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Abstract

With the development of new functional genomics methods that can access the whole genome,
transcriptome, proteome and metabolome more comprehensive insights in cellular processes are possible.
Largely based on these advances, our knowledge about molecular constituents for many organisms is
increasing at a tremendous rate. Until today, the genomes of several organisms including pathogen bacteria
are already sequenced and pave the way for metabolic network constructions. With the help of microbial
metabolomics (qualification and quantification of a huge variety of metabolites from a bacterium) deciphering
of the bacterial metabolism is feasible. The metabolome pipeline or workflow encompasses the processes of
sample generation and preparation, collection of analytical data, raw data pre-processing, data analysis and
data integration. Cell sampling and metabolite extraction as well as analytical methods for metabolomics will
be discussed in this review with specific interest in the application on pathogenic bacteria. Current
developments and approaches for microbial metabolomics as well as drawbacks and pitfalls will be highlighted.

A special focus is given to applied metabolome studies on Staphylococcus aureus. This pathogen
bacterium showed high attraction to be in the research focus for the interplay between metabolism and
virulence.
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defined as the quantitative complement of low-

Introduction molecular-weight metabolites present in an

under
1, 2

The complexity of biological systems poses organism a given set of physiological

an excellent scientific challenge to a comprehensive conditions Quantitative understanding of

and integrative understanding of how components
contribute to overall function. In recent years,
advances in global genome, transcriptome, and
proteome analysis provide access to these aspects of
complexity. A direct link between such compositional
data and the dynamic metabolic and physiological
behavior of cellular systems is still not fully available.
The ‘downstream™ products of transcripts and
proteins are the metabolites, which form the
metabolome of an organism. The metabolome is

microbial metabolism and it’s in vivo regulation
requires knowledge of both extracellular and
intracellular metabolites. Metabolomics terminology
differentiates between quantitative analysis of both
exometabolome and endometabolome referred as
metabolite footprinting and metabolite
fingerprinting, respectively 231 For an overview of
terms and definitions and their relation among each

other see figure 1.
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The quantitative complement of all low-
molecular weight compounds
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Fig.1 | Terms and definitions in the field of metabolomics. (Abbreviations: FT-IC- fourier transformation ion

cyclotron mass spectrometry, MS- mass spectrometry, CE- capillary electrophoresis)

Constitution of a bacterial metabolome

The composition of the metabolome can
vary considerably, depending on the analyzed
organism. The plant kingdom comprises up to
200.000 primary and secondary metabolites [1’ 4], less
complex is the estimated Saccharomyces cerevisiae
metabolome with 600 metabolites (<1500 Da) Bl
One basic question for microbial metabolome
analysis is therefore: “How large is a bacterial
metabolome?” Genome-scale models of bacterial
metabolism gave hints for such metabolite numbers
but refer only to calculations. Until now more than
20 constructed bacterial metabolic models exist [6],
each show in average around 600 metabolites for
diverse species. Based on genome annotations and
model characteristics the metabolome differs
between different calculations, e.g. Bacillus subtilis
used 988 or 1138 compounds within the metabolic

[7, 8]

network , Whereas 537 remained after manual

B n

curation for analytical accessible metabolites
the gram-negative organism Escherichia coli in silico
M and 694

Genome-scale

calculations result in 1039 compounds

. 9
correction : ].

metabolites after
metabolic networks for the pathogen Staphylococus
aureus posses over 700 metabolic reactions and
calculated therefore 571 and 712 metabolites in two
different calculations ™ 2. Recently, a genome-scale
comparison of 13 S. aureus strains showed a higher
(~1250) and

metabolites (~1400) based on new reconstruction
(13]

number of metabolic reactions

methodologies and whole-genome data In

contrast, the bacterium with one of the smallest

bacterial genome, Mycoplasma genitalum keeps 270

predicted metabolites (.

Only limited data is
available about the real metabolome of such
pathogen bacteria. Perhaps, that is based on a focus
of metabolic engineering in the past century driven
by biotechnology implications, where the goal is to
identify bottlenecks in biosynthesis routes in order
to increase the flux from substrate to product sl

To pinpoint a metabolite number for an organism,
one has to consider the conditions which were
observed during analysis. For that reason it is
necessary to be aware about the fact that not every
gene is always expressed and downstream products
like proteins and metabolites do not exist under all
given conditions, therefore calculated metabolite
numbers are only reference values. There the next
different
guantitative levels of metabolites were present in

analytical task comes into account;
bacterial cells. For E. coli glutamate is the main
metabolite (9.6*102 mol*L™") and adenosine the less
abundant measured metabolite (1.3*10” mol*L™) (16l
under glucose-fed conditions in exponential growth
phase, resulting in five concentrations magnitudes
between main solutes and less abundant ones.
Complexity and varying distribution forces a sensitive
and broad encompassing analytical method setting

to decipher the bacterial metabolome.

