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Introduction

Oral diseases, mainly dental caries and periodontitis, affect 
approximately 3.5 billion people and are a major global burden 
of disease (Watt et al. 2020; Wen et al. 2021). Behavioral risk 
factors and social determinants of health are arguably the 
strongest influences on the development of common forms of 
oral disease (Peres et al. 2019). While upstream action and 
policy interventions are necessary to address these persistent 
diseases and associated health inequities, there is also a need to 
advance our understanding of the fundamental disease biology, 
which may help identify prime opportunities for intervention. 
To make headway in better diagnosing, predicting, and manag-
ing dental caries and periodontitis, we need to comprehen-
sively characterize their genomic basis. To achieve this, the 

oral, dental, and craniofacial research community needs to 
leverage big data for discovery and translational applications. 
International collaboration and a focus on increasing diversity 
and inclusion of underrepresented populations (Popejoy and 
Fullerton 2016; Agler and Divaris 2020) are essential to make 
decisive advances in the genomics evidence base for oral and 
dental conditions.

The past decade has seen considerable activity in genomic 
studies of dental caries and periodontitis (Divaris 2019), and 
several recent reviews provide comprehensive summaries of 
the genomics evidence base to date (Nibali et al. 2019; Morelli 
et al. 2020). Despite these efforts, decisive advances in genomic 
discovery with practical implications have yet to be made in 
the oral health domain. Discovered genetic variants to date for 
dental caries explain less than 2% of the observed variance 
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Abstract
Genetic risk factors play important roles in the etiology of oral, dental, and craniofacial diseases. Identifying the relevant risk loci and 
understanding their molecular biology could highlight new prevention and management avenues. Our current understanding of oral health 
genomics suggests that dental caries and periodontitis are polygenic diseases, and very large sample sizes and informative phenotypic 
measures are required to discover signals and adequately map associations across the human genome. In this article, we introduce the 
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collaboration and data and resource sharing in genomics research.
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versus an estimated ~50% possibly explainable by genomics, 
and there are only a handful of consensus replicable loci for 
common oral diseases compared to hundreds for other com-
mon, complex diseases like type 2 diabetes (Kim et al. 2021). 
Moreover, the dental genomics literature mainly comprises 
reports from individual cohorts and participants of European 
ancestry. The Gene-Lifestyle Interactions in Dental Endpoints 
(GLIDE) consortium was the first global effort aimed at 
advancing the field of dental genomics via the formation of a 
broad international collaboration network (Shungin et al. 
2015a). The first wave of GLIDE involved approximately half 
a million adult participants from 12 cohorts, 8 countries, and 3 
continents and led to the discovery of 47 novel loci for dental 
caries (Shungin et al. 2019).

Successful examples of concerted international collabora-
tion, data, and resource sharing in other genomics research 
areas include the Global Lipids Genetics Consortium (GLGC; 
Graham et al. 2021), Population Architecture using Genomics 
and Epidemiology (PAGE) Study (Shungin et al. 2015b),  
and Global Biobank (Zhou et al. 2021), among others. These 
consortia benefit from very large sample sizes numbering in 
the millions of participants. Naturally, the inclusion of very 
large numbers of study participants across many different 
underlying cohorts comes with unavoidable limitations, 
including logistical issues and scientific challenges (Stingone 
et al. 2017). The key scientific challenges usually involve har-
monization of traits and analyses across studies with differ-
ences in population and sample characteristics, phenotype 
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measurement or definition, and other methodological varia-
tions across contributing studies (Bennett et al. 2011).

Dental caries and periodontitis have unique properties that 
require additional careful consideration. Despite a vast diver-
sity in clinical presentations, both diseases are defined at the 
individual level (International Classification of Diseases codes 
K02.xx and K05.xx) and can be initially described using binary 
“case status” definitions. This is a logical first step in pheno-
type selection and one that maximizes sample size across par-
ticipating studies. However, there is considerable and arguably 
biologically informative variability within each dental caries 
or periodontitis case that is not captured by dichotomous clas-
sifications. Therefore, more refined, clinically, and biologi-
cally informed classifications are considered next, creating an 
unavoidable trade-off between clinical precision, interpretabil-
ity, and power for genetic discovery (Agler, Shungin, et al. 
2019). For the purposes of a genome-wide association study 
(GWAS), a data reduction step is necessary to convert detailed 
clinical information to analyzable traits—this can be done 
either by convention (e.g., a decayed, missing, and filled sur-
faces index) or using data-driven approaches. The question 
then becomes whether the latter approach is suitable and trans-
latable across diverse populations with different oral disease 
experience. An equally important source of heterogeneity is 
tooth loss, which is itself a possible endpoint of both dental 
caries and periodontitis, with variable contributions across the 
age spectrum (Haworth et al. 2018a) that needs to be thought-
fully accounted for in the measurement of oral disease experi-
ence. Consideration of multiple traits, weighing theoretical 
assumptions, and incorporating empirical sensitivity analyses 
are all part of consortium GWAS. Rigor in these big data analy-
ses is key, with each proposed phenotype having its own 
strengths and limitations, serving a different purpose in the 
quest for genomics discovery. Binary “naive” case status defi-
nitions will allow the maximum inclusion of cohorts and par-
ticipants, offering gains in power; severity encompassing traits, 
available in fewer cohorts and participants, will leverage the 
recorded cumulative disease experience in a quantitative man-
ner to identify risk-conferring variants; and caries patterns, 
available for a subset of cohorts, will leverage biologically 
informed disease subtypes to identify genetic signals underly-
ing them.

