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Introduction

This thesis considers, in a broad sense, the notion of noncommutative stochastic independence

in the realm of quantum probability theory. First, we notice that the notion of stochastic

independence is necessary in order to define stochastic processes with independent increments

(Lévy processes) or to achieve the formulation of central limit theorems. In other words,

independence is one of the main concepts in classical probability theory. But why do we

actually bother about noncommutative probability, as quantum probability is also called? For a

motivation coming from physics we refer to [FS16, Sec. 1.3]. From a mathematical point of view,

we can think of quantum probability theory as a generalization of classical probability theory

in a noncommutative way. The basic idea is to replace the commutative algebra of random

variables by a possibly noncommutative algebra of operators. Investigations of this kind are

already present in the work of von Neumann ([Neu32]), and theywere systematically pursued at

least since the late 70’s for instance by Accardi ([Acc76]). For a nice overview of the development

of quantum probability theory we refer to [Bel00].

There exist several different aspects of quantum probability theory. We want to focus on a

“natural” definition of stochastic independence in quantum probability which in turn allows to

define quantum Lévy processes or quantum central limit theorems for a certain independence.

Naturality here means that we want to establish a possible transition from the classical world to

the quantum world. There is no master plan for doing something like this. Thus, our concept of

stochastic independence which we would like to extend to the noncommutative case needs to

be justified by answering the question: “Is this a good definition?”. Let us try to briefly clarify

what we could mean by stochastic independence in quantum probability which also covers the

classical case. For this, we quickly review classical stochastic independence. Let

- : Ω −→ �1 , . : Ω −→ �2 (1)

be two random variables over the same probability space (Ω,F , %) with values in measurable

spaces (�8 , E8). We say that - and. are independent if and only if for all measurable sets �1 ∈ E1

and �2 ∈ E2

%
(
{- ∈ �1 } ∩ {. ∈ �2}

)
= %

(
{- ∈ �1 }

)
%
(
{. ∈ �2 }

)
holds. Using the pushforward measure (i. e. the distribution) of the random variable (-,.), this
is equivalent to

%(-,.) = %- ⊗ %. . (2)

Now, we dualize the picture of classical probability theory. The probability measure % on Ω

induces a linear functional Φ on !∞(Ω) if we put

Φ(�) =
∫
Ω

�($)d%($).

iii



iv Introduction

In this dualized setting, for each classical random variable - : Ω −→ � we can assign a map

9- :

{
!∞(�) −→ !∞(Ω)

5 ↦−→ 5 ◦ -.

We can turn the !∞-spaces into ∗-algebras and we can see that 9- is a homomorphism of ∗-
algebras. Now, we apply the dualized setting to the random variables of equation (1) ([BS02,

p. 532]). Thus, we obtain homomorphisms of algebras

9- : !∞(�1) −→ !∞(Ω), 9. : !∞(�2) −→ !∞(Ω) (3)

and equation (2) is equivalent to

∀ 5 ∈ !∞(�1), ∀, ∈ !∞(�2) : Φ
(
9-( 5 )9.(,)

)
= Φ

(
9-( 5 )

)
Φ

(
9.(,)

)
or

Φ ◦ � ◦ (9- ⊗ 9.) = (Φ ◦ 9-) ⊗ (Φ ◦ 9.), (4)

where � : !∞(Ω) ⊗ !∞(Ω) −→ !∞(Ω) denotes the multiplication of the algebra !∞(Ω).
The above described dualized picture of stochastic independence, leads to the following

translation from classical probability theory as a commutative realization on !∞(Ω) to quantum

probability theory as a noncommutative version:

• a classical probability space (Ω,F , %) is replaced by (A,Φ), where A a unital involutive

algebra not necessarily commutative and Φ is a positive and normalized linear functional

on A,

• measurable functions - : Ω −→ � are replaced by homomorphisms 9 : B −→ A of

involutive unital algebras,

• the distribution %- = % ◦ -−1
is replaced by ) = Φ ◦ 9, since )- = Φ ◦ 9- induces a linear

functional on !∞(�) for each measurable function - : Ω −→ �,

• independence of two random variables - and . given by equation (2) is replaced by the

following definition: two homomorphisms of unital involutive algebras 91 : B1 −→ A,

92 : B2 −→ A are independent if and only if

Φ ◦ �A ◦ (91 ⊗ 92) = (Φ ◦ 91) ⊗ (Φ ◦ 92). (5)

Now, we may ask if this is a good generalization of independence? The answer is no. If we

take a look at the map 91 ] 92 ≔ �A ◦ (91 ⊗ 92) : B1 ⊗ B2 −→ A, then for commutative unital

algebras B1 , B2 and A the map 91 ] 92 is a homomorphism. But this is not true for all algebras

which are possibly not commutative. Without having that 91 ] 92 is homomorphic, our theory

would not be consistent. This stems from the transition of equation (2) to the noncommutative

case in the sense of equation (5). According to our dualized setting (equation (3)) the classical

random variable (-,.) : Ω −→ �1 × �2 should correspond to a homomorphism of algebras

91 ] 92 : B1 ⊗ B2 −→ A for any algebras B1 , B2 and A. To resolve this dilemma, we can put

further restrictions on the maps 91 , 92 such that 91 ] 92 defines a homomorphism of arbitrary

algebras. In this way we obtain the notion of tensor independence ([CH71], [Hud73]). This kind of

stochastic independence plays a prominent role in quantum probability and is closest to classical

stochastic independence.
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Instead of imposing assumptions on the homomorphisms 91 and 92, we can also ask for

another suitable “product” between the algebras A1 and A2. The idea ([BS02, p. 532]) is

to recognize the map �A ◦ (91 ⊗ 92) as the unique homomorphism of algebras defined on the

coproduct of unital, commutative algebras. The coproduct in the category of unital, commutative

algebras is given by the tensor product ⊗. Thus, if we want to extend the notion of independence

to the noncommutative case, then we need to replace the tensor product ⊗ on the left hand side

of equation (5) by the coproduct t in the category of unital algebras.

Furthermore, we need a replacement for the tensor product between linear functionals

on the right hand side of equation (5). Ben Ghorbal and Schürmann proposed in [BS02] that

it needs to be some kind of product which maps each pair of normalized linear functionals(
!1 : B1 −→ ℂ, !2 : B2 −→ ℂ

)
to a normalized linear functional !1 � !2 : B1 t B2 −→ ℂ.

Given such a product, following [BS02, p. 538], we say two homomorphisms of unital algebras

91 : B1 −→ A, 92 : B2 −→ A are �-independent (with respect to a normalized linear functional

Φ : A −→ ℂ on the unital algebra A) if and only if

Φ ◦ (91 t 92) = (Φ ◦ 91) � (Φ ◦ 92). (6)

We want to point out that the above equation might formally look the same as equation (5) but

the subtle differences are:

• to replace the (ordinary) tensor product ⊗ between homomorphisms by the coproduct t
in the category of unital algebras (free product of unital algebras),

• to replace the (ordinary) tensor product ⊗ of linear functionals by a yet to be defined

product � of linear functionals.

At this point, we need to axiomize the product �. We follow [BS02] for this. First, let us

free ourselves from only allowing unital algebras and let us more generally consider arbitrary

algebras A with some linear functionals ! : A −→ ℂ defined on them. Then, we view � as a

map which assigns to each pair

(
(A1 , !1), (A2 , !2)

)
a linear functional !1 � !2 : A1 t A2 −→ ℂ.

The following defining axioms for � seem to be appropriate

(a) unitality/restriction property: (!1 � !2) ◦ �1/2 = !
1/2,

(b) associativity: (!1 � !2) � !3 = !1 � (!2 � !3),
(c) universality: (!1 ◦ 91) � (!1 ◦ 92) = (!1 � !2) ◦ (91 t 92),
(d) symmetry: !1 � !2 = !2 � !1

(e) positivity: if !8 : A8 −→ ℂ are strongly positive on the ∗-algebra A8 , then !1 � !2 is also

strongly positive

Here, �
1/2 : A

1/2 −→ A1 t A2 denote the canonical homomorphisms to the coproduct of two

algebras. Moreover, we say that ! : A −→ ℂ is strongly positive on a ∗-algebra if and only if the

normalized unital extension !1
: A1 −→ ℂ is positive on A1

, the unitization of the algebra A. Let

us give a motivation for the above axioms. The first condition is motivated by the fact (91 t 92) ◦
�
1/2 = �

1/2 andequation (6). Wedemandassociativitybecausewewant todefine independence for

more than two homomorphisms (of unital ∗-algebras). The universality condition is descended

from the fact that if two classical random variables - and . are independent, then functions

5 (-) and ,(.) of these random variables are independent too. The second last condition can be

demanded if we want to recover the symmetry of classical independence, which says that - and
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. are independent if and only if . and - are independent. Positivity is motivated by the fact

that the product measure of two probability measures is a probability measure. We abbreviate

unital associative universal product by u.a.u.-product.
All of the above heuristic for an axiomatic approach towards a universal product, which

in the end leads to a “good” definition of stochastic independence by equation (6), would be

worthless if it did not cover at least any known example. At its time of publishing in 2002,

Schürmann and Ben Ghorbal showed in their work [BS02] that their axiomatic approach is

sufficiently general to include the notions of

(a) tensor independence,

(b) free independence ([Voi85]),

(c) boolean independence ([Wal73], [Wal75] and [SW97]).

These are very prominent examples for noncommutative stochastic independence in quantum

probability since in particular for each of these independences a quantum stochastic calculus

had been developed. One might ask if there exist more such universal products. Using a similar

axiomatic setting as in [BS02], where universality is replaced by a so-called “universal calculation

rule for mixed moments”, Speicher could show that the tensor, free and boolean product are

the only (nondegenerate) symmetric u.a.u.-products ([Spe97]). Later, in 2002, Schürmann and

Ben Ghorbal confirmed this result by their work [BS02]. Their strategy was to find a so-called

universal coefficient theorem ([BS02, Thm. 5]) for a product � between linear functionals on

associative algebras satisfying (a)–(d). By this result, they could show that any such product �
satisfies Speicher’s universal calculation rule for mixed moments and thus could use Speicher’s

classification result ([BS02, Thm. 8])). Dropping the condition of commutativity but imposing a

normalization condition

(!1 � !2)(0102) = !�1
(01)!�2

(02)

for all (�1 , �2) ∈ {(1, 2), (2, 1)}, 01 ∈ A�1
, 02 ∈ A�2

, Muraki ([Mur03]) has shown that there are

exactly five instances of u.a.u.-products. In addition to the three symmetric ones, he has found

the monotone and anti-monotone product. These five are also the only positive products as

Muraki showed in [Mur13a]. We also refer to these independences by Muraki’s five. In recent

years questions concerning classification of u.a.u.-products have been studied by Lachs and

Gerhold in [GL15], [Lac15] and [Ger15]. They do not impose the normalization condition from

above and get five one- or two parameter families.

Besides the notion of an independence coming from a positive u.a.u.-product, there exist

manyothernotions of independence not satisfying these conditions. Some are not associative like

Muraki’s @-deformation of free independence [Mur13b] or Wysoczański’s bm-independence

([Wys07]). But there also exist other noncommutative stochastic independences like braided
independence ([FS99, Def. 4.2.1]) which generalizes a definition of independence originally

introduced by Schürmann ([Sch93]). Although braided independence does not fit into the

above defined framework of Schürmann’s u.a.u.-products, there exist symmetrization theorems

([FSSV] and [Mal17]) which provide a reduction of independence in the sense of Franz [Fra06,

Def. 3.40] to tensor independence.

Voiculescu’s discovery of bifree independence ([Voi14]) opened a new chapter in quantum

probability theory and in turn for other possible realizations of noncommutative stochastic

independence. For bifree independence we need two-faced algebras A which can have a “left

face” A(;) ⊆ A and a “right face” A(A) ⊆ A such that A ∼= A(;) t A(A), where t denotes the free
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product of algebras. Schürmann quickly adapted his axiomatic framework to this then new

kind of independence. In [MS17] Manzel and Schürmann introduced a product suitable for

linear functionals living on so-called <-faced algebras A for < ∈ ℕ, i. e. on algebras A such that

A ∼= A(1) t · · · t A(<). We can think of this product as a product again with the properties

(a)–(c) but with morphisms 98 replaced by morphisms which respect the face of an algebra, i. e.,

98(B(9)8 ) ⊆ A
(9)
8
. Manzel and Schürmann also allowed the linear functionals to have 3-components

(3 ∈ ℕ), i. e., they have a product between linear functionals ! : A −→ ℂ×3, where A is an <-

faced algebra. Thus, they arrive at so-called (d,m)-universal products. This approach turns

out to be very fruitful since it covers many prominent examples of noncommutative stochastic

independence, like

• Voiculescu’s bifreeness (corresponding to < = 2, 3 = 1),

• Bożejko and Speicher’s 2-freeness ([BLS96]) (corresponding to < = 1, 3 = 2),

• Hasebe’s indented independence ([Has10]) (corresponding to < = 1, 3 = 2 and 3 = 3),

• Liu’s free-boolean independence ([Liu19]) (corresponding to < = 2, 3 = 1),

• Gerhold’s bimonotone independence ([Ger17]) (corresponding to < = 2, 3 = 1),

• Lachs’ (A, B)-products ([Lac15]) (corresponding to < = 1, 3 = 1).

In the introduction of Gerhold’s paper [Ger21]) we can find even more examples. Among these

examples positive (3, <)-universal products are very attractive. They have the striking property

that the Schoenberg correspondence holds ([Ger21]). This in turn opens the door to quantum

Lévy processes via Schürmann triples which in particular are in one-to-one correspondence to

quantum Lévy processes on involutive bialgebras ([Fra06, Thm. 1.9]) and on involutive dual

semigroups ([Fra06, Sec. 4]).

By an <-faced universal product we mean a (3, <)-universal product for 3 = 1 and < ∈ ℕ.

This thesis is a contribution to the classification of positive and symmetric two-faced u.a.u.-

products. We view universal products as bifunctors in the category of algebraic quantum

probability spaces. A proper definition is given in Definition 2.1.9 of this work. In the following

we shall outline our approach and present our achievements towards a classification of such

universal products.

The foundation of our work is [MS17]. There a version of the universal coefficient theorem

for (positive) (3, <)-universal products [MS17, Thm. 4.2, Rem. 4.4] is proven by Manzel and

Schürmann. Roughly speaking, this universal coefficient theorem makes a statement about the

expression

(!1 � · · · � !:)(01 · · · · · 0=︸      ︷︷      ︸
∈⊔:

8=1
A8

) ∈ ℂ3
(7)

for associative <-faced algebras A8 and linear functionals !8 : A8 −→ ℂ3
. From [MS17, Thm. 4.2]

we can conclude that the expression (7) is a linear combination of products of the form ! 9(081 ·
· · · · 08ℓ ) such that

• 081 · · · · · 08ℓ ∈ A9 ,

• every 8 ∈ {1, . . . , =} appears as index 8 9 exactly once for each summand,

• the coefficients for a given product are universal, i. .e., do not depend on the choice of A9 ,

! 9 or the arguments 08 .



viii Introduction

Amongall the nonzerouniversal coefficients, which can appear in the calculation of expression (7)

using the the universal coefficient theorem, so-called highest coefficients are of great importance

for us, in particular when � is positive and 3 = 1. In this case we have for any <-faced

algebras (A8 , (A(9)8 ))9∈{1,...,:}, any linear functionals (!8 : A8 −→ ℂ)8∈{1,...,:}, any � =
(
�8 , �8)8∈[=] ∈

({1, . . . , :} × {1, . . . , <}
)×=

, any (08)8∈[=] ∈
∏=

8=1
A
(�8)
�8 and any (C8)8∈[=] ∈ ℝ×=(

(C1!1) � · · · � (C:!:)
)
(01 · · · · · 0=) = (�)

max︸︷︷︸
∈ℂ

:∏
8=1

(C8!8)("8) +O(C28 ),

where "8 is a “sub-monomial” of 01 · · · · · 0= with elements in A8 which are multiplied in

the order as they appear in 01 · · · · · 0= (right-ordered monomials property). We call the complex

coefficient (�)
max

highest coefficient with respect to �. Apart from proving the universal coefficient

theorem, in [MS17] Manzel and Schürmann also prove existence of cumulants with respect to

a given (3, <)-universal product and certain “cumulant Lie algebras”. Cumulants in quantum

probability theory have also been investigated by Ebrahimi-Fard and Patras ([EP18]), Lehner

and Hasebe ([HL19]) and Anshelevich ([Ans01]). We use the definition of cumulants from

[MS17]. Having the notion of a cumulant with respect to a given (3, <)-universal product,
Manzel and Schürmann can prove a moment-cumulant formula for (3, <)-universal products
([MS17, eq. (7.3), eq. (7.4)]). This is the foundation from where we develop our investigations.

We would like to enrich it by a terminology using partitions.

Amoment-cumulant formula for a positive associative universal product in the single-faced

setting using the partition structure is given by Hasebe and Saigo ([HS11]). Their axiomatic

approach makes it very clear how a partition structure appears in a moment-cumulant formula

for the single-faced setting. Thanks to their work, we can see how to use partitions to formulate a

moment-cumulant formula for a universal product. In ([HS11, Thm. 4.3, Thm. 5.3]) Hasebe and

Saigo show that each independence of Muraki’s five is uniquely characterized by its so-called

highest coefficients and its cumulants. For each independence the nonzero highest coefficients

define a certain type of partitions. For the symmetric universal products of Muraki’s five they

can reproduce the result from Speicher ([Spe97]) that the following partitions appear in the

moment-cumulant formula of a given product:

• interval partitions for the boolean product,

• noncrossing partitions for the free product,

• all partitions for the tensor product.

For the nonsymmetric universal products in the single-faced case they obtain the result from

Muraki ([Mur02]) that the following partitions appear in the moment-cumulant of a given

product:

• monotone partitions for the monotone product,

• anti-monotone partitions for the anti-monotone product.

We also have examples in the two-faced case. The following partitions appear in the moment-

cumulant formula of a given product:

• binoncrossing partitions for the bifree product ([MN15] and [CNS15]),

• interval-noncrossing partitions for the free-boolean product ([Liu19]).
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The notion of a cumulant can be axiomized and thus cumulants become combinatorial objects

which are connected to partitions ([Spe83]). A natural question arises: can we use partitions

for a classification of universal products? The answer to this question is twofold as we shall

see. We can say that all of our combinatorics is encoded in the highest coefficients for a given

positive u.a.u.-product. This in turn leads to a certain picture of partitions. A priori it is not clear

what such partitions satisfy among themselves. It was one task to investigate this problem in a

systematic way for the symmetric case and has lead to our discovery of what we call <-colored
universal classes of partitions. The starting point of our investigations is:

Result 1 (Theorem 2.5.13). Any positive <-faced u.a.u.-product is uniquely determined by its

highest coefficients.

This is an implication of the work of Manzel and Schürmann [MS17]. We use this result to

define a partition induced universal product. For this, we mimic the moment-cumulant formula

of Manzel and Schürmann, where a sum over partitions coming from <-colored universal class
of partitions is introduced (Definition 3.4.9). These partition induced universal products are

modeled in such a way that their nonzero highest coefficients are 1. Let us briefly present what

wemean by an<-colored partition. To grasp a better understanding, we want to draw partitions.

Let < ∈ ℕ, � ∈ [<]×4
, then we draw the partition {{(1, �1), (3, �3)}, {(2, �2), (4, �4)}} as

�
1

�
2

�
3

�
4

1 2 3 4

.

To avoid these big circles around �8 , we just use instead to indicate any specific color. In this

picture, <-colored partitions can be seen as an ordinary set partition with a color label attached

to their legs. The color labels are determined by the “decoration tuple” (�8)8 .

Result 2 (Theorem 3.3.9, Theorem 3.4.32). Any <-colored universal class of partitions (Defi-

nition 3.4.9) induces a symmetric <-faced u.a.u.-product �P (Definition 3.4.30).

The defining properties for an <-colored universal class of partitions are nice enough to

obtain a classification in the case < = 1 and < = 2.

Result 3 (Theorem 4.1.17, Theorem 4.2.44). For < ∈ {1, 2} the set of all <-colored universal

class of partitions is nonempty and finite and each member in this set has a construction in

terms of certain “smallest generating partitions”.

The above classification result for two-colored universal classes also contains concrete new

realizations beyond the known partitions like binoncrossing or interval-noncrossing. This brings

us back to Result 2 and we obtain the following result.

Result 4. We find three new universal products, not yet known in the literature:

(a) a universal product induced by what we call pure noncrossing partitions (Defini-

tion 4.2.13 (e)),

(b) auniversalproduct inducedbywhatwe callnoncrossing-crossing resp. crossing-noncrossing
partitions (Definition 4.2.13 (i) resp. Definition 4.2.13 (j)),

(c) a universal product induced bywhat we call pure crossing partitions (Definition 4.2.13 (l)).

Wewant touseResult 3 fora classification ofpositive andsymmetric<-facedu.a.u.-products

for < ∈ {1, 2}. As a first step we have:
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Result 5 (Theorem 5.1.15, Theorem 5.2.17). Any positive and symmetric <-faced u.a.u.-

product for < ∈ ℕ induces an <-colored universal class of partitions.

As we have mentioned above, the single-faced case has already been classified by Speicher

and Ben Ghorbal & Schürmann. We also retrieve this result. Although, it is not new, we list it

here since we have used an alternative proof.

Result 6 (Corollary 5.1.25). The only positive and symmetric u.a.u.-products in the single-

faced case are the boolean, free and tensor product.

We do obtain at first sight a less nice but somehow remarkable result in the two-faced case,

because we only know that the nonzero coefficients constitute a two-colored universal class

of partitions. In order to have a one-to-one correspondence between positive and symmetric

two-faced u.a.u.-products � and two-colored universal classes of partitions, we would need that

the nonzero highest coefficients of � are 1. But this is not the case, as we will discuss. Instead,

we have a “partial” classification result due to Result 5 and Result 3.

Result 7 (Theorem 5.2.25, Proposition 5.2.26). Any positive and symmetric two-faced u.a.u.-

product must be one of our determined types. The nonzero highest coefficients of a positive

and symmetric two-faced u.a.u.-product are necessarily contained in the pointed complex unit

disk. We have found the known examples of:

(a) Voiculescu’s bifree product

(b) Liu’s free-boolean product

(c) two-faced incarnations of tensor, free and boolean product

Moreover, we obtain the possibility of three @-deformed positive and symmetric two-faced

u.a.u.-products for @ ∈ ℂ and 0 < |@ | ≤ 1.

The above result stimulated research of Hasebe, Gerhold and Ulrich, looking for possible

Hilbert space realizations of two-faced u.a.u.-products, thereby establishing positivity of those

products. In an unpublished draft of their paper ([HGU21]), among other results, positive

universal products are constructed which seem to coincide with the @-deformed two-faced

universal products mentioned in Result 7 as long as |@ | = 1.

Let us discuss open questions which arise from the above results or we do not answer in

this thesis:

• According to Result 2 we may speak of partition induced universal products. Such

products are also uniquely determined by their highest coefficients. We have designed

these products in such a way that their nonzero highest coefficients are all one. Is it

possible to relax the definition of partition induced universal products such that their

highest coefficients are not necessarily one? At the end of Remark 5.2.28 we discuss this

question.

• Concerning Result 7, which products in the list of all candidates of positive and symmetric

two-faced u.a.u.-products are actually positive? For some of these products we can

prove positivity but others remain unclear. Once this question has been answered, the

classification of such products would be completed.

• Canwedirectly encode the positivity of a partition inducedu.a.u.-product into the defining

axioms for a certain class of partitions? In other words, can we find sufficient conditions
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for a certain class of partitions which induces a positive (symmetric) u.a.u.-product?

• In Remark 5.2.18we discusswhywe cannot drop the assumption of positivity fromResult 5.

In particular, we can see that the two-colored universal classes of partitions are not enough

in order to classify all the symmetric two-faced u.a.u.-products. This leads to the natural

question if there might exist weaker axioms for a class of partitions which correspond to

all the symmetric u.a.u.-products (without assuming positivity).

• Is it possible to classify <-colored universal classes of partitions for an arbitrary < ∈ ℕ?

In particular, answering this question would lead to many more examples of symmetric

<-faced u.a.u.-products.

• We could show that single-colored and two-colored universal classes of partitions are

complete lattices. Is it possible to extend this result for arbitrary <-colored universal

classes of partitions? Identifying this kind of structure or any higher combinatorial

structure could help us to answer the next question.

• How would a “universal class of <-colored ordered partitions” look like for the non-

symmetric case? In other words, can we find sufficient conditions for a class of ordered

partitions which lead to a well-defined <-faced u.a.u.-product in the nonsymmetric case?

If this can be done, do these axioms allow a classification of such classes of partitions?

The plan of this dissertation is as follows:

In Chapter 1 we introduce some notations which we will use throughout the work. Fur-

thermore, we gather some tools to be able to formulate in the needed generality the famous

Baker–Campbell–Hausdorff formula (abbreviated by BCH-formula). This is done in two steps.

First, we consider a more general setting of an algebra with a so-called topologically admissible
family which turns it into a topological algebra and discuss the existence of a BCH-formula

there. Second, we consider the convolution algebra Lin(H,A) and discuss the existence of a

BCH-formula there. Herein, H denotes a connected filtered bialgebra and A denotes a unital

algebra. We close this chapter by a brief review of derivations.

In Chapter 2 we introduce our main object of consideration; universal products and its

properties. To derive a moment-cumulant formula for a given universal product, we need the

machinery which goes under the name of “reduction of convolution”. For this, we need to

introduce the notion of dual semigroups. Then, we quickly review how the universal coefficient

theorem leads to the definition of the Lachs functor. Roughly speaking, the Lachs functor

assigns to each dual semigroup a bialgebra. Reduction of convolution then means, to express

the convolution between elements in the dual space of a dual semigroup by the convolution

between elements in the dual space of the bialgebra, coming from the Lachs functor. After a

description of this procedure, we can prove amoment-cumulant formula by the results provided

in Chapter 1. Later, we introduce the notion of highest coefficients of a universal product with

right-ordered monomials property and prove that such products are uniquely determined by their

highest coefficients.