Analytical platforms in metabolomics

Recent advances in biochemical analysis
with the establishment of metabolomics were done
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with tremendous effort. Modern

techniques with powerful separation and sensitive

hyphenated

detection devices are feasible to analyze a vast
different
separation methods in metabolic research are gas

number  of metabolites. Common
chromatography (GC), liquid chromatography (LC)
and capillary electrophoresis (CE). All were mostly
coupled to mass spectrometry (MS) devices to get
mass/structural information out of the signals.
Reviews about these analytical techniques were
[17-19]. The

chromatography introduces further complications in

given recently by others use of

systematic and random variance from sample to
sample analyses. Fourier transform ion cyclotron
resonance (FT-ICR) mass spectrometry with a very
high resolution minimizes the requirement for using
upstream chromatography for complex mixtures by
applying direct infusion mass spectrometry (DIMS)
and makes the problem more tractable 29 3nd paves

the way for larger replicate numbers than

Fig.2 | Metabolomics scheme, inner
circle represents different chemical
classes of metabolites and a random
distribution within a metabolome.
Circles reflecting different common
analytical techniques to qualify and
quantify these classes, e.g. GC-MS
(blue), LC-MS (orange) and "H-NMR
(green). Without doubt, not one
technique can solely discover the
whole metabolome of an organism,
therefore a color shade for each
circle show the selectivity by
intensity of color.

metabolome is much more complex as assumed in

7] Therefore none of above mentioned

the past
techniques, even in conjunction with each other can
data

description (28, 291, Figure 2 depicts the complexity of

generate for a complete metabolome

the metabolome and some techniques to decipher it.
GC-MS metabolome analysis

The GC-MS application in metabolomics has
a longstanding and successful development history.
Volatiles as well as non-volatiles that can be
volatilized by derivatization procedures are targets of
this method. For most compounds a derivatization
procedure is mandatory and adds more preparative
steps to the analytical protocol. In most protocols,
the polar groups and active hydrogen atoms, found
in —OH, NH, —COOH, -SH, and other functional
groups, were trimethylsilylated by N methyl-N-
trimethylsilyltrifluoro-acetamide (MSTFA) or N,O-bis-

(BSTFA)

trimethylsilyltrifluoroacetamide

to gain

&
f (‘_\\\

Analytic
techniques

Y
LC/MS

GC/MS

1

N sugar
saccharides 8

phosphates

organic acids
—

amino

acids metabolome

unknowns

nucleotides

alcohols
phospholipids

fatty acids
’Trtides steroids

cofactorl_\
[ i

approaches with longer analysis time. This is needed
for example for metabolome screening of huge gene

knock out databases Y.

Another technique is
nuclear magnetic resonance (NMR) spectroscopy; it
provides fast and reproducible metabolite data and
is one of the most reliable methods in the field of

[22-26] information

metabolomics The structural
gained for the chemical shift and signal coupling is
one major advantage. But "H-NMR has its drawbacks
as well, like limited capacity to reflect all signals of a
complex mixture, like a cell extract has. Also, the
compared to

that

mass
the

detection limit is low

spectrometry. Today, it is obvious

more volatile compounds. By adding methoxyamine
(MeOx) or ethoxyamine to the sample before
silylation, the number of tautomeric forms of
monosaccharides can be reduced while aldehyde or
keto groups are converted to hydroxyamines or
alkoxyamines. Many different protocols for the
derivatization procedure of primary metabolites exist
literature all

in the with experiment-derived

variations and originations of chromatographic
peaks. These two fundamental issues could influence
interpretation of metabolic data and therefore