In this article, we introduce GLIDE2, the evolution and 
expansion of the oral/dental genomics GLIDE consortium. 
First, we outline our strategy and rationale for big data harmo-
nization in the study of dental caries following a 3-tiered phe-
notyping approach. We discuss challenges, opportunities, 
methodological considerations, and trade-offs emanating from 
the variation in available clinical information in the diverse 
participating cohorts. Then, we present an application of clini-
cal dental caries experience data harmonization in GLIDE2 
using previously developed permanent dentition dental caries 
pattern traits that are replicable and transferable across multi-
ple population-based cohorts.

Methods

The GLIDE consortium is an international collaborative effort 
investigating oral health genomics. Previous efforts under-
taken by GLIDE have been reported in 2 recent publications 
that included up to 487,823 adults from 12 contributing studies 
(Shungin et al. 2019) and 19,003 children from 9 contributing 
studies (Haworth et al. 2018b). One key limitation of these 
studies is that the initial GLIDE efforts relied heavily on self-
reported and proxy data for caries and periodontitis. For exam-
ple, only 26,792 participants out of a total 487,823 contributed 
clinical dental examination data for caries experience (Shungin 
et al. 2019). The consortium’s expansion increases the diver-
sity of participating cohorts. GLIDE2 comprises 21 studies, 
contributing upward of 700,000 participants for different den-
tal caries or periodontitis analyses. All participating cohorts 
received ethics approvals by their local authorities and all par-
ticipants provided written informed consent. In this article, we 
focus our presentation on data harmonization processes and 
applications related to dental caries (Table 1).

Streamlining dental caries experience analyses on such a 
large scale, while a unique opportunity, can be daunting. First, 
variation exists in what has been measured and how in terms of 
caries experience (Appendix Supplemental Cohort summaries 
and Supplemental Methods). The overarching approach for 
phenotype harmonization in GLIDE2 is 3-tiered (Fig. 1). We 
begin by considering a broad definition of disease versus health 
(i.e., 1 or more decayed, missing, filled teeth or surfaces, 
DMFT/DMFS >0) to allow for the inclusion of the maximum 
number of participants from all contributing studies. Second, 
we consider a “consensus” quantitative measure of disease 
experience with demonstrated clinical relevance (i.e., DMFT/
DMFS indices). Third, like previous genomics studies, we 
derive and plan to carry forward to GWAS data-driven “preci-
sion” dental traits. The latter are clinically and biologically 
informative patterns (i.e., clusters) of dental caries experience 
based on tooth surface–level data, according to the work of 
Shaffer, Feingold, Wang, Weeks, et al. (2013). These disease 
subtypes (e.g., pit-and-fissure caries experience versus smooth 
surface caries experience) likely reflect etiologic and biologi-
cal differences (Shaffer, Feingold, et al. 2012; Shaffer, Wang, 
et al. 2012; Agler, Moss, et al. 2019) and are promising data-
driven endpoints for genetic studies (Shaffer, Feingold, Wang, 
Lee, et al. 2013; Haworth et al. 2020), consistent with subtyp-
ing efforts undertaken for other common-complex diseases, 
including obesity (Field et al. 2013) and Parkinson’s disease 
(van Rooden et al. 2011). With this 3-tiered approach, we seek 
to leverage the unique features of GLIDE2: the case status 
analysis will maximize the sample size and statistical power, 
whereas the DMFS/DMFT quantitative analysis of caries 
experience will leverage information contained in disease 
severity, which is available for most cohorts. Finally, we will 
capitalize on all available tooth surface–level information on 
caries experience to carry out GWAS of permanent dentition 
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caries clusters, which arguably contain more bio-
logical information than crude ones. To allow for 
the latter, it is imperative to understand whether 
these data-driven caries clusters generalize across 
cohorts.

In this study, we first examine demographic 
(i.e., age and sex) and clinical (caries experience 
and remaining natural teeth) characteristics of par-
ticipants from 8 studies that contribute information 
to caries pattern explorations (Table 2). We antici-
pate that data from the remaining 13 studies will 
become available in the near future, although not 
all studies will contribute information on caries 
patterns—that is, we expect that ~72,000 partici-
pants will be included in this analysis, and thus our 
current sample is ~76% of the maximum target 
sample for this caries experience phenotype. These 
8 studies are SIMPLER (Titova et al. 2021); STR 
(Zagai et al. 2019); MDC/MOS (Brunkwall et al. 
2021); VIKING; COHRA1/Dental SCORE (Polk 
et al. 2008); COHRA2/COHRA Smile (Neiswanger 
et al. 2015); Periogene North, Iowa Fluoride Study 
(Wang et al. 2012); and OFC1/OFC2 (Leslie et al. 
2016). The ascertainment of caries experience is 
harmonized at the moderate caries lesion threshold 
(International Caries Detection and Assessment 
System, ICDAS ≥3 or D2; Young et al. 2015), 
which is characterized by visible enable break-
down or signs of dentin demineralization. Teeth 
missing due to all causes are included in the 

Figure 1. Illustration of the 3-level phenotyping definition strategy employed in Gene-
Lifestyle Interactions in Dental Endpoints 2 (GLIDE2) for dental caries experience 
analysis. The maximum sample size is achieved for the relatively naive trait of binary 
caries case status (i.e., decayed, missing, filled teeth or surfaces [DMFT/DMFS] > 0). 
Second, we consider a quantitative measures of caries experience with demonstrated 
clinical relevance (i.e., DMFT/DMFS indices). Third, we employ data-driven tooth 
surface–level caries experience clusters that are available for a subset of participating 
studies.

