module with a dis-
crete state, continuous time Markov process and reduced it to its embedded
Markov chain in discrete time. We simplified the probability distribution of
the number of incorporated labeled nucleotides to a binomial distribution by
assuming large numbers of initial nucleotides.

This distribution was analyzed in Section 2.2.1. We started the analysis
by investigating the dependency of the distribution on the parameters in-
volved. We also applied a perturbation approach to model small differences
of the recruitment rates of labeled and unlabeled nucleotides. Here, a Taylor
approximation and a test were used to examine the impact of the perturba-
tion. In addition, we proposed the choice of parameter values by minimizing
the area under the ROC curve of the test. We could show, that for realistic
parameter situations, there will always be a visible dye effect. Using labeled
nucleotides, only, might solve this problem. Here, no dye effect is visible.
For parameter situations, where the dye effect is visible, we proposed esti-
mators for the numbers of targets fed to the reverse transcription process.
In addition, we determined the distributions of the estimators.
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Moreover, in Section 2.2.1 we showed, that the reverse transcription pro-
cess hardly affects the output signal. There are several weaknesses which
might distort this result. On the one hand, due to steric problems the incor-
poration of labeled nucleotides should be forbidden in case of binding sites
which are too close to each other. This effect has been neglected in our
model. On the other hand, only an approximation for the distribution of
labeled nucleotides is used. Incorporating both effects into the model should
enable us to get a more detailed insight.

In addition, similar to the hybridization process, crucial parameters like
the recruitment rates could not be determined. Finding out their true values
should be of major interest.

Also, more input by experimenters is needed. For example, the number
of binding sites per target could be determined quite easily. Thus, once we
have decided to look at certain target types, it should be possible to specify
their parameter situations.

4.2.2 Washing

In Section 1.2.2 we stated a binomial model for the washing process. Here,
the probabilities of success were motivated with a Poisson process whose rate
depends on the detergent concentration of washing.

Assuming this model, in Section 2.2.2 we could show that the washing
process will eliminate falsely hybridized targets if washing at the right de-
tergent concentration. In detail, the model was analyzed by determining the
mean and the variance of the particle distribution for interesting parameter
situations. We determined these values for increasing detergent intensities
and even were able to reproduce observations made by biologists in washing
experiments (see [Drob]). It can be seen that only within a small range of
washing intensities the correct signal can be achieved. Finding out this range
of concentrations should be of major interest to researchers. At this point
it is important to mention, that all spots are washed at approximately the
same concentration. This narrows the range of the right concentration since
there are different targets hybridized to other spots.

This module also makes use of parameters which could not entirely be
declared, such as the maximal detergent intensities λmax

i (c) and the number
of detergent molecules needed for solution. Also the choice of the type of
the intensity function could not be motivated. Thus, a more detailed mod-
eling of the intensity function together with the determination of respective
parameter values is recommended. Experiments might help to declare these
components of the washing model.
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4.2.3 Fluorescence

In Section 1.2.3 we modeled the fluorescence process by dividing it into a laser
and a fluorescence model. Both were described deterministically, even though
a modeling with random processes is imaginable, too. But, the large numbers
of involved particles propose a deterministic modeling. The equations used
in this section were found in the literature and neglect some noise sources,
such as those shown by all electronic devices (see page 30). The laser light
was modeled with an ordinary differential equation from [SaTe] including a
noise term whereas the fluorescence intensity was determined by a heuristic
equation from [Schwedt].

In Section 2.2.3 we combined the solution of the ordinary differential
equation of the laser light intensity with the heuristic equation of the fluores-
cence intensity. On this basis, we developed the correction factor CF which
is a measure for the noise added by the process if two signals are compared.

The investigation in Section 2.2.3 was restricted to the spontaneous emis-
sion noise. Still, we were able to show that the fluorescence module might
perturb the final signal and with the help of the correction factor we were
able to quantify this perturbation.

Some of the parameter values of this module were chosen arbitrarily.
Declaring their real values should be done whenever the model is used to
quantify the noise added by the fluorescence process in order to normalize
the data.