[30, 31]

pathway interpretation . Recent developments

in mass spectrometry and the combination of GC
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Table 1 | Comparison of different metabolomics analytical techniques

profiles of bacterial or plant extract
profiles have a majority of mass

spectral tags (MSTs) which remain
unidentified due to the lack of
authenticated pure reference
substances required for compound
identification by GC-MS. Additional
complications occur via
derivatization. Exact masses for the
metabolites or theirs fragments were
altered by silyl-groups and prediction
of molecular formula is therefore
hampered. Hummel et al. provide a
decision tree supported substructure

prediction of metabolites out of the

Technology Advantages Disadvantages
GC-MS - robust technology - needs derivatization
- retention time stability - sample is not recoverable
(enhanced using RTL) - new metabolite identification is difficult
- quantitative (calibration) - long chromatographic runs 20-60min
- good sensitivity (modest sample size
needed)
- high separation capacity
- good quality software and databases for
metabolite identification
LC-MS -flexible technology (potential to cover largest - sample is not recoverable
portion of metabolome) - quantification is elaborate
-high sensitivity (minimal sample size needed) - less robust instrumentation
-can be done without separation (direct (compared to NMR and GC)
injection) - metabolite identification via peak
trapping feasible
"H-NMR - quantitative - not very sensitive

- sample is recoverable
- fast (2-10 min/sample), depends on sample

- no derivatization
- robust instrumentation
- structural information

(high sample size needed)
- no separation (fractions)
size - expensive instrumentation

GMDB mass spectra collection which

is an helpful tool for identification of
138]

unknowns .

GC-MS

metabolomics is favored in microbial

Nevertheless,

with time-of-flight (TOF) detectors shortened the
common analysis time dramatically. Higher scanning
rates allow shorter chromatography (less than 15
min) with deconvolution of peaks by e.g. AMDIS
software package (http://chemdata.nist.gov/mass-
spc/amdis/) or software provided by commercial

LECO ChromaTOF™) and
132]

instrumentation (e.g.,
makes GCxGC more feasible
GCxGC into a
successfully applied B3 To get the results out of two

. First insights via

bacterial metabolome were
dimensional chromatography with mass spectral
information new software is needed. A novel peak
alignment algorithm was developed called DISCO
(distance and spectrum correlation optimization)[34]
GCxGC

chromatograms were used as contour plots which

and a software package where
were then converted to gray-scale images and
analyzed utilizing a workflow derived from 2D gel-

[35]

based proteomics Progress is also made to

shorten derivatization procedures through
microwave irritation heating 36, 371 (see also chapter
2). Software and databases for peakfinding and
identification are well developed in GC-MS analysis.
There are commercially available huge metabolite
databases (mass spectra of derivatized molecules)
like NISTO8 and Agilent®FiehnDB as well as free
available ones like the golm metabolome database
(GMDB) (see table 4). One drawback of GC-MS is the

identification of unknown metabolites. Common

metabolome
(metabolites <800 Da) B, 3942
sensitivity, wide coverage of different compound

investigations
because of its

groups like short carboxylic acids, monosaccharide’s,
alcohols, fatty acids, sugar-phosphates, sterols and
more. All groups are analytically accessible only with
variations in one technical set up.

LC-MS metabolome analysis

Another
coupled to MS is liquid chromatography (LC-MS).

platform of chromatography
This method differs from GC-MS in distinct ways (see
table 1). Based on different column and mobile
phase chemistry, LC-MS analysis take place at lower
temperatures and uses other ionization sources than
GC-MS. Common sources like electrospray ionization
(ESI) and less common like atmospheric pressure
chemical ionization (APCI) do not require sample
volatility which makes derivatization needless in
most cases. Even though derivatization is helpful to
improve ionization or chromatographic resolution in

[43]

some cases HPLC is a versatile separation

technique and a wide range of different applications
are feasible. For bacterial metabolome analysis
approaches like ion pairing (IP) methods [ad-46]
hydrophilic interaction liquid chromatography (HILIC)

@7l ) 3 methods were used.

and reversed phase (RP
All employed methods were specialized for very

polar compounds of central metabolic pathways,
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which have the greatest impact for bacterial
physiological. Recently, the LC-MS methods were
used more and more for absolute quantitative data
generation [ than for profiling projects. This work-
intensive method needs tremendous efforts to
generate calibration curves for each metabolite of
hundreds in a day-to-day manner. A prerequisite is
therefore a high standardized and robust analytical
method to minimize errors. The defined aim is a
number of metabolites per cell, in combination with
other ,,omics” data in order to provide data for
systems biology approaches.

One of the most important requirements in
guantitative analysis by mass spectrometry is the use
of suitable internal standards. The most similar
compounds to the analytes are stable isotope
labeled metabolites. Different approaches exist for
their usage in microbial metabolomics. The isotope
dilution approach 8] is one opportunity and the use
of pure labeled standards is another one 9 Besides
those, a variety of internal standard compounds and
methods exist in metabolome studies to
standardizes and quantify data. Isotopic labeling can
also be used for flux calculations based on tracer
experiments and stoichiometric balancing.
Fluxomics, very common in microbial physiology
research is reviewed by others (5052 and established

[53]

technical protocols were described Mainly

focused on central carbon metabolism, flux

experiments were applied in biotechnology research
4234 and recently adopted to decipher the
[55, 56]

. These

methods enable flux quantities and flux directions

physiology of pathogen bacteria

and give very helpful results for metabolic network
interpretations.