Table 1. Overview of the 21 Cohorts Contributing to the 3-Tiered Phenotyping Approach for Dental Caries Experience Analysis in Gene-Lifestyle 
Interactions in Dental Endpoints 2.

Caries Traits Available for GWAS

Cohort Region n Prevalence Severity Patterns

ARIC United States 5,527  a  
CCDG: COHRA1/Dental SCORE United States 1,810   
CCDG: COHRA2/COHRA Smile United States 1,185   
CCDG: OFC1/OFC2 Africa, Asia, Europe, North America, 

South America
4,967  a,b  

EstBB Estonia ~200,000   
FinnGen Finland ~390,000  a  
Generation Scotland Scotland ~18,000   
Health 2000/2011 Finland 7,831  a  
HUNT4 Norway 4,933   
IFS United States 253   
MDC/MOS Sweden 11,176   
NFBC1966 Finland 1,483    
Parogene Finland 508  a  
Periogene North Sweden 995   
SHIP START Germany 3,362 c   
SHIP TREND Germany 944 c c 
SIMPLER Sweden 19,052   
SOL United States 11,816   
TWINGENE/STR Sweden 16,849   
ToMMo Japan 5,360   
VIKING Sweden 3,823   
Total 709,874 709,874 486,514 72,836

GWAS, genome-wide association study.
aTooth-level (i.e., decayed, missing, and filled teeth data) available only.
bBased on assessment of intraoral photographs.
cBased on half-mouth clinical examinations.
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calculation of the “M” component of the DMFS index, thereby 
creating a “tooth morbidity” DMTFS index in GLIDE2, consis-
tent with previous genomics investigations (Shungin et al. 2019; 
Morelli et al. 2020). Our previous investigations among twins 
(Haworth et al. 2020) have showed that relative contributions 
from genetic and environmental factors are relatively stable over 
time in adulthood—justifying the combination of standardized 
estimates emanating from cohorts of different ages in the 
planned meta-analyses. Detailed information about the partici-
pating cohorts, parent studies and populations, methods, and 
phenotype and genotype data availability is presented in the 
appendix (Appendix Table 1).

The caries experience clusters employed in this study were 
first introduced by Shaffer, Feingold, Wang, and Weeks (2013), 
who used hierarchical clustering of tooth surface–level informa-
tion from all permanent teeth excluding third molars to identify 
5 clusters of tooth surfaces with distinct patterns of caries experi-
ence. The existence of these clusters was verified in the National 
Health and Nutrition Examination Survey (NHANES, 1999–
2000) data (Shaffer, Feingold, Wang, Weeks, et al. 2013) and in 
the Swedish GLIDE2 cohorts. In this article, we do not derive 
these clusters de novo but rather use the clusters definitions 
reported in Shaffer, Feingold, Wang, and Weeks (2013) to 
“score” each participating study, by adding surface-level caries 
experience data into 5 predefined groups of tooth surfaces (e.g., 
pits and fissures on molars) (Appendix Table 2). We represent 
these patterns of caries experience using color-coded odonto-
grams (i.e., annotated representations of the permanent dentition 
and investigate between-cohort differences). Finally, we conduct 
power analyses, comparing GLIDE2 with the first wave of 
GLIDE with clinical data. Data management, analyses, and fig-
ure creation were done using SAS version 9.4 (SAS Institute).

Results
Twenty-one studies (Table 1) contributed dental caries experi-
ence data in GLIDE2, a combined sample size of over 700,000 

participants. As expected, the maximum sample size is avail-
able for binary case status analyses. Most studies (18/21) have 
quantitative caries experience information in the form of the 
DMFT or DMFS index. Eleven studies are expected to contrib-
ute tooth surface–specific data on caries experience, allowing 
for the application of the third level of data-driven caries clus-
ters. Here, we present information for 8 of these cohorts that, 
as of February 2022, have contributed data from 55,143 adults 
(Table 2).

Demographic differences were evident in the analytic sam-
ple, both in terms of sample size and age. For example, the 
mean age was 74 y among 19,052 individuals in SIMPLER 
versus 23 y among 253 individuals in the IFS. COHRA2 is a 
female-only sample while the other studies contained both 
male and female participants. The prevalence of edentulism 
ranged from under 1% in the youngest samples (i.e., COHRA2 
and IFS) to over 5% in COHRA1, and the average number of 
remaining natural teeth (excluding third molars) ranged 
between 23 and 26. Across the consortium, most participants 
had caries experience (DMFT/DMFS >0), but there was an 
appreciable number of participants who were caries free based 
on the study’s case definition, that is, 5.7% (n = 3,122 of 
55,143) in the 8 studies included here. Differences were also 
evident in quantitative measures of caries experience, with 
high mean DMFS indices (above 55) in SIMPLER, MDC/
MOS, and VIKING versus low mean DMFS (under 25) for 
COHRA2 and IFS.

We found that within-cluster caries experience paralleled 
the overall caries experience within each study, as well as par-
ticipants’ mean age. The relative contribution (i.e., ordered 
rank) of each cluster was remarkably consistent across studies, 
with posterior teeth (2 clusters involving molars and premo-
lars) contributing the highest and lower incisors exhibiting the 
lowest caries experience (Table 2). As expected, overall and 
within-cluster caries experience was lower among younger 
compared to older samples (Fig. 2). Nevertheless, tooth sur-
faces with the highest susceptibility (i.e., molar pits and 

Table 2. Demographic and Clinical Characteristics of Participants in 8 Cohorts Contributing to Dental Caries Clusters Harmonization.