In Chapter 3 we lay the groundwork for our partition induced universal products. For this,

we define <-colored universal classes of partitions, partition induced logarithms (cumulants) and
their inverses as partition induced exponentials. Then, we show that such products are actually

symmetric <-faced u.a.u.-products.

InChapter 4 a classification of<-coloreduniversal classes ofpartitions is done for< ∈ {1, 2}.
In Chapter 5 we show how any positive and symmetric unital associative (3, <)-universal
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product induces an <-colored universal class of partitions by its highest coefficients. We use

this result to obtain a full classification of such universal products in the single-faced case and a

“partial” classification of such universal products in the two-faced case.

In Chapter 6 we show positivity of the partition induced universal products which stem

from what we call interval-crossing resp. crossing-interval partitions. This is done by a suitable

product of representations inspired by a previouswork ofGerhold for bimonotone independence

([Ger17]). Since we could not show positivity for certain universal products, which we obtain by

our “partial” classification result, we performed some computational tests in order to exclude

nonpositive products. We have considered two different test methods, where both start from a

result concerning Schoenberg correspondence for <-faced u.a.u.-products, recently proven by

Gerhold in [Ger21], leading to a Gaussian functional. We present the results of our calculations

which involve pair partitions for a given two-colored universal class of partitions.



Chapter 1

Exponential and logarithm for the
convolution algebra

Statements and definitions in this chapter can be seen as decoupled from considerations of

quantum probability theory but serve as a foundation to prove a moment-cumulant formula for

a universal product in Chapter 2. We first gather some notations and algebraic preliminaries and

then formulate the BCH-formula in two steps: first for certain topological algebras and then for

so-called convolution algebras. In the end of this chapter review results on derivations which

will be needed in Chapter 2.

1.1 Notations and algebraic preliminaries

In this section we will review basic definitions and introduce notations which are used through-

out this work. Most of these definitions and stated results can be found in standard textbooks

and therefore we omit any proofs. We provide the references to works from where we have

actually taken the definitions or results, including their proofs.

1.1.1 Convention. Within a calculation or a proof we put small justifications into proof brackets
È . . . É. The abbreviation “Tfae” means “The Following Are Equivalent”.

1.1.2 Convention.

(a) In this document, the symbol ℕ always denotes the set {1, 2, . . . } and the symbol ℕ0

denotes the set {0, 1, 2, . . . }. For any = ∈ ℕ we define [=] ≔ {1, 2, . . . , =} and [0] = ∅.
(b) For any set - and for any = ∈ ℕ we denote its =-fold Cartesian product by -×= , i. e.,

-×= ≔ - × - × · · · × -︸              ︷︷              ︸
= times

. (1.1.1)

(c) In this thesis vector spaces only will be considered over the complex numbers ℂ. In

particular, the notion vector space will stand for a ℂ-vector space.

(d) Let* and + be two vector spaces. Then, Lin(*,+) denotes the vector space of all linear
maps* −→ + .

1.1.3 Convention. By an algebra we always mean a not necessarily unital, associative algebra

overℂ. There exist at least two equivalent definitions for an algebra A. One is to say that a set A

is an algebra if and only if (A, ·) is a magma, A is a vector space and · is bilinear and associative.

1
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Another definition says that A is an algebra if and only if (A, �A) for �A : A⊗A −→ A satisfies

�A ◦ (�A ⊗ idA) = �A ◦ (idA ⊗ �A). It is a standard task to show that both definitions are

equivalent (e.g. [Grin18, p. 30]). The latter one is more suitable to recognize that the concept of

a coalgebra is meant to be something dual to an algebra, i. e., the concept of reversing arrows.

We use both definitions for an algebra interchangeably and it should be clear from the context

which one we actually use.

1.1.4 Remark. There are several universal mapping properties for certain objects in a category

which we will abbreviate by “UMP” for certain objects. Here we provide two of them which

become important later and are used throughout this work.

(a) UMP for Tensor Algebras.([BF12, Thm. 2.38]) Let + be a vector space and A an algebra.

The tensor algebra over + is an algebra and as a vector space given by

T(+) ≔
⊕
=∈ℕ

+⊗= . (1.1.2)

Be aware that using the sign ⊗ as the multiplication in the algebra T(+) is bad notation

and we prefer · to avoid any possible conflicts ([Grin17, Rem. 14]). Nonetheless, we still

have

∀=, < ∈ ℕ, ∀0 ∈ +⊗= , ∀1 ∈ +⊗< : 0 · 1 = 0 ⊗ 1. (1.1.3)

Furthermore, we use the following notation which shall reflect the universal mapping

property of the tensor algebra T(+) given 5 ∈ Lin(+,A)

+ A

T(+)

←
↪

→inc

← →5

←

→
∃! T ( 5 )

. (1.1.4)

If , is another vector space, 5 ∈ Lin(+,,) and inc : , ↩−→ T(,) is the canonical

inclusion map, then we set

T( 5 ) ≔ T (inc ◦ 5 ) : T(+) −→ T(,). (1.1.5)

For the unital tensor algebra over + we use the symbol

T0(+) ≔
⊕
=∈ℕ0

+⊗= . (1.1.6)

The unital tensor algebra T0 satisfies a similar commutative diagram as in equation (1.1.4)

but for unital algebras .

(b) UMP for Symmetric Algebras.([BF12, Thm. 10.7]) Let + be a vector space and A a unital

algebra. The symmetric tensor algebra Sym(+) over + is defined by

Sym(+) ≔
⊕
=∈ℕ0

Sym
=(+) ∼= T(+)

/
 (+) , (1.1.7)

where

Sym
=(+) = +⊗=

/
 =(+) , (1.1.8)



1.1 Notations and algebraic preliminaries 3

 =(+) =
=−1∑
8=1

+⊗(8−1) · ( 2(+)) ·+⊗(=−1−8) , (1.1.9)

 2 ≔ 〈E1 ⊗ E2 − E2 ⊗ E1 : (E1 , E2) ∈ +×2〉, (1.1.10)

 (+) =
⊕
=∈ℕ0

 =(+). (1.1.11)

A proof of these statements can be found in [Grin17, Cor. 56]. Given 5 ∈ Lin(+,A) with

the property ∀E, F ∈ + : 5 (E) · 5 (F) = 5 (F) · 5 (E), then the UMP of the commutative

unital algebra Sym(+) is characterized by

+ A

Sym(+)

←
↪

→is

← →5

←

→
∃! S( 5 )

. (1.1.12)

If, is another vector space, 5 ∈ Lin(+,,) and inc : , ↩−→ Sym(,) is the canonical

inclusion map, then we set

Sym( 5 ) ≔ S(inc ◦ 5 ) : Sym(+) −→ Sym(,). (1.1.13)

1.1.5 Convention. Let +1 and +2 be two ℂ-vector spaces. Then, there exists a canonical

isomorphism of algebras such that

T(+1 ⊕ +2) ∼=
⊕
=∈ℕ

⊕
(�8)8∈[=]
∈{1,2}×=

+�1
⊗ · · · ⊗ +�= (1.1.14)

For the idea of a proof of the above statement we refer to [Gre78, Sec. 3.7] or [Bou98, Ch. III,

§ 5.5]. In thisworkwewill identify both sides of equation (1.1.14)without explicitlymentioning

the canonical isomorphism. Also compare the above result to the one in Remark 2.2.7 (a).

1.1.6 Lemma ([Gre78, Sec. 9.8]). Let + and, be vector spaces, then there exists a canonical

isomorphism of unital algebras such that

Sym(+ ⊕,) ∼= Sym(+) ⊗ Sym(,). (1.1.15)

1.1.7 Remark (Coproduct in a category [Rot09, Def. on p. 220]). The coproduct of a family of

objects (�8)8∈� in a category C is an ordered pair

(
�, (8 : �8 −→ �)8∈�

)
, where � ∈ Obj(C) and

(8 : �8 −→ �)8∈� is a family of morphisms (called inclusions), which satisfies the following

universal property: for every object- ∈ Obj(C) and for a family ofmorphisms ( 58 : -8 −→ -)8∈� ,
there exists a unique morphism � : � −→ - making the diagram commute for each 8 ∈ �

�8 -

�

←

→8

← →58

←

→

∃! �
. (1.1.16)
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Typically, should the coproduct exist, one denotes the object � by

⊔
8∈� �8 (the inclusions 8

are not mentioned) which is unique up to isomorphism and fulfills ([Bor94, Prop. 2.2.3])⊔
8∈�

�8 ∼=
⊔
:∈ 

(⊔
9∈�:

� 9

)
, (1.1.17)

wherein the index set � is equal to a partition

⋃
:∈ �: of disjoint subsets �: and it is assumed

that all coproducts exist. The unique isomorphism � usually has the symbol⊔
8∈�

58 ≔ �. (1.1.18)

The above mentioned universal property of the coproduct has the implication (similar to the

proof of [Fra06, Prop. 3.20 (b)]): for a family of morphisms ( 58 : -8 −→ .8)8∈� there exists a

unique morphism ' ∈ MorphC(
⊔
8∈� -8 ,

⊔
8∈� .8)making the diagram commute for each 9 ∈ �

-9 .9

⊔
8∈� -8

⊔
8∈� .8

← →
59

←

→ 9
←

→ � 9

← →∃! '

, (1.1.19)

with inclusions ( 9 : -9 −→
⊔
8∈� -8)9∈� and (� 9 : .9 −→

⊔
8∈� .8)9∈� . Usually, this unique

morphism ' is also denoted by ∐
8∈�

58 ≔ '. (1.1.20)

1.1.8 Convention.

(a) Let A be a unital algebra. Then, �A denotes the multiplication map A ⊗ A −→ A

of the algebra A, and �A denotes the unity map ℂ −→ A of the algebra A. ([Grin18,

eq.(1.1)–(1.3)]).

(b) Let K be a field and C be a K-coalgebra. Then, ΔC denotes the comultiplication map

C ⊗ C −→ C of the K-coalgebra C, and �C denotes the counit map C −→ K of the

K-coalgebra C. When we say that C is a coalgebra, we mean that C is a K-coalgebra for

K = ℂ.

1.1.9 Convention (Convolution algebra [Grin21, Def. 1.9]). Let A be a unital algebra and let

C be a coalgebra. Then, the vector space Lin(C,A) becomes an algebra (Lin(C,A),★) by
setting

5 ★, = �A ◦ ( 5 ⊗ ,) ◦ ΔC (1.1.21)

for any 5 ∈ Lin(C,A) and , ∈ Lin(C,A). The algebra (Lin(C,A),★) is called the convolution
algebra of C and A. In the following, we will simply refer to this algebra as Lin(C,A). The
binary operation ★ defined in equation (1.1.21) is called convolution. In particular, for any

5 ∈ Lin(C,A) and , ∈ Lin(C,A), we will refer to 5 ★ , as the convolution of the maps 5 and ,.
The expression 4 C,A shall denote the map �A ◦ �C : C −→ A. This map 4 C,A is the unity of the

convolution algebra Lin(C,A).
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1.1.10 Definition (Bialgebra [Grin18, Def. on p. 102]). Let K be a field. We call a K-vector

space B K-bialgebra if and only if it is a unital K-algebra and a K-coalgebra such that ΔB

and �B are morphisms for the unital algebra structure (B, �B , �B). By bialgebra we mean a

K-bialgebra for K = ℂ.

1.1.11 Definition (Hopfalgebra [Grin18,Def. onp. 104]). AbialgebraH is called aHopf algebra
if and only if there is an element S ∈ Lin(H,H), called the antipode forH, which is a two-sided

inverse for the map idH under the convolution★.

1.1.12 Definition (Filtration of vector space [Grin21, Def. 1.13]). A filtered vector spacemeans

a vector space + equipped with a family (+≤ℓ )ℓ∈ℕ0
of vector subspaces of + satisfying +≤0 ⊆

+≤1 ⊆ +≤2 ⊆ · · · and + =
⋃
ℓ∈ℕ0

+≤ℓ . The family (+≤ℓ )ℓ∈ℕ0
is called the filtration of the filtered

vector space + . For each < ∈ ℕ0 the vector subspace +≤< of + is called the <-th part of the
filtration (+≤ℓ )ℓ∈ℕ0

.

1.1.13 Convention. Whenever+ is a filtered vector space and ℓ is a negative integer, we define

+≤ℓ to mean the vector subspace {0} of + .

1.1.14 Definition (Θ-graded, graded vector space [Lac15, Sec. 2.4]). Let Θ be a commutative

monoid with the commutative operation “+” and neutral element 0. A Θ-graded vector space
means a vector space + equipped with a family (+ℓ )ℓ∈Θ of vector subspaces of + satisfying

+ =
⊕

ℓ∈Θ+ℓ . The family (+ℓ )ℓ∈Θ is called the Θ-grading of the graded vector space + . If

Θ = (ℕ0 ,+), then we call the Θ-graded vector spaceℕ0-graded or just graded and the Θ-grading

a ℕ0-grading or just a grading.

1.1.15 Proposition (Graded vector space is filtered [Grin21, Prop. 16.2]). Let + be a graded

vector space. For every = ∈ ℕ0 we define a vector subspace +≤= of + by + ≔
⊕=

;=0
+; . Then,

(+, (+≤=)=∈ℕ0
) is a filtered vector space.

1.1.16 Lemma ([Gre78, Sec. 9.9]). Let + =
⊕

=∈ℕ0

+= be a graded vector space. If we set(
Sym(+)

)
0
≔ ℂ ⊕

⊕
ℓ∈ℕ

( (
+0

)⊗
Sym

ℓ
)
, (1.1.22a)

∀ : ∈ ℕ :

(
Sym(+)

)
:
≔

⊕
(?ℓ )ℓ∈[=]∈(ℕ0)= :

=∈ℕ0 ,
∑=
ℓ=1

ℓ ?ℓ=:

(⊗
ℓ∈[=]

(
+ℓ

)⊗
Sym

?ℓ

)
, (1.1.22b)

then this defines the unique grading for the unital algebra Sym(+) such that the canonical

injection + ↩−→ Sym(+) is homogeneous of degree 0.

1.1.17 Definition (Filtered algebra/coalgebra/bialgebra/Hopf algebra [Grin18,Def. onp. 299
& p. 311]).

(a) Let A be a unital algebra and assume that A is filtered as a vector space. Then,

(A, (A≤ℓ )ℓ∈ℕ0
) is called a filtered unital algebra, if and only if the following two condi-

tions are satisfied

• 1A ∈ A≤0,

• for all =, < ∈ ℕ0 we have A≤= · A≤< ⊆ A≤=+< .
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(b) Let C be a coalgebra and assume that C is a filtered as a vector space. Then, (C, (C≤ℓ )ℓ∈ℕ0
)

is called a filtered coalgebra if and only if for all = ∈ ℕ0 and G ∈ C= we have

Δ(G) ∈
=∑
8=0

C8 ⊗ C=−8 . (1.1.23)

(c) Let H be a bialgebra and assume that H is a filtered vector space. Then, (H, (H≤ℓ )ℓ∈ℕ0
)

is called a filtered bialgebra if and only if (H, (H≤ℓ )ℓ∈ℕ0
) is a filtered algebra and a filtered

coalgebra.

(d) LetH be aHopf algebra andassume thatH is a filteredvector space. Then, (H, (H≤ℓ )ℓ∈ℕ0
)

is called a filtered Hopf algebra if and only if (H, (H≤ℓ )ℓ∈ℕ0
) is a filtered bialgebra and

S(H≤=) ⊆ H≤= .

1.1.18 Definition (Homogeneous map, graded map [Lac15, Sec. 2.4]).

(a) Let (+, (+ℓ )ℓ∈Θ) and (,, (,ℓ )ℓ∈Θ) be two Θ-graded vector spaces and let 5 : + −→, be

a linear map. The map 5 is called homogeneous of degree 0 if and only if there exists a

fixed element 0 ∈ Θ such that

∀ ∈ Θ : 5 (+) ⊆ ,+0
. (1.1.24)

Herein, 0 is called the degree of the homogeneous mapping 5 . By a homogeneous map

we just mean a map which is homogeneous of degree 0.

(b) Let (+, (+=)=∈ℕ0
) and (,, (,=)=∈ℕ0

) be two graded vector spaces. A linear map 5 : + −→
, is called graded if and only if ∀= ∈ ℕ0 : 5 (+=) ⊆ ,= .

1.1.19 Definition (Θ-graded (unital) algebra [Lac15,Def. 2.4.1]). Let (A, �A , �A) be an algebra

with multiplication map �A : A ⊗ A −→ A. Then, A is called a Θ-graded algebra if and only

if the multiplication map is homogeneous. A unital algebra (A, �A , �A) is called a Θ-graded

unital algebra if and only if additionally the unit map �A : ℂ −→ A is homogeneous.

1.1.20 Definition (Graded algebra/coalgebra/bialgebra/Hopf algebra [Grin18]).

(a) Let A be a unital algebra and assume that A is graded as a vector space. Then,

(A, (A=)=∈ℕ0
) is called a graded unital algebra if and only if the following two conditions

are satisfied

• ℂ · 1A ⊆ A0

• for all =, < ∈ ℕ0 we have A=A< ⊆ A=+<

It is equivalent to say that themultiplication�A : A⊗A −→ A andunitmap�A : K −→ A

are graded.

(b) Let C be a coalgebra and assume that C is graded as a vector space. Then, (C, (C=)=∈ℕ0
)

is called a graded coalgebra if and only if the comultiplicationΔC : C −→ C⊗ C and counit

�C : C −→ K are graded. It is equivalent to say that

∀= ∈ ℕ0 : ΔC(C=) ⊆
=∑
ℓ=0

Cℓ ⊗ C=−ℓ (1.1.25)

and �C(C=) = 0 for all = ≥ 1.
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(c) Let H be a bialgebra and assume that H is a graded vector space. Then, (H, (H=)=∈ℕ0
)

is called a graded bialgebra if and only if (H, (H=)=∈ℕ0
) is a graded unital algebra and a

graded coalgebra.

(d) LetH be aHopf algebra and assume thatH is a graded vector space. Then, (H, (H=)=∈ℕ0
)

is called a graded Hopf algebra if and only if (H, (H=)=∈ℕ0
) is a graded bialgebra and the

antipode S : H −→H is graded.

1.1.21 Lemma ([Grin21, Prop. 16.8]). Let (H, (H=)=∈ℕ0
) be a graded bialgebra. For every

= ∈ ℕ0 define a vector subspace H≤= ⊆ H by

H≤= ≔
=⊕
ℓ=0

Hℓ . (1.1.26)

Then,

(
H, (H≤=)=∈ℕ0

)
is a filtered bialgebra.

1.1.22 Definition (Connected filtered bialgebra [Grin21, Rem. 2.12]). Let (H, (H≤=)=∈ℕ0
) be

a filtered bialgebra. We say that the filtered bialgebraH is connected if and only ifH≤0 = K ·1H,

where 1H denotes the unity of the unital algebra H.

1.1.23 Definition (Connected graded K-bialgebra [Grin18, p. 156]). Let (H, (H=)=∈ℕ0
) be a

graded bialgebra. We say that the graded bialgebra H is connected if and only if H0 = K · 1H,

where 1H denotes the unity of the unital algebra H.

1.1.24 Convention. Let A be an algebra. Consider the linear space A1 ≔ ℂ ⊕ A with multipli-

cation defined by

∀�, � ∈ ℂ, ∀0, 1 ∈ A : (� ⊕ 0)(� ⊕ 1) = �� ⊕ (�1 + �0 + 01). (1.1.27)

The map 0 ↦−→ 0 ⊕ 0 embeds A isomorphically into this algebra. Furthermore, 1 ⊕ 0 is a unital

element of A1
. We will call A1

the unitization of A.

Denote by !1
: A1 −→ ℂ the unique linear extension of ! with !1(1) = 1 and !1�A = !. We

will call !1
the unital extension of !.

1.1.25 Definition (Hermitian, positive and extensible linear functional [Pal01, Def. 9.4.2]).
A linear functional ! on a ∗-algebra A is called

(a) hermitian if and only if it satisfies !(0∗) = !(0)∗ for all 0 ∈ A;

(b) positive if and only if it satisfies !(0∗0) ≥ 0 for all 0 ∈ A;

(c) extensible if and only if there exists a positive linear functional $ : A1 −→ ℂ, such that

$�A = !. Herein, A1 = ℂ1 ⊕ A is the unitization of A.

1.1.26 Lemma ([Pal01, Lem. 9.4.3]). Let A be a ∗-algebra. A positive linear functional ! : A −→
ℂ satisfies

∀0, 1 ∈ A : !(0∗1) = !(1∗0)∗ , (1.1.28)

∀0, 1 ∈ A : |!(0∗1)|2 ≤ !(0∗0)!(1∗1). (1.1.29)

An extensible positive linear functional is hermitian.
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1.1.27 Definition (Strongly positive linear functional [Lac15, p. 101]). Let A be a ∗-algebra
and ! : A −→ ℂ be a linear functional. The linear functional ! is said to be strongly positive if
!1

is positive.

1.1.28 Remark. An extensible linear functional is obviously positive. By Definition 1.1.25 any

strongly positive linear functional is extensible and therefore positive, i. e., it is an extensible,

positive linear functional. By equation (1.1.28) any strongly positive linear functional is

hermitian.

1.2 BCH-formula: topological algebra case

In this section we want to gather prerequisites which allow us to formulate the famous

Baker–Campbell–Hausdorff formula. Thus, we need to establish some topological notions. The

guidance for this section are the statements found in [EG07, Sec. 3.1.2] and [Bou89, Ch. II. § 6.1].

We shall review the main steps and our main tools are provided by [BF12]. In this section we

adapt the notation for an algebra (A, ∗)with multiplication map ∗ : A×A −→ A from [BF12] for

compatibility reasons to this book. We emphasize that in [BF12] an algebra does not necessarily

need to be associative which is in contrast to our definition

1.2.1 Definition (Convergent sequence in a metric space [Hei11, Ch. 1.2]). Let (-, 3) be a

metric space and (G 9)9∈ℕ ∈ -ℕ
. We say

(G 9)9∈ℕ is 3-convergent in (-, 3) if and only if

∃ 0 ∈ -, ∀� > 0, ∃ 9� ∈ ℕ, ∀ 9 ≥ 9� : 3(G 9 , 0) < �.
(1.2.1)

The element 0 ∈ - is called limit of the sequence (G 9)9∈ℕ and we also say (G 9)9∈ℕ is convergent
towards 0 (in (-, 3)), in formal language

3-lim

9→∞
≔ 0 or (G 9)9∈ℕ →3 0. (1.2.2)

1.2.2 Definition (Convergent sequence in a topological space [Hei11, Ch. 1.2]). Let (-, �) be
a topological space, G ∈ - and* ⊆ -.

* is neighborhood of G (w. r. t. �) if and only if ∃$ ∈ � : G ∈ $ ⊆ *. (1.2.3)

The set

U�(G) ≔ {* ⊆ - | * is neighborhood of G w. r. t. � } (1.2.4)

is called neighborhood system of G w. r. t. �. Then, we define for (G 9)9∈ℕ ∈ -ℕ

(G 9)9∈ℕ convergent in (-, �) if and only if

∃ 0 ∈ -, ∀* ∈ U�(0), ∃ 9* ∈ ℕ, ∀ 9 ≥ 9D : G 9 ∈ *.
(1.2.5)

The element 0 ∈ - is called limit of the sequence (G 9)9∈ℕ and we also say (G 9)9∈ℕ is convergent
towards 0 (in (-, �)), in formal language

�-lim

9→∞
≔ 0 or (G 9)9∈ℕ →� 0. (1.2.6)
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1.2.3 Remark. In a metrizable space both meanings of convergence are the same, i. e.,

(G 9)9∈ℕ →�3 0 ⇐⇒ (G 9)9∈ℕ →3 0. (1.2.7)

1.2.4 Definition (Topologically admissible family [BF12, Def. 2.57]). Let (A, ∗) be an algebra.

We say that (Ω:):∈ℕ0
is a topologically admissible family in A if and only if the setsΩ: are subsets

of A satisfying the properties

(a) ∀ : ∈ ℕ0 : Ω: is an ideal of A,

(b) Ω0 = A and ∀ : ∈ ℕ0 : Ω: ⊇ Ω:+1,

(c) ∀ ℎ, : ∈ ℕ0 : Ωℎ ∗Ω: ⊆ Ωℎ+: ,

(d)
⋂
:∈ℕ0

Ω: = {0}.

1.2.5 Theorem ([BF12, Thm. 2.58]). Let (A, ∗) be an algebra and suppose that (Ω:):∈ℕ0
is a

topologically admissible family of subsets of A. Then, the family

∅ ∪
(
0 +Ω:

)
0∈A,:∈ℕ0

(1.2.8)

is a basis for a topologyΩ on A endowing A with the structure of a topological algebra. Even

more, the topology Ω is induced by the metric 3 : A × A −→ [0,∞) defined as follows (we set

exp(−∞) ≔ 0)

∀G, H ∈ A : 3(G, H) ≔ exp(−�(G − H)), (1.2.9)

where

� :


A −→ ℕ ∪ {0,∞}

I ↦−→
{

max{ = ≥ 1 | I ∈ Ω= } for I ≠ 0

∞ for I = 0.

(1.2.10)

The triangle inequality for 3 holds in the stronger form

∀G, H, I ∈ A : 3(G, H) ≤ max{3(G, I), 3(I, H)}. (1.2.11)

1.2.6 Lemma ([BF12, Rem. 2.62]). Let (A, ∗) be an algebra and denote by 3 the metric on A

induced by a topologically admissible family (Ω:):∈ℕ0
. Then, we have

Tfae: (a) (0=)=∈ℕ0
∈ Aℕ0

is a Cauchy sequence in (A, 3)

(b) 3-lim=→∞(0=+1 − 0=) = 0

In particular, a series

∑∞
==0

0= consisting of elements in A is a Cauchy sequence in (A, 3) if and
only if 3-lim=→∞ 0= = 0.