NMR metabolome analysis

Nuclear (NMR)

spectroscopy is used for a variety of metabolomics

magnetic  resonance
approaches. Acquisition of lH, B¢ and *'p spectra
provides access to a large number of various
metabolites. Based on the natural abundances and
therefore depending acquisition times makes -
NMR is the most preferred technique compared to
other nuclei. As above mentioned, the two major
drawbacks of NMR are missing separation of
compounds and less sensitivity. The first problem is
partly overcome by modern two-dimensional NMR

experiments like J-resolved experiments which

extend the spectral space. Sensitivity issues can be
overcome by using NMR cryoprobes B7 or by using
more biomass, which is often limited. Pattern
recognition approaches were used for the study of
different metabolome profiles finding discriminating
metabolites between examined influence factors in

bacteria &

-39 Using a more quantitative approach
to study the extracellular pools and time-resolved
concentration alterations, Behrends et al. show a
vast number of conclusions out of the data from the
metabolic footprint of Pseudomonas aeruginosa t60l,
Quantification of metabolites by "H-NMR is really
straight forward no need of calibration curves makes
it preferable for fast and robust measurments in
metabolomics. metabolic

Using the footprint

approach it was also feasible to characterize

consumption behaivior of B. licheniformis growing in
complex soil extract (61 (see also chapter 1) and to
observe different phenotypes of S. aureus under

changing conditions and to combine these data with

[62, 63]

e.g. proteome findings Another popular

application of NMR is 13'C-NMR, widely used for e.g.

4 or isotopologe studies 5 These

I [66]

metabolic flux
techniques were reviewed in detai

Metabolome sampling

However, microbial metabolomics is not
only about data generation, but primarily about
translating metabolome data into biologically
relevant information. For that purpose it is essential
to provide representative snapshots of a bacterial
metabolome. In particular a dataset has to present
identical metabolite composition as that of the cells
at the time-point of harvesting (67, Concerning that
demand, a metabolome analysis of a microorganism
is much more challenging than that of proteomes
and transcriptomes as the turnover of analytes is
strikingly different. In common, proteins and mRNA
changed after minutes or even hours but in
enzymatic active solutions metabolites showed
turnovers in the range of milliseconds and seconds.
Therefore, accurate determination of intracellular
metabolite levels requires well-validated procedures
for sampling and sample handling. The first steps of
sample treatment, like rapid sampling, quenching of
metabolic activity, separation of extracellular
medium (if possible) and metabolite extraction were
crucial microbial

shown as most steps in

metabolomics.
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Table 2 | Important characteristics of an microorganism for the development of a metabolome

sampling protocol

Characteristic Value Question

organisms. Direct quenching in an
organic solvent is not feasible for

Gram-negatives and yeast cells. It led

- minimal, . .
Siowiimedium complex il g || [Eeilng (o Uil to a drastic loss of metabolites due to
- lonic strength of washing solution . (67, 70, 71, 76]
unspecific leakage ©" ™ " 7. Recent
L . - adherent L .
Cultivation type - suspension (Intracellular?) - filtering/scraping developments ShOWEd a prevention
L i of leakage b usin organic
o e o ge by uing org
BE e solvent/water buffered and cell
Accessible L - - filtration problems, quenching isotonic quenching solutions as well
biomass/optical E E solution problems . h | . [69,
. as appropriate washing solutions
71,72,77 . . .
s Leakage while quenching is an
- susceptible to leakage, . . .
L eelll vl s unintended side effect. The main goal
- mechanical disruption (bead mill, glass is the effective inactivation of
FTem— - Gram-positive - Gram-negative beads, ultrasonication, French pressure
SOCLYbE cell press) enzymes, but that depends also on
: different  characteristics of the
- or organic solvent leakage
organism and the quenching
thermophil  mesophil sychrophil - quenching with cold or hot solutions . . .
e byt bl L = procedure. One point mentioned in
. . table 2 is the habitat of the bacterium
Regarding recent data, the most challenging . - -
. comparing thermophilic, mesophilic and
obstacles are i) complete and fast

qguenching/stopping of metabolism ii) powerful
extraction of whole intracellular metabolite pool iii)
avoidance of compound conversion or degradation
during the process, ensuring enzyme inactivation or
L 6773 and iv) the

obtained sample matrix should be in appropriate

effects of the used solvents itself

composition to the analytical method. In addition to
that, it is known from various studies that a protocol
for the generation of a metabolome sample is unique
for each organism; perhaps even each strain needs

an adopted protocol (67,74, 73]

. Many characteristics of
the particular organism have to be regarded for

protocol development (see table 2).