Additionally, as already mentioned, the fluorescence intensity has been
determined with the help of a heuristic equation from the literature. A more
detailed modeling is suggested at this point. For instance, a model including
other noise sources besides spontaneous emission could be subject to future
work. The resulting variance would be greater and our variance could provide
a lower bound.

4.2.4 Detection

In Section 1.2.4 we used the branching process from [MaTeSa] to describe
the signal multiplication during detection. In addition, we described the
detection and attached noise sources with heuristic results from [SauWei],
[Uiga], [BiSchl] and [SiSu].

The analysis in Section 2.2.4 was restricted to the branching process. We
failed to directly determine the probability distribution of the detected sig-
nal. But, with the help of the probability generating function we were able
to determine mean, variance, skewness and kurtosis of the number of output
particles. Afterwards, we used these characteristics to verify the approxi-
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mation of the distribution of the detected signal by a normal distribution
for interesting parameter situations. In addition, for different parameter val-
ues, an example for two signals passing the detection aperture was given.
Finally, we investigated the ratio of two signals and derived its probability
distribution. This way we were able to approximate the distribution of de-
tected electrons and determine the noise added by this module. However,
this model neglects noise sources due to the detection aperture, i.e. those of
all electronic devices as described on page 30. Besides that, the distribution
of detected electrons at the amperemeter is approximated instead of being
determined directly. Incorporating further noise sources and determining the
distribution of detected electrons could be of interest to future work.

Furthermore, we looked at the detection with PMTs, only. However,
charge coupled device (CCD) cameras are a commonly used method, too.
They work very different from PMTs and thus demand a different model.

4.3 Résumé and general discussions

The entire microarray process has been divided into five subprocesses, the
modules. This made a modeling and the examination of the models easier.
Most of our models are more detailed than the ad-hoc models, which can
be found in the literature. Our approach enabled us to separately identify
and quantify noise sources of the modules. In addition, by the division into
different modules, in future work, we will be able to replace single modules
without having to remodel the entire microarray process. E.g., this work is
restricted to labeling with fluorescent dyes. But the results of the labeling
process, the hybridization model and the washing procedure are applicable
to other labeling methods, too.

During the investigation of some of the modules we were restricted by
computational power. Parallelizing the computation should improve this
problem.

We have seen the general problem of unknown parameter values for most
of the modules. Without determining these values we are able to describe
tendencies of how the modules will behave under certain assumptions. This
is a major result of this work. Determining the values would enable us to
give advice to researchers regarding the treatment of their data.

The second major result is that we encountered nonlinearities in the re-
lationship between input and output of the hybridization process. This is
contradictory to using linear models which is done by many analyzing meth-
ods. We recommend to implement methods accounting for nonlinearities.

Real data are produced by thousands of spots and target types. We ne-
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glected this fact by only looking at a single spot and maximal four target
types to hybridize to this spot. Certainly, the interactions between spots
and between target types affect the dynamic of the reverse transcription, hy-
bridization and washing procedures. This yields a bias which is expected to
be relatively small. However, further analysis of these interactions is recom-
mended.

Final conclusion: Microarray experiments are very complex processes.
Thus, a very sensible investigation is recommended. We have seen many
sources of noise which have to be accounted for. E.g., the difference in hy-
bridization probabilities and dissociation rates, the spontaneous emission or
the random multiplication of the signal within the PMT are remarkable.
Future work should be concerned with describing the effects of these noise
sources and with giving advice to normalization of data. Therefore, we rec-
ommend the application of nonlinear models since we have encountered non-
linear relationships between the input and the output of our modules. At
this point it is not clear how to practically implement this.

On the other hand, we have also corroborated assumptions made by re-
searchers, e.g. washing at the right detergent concentration dissolves all
cross-hybridized targets.

Still, we were able to discover major relationships between each module
of the microarray process and the output signal. Using these results should
improve the analysis of microarray data by drawing error bounds and devel-
oping normalizing methods for detected signal intensities.
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[HeusD] Heuser, H. (1995). Gewöhnliche Differentialgleichungen. Teubner,
Stuttgart.