1.2.7 Lemma ([EG07, Sec. 3.1.2]). Let (A, ∗) be a unital algebra and suppose that (Ω:):∈ℕ0
is a

topologically admissible family of subsets of A such that 1A ∈ Ω0 \Ω1. If A is complete w. r. t.

the metric induced by the family (Ω:):∈ℕ0
, then we can set

exp:


Ω1 −→ 1A +Ω1

D ↦−→
∞∑
:=0

1

:!
D∗: ,

(1.2.12a)
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log
1
:


Ω1 −→ Ω1

D ↦−→
∞∑
:=1

(−1):−1

:
D∗: .

(1.2.12b)

Proof: We have to prove that the above defined maps are well defined. We set

∀D ∈ Ω : D∗0 ≔ 1A .

Assume that both series converge. Then, ∀= ∈ ℕ, ∀D ∈ Ω1 : D∗= ∈ Ω= by Definition 1.2.4 (b) and
(c). Therefore, exp(D) ∈ 1A +Ω1 and log

1
(D) ∈ Ω1 for any D ∈ Ω1, since Ω1 is an ideal in A and

thus a linear subspace of A.

Now, let us show that exp(D) converges for any D ∈ Ω1 with respect to the metric 3 induced

by (Ω:):∈ℕ0
. We define for any # ∈ ℕ

(# ≔

#∑
:=0

1

:!
D∗: ∈ Ω1.

We need to show that 3-lim#→∞ (# exists in Ω1. We shall show that ((# )=≥1 is a Cauchy-

sequence with respect to 3. From Lemma 1.2.6 we can see that this equivalent to show that

3-lim#→∞
1

=!
D∗= = 0. According to Theorem 1.2.5 {∅} ∪ {Ω: | : ∈ ℕ0 } is a neighborhood basis

for 0 ∈ A. By Remark 1.2.3 and equation (1.2.5) we need to show

∀ : ∈ ℕ, ∃ 9: ∈ ℕ, ∀ 9 ≥ 9: :

1

9!
D∗9 ∈ Ω: , (I)

in order to conclude that ((# )=≥1 is a Cauchy-sequencewith respect to 3. Let : ∈ ℕ0. Since D ∈ Ω1,

we have D∗(:+=) ∈ (Ω1)(:+=) ⊆ Ω: for all = ∈ ℕ0 by Definition 1.2.4 (c). By Definition 1.2.4 (b)we

have Ω:+= ⊆ Ω: for all = ∈ ℕ0 and therefore we have shown equation (I), if we set 9: ≔ :. Since

(A, 3) is assumed to be complete and we have shown that ((# )=≥1 is a Cauchy-sequence with

respect to 3, we can conclude that 3-lim#→∞ (# exists in Ω1. This is what we needed to show.

An analogous proof holds for the convergence of log
1
(D) for any D ∈ Ω1. �

1.2.8 Remark. We notice that [BF12, Lem. 3.3] provide a similar result to the following

Lemma 1.2.7 under the assumptions that the algebra A is graded which we do not demand.

We will somehow imitate the proof of [BF12, Lem. 3.3], but adapted to our situation where

(A, 3) is complete and thus there is no need to consider the metric completion.

1.2.9 Lemma. By assumptions and definitions from Lemma 1.2.7, the functions exp, log
1
are

continuous on their corresponding domains.

Proof: To prove the assertion we use the following standard fact from analysis, known as

the uniform limit theorem, which states that the uniform limit of any sequence of continuous

functions is continuous. We set

∀= ∈ ℕ0 : 5= :


Ω1 −→ 1A +Ω1

D ↦−→
=∑
:=0

1

:!
(D)∗: .

All functions 5= are continuous, because they are compositions of continuous maps in the

topological algebra A. We are left to show that ( 5=)=∈ℕ0
uniformly converges to exp. Since
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(A, 3) is complete, using Cauchy’s criteria of convergence we can say that ( 5=)=∈ℕ0
is uniformly

convergent on Ω1 with limit exp if and only if ∀� > 0, ∃#� ∈ ℕ such that

sup

D∈Ω1

3( 5=(D), 5<(D)) < � for all =, < ≥ #�. (I)

Now, we can calculate

sup

D∈Ω1

3( 5=(D), 5<(D))

= sup

D∈Ω1

3

(
=∑
:=0

1

:!
D∗: ,

<∑
:=0

1

:!
D∗:

)

= sup

D∈Ω1

3

(
=+<∑
:==

1

:!
D∗: , 0

)
È∀G, H, I ∈ A : 3(G, H) = 3(G + I, H + I) by [BF12, Rem. 2.61]É

= sup

D∈Ω1

exp

(
−max

{
ℓ ≥ 1

����� =+<∑
:==

1

:!
D∗: ∈ Ωℓ

})
Èdef. of 3( · , · ) in eq. (1.2.9)É

= sup

D∈Ω1

exp(−=) ÈDefinition 1.2.4 (b) and (c)É

= exp(−=) → 0 for = →∞.

Thus, we have shown equation (I). A similar proof holds for log
1
. �

1.2.10 Definition. By assumptions from Lemma 1.2.7 and by the definition of the map

log
1
: Ω1 −→ Ω1, we define

log :

{
1A +Ω1 −→ Ω1

D̃ ↦−→ log
1
(D̃ − 1A).

(1.2.13)

Although, the following two propositions get cited by [BF12], we mention that they have

different prerequisites in its original source, in the sense of Remark 1.2.8. But the proofs still

remain formally the same when we replace [BF12, Def. 3.2] by our Lemma 1.2.7.

1.2.11 Proposition ([BF12, Prop. 3.4]). The functions exp and log introduced in Lemma 1.2.7

are inverse to each other, so that

exp(log(1A + D)) = 1A + D, log(exp(D)) = D for every D ∈ Ω1. (1.2.14)

1.2.12 Proposition ([BF12, Thm. 3.6]). Let (A, ∗A) and (B, ∗B) be two unital algebras which

posses a topologically admissible family, (Ω=)=∈ℕ0
respectively (Ω̃=)=∈ℕ0

, and the algebras

A, B are assumed to be complete regarding the metric induced by (Ω=)=∈ℕ0
resp. (Ω̃=)=∈ℕ0

.

Furthermore, assume 1A ∈ Ω0 \Ω1 and 1B ∈ Ω̃0 \ Ω̃1. Let ! : A −→ B be a continuous unital

algebra homomorphism such that

!(Ω1) ⊆ Ω̃1. (1.2.15)

Then, we have

! ◦ exp∗A = exp∗B ◦ !�Ω1

(1.2.16a)

! ◦ log∗A = log∗B ◦ !�1A+Ω1

(1.2.16b)
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We now give a statement similar to [Bou89, Prop. 1 in Ch. II. § 5.1] which is less general in

our version, but more suited for our needs.

1.2.13 Proposition. Let A be a unital algebra which possesses a topologically admissible

family (T=)=∈ℕ0
and which is complete w. r. t. the induced metric 3A from Theorem 1.2.5. Let

5 : - −→ A be a map such that there exists some ℓ ∈ ℕ for which

5 (-) ⊆ Tℓ . (1.2.17)

Then, there exists a unique continuous unital homomorphism 5̂ : T̂0(ℂ-) −→ A such that

5̂ �- = 5 , wherebyℂ- denotes the free vector space over -, T0(ℂ-) is the unital tensor algebra
of ℂ- and T̂0(ℂ-) denotes its isometric completion of the metric space T0(ℂ-) as a naturally

graded algebra.

Proof: By the UMP of the tensor algebra there exists a unique unital algebra homomorphism

5 ′ : T0(ℂ-) −→ A

such that 5 ′�- = 5 . We need to show that 5 ′ is continuous. Since the tensor algebra T0(ℂ-) =⊕
=∈ℕ0

(ℂ-)⊗= is naturally graded by ((ℂ-)⊗=)=∈ℕ0
, we can regard this algebra as a topological

one È [BF12, Prop. 2.65]É. In particular a topologically admissible family (Ω:):∈ℕ0
is given by

Ω: ≔

⊕
9≥:
(ℂ-)⊗ 9 (I)

È [BF12, Exa. 2.64, 3.]É. The isometric completion of T0(ℂ-) is given by the space of formal

power series on T0(ℂ-), i. e., T̂0(ℂ-) ∼=
∏

9∈ℕ0

(ℂ-)⊗ 9 È [BF12, Thm. 2.75]É. A topologically

admissible family (Ω̂:):∈ℕ0
on T̂(ℂ-) is given by Ω̂: ≔

∏
9≥:(ℂ-)⊗ 9 È [BF12, Rem. 2.74]É. We

note that

∀ : ∈ ℕ0 : Ω: = Ω̂: ∩ T(ℂ-) (II)

whence the subspace topology on T(ℂ-) coincides with the one induced by (Ω:):∈ℕ0
. By the

fact that the tensor algebra T0(ℂ-) as an algebra is generated by elements of ℂ-, the map

5 ′ : T0(ℂ-) −→ A is a homomorphism of unital algebras and from the fact that (T=)=∈ℕ0
is a

topologically admissible family for the algebra A we obtain

∀ : ∈ ℕ0 : 5 ′
(
(ℂ-)⊗:

)
⊆ T:ℓ .

By linearity of 5 ′, property of Definition 1.2.4 (b) and equation (I), we can conclude from the

above equation that

5 ′(Ω:) ⊆ T:ℓ for all : ∈ ℕ0. (III)

By equation (II) this is equivalent to 5 ′(Ω̂: ∩T0(ℂ-)) ⊆ T:ℓ for all : ∈ ℕ0. Hence, we have shown

that the map 5 ′ is continuous w. r. t. the subspace topology for T(ℂ-) as a dense subset of T̂(ℂ-)
.

Next, we show that 5 ′ : T(ℂ-) −→ A maps Cauchy sequences to Cauchy sequences.

Assume (0=)=∈ℕ is a Cauchy sequence in (T(ℂ-), 3). We show that ( 5 ′(0=))=∈ℕ is a Cauchy

sequence in (A, 3A) and according to Lemma 1.2.6 this is equivalent to 3A -lim=→∞( 5 ′(0=+1) −
5 ′(0=)) = 0, i. e., we have to show that

∀ : ∈ ℕ, ∃ 9: ∈ ℕ, ∀ 9 ≥ 9: : 5 ′(0 9+1) − 5 ′(0 9) ∈ T: . (IV)
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Since (0=)=∈ℕ is assumed to be a Cauchy sequence, we know that

∀ :̃ ∈ ℕ, ∃ z̃: ∈ ℕ, ∀ 9 ≥ z̃: : 0 9+1 − 0 9 ∈ Ω:̃ .

By equation (III) we obtain

∀ :̃ ∈ ℕ ∃ z̃: ∈ ℕ, ∀ 9 ≥ z̃: : 5 ′(0 9+1) − 5 ′(0 9) ∈ T:̃ℓ .

The property T:̃ℓ+= ⊆ T:̃ℓ for all :̃ , = ∈ ℕ shows equation (IV). Considering the proof of the

well known extension theorem of a uniform continuous function on a dense subset ([AE08,

Thm. 2.1]), we can see that the continuity of 5 ′ on T(ℂ-)) and the property that 5 ′maps Cauchy

sequences to Cauchy sequences suffices to conclude that there exists a unique continuous

extension 5̂ : T̂0(ℂ-) −→ A of 5 ′ : T0(ℂ-) −→ A. �

1.2.14 Convention (Right-nested brackets [BF12, p. 125]). Let (g, [ · , · ]g) be a Lie algebra

and D, E ∈ g. According to [BF12, p. 125] we introduce the following notation for so-called

right-nested brackets of D and E (recall that (ad D)(E) = [D, E]g)

∀= ∈ ℕ, ∀(ℎ8)8∈[=] ∈ ℕ×=0
, ∀(:8)8∈[=] ∈ ℕ×=0

:

[Dℎ1E:1 . . . Dℎ=E:= ]g ≔ (ad D)ℎ1 ◦ (ad E):1 ◦ · · · ◦ (ad D)ℎ= ◦ (ad E):=−1(E). (1.2.18)

Indeed, another visualization of equation (1.2.18) is given by

[Dℎ1E:1 . . . Dℎ=E:= ]g = [D, . . . [D︸   ︷︷   ︸
ℎ1 times

, [E, . . . [E︸  ︷︷  ︸
:1 times

, . . . [D, . . . [D︸   ︷︷   ︸
:= times

, [E, . . . E︸ ︷︷ ︸
:1 times

]g]g ]g ]g ]g ]g ]g (1.2.19)

Let+ be a vector space. Let T̂(+) = ∏∞
:=0

+⊗: be the usual completion of the tensor algebra

T0(+) (i. e., T̂0(+) is the algebra of the formal power series of the tensor algebra of+). We denote

the multiplication of the tensor algebra T0(+) by a dot ·. For the completion T̂0(+) we put ·̂ as
the multiplication in this algebra. By [ · , · ] ·̂ we mean the Lie bracket canonically induced by ·̂.
Similar to [BF12, eq. (3.15)] we define for all D, E ∈ T̂+(+) ≔

∏∞
:=1

+⊗:

BCH9(D, E) =
9∑

==1

(−1)=+1

=

∑
(ℎ1 ,:1),...,(ℎ= ,:=)≠0

ℎ1+:1+···+ℎ=+:==9

[
Dℎ1E:1 . . . Dℎ=E:=

]
·̂

ℎ1! . . . ℎ=! :1! . . . :=!(∑=
8=1
(ℎ8 + :8))

. (1.2.20)

Herein, [Dℎ1 . . . E:= ] ·̂ is a right-nested bracket in the Lie algebra associated to T̂0(+). Then, set

BCH ·̂ (D, E) ≔
∞∑
9=1

BCH9(D, E). (1.2.21)

The expression BCH ·̂ (D, E) appears in the formulation of the famous Campbell-Baker-Hausdorff-

Dynkin theorem according to [BF12, Thm. 3.8], where in particular it is proven that equa-

tion (1.2.21) actually makes sense. The next theorem makes use of the BCH-formula stated in

[BF12, Thm. 3.8], describes substitutions in the BCH-series and is inspired by the statement of

[Bou89, Prop. 3 in Ch. II. §6.5], but once again less general and more suited to our needs.
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1.2.15 Theorem (Campbell-Baker-Hausdorff-Dynkin [Bou89, Prop. 3 in Ch. II. §6.5]). Given

an unital algebra (A, ∗)with a topologically admissible family (Ω=)=∈ℕ0
, where A is assumed to

be completew. r. t. the inducedmetric and 1A ∈ Ω0\Ω1. For arbitrary elements D, E ∈ Ω1 holds

the so-called Campbell-Baker-Hausdorff-Dynkin formula (abbreviated by BCH-formula)

exp∗(D) ∗ exp∗(E) = exp∗(BCH∗(D, E)), (1.2.22)

where the definition of BCH∗( · , · ) is to be understood in the sense of equations (1.2.20) and

(1.2.21), i. e., as a series of right nested brackets [Dℎ1 . . . E:= ]∗with Lie bracket [ · , · ]∗ canonically
induced by ∗.

Proof: Assume D, E ∈ Ω1. Let - ≔ {G, H} be a set and define a map 5 : - −→ A by G ↦−→ D

and H ↦−→ E. Then the assertion of Proposition 1.2.13 applies and we obtain the existence

of a continuous unital algebra homomorphism 5̂ : T̂0(ℂ-) −→ A, where T̂0(ℂ-) denotes the
isometric completion of the metric space T0(ℂ-) as a naturally graded algebra. According to

[BF12, Thm. 2.69] this completion can be equippedwith a structure of a unital algebra (T̂0(ℂ-), ·̂ )
which is also a topological algebra containing a dense subalgebra isomorphic to T0(ℂ-). Now,

we can calculate

exp∗(D) ∗ exp∗(E)

= exp∗
(
5̂ (D)

)
∗ exp∗

(
5̂ (E)

)
)

= 5̂
(
exp ·̂ (G) ·̂ exp ·̂ (H)

)
ÈProposition 1.2.13 and 1.2.12É

= 5̂
(
exp ·̂

(
BCH ·̂ (G, H)

) )
ÈBCH-formula stated in [BF12, Thm. 3.8] for (T̂0(ℂ〈-〉), ·̂ ) É

= exp∗

(
5̂
(
BCH ·̂ (G, H)

) )
ÈProposition 1.2.13É

= exp∗
(
BCH∗(D, E)

)
È 5̂ is unital algebra hom. and def. of BCH ·̂ ( · , · ) É.

This proves the statement of equation (1.2.22) since D, E ∈ Ω1 were arbitrarily chosen. �

1.3 BCH-formula: convolution algebra case

In this section we want to review the framework which allows to us to formulate a BCH-formula

on the convolution algebra. For this purpose we continue to follow the path presented in [EG07,

Sec. 3.3] or in [EM09, Sec. 2.3].

1.3.1 Definition ([Grin21, Def. 3.2]). LetA be a unital algebra and letH be a connected filtered

bialgebra.

(a) For every = ∈ ℕ0 we denote by

Lin
=(H,A) ≔ { 5 ∈ Lin(H,A) | 5 �H≤=−1

= 0 } ⊆ Lin(H,A). (1.3.1)

(b) Let 1H denote the unity of the underlying algebra structure of H then we put

g(H,A) ≔ { 5 ∈ Lin(H,A) | 5 (1H) = 0 } ⊆ Lin(H,A). (1.3.2)
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(c) Let 1A denote the unity of the unital algebra A then we put

�(H,A) ≔ { 5 ∈ Lin(H,A) | 5 (1H) = 1A) }. (1.3.3)

1.3.2 Lemma ([Grin21, Def. 3.1 (b)]). Let A be a unital algebra and let H be a connected

filtered bialgebra. Then,

Lin
1(H,A) = g(H,A) (1.3.4)

1.3.3 Lemma ([Grin21, Rem. 3.3, Rem 3.5]).

(a) Let A be a unital algebra and let � be a connected filtered bialgebra. Recall from

Convention 1.1.9 that 4H,A denotes the map �A ◦ �H : H −→ A, then

• 4H,A ∈ �(H,A).
• �(H,A) = 4H,A + g(H,A).

(b) ∀ 5 ∈ g(H,A), ∀= ∈ ℕ0 , ∀ 8 ∈ ℕ0 : (8 > = =⇒ 5 ★8�H≤= = 0).

In particular the statement of Lemma 1.3.3 (b) allows a direct definition of the well-known

exponential exp★ 5 and logarithm log★ 5 for 5 ∈ g(H,A) as is done in [Grin21, Def. 3.6, Def. 3.7].

In each point of the connected filtered bialgebra H the series for exp★ 5 and log★ 5 turn out to

be actually finite sums. But we want more than that and we want to obtain a BCH-formula

for the convolution algebra. Therefore, we shall show that we can establish the prerequisite of

Theorem 1.2.15 in the case of the convolution algebra Lin(H,A). The next lemma builds the

foundation for this approach which somehow resembles the statement of [EM09, Prop. 2.5].

1.3.4 Remark. There exists a different approach for the “convolution exponential” if we replace

the algebra A by the complex numbers ℂ and replace the connected filtered bialgebra B by

a coalgebra C in Proposition 1.3.6. In order to define a convolution exponential on Lin(C,ℂ)
we can use the fundamental theorem of coalgebras and show convergence of the series from

equation (1.3.9a). This has been done in [Sch93, Sec. 1.7]. Here, we follow [SSV10, Sec. 4],

[Voß13, Satz 3.3.1] and [Ger21, Lem. 2.1]. Let (C,Δ, �) be a coalgebra and let ! ∈ Lin(C,ℂ).
The map ) : Lin(C,ℂ) −→ Lin(�, �),# ↦−→ (id C ⊗ #) ◦Δ = id C ★# defines an injective unital

algebra homomorphism with � ◦ ) = id. Moreover, each )(#) leaves every subcoalgebra of C

invariant. On an arbitrary finite-dimensional subcoalgebra C2 3 2 of C the series

exp

(
)(!)

)
�C2 ≔

∞∑
==0

)())�C2

=!

(1.3.5)

converges in any norm. The fundamental theorem of coalgebras yields that for every 2 ∈ C

there exists a subcoalgebra D ⊆ C such that 2 ∈ D and dim D < ∞ ([DNR01, Thm. 1.4.7]). We

can deduce that the series(
exp★ !

)
(2) ≔

∞∑
==0

!★=

=!

= � ◦ exp

(
)(!)

)
(2) (1.3.6)

converges for all ! ∈ Lin(C,ℂ) and all 2 ∈ C. This limit of complex numbers does not depend

on the choice of C2 . For two elements !1 , !2 ∈ Lin(C,ℂ) it can be shown that(
exp★ !1

)
★

(
exp★ !2

)
= exp★(!1 + !2). (1.3.7)



16 Chapter 1. Exponential and logarithm for the convolution algebra

Furthermore, there is another equivalent characterization of the convolution exponential of

equation (1.3.6) given by the following formula(
exp★ !

)
(2) = lim

=→∞

(
� +

!

=

)★=
(2). (1.3.8)

For a proof of this statement we refer to [SV14, Lem. 3.1].

We do not use this approach since we want certain topological features which can be “easily”

derived from the used approach. One of our goals is to find a moment-cumulant formula

for a given u.a.u.-product (Proposition 2.4.12). Such a realization as a moment-cumulant

formula relies on a BCH-formula for the convolution algebra Lin(B,ℂ), where B is a certain

connected filtered bialgebra. Thus, we are seeking for a framework which already suits the

needs to formulate a “BCH-like formula”. This framework, described by the prerequisites of

Theorem 1.2.15, seems to be appropriate. The statement of Theorem 1.3.10 is then a special

case of Theorem 1.2.15.

1.3.5 Lemma. LetA be a unital algebra and (H, (H≤ℓ )ℓ∈ℕ0
) a connectedfilteredK-bialgebra. Let

Lin
=(H,A) denote the subspace of Lin(H,A) defined in equation (1.3.1). Then, Lin

0(H,A) =
Lin(H,A) and moreover the family (Lin

=(H,A))=∈ℕ0
is a topologically admissible family in

(Lin(H,A),★).

Proof: Obviously, every 5 ∈ Lin
0(H,A) satisfies 5 �H0−1

= 0, since H0−1 = H−1 = {0}
(Conv. 1.1.13) and therefore Lin

0(H,A) = Lin(H,A). For the other part we need to prove

the properties from Definition 1.2.4 (a)–(d).
Ad (a): We show that Lin

=(H,A) is a vector subspace of Lin(H,A). Let , � ∈ K and , , ℎ ∈
Lin

=(H,A). The assumption , ∈ Lin
=(H,A) is equivalent to ,�H≤=−1

= 0 and analogously for

ℎ ∈ Lin(H,A). Now

(, + �ℎ)�H≤=−1

=  ,�H≤=−1︸  ︷︷  ︸
=0

+� ℎ�H≤=−1︸  ︷︷  ︸
=0

= 0 + �0 = 0,

hence we obtain , + �ℎ ∈ { 5 ∈ Lin(H,A) | 5 �H≤=−1

= 0 } = Lin
=(H,A). This proves that

Lin
=(H,A) is a vector subspace of Lin(H,A). In [Grin21, Prop. 14.2] it has been proven that

Lin
=(H,A) is an ideal of Lin(H,A).

Ad (b): We have already shown that Lin
0(H,A) = Lin(H,A). It is true that Lin

=(H,A) ⊇
Lin

=+1(H,A) for every = ∈ ℕ0. Because, for , ∈ Lin
=(H,A) = { 5 ∈ Lin(H,A) | 5 �H≤=−1

= 0 },
we have ,(H≤=−1) = 0. Since (H≤=)=∈ℕ0

is a filtration for H, this implies in particular H≤= ⊆
H≤=+1 for every = ∈ ℕ0. Therefore, ,(H≤=−1) ⊆ ,(H≤=) = 0.

Ad (c): We need to show that every ( 5 , ,) ∈
(
Lin

ℎ(H,A) × Lin
:(H,A)

)
satisfies 5 ★ , ∈

Lin
ℎ+:(H,A). This has been proven in [Grin21, Prop. 21.4 (a)].

Ad (d): Obviously 0 ∈ Lin(H,A). On the other hand 5 ∈ ⋂
=∈ℕ0

Lin
=(H,A) is equivalent to

5 �H≤=−1

= 0 for all = ∈ ℕ0. Let G ∈ H, then there exists some = ∈ ℕ0 such that G ∈ H≤= , since
(H≤=)=∈ℕ0

is a filtration for H. Then, 5 (G) = 5 �H≤= (G) = 0(G) = 0 and therefore 5 = 0. �

Once again, we formulate a statement which resembles statements of [EM09, Prop. 2.5] (in

particular Proposition 1.3.6 (b)).

1.3.6 Proposition. Let A be a unital algebra and (H, (H≤ℓ )ℓ∈ℕ0
) a connected filtered bialgebra.

(a) The family (Lin
=(H,A))=∈ℕ0

defined in equation (1.3.1) induces a metrizable topology

on Lin(H,A)withmetric 3 in the sense of Theorem 1.2.5 and thusmaking (Lin(H,A),★)
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a topological algebra.

(b) The topological space (Lin(H,A), �3) endowed with the metrizable topology �3 defined
in equation (1.2.8) is complete.

(c) The mappings

exp★ :


g(H,A) −→ 4H,A + g(H,A)

3 D ↦−→
∞∑
:=0

1

:!
D★: ,

(1.3.9a)

(log★)1 :


g(H,A) −→ g(H,A)

D ↦−→
∞∑
:=1

(−1):−1

:
D★:

(1.3.9b)

are well defined and continuous on their domains.

