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Introduction
Pollen based land-cover reconstructions provide long-term obser-
vations of past vegetation, which are valuable in various fields, 
including ecology, nature conservation, archaeology, and climate 
science. The interpretation of pollen data is far from simple, how-
ever. Mainly the fact that plants produce pollen in very different 
amounts introduces bias in pollen values, with strong pollen pro-
ducers being over-represented and weak pollen producers being 
under-represented. Interpretation is further complicated by differ-
ent dispersal of small and large pollen grains. The presence of 
bias in pollen data is known since the inception of the field, and 
experienced palynologist try to account for it when interpreting 
pollen data. With the advent of methods such as LRA (including 
REVEALS and LOVE, Sugita, 2007a, 2007b), Marco Polo 
(Mrotzek et al., 2017), MSA (Bunting and Middleton, 2009), and 
EDA (Theuerkauf and Couwenberg, 2017) more objective quan-
titative reconstructions of past vegetation cover became feasible. 
Yet, widespread application is still hampered by the limited avail-
ability of the necessary correction factors, namely pollen produc-
tivity estimates (PPEs or RPPs).

PPEs are usually estimated by calibration of the pollen-vegeta-
tion relationship, that is, by relating modern pollen deposition in a 
set of sample sites to modern vegetation composition in the sur-
rounding of each of these respective sites. One way to calibrate is to 
use pollen samples from larger lakes (or peatlands) with prevailing 
regional pollen deposition, that is, samples that represent regional 
scale vegetation composition. Using this type of “regional” pollen 

counts requires estimating plant abundances on a large scale to 
arrive at good PPE estimates, a “large lake” approach will require 
plant cover data in a 30–50 km radius around each sample site to 
arrive at robust PPEs. PPEs in this case can be calculated with itera-
tive approaches (Fang et al., 2019; Theuerkauf et al., 2013) or by 
using the inverse REVEALS model (Kuneš et al., 2019). The most 
critical step in the calculations is the appropriate distance weighting 
of the plant abundance data. Or, in other words, using the right pol-
len dispersal model (Theuerkauf et al., 2013). A pollen dispersal 
model is needed to account for the fact that plants growing in 
greater distance from a sample site contribute less pollen than those 
growing nearby; dispersal may also differ between plant taxa. Only 
if the chosen dispersal model reflects true pollen dispersal in the 
landscape well, the resulting PPEs will indeed represent pollen pro-
ductivity of each taxon.

More often, PPEs are estimated with a set of pollen samples 
from small lakes, moss pollsters, or pollen traps. Commonly, the 
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extended R-value (ERV) model is used to calibrate pollen counts 
and vegetation cover (Parsons and Prentice, 1981, Prentice and 
Parsons, 1983, Sugita, 1994). The main advantage of this 
approach is that it reduces the necessary vegetation mapping. 
Pollen records from small wet (forest) depressions, moss poll-
sters, and pollen traps include both (extra)local and regional pol-
len deposition. The ERV model assumes that regional pollen 
deposition is similar at all pollen sample sites. The assumption is 
that far-away vegetation cover is similar for all pollen sampling 
sites and that regional pollen influx from far-away is equal for all 
sites, Following this assumption, mapping is only necessary for 
the nearby vegetation contributing the (extra)local pollen deposi-
tion, in practice usually 1–2 km distance around each pollen sam-
pling site. Moreover, many herb taxa are more commonly 
recorded in small sample sites than in large lakes, so that the 
ERV approach with pollen data from small sites appears better 
suited to produce PPEs also for a range of herbal taxa. So far, the 
ERV model has been applied in more than 40 studies, mainly 
from Europe and China.

ERV application is not without problems, however. Data com-
pilations from Central and Northern Europe (Broström et  al., 
2008, Mazier et al., 2012) and temperate China (Li et al., 2018) 
show large and yet mostly unexplained variations in the presented 
PPEs. The variations may relate to methodological issues, with 
quantification of plant abundances apparently being a particularly 
critical step (Bunting et al., 2013, Li et al., 2018). Also sample 
selection, sample type, vegetation structure, and ERV model 
selection may play a role (Li et al., 2018). The variations may also 
represent true differences in pollen productivity related to envi-
ronmental and biological parameters, such as climate, vegetation 
structure, and species composition, yet such relationships are 
rarely identified (Matthias et al., 2012). Overall, a better under-
standing of the pitfalls of the ERV approach is necessary to arrive 
at more robust results.

Simulation studies are one option to explore these pitfalls. 
Using simulations, Sugita (1994) showed the importance of vegeta-
tion patch size and basin size in ERV modeling. Other factors, such 
as dispersal model selection and error in pollen data, have not yet 
been studied. To allow for flexibility in ERV application as well as 
for simulation studies, we have implemented the ERV model in the 
R environment for statistical computing (R Core Team, 2020). With 
this tool, we in the following test the effect of five parameters: (1) 
number of sites, (2) vegetation structure, (3) basin size, (4) noise in 
the input data, and (5) dispersal model selection.

At first, we introduce the rationale of our ERV 
implementation.

Theory behind the ERV model
Attempts to estimate correction factors from surface pollen data 
have a long history (e.g. Jonassen, 1950; Müller, 1937; Steinberg, 
1944; Tsukada, 1958). Davis (1963) formalized the approach in 
the R-value model, with the R-value defined as the ratio of the 
pollen percentage value in a surface sample and the proportionate 
plant abundance in the surrounding vegetation. The key challenge 
is to estimate actual plant abundances in a suitable and effective 
way. Airborne pollen is easily transported over 10s of km or far-
ther, which means that pollen source areas are very large and usu-
ally too large to be mapped. To account for pollen transported 
over long-distances to the sample site, that is, from beyond the 
mapped area, Parsons and Prentice (1981) and Prentice and Par-
sons (1983) proposed to add a background component in what 
became the extended R-value model (ERV model). The funda-
mental assumption is that this background component is the same 
at each of the studied sites. Prentice and Parsons (1983) propose 
two ways to express that background component, either as “a con-
stant background pollen percentage for each taxon” (model 1) or 

“as a constant proportion of total forest volume (or whatever mea-
sure of abundance is being used)” (model 2, Parsons and Prentice, 
1981). Model 3, added by Sugita (1994), assumes a constant 
absolute amount of background pollen deposition for each taxon 
at all sites.

Moreover, Sugita (1994) suggests using distance weighted 
plant abundances instead of simple vegetation proportions in 
order to account for dispersal effects in pollen data. There are two 
overlapping dispersal effects. First, plants growing in the vicinity 
of a site contribute more pollen than those farther away. Secondly, 
dispersal distances may differ between plant taxa, depending on 
the size and fall speed of their pollen. Distance weighting aims to 
compensate for both effects by using a pollen dispersal model. If 
the dispersal bias can be removed, the correction factors would 
represent over-/under-representation related to differences in pol-
len productivity alone. In other words, (only) when using suitable 
distance weighting, the resulting correction factors represent rela-
tive pollen productivities of plant taxa.