Cohort N

Demographics Natural Teeth
Binary Caries 
Case Status

Quantitative Caries 
Experience, Mean (SD)

Tooth Surface–Level Caries Clusters  
(Shaffer, Feingold, Wang, Weeks, et al. 2013), Mean (SD)

Age, Mean 
(SD), y

Women,  
%

Edentulous,  
%

No. of Teeth, 
Mean (SD)

DMTFS/T >0, 
n (%) DMTFT DMTFS Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

SIMPLER 19,052 73.6 (8.0) 33.7 1.4 23.2 (6.3) 17,416 (91.4) 14.8 (8.8) 55.0 (35.4) 0.65 (0.35) 0.14 (0.28) 0.58 (0.33) 0.39 (0.38) 0.38 (0.32)

TWINGENE/STR 16,849 48.7 (19.0) 58.2 0.3 26.0 (3.9) 15,893 (94.3) 12.3 (7.9) 35.7 (31.4) 0.56 (0.35) 0.06 (0.18) 0.40 (0.33) 0.21 (0.30) 0.22 (0.27)

MDC/MOS 11,176 67.9 (17.9) 63.4 0.9 23.6 (5.9) 10,874 (97.3) 17.8 (7.5) 62.9 (34.2) 0.74 (0.31) 0.17 (0.28) 0.65 (0.32) 0.45 (0.38) 0.46 (0.33)

VIKING 3,823 63.8 (8.0) 63.4 0.9 24.7 (4.9) 3,772 (98.7) 17.3 (7.8) 55.9 (31.7) 0.73 (0.31) 0.13 (0.23) 0.60 (0.31) 0.38 (0.34) 0.37 (0.30)

CCDG: COHRA1/
Dental SCORE

1,810 43.8 (15.7) 64.6 5.1 23.1 (7.2) 1,763 (97.4) 13.7 (7.3) 44.1 (34.3) 0.73 (0.28) 0.10 (0.25) 0.46 (0.34) 0.29 (0.37) 0.26 (0.31)

CCDG: COHRA2/
COHRA Smile

1,185 32.4 (6.2) 100 0.7 26.4 (3.7) 1,109 (93.6) 8.7 (6.4) 22.7 (23.7) 0.53 (0.33) 0.03 (0.12) 0.24 (0.46) 0.13 (0.25) 0.11 (0.20)

Periogene North 995 49.0 (13.1) 57.6 0 25.6 (3.8) 951 (95.6) 12.0 (7.5) 34.1 (29.8) 0.58 (0.32) 0.07 (0.18) 0.38 (0.31) 0.20 (0.30) 0.19 (0.26)

IFS 253 22.7 (1.8) 56.5 0 24.7 (2.9) 243 (96.0) 4.0 (3.3) 7.1 (8.9) 0.23 (0.24) 0.01 (0.04) 0.05 (0.09) 0.03 (0.09) 0.05 (0.12)

Mean and standard deviation (SD) of caries experience are presented for each cluster, computed as the cluster-specific decayed, missing, and 
filled surfaces (DMFS) divided by the number of tooth surfaces in the cluster. The labeling of caries clusters corresponds to the nomenclature of 
Shaffer, Feingold, Wang, Weeks, et al. (2013) as follows: cluster 1, molar pits and fissures; cluster 2, lower anterior teeth; cluster 3, molar smooth 
surfaces, premolar pits, and proximal surfaces; cluster 4, maxillary incisors; and cluster 5, maxillary canines and premolar smooth surfaces. A visual 
representation of surfaces contributing to these clusters is presented in Figure 2, and the exact derivation is presented in Appendix Table 2. DMTFS, 
surface level tooth morbidity index; DMTFT, tooth level tooth morbidity index. 
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fissures) were consistent across cohorts, regardless of back-
ground caries rate.

Power estimates (Fig. 3) demonstrate that GLIDE2 has 
greater statistical power than GLIDE to detect caries- 
associated genetic variants with small effect sizes. For caries 
severity, we estimate GLIDE2 will have 80% power to detect 
individual variants each explaining 0.008% (i.e., less than  
one-hundredth of a percent) of variation in caries experience.

Discussion
In this article, we introduced GLIDE2, the second study pro-
posed by our international oral/dental genomics consortium, 
with improved clinical phenotypes, larger sample size, and 
greater diversity than previous studies. We discussed the key 
challenges of interrogating the genomics of dental, oral, and 
craniofacial diseases in an international consortium and con-
sidered options to harmonize phenotypic data. We outlined a 
3-tiered phenotyping approach, including naive binary disease 
definitions to maximize sample size, quantitative caries 

experience indices, and data-driven, precision phenotypes 
encoding dental caries experience within distinct permanent 
dentition tooth surface clusters. We demonstrated that despite 
the unavoidable heterogeneity in population demographics and 
caries experience, these data-driven patterns are generalizable 
across the examined study populations and thus can be carried 
forward to GWAS meta-analyses in a larger group of GLIDE2 
participating studies. We posit that this is justifiable even in the 
common scenario where clinical examination protocols and 
conditions differ. These unmodeled sources of variation con-
tribute to unavoidable trait heterogeneity between studies and 
may reduce power to detect true signals. However, as long as 
clinical data are valid measures of the oral disease or endpoint 
under analysis, these differences are unlikely confounders of 
genetic associations (i.e., they will not generate spurious ones). 
We demonstrate that, using the approach described above, 
GLIDE2 will have unprecedented statistical power to discover 
genetic risk loci with modest effects on oral diseases, an impor-
tant feature given their polygenic genetic architectures. Even if 
some of the identified variants may explain small proportions 