[Hink] Hinkley, D.V. (1969). On the ratio of two correlated normal ran-
daom variables. Biometrika 56 (3), pp. 635-639.

[Hueb] Hübner, G. (2000). Stochastik. Vieweg, Braunschweig.

[Jain] Jain, A.N. and Tokuyasu, T.A. and Snijders, A.M. and Segraves,
R. and Albertson, D.G. and Pinkel, D. (2002). Fully automatic
quantification of microarray image data. Genome Research, Cold
Spring Harbor Laboratory Press, pp. 325-32.

[JoSm] Jordan, D.W. and Smith, P. (1999). Nonlinear ordinary differ-
ential equations - An introduction to dynamical systems. Oxford
University Press, New York.

[KamII] Kamke, E. (1965). Differentialgleichungen, Lösungsmethoden
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Appendix A

Solution of Equation (2.16)

The polynomial of third order from Equation (2.15) has the following three
solutions:
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Appendix B

A reverse transcription
protocol

The following protocol for a reverse transcription experiment is taken from
[Sing]. See the URL for details.

http://micro.mic.ucdavis.edu/singer/protocols/MicroarrayProtocol.pdf

for details. The protocol was used to determine the parameter values for
the analysis of the reverse transcription model in Section 2.2.1.

SYNTHESIS OF FLUORESCENTLY LABELLED
CDNA PROBE FOR MICROARRAYS

DAY 1
- Note the reverse transcriptase, coupling and hybridization protocols have
been adapted from those posted on www.microarrays.org/protocols.html by
Joe DeRisi.
- Blocking protocol has been adapted from those posted at the Erie Scientific
website.
- Protocol adapted from Gross Lab (Virgil Rhodus)
Block Microarray slides

(Adapted from Erie Scientific)
A/ Stock BSA solution and blocking (remember to etch arrays on back, label
side down, before proceeding.
1) Make stock BSA solution. In 1L beaker add 10 g Fraction V BSA to 840
ml MilliQ h− 20, stir at RT until dissolved (takes several hours).
1) Add 150 ml 20x SSC and filter sterilize with 22 µm filter (can be stored
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at 4 ◦C for up to 3 months).
1) Blocking. Fill dish with RT BSA solution and set on rotator with slides
for 10 min.
1) Transfer slides to MilliQ H2O, plunge ∼30x. Repeat 4x.
1) Transfer slides to boiling (>95 ◦C) MilliQH2O, incubate 2.5 min on bench.
1) Spin slides ∼1 (400k)
1) Stores slides in slide box for up to 1 week.
Reverse transcriptase reaction
(Adapted from Joe De Risi and Holly Baxter, and developed by Rosetta In-
pharmatics, Kirkland, WA)

A/ Primer annealing and cDNA synthesis
Note - continue to use RNase free tubes, pipette tips and solutions until the
end of step A
1) Annealing step. In 0.5 ml microfuge tubes, mix 20 µg RNA sample with
10 µg random hexamer (10 µl of 1 µg/µl) in H2O (DEPC treated, RNase
free) to give a final volume of 20 µl.
2
1) Incubate mixture of RNA and hexamer at 70 ◦C for 10 min.
1) Chill on ice for 10 min.
1) cDNA synthesis reaction: Make up following master mix:
Vol. per Reagent
reaction (µl)

3 10x StrataScript RT Buffer Stratagene
0.6 50x aa-dUTP/dNTPmix 50x mix = 25 mM each dA/dC/dG,15
. mM amino-allyl dUTP, 10 mM dTTP
3 StrataScript RNase H-RT Stratagene; catalog 600085-51
0.4 RNase Inhibitor (40 U/µl) Boehringer Mannheim; catalog
. 799017
3 0.1 M DTT
10 Total vol/tube
5) Add 10 µl of the Master Mix to each RNA/hexamer mixture (20 µl) to
give 30 µl
final volume.
5) Incubate at 37 ◦C for 10 min.
5) Incubate at 42 ◦C for 1 hr 40 min.
5) Incubate at 50 ◦C for 10 min. (you can freeze samples @ -20◦C here)
B/ RNA Hydrolysis
1) Add 10 µl 0.5 M EDTA (pH 8.0) to the 30 µl RNA/cDNA reaction, mix
and spin, then add 10 µl 1 N NaOH (freshly prepared or from unopened