Like the existing models, our implementation of the ERV 
model starts with the fundamental assumption that pollen deposi-
tion D of taxon i at a site k can be expressed as “local” pollen 
deposition (or pollen loading, sensu Sugita, 1994) PLlocal plus 
background pollen deposition PLbackground (equation (1)). Local 
pollen arrives from the area for which mapped vegetation data is 
available, background pollen from beyond.

	 D PL PLik iklocal ikbackground= + 	 (1)

Pollen deposition in general can be expressed as the result of pol-
len production in the source area and pollen dispersal to the study 
site. For each taxon i of the “local” vegetation at each site k, the 
“local” pollen deposition can be expressed as distance weighted 
plant abundance dwpa multiplied by pollen productivity α (equa-
tion (2)).

	 D dwpa PLik iklocal i ikbackground= +*α 	 (2)

Equation (2) can be written in terms of relative pollen deposition 
by dividing pollen deposition of taxon i at site k with summed-up 
pollen deposition of all taxa at this site (equation (3)), similar to 
ERV model 3 from Sugita, 1994).
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We aim to determine α from pollen percentages and distance-
weighted plant abundances. Equation (3) does not allow us to do 
so directly, because it includes background pollen deposition of 
each taxon as another unknown variable. Yet, with pollen and 
vegetation data from a set of sites, we can approximate α using 
numerical optimization, at least under the assumption that the 
background component for the individual taxa is the same across 
all sites. We can assume random values for α and PLbackground for 
each individual taxon and use equation (3) to calculate relative 
pollen deposition (right-hand side of equation (3)). We compare 
this modeled pollen deposition to observed pollen deposition 
(left-hand side of equation (3)) and using an optimization algo-
rithm find those values for α and PLbackground, that give the best 
match between the modeled and observed pollen deposition for 
each taxon and each site.
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As a modification to ERV model 3, we express the background 
component not as abstract pollen loading but also as pollen 
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productivity α multiplied by the distance weighted, “regional” 
plant abundance for each taxon (equation (4)). To clearly high-
light this modification of model 3, we name this version ERV 
model 4. If available, “regional” abundances can be compared to 
true abundances, for example from forest inventories, allowing 
for a validation of the ERV application.

In our implementation, we arrive at best estimates for α and 
dwparegional by minimizing the squared chord distance between 
observed (left-hand side of equation (4)) and modeled pollen per-
centages (right-hand side of equation (4)). For optimization we 
use the conjugate-gradient algorithms with the “optim” function 
from the {stats} package in R. Tests have shown more accurate 
results than with the Nelder-Mead method, which is used in the 
ERV program(s) of Shinya Sugita. Our approach does not a pri-
ori set a reference taxon. All α values are allowed to permutate 
in a user-defined corridor (e.g. 0.01–20) and the reference taxon 
to calculate relative values, that is, PPEs, is chosen later. The 
total cover of regional vegetation is assumed to be 100% as a 
standard, but it may be set to lower values to allow for non-pol-
len producing areas. For evaluation, we compare modeled with 
observed pollen percentages (right-hand side with left-hand side 
of equation (4)). This relationship should in theory be linear. 
Simulations, even with noisy pollen data, indeed show linearity 
(Figure 1). ERV models 1–3 use different measures for evalua-
tion. With ERV1 we look at scatterplots of adjusted vegetation 
proportion versus pollen proportion; with ERV2 at vegetation 
proportions versus adjusted pollen proportions; with ERV3 at 
relative pollen loadings versus absolute vegetation. Using simu-
lated data, also model 2 and 3, but not model 1, show linear rela-
tionships (Figure 1).

Testing
Preparation of simulated data sets
We tested the ERV approach using simulated pollen-vegetation 
data sets. Each data set includes a number of sites (10–50). The 
data sets are created in a way that vegetation within 5 km distance 
from the center of each site is different (=“local vegetation”), 
while vegetation beyond 5 km is uniform (=“regional vegeta-
tion”). The local part is composed of consecutive rings with 
increasing ring width (Figure 2). Each data set is created in the 
following steps:

1.	 Create vegetation data: First, regional vegetation com-
position is set to random values (sum = 100%). Then, 
vegetation composition in the smallest ring around 
each site is set to random values. To mimic real-world 
conditions, abundances in the smallest ring are created 

so that only a few taxa are dominant while others are 
absent (sum = 100%). This is achieved by cutting of 
smaller values and recalculating the rest to 100% cover. 
Vegetation composition in all further local rings is cal-
culated in two steps. First, preliminary abundances of 
each taxon and each ring are calculated by interpolating 
linearly between abundances in the innermost ring and 
regional abundances. These values are then altered by 
a random component, which decreases with ring size. 
We use a small random component to simulate a setting 
with small vegetation patches (experiment 1, 3, .  .  ., 23) 
and a large random component to simulate a setting with 
large vegetation patches (experiment 2, 4, .  .  ., 24, see 
below).

2.	 Apply distance weighting: Distance weighted plant abun-
dances (dwpa) are calculated by multiplying the cover of 
each taxon in each ring, as well as in the regional vegeta-
tion, by a respective distance weighting factor. Distance 
weighting factors are calculated with the Lagrangian-Sto-
chastic-model for pollen dispersal (LSM) from Kuparinen 
et al. (2007), adjusted to unstable atmospheric conditions 
and using fall speed values for the individual taxa (Table 
1). Only in the experiments that test effects of dispersal 
model selection, we calculated distance weighting factors 
also with a Gaussian plume model.

3.	 Calculate pollen counts: To first calculate pollen deposi-
tion of each taxon at each site, the dwpa values of that 
taxon in each ring, as well as in the regional vegetation, 
were multiplied with the relative pollen productivity of 
that taxon (Table 1) and summed up. The pollen count of 
each taxon is then calculated as the pollen deposition of 
the taxon divided by total pollen deposition, multiplied 
with 1000, and rounded to zero digits. In this way we 
arrive at a pollen sum of 1000 pollen grains.

With these data sets, we test the influence of five parameters on 
ERV application: (1) number of sites, (2) vegetation patch size, 
(3) basin size, (4) noise in the data set, and (5) dispersal model 
selection (Table 2). To account for the number of sites, we created 
data sets with 10, 20, 30, 40, and 50 sites. To account for basin 
size, we created data sets with a basin radius of 0, 10, and 100 m. 
We did not test for larger basin sizes because the ERV model is 
not suited for pollen data from large sites with prevailing regional 
pollen deposition.