Proof: Ad (a): By Lemma 1.3.5 the family (Lin
=(H,A))=∈ℕ0

is a topologically admissible family

in (Lin(H,A),★). The assertion follows, if we apply Theorem 1.2.5 to this family of subsets in

Lin(H,A).
Ad (b): A proof of this assertion has been given in [EM09, Prop. 2.5]. We want to give here more

details of the proof. First of all, let us define a shorthand notation and set for all = ∈ ℕ0

Ω= ≔ Lin
=(H,A). (I)

If (#=)=∈ℕ0
is aCauchysequence, thendue toLemma1.2.6 this is equivalent to (#=+1−#=)=∈ℕ0

→�3

0. From Theorem 1.2.5 we know that (Ω=)=∈ℕ0
is a neighborhood basis of 0 ∈ Lin(H,A) and by

equation (1.2.7) we can calculate

(#=+1 − #=)=∈ℕ0
→�3 0

=⇒ ∀ : ∈ ℕ0 , ∃ 9: ∈ ℕ0 , ∀ 9 ≥ 9: : # 9+1 − # 9 ∈ Ω:

=⇒ ∀ : ∈ ℕ0 , ∃ 9: ∈ ℕ0 , ∀ 9 ≥ 9: : (# 9+1 − # 9)�H≤:−1

= 0

ÈDef. of Ω: in eq. (I)É

=⇒ ∀ : ∈ ℕ0 , ∃ 9: ∈ ℕ0 , ∀ 9 ≥ 9: : # 9+1�H≤:−1

= # 9�H≤:−1

=⇒ ∀ : ∈ ℕ0 , ∃ 9: ∈ ℕ0 ∀ 9 ≥ 9: : # 9:�H≤:−1

= # 9:+9�H≤:−1

. (II)

For any G ∈ H there exists :G ∈ ℕ0 such that G ∈ H≤(:G−1), since H =
⋃
:∈ℕ0

H≤: . Then there

exists an element 9:G ∈ ℕ0 with the property from equation (II). Since the natural numbers are

well ordered, we take 9:G ∈ ℕ0 as the smallest natural number, which satisfies equation (II). By

this we can define the following linear map

# :

{
H −→ A

G ↦−→ # 9:G
(G).

(III)

We claim that # is well defined and does not depend on the choice of :G ∈ ℕ0. Assume

there exists another :′G with the property G ∈ H≤(:′G−1). Then, either H≤(:G−1) ⊆ H≤(:′G−1) or
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H≤(:′G−1) ⊆ H≤(:G−1). Assume the latter holds, then because the existence of 9:G and 9:′G is

associated to (#=+1 − #=)=∈ℕ0
→�3 0, we obtain 9:G ≤ 9:′G . Because of equation (II) we have

#(G) = # 9:G
= # 9:′G

.

The remaining case is analogously shown. Hence, the map # is well-defined. The map # is

linear, since for any G, H ∈ H and � ∈ K choose : ≔ max{:G , :H , :�H , :G+�H} and observe by

linearity of # 9: that

#(G + �H) = # 9: (G + �H) = # 9: (G) + # 9: (�H) = # 9: (G) + �# 9: (H) = #(G) + �#(H).

Let : ∈ ℕ0 and G, G̃ ∈ H≤(:−1), then the definition of 9:G and 9:G̃ in equation (III) shows that

9:G = 9:G̃ . Therefore for : ∈ ℕ0 we just write 9: ≔ 9:G for all G ∈ H≤(:−1). By this convention the

map # has the property

∀ : ∈ ℕ0 : #�H≤(:−1) = # 9: . (IV)

Now, we show (#=)=∈ℕ0
→�3 # or equivalently (# − # 9)9∈ℕ0

→�3 0. Let : ∈ ℕ0, then by

equation (IV) there exists 9: ∈ ℕ0 such that

(# − # 9: )�H≤(:−1) = #�H≤(:−1) − # 9:�H≤(:−1) = # 9: − # 9:�H≤(:−1) = 0.

By equation (II) we can conclude

∀ 9 ≥ 9: : (# − # 9)�H≤(:−1) = 0

which is equivalent to

∀ 9 ≥ 9: : # − # 9 ∈ Ω: .

Since : ∈ ℕ0 was arbitrarily chosen we have shown (# − # 9)9∈ℕ0
→�3 0, i. e., every Cauchy

sequence converges with respect to �3 which shows that Lin(H,A) is complete.

Ad (c): We know that Lin(H,A) is complete w. r. t. to the metric induced by topologi-

cally admissible family Lin
=(H,A)=∈ℕ0

defined in equation (1.3.9a). Furthermore, we have

Lin
1(H,A) = g(H,A) and the unit 4H,A satisfies 4H,A ∈ Lin

0(H,A) \ Lin
1(H,A). The well-

definedness of the maps exp★ and log★ now follows from Lemma 1.2.7. The continuity of exp★

and (log★)1 is ensured by Lemma 1.2.9. �

1.3.7 Definition ([Grin21, Def. 3.8]). Let A be a unital algebra and H be a connected filtered

bialgebra. For every � ∈ �(H,A), let us define an element log★ � ∈ g(H,A) by

log★ � ≔ (log★)1(� − 4H,A). (1.3.10)

Then, we put

log★ :

{
�(H,A) −→ g(H,A)

� ↦−→ log★ �.
(1.3.11)

1.3.8 Remark. By Lemma 1.3.3 (a), we have �(H, �) = 4H,A + g(H,A). Therefore, equa-

tion (1.3.10) is well-defined because

1.3.9 Proposition ([Grin21, Prop. 5.13]). Let A be a unital algebra and let H be a connected

filtered bialgebra.

(a) Every map 5 ∈ g(H,A) satisfies log★(exp★ 5 ) = 5 .
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(b) Every map � ∈ �(H,A) satisfies exp★(log★ �) = �.

Proof: By the manner we have defined exp★ : g(H,A) −→ �(H,A) in equation (1.3.9a) and

log★ : �(H,A) −→ g(H,A) in equation (1.3.11) we can use Proposition 1.2.11 and the assertion

follows. A more direct approach which avoids most of the topological arguments, but is more

suited to the specific setting of a certain convolution algebra, is provided by the proof of [Grin21,

Prop. 5.13]. �

1.3.10 Theorem (Campbell-Baker-Hausdorff-Dynkin). Let A be a unital algebra and H a

connected filtered bialgebra. For all 5 , , ∈ g(H,A)we have

(exp★ 5 )★ (exp★ ,) = exp★(BCH★( 5 , ,)), (1.3.12)

where the definition of BCH★( · , · ) is to be understood in the sense of equations (1.2.20) and

(1.2.21), i. e., as a series of right nested brackets [ 5 ℎ1 . . . ,:= ]★ in the Lie algebra associated to

the algebra (Lin(H,A),★).

Proof: In order to show the assertion we want to apply Theorem 1.2.15. Since the algebra A

is assumed to be unital, the vector space (Lin(H,A),★) becomes a unital algebra too with unit

4H,A ∈ Lin
0(H,A) \ Lin

1(H,A). According to Proposition 1.3.6 (a) the convolution algebra

Lin(H,A) has a topologically admissible family, given by (Lin
=(H,A))=∈ℕ0

. This induces a

metrizable topology on Lin(H,A). Then, by Proposition 1.3.6 (b) Lin(H,A) is complete with

respect to this metric. Therefore, the assertion now follows from Theorem 1.2.15. �

1.3.11 Remark (Eq. (1.3.12) in the commutative case). There is a special case to Theorem 1.3.10

whose proof does not need the full framework of the BCH-formula and in particular no “strong”

topological arguments as presented in Section 1.2. For the following assertion we can find such

a proof in [Grin21, Prop. 11.1]. Assume we have the same prerequisite as in Theorem 1.3.10.

Let 5 , , ∈ g(H,A) such that 5 ★, = , ★ 5 . Then,

(exp★ 5 )★ (exp★ ,) = exp★( 5 + ,). (1.3.13)

1.4 Some results on derivations

We continue our investigations of Section 1.3 by taking derivations into consideration. First of

all, recall the definition of a (�H , �H)-derivation.

1.4.1 Definition ((�H , �H)-derivation [Grin21, Def. 15.7]). Let H be a unital algebra, A be a

unital algebra and let �H : H −→ ℂ be a unital algebra homomorphism. Let 5 : H −→ A be a

linear map. Then,

5 is a (�H , �H)-derivation if and only if

∀(0, 1) ∈ H ×H : 5 (0 · 1) = 5 (0)�H(1) + �H(0) 5 (1).
(1.4.1)

1.4.2 Lemma ((�H , �H)-derivations form Lie-subalgebra [Grin18, p. 276]). Let H be a bialge-

bra, where �H is the counit and define

Der(�H ,�H )(H,ℂ) ≔ { 5 : H −→ ℂ | 5 is a (�H , �H)-derivation }, (1.4.2)

then
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(a) Der(�H ,�H )(H,ℂ) ⊆ g(H,ℂ),
(b) Der(�H ,�H )(H,ℂ) is a Lie-subalgebra w. r. t. to the Lie-bracket induced by the convolution

on Lin(H,ℂ).

Proof: Ad (a): For any 5 ∈ Der(�H ,�H )(H,ℂ) we obtain 5 (1H) = 2 5 (1H) and by definition of

g(H,A) in equation (1.3.2) applied to A = ℂ the result follows.

Ad (b): The calculation is straightforward and can be checked by comparison to [Grin18, Kap. 2,

Bem. 1.3, (4) on p. 276]. �

1.4.3 Theorem (Characterization of (�H , �H)-derivations [Grin21, Thm. 15.9]). Let (H, ∗) be
a unital algebra, A be a unital algebra and let �H : H −→ ℂ be a unital algebra homomorphism.

Let 5 : H −→ A be a linear map.

Tfae: (a) 5 is a (�H , �H)-derivation

(b) 5
( (

ker �H

)
2 +K · 1H

)
= 0, where

(
ker �H

)
2

≔ ker �H ∗ ker �H.

1.4.4 Theorem ([Grin21, Thm. 15.10]). Let H be a connected filtered bialgebra and let A be a

commutative unital algebra. Let 5 ∈ g(H,A) be a linear map.

Tfae: (a) 5 is an (�H , �H)-derivation

(b) exp★( 5 ) is a unital algebra homomorphism

1.4.5 Lemma. Let H be a bialgebra, where �H is the counit. Then,

(a) exp★ is a map from Der(�H ,�H )(H,ℂ) to

Alg(H,ℂ) ≔ { 5 ∈ Lin(H,ℂ) | 5 is unital algebra homomorphism }. (1.4.3)

(b) log★ �Alg(H,ℂ) is a map from Alg(H,ℂ) to Der(�H ,�H )(H,ℂ).

Proof: Ad (a): This is essentially the statement of Theorem 1.4.4.

Ad (b): By equation (1.3.3) we have Alg(H,ℂ) ⊆ �(H,ℂ). For any � ∈ Alg(H,ℂ)we have that

� = exp★

(
(log★ �)

)
from Proposition 1.3.9 (b). From Theorem 1.4.4 now follows that log★ � is a

(�H , �H)-derivation since ℂ can be seen as a unital commutative algebra. �

For the proof of the next proposition wemention that there is an alternative proof provided

by the proof found in [Grin21, p. 248, Sec. 23].

1.4.6 Proposition ([Grin21, Prop. 15.15]). LetH be a unital algebra and letA be a commutative

unital algebra. For arbitrary unital algebra homomorphisms 5 , , : H −→ A the convolution

5 ★, : H −→ A is a unital algebra homomorphism.

1.4.7 Proposition ([MS17, Thm. 6.1 (a)]). Let H be a connected graded bialgebra, then

(Alg(H,ℂ),★�
Alg(H,ℂ)×Alg(H,ℂ)) is a group.

Proof: FromProposition 1.4.6weobtain★�
Alg(H,ℂ)×Alg(H,ℂ) : Alg(H,ℂ)×Alg(H,ℂ) −→ Alg(H,ℂ).

Furthermore, it is a well-known result that any graded connected bialgebra (H, (H=)=∈ℕ0
) is also

a graded Hopfalgebra. A detailed proof can be found in [Grin18, Satz 2.45]. �
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1.4.8 Remark ([MS17, Thm. 6.1]). Summarizing the above results we obtain for an ℕ0-graded

connected bialgebra H that

exp★ �Der(�H ,�H )
: Der(�H ,�H )(H,ℂ) −→ Alg(H,ℂ), (1.4.4a)

log★ �Alg(H,ℂ) : Alg(H,ℂ) −→ Der(�H ,�H )(H,ℂ) (1.4.4b)

are inverse to each other and Der(�H ,�H )(H,ℂ) forms a Lie-algebra w. r. t. to the Lie-bracket

induced by the convolution★ and Alg(H,ℂ) forms a group w. r. t. to the convolution★.

Now, we want to investigate certain derivations on the symmetric tensor algebra.

1.4.9 Lemma. Let + be a vector space and let � ≔ S(0) : Sym(+) −→ ℂ. Define for any linear

functional ! ∈ Lin(+,ℂ)

D̂(!) :


Sym(+) −→ ℂ

1 ↦−→ d

dC

(
S(C!)(1)

) ���
C=0

.
(1.4.5)

Then, D̂(!) is a (�, �)-derivation and

D̂(!) ◦ i
s
= !. (1.4.6)

Proof: First, we shall discuss why the definition for D̂(!) is meaningful, i. e., why the total

derivative exists. The map
d

dC

(
S(C!)(1)

)���
C=0

is linear in the argument 1 ∈ Sym(+). Therefore, it
suffices to show that the derivative exists for each basis vector in Sym(+). Let 1 ∈ Sym(+). Let
(E8)8∈� ∈ + �

denote a basis sequence for + with totally ordered index set �. Then, the system

{1
Sym(+)} ∪ {181 ⊗Sym

· · · ⊗
Sym

18= | (8 9)9∈[=] ∈ �×= , 81 ≤ . . . ≤ 8=} (I)

determines a basis sequence for Sym(+) È [BF12, Thm. 10.20]É. Now, for each basis vector of

Sym(+)we can see that S(C!)(1)must be a polynomial of degree = ∈ ℕ0 in C and therefore the

derivative exists.

Next, we show that D̂(!) ∈ Der(�,�)(Sym(+),ℂ). For this, we show that D̂(!) satisfies the
property of Theorem 1.4.3 (b). We have

d

dC

(
S(C!)(1

Sym(+))
) ���
C=0

=
d

dC
(1)

���
C=0

= 0,

∀E ∈ + :

d

dC

(
S(C!)(i

s
(E))

) ���
C=0

=
d

dC

(
(C!)(E)

) ���
C=0

= !(E),

∀= ∈ ℕ \ {1}, ∀(E8)8∈[=] ∈ +×= : D̂(!)
(
i
s
(E1) · · · · · is

(E=)
)
=

d

dC

(
C=

=∏
8=1

!(E8)
) ���
C=0

= 0,

where i
s
: + ↩−→ Sym(+) is the canonical insertion map. This shows that D̂(!) is a (�, �)-

derivation. Since expression (I) determines a basis for Sym(+), we can deduce that D̂(!) fulfills
equation (1.4.6). �

1.4.10 Proposition. Let + be a vector space, ! ∈ Lin(+,ℂ) and let � ≔ S(0) : Sym(+) −→ ℂ.
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Then, there exists a unique derivation D(!) ∈ Der(�,�)(Sym(+),ℂ) such that

! = D(!) ◦ i
s
, (1.4.7)

wherein i
s
: + ↩−→ Sym(+) is the canonical embedding

Proof: The existence of such a map is provided by Lemma 1.4.9. Next, we show the uniqueness

of the map D(!). Assume there exists another derivation D̃(!) ∈ Der(�,�)(Sym(+),ℂ) such that

! = D̃(!) ◦ i
s
. The map � is a ℂ-algebra homomorphism which satisfies

�(E) ≔
{
2 for E = 2 · 1

Sym(+) , 2 ∈ ℂ

0 else.

According to equation (1.1.7) we have Sym(+) =
⊕

=∈ℕ0

Sym
=(+) and thus ker � = Sym(+) \

Sym
0(+) = Sym(+) \ (ℂ · 1

Sym(+)). By the equivalent characterization of a derivation from

Theorem 1.4.3, we have D̃(!)
(
(ker �)2 + 1

Sym(+)
)
= 0. Thus,

D̃(!)�
Sym

0(+)+
⊕∞

:=2
Sym

: (+) = 0 = D(!)�
Sym

0(+)+
⊕∞

:=2
Sym

: (+). (I)

By equation (1.4.7), we obtain

D̃(!) ◦ i
s
= ! = D(!) ◦ i

s
. (II)

Equations (I) and (II) now show D̃(!) = D(!). �

1.4.11 Lemma. Let + be a vector space and let � ≔ S(0) : Sym(+) −→ ℂ. Then,

(a) The map

D:

{
Lin(+,ℂ) −→ Der(�,�)(Sym(+),ℂ)

! ↦−→ D(!)
(1.4.8)

is linear.

(b) ∀# ∈ Der(�,�)(Sym(+),ℂ) : D(# ◦ i
s
) = #.

Proof: Ad (a): It can be directly shown that Der(�,�)(Sym(+),ℂ) forms a vector subspace of

Lin

(
Sym(+),ℂ

)
. Hence, for any !1 , !2 ∈ Lin(+,ℂ) and  ∈ ℂ we have D(!1) + D(!2) ∈

Der(�,�)(Sym(+),ℂ) and D(!1) ∈ Der(�,�)(Sym(+),ℂ). By the defining property for D( · ) pro-
vided in equation (1.4.7) we obtain D(!1 + !2) = D(!1) + D(!2) and D(!1) = D(!1) which

shows the linearity of D.

Ad (b): Obviously#◦i
s
∈ Lin(+,ℂ). According toProposition 1.4.10D(#◦i

s
) ∈ Der(�,�)(Sym(+),ℂ)

is uniquely defined by the equation D(# ◦ i
s
) ◦ i

s
= # ◦ i

s
. But we have assumed # ∈

Der(�,�)(Sym(+),ℂ) and trivially # ◦ i
s
= # ◦ i

s
and therefore D(# ◦ i

s
) = #. �



Chapter 2

BCH-formula for u.a.u.-products

This chapter introduces all the concepts we need for our setting of noncommutative stochastic

independence (Section 2.1). Moreover, we present all the necessary tools which allow us to prove

a moment-cumulant formula for a given universal product. For this, we need to define dual

semigroups (Section 2.2), Moreover, we need to look for a proper definition of cumulants with

respect to a given universal product. We pay attention to this problem in Section 2.3 by using

several powerful tools like Schürmann’s universal coefficient theorem and the Lachs functor.

Once we have shown a moment-cumulant formula (Section 2.4), we focus on implications from

this formula for positive u.a.u.-products (Section 2.5).

2.1 Universal products in the category of <-faced algebraic quantum
probability spaces

This section provides the axiomatic framework for universal products. First, we recall the free

product of (unital) algebras.

2.1.1 Definition (Free product of (unital) algebras [BMM96, Sec. 1.4, Rem. 1.4.1]). Let A1,

A2 and C be (unital) algebras. Then, a (unital) algebra A1 t A2 (resp. A1 t1 A2) satisfies the

universal mapping property (UMP) of the free product of (unital) algebras A1 and A2 if and only if

(a) For each 8 ∈ [2] there exist homomorphisms of (unital) algebras �8 : A8 −→ A1 tA2 (resp.

�8 : A1 −→ A1 t1 A2), called canonical homomorphisms, such that �1(A1) ∪ �2(A2) generates
A1 t A2 (resp. A1 t1 A2) as a (unital) algebra.

(b) For any (unital) algebra C and homomorphisms 91 : A1 −→ C and 92 : A2 −→ C of

(unital) algebras there exists a unique homomorphism 91t 92 : A1tA2 −→ C (resp. 91t1
92 : A1 t1 A2 −→ C) of (unital) algebras such that the following diagram is commutative

A1 A1 t A2 A2

C

← →�1

←

→
91

←

→ 91t92

←→�2

←

→ 92

(2.1.1)

(respectively in the unital case where t is replaced by t1). If such a (unital) algebra

A1 t A2 (resp. A1 t1 A2) exists we will call it the free product of (unital) algebras A1 and

A2.

23
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2.1.2 Theorem (Existence of the free product of algebras [BMM96, Section 1.4], [Bou98,
Ch. III, Ex. 6 for § 5]). Let A1 and A2 be two algebras. Let � be the ideal in the tensor algebra

T(A1 ⊕ A2)which is generated by all elements of the form

01 ⊗ 02 − 0102 and 0′
1
⊗ 0′

2
− 0′

1
0′

2
, (2.1.2)

where 08 ∈ A1 and 0
′
8
∈ A2 for 8 ∈ {1, 2}. Then, the quotient algebra T(A1 ⊕ A2)/� satisfies the

universalproperty of the free product of algebrasA1 andA2 and the canonical homomorphisms

�1 : A1 −→ A1 t A2 and �2 : A2 −→ A1 t A2 in equation (2.1.1) are injective.

Proof: We are only going to sketch the proof of the above theorem, since all the details are

provided by [BMM96, Section 1.4], although unital algebras have been assumed there. We can

slightly modify the proof of [BMM96, Section 1.4] for not necessarily unital algebras. The basic

idea is to observe that the canonical inclusion maps A8 ↩−→ T(A1 ⊕ A2), 8 ∈ [2] are just linear

maps and no homomorphisms of algebras. So, the idea is to make them multiplicative. If �

denotes the ideal of T(A1 ⊕ A2) generated by elements of equation (2.1.2), then the composition

of maps i9 : A9 ↩−→ T(A1 ⊕ A2) −� T(A1 ⊕ A2)/� defines an homomorphism of algebras for

each 9 ∈ [2]. Since the ideal � is generated by elements of equation (2.1.2), we can see that

the map i9 is injective. Now let (C, 58 : A8 −→ C)8∈[2] be a pair consisting of an algebra C and

homomorphisms of algebras. The map T ( 51 ⊕ 52) : T(A1 ⊕ A2) −→ C is a homomorphism of

algebras and maps the ideal � to zero. As a result T ( 51 ⊕ 52) can be lifted to a homomorphism of

algebras from ) : T ( 51 ⊕ 52)/� −→ C. It is clear that ) satisfies the property of equation (2.1.1).

Moreover, the homomorphisms �8 : A8 −→ A1 t A2 are injective, because of the form of the

elements in the ideal � from equation (2.1.2). �

2.1.3 Convention. Let � be an arbitrary index set. We define the set

A(�) ≔ { � = (�1 , . . . , �=) ∈ �×= | (= ∈ ℕ) ∧ (∀ : ∈ [= − 1] : �: ≠ �:+1) }. (2.1.3)

2.1.4 Remark.

(a) In the case of unital algebras A1 and A2 we can find a similar construction for the

existence of A1 t1 A2 as we did in the proof of Theorem 2.1.2, but then the ideal � in the

tensor algebra T(A1 ⊕ A2) is generated by all elements of the form

01 ⊗ 02 − 0102 , 0′
1
⊗ 0′

2
− 0′

1
0′

2
, 1A1

− 1A2
, (2.1.4)

where 1A8 denotes the unital element of the unital algebra A8 for each 8 ∈ [2]. In

this case, the canonical homomorphisms �8 : A8 −→ A1 t1 A2 are also injective and

�1(A1) ∩ �2(A2) = ℂ (look at [BMM96, Rem. 1.4.1] for a proof of these statements). In

other words, we can say that the quotient algebra

A1 t A2

/
〈1A1
− 1A2

〉 (2.1.5)

satisfies the UMP of the free product of unital algebras (by “identification of units”).

(b) For two algebras A1 and A2 their free product A1 t A2 exists and is unique up to

isomorphism of algebras. Showing uniqueness up to isomorphism is a standard task

when dealing with universal mapping properties. We want to discuss a another possible

realization of the free product of algebras which is frequently used in the literature. This

approach is a bit different to the one presented in the proof of Theorem 2.1.2 and uses the
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so-called vector space of “alternating tensor chains of finite length” ([NS06, Rem. 6.3]).

Here, we want to briefly discuss this approach to show existence of the free product of a

family of algebras (A8)8∈� . If � is an arbitrary index set, � ∈ A(�), � = (�1 , . . . , �<) ∈ A(�)
for some < ∈ ℕ and (+8)8∈� a family of vector spaces, then we put

+� ≔ +�1
⊗ · · · ⊗ +�< . (2.1.6)

Then, the free product of vector spaces (+8)8∈� is defined as the vector space⊔
8∈�
+8 ≔

⊕
�∈A(�)

+�. (2.1.7)

We can equip this vector space with a multiplication whenever we are given a family of

algebras (A8)8∈� by

(01 ⊗ · · · ⊗ 0<) · (11 ⊗ · · · 1=) ≔
{
01 ⊗ · · · 0< ⊗ 11 ⊗ · · · ⊗ 1= for �< ≠ �1

01 ⊗ · · · (0<11) ⊗ · · · ⊗ 1= for �< = �1

(2.1.8)

for all 01 ⊗ · · · 0< ∈ A(�1 ,...,�<) and 11 ⊗ · · · ⊗ 1= ∈ A(�1 ,...,�=). It can be shown that this

algebra satisfies the UMP for the free product of algebras. Again, we can see that the

canonical homomorphisms �8 : A8 −→
⊔
9∈� A9 are injective and therefore we also call

them canonical insertions to emphasize this fact.

(c) According to [Fra06, Exa. 3.28] the coproduct in the categoryAlg, in the sense of Rem. 1.1.7

is given by the free product of algebras. Similarly the coproduct in the category of unital

algebras uAlg is given by t1. For each of these coproducts equation (1.1.17) holds.

Furthermore, it can be shown that (Alg,t) is a tensor category with {0} as unit object and
(uAlg,t1) is a tensor category with ℂ as unit object (follows in particular from [Fra06,

Rem. 3.23]).