frozen aliquots).
1) Incubate at 65◦C for 1 hr.
1) Add 25 µl of 1 M Hepes pH 7.5 to neutralize the reaction (or 10 µl 3M
NaOAc pH 5.2).
C/ Cleanup using Microcon-30 filters
Note - When using the Microcon filters, try not to let sample spin dry: if this
occurs, the sample can be recovered simply by adding ∼30 µl H2O to the
membrane, incubating for a few minutes and then eluting the sample. The
spin times are approximate and will vary from batch to batch and sample to
sample.
1) Fill microcon-30 tube with 350 µl H2O, add sample (∼75 µl), and rinse
reaction tube with 100 µl H2O. (Total amount of H2O added is 450 µl).
1) Spin at 10,000 g for 8.5 min using Beckman centrifuge rotor, F2402.
3
1) Check filter/vol. in upper chamber. Should be between 10-50 µl; if not,
spin for additional 1-2 min. Recheck volume. Discard flow-through.
1) Wash 2 times by adding 450 µl H2O to upper chamber and recentrifuging
at 10,000 rpm for 8.5 min. Each time ensure the volume has reduced to 10-50
µl before proceeding.
1) Elute sample by placing the microcon inverted into a fresh microfuge tube.
Centrifuge at 5,000 rpm for 30 sec.
1) Dry the sample in a speed vac. (approx. 20 min.) or ∼3 µl remains . Do
not over dry.
1) Store dried samples at -20 ◦C.
NB - the dried samples can be stored at -20 ◦C for at least 1 month.
4
DAY 2
Coupling reaction of Alexa dyes to aadUTP-cDNA sample and overnight hy-
bridization to microarray
Note - the Alexa dyes are light sensitive. Therefore minimize light exposure
where possible during the following procedures. In addition, the Alexa dyes
degrade over a few days. Only perform the coupling reaction if it is possible
to directly proceed to the hybridization step and then on to scan the mi-
croarrays.
A/ Coupling of Alexa dyes to the aadUTP-cDNA
Note - the Alexa fluor 555 dye appears pink, but scans as ”green” (compa-
rable to Cy3), and the Alexa fluor 647 dye appears blue, but scans as ”red”
(comparable to Cy5). By convention, the ”wild type” or control sample is
labeled with 555 and the experimental sample is labeled with 647.
1) Dissolve cDNA in 5 µl dH2O, warm @ 42◦C∼5”.
2) Add 3 µl labeling buffer (25 mg sodium bicarbonate, 1 ml dH2O) to each



sample, mix well.
3) Add 6 µl RT DMSO to tube of dye and resuspend (1 tube of dye per 3
samples). Add 2 µl DMSO/dye to sample.
4) Mix cDNA and dye together and incubate at room temperature for 1 hr
in the dark. B/ Cleanup with QIA-quick PCR kit.
1) Add 90 µl H2O to each sample to make up to 100 µl.
2) Add 500 µl PB buffer from kit.
3) Apply to QIA-quick column. Spin at 13,000 rpm for 30-60 s.
4) Dump flow through. Add 750 µl PE buffer and spin at 13,000 rpm for
30-60 s.
5) Dump flow through. Repeat PE buffer wash step 4x.
6) Dump flow through. Spin for 1 min at 14,000 rpm. (Filters should look
pink for Cy3 and blue for Cy5 reactions at this point).
7) Transfer to a fresh eppendorf tube. Add 30 µl Tris pH 8.5 (EB buffer).
Let sit 1 min. Spin 13,000 rpm for 1 min.
8) Add an additional 30 µl to column. Let sit 1 min. Spin 13, 000 rpm for
1 min.
9) Final volume 60 µl. The solutions should be clearly pink for Cy3 and blue
for Cy5 at this point. If they are not, the labeling reaction did not work.
5
10) Pool sample pairs to give 120 µl of purple solution.
11) Apply samples to microcons and spin for 1.5-2 min to reduce sample to
2-5 µl. The flow through will be clear and the sample will be strongly visible
on the membrane.
12) Invert microcons and elute samples into fresh tubes.
13) Dry samples in Speed Vac. Cover the lid with foil to avoid exposing the
sample to light. (Approximately 5-15 min. to dry).
14) Store the dried sample in the dark (wrapped in foil) at 4◦C. Stable for
1-2 days.
6
Day 3
A/ Hybridization step
(Hybridization conditions: cDNA from 16 µg total RNA, 15 µg poly(dI-dC),
3x SSC, 25 mM Hepes (pH 7.0), 0.225% SDS)
1) Set up the following hybridization mix in a 0.5 ml microfuge tube.