To account for vegetation structure, we created two types of 
data sets that mimic small and large vegetation patches (Figure 2). 
In case of small, homogeneously arranged patches, the added ran-
dom component is small so that abundances change smoothly 

Figure 1.  Diagnostic scatter plots for Alnus from ERV application with model 1–4 using vegetation composition in different radii as input and 
deeming vegetation beyond this radius “regional” (see grayscale legend). Model 1–3 calculated with the ERV.Analysis.v2.5.3 program of Shinya 
Sugita. Model 4 calculated with the “ERVinR” function. The same simulated data set has been used in all four cases (basin size = 10 m, noise 
added in counts, 30 sites). The data set has been created and ERV has been applied with the Lagrangian-Stochastic-model for pollen dispersal 
(LSM).
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Figure 2.  Top: The main steps of our simulation approach for experiments with and without noise in pollen counts and pollen productivity. 
The details of each step are described in the text. Bottom left: Example for vegetation composition in each ring for one study site with either 
small or large ring-to-ring variation in local vegetation composition, representing small or large patches. Bottom right: Example for noise in 
pollen productivity calculated for Betula (default pollen productivity = 6). For each ring, the cover of Betula (in m²) is divided by 25 to calculate 
the number N of 25 m2 stands (minimum number of stands = 1, maximum = 1000). For each ring, N random pollen productivity values are 
drawn (for Betula between 0 and 12). The mean of these N values is then the pollen productivity for this ring.

from the inner to the outermost rings. These simulations mimic 
the vegetation pattern of a largely homogenous, mixed forest with 
patches of ~10 in diameter. In case of larger patches, the added 
random component is large so that abundances change more 
strongly from ring to ring, particularly in the smaller rings. These 
simulations mimic the vegetation pattern of an arable landscape 
with patches from 10 to 1000 m in diameter (or larger).

To explore effects of inaccuracies in pollen counts and pollen 
productivity, we run experiments first without and then with two 
levels of inaccuracy. The first level adds noise to the virtual pollen 
counts: Instead of using the true, simulated pollen counts, we draw 
a new pollen sample with a default sum of 1000 pollen for each site 
with the true pollen composition as a basis. As in real pollen 

samples, the size of errors depends on the abundance of a pollen 
type, that is, errors are highest for rare pollen types (Mosimann, 
1965). For example, if one counts 1000 pollen grains from a sample 
with exactly 1% Cerealia pollen, then chances are high that the final 
count does not include the expected 10 (=1%) but for example, only 
5 or even 20 Cerealia pollen grains. To draw pollen samples we 
used multinomial drawing with the R-function “rmultinom” (with 
number of samples “n” = 1, number of objects “size” = pollensum, 
composition of the population “prob” = true pollen composition).

The second level of inaccuracy adds noise to pollen productiv-
ity. This type of noise simulates variation in the pollen productiv-
ity between single specimens (or small stands) of one and the 
same taxon, which in reality would occur for example due 
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to differences in genetics, health, age, or site conditions. In the 
simulations, we assume that pollen productivity for a taxon is uni-
form for stands of 25 m2, which is about the basal area of a single 
tree. In effect we are thus mimicking differential pollen produc-
tion among single trees. For each 25 m2 stand, pollen productivity 
is estimated by drawing a random value between 0 and 2 times the 
true pollen productivity. Then, for each ring the mean of these 
random productivities is calculated for each taxon. Hence, for 
each taxon and ring we arrive at a unique pollen productivity 
value. Logically, this type of noise causes the largest offset from 
the mean in the smallest rings with only a low number of stands.

As the “taxa” in our simulations are simulated entities, not 
existing plants, we use a normal font.

The combination of four types of noise, three types of basin 
size, and two types of vegetation structure gives a total of 24 
experiments (Table 2). Each experiment was run with 10, 20, 30, 

40, and 50 sites. To explore stability of the ERV applications, we 
for each experiment repeated simulations 50 times (=50 simula-
tions). Each simulation starts with a newly created pollen-vegeta-
tion data set.

Application of the “ERVinR” function starts with only the 
innermost ring, further rings are then added successively. By 
default, “ERVinR” was applied with the LSM, adjusted for unsta-
ble atmospheric conditions. The resulting PPEs and regional 
cover estimates are compared with the actual, true values that 
were used to synthesize the virtual datasets and deviations are 
expressed as root-median-squared error (rmse).

Testing effects of dispersal model selection
The ERV model requires distance weighting of plant-abundance 
data with a suitable pollen dispersal model. As pollen dispersal 
in reality is far more complex than even advanced models can 
predict, any chosen dispersal model will be – more or less – dif-
ferent from actual dispersal patterns in a given landscape. In the 
end, all models are wrong. To explore implications of this mis-
match for ERV application, we repeat experiment 3, 9, and 15 
(each only with 30 sites) with different dispersal models in step 
2 and step 4 of the experiments (Fig. 2). Step 2 represents pollen 
dispersal in the landscape whereas steps 4 represents ERV appli-
cation. We use combinations of the LSM and the Gaussian 
plume model (GPM, following Prentice, 1985). The latter is a 
commonly used dispersal model in ERV application. Four 
options were tested:

1.	 LSM-LSM, create data sets and apply ERV both with the 
LSM (as control)

2.	 LSM-GPM, create data sets with LSM and apply ERV 
with GPM

3.	 GPM-LSM, create data sets with GPM and apply ERV 
with LSM

Table 1.  Fall speed of pollen and pollen productivity of the 10 taxa 
included in simulations. Note that the pollen productivity values 
have be defined for the purpose of the present simulations, they do 
not reflect real-world pollen productivity of these taxa.

Taxon Fall speed Pollen  
productivity

Alnus 0.02 6
Betula 0.03 6
Corylus 0.03 4
Fagus 0.06 2
Pinus 0.04 3
Tilia 0.04 1
Ulmus 0.03 1.5
Cerealia 0.06 0.1
Poaceae 0.03 1
Secale 0.06 0.5

Table 2.  Test scheme for our main experiments. For each experiment, 50 simulations were conducted.

Experiment Type of noise Basin ra-
dius (m)

Patch 
size

Number of sites

1 No 0 Small 10, 20, 30, 40, 50
2 No 0 Large 10, 20, 30, 40, 50
3 No 10 Small 10, 20, 30, 40, 50
4 No 10 Large 10, 20, 30, 40, 50
5 No 100 Small 10, 20, 30, 40, 50
6 No 100 Large 10, 20, 30, 40, 50
7 Only pollen counts 0 Small 10, 20, 30, 40, 50
8 Only pollen counts 0 Large 10, 20, 30, 40, 50
9 Only pollen counts 10 Small 10, 20, 30, 40, 50
10 Only pollen counts 10 Large 10, 20, 30, 40, 50
11 Only pollen counts 100 Small 10, 20, 30, 40, 50
12 Only pollen counts 100 Large 10, 20, 30, 40, 50
13 Only productivity 0 Small 10, 20, 30, 40, 50
14 Only productivity 0 Large 10, 20, 30, 40, 50
15 Only productivity 10 Small 10, 20, 30, 40, 50
16 Only productivity 10 Large 10, 20, 30, 40, 50
17 Only productivity 100 Small 10, 20, 30, 40, 50
18 Only productivity 100 Large 10, 20, 30, 40, 50
19 Pollen counts + productivity 0 Small 10, 20, 30, 40, 50
20 Pollen counts + productivity 0 Large 10, 20, 30, 40, 50
21 Pollen counts + productivity 10 Small 10, 20, 30, 40, 50
22 Pollen counts + productivity 10 Large 10, 20, 30, 40, 50
23 Pollen counts + productivity 100 Small 10, 20, 30, 40, 50
24 Pollen counts + productivity 100 Large 10, 20, 30, 40, 50
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4.	 GPM-GPM, create data sets and apply ERV both with 
GPM

Software
All calculations were carried out in the R environment for statisti-
cal computing (R Core Team, 2020). The “ERVinR” function is 
part of the disqover package, available from https://disqover.
botanik.uni-greifswald.de/. The R scripts used to set up the pres-
ent experiments are available as supplementary material.