2.1.5 Lemma ([Voß07, Satz 1.10.2]). Let A1 and A2 be two algebras. Then, there exists an

isomorphism of unital algebras such that

∀ 8 ∈ [2] : (A1)1 t1 (A2)1 ∼=
(
A1 t A2

)1
. (2.1.9)

Proof: We only give a sketch of the proof which shows that a “canonical” map actually induces

an isomorphism. Let 0 ∈ A1
8
, then there exist unique elements 0̃ ∈ ℂ and 0̂ ∈ A8 such that

0 = 0̃ℂ ⊕ 0̂. By this we can define a map

8 :


(A8)1 −→

(
A1 t A2

)1
0 ↦−→ 0̃ ⊕ 0̂.

The maps 1 and 2 are homomorphisms of algebras. Therefore, the map 1 t 2 : (A1)1 t
(A2)1 −→

(
A1 t A2

)1
is well-defined. The homomorphism 1 t 2 is surjective. By the first

isomorphism theorem and Remark 2.1.4 (a) we are finished if we can show ker(1 t 2) =
〈1A1
− 1A2

〉, where 1A8 denotes the unital element of A8 . Let us briefly discuss the proof of this

assertion. The statement 〈1A1
− 1A2

〉 ⊆ ker(1 t 2) is clear. For the other statement one can use

the realization of (A1)1 t (A2)1 discussed in Remark 2.1.4 (b) and perform a proof of induction
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on the “degree” for an element G ∈ ker(1 t 2) ⊆ (A1)1 t (A2)1 denoted by |G | and defined by

|G | =


1 for G ∈ (A1)1 ⊕ (A2)1 ∧ G ≠ 0

= for ∃= ∈ ℕ : G ∈
⊕

length(�)
≤=

A1
� ∧ G ∉

⊕
length(�)
≤=−1

A1
� .

(I)

If � = (�1 , . . . , �=) for some = ∈ ℕ, then put length(�) ≔ =. The degree of an element of G is

unique and well-defined. Consider the basis of

⊕
�∈A([2]) A

1
� and take the unique representation

of G w. r. t. to this basis. Now, define the degree of G as the maximal “length” of each basis vector

within this representation of G. Nonetheless, the proof for the induction base is straightforward.

For the induction step = → = + 1 we notice that an element G ∈ (A1)1 t (A2)1 with |G | = = + 1

has components

I ∈
⊕

length(�)
≤=+1

A� and H ∈ ℂ ⊕
⊕

length(�)
≤=

A1
� ,

such that (1 t 2)(I) = 0 = (1 t 2)(H). Then, the element H has components

A ∈
⊕

length(�)
≤=

A1
� and B ∈

3∑
8=1

BC ∈
⊕

length(�)
≤=+1

A1
�

Since (1 t 2)(I) = 0 each BC ∈ A1
� has the form for each C ∈ [3]

BC =
∑
9

59 ,C ⊗ (1A1
− 1A2

) ⊗ , 9 ,C ,

where each 59 ,C and , 9 ,C is a linear combination of pure tensors with maximal length = − 2. Now,

define the elementF ≔
∑
9 59 ,C⊗, 9 ,C . The elementF has the property |F | ≤ = and (1t2)(F) = 0.

It follows that A + B −F ∈ 〈1A1
−1A2

〉 and finally G ∈ 〈1A1
−1A2

〉. We refer to [Voß07, Satz 1.10.2]

for further calculations of the proof. �

2.1.6 Definition (Category of <-faced algebras [MS17, p. 11]). Let < ∈ ℕ. We want to define

the category of so-called <-faced algebras denoted by Algm. Objects of this category are tuples

(A, (A(8))8∈[<]), where A is an associative algebra, (A(8))8∈[<] an <-tuple of associative algebras

and furthermore the following properties need to be satisfied;

(a) For all 8 ∈ [<] each algebra A(8) is a subalgebra of A.

(b) The finite family (A(8))<
8=1

freely generates A, i. e., the algebra homomorphism⊔
8∈[<] A

(8) −→ A defined by

A� 3 01 ⊗ · · · ⊗ 0= ↦→ 01 · · · · · 0= ∈ A (2.1.10)

is a bĳection. In sloppy notation this is denoted by A =
⊔<
8=1

A(8).

The morphisms 9 ∈ MorphAlgm

(
(B, (B(8))8∈[<]), (A, (A(8))8∈[<])

)
in this category are defined by

the properties

9 ∈ MorphAlg(B,A), (2.1.11)

∀ 8 ∈ [<] : 9(B(8)) ⊆ A(8). (2.1.12)
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2.1.7 Convention. We will identify the category Algm for < = 1 with the category Alg, the
category of associative ℂ-algebras.

2.1.8 Definition (Category of (3, <)-algebraic quantum probability spaces [MS17, p. 11]).
Let 3, < ∈ ℕ. We want to define the category of (3, <)-algebraic quantum probability
spaces denoted by AlgPd,m. Objects of this category are triples (A, (A(8))8∈[<] , (!(8))8∈[3]),
where (A, (A(8))8∈[<]) ∈ Obj(Algm) and (!(8))8∈[3] ∈

(
Lin(A,ℂ)

)×3
. The morphisms 9 ∈

MorphAlgPd,m

(
(B, (B(8))8∈[<] , (#(8))8∈[3]), (A, (A(8))8∈[<] , (!(8))8∈[3])

)
in this category are defined

by the properties

9 ∈ MorphAlgm
(B,A), (2.1.13)

∀ 8 ∈ [3] : !(8) ◦ 9 = #(8). (2.1.14)

2.1.9 Definition (u.a.u-product in AlgPd,m [MS17, Sec. 2]). A universal product in the category

AlgPd,m is a bifunctor � of the form

� :



Obj(AlgPd,m ×AlgPd,m) 3
(
(A1 , (A(8)

1
)8∈[<] , (!(8)

1
)8∈[3])︸     ︷︷     ︸

≕!1

, (A2 , (A(8)
2
)8∈[<] , (!(8)

2
)8∈[3])︸     ︷︷     ︸

≕!2

)
↦→

(
A1 t A2 , (A(8)

1
t A

(8)
2
)8∈[<] , (!1 � !2)

)
∈ Obj(AlgPd,m)

MorphAlgPd,m ×AlgPd,m

( (
(B1 ,#1), (B2 ,#2)

)
,
(
(A1 , !1), (A2 , !2)

) )
3 (91 , 92)

↦→ 91 q 92 ∈ MorphAlgPd,m

(
(B1 tB2 ,#1 � #2), (A1 t A2 , !1 � !2)

)
.

(2.1.15)

(a) A universal product in AlgPd,m is called unital if and only if for all 8 ∈ [2], (A8 , !8) ∈
Obj(AlgPd,m) the equation

∀ 8 ∈ [3],∀ 9 ∈ [2] : (!1 � !2)(8) ◦ � 9 = !(8)
9

(2.1.16)

is satisfied, where � 9 : A9 −→ A1 t A2 , 9 ∈ [2] are the canonical embeddings.

(b) A universal product in AlgPd,m is called associative if and only if for all 8 ∈ [3], (A8 , !8) ∈
Obj(AlgPd,m) (

(!1 � !2) � !3

)
=

(
!1 � (!2 � !3)

)
◦ can (2.1.17)

holds, wherein can : (A1 tA2) tA3 −→ A1 t (A2 tA3) is the canonical isomorphism of

algebras.

(c) A unital associative universal product in the category AlgPd,m is abbreviated by u.a.u.-
product.

(d) A universal product in the category AlgPd,m is called symmetric if and only if for all

8 ∈ [2], (A8 , !8) ∈ Obj(AlgPd,m)

!1 � !2 = (!2 � !1) ◦ can, (2.1.18)

wherein can : A1 t A2 −→ A2 t A1 is the canonical isomorphism of algebras.
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2.1.10 Remark. We strengthen that for a universal product � in AlgPd,m being a bifunctor

implies the so-called universality condition which says that for each 8 ∈ [2], for any B8 ∈ Algm,

(A8 , !8) ∈ Obj(AlgPd,m) and 98 ∈ MorphAlgm
(B8 ,A8) it holds that

∀ 9 ∈ [3] :
(
(!(8)

1
◦ 91)8∈[3] � (!(8)

2
◦ 92)8∈[3]

) (9)
= (!1 � !2)(9) ◦ (91 q 92). (2.1.19)

2.1.11 Convention. From now on we will only consider universal products in the category

AlgP1,m for any < ∈ ℕ and we denote this category by AlgPm. The category denoted by AlgP
stands for the category AlgP1,1 (also check Convention 2.1.7).

The next lemma gives us a justification why we actually call the property of Defini-

tion 2.1.9 (a) unitality.

2.1.12 Lemma. Let � be universal product in the category AlgPm for some < ∈ ℕ. Then,

Tfae: (a) � is unital, i. e., ∀ 8 ∈ [2], ∀(A8 , !8) ∈ Obj(AlgPm) : (!1 � !2)�A8
= !8

(b) ∀(A, !) ∈ Obj(AlgPm) : ! � 0 = ! = 0 � !

Proof: The trivial algebra {0} has the property that for any algebra A we have

{0} t A ∼= A ∼= A t {0}. (I)

Furthermore, the canonical inclusion maps �8 : A8 ↩−→ A1 tA2 can be written as (idA1
t 0) ◦ can

resp. (0 t idA2
) ◦ can, where can denotes the canonical isomorphism of equation (I). By the

universality condition of � in equation (2.1.19) and the above observations, both directions

follow directly. �

2.1.13 Remark. A u.a.u.-product � in AlgPm as a bifunctor turns the triple (AlgPm , �, ({0}, 0 ↦→
0)) into a tensor category where the unit object ({0}, 0 ↦→ 0) is initial È [Ger21, Def. 3.3]É. In
[Fra06, Sec. 3.3] the notion of independent morphisms of a tensor category has been defined.

Onemight ask whywemay restrict ourselves to tensor products of the form (A1tA2 , !1 �!2),
where � is a u.a.u.-product. The justification for this is given by the so-called “reduction of

independence” of Franzwhich in detail is provided in [Fra06, Prop. 3.45] and [Fra06, Prop. 3.46].

This approach uses the language of tensor categories and represents a much more general

framework for the notion of independence. The usual notion of independence for classical

probability theory and independences coming from a u.a.u.-product are then to be understood

as specific instances of this general notion.

2.1.14 Convention. Let A1 and A2 be two ∗-algebras. Denote the involution of A1 by ∗1 and

the involution of A2 by ∗2. Then, the free product of algebras will always be considered as

a ∗-algebra in the canonical way. This means that we define a canonical involution ∗ on the

algebra A1 t A2 on generating elements of A1 t A2 by

∗ :
{
A1 t A2 −→ A1 t A2

��1
(01) · · · · · ��= (0=) ↦−→ ��=

(
(0=)∗�=

)
· · · · · ��1

(
(01)∗�1

)
.

(2.1.20)

In the above equation �8 : A8 ↩−→ A1 t A2 denotes the canonical homomorphic insertion map,

(�8)8∈[=] ∈ A([2]) and (08)8∈[=] ∈
∏=

8=1
A�8 . We can homomorphically extend the prescription

and obtain a canonical involution on A1 t A2.
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2.1.15 Definition (Positive u.a.u.-product [Lac15, Def. 4.5.3]). Let � be a u.a.u.-product in the

category AlgPm. Let (A8 , !8) ∈ Obj(AlgPm) for 8 ∈ [2]. Assume that for each algebra A8 there

exists an involution ∗8 : A8 −→ A8 which turns A8 into a ∗-algebra and each subalgebra A
(9)
8

is

a ∗-subalgebra, i. e., ∗8(A(9)8 ) ⊆ A
(9)
8
. We regard the algebra A1 t A2 as a ∗-algebra in the sense

of Convention 2.1.14. Let !1 resp. !2 be strongly positive (Def. 1.1.27) on (A1 , ∗1) resp. on
(A2 , ∗2). We say that the u.a.u.-product � is positive if and only if !1 � !2 is a strongly positive

linear functional on (A1 t A2 , ∗).

2.2 Comonoids in the tensor category of graded <-faced algebras

The definition of a tensor category is well-known in the literature. We have used the definition

provided by [Lac15, Def. 2.2.1] but we do not write it here once more. Sometimes we say that

a triple (C,�, �) is a tensor category, where � is the unit object and sometimes we say that a

pair (C,�) is a tensor category without mentioning the unit object. We give the definition of a

comonoid in a tensor category to have a point of reference when we speak about so-called “dual

semigroups”.

2.2.1 Definition (Comonoid in tensor category [Lac15, Def. 2.3.2]). Let (C,�) be a tensor

category. Then, we call an object C ∈ Obj(C) a comonoid if it is equipped with morphisms

• Δ : C −→ C � C, called comultiplication,

• � : C −→ �, called counit,

such that the following diagrams commute

C � C C C � C

C � (C � C) (C � C) � C

←

→id C�Δ

←→ Δ ← →Δ

←

→ Δ�id C

← →C,C,C

(2.2.1)

� � C C � C C � �

C

←

→
ℓC

←→��id C ← →id C��

←

→ AC←

→

Δ (2.2.2)

In the above equations � denotes the unit object in the tensor category,  · , · , · stands for the
associativity constraint, ℓ · , A · are the left resp. right unit constraint.

Dual semigroups have been introduced by Voiculescu in [Voi85]. We give the source from

where we have taken its definition.

2.2.2 Definition (Dual semigroup & unital dual semigroup [Lac15, p. 34], <-faced dual
semigroup [Ger21, Def. 2.2]). A comonoid in the tensor category (Alg,t, {0}) resp. in the

tensor category (uAlg,t1 , {0}) is called dual semigroup resp. unital dual semigroup. A comonoid

in the tensor category (Algm ,t, {0}) for some < ∈ ℕ, i. e., the tensor category of <-faced

algebras with monoidal structure given by t, is called <-faced dual semigroup.
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2.2.3 Remark.

(a) Any<-faced dual semigroup is a dual semigroup because anymorphism in the category

Algm is also a morphism in the category Alg.

(b) In [Lac15, Rem. 2.3.3] we can find the following statement. Since � as the unit object

is the initial object {0} in Alg, the counit � of a dual semigroup is always the zero map

0. Therefore, we sometimes omit the counit and refer to the tuple (C,Δ) as a dual

semigroup.

2.2.4 Lemma. For< ∈ ℕ let (D8 ,Δ8 , 0)8∈[<] be a finite family of comonoids in the tensor category

(Alg,t, {0}), then the triple ( <⊔
8=1

D8 , can ◦
( <∐
8=1

Δ8
)
, 0

)
(2.2.3)

is a comonoid in (Algm ,t, {0}), i. e., an <-faced dual semigroup. Herein, the canonical

isomorphism can is to be understood in the sense of equation (1.1.17), i. e.,

can :

<⊔
8=1

(D8 t D8) −→
( <⊔
8=1

D8

)
t

( <⊔
8=1

D8

)
. (2.2.4)

Proof: The proof is straightforward and uses the UMP of the free product of algebras at several

occasions. �

2.2.5 Definition (categories VectΘ, AlgΘ, uAlgΘ, cuAlgΘ [Lac15, Def. 2.4.1], AlgΘm). Let Θ be a

commutative monoid with binary operation + and neutral element 0.

(a) By VectΘ we denote the category of Θ-graded vector spaces (Definition 1.1.14). Mor-

phisms of this category are homogeneous linear maps. By AlgΘ we denote the category

of Θ-graded algebras (Definition 1.1.19) and morphisms of this category are algebra

homomorphisms which are homogeneous as linear maps. By uAlgΘ we denote the

category of Θ-graded algebras which are in addition unital. By cuAlgΘ we denote the

category Θ-graded algebras which are in addition commutative and unital. Morphisms

of the category uAlgΘ and cuAlgΘ are homomorphisms of unital algebras which are

homogeneous as linear maps.

(b) By AlgΘm we denote the category of Θ-graded algebras which are in addition <-faced

algebras. Morphisms of this category need to be homogeneous linear maps and <-faced

morphisms. We call objects of this category Θ-graded <-faced algebras.

2.2.6 Definition (Θ-graded dual semigroup, Θ-graded bialgebra [Lac15, Def. 2.4.1],
Θ-graded <-faced dual semigroup). We call a comonoid in the tensor category (AlgΘ ,t, {0})
a Θ-graded dual semigroup. We call a comonoid in the tensor category

(
uAlgΘ , ⊗ , (�)∈Θ

)
with

�4 ≔ ℂ (e neutral element in Θ) and ∀ ∈ Θ \ {4} : � ≔ {0} a Θ-graded bialgebra. We call a

comonoid in the tensor category (AlgΘm ,t, {0}) a Θ-graded <-faced dual semigroup.

2.2.7 Remark.

(a) Let (+, (+)∈Θ) be aΘ-graded vector space. The tensor algebra T(+)with theΘ-grading

T(+) =
⊕
∈Θ

(
T(+)

)
 =

⊕
∈Θ

( ⊕
1+···+A=

+1
⊗ · · · ⊗ +A

)
(2.2.5)
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forms a Θ-graded algebra È [Gre78, Sec. 3.7] or [Lac15, Exa. 2.4.3]É.
(b) It can be shown that (AlgΘ ,t, {0}) and (uAlgΘ , ⊗ , (�)∈Θ) are tensor categories

È [Lac15, p. 116]É. Let us discuss the Θ-grading of the free product of algebras A1 t A2

for A8 ∈ Obj(AlgΘ). To do this, we shall use the realization of the free product of

algebras, discussed in the proof of Theorem 2.1.2. From there we can see that the

ideal � ⊆ T(A1 ⊕ A2) is generated by homogeneous elements. Thus, we can transfer

the Θ-grading of the tensor algebra T(A1 ⊕ A2) to the quotient algebra T(A1 ⊕ A2)/�.
This Θ-grading is also characterized by the property that the canonical embeddings

A8 ↩−→ A1 t A2 are homogeneous.

2.2.8 Example ([MS17, Exa. 4], [Lac15, Exa. 2.4.2], [Lac15, Exa. 2.4.3]). Let+ be a vector space.

We want to discuss how the tensor algebra T(+) can be given the structure of an ℕ0-graded

dual semigroup. For this, we need the following canonical isomorphism of algebras

can : T(+1 ⊕ +2) −→ )(+1) t )(+2) (2.2.6)

for two vector spaces +1 and +2. From the UMP of the tensor algebra we obtain the following

commutative diagram

+1 ⊕ +2 T(+1) t T(+2)

T(+1 ⊕ +2).

←
↪

→inc1⊕inc2

←↪ →�1 ⊕ �2

←

→

T (�1 ⊕ �2)
. (2.2.7)

And from the UMP of the tensor algebra and the UMP of the free product of algebras we have

the following commutative diagram for each 8 ∈ [2]

T(+8) T(+1) t T(+2)

+8 T(+1) ⊕ T(+2)

←↪ →
�′′
8

←

→

T (�′
8
) ←

→ T (�
′
1
)tT (�′

2
)←

↪

→

�′
8

←↪ →inc8

. (2.2.8)

Since the algebras T(+1 ⊕+2) and T(+1) t T(+)2 are generated by elements from +1 ∪+2, it can

be easily shown that the maps T (�1 ⊕ �2) and T (�′
1
) t T (�′

2
) are inverse to each other. Note that

�8 = �′′
8
◦ �′

8
.

Now, we come back to equip T(+) with a structure of a dual semigroup. Consider the natural

inclusion maps

inc1 :

{
+ −→ + ⊕ +

E ↦−→ (E, 0)
inc2 :

{
+ −→ + ⊕ +

E ↦−→ (0, E).
(2.2.9)

For the linear map inc1 + inc2 : + −→ + ⊕ + due to equation (1.1.5) there exists an algebra

homomorphism T(inc1 + inc2) : T(+) −→ T(+ ⊕ +). Using the canonical isomorphism from

equation (2.2.6) it is easily shown for generating elements of T(+) that(
T(+), can ◦ T(inc1 + inc2), 0

)
(2.2.10)
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is a dual semigroup. We refer to its comultiplication as primitive comultiplication of T(+). By
Remark 2.2.7 (a), the tensor algebra T(+) carries a natural ℕ0-grading if + is trivially graded,

i. e., +1 = + and ∀= ∈ ℕ0 \ {1} : += = {0}. The 0-th part of the ℕ0-grading of T(+) is {0}. Then,
the primitive comultiplication from equation (2.2.10) is easily seen to be homogeneous. In

other words, the tensor algebra w. r. t. to the primitive comultiplication becomes an ℕ0-graded

dual semigroup.

2.3 Reduction of convolution

We seek for a “good” definition of cumulants w. r. t. a given u.a.u.-product. Cumulants are

classical objects dating back to the danish mathematician Thiele in the late 19th century. They

can be seen as families of multilinear maps tightly related to the notion of independence, as

they vanish when evaluated with independent entries. Indeed, for each type of independence a

particular family of cumulants exist. They are characterized through so-calledmoment-cumulant

relations, which express moments in terms of cumulants by summing over specific set partitions.

In order to find a possible realization of cumulants w. r. t. a given u.a.u.-product we

use dual semigroups and define a convolution on their dual space. Once we have exhibited

Schürmann’s universal coefficient theorem and the Lachs functor, we are in the position to

define an “exponential” w. r. t. a given u.a.u.-product � (this corresponds to the notion of

“moment”). We will show that this exponential has a two-sided inverse and we will call this

inverse a “logarithm” w. r. t. � (this corresponds to the notion of “cumulant”).

2.3.1 Definition (Convolution on the dual of an <-faced dual semigroup [MS17, eq. (5.7)]).
Let � be a u.a.u.-product in the category AlgPm for some < ∈ ℕ and (D,Δ, 0) be an <-faced

dual semigroup. Then, we define the convolution ~ on D by

~ :

{
Lin(D,ℂ) × Lin(D,ℂ) −→ Lin(D,ℂ)

(!1 , !2) ↦−→ (!1 � !2) ◦ Δ.
(2.3.1)

2.3.2 Remark. Let � be a u.a.u.-product in the category AlgPm for some < ∈ ℕ.

(a) The associativity of � ensures the associativity of ~. The unitality of � and its equivalent

characterization provided in Lemma 2.1.12 ensures that (Lin(D,ℂ), ~) is unital with unit

0. Thus, (Lin(D,ℂ), ~) is a monoid.

(b) Let (D,Δ, �) be an <-faced dual semigroup. For the convolution power regarding ~ of

an element ! ∈ Lin(D,ℂ)we define

!~= ≔


� = 0 for = = 0

! for = = 1

! ~ !~(=−1)
for = ≥ 2.

(2.3.2)

In the following we try to formulate an equivalent characterization of the =-fold convo-

lution power !~= which involves the usage of the following map. We recursively define

for

∀= ∈ ℕ0 : Δ(=) :


D −→ Dt(=+1)

3 ↦−→
(
can ◦ (idq Δ(=−1)) ◦ Δ

)
(3)

(2.3.3)
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as composition of the following maps

Δ : D −→ D t D, (2.3.4a)

Δ(=−1) q id : D t D −→ D t Dt= , (2.3.4b)

can : Dt= t D −→ Dt(=+1). (2.3.4c)

For = = 0 we set

Δ(−1) ≔ � = 0: D −→ Dt0 , (2.3.5)

since Dt0 = {0} È {0} is the unit object in the tensor category (Alg,t) É. Obviously, the

map Δ(=) is a morphism in the category Algm for each = ∈ ℕ0. The maps Δ(=) have the

following properties:

• Because of the counit property, we obtain Δ(0) = id : D −→ D. On the other hand, we

have Dt1 = D and Δ(1) = Δ.

• By coassociativity in equation (2.2.1), we have

(Δq id) ◦ Δ = Δ(2) = (idq Δ) ◦ Δ (2.3.6)

up to canonical isomorphism.

• We claim that the following equation is valid up to canonical isomorphism

(idq Δ(=−1)) ◦ Δ = Δ(=) = (Δ(=−1) q id) ◦ Δ. (2.3.7)

A similar proof can be found in [Grin18, Bem. 2.1.
1

2
3) on p. 73]. But there, themonoidal

structure is given by the ordinary tensor product of vector spaces. Then, an analogous

map Δ(=) : C −→ C⊗=+1
can be defined. Thus, we need to replace ⊗ by t and the unit

object K, where K is a field, by {0} in the proof of [Grin18, Bem. 2.1.
1

2
3) on p. 73].

For an <-faced dual semigroup (D,Δ, 0) and ! ∈ Lin(D,ℂ)

∀= ∈ ℕ0 : !~= = !�= ◦ Δ(=−1)
(2.3.8)

holds. We prove this statement by induction over = ∈ ℕ0. The statement is true for = = 0.

Performing the induction step = → = + 1 we calculate for = > 0

!~(=+1) = (! � !(~=)) ◦ Δ

=

(
! � (!�= ◦ Δ(=−1))

)
◦ Δ

=

(
(! ◦ id) � (!�= ◦ Δ(=−1))

)
◦ Δ

=

(
(! � !�=) ◦ (idq Δ(=−1))

)
◦ Δ È eq. (2.1.19)É

= (! � !�=) ◦ Δ(=) È eq. (2.3.3)É

= !�(=+1) ◦ Δ(=). (2.3.9)
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(c) Since we are mainly interested in a “good” notion of a cumulant with respect to �, we

need to find a “good” definition of a moment formula with respect to � as its mutual

inverse. We can try to define something like an "exponential map" exp~ on (Lin(D,ℂ), ~)
by

∀! ∈ Lin(D,ℂ) : exp~ ! ≔
∞∑
:=0

1

:!
!~: . (2.3.10)

Leaving issues of convergence aside, we may ask if this definition deserves being called

an convolution exponential for !. The answer is in general no, because the convolution

~ from equation (2.3.1) is not bilinear in general. This has an effect for instance on

commuting elements !1 , !2 ∈ Lin(D,ℂ)w. r. t. ~. Then, the formula

exp~(!1 + !2) = (exp~ !1) ~ (exp~ !2) (2.3.11)

will not hold in general. But this would give us somehow a moral claim to call it

exponential for ~. A better definition for an exponential for ~ is not obvious and heavily

relies on the following machinery

1. Schürmann’s so-called “universal coefficient theorem”

2. “reduction of convolution” to the dual space of a commutative bialgebra

3. characterization of continuous convolution semigroups on comonoids in Algm

Because the following theorem is of such great importance for us, we stick to its original

notation used in [MS17, Thm. 4.2]. First, we present the statement and discuss its notation

afterwards in Remark 2.3.4.