One major influence factor on a successful sampling
protocol is the constitution of the cell
membrane/wall. This determines susceptibility to
leakage and is the most pronounced difference
between

Gram-positive and Gram-negative

Table 3| Proposed metabolic-marker, reflecting quality of the sampling protocol

Marker value Calculation Values

psychrophilic organisms. Depending on normal
temperature for the particular bacterium the chosen
guenching solution temperature could be critical for
stopping enzymatic reactions. Subsequently, after
guenching metabolite extraction has to be
performed. Several methods exist for efficient
extraction of different metabolites, but the literature
is contradictory regarding the adequacy and
performance of each technique or solvent. In
consideration of above mentioned problems it is not
surprising that a vast number of different sampling
methods exist for popular organisms like E. coli, S.
cerevisige and other "> 78 Each protocol is optimized
for the question applied and enhanced by new
developments in analytical methods. For most
pathogen bacteria like Streptococci, Enterococci and
Mycoplasma defined sampling protocols are still
lacking. For Staphylococcus aureus growing in
shaking flasks a fast filtration method was developed

74, 791 (see also chapter 3), this

protocol for example is not

Adenylate Energy ([ATP]+ 0.5[ADP])/
Charge ([ATP] + [ADP] + [AMP])
AEC

0.8-0.95 -aerobic,

[NADH[/([NAD]*+[NADH]) ~ 0.03-
catabolic reduction 0.07

Redox-Balance - -aerobic,

charge

Glycolysis ratio [Glucose-6-phosphate]/ ~4.2

[Fructose-6-phosphate]

non-limited conditions

non-limited conditions

-this ratio quickly drops if
glucose influx stops before
metabolism is arrested or

References  applicable for other
[p— phylogenetically Gram-posiltlves
= bacteria like Bacillus subtilis ** and
adherent growing Mycoplasma
[Am]iersen pneumonia (801, Sampling via
118
filtration is for some
microorganisms  applicable but
Ewald et al. .
fa19) there exist also other procedures

with high efficiency. An automated

samples warm up before

extraction

sampling device coupled to a stirred
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tank reactor was developed for monitoring
intracellular metabolite dynamics by Schaefer et al.
77 (automated fast sampling devices were reviewed
by Schadel et al. [81]). Also a filter-culture approach
82 and a fast centrifugation method (<15 sec) B4
were developed. Analysis of extracellular and
intracellular metabolites (biased by unavoidable
leakage) by summation of their concentrations is
also a common approach (831,

During the development of a sampling and
extraction protocol above mentioned problems have
to be observed carefully. Leakage and optimal
extraction of metabolites can be tested by well
organized experimental setups. Much more
challenging is the determination of some proposed
metabolic-marker for successful sampling. These
values need the determination of absolute
qguantified metabolites, e.g. adenosine nucleotides
concentrations for the adenylate energy charge
(AEC) calculation (see table 3). The AEC is the most
common marker for effective quenching, mainly
affected by the ATP concentration, the value drops
fast below 0.8 if energy consuming enzymes were
still active during sampling (67 74 " An established

protocol for microbial metabolomics should

therefore be published with all procedures together
with minimum required reporting standards as
stated by the metabolomics standards initiative 184,
The variety environmental influence factors
concerning metabolome investigations can be
studied with a sufficient sampling protocol in hand.