Results
Effects of noise in the simulated data
In almost all tests without noise (experiment 1–6), the “ERVinR” 
function produces accurate PPEs with small errors only (Figure 
3). The rmse of PPEs declines rapidly to values below 0.1 with 
increasing sampling radius, that is, with vegetation data of addi-
tional rings included in the analysis. The decline is faster with 
small (exp. 1, 3, 5) than with large vegetation patches (exp. 2, 4, 
6). Errors in PPEs level off at 150–200 m with small patches and 
at about 1000 m with large patches. Also regional cover is esti-
mated accurately. Beyond 1000 m, rmse is around or below 0.5. 
Like with PPEs, errors in regional cover estimates are somewhat 
larger for data sets with large patches.

Adding noise only to the pollen data (exp. 7–12) increases error 
in the resulting PPEs (Figure 3). After leveling off at ~1000 m sam-
pling radius, the rmse remains at about 0.2–0.4 in the experiments 
with small patches (exp. 7, 9, 11) and at about 0.5–0.6 in the exper-
iments with large patches (exp. 8, 10, 12; Figure 3). In experiments 
with noise in pollen productivity only (exp. 13–18) errors in the 
resulting PPEs are slightly higher than without noise. When apply-
ing the ERV with the GPM dispersal model, noise in pollen pro-
ductivity results in higher errors in the experiments with a basin 
size of 0 m (exp. 13 and 14), but not in the experiments with larger 
basin size. With noise in pollen data and pollen productivity (exp. 
19–24), errors in the PPEs are again clearly higher and about as 
high as with error in pollen counts alone.

Adding noise has similar effects on the resulting estimates of 
regional cover. Noise only in the pollen data (exp. 7–12) produces 
clearly increased errors in the estimated regional cover (Figure 3). 
Beyond ~1000 m sampling radius, the rmse of the regional cover 
estimates is about 1.5 with small (exp. 7, 9, 11, 13, 15, 17) and 
about 2.0–2.5 with large vegetation patches (exp. 8, 10, 12, 14, 
16, 18). With noise in pollen productivity alone (exp. 13–18), 
errors in the regional cover estimates are only somewhat 
increased. With noise in pollen data and pollen productivity, 
errors in regional cover estimates are overall highest, that is, 
somewhat higher than with noise in pollen counts alone.

Effects of the number of sites
Errors in PPEs are highest for models run with only 10 sites and 
decrease when more sites are added (Figure 4). In most experi-
ments the decrease is strongest in the step from 10 to 20 sites, 
particularly in the absence of noise (exp. 1–6, note the overall 
much lower error). The pattern is similar for errors in recon-
structed regional cover (Figure 4).

Effects of basin size
Sampling vegetation in only short distance from the sampling 
point, as is often done in PPE-studies, may result in large errors 
in PPEs. If, but only if, vegetation cover from a large enough area 
is included in the model, changing basin size from 0 to 10 or 
100 m has only little effect (Figures 3 and 5). The mean rmse of 
the PPEs calculated for rings >1000 m radius only, is 0.27 in 
experiments with 0 and 10 m basin size and slightly higher at 

0.35 in experiments with 100 m basin size. The rmse in regional 
cover is 1.4 in experiments with 0 m basin size and 1.3 in experi-
ments with 10 and 100 m basin size.

Effects of patch size
In general, for small vegetation patches, error in PPEs stabilizes at 
lower values and at smaller vegetation sampling radius than for 
large patches (Figures 3 and 5). This effect of patch size is most 
pronounced in the experiments with 0 and 10 m basin size. Here, 
PPE errors are twice as high with large (exp. 2, 4, 8, 10, 14, 16, 
20, 22; Figure 5) than with small vegetation patches (exp. 1, 3, 7, 
9, 13, 15, 19, 21). With 100 m basin size, PPE errors are only 
slightly higher with large (exp. 6, 12, 18) than with small patches 
(exp. 5, 11, 17, 23). Patch size has similar effects on errors in 
regional cover (Figure 5).

Errors in single taxa
Expressed as rmse, which means in absolute terms, errors in PPEs 
are closely correlated with the actual pollen productivity; errors 
are highest for Alnus and Betula and lowest for Cerealia and 
Secale (Figure 5). Relative errors (i.e. rmse divided by true pollen 
productivity) are instead highest for Cerealia and Secale, that is, 
the taxa with the lowest pollen productivity. Also the rmse in 
regional cover is highest for Cerealia and Secale (Figure 5). High 
errors in regional vegetation obviously relate to the high relative 
PPE errors in both taxa.

Goodness-of-fit (squared-chord-distance)
In our ERV implementation, PPEs are estimated by minimizing 
the squared-chord-distance between observed and modeled pol-
len percentage values. In theory, this distance should decrease 
with increasing vegetation sampling distance, that is, with each 
additional ring added in ERV analysis. In our experiments without 
noise (exp. 1–6; Figure 6) the squared-chord- distance indeed 
decreases with increasing sampling distance, approaching very 
small values of ~0.1. Hence, modeled and observed pollen values 
are nearly identical. The decrease is somewhat faster in the exper-
iments with small vegetation patches (exp. 1, 3, 5), approaching a 
minimum already at ~1000 m sampling distance. With large veg-
etation patches (exp. 2, 4, 6), the squared-chord-distance remains 
overall slightly higher and continues to decrease until the final 
ring is added in the analysis.

In the more realistic experiments with noisy pollen data (exp. 
7–24), the squared-chord-distance remains much higher (~0.5–5), 
reflecting that fitting modeled to observed pollen values is ham-
pered by the noise in the pollen data. Moreover, the squared-chord-
distance levels off already at small vegetation sampling distances of 
200–1000 m (Figure 6). Hitherto, the sampling radius at which func-
tion scores (as analog to our squared-chord-distance) level off has 
been interpreted as the distance at which ERV analysis produces the 
most accurate PPEs. Yet, in our experiments, accuracy in the result-
ing PPEs increases at least until ~1000 m (Figures 3 and 6), that is, 
often beyond the distance at which the square-chord distance levels 
off. Similarly, accuracy in regional cover is highest with a vegetation 
sampling distance of at least 500–1000 m (Figures 3 and 6). So, with 
noise in the pollen data, the vegetation sampling distance at which 
squared-chord-distance levels off (i.e. the relevant source area of 
pollen sensu Sugita) is smaller than the sampling distance with the 
most accurate PPEs and estimates of regional cover.