Figure 2. Caries experience (defined as the mean proportion of caries-affected surfaces within each cluster) differs among the 5 caries clusters in 
Gene-Lifestyle Interactions in Dental Endpoints 2 (GLIDE2) with similar patterns across all GLIDE2 cohorts. Caries experience in these caries clusters 
increases with age in the GLIDE2 cohorts (A), mirroring the overall increase in decayed, missing, and filled surfaces (DMFS) with age. (B) The size of 
markers is scaled to the number of participants in the participating studies. Regression lines and standard errors are estimated from inverse standard 
error-weighted linear meta-regression models. Cluster membership is illustrated on the odontogram (C), and colors in the legend refer to the cluster 
numbers given in Table 2.
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of disease variance, they can have profound impacts on disease 
biology and offer targets for prevention and therapy; for exam-
ple, GWASs identified in HMGCR and PCSK9 may explain 
little phenotypic variance (Lu et al., 2017) but are very impor-
tant targets for cardiovascular disease prevention (Ference et 
al. 2016).

A key element of GLIDE2 is increased diversity and inclu-
sion of underrepresented populations, with the representation 
of multiethnic populations and studies conducted in Africa, 
Asia, Europe, and North and South America. However, clinical 
examination data from traditionally underrepresented areas are 
still limited. The OFC1/OFC2 studies that include the most 
diverse representation are based on intraoral photographs and 

thus indirect assessments of dental health at the 
tooth level. Thus, there is still a need to encourage 
genomics studies of oral health and disease among 
populations and global regions that are currently 
underrepresented. Inclusion of multiethnic popula-
tion samples should improve our ability to fine-
map association signals and enable the development 
of transferrable polygenic risk scores (Graham et 
al. 2021), especially due to the enhanced ability to 
detect even small-in-magnitude signals for dental 
caries experience, periodontitis, and tooth loss. We 
will not employ a discovery-replication design, and 
all cohorts will contribute to the discovery of 
genetic signals—but we will use methods such as 
MAMBA (Meta-Analysis Model-based 
Assessment of replicability)  (McGuire et al. 2021) 
that examine the distribution of genetic effects to 
identify variants that are potentially nonreplicable 
and those with high posterior probability for 
replication.

Despite the variation in dental disease experi-
ence inherent in an international consortium, the 
data presented in this article show it is feasible to 
harmonize traits and enable a well-powered 
GWAS. While this article has focused on dental 
caries experience, the challenges and possible solu-
tions are similar for periodontitis. Obviously, the 
maximum sample size will be only available for 
relatively naive traits of dental caries and periodon-
titis (i.e., binary case definitions). Accounting for 
disease severity will likely offer advantages in sta-
tistical power for discovery while maintaining a 
sizable analytical sample. Leveraging caries clus-
ters, as demonstrated in this article, is an important 
addition to available analytic endpoints, especially 
if genetic variant effects differ across clusters. 
These data-driven clusters were found to be consis-
tent in terms of relative contribution across cohorts. 
In a recent study among a large sample of up to 
41,678 Swedish twins, a similar but slightly differ-
ent cluster solution was identified (Haworth et al. 
2020). Despite some expected variation that would 
emerge if each cohort rederived their own data-
driven cluster solution, we have found that the use 

of a “consensus” 5-level solution results in appreciable homo-
geneity, while these clusters have been shown to be clinically 
as well as biologically informative.

The inherent heterogeneity in population ancestry in 
GLIDE2 is likely to influence results. While this could ini-
tially be seen as a limitation, we posit that it is a relative 
strength and an opportunity that can be leveraged analytically. 
In a multiethnic meta-analysis, highest power will be obtained 
for signals that are homogeneous across ancestral populations, 
while signals that are heterogeneous would be harder to dis-
cover. On the other hand, multiethnic samples could allow for 
better fine-mapping of association signals in risk loci and help 
produce more informative and representative polygenic risk 

Figure 3. Power estimates in GLIDE2 versus GLIDE. Power (y-axis) to detect genetic 
association in (A–C) the Gene-Lifestyle Interactions in Dental Endpoints 2 (GLIDE2) 
consortium and (D–E) the original GLIDE sample with available clinical data, for a 
range of effect sizes (odds ratio [OR] for caries prevalence, β coefficient [i.e., per allele 
difference in units of trait standard deviation] for caries severity and patterns] across a 
spectrum of minor allele frequencies (x-axis).
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scores. The GWAS results can also form the substrate for a 
second tier of harmonization to further boost power by adjust-
ing away differences in measurement between traits 
(Luningham et al. 2019), borrowing information across traits 
using multitrait analysis of GWAS summary statistics. In 
addition, we expect that GLIDE2 results will inform 
Mendelian randomization studies and other explorations of 
shared biology between oral and systemic health traits. All 
these advanced post-GWAS strategies will rely on the well-
conducted, carefully phenotyped, adequately powered, and 
informative “basic” GLIDE2 GWAS. Geared toward transpar-
ency, reproducibility, and value creation for the community 
(Schwendicke et al. 2022), GLIDE2 summary results will be 
publicly shared, like the publicly deposited first GLIDE study 
results (https://data.bris.ac.uk/data/).