2.3.3 Theorem (Universal coefficient theorem [MS17, Thm. 4.2]). Let � be a universal prod-

uct in the category AlgPm for < ∈ ℕ. Moreover, let :, = ∈ ℕ, (A8 , (A(9)8 )9∈[<] , !8)8∈[:] ∈(
Obj(AlgPm)

)×:
, � ≔ (�8 ,1 , �8 ,2)8∈[=] ∈ A([:] × [<]) and (08)8∈[=] ∈

∏=
8=1

A
(�8 ,2)
�8 ,1 . Then, there exist

complex constants (�)�1 ,...,�: ∈ ℂ, uniquely determined by �, indexed by � ∈ ([:] × [<])×= and
�8 ∈M(-(8)) such that

(!1 � · · · � !:)(01 · · · · · 0=) =
∑

�1∈M(-(1)� )

· · ·
∑

�:∈M(-(:)� )

(
(�)�1 ,...,�:

∏
"1∈�1

!1

( (
9(01 , . . . , 0=)("1)

) )
· · ·

∏
":∈�:

!:
( (
9(01 , . . . , 0=)

)
(":)

))
.

(2.3.12)

2.3.4 Remark.

(a) Let -= ≔ {G1 , . . . , G=} be the set formed by = ∈ ℕ “indeterminates” G1 , . . . , G= . The map

9(01 , . . . , 0=) : ℂ〈-=〉 −→
<⊔
9=1

:⊔
8=1

A
(9)
8

(2.3.13)
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is the unique algebra homomorphism defined by

∀8 ∈ [=] : 9(01 , . . . , 0=)(G8) = 08 . (2.3.14)

Herein ℂ〈-=〉 denotes the free algebra over -= , i.e. ℂ〈-=〉 ∼= T(ℂ-=).
(b) We put for any � =

(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ A([:] × [<])

∀ 9 ∈ [:] : -(9)� ≔ { Gℓ ∈ -= | �ℓ ,1 = 9 }. (2.3.15)

For each 9 ∈ [:] the set M(-(9)� ) is formed by all monomials of the (commutative, unital)

polynomial algebra

ℂ
[
{" ∈ ℂ〈-(9)� 〉 | " is a monomial }

]
(2.3.16)

with the property that each indeterminate of -
(9)
� appears exactly once ([MS17, p. 9]). By

OM(-(9)� ) we denote the subset of M(-(9)� ) of right-ordered elements of M(-(9)� ), i. e., of
elements

"1 • · · · •"ℓ such that "A = G8(A,1) · · · · · G8(A,BA ) (2.3.17)

with 8(A, 1) < · · · < 8(A, BA), A ∈ [ℓ ] for any A ∈ [ℓ ]. Here we use the symbol · to indicate

the multiplication in the free algebra ℂ〈-(9)� 〉 and the symbol • for the multiplication in

the polynomial algebra of equation (2.3.16). Elements of M(-(9)� ) \OM(-(9)� ) are called
wrong-ordered ([MS17, p. 24]). By 19 we denote the unique monomial in OM(-(9)� ) such
that there exists a monomial " in ℂ〈-(9)� 〉 with the property 19 = " and for the degree

of the monomial holds deg(") = |-(9)� |.

(c) Let � = "1 •"2 • · · · •"A ∈M(-(9)� )with definition of -
(9)
� from equation (2.3.15) and

A ∈ ℕ, then by abuse of notation we write "8 ∈ � for all 8 ∈ [A].

2.3.5 Convention. Let :, <, = ∈ ℕ and � = (�8)8∈[=] =
(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ ([:] × [<])×= . This is a

typical index expression which appears whenever we want to evaluate a u.a.u.-product in the

sense of equation (2.3.12). Occasionally, we use the notation

type(�) ≔ (�8 ,1)8∈[=] ∈ ℕ×= , type(�8) ≔ �8 ,1 ∈ ℕ (2.3.18)

to gain access for the “type index” of � and

col(�) ≔ (�8 ,2)8∈[=] ∈ ℕ×= , col(�8) ≔ �8 ,2 ∈ ℕ (2.3.19)

to gain access for the “color index” or sometimes we also call it the “face index” of �. Why we

call the face index a color index will become more clearer later when we deal with “colored”

partitions.

2.3.6 Proposition (Characterization of a universal product [MS17, Prop. 5.1]). Let< ∈ ℕ and

� be a universal product in AlgPm. Then, for all (A8 , (A(9)8 )9∈[<] , !8) ∈ Obj(AlgPm), 8 ∈ [2] there
exists a unique mapping

��A1 ,A2

: A1 t A2 −→ Sym(A1) ⊗ Sym(A2) (2.3.20)
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such that the following diagram is commutative

A1 t A2 Sym(A1) ⊗ Sym(A2)

ℂ

← →
��

A
1
,A

2

←

→
!1�!2

←

→ S(!1)⊗S(!2) . (2.3.21)

Proof: In [MS17, eq. (5.2)] the map ��
A1 ,A2

: A1 t A2 −→ Sym(A1) ⊗ Sym(A2) is defined for

<, = ∈ ℕ, (A8 , (A(9)8 )9∈[<]) ∈ Obj(Algm), � = (�8 ,1 , �8 ,2)8∈[=] ∈ A([2] × [<]), (08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1

by

��A1 ,A2

(01 · · · · · 0=) =
∑

�1∈M(-(1)� )

∑
�2∈M(-(2)� )

(
(�)�1 ,�2

( ∏
"1∈�1

i
s

(
9(01 , . . . , 0=)("1)

) )
⊗

( ∏
"2∈�2

i
s

(
9(01 , . . . , 0=)("2)

) ))
with the constants (�)�1 ,�2

of Theorem 2.3.3 and notation introduced in Remark 2.3.4. The

canonical injection i
s
denotes the injection into the symmetric tensor algebra introduced in

equation (1.1.12). By the UMP of the symmetric tensor algebra, equation (2.3.21) follows. �

The next proposition shows how important the mappings ��
A1 ,A2

are for a given universal

product �. Also compare this statement to [BS02, p. 539] for the case 3 = < = 1.

2.3.7 Proposition ([MS17, Prop. 5.2]). Let � be a universal product in AlgPm for some < ∈
ℕ. Then, for the family of mappings (��

A1 ,A2

)A1 ,A2∈Obj(Algm) (each family member satisfies

equation (2.3.21)) we have the following properties.

(a) For all 8 ∈ [2] and for all A8 ,B8 ∈ Obj(Algm) and morphisms 98 ∈ MorphAlgm
(B8 ,A8)

��A1 ,A2

◦ 91 q 92 =
(
Sym((91) ⊗ Sym(92)

)
◦ ��B1 ,B2

(2.3.22)

holds.

(b) The universal product is associative if and only if for all 8 ∈ [3], A8 , ∈ Obj(Algm)(
id

Sym(A1) ⊗ S(��A2 ,A3

)
)
◦ ��A1 ,A2tA3

=

(
S(��A2 ,A3

) ⊗ id
Sym(A3)

)
◦ ��A1tA2 ,A3

◦ can (2.3.23)

holds. Herein, can : A1t(A2tA3) −→ (A1tA2)tA3 denotes the canonical isomorphism

of algebras.

(c) The universal product is unital if and only if for all 8 ∈ [2], A8 ∈ Obj(Algm)

��A1 ,A2

◦ �1 = inc1 , (2.3.24a)

��A1 ,A2

◦ �2 = inc2 , (2.3.24b)

where �8 : A8 −→ A1 t A2 and inc8 : A8 −→ Sym(A1) ⊗ Sym(A2) for each 8 ∈ [2] as the
canonical inclusion maps.
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(d) The universal product is symmetric if and only if for all 8 ∈ [2], A8 ∈ Obj(Algm)

c̃an ◦ ��A2 ,A1

= ��A1 ,A2

◦ can, (2.3.25)

where c̃an : Sym(A2) ⊗ Sym(A1) −→ Sym(A1) ⊗ Sym(A2) denotes the canonical isomor-

phism of vector spaces and can : A2 t A1 −→ A1 t A2 the canonical isomorphism of

algebras.

Proof: Ad (a): Let us assume that � is a universal product in the category AlgPm. Let

(A1 , !1) ∈ Obj(Algm) and (A2 , !2) ∈ Obj(Algm). Now, we can calculate for the left hand side

of equation (2.3.22)(
S(!1) ⊗ S(!2)

)
◦ ��A1 ,A2

◦ (91 q 92) = (!1 � !2) ◦ (91 q 92)3

= (!1 ◦ 91) � (!2 ◦ 92).

For the right hand side of equation (2.3.22) we obtain(
S(!1) ⊗ S(!2)

)
◦

(
Sym(91) ⊗ Sym(92)

)
◦ ��B1 ,B2

=

(
(S(!1) ◦ Sym(91)) ⊗ (S(!2) ◦ Sym(92))

)
◦ ��B1 ,B2

=

(
S(!1 ◦ 91) ⊗ S(!2 ◦ 92)

)
◦ ��B1 ,B2

= (!1 ◦ 91) � (!2 ◦ 92).

Thus, this yields ∀1 ∈ B1 tB2(
S(!1) ⊗ S(!2)

) ((
��A1 ,A2

◦ (91 q 92) −
(
Sym(91) ⊗ Sym(92)

)
◦ ��B1 ,B2

)
(1)

)
= 0

⇐⇒
(
( can−1 ◦ can)

(
S(!1) ⊗ S(!2)

)
◦ (can−1 ◦ can)

)
((
��A1 ,A2

◦ (91 q 92) −
(
Sym(91) ⊗ Sym(92)

)
◦ ��B1 ,B2

)
(1)

)
= 0

È can : Sym(A1) ⊗ Sym(A2) −→ Sym(A1 ⊕ A2) from Lem. 1.1.6É

⇐⇒
(
can−1 ◦ S(!1 ⊕ !2) ◦ can

)((
��A1 ,A2

◦ (91 q 92) −
(
Sym(91) ⊗ Sym(92)

)
◦ ��B1 ,B2

)
(1)

)
= 0.

(I)

At this point we provide an intermediate result for elements in the symmetric tensor algebra.

Consider the following linear map for a vector space +

Φ :


Sym(+) −→ { 5 : ℂ� −→ ℂ }

% ↦−→
(
S(!)(%)

)
!∈Lin(+,ℂ) ,

(II)

where � is the index set of a basis (G8)8∈� of + . The above prescription is well-defined since

any linear functional ! ∈ Lin(+,ℂ) is uniquely determined by its values on basis vectors in + .
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The basis of + induces a basis of Sym(+) and thus the value S(!)(%) corresponds to “inserting”

S(!)(G8) into %, if % is expanded into basis vectors G8 of + . It can be directly shown that above

map Φ is injective, since the characteristic of ℂ as a field is 0. Now, equation (I) holds for

any linear functionals !1 ⊕ !2 ∈ Lin(A1 ⊕ A2 ,ℂ) and 1 ∈ B1 tB2 was arbitrarily chosen and

therefore equation (2.3.22) follows from the fact that the map Φ from equation (II) is injective.

Ad (b): Assume � is an associative universal product in the category AlgPm. Let (A8)8∈[3] ∈
(Obj(Algm))×3

, then we can calculate for any linear functionals (!8)8∈[3] ∈ (Lin(A8 ,ℂ))×3

(S(!1) ⊗ S(!2) ⊗ S(!3)) ◦
(
id

Sym(A1)⊗3 ⊗ S(��A2 ,A3

)
)
◦ ��A1 ,A2tA3

=

(
S(!1) ⊗

(
(S(!2) ⊗ S(!3)) ◦ S(��A2 ,A3

)
))
◦ ��A1 ,A2tA3

=

(
S(!1) ⊗ S

(
(S(!2) ⊗ S(!3)) ◦ ��A2 ,A3

))
◦ ��A1 ,A2tA3

=

(
S(!1) ⊗ S(!2 � !3)

)
◦ ��A1 ,A2tA3

= !1 � (!2 � !3).

We could analogously perform the calculation for the right hand side of equation (2.3.23). Once

again, the assertion now follows from Lemma 1.1.6 and the fact that the mapΦ from equation (II)

is injective. The other direction is clear.

The remaining proofs for (c) and (d) follow in a similar fashion from above and therefore

are straightforward to do. �

Although we have to deal with universal products in the category AlgPm for some < ∈ ℕ,

we can still apply the “machinery” of reduction of convolution, presented in [Lac15, Sec. 5.2].

Let us argue why we are allowed to do this. In [Lac15, Sec. 5.2] universal products in the

category AlgP are considered. In the following we will establish a cotensor functor from the

tensor category (AlgΘm ,t, {0}) to the tensor category (cuAlgΘ , ⊗ ,ℂ). In [Lac15, Sec. 5.2] a similar

functor from (AlgΘ ,t, {0}) to the tensor category (cuAlgΘ , ⊗ ,ℂ) has been constructed which

essentially depends on the definition of the mappings ��
A1 ,A2

for A8 ∈ Obj(Alg), 8 ∈ [2]. The

proofs of Lemma 2.3.9 and Theorem 2.3.10 can be taken from [Lac15, Sec. 5.2], where we need to

adjust indices of the mappings ��
A1 ,A2

from A8 ∈ Obj(Alg), 8 ∈ [2] to A8 ∈ Obj(Algm), 8 ∈ [2]. We

recall that any <-faced algebra is in particular an algebra. This fact allows us for the definition

to be made in equation (2.3.26), to use a forgetful functor from AlgΘm to AlgΘ and then take the

definition of the functor L from [Lac15, eq. 5.7]. Also compare this discussion to the statement

of [Ger21, Sec. 4].

2.3.8 Definition (Lachs functor [Lac15, eq. 5.7]). We define the Lachs functor L : AlgΘm −→
cuAlgΘ as a functor by

L :



Obj(AlgΘm) 3
(
A, (A(8))8∈[<] , (A)∈Θ

)
↦→

(
Sym(A),

(
(Sym(A))

)
∈Θ

)
∈ Obj(cuAlgΘ)

MorphAlgΘm

( (
B, (B(8))8∈[<] , (B)∈Θ

)
,
(
A, (A(8))8∈[<] , (A)∈Θ

) )
3 9

↦→ Sym(9) ∈ MorphcuAlgΘ
(
Sym(B), Sym(A)

)
.

(2.3.26)
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That the above prescription is a functor, follows from the UMP for the symmetric tensor

algebra Sym(+), where + is a Θ-graded vector space. We want to consider the following

composition of functors

L ◦ t = L( · t · ) : AlgΘm ×AlgΘm −→ cuAlgΘ , (2.3.27)

⊗ ◦ (L,L) = L( · ) ⊗ L( · ) : AlgΘm ×AlgΘm −→ cuAlgΘ . (2.3.28)

2.3.9 Lemma ([Lac15, Lem. 5.2.3]). Let � be a u.a.u.-product in the category AlgPm for some

< ∈ ℕ. Then the family S(��) ≔ (S(��
A1 ,A2

))A1 ,A2∈Obj(AlgΘm) is a natural transformation

S(��) : L( · t · ) ⇒ L( · ) ⊗ L( · ). (2.3.29)

2.3.10 Theorem ([Lac15, Thm. 5.2.4]). Let � be a u.a.u.-product in the category AlgPm for

some < ∈ ℕ. Consider the tensor categories (AlgΘm ,t, {0}) and (cuAlgΘ , ⊗ ,ℂ), then the

triple (L, S(��), ,0) consisting of the functor L : AlgΘm −→ cuAlgΘ, the natural transformation

S(��) : L( · t · ) ⇒ L( · ) ⊗ L( · ) and the map ,0 : Sym({0}) −→ ℂ with ,0(1Sym({0})) = 1 is a

cotensor functor.

2.3.11 Corollary ([MS17, Thm. 5.2], [Lac15, p. 118]). Let (L, S(��), ,0) : (Algℕ0

m ,t, {0}) −→
(cuAlgℕ0 , ⊗ ,ℂ) be the cotensor functor of Theorem 2.3.10.

(a) If

(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
is a comonoid in the tensor category (Algℕ0

m ,t, {0})with

D0 = {0}, then (
L(D), S(��D,D) ◦ L(Δ), ,0 ◦ L(0)

)
(2.3.30)

is a comonoid in the tensor category (cuAlgℕ0 , ⊗ ,ℂ), i. e., a graded, commutative bialgebra

(Definition 1.1.20 (c)) which is also connected as a graded bialgebra (Definition 1.1.23)

and which is also connected as a filtered bialgebra (Definition 1.1.22).

(b) If

(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
is a comonoid in the tensor category (Algℕ0

m ,t, {0})with

D0 = {0}, then the prescription

Lin(D,ℂ) 3 ! ↦−→ S(!) ∈ Lin

(
Sym(D),ℂ

)
(2.3.31)

defines a homomorphism between themonoids (Lin(D,ℂ), ~) and
(
Lin(Sym(D),ℂ),★�

)
,

whereby★� denotes the convolution induced by the comultiplication given in (a). This
means for all 8 ∈ [2], !8 ∈ Lin(D,ℂ)

S(!1 ~ !2) = S(!1)★� S(!2). (2.3.32)

Proof: Ad (a): In [Lac15, Cor. 2.3.5] it is stated that cotensor functors map comonoids to

comonoids. From Theorem 2.3.10 we know that (L, S(��), ,0) is a cotensor functor. By this, we

conclude that (L(D), S(��
D,D
) ◦L(Δ), ,0 ◦L(0)) is a graded and commutative bialgebra. A similar

proof which avoids the terminology of cotensor functors can be found in [BS05, Thm. 3.4]. The

algebra structure of the bialgebra L(D) is the natural one induced by ⊗
Sym

for pure vectors.

Furthermore, it is a connected graded bialgebra because by Lemma 1.1.16 we can see that(
Sym(D)

)
0
= ℂ · 1

Sym(D) (we have assumed D0 = {0}). This shows that the graded bialgebra is

connected. Moreover, due to Lemma 1.1.21 the graded bialgebra becomes a filtered bialgebra

with

(
Sym(D)

)
≤0
= ℂ · Sym(D) and by Definition 1.1.22 it is also a connected filtered bialgebra.

Ad (b): In [BS05, Thm. 3.4] this has been proven for the more general case < = 1 and without

assumption about a grading of the dual semigroup. But the same reasoning also applies in our



40 Chapter 2. BCH-formula for u.a.u.-products

case < > 1, since the formal steps of reasoning do not interfere with properties of morphisms of

<-faced algebras or the ℕ0-grading of the dual semigroup D. For an alternative proof, we refer

to the proof of [Lac15, eq. (5.8)]. �

2.3.12 Convention. Corollary 2.3.11 (a) tells us that a u.a.u.-product � in the category AlgPm
takes a certain ℕ0-graded <-faced dual semigroup and associates with it a connected graded

bialgebrawith comultiplicationΔ� realizedon a certain symmetric tensor algebra. With respect

to this comultiplication Δ� we can define a convolution★�. Without burdening ourselves too

much with heavy notation, we set

★≔ ★� (2.3.33)

for a u.a.u.-product �. This means that it should be clear from the context if a convolution is

induced by � in the sense of Corollary 2.3.11 (a) andwe do not further highlight its dependence

on the specific u.a.u.-product �.

We may convince ourselves that all the nice properties of a convolution exponential are

encoded in an object called “convolution semigroup”. Hence, seeking for the right definition

of the convolution exponential is the same as characterizing convolution semigroups. The

result of this connection, after gathering the necessary tools and describing their properties, is

given in Theorem 2.3.14. We notice that in [BS05, Def. 4.2] and [BS05, Thm. 4.6] u.a.u.-products

� in the category AlgP have been considered. But, we can easily extend the definition and

statement to the multi-faced case < > 1 since the same formal steps of reasoning can be applied.

The crucial step for the machinery of the Lachs functor is the equivalent characterization of a

u.a.u.-product in Proposition 2.3.7 in terms of the family of mappings �A1 ,A2
. From there we

can see that we need to run through all linear functionals ! ∈ Lin(A,ℂ) to achieve the existence

of such family of mappings. Here it is not important if the algebra A has < faces or only one

face. Furthermore, we have the technical obstacle to demand an ℕ0-graded dual semigroup

(D, (D8)8∈ℕ0
)with D0 = {0} because then convergence of the convolution exponential on the dual

space of a connected graded bialgebra is ensured in our framework (Corollary 2.3.11 (a)). The
work of [BS05] does not need this assumption since their justification for the existence of the

convolution exponential is different (see Remark 1.3.4). By these comments in mind, we may

state the following definition and Theorem 2.3.14, where we refer for its proof to the proof done

for [BS05, Thm. 4.6].

2.3.13 Definition (Convolution semigroup on a <-faced dual semigroup [BS05, Def. 4.2]).
Let (D,Δ, �) be an <-faced dual semigroup and assume � is a u.a.u.-product in the category

AlgPm for some < ∈ ℕ. A family (!C)C∈ℝ+ ∈
(
Lin(D,ℂ)

)ℝ+
is called a convolution semigroup on

the dual semigroup (D,Δ, �) if and only if for all B, C ∈ ℝ+ we have

!B ~ !C = !B+C , (2.3.34a)

!0 = � = 0. (2.3.34b)

A convolution semigroup is said to be weakly continuous if and only if in addition

∀1 ∈ D : lim

C→0
+
!C(1) = �(1) = 0. (2.3.35)

2.3.14 Theorem (Characterization of convolution semigroup on an<-faced dual semigroup
[BS05, Thm. 4.6]). Let

(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
be a comonoid in the tensor category
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(Algℕ0

m ,t, {0}) with D0 = {0} and assume � is a u.a.u.-product in the category AlgPm for some

< ∈ ℕ. Then,

Tfae: (a) The family (!C)C∈ℝ+ ∈
(
Lin(D,ℂ)

)ℝ+
forms a weakly continuous convolution

semigroup on the dual semigroup D.

(b) There exists a linear functionalΨ ∈ Lin(D,ℂ) such that

∀ C ∈ ℝ+ : !C = exp★(CD(Ψ)) ◦ i
s
, (2.3.36)

wherein i
s
: D ↩−→ Sym(D) is the canonical embedding, exp★ denotes the well-

defined exponential on the convolution algebra Lin

(
Sym(D),★

)
in the sense of

equation (1.3.9a) using Convention 2.3.12 and D( · ) has been defined in Proposi-

tion 1.4.10.

2.3.15 Remark. Let < ∈ ℕ, a comonoid

(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
in the tensor category

(Algℕ0

m ,t, {0}) with D0 = {0}, � a u.a.u.-product in the category AlgPm, a linear functional

! ∈ Lin(D,ℂ) and 1 ∈ D. We put

(exp� !)(1) ≔
(( ∞∑
==0

D(!)★=
)
◦ i

s

)
(1). (2.3.37)

By the above equivalent characterization of weakly continuous convolution semigroups, we

can conclude from equation (2.3.34a) that(
exp� B!

)
~

(
exp� C!

)
=

(
exp�(B + C)!

)
. (2.3.38)

Finally, this result gives us a moral claim what to call an exponential on the monoid

(Lin(D,ℂ), ~) and exp� ! seems to be promisingly.

2.4 Moment-cumulant formula

In the previous section we have collected convincing reasons, how an exponential and logarithm

with respect to a u.a.u.-product might be defined. This in turn allows us to establish our desired

moment-cumulant formula which is of great importance for our further investigations. Here,

we bring into effect our considerations from Sections 1.2–1.4.

2.4.1 Definition (Exponential and logarithm on the dual space of a dual semigroup).
Assume that a u.a.u-product � in the category AlgPm for some < ∈ ℕ is given. Let(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
be a comonoid in the tensor category (Algℕ0

m ,t, {0}) with

D0 = {0}. Then, we define

exp� :


Lin(D,ℂ) −→ Lin(D,ℂ)

! ↦−→
(
exp★

(
D(!)

) )
◦ i

s
,

(2.4.1)

log� :


Lin(D,ℂ) −→ Lin(D,ℂ)

! ↦−→
(
log★

(
S(!)

) )
◦ i

s
.

(2.4.2)

wherein★ denotes the convolution using Convention 2.3.12.
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2.4.2 Remark. Wewant to discusswhy the definitions of exp� and log�make sense. According

to Corollary 2.3.11 (a) the Lachs functor associates to the comonoid D ∈ Obj(Algℕ0

m ) a connected
filtered bialgebra Sym(D). In particular, by Proposition 1.3.6 (c) the mappings exp★ and (log★)1
are well-defined and therefore log★ is well-defined because of Definition 1.3.7. In detail this

means: for! ∈ Lin(D,ℂ) the symbolD(!)denotes the uniquederivation inDer(�,�)(Sym(+),ℂ)
which satisfies equation (1.4.7). Here, � is the counit of the bialgebra Sym(D) coming from

the Lachs functor (equation (2.3.30)). If we consult Remark 1.4.8, then we can see for the

exponential

exp★ �Der(�,�)(Sym(D),ℂ) : Der(�,�)
(
Sym(D),ℂ

)
−→ Alg

(
Sym(D),ℂ

)
. (2.4.3)

Therefore, exp� is well-defined. Furthermore, since S(!) ∈ Alg

(
Sym(D),ℂ

)
log� is well-

defined because we have for the logarithm

log★ �Alg(Sym(D),ℂ) : Alg

(
Sym(D),ℂ

)
−→ Der(�,�)

(
Sym(D),ℂ

)
. (2.4.4)

We recall that by Lemma 1.4.2 (b) the subspace Der(�,�)
(
Sym(D),ℂ

)
⊆ Lin

(
Sym(D),ℂ

)
is a Lie

algebra w. r. t. the Lie bracket induced by ★. By Proposition 1.4.7 Alg

(
Sym(D),ℂ

)
is a group

w. r. t. ★.