Effects of dispersal model selection
Tests with the LSM-LSM combination (data sets created with 
LSM and ERV applied with LSM) and without noise produce pre-
cise and accurate results. The same applies to tests with the 

https://disqover.botanik.uni-greifswald.de/
https://disqover.botanik.uni-greifswald.de/
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GPM-GPM combination (Figures 7 and 8). If the same dispersal 
model is used in creating the data sets and in ERV application, 
ERV produces accurate results.

In contrast, simulations with the LSM-GPM and GPM-LSM 
combinations show large errors in the resulting PPEs. With LSM-
GPM, the PPE of Alnus (~3.5 instead of 6) is too low while the 
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Figure 3.  Accuracy of PPEs and regional cover in experiment 1–24 (Table 2) shown as rmse. For each experiment, rmse is calculated over all 
simulation with 10, 20, 30, 40, and 50 sites (=250 simulations). Experiment 13–18 were additionally run with the GPM dispersal model (dashed 
line).
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Figure 4.  Rmse of PPEs and the estimated regional cover over number of sites in each experiment. The rmse is calculated as mean over 50 
simulations, including only results for application with rings larger 1000 m radius.

PPEs of Fagus (~4 instead of 2), Cerealia (~0.2 instead of 0.1), 
and Secale (~1 instead of 0.5) are too high (Figure 7). Deviations 
are smaller for the other taxa. Opposite errors occur with 

GPM-LSM: The PPE of Alnus (7 instead of 6) is too high while 
the PPEs of Fagus (~1 instead of 2), Cerealia (~0.02 instead of 
0.1), and Secale (~0.1 instead of 0.5) are too low (Figure 7). 
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Figure 8.  Error in PPEs, regional cover and optimized squared chord distances between simulated and modeled pollen values in experiments 
with different combinations of the LSM and GPM. Results show the mean of the experiments 3, 9, and 15 (10 m basin size, small patches, 30 
sites, 50 simulations). Error in PPEs is shown as rmse (bars) and as rmse divided by true productivity (dots connected by lines). For regional 
cover, range of true values (light gray) and estimated valued (dark gray) shown. Squared chord distances are shown separately for experiment 3 
(no noise – full line), 9 (noise in counts – dashed line), and 15 (noise in counts and productivity – dotted line).

Again, deviations are smaller for the other taxa. The errors relate 
to the fall speed of pollen, which has a much stronger effect on 
dispersal in the GPM than in the LSM (Theuerkauf et al., 2013, 
2016). When the GPM is applied to a landscape where pollen dis-
persal is mimicked using the LSM, PPEs are too high for Cerealia, 
Fagus, and Secale (high fall speed) and too low for Alnus (low fall 
speed); when the LSM is used in a GPM landscape, errors are in 
the opposite direction (Figure 9).

The mixed dispersal model combinations not only add error 
in the median PPEs, but also reduce precision, meaning that 
there is large variation in the 50 simulations of each experiment 
(Figure 7). Similarly, errors in regional cover estimates are 
small with identical dispersal models in both steps (LSM-LSM 
and GPM-GPM) yet large, systematic errors appear when dis-
persal models are mixed, that is, when data sets are created with 
one model and ERV is applied with the other. With LSM-GPM, 
the estimated regional cover of Cerealia and Secale is always 
close to zero, independent of the true regional cover. Also for 
Fagus, Tilia, and Poaceae, the estimated regional cover is in 
most cases too low. Instead, for Betula, Corylus, and Pinus the 
estimated regional cover is too high. With GPM-LSM, errors are 
largely in the opposite direction; estimates of regional cover are 
clearly too high for Cerealia and Secale and mostly too low for 
the other taxa.

Finally, and as expected, with LSM-LSM and GPM-GPM, the 
difference between simulated and modeled pollen percentage val-
ues declines with increasing sampling radius and levels off at lon-
ger (no noise) or shorter distance (with noise, Figure 8). In 
contrast, with LSM-GPM, this difference reaches a minimum 
already at 20–100 m and then sharply increases again beyond that 

sampling radius. With GPM-LSM, this effect is less severe, but 
also here the difference reaches a minimum before it increases 
again when vegetation is sampled in larger rings.
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Overall, we observe poor ERV performance when it is applied 
with a wrong dispersal model. The errors in PPEs are largest for 
Alnus, Fagus, Cerealia, and Secale: taxa with the lowest/highest 
fall speed of pollen that deviates most from the reference taxon. 
Moreover, results tend to differ substantially between single sim-
ulations. Apparently, errors differ in response to the specific veg-
etation pattern of each single simulation.

Discussion
Our simulations show good performance of the “ERVinR” func-
tion, which underlines the general suitability of the approach and 
proves the validity of our implementation. Application is straight-
forward and can be automated, for example, for simulation stud-
ies like we present here. Beside the LSM, further dispersal options 
are available, and additional ones can be added. The program-
ming code is available for validation and further development, for 
example, of the optimizer. In our tests, the “optim” function with 
the conjugate method (from base R) produced the most accurate 
results. Many further optimizers exist and future tests may iden-
tify even better methods. It may be worth testing whether differ-
ent optimizers are suited for different types of data sets, for 
example, related to number of sites and taxa. Finally, our ERV 
implementation can be linked with other R functions to establish 
a faster workflow, for example, with GIS tools for the analysis of 
vegetation maps and with plotting tools to illustrate the results.

In ERV model 1 to 3, application is evaluated with scatterplots 
of adjusted vegetation proportion versus pollen proportion 
(ERV1), vegetation proportions versus adjusted pollen propor-
tions (ERV2), and relative pollen loadings versus absolute vegeta-
tion (ERV3). In tests with simulated data, the plots for model 1 do 
not show the expected linear relationship, which is because the 
adjusted vegetation proportions account for the dispersal bias 
only. For models 2 and 3, the plots do show the expected linear 
relationships, although these are off the ideal and vary with the 
sampling radius of the vegetation cover (Figure 1). Our model 4 
approach compares observed versus modeled pollen percentage 
values. Tests indeed show a linear 1:1 relationship in all cases 
(Figure 1).

Sugita (1994) suggested, that ERV application may be evalu-
ated by comparing modeled with empiric regional pollen loading; 
calculated from regional vegetation composition and PPEs. As far 
as we know, such evaluation has not yet been applied in ERV 
studies. Our modified approach produces estimates of regional 
vegetation composition, which can readily be compared to 
observed regional composition as derived for example, from 
maps or forestry statistics. In many study areas, at least rough 
estimates of regional vegetation composition will be available. A 
prominent mismatch between estimated and real regional cover 
points at limitations of a given ERV application, for example, use 
of an unsuited dispersal model.

Limitations of the ERV approach
Aside from poor performance with small basins and limited veg-
etation mapping (<1000 m), two of the five parameters tested 
here – patch size and basin size – do not show a limiting effect on 
the ERV application in our experiments. As expected, accuracy of 
PPEs increases with the number of sites. High errors with only 10 
sites suggest that ERV application can only provide a first approx-
imation of PPEs if the number of sites is equal to the number of 
taxa. For robust results, the number of sites should higher than the 
number of taxa (cf. Li et al., 2018).