37.8 µl resuspended cDNA in H2O (dissolve at 65◦C, 1-2 min.)
7.1 µl 20x SSC
1.2 µl 1 M Hepes pH 7.2
1.0 µl 10% SDS
47.1 µl Total volume



Add SDS last after mixing the cocktail; do not chill samples after adding
SDS, this will cause the SDS to precipitate.
2) Incubate samples at 95◦C in dry heating block for 2 min.
3) Allow samples to cool 5-10 min at room temperature and spin down briefly.
B/ Slide preparation
Use fresh or less than 2 weeks old post-processed slides.
1) Whilst samples are cooling, place slides in hybridisation chamber and re-
move any dust using compressed air briefly.
2) Clean coverslips using EtOH soaked Kimwipes. Dry and dust with com-
pressed air and carefully place over the top of the microarray using forceps
such that the dull white strips (rough side down) are on the long axis of the
slide and touching the glass.
3) Add a total of 6-10 2 µl drops of 3x SSC at the two ends of the slides
removed from the coverslip.
C/ Sample application
1) After the samples have cooled, apply to the array by placing a pipette
tip at one end of the coverslip and allow the sample to move up underneath
the coverslip by capillary action. Move the pipette tip repeatedly along the
length of the coverslip to avoid any bubbles. Add sample to the other end of
the coverslip once completely full underneath, to ”top up” both ends.
7
2) Place cover on the hybridization chamber and tighten the lid screws care-
fully to make water tight. Keep the chamber horizontal at all times so as not
to disturb the 3x SSC droplets.
3) Carefully lower the hybridization chamber onto a plastic holder in a water
bath.
4) Hybridize at 63-65 ◦C for at least 5-6 hrs, or overnight (12 hrs max.).
D/ Rinse Step
1) Prepare wash solutions in glass slide dishes, with each dish having its own
rack.
Wash solution 1: 340 ml Milli-Q water
10 ml 20x SSC
1 ml 10 % SDS
Wash solution 2: 350 ml Milli-Q water
1 ml 20x SSC
Wash solution 3: 350 ml Milli-Q water
100 µl 20x SSC
Wash solution 4: 350 ml Milli-Q water
10 µl 20x SSC
2) Remove array carefully from the water bath, keeping the chamber level.
Dry the chambers with paper towels and ”wick” any water from the chamber



seems.
3) Unscrew the chamber and remove array slide.
4) First Rinse: Rinse slide in Wash solution 1. Use forceps to move slide
gently up and down in the solution until the coverslip is dislodged. Avoid
allowing coverslip to scratch the surface of the array. Once coverslip is off
and all the slides are in place, shake in solution by plunging rack up and
down 10-20 times. Let incubate for 1 minute.
5) Second Rinse: Individually transfer slides to Wash solution 2, blotting
the base of the slide on a paper towel to avoid carrying over too much SDS.
Shake gently in solution a few times. Let incubate for 1 minute. Repeat for
washes 3 and 4.
6) Remove excess liquid by blotting the rack on a paper towel, and then dry
array at room temperature by centrifuging at 600 rpm for 5 min.
7) Scan array soon as the dyes are unstable and degrade differentially.
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