In conclusion, data-driven approaches are both suitable and 
necessary for the purposes of harmonization of oral health end-
points in large-scale, consortium-level applications such as 
GLIDE2. There are unavoidable trade-offs between detailed 
clinical measures and power for genetic discovery—to over-
come those, we propose the utilization of multiple, comple-
mentary approaches for trait harmonization. We anticipate that 
results from GLIDE2 will advance the knowledge base of 
mechanisms at play in oral, dental, and craniofacial health and 
disease and further catalyze international collaboration and 
data and resource sharing in genomics research.

Author Contributions

K. Divaris, S. Haworth, J.R. Shaffer, M.L. Marazita, I. Johansson, 
contributed to conception, design, and data acquisition, drafted and 
critically revised the manuscript; V. Anttonen, J.D. Beck, Y. 
Furuichi, B. Holtfreter, D. Jonsson, T. Kocher, S.M. Levy, P.K.E. 
Magnusson, D.W. McNeil, K. Michaelsson, K.E. North, U. Palotie, 
P.N. Papapanou, P.J. Pussinen, D. Porteus, K. Reis, A. Salminen, 
A.S. Schaefer, T. Sudo, Y.Q. Sun, A.L. Suominen, T. Tamahara, 
S.M. Weinberg, P. Lundberg, contributed to data acquisition, criti-
cally revised the manuscript. All authors gave final approval and 
agree to be accountable for all aspects of the work.

Acknowledgments

We thank the following investigators for their contributions to 
individual cohorts: Julie T. Marchesan and Kevin Moss (ARIC); 
Michiaki Kubo, Yoichiro Kamatani, Koichi Matsuda, Yoshinori 
Murakami, Takayuki Morisaki, and Akiko Nagai (Biobank Japan, 
BBJ); Betsy Foxman, Katherine Neiswanger, and Richard Crout 
(CCDG: COHRA cohorts); FinnGen Consortium contributors; 
Karin Weber-Gasparoni, Justine L. Kolker, and John J. Warren 
(Iowa Fluoride Study, IFS); Jeffrey C. Murray, Lina Moreno 
Uribe, Brian Howe, Azeez Butali, Consuelo Valencia Ramirez, 
Claudia Restrepo, Frederic W.B. Deleyiannis, Carmencita Padilla, 
Ieda Orioli, Fernando Poletta, Carmen Buxó Martinez, Jacqueline 
T. Hecht, George Wehby, Katherine Neiswanger, Carla Sanchez, 
Alexandre Rezende Vieira, Ross Long, and Rasha Nesha Alotaibi 
(CCDG: OFC cohorts); Juha Sinisalo (Parogene); Caroline 
Hayward, Robin Flaig, and Archie Campbell (Generation 
Scotland); Ben Brumpton, Hedda Høvik, and Astrid Jullumstrø 
Feuerherm (HUNT4); Alex Teumer, Henry Völzke, and Uwe 

Völker (SHIP); Taku Obara, Maki Goto, Otsuki Akihito, Junko 
Kawashima, Yuichi Aoki, Sakae Saito, and Ritsuko Shimizu 
(ToMMo: Tohoku Medical Megabank Organization); Yukinori 
Okada (TMDUAGP, Osaka University); and Paul Franks 
(VIKING).

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: 
Funding support for participating studies and investigators is also 
acknowledged: CCDG: COHRA1/Dental SCORE and CCDG: 
COHRA2/COHRA Smile were supported by US National 
Institutes of Health (NIH) grants R01-DE014899, U01-DE018903, 
and X01-HG009878-01. IFS was supported by NIH grants 
R01-DE09551, U01-DE018903, X01-HG008978, R01-DE014899, 
and P30-DE10126. CCDG: OFC1 and CCDG: OFC2 were sup-
ported by NIH grants R01-DE016148, X01-HG00784, and 
X01-HG011437. SHIP is funded by the Federal Ministry of 
Education and Research (grants 01ZZ9603, 01ZZ0103, and 
01ZZ0403), the Ministry of Cultural Affairs, and the Social 
Ministry of the Federal State of Mecklenburg–West Pomerania 
and Siemens Healthcare, Erlangen, Germany. SIMPLER receives 
funding through the Swedish Research Council under grants 2017-
00644 and 2017-06100. The Swedish Twin Registry is managed 
by Karolinska Institutet and receives funding through the Swedish 
Research Council under grant 2017-00641. Periogene North was 
funded by the County Council of Västerbotten under grants 
RV-96458 and RV-832371. The Swedish GLIDE receives fund-
ing through the Swedish Research Council under grants 2020-
00930 and 2015-02597. K. Divaris acknowledges support by NIH 
grant U01-DE025046.

ORCID iDs

K. Divaris  https://orcid.org/0000-0003-1290-7251

S. Haworth  https://orcid.org/0000-0001-7793-7326

B. Holtfreter  https://orcid.org/0000-0002-6541-3127

D.W. McNeil  https://orcid.org/0000-0002-0766-8455

P.N. Papapanou  https://orcid.org/0000-0002-6538-3618

P.J. Pussinen  https://orcid.org/0000-0003-3563-1876

T. Sudo  https://orcid.org/0000-0002-4510-6664

Y.Q. Sun  https://orcid.org/0000-0002-9634-9236

References
Agler CS, Divaris K. 2020. Sources of bias in genomics research of oral and 

dental traits. Community Dent Health. 37(1):102–106.
Agler CS, Moss K, Philips KH, Marchesan JT, Simancas-Pallares M, Beck JD, 

Divaris K. 2019. Biologically defined or biologically informed traits are 
more heritable than clinically defined ones: the case of oral and dental phe-
notypes. Adv Exp Med Biol. 1197:179–189.