Two parameters, noise in the pollen data and dispersal model 
selection, obviously do play a critical role in ERV application. In 
our tests, noise in the pollen data added high relative errors in the 
PPEs of Cerealia and Secale − the taxa with lowest pollen 

productivity. As implemented, noise in the pollen data simulates 
the statistical uncertainty inherent to pollen counting – relative 
errors are highest for the lowest counts (Mosimann, 1965). Poor 
producers tend to be rare in pollen samples, even if abundant in 
the vegetation. Hence, ERV application is particularly sensitive 
for those low pollen producers, and other rare taxa in the pollen 
record. Counting errors may be reduced by higher counts. Still, 
also other sources of error in pollen data exist, for example errors 
related to pollen deposition and taphonomy or sampling and sam-
ple preparation. The size of these errors is difficult to estimate and 
likely differs much between studies.

Noise in pollen productivity has little effect in our simulations 
with the LSM, which is primarily because the local component of 
pollen deposition is rather small with the LSM. For Betula and a 
basin size of 0 m, the rings until 100 m radius contribute 25% of 
the total pollen deposition (Figure 2). Noise in pollen productivity 
has the largest effect in the smallest rings, and hence has overall 
little impact in our experiments. In contrast, simulations with the 
GPM show a high impact of noise in pollen productivity in exper-
iments with a basin size of 0 m. The reason is that the GPM 
assumes a very high local component in pollen deposition. In the 
case of Betula and a basin size of 0 m, the GPM predicts that 70% 
of the total pollen deposition arrives from within 100 m distance, 
47% alone from the innermost ring (Figure 2). Hence, noise in 
pollen productivity has a much larger effect. As we discuss in 
more detail below, predictions of the GPM are obviously unreal-
istic. It particularly under-estimates dispersal distances of larger 
and heavier pollen grains, likely because the model assumes pol-
len emission at ground-level (Figure 10). Hence, the model appar-
ently overestimates the local component of pollen deposition. 
Nonetheless, even with the GPM noise in the pollen productivity 
only has prominent effects with a basin size of 0 m. Hence, plant-
to-plant differences in pollen productivity appear to be only a 
minor disturbance for ERV application with larger basins.

In several tree taxa, in Central Europe for example Fagus syl-
vatica and Picea abies, pollen productivity differs strongly from 
year-to-year (Pidek et al., 2010). In the case of Fagus sylvatica, 
years with peak pollen production occur in variable intervals from 
2 to 10 years (Theuerkauf et al., 2019). With such taxa present in 
the vegetation, ERV application requires pollen samples that inte-
grate pollen deposition over sufficiently long periods, for exam-
ple, lake surface sediment samples or a series of annual pollen 
trap data. Moss pollster samples, which often integrate 1 or sev-
eral years only, may be unsuited to accurately represent pollen 
productivity of such taxa.

Highest errors in in our simulations are related to dispersal 
model selection. By using different pollen dispersal models in (i) 
creating the simulated pollen datasets and (ii) the ERV application 
we simulate the real-world problem that no pollen dispersal 
model is perfect, that is, that dispersal patterns described by dis-
persal models will be more or less different from the true dispersal 
patterns in a given study region. Dispersal patterns predicted by 
the LSM and GPM differ largely. First, the GPM overall predicts 
much shorter dispersal distances and hence source areas. Distance 
weighting with this model gives much more weight to vegetation 
near a sample site than the LSM (Theuerkauf et al., 2013). More-
over, fall speed of pollen has a much larger impact in the GPM 
than in the LSM so that the GPM predicts much shorter dispersal 
and hence smaller source areas for taxa with large pollen with 
high fall speed. With the GPM, 95% of the pollen of Araucaria 
would arrive from <1 m distance, from ~250 m for Fagus and 
from >100 km for Alnus (Figure 10). These large differences in 
source area are obviously unrealistic. They imply that distance 
weighting with the GPM gives much less weight to Fagus than to 
Alnus, for example. In the LSM, the impact of fall speed is small 
and even negligible for fall speeds smaller than 0.04 m s−1 
(Kuparinen et  al., 2007). Hence, distance weighting gives only 
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Figure 10.  Source area of pollen calculated with the LSM of Kuparinen et al. (2007) and the GPM following Prentice (1985). Source areas 
calculated for falls speeds from 0.02 to 0.14 m s−1 and for a sample taken inside vegetation, that is, with basin size = 0 m. Source area shown as 
the area from which 25% (only LSM), 50%, 75%, and 95% of the total pollen deposition arrives.

slightly less weight to Fagus than to Alnus. So, when ERV is 
applied with the GPM instead of the LSM, we arrive at too high 
PPEs for Fagus as a taxon with higher fall speed. The relationship 
is simple: pollen deposition at a site is related to distance weighted 
abundance multiplied by pollen productivity (equation (2)); if 
pollen deposition is the same, then lower distance weighted plant 
abundances imply higher PPEs. The opposite applies for taxa 
with low fall speed like Alnus.

In the experiments where ERV is applied with a different dis-
persal model than the one used to simulate the pollen datasets, we 
observed highly variable results in each of the 50 model runs. 
These variations are likely due to differences in vegetation com-
position in the single model runs. Errors in PPEs are higher in 
simulations with a high cover of taxa with high/low fall speed. 
This effect may in part explain inconsistencies in real-world ERV 
applications from one and the same region, but with different 
overall vegetation composition. The conclusion would then be, 
that the dispersal model used in these studies did not approach 
reality.

Is there a suitable dispersal model?
Most ERV studies so far have used the so called Prentice model, 
which is a Gaussian plume model based on Sutton’s equations of 
a ground-level particle source (Prentice, 1985). This class of mod-
els has well known conceptual limitations with respect to pollen 
dispersal (Kuparinen et al., 2007; Sofiev et al., 2013). Particularly 
the strong impact of fall speed is unrealistic, as discussed above. 
Moreover, the overly short dispersal distances in heavier pollen 
types are obviously due to the fact that the Prentice model assumes 
dispersal from ground level (Jackson and Lyford, 1999).

In regional scale studies, with pollen samples from lakes, the 
LSM of Kuparinen et al. (2007) has shown to be a more suitable 
dispersal model than the GPM (Theuerkauf et  al., 2013). ERV 
studies usually collect pollen samples from moss polsters or pol-
len traps inside closed vegetation. Here, pollen deposition is dom-
inated by pollen traveling only short distances (~0–100 m), and 
the pollen signal is dominated by (extra)local pollen deposition 

(Janssen, 1973). The dominance of local pollen deposition comes 
with two complications.

First, the (extra)local part of the dispersal curve is its steepest 
part, implying that pollen deposition from a plant in 1 m distance 
from a site is much higher than pollen deposition from similar 
plants in 5 or 20 m distance. Proper distance weighting therefore 
requires a dispersal model that describes the steep local part of the 
dispersal curve extremely well. Moreover, pollen deposition is 
strongly influenced by the closest pollen sources, which in some 
cases means by a few plants only. The health, age, and competi-
tive position of these plants in the immediate vicinity drive pollen 
deposition to a large extent. The steep part of the dispersal curve 
is less relevant for regional scale studies.