This was successfully applied for e.g. E. coli [85],

Pseudomonas putida 4

and Corynebacterium
glutamicum 9 These studies based on a change in
the medium composition showed significant
alterations in the metabolome profile or fingerprint,
indicating the importance of a controlled cultivation
especially of the chosen growth medium. All studies
showed high metabolite dynamics under applied
changing conditions reflecting the fast turnover
capability of the bacterial metabolome. First
guantitative metabolome data for microorganisms
are rare but coming up recently in large number e,
75 88 gy example, the intracellular E. coli
metabolome was dominated, on a molar basis, by a
small number of abundant compound classes: amino
acids (49%), nucleotides (mainly ribonucleotide
triphosphates, 15%), central carbon metabolism

intermediates (15%), and redox cofactors and

ﬂ"f’ "
—

sampling cells

biological
conclusion

data
integration

. 16
glutathione (9%) as detected by targeted LC-MS ™.
= .
separatecells |
and quench
metabolism
g extract
metabolites
%z
sampling ’ separate
extracellular metabolites
metabolites (polar and
apolar

metabolic-, |
fingerprinting, analytic
target analysis, platform
profiling (GC/MS,
HPLC/MS,
1H-/13C-NMR)
data |
analysis

g

extraction)

Fig.3 | Workflow for metabolome approaches, starting at cultivation of microorganisms under defined conditions (1).
Cells were separated from the growth medium and immediately quenched (2) for example by fast filtration and stop of
metabolism with a cold organic solution followed by liquid N, freezing. Afterwards metabolites were extracted by
different ways, simply with organic solvents like alcohols, acetonitrile and other, or by additional mechanical cell
disruption via a beat mill or other procedures (3). Extracts can further be separated by polar and apolar fractionation to
simplify the sample matrix (4). These extracts and the extracellular samples (yielded by easy filtration of growth medium)
(2.1) were conducted to an analytical platform (5). Samples can be used for profiling, quantification, metabolite
fingerprints etc. and chromatograms or spectra were analyzed (6). Obtained data were integrated in statistic models and
visualization tools to validate information (7) for biological conclusions (8).
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As in this example, glutamine and nucleotides
present often a main part of a bacterial metabolome,
may based due to their central role in metabolism
and diverse functions.

Data mining and metabolite identification

To date, metabolomics generates enormous data
sets with the use of state of the art techniques and
high-throughput approaches. Handling of these data
requires a and well

comprehensive adapted

bioinformatics infrastructure. Using laboratory
(LIMS), data

storage with backup systems are essential tools in a

information management systems

metabolomics laboratory. Further, data extraction
out of a vast number of chromatograms or spectra
needs full attention and is often one major pitfall in

[87]

metabolomics studies A variety of vendor

software as well as open source software is available
for peak-finding, -deconvolution, -integration etc.

[88]

(review by Katajama et al. and web source

overview

http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics

ﬁbeak_AIignment/). Firstly non-biological effects like

column changes, temperature differences and
should be

corrected, in terms this affects shifts in retention

solvent differences for gradients

time of peaks and baseline as well as detector
response. Therefore it is essential to include a variety

of internal standards into each sample to correct

[89]

analysis in a standardized manner Secondly

biological variability must be taken into account. This

includes biomass (often as cell dry weight

Table 4 | Metabolomics software for data-handling of LC-MS, GC-MS and "H-NMR analysis as well as databases with
detailed metabolite information (e.g. spectra, nominal mass, chemical shift)

Software for data-processing LC-MS (MS") GC-MS NMR References
BinBase I, + L [120, 121]
http://fiehnlab.ucdavis.edu/projects/binbase_setupx/
MetaboAnalyst + + + el
http://www.metaboanalyst.ca
MetAlign + + | 11231
http://www.metalign.wur.nl/UK/
Mzmine, mzmine2 + + b 1124]
http://mzmine.sourceforge.net/
XC/MS, XC/MS2 + + | 1125,126]
http://metlin.scripps.edu/download/
AMDIS + + -
http://chemdata.nist.gov/mass-spc/amdis/
Metabolite databases/Spectra libraries LC-MS (MS") GC-MS NMR References
Biological Magnetic Resonance Data Bank + ez
http://www.bmrb.wisc.edu/ >300
fiehn lib + + - 11201
http://fiehnlab.ucdavis.edu/Metabolite-Library-2007/ >1.000
golm metabolome database + - =zl
http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/gmd.html
Human metabolome data base (HMBD) + + + 11291
http://hmdb.ca/ >8.000 >2.000 >400
KNApSACcK - Comprehensive Species-Metabolite Relationship -
Database >50.000
http://kanaya.naist.jp/KNApSAcK/
MassBank + - -
http://www.massbank.jp/ >50.000
Metlin + - - =l
http://metlin.scripps.edu/ >20.000
National Institute of Standards and Technology (NIST) + + +

>150.000
Pubchem E L
http://pubchem.ncbi.nIm.nih.gov/ >10.000.000
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measured), cell number and cell volume for
concentration calculations, e.g. molar number of

metabolite per uL of cell volume 18 or growth rate.