2.4.3 Proposition. Assume that a u.a.u-product � in AlgPm is given and a comonoid(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)

in the tensor category (Algℕ0

m ,t, {0}) is fixed. Then,

exp� : Lin(D,ℂ) −→ Lin(D,ℂ) and log� : Lin(D,ℂ) −→ Lin(D,ℂ) are inverse to each other.

Proof: We calculate for an arbitrary ! ∈ Lin(D,ℂ)

exp�(log� !) =
(
exp★

(
D(log� !)

) )
◦ i

s
È eq. (2.4.1)É

=

(
exp★

(
D

(
(log★ S(!)) ◦ i

s

)︸                  ︷︷                  ︸
=log★ S(!)

ÈLem. 1.4.11 (b), eq. (2.4.4)É

))
◦ i

s
È eq. (2.4.2)É

=

(
exp★

(
log★ S(!)

)︸               ︷︷               ︸
=S(!)

ÈProp. 1.3.9 (b)É

)
◦ i

s
= S(!) ◦ i

s
= !

and

log�(exp� !) =
(
log★

(
S(exp� !)

) )
◦ i

s
È eq. (2.4.2)É

=

(
log★

(
S
( (

exp★ D(!)
)
◦ i

s

)
︸                   ︷︷                   ︸

=exp★ D(!)
È eq. (1.1.12)É

))
◦ i

s
È eq. (2.4.1)É

=

(
log★

(
exp★ D(!)

)︸               ︷︷               ︸
=D(!)

ÈProp. 1.3.9 (a)É

)
◦ i

s
= D(!) ◦ i

s
= ! È eq. (1.4.7)É �
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2.4.4 Definition. Assume that a u.a.u-product � in AlgPm for some < ∈ ℕ is given and(
(D, (D=)=∈ℕ , (D(8))8∈[<]),Δ, 0

)
is a comonoid in the tensor category (Algℕ0

m ,t, {0}) with D0 =

{0}.

(a) For any : ∈ ℕ0 we define the following map

)�: :


(
Lin(D,ℂ)

)×:−→ Lin(D,ℂ)

(#1 , . . . ,#:) ↦−→
(
D(#1)★ · · ·★D(#:)

)
◦ i

s
.

(2.4.5)

By #1 � · · · � #: we mean )�:(#1 , . . . ,#:) and #�: is the :-th power of the element #.
We put #�0 ≔ 0.

(b) We set

[ · , · ]� :

{
Lin(D,ℂ) × Lin(D,ℂ) −→ Lin(D,ℂ)

(!,#) ↦−→ ! � # − # � ! = [D(!),D(#)]★ ◦ i
s
,

(2.4.6)

where [!1 , !2]★ ≔ !1 ★ !2 − !2 ★ !1 denotes the Lie bracket induced by★ for !1 , !2 ∈
Lin

(
Sym(D),ℂ

)
.

The next proposition showswhy the :-fold operation )�: is so important for our framework.

2.4.5 Proposition. Assume that a u.a.u-product � in AlgPm for some < ∈ ℕ is given and(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
is a comonoid in the tensor category (Algℕ0

m ,t, {0}) with D0 =

{0}. Then,

(a) )�: :

(
Lin(D,ℂ)

)×:−→ Lin(D,ℂ) is a ℂ-multilinear map.

(b) For all # ∈ Lin(D,ℂ) holds

exp� # =
∞∑
:=0

1

:!
#� : , (2.4.7)

log� # = # −
∞∑
:=2

1

:!

(
log� #

)� :
. (2.4.8)

(c)
(
Lin(D,ℂ), [ · , · ]�

)
is a Lie algebra.

(d) ∀!,# ∈ Lin(D,ℂ), ∀= ∈ ℕ, ∀(ℎ8)8∈[=] ∈ ℕ×=
0
, ∀(:8)8∈[=] ∈ ℕ×=

0
:[

!ℎ1#:1 . . . !ℎ=#:=
]
�
=

[
(D(!))ℎ1(D(#)):1 . . . (D(!))ℎ= (D(#)):=

]
★
◦ i

s
, (2.4.9)

where we use Convention 1.2.14.

(e) ∀ : ∈ ℕ \ {1, 2}, ∀(#8)8∈[:] ∈
(
Lin(D,ℂ)

)×:
, ∀ℓ ∈ {ℓ , . . . , : − 1} ⊆ ℕ :

#1 � · · · � #ℓ−1 � #ℓ � #ℓ+1 � #ℓ+2 � · · · � #:

− #1 � · · · � #ℓ−1 � #ℓ+1 � #ℓ � #ℓ+2 � · · · � #:

= #1 � · · · � #ℓ−1 � [#ℓ ,#ℓ+1]� � #ℓ+2 � · · · � #: .

(2.4.10)

Proof: Ad (a): We have to show that )�: is multilinear map, i. e., it is linear in each argument.
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We claim that )�: is composition of linear maps. The canonical insertion map i
s
: + ↩−→ Sym(+)

is by definition linear, themapD: Lin(D,ℂ) −→ Der(�,�)(Sym(D,ℂ) is linear by Lemma 1.4.11 (a)
and it is well known the convolution★ determines the structure of an algebra on the dual space

of Sym(D). This proves the assertion.
Ad (b): For equation (2.4.7) we calculate

exp� # =
(
exp★

(
D(!)

) )
◦ i

s
Èdefinition of exp�( · ) in eq. (2.4.1)É

=

( ∞∑
:=0

1

:!

(
D(!)

)★:) ◦ i
s
Èdefinition of exp★( · ) in Prop. 1.3.6 (c)É

=

∞∑
:=0

1

:!

( (
D(!)

)★: ◦ i
s

)
=

∞∑
:=0

1

:!
#�: Èdefinition of ( · )�: in Def. 2.4.4É.

For equation (2.4.8) we calculate

# = S(#) ◦ i
s
ÈUMP of symmetric algebraÉ

= exp★

(
log★ S(#)

)
◦ i

s
ÈS(#) ∈ �

(
Sym(D),ℂ

)
, Prop. 1.3.9 (b)É

=

( ∞∑
:=0

1

:!

(
log★ S(#)

)★:) ◦ i
s
Èdef. of exp★ · in Prop. 1.3.6 (c)É

=

( (
log★ S(#)

)★0︸         ︷︷         ︸
=4

Sym(D),ℂ

+
(
log★ S(#)

)★1︸           ︷︷           ︸
= log★ S(#)

+
∞∑
:=2

1

:!

(
log★ S(#)

)★:) ◦ i
s

È 4
Sym(D),ℂ is the unital element in the convolution algebra Lin

(
Sym(D),ℂ

)
É

=

(
S(0) + log★ S(#) +

∞∑
:=2

1

:!

(
log★ S(#)

)★:) ◦ i
s
ÈConv. 1.1.9 & Cor. 2.3.11 (a)É

= S(0) ◦ i
s
+ log★ S(#) ◦ i

s
+
∞∑
:=2

(
1

:!

(
log★ S(#)

)★: ◦ i
s

)
= log� # +

∞∑
:=2

(
1

:!

(
log★ S(#)

)★: ◦ i
s

)
ÈUMP of symmetric algebra & eq. (2.4.2)É

= log� # +
∞∑
:=2

(
1

:!

(
D

(
log★ S(#) ◦ i

s

) )★:
◦ i

s

)
È eq. (1.4.4b), then apply Lem. 1.4.11 (b)É

= log� # +
∞∑
:=2

(
1

:!

(
D

(
log� #

) )★:
◦ i

s

)
Èdef. of log� · in eq. (2.4.2)É
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= log� # +
∞∑
:=2

1

:!
(log� #)� : Èdef. of · � : in eq. (2.4.5)É.

Ad (c): From Lemma 1.4.2 (b)we know that (Der(�,�)(Sym(+),ℂ), [ · , · ]★) is a Lie subalgebra of
Lin(D,ℂ). Thus [ · , · ]� : Lin(D,ℂ) × Lin(D,ℂ) −→ Lin(D,ℂ) is ℂ-bilinear map. Furthermore,

[!, !]� = 0, since [ · , · ]★ is a Lie bracket. For the Jacobi identity we observe the following for

any (!8)8∈[3] ∈
(
Lin(D,ℂ)

)×3[
[!1 , !2]� , !3

]
�
=

[
D

(
[D(!1),D(!2)]★ ◦ i

s

)
,D(!3)

]
★
◦ i

s
È eq. (2.4.6)É

=
[
[D(!1),D(!2)]★,D(!3)

]
★
◦ i

s

È [D(!1),D(!2)]★ ∈ Der(�,�)(Sym(D),ℂ) & Lemma 1.4.11 (b) É.

By this result the Jacobi identity for [ · , · ]� follows from the Jacobi identity of [ · , · ]★.
Ad (d): Since

(
Lin(D,ℂ), [ · , · ]�

)
is a Lie algebra, the right hand side of equation (2.4.9) is well

defined according to equation (1.2.18). We claim

∀!,# ∈ Lin(D,ℂ), ∀< ∈ ℕ : [!, [!, . . . , [!︸           ︷︷           ︸
< times

,#]�]�]�

= [D(!), [D(!), . . . , [D(!)︸                         ︷︷                         ︸
< times

,D(#)]★]★]★ ◦ i
s
.

(I)

We show this by induction over <. For < = 1 this is the definition of [ · , · ]� provided in

equation (2.4.6). Assume equation (I) holds for some < ∈ ℕ, then we perform the induction step

< → < + 1 and calculate

[!, [!, . . . , [!︸           ︷︷           ︸
(<+1) times

,#]�]�]�

=

[
D(!),D

(
[!, [!, . . . , [!︸           ︷︷           ︸

< times

,#]�]�]�
)]

★
◦ i

s
Èdef. of [ · , · ]� in eq. (2.4.6)É

=

[
D(!),D

(
[D(!), [D(!), . . . , [D(!)︸                         ︷︷                         ︸

< times

,D(#)]★]★]★ ◦ i
s

)]
★
◦ i

s
È induction hypothesisÉ

=

[
D(!), [D(!), [D(!), . . . , [D(!)︸                         ︷︷                         ︸

< times

,D(#)]★]★]★
]
★
◦ i

s
ÈLemma 1.4.11É

= [D(!), [D(!), . . . , [D(!)︸                         ︷︷                         ︸
(<+1) times

,D(#)]★]★]★ ◦ i
s
.

In particular, choosing # = ! in equation (I) and using the assertion of Lemma 1.4.11 we have

∀# ∈ Lin(D,ℂ), ∀< ∈ ℕ :

D

(
[#, [#, . . . [#,#︸            ︷︷            ︸

< times

]�]�]�
)
=

(
[D(#), [D(#), . . . [D(#),D(#)︸                               ︷︷                               ︸

< times

]★]★]★. (II)
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Combining the results of equations (I) and (II), we obtain

∀!,# ∈ Lin(D,ℂ), ∀ ℎ1 ∈ ℕ ∀ :1 ∈ ℕ :

[!, [!, . . . , [!︸           ︷︷           ︸
ℎ1 times

, [#, [#, . . . [#,#︸            ︷︷            ︸
:1 times

]]�]�]�]�]�

= [D(!), [D(!), . . . , [D(!)︸                         ︷︷                         ︸
ℎ1 times

, [D(#), [D(#), . . . [D(#),D(#)︸                               ︷︷                               ︸
:1 times

]]★]★]★]★]★ ◦ i
s

which shows the induction base for = = 1 in equation (2.4.9). By several applications of

equation (I) and Lemma 1.4.11 the induction step = → = + 1 in equation (2.4.9) is easily done.

Ad (e): We calculate

#1 � · · · � #ℓ � #ℓ+1 � · · · � #: − #1 � · · · � #ℓ+1 � #ℓ � · · · � #:

=
(
D(#1)★ · · · ★ D(#ℓ )★ D(#ℓ+1)★ · · · ★ D(#:)

−D(#1)★ · · · ★ D(#ℓ+1)★ D(#ℓ )★ · · · ★ D(#:)
)
◦ i

s
ÈDef. 2.4.4É

=
(
D(#1)★ · · · ★ [D(#ℓ ),D(#ℓ+1)]★★ · · · ★ D(#:)

)
◦ i

s

=

(
D(#1)★ · · · ★ D

(
[D(#ℓ ),D(#ℓ+1)]★ ◦ i

s

)
★ · · · ★ D(#:)

)
◦ i

s

È [D(#ℓ ),D(#ℓ+1)]★ ∈ Der(�,�)(Sym(D3),ℂ) & Lemma 1.4.11 (b) É

=

(
D(#1)★ · · · ★ D

(
[#ℓ ,#ℓ+1]�

)
★ · · · ★ D(#:)

)
◦ i

s
ÈDef. 2.4.4É

= #1 � · · · � [#ℓ ,#ℓ+1]� � · · · � #: ÈDef. 2.4.4É. �

The next lemmamight help us to get a rough impression why the operation� does not need
to be associative. A concrete example is postponed and will be delivered in Example 5.1.7. On

the other hand, the next lemma will be important in Section 2.5 in particular for Lemma 2.5.11

and Lemma 2.5.12 whenever a given u.a.u.-product possesses so-called highest coefficients.

2.4.6 Lemma. Assume that a u.a.u-product � in AlgPm for some < ∈ ℕ is given and(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
is a comonoid in the tensor category (Algℕ0

m ,t, {0}) with

D0 = {0}. For any : ∈ ℕ and for any :-tuple (!8)8∈[:] ∈
(
Lin(D,ℂ)

)×:
∀1 ∈ Sym(D) : (!1 � · · · � !:)(1) =

%

%C1 . . . %C:

( (
(C1!1) ~ · · · ~ (C:!:)

)
(1)

)���
C1=...=C:=0

(2.4.11)

holds.

Proof: We can calculate for any 1 ∈ D

(!1 � · · · � !=)(1)

=
(
D(!1)★ · · ·★D(!:)

) (
i
s
(1)

)
È eq. (2.4.5)É

=

((
d

dC1

(
S(C1!1)( · )

) ���
C1=0

)
★ · · ·★

(
d

dC:

(
S(C:!:)( · )

) ���
C:=0

)) (
i
s
(1)

)
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ÈLem. 1.4.9, Prop. 1.4.10É

=

(((
d

dC1

(
S(C1!1)( · )

) ���
C1=0

)
⊗ · · · ⊗

(
d

dC:

(
S(C:!:)( · )

) ���
C:=0

))
◦ Δ̃(=)

) (
i
s
(1)

)
�
let be Δ̃ the comultiplication coming from the Lachs functor,

∃ similar eq. as in eq. (2.3.8) but here Δ̃ : Sym(D) −→ Sym(D) ⊗ Sym(D)

�

=
%

%C1 . . . %C=

(( (
S(C1!1) ⊗ · · · ⊗ S(C=!=)

)
◦ Δ̃(=)

) (
i
s
(1)

) )���
C1=...=C==0

Èwrite Δ̃(=)
(
i
s
(1)

)
as a linear combination of basis vectorsÉ

=
%

%C1 . . . %C=

( (
S(C1!1)★ · · ·★ S(C=!=)

) (
i
s
(1)

) )���
C1=...=C==0

=
%

%C1 . . . %C=

(
S
(
(C1!1) ~ · · · ~ (C=!=)

) (
i
s
(1)

) )���
C1=...=C==0

ÈCor. 2.3.11 (b)É

=
%

%C1 . . . %C=

( (
(C1!1) ~ · · · ~ (C=!=)

)
(1)

)���
C1=...=C==0

ÈUMP of Sym(D) É. �

2.4.7 Lemma. Assume that a u.a.u-product � in AlgPm for some < ∈ ℕ is given and(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
is a comonoid in the tensor category (Algℕ0

m ,t, {0}) with

D0 = {0}. If � is symmetric, then [ · , · ]� = 0.

Proof: We calculate for !1 , !2 ∈ Lin(D,ℂ) and some 1 ∈ D

[!1 , !2]�(1)

= (!1 � !2 − !2 � !1)(1) È eq. (2.4.6)É

=
%2

%C1 %C2

(
((C1!1) ~ (C2!2)) − ((C1!2) ~ (C2!1))

)
(1)

���
C1=C2=0

È eq. (2.4.11)É

=
%2

%C1 %C2

(( (
(C1!1) � (C2!2)

)
◦ Δ

)
−

( (
(C1!2) � (C2!1)

)
◦ Δ

))
(1)

���
C1=C2=0

È eq. (2.3.1)É

=
%2

%C1 %C2

(( (
(C1!1) � (C2!2)

)
◦ Δ

)
−

( (
(C2!1) � (C1!2)

)
◦ Δ

))
(1)

���
C1=C2=0

È � is symmetricÉ

=
%2

%C1 %C2

(( (
(C1!1) � (C2!2)

)
◦ Δ

)
−

( (
(C1!1) � (C2!2)

)
◦ Δ

))
(1)

���
C1=C2=0

È rename indices, Schwarz’s theoremÉ

= 0. �

2.4.8 Theorem (“BCH-formula” for convolution w. r. t. � [MS17, eq. 7.3]). Assume that a

u.a.u-product � in AlgPm for some < ∈ ℕ is given and

(
(D, (D=)=∈ℕ0

, (D(8))8∈[<]),Δ, 0
)
is a

comonoid in the tensor category (Algℕ0

m ,t, {0}) with D0 = {0}. Then, for the convolution

exponential defined in equation (2.4.1) holds:
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(a) ∀!,# ∈ Lin(D,ℂ) :
exp� ! ~ exp� # = exp�

(
BCH�

(
!,#

) )
, (2.4.12)

(b) ∀!,# ∈ Lin(D,ℂ) :
log�(! ~ #) = BCH�

(
log� !, log� #

)
. (2.4.13)

Here, BCH�( · , · ) denotes the series in the sense of equation(1.2.21), i. e., a series of right-nested

brackets [( · )ℎ1 . . . ( · ):= ]� in the Lie algebra

(
Lin(D,ℂ), [ · , · ]�

)
.

Proof: Ad (a): We calculate

exp� ! ~ exp� #

= (exp� ! � exp� #) ◦ Δ Èdefinition of � in eq. (2.3.33)É

=

( (
exp★ D(!) ◦ i

s

)
�

(
exp★ D(#) ◦ i

s

) )
◦ Δ Èdefinition of exp�( · ) in eq. (2.4.1)É

=

(
S(exp★ D(!) ◦ i

s
) ⊗ S(exp★ D(#) ◦ i

s
)
)
◦ �D,D ◦ Δ ÈProposition 2.3.6É

=

(
exp★ D(!) ⊗ exp★ D(#)

)
◦ �D,D ◦ Δ

�
exp★ D(!) ∈ Alg(Sym(D3),ℂ),
UMP of symm. tensor algebra

�
=

(
exp★ D(!) ⊗ exp★ D(#)

)
◦ S(�D,D ◦ Δ) ◦ i

s
ÈUMP of symm. tensor algebraÉ

=

(
exp★ D(!)★ exp★ D(#)

)
◦ i

s

��������
Cor. 2.3.11 (a) says
S(�D,D ◦ Δ) = S(�D,D) ◦ Sym(Δ)
is comultiplication for Sym(D),
then use def. of convolution★

from eq. (1.1.21)

��������
=

(
exp★

(
BCH∗

(
D(!),D(#)

) ))
◦ i

s
ÈTheorem 1.3.10É

=

(
exp★

(
D

(
BCH�

(
!,#

) )))
◦ i

s
È eq. (2.4.9) & Prop. 1.4.10É

= exp�
(
BCH�(!,#)

)
Èdefinition of exp�( · ) in eq. (2.4.1)É.

Ad (b): We calculate

log�(! ~ #)

= log★

(
S(! ~ #)

)
◦ i

s
Èdefinition of log� in eq. (2.4.2)É

= log★

(
S(!)★ S(#)

)
◦ i

s
ÈS is monoid homomorphism by Cor. 2.3.11 (b)É
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= log★

(
exp★

(
log★ S(!)

)
★ exp★

(
log★ S(#)

) )
◦ i

s

�
because S(!) ∈ �(S(D),ℂ)
Prop. 1.3.9 (b) applies

�

= log★

(
exp★

(
BCH★

(
log★ S(!), log★ S(#)

) ))
◦ i

s

�
log★ S(!) ∈ g(S(D),ℂ),
Thm. 1.3.10

�
=

(
BCH★

(
log★ S(!), log★ S(#)

) )
◦ i

s
ÈProp. 1.3.9 (a)É

=

(
BCH★

(
D(log� !),D(log� #)

) )
◦ i

s
Èdef. of log� in eq. (2.4.2), Prop. 1.4.10É

= BCH�
(
log� !, log� #

)
È eq. (2.4.9)É. �

2.4.9 Corollary. If the u.a.u-product � is additionally symmetric, then

(a) ∀!,# ∈ Lin(D,ℂ) :
exp� ! ~ exp� # = exp�

(
! + #

)
, (2.4.14)

(b) ∀!,# ∈ Lin(D,ℂ) :
log�(! ~ #) = log� ! + log� #. (2.4.15)

Proof: We have two possibilities to prove these equations. The first possibility is: Lemma 2.4.7

tells us that if � is symmetric, then [ · , · ]� = 0. The equations then follow from the BCH-formula

of Theorem 2.4.8.

The second possibility for a proof relies on the statements presented in Remark 1.3.11

and therefore in total avoids once again any “strong” topological arguments as presented

in Section 1.2. By Lemma 2.4.7 we have: if � is symmetric, then this implies [ · , · ]� = 0.

Equation (2.4.6) then yields

∀!, # ∈ Lin(D,ℂ) : [D(!),D(#)]★ ◦ i
s
= 0.

Since Der(S(0),S(0))(Sym(D),ℂ) forms a Lie subalgebra in (Lin(Sym(D),ℂ), [ · , · ]★ (because of

Proposition 2.4.5 (c)), we can conclude [D(!),D(#)]★ ∈ Der(S(0),S(0))(Sym(D),ℂ). From Theo-

rem 1.4.3 we can now see that

∀= ∈ ℕ0 \ {1}, ∀1 ∈ Sym
=(D) : [D(!),D(#)]★(1) = 0.

Hence, we obtain [D(!),D(#)]★ = 0. Now, the claims follow from similar calculations as we

did in the proof of Theorem 2.4.8 but instead of the application of Theorem 1.3.10 we may now

apply equation (1.3.13). �

2.4.10 Convention. Let < ∈ ℕ. Assume we are given an <-tuple of ℂ-vector spaces (+8)8∈[<].
Furthermore let us denote by Δ8 : T(+8) −→ T(+8) t T(+8) the map, defined in the sense of

equation (2.2.10) which turns T(+8) into a ℕ0-graded dual semigroup and with primitive

comultiplication Δ8 (Example 2.2.8). Each +8 is trivially graded , i. e., +
〈1〉
8

= +8 and ∀= ∈
ℕ0 \ {1} : + 〈=〉8

= {0}. Here, we have used angled brackets for the index of the ℕ0-grading. By

this ℕ0-grading for each +8 , the direct sum
⊕<

8=1
+8 is ℕ0-graded and by Remark 2.2.7 (a) the

tensoralgebraT(
⊕<

8=1
+8) isℕ0-graded. Fromequation (2.2.6)wehave

⊔<
8=1

T(+8) ∼= T(
⊕<

8=1
+8)

and we can even see that this is an isomorphism of ℕ0-graded algebras (Remark 2.2.7 (b)).
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Then, similar to the assertion of Lemma 2.2.4 the triple( <⊔
8=1

T(+8),
<∐
8=1

Δ8 , 0
)

(2.4.16)

defines a comonoid in the category Algℕ0

m , where the 0-th part of the ℕ0-grading is {0}. In

equation (2.4.16)we no longer explicitlymention the canonical isomorphism of equation (2.2.4).

By the term ℕ0-graded <-faced dual semigroup with primitive comultiplication
∐<

8=1
Δ8 (w. r. t.

(+8)8∈[<])we mean the triple of equation (2.4.16).

2.4.11 Remark. Let + be a vector space and assume (48)8∈� ∈ + �
is a basis for + . Then,(

481 ⊗ · · · ⊗ 48:
)
:∈ℕ,(8 9)9∈[:]∈�×: (2.4.17)

is a basis for T(+). For a proof of this fact we refer to [BF12, Prop. 2.35].

2.4.12 Theorem (Moment-cumulant formula of a u.a.u.-product [MS17, eq. (7.4)]). Let �
be a u.a.u.-product in the category AlgPm for some < ∈ ℕ. Let

(
A8 , (A(ℓ )8 )ℓ∈[<] , !8

)
8∈[2] ∈(

Obj(AlgPm)
)×2

. Define for any ℓ ∈ [<]

j
(ℓ )
1
≔ T (id

A
(ℓ )
1

⊕ 0) : T(A(ℓ )
1
⊕ A

(ℓ )
2
) −→ A

(ℓ )
1

(2.4.18)

and

j
(ℓ )
2
≔ T (0 ⊕ id

A
(ℓ )
2

) : T(A(ℓ )
1
⊕ A

(ℓ )
2
) −→ A

(ℓ )
2
. (2.4.19)

Put

∀ℓ ∈ [<] : +ℓ ≔ A
(ℓ )
1
⊕ A

(ℓ )
2

(2.4.20)

and consider (⊔<
ℓ=1

T(+ℓ ),
∐<
ℓ=1

Δℓ , 0) as theℕ0-graded<-faced dual semigroupwith primitive

comultiplication

∐<
ℓ=1

Δℓ using Convention 2.4.10. Then,

!1 � !2 =

((
!1 ◦

( ∐
ℓ∈[<]

j
(ℓ )
1

)
︸            ︷︷            ︸

≕!̃1

)
~

(
!2 ◦

( ∐
ℓ∈[<]

j
(ℓ )
2

)
︸            ︷︷            ︸

≕!̃2

))
◦ incA1tA2 ,

⊔<
ℓ=1

T(+ℓ ) , (2.4.21)

where ~ denotes the convolution w. r. t. the primitive comultiplication

∐<
ℓ=1

Δℓ and

incA1tA2 ,
⊔<
ℓ=1

T(+ℓ ) is a canonical inclusion of vector spaces. Furthermore, it holds that

!1 � !2 =

(
exp�

(
BCH�

(
log� !̃1 , log� !̃2

) ))
◦ incA1tA2 ,

⊔<
9=1

T(+9). (2.4.22)

Proof: Let (0(9)
1,8
)
8∈�(9)

1

∈ (A(9)
1
)�
(9)
1 denote a basis for A

(9)
1

with index set �
(9)
1

for each 9 ∈ [<].