Secondly, dispersal on (extra)local scales is further complicated 
by several factors, such as differential release height and vegetation 
density. Pollen emitted from a tall grass in a treeless vegetation or 
from a single tree in semi-open vegetation will be dispersed much 
farther than pollen released near the ground. In tall and dense veg-
etation, wind speeds are lower and more pollen is filtered out than 
in short and open vegetation. Forest edges produce eddies, that 
influence dispersal on (extra)local scales. The existence of such 
disturbing effects is long known, but it remains difficult to quantify 
them (Jackson and Lyford, 1999; Tauber, 1965). If dispersal is 
mostly driven by these disturbances rather than by regular airflow 
patterns, even advanced dispersal models like the Kuparinen LSM 
will be unsuited if they are not modified to address such disturbing 
factors. LSMs may be adjusted to spatial patterns in vegetation to 
include, for example, differential release height and vegetation den-
sity. Still, efforts to measure these parameters in the field and 
implement them in the model will be high.

Using the LSM to create pollen data and then the GPM to esti-
mate PPEs, and vice versa, the squared chord distance between 
between simulated and modeled pollen (similar to likelihood 
function scores in previous ERV applications) does not show the 
expected asymptotic decline but increases again with larger rings 
added. Apparently, when observed in a PPE study, such pattern 
indicates that the dispersal model used does not match true pollen 
dispersal.
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Considering the key role of an appropriate dispersal model in 
ERV studies, and the potentially large disturbing effects on the 
(extra)local scale, ERV application with local scale pollen data 
appears particularly challenging, if not impossible. The known 
errors and limitations of the Prentice GPM clearly make future 
applications of this model questionable. The suitability of the 
Kuparinen LSM for local-scale ERV studies needs further evalu-
ation, for example by re-analysis of existing ERV studies (cf. 
Marquer et al., 2020; Theuerkauf and Couwenberg, 2020).

Vegetation sampling area
A key question in ERV application is to find the minimum vegeta-
tion sampling radius needed for accurate results. The common 
approach is to use the radius at which “likelihood function scores” 
approach an asymptote (our approach in analog uses the squared 
chord distance between modeled and observed pollen percentage 
values). This distance is then named the “relevant source area of 
pollen” (RSAP) in Sugita (1994). The RSAP is supposed to be 
primarily a measure of vegetation patch size (Bunting et al., 2004; 
Sugita, 1994). Our simulations without noise indeed show a larger 
RSAP with larger patches. However, in the more realistic simula-
tions with noise, squared chord distances reach the asymptote at a 
smaller vegetation sampling distance, although with a much 
lower closeness of fit (Figure 6). The optimization simply cannot 
fit the modeled pollen values as closely to the observed pollen 
values when the latter are noisy. The RSAP is now similar for 
small and large patches. While noise in the pollen data reduces the 
RSAP, it does not change the vegetation sampling distance at 
which the most accurate PPEs are calculated, which is still 1000 m 
or beyond (Figure 3). Hence, with noise in the pollen data, the 
RSAP tends to underestimate the best sampling distance. Further 
experiments are needed to explore whether and how this effect 
changes with the degree of noise in the pollen data.

Site selection for ERV analysis
The ERV model is designed to estimate PPEs with pollen samples 
that include (extra)local pollen deposition, that is, pollen samples 
from pollen traps, moss polsters or small lakes. For robust results, 
calibration should cover long gradients in plant abundances and 
pollen deposition. Local vegetation composition and thus pollen 
deposition should differ substantially between sample sites. At the 
same time, the ERV model requires that regional pollen deposi-
tion, that is, regional vegetation composition, is uniform at all 
sites. Hence, the ERV model is best suited for landscapes with a 
fine-grained vegetation mosaic that provides sufficient local-scale 
variation among sample sites, yet overall uniform vegetation 
composition that delivers uniform regional pollen deposition. In 
landscapes with either large vegetation patterns or vegetation gra-
dients ERV application is problematic. Here, uniform regional 
pollen deposition is only warranted if the sample sites are located 
close to each other. In this case differences in local vegetation 
composition and hence pollen deposition may be too small for 
robust ERV application, however. We discuss alternative 
approaches to produce PPEs in such landscapes in the following 
section.

Our results indicate that ERV application is probably most 
challenging with pollen samples from the smallest “basins,” that 
is, from moss polsters or pollen traps placed inside vegetation. 
Pollen deposition in such samples may be most biased by par-
ticular pollen dispersal patterns on the local-scale and by variable 
pollen productivity. Regional-scale pollen dispersal, which 
determines pollen deposition in large lakes, is mostly governed 
by the general atmospheric conditions prevailing in a region. 
These regional scale dispersal patterns can obviously well be 
implemented in state-of-the-art pollen dispersal models 

(Theuerkauf et al., 2013). Pollen dispersal and deposition on the 
local-scale is more complex because it is affected by additional 
factors, particularly by the vegetation structure of the sample 
site. For example, pollen released from a tall tree will likely be 
dispersed farther than pollen from a tall herb. Also, herb pollen 
released in a sheltered open patch in a forest will likely be dis-
persed less far than herb pollen released in more exposed vegeta-
tion. Single trees and forest edges produce eddies and channel 
airflows, which influence pollen dispersal. Finally, dispersal 
inside vegetation, within a forest, is determined by vegetation 
density. All these factors are particularly relevant in semi-open 
landscapes, where vegetation structure and hence pollen disper-
sal patterns may differ substantially between sample sites. The 
Prentice dispersal model, which is hitherto commonly used in 
ERV analyses, does not account for such effects. The LSM we 
used in the present study is adjusted to pollen dispersal in and 
above a pine forest (Kuparinen et al., 2007). It may be adjusted 
to other vegetation types as well, such as open vegetation. It is 
questionable, however, whether the model can be adjusted, with 
reasonable efforts, to the small scale mix of different vegetation 
types in semi-open settings, with complex airflow patterns and 
different release heights of pollen.

A second limitation for ERV application with pollen samples 
from pollen trap or moss polsters is variable pollen productivity 
of individual plants, caused by different fitness, age, or site condi-
tions etc. Our results suggest that varying pollen productivity can 
be a disturbing factor in ERV application with the smallest sites. 
The effects were much higher with the GPM than with the LSM 
because the local component of pollen deposition is large with the 
GPM yet small with the LSM. As discussed above, the local com-
ponent is likely overestimated with the GPM because the model 
assumes release at ground level. The LSM my instead underesti-
mated local pollen deposition, for two reasons. First, the LSM we 
used is adjusted to pollen dispersal in a pine forest with a mean 
release height of pollen at about 12 m. In (semi) open vegetation, 
(most) pollen is released at lower heights, likely resulting in lower 
dispersal distances and hence a higher local component of pollen 
deposition. Secondly, all pollen dispersal models only account for 
pollen transported by air in dry conditions. In reality, some pollen 
may not enter the airflow but is washed-down by rainfall near the 
source plant. Also, flowers may fall down before all pollen is 
released, potentially adding pollen to local deposition in pollen 
traps and moss polsters. A higher local component implies that the 
disturbing effects due to small-scale variations in pollen produc-
tion would be higher than in our experiments with the LSM.