Agler CS, Shungin D, Ferreira Zandoná AG, Schmadeke P, Basta PV, Luo J, 
Cantrell J, Pahel TD Jr, Meyer BD, Shaffer JR, et al. 2019. Protocols, meth-
ods, and tools for genome-wide association studies (GWAS) of dental traits. 
Methods Mol Biol. 1922:493–509.

https://data.bris.ac.uk/data/
https://orcid.org/0000-0003-1290-7251
https://orcid.org/0000-0001-7793-7326
https://orcid.org/0000-0002-6541-3127
https://orcid.org/0000-0002-0766-8455
https://orcid.org/0000-0002-6538-3618
https://orcid.org/0000-0003-3563-1876
https://orcid.org/0000-0002-4510-6664
https://orcid.org/0000-0002-9634-9236


1416 Journal of Dental Research 101(11) 

Bennett SN, Caporaso N, Fitzpatrick AL, Agrawal A, Barnes K, Boyd HA, 
Cornelis MC, Hansel NN, Heiss G, Heit JA, et al.; GENEVA Consortium. 
2011. Phenotype harmonization and cross-study collaboration in GWAS 
consortia: the GENEVA experience. Genet Epidemiol. 35(3):159–173.

Brunkwall L, Jönsson D, Ericson U, Hellstrand S, Kennbäck C, Östling G, 
Jujic A, Melander O, Engström G, Nilsson J, et al. 2021. The Malmö 
Offspring Study (MOS): design, methods and first results. Eur J Epidemiol. 
36(1):103–116.

Divaris K. 2019. The era of the genome and dental medicine. J Dent Res. 
98(9):949–955.

Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, 
Voros S, Giugliano RP, Davey Smith G, Fazio S, et al. 2016. Variation 
in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. 
N Engl J Med. 375(22):2144–2153.

Field AE, Camargo CA Jr, Ogino S. 2013. The merits of subtyping obesity: one 
size does not fit all. JAMA. 310(20):2147–2148.

Graham SE, Clarke SL, Wu KH, Kanoni S, Zajac GJM, Ramdas S, Surakka I, 
Ntalla I, Vedantam S, Winkler TW, et al. 2021. The power of genetic diver-
sity in genome-wide association studies of lipids. Nature. 600(7890):675–
679.

Haworth S, Esberg A, Lif Holgerson P, Kuja-Halkola R, Timpson NJ, 
Magnusson PKE, Franks PW, Johansson I. 2020. Heritability of caries 
scores, trajectories, and disease subtypes. J Dent Res. 99(3):264–270.

Haworth S, Shungin D, Kwak SY, Kim HY, West NX, Thomas SJ, Franks 
PW, Timpson NJ, Shin MJ, Johansson I. 2018a. Tooth loss is a complex 
measure of oral disease: determinants and methodological considerations. 
Community Dent Oral Epidemiol. 46(6):555–562.

Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov 
V, Feenstra B, Shaffer JR, Lee MK, Standl M, et al. 2018b. Consortium-
based genome-wide meta-analysis for childhood dental caries traits. Hum 
Mol Genet. 27(17):3113–3127.

Kim DS, Gloyn AL, Knowles JW. 2021. Genetics of type 2 diabetes: oppor-
tunities for precision medicine: JACC focus seminar. J Am Coll Cardiol. 
78(5):496–512.

Leslie EJ, Carlson JC, Shaffer JR, Feingold E, Wehby G, Laurie CA, Jain D, 
Laurie CC, Doheny KF, McHenry T, et al. 2016. A multi-ethnic genome-
wide association study identifies novel loci for non-syndromic cleft lip 
with or without cleft palate on 2p24.2, 17q23 and 19q13. Hum Mol Genet. 
25(13):2862–2872.

Lu X, Peloso GM, Liu DJ, Wu Y, Zhang H, Zhou W, Li J, Tang CS, Dorajoo R, 
Li H, et al. 2017. Exome chip meta-analysis identifies novel loci and East 
Asian–specific coding variants that contribute to lipid levels and coronary 
artery disease. Nat Genet. 49(12):1722–1730.

Luningham JM, McArtor DB, Hendriks AM, van Beijsterveldt CEM, 
Lichtenstein P, Lundström S, Larsson H, Bartels M, Boomsma DI, Lubke 
GH. 2019. Data integration methods for phenotype harmonization in multi-
cohort genome-wide association studies with behavioral outcomes. Front 
Genet. 10:1227.

McGuire D, Jiang Y, Liu M, Weissenkampen JD, Eckert S, Yang L, Chen 
F; GWAS and Sequencing Consortium of Alcohol and Nicotine Use 
(GSCAN), Berg A, Vrieze S, et al. 2021. Model-based assessment of 
replicability for genome-wide association meta-analysis. Nat Commun. 
12(1):1964.

Morelli T, Agler CS, Divaris K. 2020. Genomics of periodontal disease and 
tooth morbidity. Periodontol 2000. 82(1):143–156.

Neiswanger K, McNeil DW, Foxman B, Govil M, Cooper ME, Weyant RJ, 
Shaffer JR, Crout RJ, Simhan HN, Beach SR, et al. 2015. Oral health in a 
sample of pregnant women from Northern Appalachia (2011–2015). Int J 
Dent. 2015:469376.