After all, one ends up with a list of metabolite values,
with a significant number of unknown compounds.
Handling of these is a major task in metabolome
analysis. It is therefore essential sharing open access
databases with as much as possible information

@7 |n table 4 some

about measured compounds
software examples and databases are shown. The
analysis results should be in peak lists that include
names of metabolites, entries of unknown
compounds with unique nomenclature, quantitative
data and information about the peak identification
as well as quantification. With the ability to produce
extreme large datasets, the problem to extract
information out of these matrixes rises. Therefore
the application of unbiased statistical data analysis
tools could help. Multivariate statistical tools help to
generate hypotheses by reducing mathematically the
vast number of parameters in data sets and
visualizing the clustering behavior of parameters.
These could be helpful for finding e.g. biomarker or
significant changes between samples of different
origin (e.g. between aerobic/anaerobic conditions)

9 Details about

or samples from different strains
different approaches and statistical models like
principal component analysis or orthogonal-partial

least square analysis recent

[90-92]

were given in
publications

Metabolome studies of Staphylococcus aureus

Pathogenic bacteria are a major cause of
human death and disease and cause infections such
as cholera, sepsis, typhoid fever and tuberculosis.
Some organisms, such as staphylococci present a
class of commensal bacteria with hugh potential to
burden humans. Its fast developing multi-resistance
against antibiotics makes these bacteria so called

»[93]

“super bugs””. A recent overview implicated the

enormous importance to decipher the metabolism
with regards to its influence on staphylococcal
virulence ®¥. Previous work shows for example the
impact of the activity of tricarboxylic acid cycle (TCA)

. [95, 96]
enzymes on the virulence of S. aureus .

However, there is a lack of comprehensive

qualitative and quantitative metabolomic data
compared to large sets of genomic, transcriptomic

and proteomic data available for S. aureus 157, 98]

'H-NMR
investigations, it was shown that S. aureus has an

Mainly based on exometabolome

altered metabolism after deletion of single genes for

[63, 95]

TCA enzymes Deletion of succinate

dehydrogenase  gene (sdh) provoked an
accumulation of succinate in the medium and
of the TCA with

consequences for biofilm production and aerobic

pinpoints the interruption
growth. Amino acid consumption was decreased in
the Asdh
interruption. Another study showed the impact of

strain as a consequence of TCA
the presence or absence of the redox-sensing
regulator Rex on the S. aureus metabolome 62 Rex
has an impact on fermentation pathway activity
anaerobic  conditions.

under aerobic and

Exometabolome data complemented proteome
results of this study, e.g. an increase in formiate and
ethanol producing enzymes was followed by
respective metabolite accumulation. Relevance for
Rex activity linked to virulence was given by the fact
that lactate was produced under aerobic conditions
in the mutant strain, which indicates a higher lactate
dehydrogenase (Ldh) activity as in the wild-type
strain. Interestingly, it has been shown that the
activity of Ldh enables S. aureus to resist the innate
immune response B9 The findings of Pagels et al. (62
suggest that deactivation of Rex might be crucial for
this phenomenon.

Results from Chatterjee et al. [100] propose
that CIpC, as a part of the Clp ATPase/Clp protease
system in S. aureus is involved in the expression
regulation of genes and/or proteins of
gluconeogenesis, the pentosephosphate pathway,
and other central pathways. These changes in carbon
metabolism result in alterations of the intracellular
concentration of free NADH and e.g. fatty acid
composition. In combination with proteome data the
implemented genome-scale pathway analysis reveals
strong evidence for ClpC as a critical factor in
staphylococcal metabolism, stress regulation, and
late-stationary growth phase survival. The change to
stationary phase, initiated by glucose starvation was
examined in more detail by a metabolome and

MU (see also chapter 6). The

proteome study
presented data consist of time-resolved metabolite
and protein changes from S. aureus COL grown in
chemical defined medium. Applying GC-MS and LC-
MS as well as metabolic footprinting by 1H-NMR, it
was possible to detect 94 metabolites from S.

aureus. These metabolome data where compared
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with the results of 2D-gel based proteomics for more
than 500 proteins. Interestingly, the correlation
between both ,,omics”-technologies was high in
central pathways but failed for some distinct
examples. Especially the amino acid pools showed
remarkable changes in concentrations (>100 fold
changes), whereas the maximum detected protein
change was about 2-10 fold comparing exponential
growing versus stationary phase cells.