We cannot evaluate how much the mentioned factors indeed 
hamper ERV application with pollen samples from pollen traps 
and moss polsters. A recent ERV study from the Araucaria 
forest-grassland mosaic in souther Brazil suggests that the 
complications due to differential release height of pollen are 
indeed relevant (Piraquive Bermúdez et al., 2021). Such semi-
open settings likely require a better understanding of the dis-
turbing factors to arrive at robust PPEs. On the other hand, the 
results of Andersen (1970) suggest that data from pollen traps 
inside forests do allow robust calibration of the pollen-vegeta-
tion relationship. In this case, however, disturbing factors may 
have been reduced because all samples are from the same veg-
etation type, that is, old growth forest, and only includes tree 
taxa, hence avoiding the problems due to differential release 
height.

The above complications can likely be reduced with pollen 
samples from small openings in the (pollen producing) vegeta-
tion, for example, small lakes. Peatlands may be suited as well, 
particularly if peatland vegetation is open and does not produce 
the pollen types of interest in the ERV study.

Where suitable lakes and peatlands are missing, pollen traps 
installed in open spots with no pollen producing vegetation may 
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provide an alternative. As mentioned, current pollen dispersal 
models do not account for the particular challenges that are rele-
vant on local scales, such as differential release height of pollen. 
Further research is needed to explore the impact of for example, 
release height in a first step. If that impact is indeed high, models 
suitable to account for this and other disturbing factors would be 
needed.

Alternatives to the ERV model
A main benefit of the ERV approach is that it requires limited 
vegetation mapping. As mentioned above, the assumption of uni-
form background pollen deposition limits ERV application to 
landscapes with a fine grained vegetation mosaic and overall uni-
form vegetation composition. ERV is not suited for landscapes 
with large vegetation patches (>several km grain size) or with 
vegetation gradients. In such landscapes, PPEs may instead be 
produced with approaches that do not rely on the assumption of 
uniform regional pollen deposition, like the optimization 
approaches of Theuerkauf et  al. (2013) or Fang et  al. (2019). 
These approaches best work with pollen data from lakes and 
require mapped vegetation data from much larger areas, for 
example, from a 30 km radius in Theuerkauf et al. (2013). Produc-
ing such data is increasingly feasible due to the increasing avail-
ability of forest and land use data bases as well as improved 
vegetation classification from remote-sensing data (e.g. Preidl 
et al., 2020).

Another approach is to pool local scale pollen samples and 
estimate PPEs with the inverse REVEALS model (Kuneš et al., 
2019). Whether and in which settings the approach is suited to 
avoid difficulties of local scale pollen samples may need further 
evaluation.

In addition, pollen productivity may be estimated directly by 
estimating the number of pollen per flower and the number of 
flowers per plant or area (e.g. Pohl, 1937). This approach is more 
labor-intensive and is hence less suited to produce comprehensive 
PPE data sets for a given study region. Still, the approach has 
several benefits. For example, it produces pollen productivity 
numbers in absolute terms, it enables to study pollen productivity 
on the species level, and – much better than pollen sample based 
approaches – it allows to study pollen productivity on a single 
plant or stand scale. In conclusion, the approach is suited to 
explore the influence of, for example, climate, site conditions or 
tree age on pollen productivity of single taxa. The influence of 
age may be particular important to validate PPEs produced with 
ERV in landscapes with managed forests. Median tree ages in 
managed forests are usually much lower than in natural forests. 
Considering that younger trees likely produce less pollen, PPEs 
estimated in the modern cultural landscape may underestimate 
pollen productivity for periods in which natural forest cover was 
dominant, leading to skewed reconstructions. Directly estimated 
pollen productivities may be one way to identify and eventually 
correct for such effects.

Finally, pollen productivity may be estimated from fossil pol-
len records with the ROPES approach (Theuerkauf and Couwen-
berg, 2018), which requires well dated, high resolution pollen 
records with substantial variation present in each pollen type. 
Besides eliminating time-consuming vegetation mapping, the 
main advantage of ROPES is that it allows to estimate PPEs for 
distinct periods of the past, that is, for periods prior to intense 
land-management. ROPES avoids bias in modern-day PPEs that 
is related to present-day land management, the changing climate 
or elevated atmospheric CO2 concentrations. All three factors 
have significantly altered pollen production in plants over the past 
decades (e.g. Rogers et al., 2006; Theuerkauf et al., 2015; Ziska 
et al., 2019).

Conclusions
The “ERVinR” function enables application of the ERV model in 
the R environment for statistical computing. The function allows 
for flexible parameter selection and full control over the underly-
ing assumptions and calculations, which is open to further devel-
opment. “ERVinR” allows for repeated calculations (e.g. 100 
times) and leave-one-out approaches to evaluate robustness of 
ERV applications. Moreover, it provides estimates of regional 
vegetation composition, which help to evaluate the success of the 
ERV application. The function allows for setting up simulation 
studies, as presented in this paper, for example, to further explore 
critical parameters of the model.

With help of the function, we identified noise in the pollen 
counts and dispersal model selection as two critical parameters in 
ERV applications. Count errors in pollen data reduce accuracy of 
the calculated PPEs particularly for the taxa rare in the pollen 
record, which are usually taxa that produce very little pollen. 
High count sums will reduce this type of error. We propose to use 
simulations to estimate the effects. Noise in the pollen counts also 
tends to reduce the distance at which squared chord distance (as 
equivalent to function scores) levels off, that is, the relevant 
source area of pollen (RSAP). Hence, the calculated RSAP may 
be smaller than the sampling distance for which the best PPEs are 
actually calculated. Also here, simulations may help to better esti-
mate the best sampling radius for a given data set. Noise in pollen 
productivity had minor effects in our experiments with the LSM, 
yet it may be an important factor if local pollen deposition is 
higher than projected by the LSM.

Successful ERV application depends on a suitable dispersal 
model. We propose using state-of-the-art Lagrangian-Stochastic 
models. The disqover package provides an LSM option adjusted 
to pollen dispersal in a forest under the atmospheric conditions in 
northern central Europe. In other regions, models adjusted to the 
particular conditions should be used. We suggest consulting local 
experts for actual model selection and parameter settings in other 
study regions.

Currently, no available dispersal model is adjusted to the more 
complex dispersal patterns on local scale, which are additionally 
determined by release height and vegetation structure, for exam-
ple, particularly in semi-open vegetation. Here, all current disper-
sal models are likely deficient for ERV application with pollen 
data from pollen traps and moss polsters inside vegetation, where 
the local-scale dispersal processes are most relevant. To reduce 
the associated disturbing effects in ERV application, we propose 
using surface pollen data from small natural or artificial openings 
in the vegetation. However, for the time being and to our judg-
ment, the best way to achieve valid PPEs for application in paleo-
ecological studies is with surface pollen data sets from large sites 
with prevailing regional pollen deposition, which can well be 
handled with existing dispersal models. Working with such sites 
requires alternative approaches, however.
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