Nibali L, Bayliss-Chapman J, Almofareh SA, Zhou Y, Divaris K, Vieira AR. 
2019. What is the heritability of periodontitis? A systematic review. J Dent 
Res. 98(6):632–641.

Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, 
Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, et al. 2019. Oral 
diseases: a global public health challenge. Lancet. 394(10194):249–260.

Polk DE, Weyant RJ, Crout RJ, McNeil DW, Tarter RE, Thomas JG, Marazita 
ML. 2008. Study protocol of the Center for Oral Health Research in 
Appalachia (COHRA) etiology study. BMC Oral Health. 8:18.

Popejoy AB, Fullerton SM. 2016. Genomics is failing on diversity. Nature. 
538(7624):161–164.

Schwendicke F, Marazita ML, Jakubovics NS, Krois J. 2022. Big data and 
complex data analytics: breaking peer review? J Dent Res. 101(4):369–370.

Shaffer JR, Feingold E, Wang X, Lee M, Tcuenco K, Weeks DE, Weyant RJ, 
Crout R, McNeil DW, Marazita ML. 2013. GWAS of dental caries patterns 
in the permanent dentition. J Dent Res. 92(1):38–44.

Shaffer JR, Feingold E, Wang X, Tcuenco KT, Weeks DE, DeSensi RS, Polk 
DE, Wendell S, Weyant RJ, Crout R, et al. 2012. Heritable patterns of tooth 
decay in the permanent dentition: principal components and factor analyses. 
BMC Oral Health. 12:7.

Shaffer JR, Feingold E, Wang X, Weeks DE, Weyant RJ, Crout R, McNeil DW, 
Marazita ML. 2013. Clustering tooth surfaces into biologically informative 
caries outcomes. J Dent Res. 92(1):32–37.

Shaffer JR, Wang X, Desensi RS, Wendell S, Weyant RJ, Cuenco KT, Crout R, 
McNeil DW, Marazita ML. 2012. Genetic susceptibility to dental caries on 
pit and fissure and smooth surfaces. Caries Res. 46(1):38–46.

Shungin D, Cornelis MC, Divaris K, Holtfreter B, Shaffer JR, Yu YH, Barros 
SP, Beck JD, Biffar R, Boerwinkle EA, et al. 2015a. Using genetics to 
test the causal relationship of total adiposity and periodontitis: Mendelian 
randomization analyses in the Gene-Lifestyle Interactions and Dental 
Endpoints (GLIDE) Consortium. Int J Epidemiol. 44(2):638–650.

Shungin D, Haworth S, Divaris K, Agler CS, Kamatani Y, Keun Lee M, Grinde 
K, Hindy G, Alaraudanjoki V, Pesonen P, et al. 2019. Genome-wide analy-
sis of dental caries and periodontitis combining clinical and self-reported 
data. Nat Commun. 10(1):2773.

Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, 
Strawbridge RJ, Pers TH, Fischer K, Justice AE, et al. 2015b. New genetic 
loci link adipose and insulin biology to body fat distribution. Nature. 
518(7538):187–196.

Stingone JA, Mervish N, Kovatch P, McGuinness DL, Gennings C, Teitelbaum 
SL. 2017. Big and disparate data: considerations for pediatric consortia. 
Curr Opin Pediatr. 29(2):231–239.

Titova OE, Baron JA, Michaëlsson K, Larsson SC. 2021. Swedish snuff (snus) 
and risk of cardiovascular disease and mortality: prospective cohort study 
of middle-aged and older individuals. BMC Med. 19(1):111.

van Rooden SM, Colas F, Martínez-Martín P, Visser M, Verbaan D, Marinus 
J, Chaudhuri RK, Kok JN, van Hilten JJ. 2011. Clinical subtypes of 
Parkinson’s disease. Mov Disord. 26(1):51–58.

Wang X, Willing MC, Marazita ML, Wendell S, Warren JJ, Broffitt B, Smith 
B, Busch T, Lidral AC, Levy SM. 2012. Genetic and environmental factors 
associated with dental caries in children: the Iowa Fluoride Study. Caries 
Res. 46(3):177–184.

Watt RG, Daly B, Allison P, Macpherson LMD, Venturelli R, Listl S, Weyant 
RJ, Mathur MR, Guarnizo-Herreño CC, Celeste RK, et al. 2020. The Lancet 
Oral Health Series: implications for oral and dental research. J Dent Res. 
99(1):8–10.

Wen PYF, Chen MX, Zhong YJ, Dong QQ, Wong HM. 2021. Global burden 
and inequality of dental caries, 1990 to 2019. J Dent Res. 101(4):392–399.

Young DA, Nový BB, Zeller GG, Hale R, Hart TC, Truelove EL; American 
Dental Association Council on Scientific Affairs. 2015. The American 
Dental Association Caries Classification System for clinical practice: a 
report of the American Dental Association Council on Scientific Affairs. 
J Am Dent Assoc. 146(2):79–86.

Zagai U, Lichtenstein P, Pedersen NL, Magnusson PKE. 2019. The Swedish 
Twin Registry: content and management as a research infrastructure. Twin 
Res Hum Genet. 22(6):672–680.

Zhou W, Kanai M, Wu K-HH, Humaira R, Tsuo K, Hirbo JB, Wang Y, 
Bhattacharya A, Zhao H, Namba S, et al. 2021. Global Biobank Meta-
analysis Initiative: powering genetic discovery across human diseases. 
medRxiv preprint. https://doi.org/10.1101/2021.11.19.21266436.

https://doi.org/10.1101/2021.11.19.21266436