A combination of transcriptome and
intracellular metabolome data was performed for S.
aureus in a comparative study between wild-type
strain and a serine/threonine kinase (PknB) and a
respective phosphatase (Stp) mutant strains 102}
Differences in nucleotide metabolism were detected
with both ,,omics”- techniques in the ApknB strain.
Untargeted analysis of polar compounds by ion-
pairing LC-MS showed remarkable differences in cell
wall metabolism between these ApknB, Astp and
wild-type strain [103](see also chapter 7). The findings
showed an influence of this system on the
peptidoglycan biosynthesis and pave the way for
new investigations for e.g. antibiotic target searching
regarding these systems. The urgent search for new
anti-staphylococcal drugs and the elucidation of
mode of action for new promising substance was
basis of the study from Liu et al. 104} They used GC-
MS analysis to investigate the effect of frequently
used and new antibiotics on the intracellular
metabolome of S. aureus. It was possible to group
the profiles of known substances into the same
mode of action (MOA) classification in a statistical
approach. The other way around, a prediction of the
MOA from new compounds is entirely conceivable.
This preliminary study shows the feasibility of
metabolomics to elucidate MOA of new compounds
and should be part of ongoing work in microbial
metabolomics of pathogens. A very recent study
shows the impact of staphylococcal secondary
metabolites on virulence regulation. Wyatt et al. [105]
isolated nonribosomal dipeptides (aureusimines)
which act as direct regulators for virulence and may
offer novel leads for anti-infective drugs.

The above mentioned studies are only
examples for the tremendous effort of metabolome
investigations on staphylococci. In summary, the last
years in the post genomic era, have made substantial
contribution for the understanding of bacterial
physiology with the development and combination

of new analytical as well bioinformathical methods.

Especially studies of proteomics or transcriptomics in
combination with metabolome analysis gave deeper
insights into the complex regulatory network of e.g.
staphylococci.

Future prospects

As stated in the introduction, deciphering
the metabolome of a bacterium needs more than
one technique. This issue of developing new
methods must be part of metabolomics research in
future. Furthermore, it is of crucial importance to
analyze cell metabolism in the natural environment.
This is promising for the generation of authentic
physiological data. Some efforts to solve this
problem were done in the areas of isotopologue

[55, 56]

analysis , desorption electrospray ionization

mass spectrometry (DESI) (1% and single cell analysis
(071991 For  human pathogens with obligate or

facultative intracellular lifestyle, metabolism is

strongly dependent on the host cell constitution.

Recent data show that in vivo metabolism is

[110]
, e.g.

growing in complex media within shaking flasks

remarkably different to in vitro conditions

compared to cells grown in their natural habitat. Vice
versa the host cells adapts to the intracellular
present bacteria possibly with metabolic alterations
. Studying this interplay is of enormous interest
for understanding pathogenicity or persistence of
such bacteria. For example, Listeria monocytogenes
replicates in the cytosol of murine macrophages. It
was shown by in vivo 13'C-pertubation techniques
that central carbon metabolism is modulated by the
virulence regulator PrfA (positive regulatory factor A)
5 and different to that of extracellular bacteria
growing in a defined glucose containing culture

medium %

. These studies analyzed the isotopic
allocation of amino acids incooperated in the
proteins of cells. Quenching of the cells is therefore
not essentially important, since proteins were
hydrolyzed to single amino acids and analyzed. More
challenging is a real metabolomics approach adapted
to intracellular living microorganisms and it will be
one future task in many laboratories focusing on
bacteria with intracellular lifestyle. The most crucial
steps are (i) appropriate quenching of both cell types
(ii) separating cells in acceptable time (iii) harvesting
enough cells for metabolome profiling.

In contrast to these analytical problems, the
bioinformatic interpretation to combine all multi-
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major challenge. For bacterial multi-,,omics” studies
a review is given by Zhang et al. 12 As one example
Protecs a comprehensive and powerful storage and
analysis system for,,omics” data was build up (i,
This is an important step to explore multi-,,omics”
data sets in microorganisms.

With respect to the above mentioned
examples for future experiments the field of
metabolomics needs new analytical techniques to
cover a broader range of metabolites and to be more
sensitive. Special applications for compound classes
e.g. the huge variety of lipids (lipidomics) (14, 1131
need more progress since these compound classes
are important for comprehensive metabolome
conclusions as recently shown for eukaryotic stem

cell differentiation ¢

. Finally, the questions about
the complete composition and quantities of the
bacterial metabolome are still unanswered but
metabolomics is on the way to fill these gaps. The
extension of our knowledge over the metabolome of
bacteria will improve the description of their

metabolic network and cellular phenomena in

general.
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