Likewise, let (0(9)
2,8
)
8∈�(9)

2

∈ (A(9)
2
)�
(9)
2 denote a basis sequence for A

(9)
2

with index set �
(9)
2

for each

9 ∈ [<]. Let �(9)
8

: A
(9)
8

↩−→ A1 t A2 denote the homomorphic insertion map for each 8 ∈ [2] and
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9 ∈ [<]. It can be shown that{
�(�1)
�1

(
0
(�1)
�1 ,:1

)
· · · · · �(�=)�=

(
0
(�=)
�= ,:=

) ����� = ∈ ℕ, (�8 , �8)8∈[=] ∈ A([2] × [<]),(:8)8∈[=] ∈
∏=

9=1
�
(� 9)
�9

}
determines a basis for A1 t A2. This can be seen, if we take a possible realization of the free

product of algebras A1 t A2, discussed in Remark 2.2.7 (b). By the above fact for a basis of

A1 t A2 we can define the following linear map on basis elements of A1 t A2

�̃ :



( <⊔
8=1

A
(8)
1

)
t

( <⊔
8=1

A
(8)
2

)
−→

<⊔
8=1

T

(
A
(8)
1
⊕ A

(8)
2︸      ︷︷      ︸

≡+8

)
�(�1)
�1

(
0
(�1)
�1 ,:1

)
· · · · · �(�=)�=

(
0
(�=)
�= ,:=

)
↦−→ can

(
0
(�1)
�1 ,:1

⊗ · · · ⊗ 0(�=)�= ,:=

)
,

(I)

where can : T

(⊕<
8=1

A
(8)
1
⊕A

(8)
2

)
−→ ⊔<

8=1
T

(
A
(8)
1
⊕A

(8)
2

)
is the canonical isomorphism of algebras

(Example 2.2.8). The map �̃ is injective and therefore deserves to be seen as a canonical inclusion

map of vector spaces, i. e., �̃ = incincA
1
tA

2
,
⊔<
ℓ=1

T(+ℓ )
. Now, we claim that

idA1tA2
=

(( <∐
ℓ=1

j
(ℓ )
1

)
q

( <∐
ℓ=1

j
(ℓ )
2

))
◦

( <∐
8=1

Δ8

)
◦ �̃. (II)

Since the right hand side of the above equation is a composition of linear maps, it suffices to

show the above equation for basis elements of A1 t A2. From equation (I) we can see how �̃

maps basis elements of A1 t A2 to certain basis elements of T(
⊕<

8=1
(A(8)

1
⊕ A

(8)
2
)). But all the

maps appearing on the right hand side of equation (II) composed after �̃ are homomorphisms

of algebras. By equation (1.1.3) the binary operation ⊗ is the multiplication for pure tensors in

the tensor algebra T(
⊕<

8=1
(A(8)

1
⊕ A

(8)
2
)). The statement of equation (II) now follows from the

following calculation((( <∐
ℓ=1

j
(ℓ )
1

)
q

( <∐
ℓ=1

j
(ℓ )
2

))
◦

( <∐
8=1

Δ8

))
( 0

(�A )
�A ,:A︸︷︷︸

∈⊔<
ℓ=1

T(+ℓ )

)

=

((( <∐
ℓ=1

j
(ℓ )
1

)
q

( <∐
ℓ=1

j
(ℓ )
2

))
◦

(( <∐
ℓ=1

�(ℓ )
1

)
q

( <∐
ℓ=1

�(ℓ )
2

))) (
Δ�A (0

(�A )
�A ,:A
)
)

ÈUMP of free product of algebrasÉ

=
(
j
(�A )
1
q j
(�A )
2

) (
c̃an

(
(0, 0(�A )�A ,:A

) + (0(�A )�A ,:A
, 0)

) )
���UMP of free product of algebras,

primitive comultiplication def. in eq. (2.2.10)

c̃an is isomorphism similar to eq. (2.2.6)

���
= id

A
(�A )
�A
(0(�A )�A ,:A

) Èdef. of j(ℓ )
8

in eq. (2.4.18) & (2.5.4)É
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Having proved equation (II) we can now proceed with the following calculation

!1 � !2 = (!1 � !2) ◦
(( <∐

ℓ=1

j
(ℓ )
1

)
q

( <∐
ℓ=1

j
(ℓ )
2

))
◦

( <∐
8=1

Δ8

)
◦ �̃ È eq. (II)É

=

((
!1 ◦

( <∐
ℓ=1

j
(ℓ )
1

))
�

(
!2 ◦

( <∐
ℓ=1

j
(ℓ )
2

)))
◦

( <∐
8=1

Δ8

)
◦ �̃

���∀ 8 ∈ [2] :
∐<
ℓ=1

j
(ℓ )
8
∈ MorphAlgm

(⊔<
ℓ=1

T(+ℓ ),A8

)
because A8 =

⊔<
A=1

A
(A)
8

and we have (∐<
A=1

j
(A)
8
)(T(+ℓ )) = A

(ℓ )
8
,

then we can use eq. (2.1.19) for 3 = 1

���
=

((
!1 ◦

( <∐
ℓ=1

j
(ℓ )
1

))
~

(
!2 ◦

( <∐
ℓ=1

j
(ℓ )
2

)))
◦ �̃

This shows equation (2.4.21). According to Convention 2.4.10 (⊔<
8=1

T(+8),
∐<

8=1
Δ8 , 0) is a

comonoid in the tensor category (Algℕ0

m ,t, {0}). Equation (2.4.22) now follows from equa-

tion (2.4.13) and Proposition 2.4.3. �

2.5 Highest coefficients

Now, we focus on a special class of u.a.u.-products and apply the moment-cumulant formula

to these. This derived formula will serve as a role model for our coming investigations in this

work.

2.5.1 Definition (Right-ordered monomials property). We say that a u.a.u.-product � in the

category AlgPm for some < ∈ ℕ has the right-ordered monomials property if and only if in the

expression of the universal product by the universal coefficient theorem (Theorem 2.3.3) only

right ordered monomials appear, i. e., sums are to be taken over the set OM( · ) which means

∀ : ∈ ℕ \ {1}, ∀� ≔ (�8 ,1 , �8 ,2)8∈[=] ∈ A([:] × [<]), ∀(08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 , ∀ 9 ∈ [:], ∀� 9 ∈

M(-(9)) \OM(-(9)) :
(�)�1 ,...,�: = 0 (2.5.1)

Here, we have used the notation introduced in Remark 2.3.4.

2.5.2 Remark. According to [MS17, Rem. 4.4] a positive u.a.u.-product has the right-ordered

monomials property. In Chapter 3 we are going to define another class of symmetric u.a.u.-

product which come from partitions. They have the right-ordered monomials property by

design but it is not directly clear if they will lead to a positive u.a.u.-product.

2.5.3 Definition (Highest coefficient [Spe97]). Let � be a u.a.u.-product with right-ordered

monomials property in the category AlgPm. Due to the universal coefficient theorem

(Thm. 2.3.3) the u.a.u.-product � is uniquely determined by constants (�)�1 ,...,�: ∈ ℂ for any

� =
(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ A([:] × [<]) and � 9 ∈ OM(-(9)) (because it has the right-ordered

monomials property). Among these coefficients we set

∀=, : ∈ ℕ, ∀� =
(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ A([:] × [<]) : 

(�)
max

≔ (�)
11 ,...,1:

(2.5.2)

and call (�)
max

the highest coefficient (for a given �-tuple) w. r. t. �.
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2.5.4 Remark. For the above definition we notice that if a u.a.u.-product does not have the

right-ordered monomials property, then we can not speak of exactly one highest coefficient.

Instead, there can now exist several highest coefficients for one �-tuple.

2.5.5 Convention.

(a) Let � ⊆ ℕ be a set and |� | = = for some = ∈ ℕ. We have a natural order on �. Hence, there

exist elements 8 9 ∈ ℕ such that � = {81 , . . . , 8=} and 8 9 < 8 9+1. For each 8 ∈ {1, 2, . . . , =},
let �8 be a set and assume ∀ 9 ∈ [=] : 08 9 ∈ � 9 . By (08)8∈� we will mean the =-tuple

(081 , . . . , 08= ) ∈
∏=

9=1
� 9 .

(b) Let us assume we have some multiplication of an algebra denoted by · on a set A and

(08)8∈� ∈ A�
for some finite index set � ⊆ ℕ. We want to have some convention for the

large operators

∏
regarding · although the regarding algebraic operation · does not

necessarily need to be commutative. Hence, an expression like

∏
8∈� 08 would not be

well defined since there is some arbitrariness in the way to express the product. Instead,

we want to define large operators like

→∏
8∈� 08 and

→⊗
8∈� E8 for the multiplication on the

tensor algebra T(+) (+ a vector space) between pure tensors. For � = {81 , . . . , 8=} with

81 < 82 < · · · < 8= and = ∈ ℕ we set

∀(08)8∈� ∈ A×= :

→∏
8∈�

08 ≔ 081 · 082 · · · · · 08= ∈ A, (2.5.3a)

∀(E8)8∈� ∈ +×= :

→⊗
8∈�

E8 ≔ E81 ⊗ E82 ⊗ · · · ⊗ E8= ∈ T(+). (2.5.3b)

2.5.6 Definition (Block over ℕ, position of an element in a block). Let = ∈ ℕ.

(a) For an =-tuple G ≔ (G8)8∈[=] ∈ ℕ×= we define

set G ≔ {G1 , G2 , . . . , G=} ⊆ ℕ. (2.5.4)

If all entries of G are pairwise distinct, then we write for G as an =-tuple

|G | ≔ |set G |. (2.5.5)

(b) We call an =-tuple (G8)8∈[=] ∈ ℕ×= a block (over ℕ), if ∀ 8 ∈ [= − 1] : G8 < G8+1.

(c) Let - be a set with = distinct natural numbers for some = ∈ ℕ, i. e., - = {G1 , . . . , G=} ⊆ ℕ

such that ∀ 8 , 9 ∈ [=] : 8 ≠ 9 =⇒ G8 ≠ G 9 . By the well-ordering principle we can sort the

elements of - in ascending order. We denote this sorted tuple by block- ∈ ℕ×= which

is the associated block originated from the finite set -.

(d) For any block 1 ≔ (18)8∈[=] ∈ ℕ×= and some element G ∈ set(1) we denote by pos1(G)
the position of G in the =-tuple 1. Hence, pos1(G) is uniquely determined, because if

G ∈ set(1), then there exists 9 ∈ [=] such that 1 9 = G and for all 8 ∈ [=] with 8 ≠ 9 we have

18 ≠ G by Definition 2.5.6 (b).

2.5.7 Convention. Let + be a vector space, = ∈ ℕ and G ≔ (G8)8∈[=] ∈ +×= be some =-tuple of
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elements in + . Then, we define for G and for any block 1 = (18)8∈[ℓ ] ∈ [=]×ℓ , ℓ ∈ [=]

G1 ≔

→⊗
8∈[ℓ ]

G18 ≡ G11
⊗ · · · ⊗ G1ℓ ∈ T(+), (2.5.6)

where the last equation holds by Convention 2.5.5 (b). If G = G1 ⊗ · · · ⊗ G= ∈ +⊗= , then we can

associate to G the finite tuple (G1 , . . . , G=) ∈ +×= and G1 still makes sense w. r. t. to this =-tuple

under usage of equation (2.5.6).

2.5.8 Convention (Reduced tuple). Let =, : ∈ ℕ. There exists a unique procedure to associate

to any given tuple � = (�8 ,1 , �8 ,2)8∈[=] ∈ ([:]×[<])×= an element �̃ = (�̃8 ,1 , �̃8 ,2)8∈[=̃] ∈ A([:]×[<])
with =̃ ≤ =. We denote the uniquely by � determined element by red �. As an example for

� =
(
(1, 2), (1, 2), (1, 2), (1, 1), (1, 1), (2, 3), (3, 3)

)
(2.5.7)

we obtain for red �
red � =

(
(1, 2), (1, 1), (2, 3), (3, 3)

)
. (2.5.8)

Now, we can apply this setting to the calculation of a u.a.u.-product. Assume � is a u.a.u.-

product with right-ordered monomials property in the category AlgPm for some < ∈ ℕ. We

set

∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1], ∀� =
(
(�8 ,1 , �8 ,2)

)
∈ ([:] × [<])×= , ∀(A8 , !8)8∈[:] ∈(

Obj(AlgPm)
)×:

, ∀(08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 :(

!1 � · · · � !:
)
(01 · · · · · 0=) ≔

(
!1 � · · · � !:

)
(0̃1 · · · · · 0̃=̃), (2.5.9)

where the evaluation of the right hand side of equation (2.5.9) is covered by the universal

coefficient theorem (Thm. 2.3.3) and (0̃8)8∈[=̃] ∈
∏=

8=1
A
(�̃8 ,2)
�̃8 ,1

is the unique tuple which emerges

from (08)8∈[=] with the property

∃! =̃ ∈ [=] :
(
(�̃8 ,1 , �̃8 ,2)

)
8∈[=̃] = red(�) ∈ A

(
[:] × [<]

)
. (2.5.10)

We can think of the tuple (0̃8)8∈[=̃] as the tuple (08)8∈[=], where we havemultiplied “segmentwise

repeated” occurrences. Without getting to technicalwe illustrate this procedure for an example.

Let < = : = 3, = = 7 and � ∈ ([:] × [<])×= given by equation (2.5.7). If (08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 ,

then

0̃1 = 01 · 02 · 03 , 0̃2 = 04 · 05 , 0̃3 = 06 , 0̃4 = 07. (2.5.11)

For matter of comparison the next statements will be formulated in a first instance for the

single-faced case, i. e., < = 1 and then extend the statement to the multi-faced case, i. e., < ≥ 1.

2.5.9 Lemma. Assume � is a u.a.u.-product with right-ordered monomials property in the

category AlgP. Let : ∈ ℕ \ {1}. Then, we have

∀(A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
, ∀� = (�8)8∈[=] ∈ [:]×= , ∀(08)8∈[=] ∈

∏=
8=1

A�8 :

|set �| < :

=⇒ %:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

) (
��1
(01) · · · · · ��= (0=)

) )���
C1=...=C:=0

= 0, (2.5.12)
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where we denote

∀ 8 ∈ [:] : �8 : A8 ↩−→
:⊔
9=1

A9 as canonical inclusions. (2.5.13)

Proof: We prove this assertion by induction over : ∈ ℕ \ {1}. For the induction base : = 2 we

assume � = (1) and then we calculate

%2

%C1 %C2

( (
(C1!1) � (C2!2)

) (
��1
(01)

) )���
C1=C2=0

=
%2

%C1 %C2

(
(C1!1)

(
��1
(01)

) )���
C1=C2=0

Èunitality of � É

=
%

%C2

(
!1

(
��1
(01)

) )���
C2=0

= 0.

The other case � = (2) is shown analogously. For induction step : − 1 → : we make a case

consideration of 2 cases. First we assume |set �| < : and 1 ∉ set �. Then, we calculate

%:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

) (
��1
(01) · · · · · ��= (0=)

) )���
C1=...=C:=0

=
%:

%C1 . . . %C:

((
(C1!1) �

(
(C2!2) · · · � (C:!:)

) ) (
can

( (
��1
(01) · · · · · ��= (0=)

) )))���
C1=...=C:=0

È⊔:
8=1

A8

can∼= A1 t
⊔:
8=2

A8 , � is associativeÉ

=
%:

%C1 . . . %C:

((
(C2!2) � · · · � (C:!:)

) (
can

( (
��1
(01) · · · · · ��= (0=)

) )))���
C1=...=C:=0

È 1 ∉ set �, unitality of � É

=
%

%C1

(
%:−1

%C2 . . . %C:

((
(C2!2) � · · · � (C:!:)

) (
can

( (
��1
(01) · · · · · ��= (0=)

) ))))���
C1=...=C:=0

È Schwarz’s theoremÉ

= 0 Èno dependence of C1 É.

For the next case we assume |set �| < : and 1 ∈ set �. Then, we calculate

%:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

) (
��1
(01) · · · · · ��= (0=)

) )���
C1=...=C:=0

=
%:

%C1 . . . %C:

((
(C1!1) �

(
(C2!2) · · · � (C:!:)

) ) (
can

( (
��1
(01) · · · · · ��= (0=)

) )︸                             ︷︷                             ︸
≕01·····0=∈ A1 t

⊔:
8=2

A8

))���
C1=...=C:=0

È⊔:
8=1

A8

can∼= A1 t
⊔:
8=2

A8 , � is associativeÉ
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=
%:

%C1 . . . %C:

( ∑
�1∈OM(-(1))

∑
�2∈OM(-(2))

(�)�1 ,�2∏
"1∈�1

(C1!1)
(
9(01 , . . . , 0=)("1)

)
∏
"1∈�2

(
(C2!1) � · · · � (C:!:)

) (
9(01 , . . . , 0=)("2)

))���
C1=...=C:=0

ÈThm. 2.3.3 applied to � ∈ A([2]) É

=
%:−1

%C2 . . . %C:

( ∑
�2∈OM(-(2))

(�)
11 ,�2

!1

(
9(01 , . . . , 0=)(11)

)
∏
"1∈�2

(
(C2!1) � · · · � (C:!:)

) (
9(01 , . . . , 0=)("2)

))���
C2=...=C:=0

È Schwarz’s theorem, product ruleÉ

=

∑
�2∈OM(-(2))

(�)
11 ,�2

!1

(
9(01 , . . . , 0=)(11)

)
∏
"2∈�2

%:−1

%C2 . . . %C:

( (
(C2!2) � · · · � (C:!:)

) (
9(01 , . . . , 0=)("2)

) )���
C1=...=C:=0︸                                                                               ︷︷                                                                               ︸

=0

= 0

������
∀�2 ∈ OM(-(2)), ∀"2 ∈ �2 , ∃ =̃ ∈ ℕ, ∃ �̃ = (�̃8)8∈[=̃] ∈ {2, . . . , :}×=̃ ,
∃(�8)8∈[=̃] ∈ [=]×=̃ :

(
9(01 , . . . , 0=)("2)

)
= �̃�̃1
(0�1
) · · · · · �̃�̃= (0�= ) ∈

⊔:
8=2

A8 ,

|set �̃| < : − 1

=⇒ application of induction hypothesis for each monomial

������.
�

We also have a version of Lemma 2.5.9 for the case < ≥ 1.

2.5.10 Lemma. Assume � is a u.a.u.-product with right-ordered monomials property in the

category AlgPm for some < ∈ ℕ. Let : ∈ ℕ \ {1}. Then, we have

∀(A8 , (A(9)8 )9∈[<] , !8)8∈[:] ∈
(
Obj(AlgPm)

)×:
, ∀� =

(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ ([:] × [<])×= ,∀(08)8∈[=] ∈∏=

8=1
A
(�8 ,2)
�8 ,1 :

|set
(
(�8 ,1)8∈[=]

)
| < :

=⇒ %:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

) (
�
(�1,2)
�1,1
(01) · · · · · �(�=,2)�=,1 (0=)

) )���
C1=...=C:=0

= 0, (2.5.14)
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where we denote

∀ 8 ∈ [:], ∀ 9 ∈ [<] : �
(9)
8

: A
(9)
8

↩−→
:⊔
8=1

<⊔
9=1

A
(9)
8

as canonical inclusions. (2.5.15)

Proof: The proof is formally the same as the proof of Lemma 2.5.9. We just need to apply the

universal coefficient theorem in the case < ≥ 1. �

2.5.11 Lemma. Let � be a u.a.u.-product in the category AlgP, which has the right ordered

monomials property. Let + be a ℂ-vector space and consider (T(+),Δ, 0) as a ℕ0-graded

single-faced dual semigroupwith primitive comultiplication Δ according to Convention 2.4.10.

Assume that (E8)8∈� ∈ + �
is a basis of + with index set � and #, #̃ ∈ Lin(T(+),ℂ), then

(a) ∀ : ∈ ℕ \ {1}, ∀= ≥ :, ∀(8 9)9∈[=] ∈ �×= :

#� :(E81 ⊗ · · · ⊗ E8= ) =
∑

�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(
(red �)
max

:∏
8=1

#
(
Ẽ18

) )
. (2.5.16)

Herein, Ẽ18 is defined as follows. For each 9 ∈ [:] let � 9 : )(+) ↩−→
⊔:
9=1

T(+) denote the
canonical homomorphic embeddings. Then, define for each � ∈ [:]×= with |set �| = :

Ẽ1 · · · · Ẽ=̃ ≔ ��1
(E81) · · · · · ��= (E8= ) (2.5.17)

such that (Ẽ8 9 )9∈[=̃] denotes the transition from (E8 9 )9∈[=] to a tuple, where segmentwise

repeated occurrences have been multiplied (eq. (2.5.9) for < = 1). Then, set

∀9 ∈ [:] : 1 9 ≔ block
(
{ ℓ ∈ [=̃] | (red �)ℓ = 9 }

)
. (2.5.18)

Due to Convention 2.5.7 the expression Ẽ18 is well-defined .

(b) ∀ : ∈ ℕ \ {1}, ∀= < :, ∀(8 9)9∈[=] ∈ �×= :

#� :(E81 ⊗ · · · ⊗ E8= ) = 0. (2.5.19)

(c) ∀= ∈ ℕ, ∀(8 9)9∈[=] ∈ �×= :

(exp� #)(E81 ⊗ · · · ⊗ E8= ) =
=∑
:=1

(
1

:!

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(
(red �)
max

:∏
8=1

#
(
Ẽ18

) ))
. (2.5.20)

(d) ∀= ∈ ℕ\, ∀(8 9)9∈[=] ∈ �×= :

(log� #)(E81 ⊗ · · · ⊗ E8= )

= #(E81 ⊗ · · · ⊗ E8= ) −
=∑
:=2

(
1

:!

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(
(red �)
max

:∏
8=1

(log� #)
(
Ẽ18

) ))
. (2.5.21)
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(e) ∀ 8 ∈ � :
[#, #̃]�(E8) = 0 (2.5.22)

and ∀= ∈ ℕ \ {1}, ∀(8 9)9∈[=] ∈ �×= :

[#, #̃]�(E81 ⊗ · · · ⊗ E8= ) =
∑

�=(�8)8∈[=]
∈[2]×= ,
|set �|=2

(
(red �)
max

(
#(Ẽ11

)#̃(Ẽ12
) − #̃(Ẽ11

)#(Ẽ12
)
) )
. (2.5.23)

Proof: Ad (a): We calculate

#� :(E81 ⊗ · · · ⊗ E8= )

=
%:

%C1 . . . %C:

( (
(C1#) ~ · · · ~ (C:#)

)
(E81 ⊗ · · · ⊗ E8= )

)���
C1=...=C:=0

È apply Lem. 2.4.6 for < = 1É

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

)
◦ Δ(:−1)

)
(E81 ⊗ · · · ⊗ E8= )

)���
C1=...=C:=0

È eq. (2.3.8)É

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

)
◦

(
(idq Δ(:−2)) ◦ Δ

) )
(E81 ⊗ · · · ⊗ E8= )

)���
C1=...=C==0

È eq. (2.3.3)É

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

)
◦

(
(idq Δ(:−2)) ◦

(
can ◦ T(inc1 + inc2)

) ))
(E81 ⊗ · · · ⊗ E8= )

)���
C1=...=C:=0

Èdef. of comultiplication on T(+) in eq. (2.2.10)É

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

)
◦

(
(idq Δ(:−2))

))
( →⊗
9∈[=]

can
(
inc1(E8 9 ) + inc2(E8 9 )

) ))���
C1=...=C:=0

ÈT(inc1 + inc2) is homomorphism of algebrasÉ

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

)
◦

(
(idq Δ(:−2))

))
( →∏
9∈[=]

( (
can ◦ inc1

)
(E8 9 ) +

(
can ◦ inc2

)
(E8 9 )

)))���
C1=...=C:=0

È can : T(+ ⊕ +) −→ T(+) t T(+) is canonical isomorphism of algebrasÉ
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=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

)
◦

(
(idq Δ(:−2))

))
( →∏
9∈[=]
(�1,2(E8 9 ) + �2,2(E8 9 ))︸                       ︷︷                       ︸
∈T(+)tT(+)

))���
C1=...=C:=0

��� introduce :-copies of T(+) by ∀ 8 ∈ [:] : A8 ≔ T(+)
set ∀ 9 ∈ {2, . . . , :}, ∀ 8 ∈ [9] : �8 , 9 : A8 ↩−→

⊔ 9

8=1
A8

then we have ∀ 8 ∈ [2] : �8 ,2 = can ◦ inc8

���
=

%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

) )
( →∏
9∈[=]

( (
idq Δ(:−2)) (�1,2(E8 9 ) + �2,2(E8 9 )) )))���

C1=...=C:=0

È idq Δ(:−2)
is homomorphism of algebrasÉ

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

) )
( →∏
9∈[=]

(
�1,2(E8 9 ) + Δ(:−2) (�2,2(E8 9 )) )))���

C1=...=C:=0

ÈUMP of A1 t A2 É

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

) )
( →∏
9∈[=]

(
�1,2(E8 9 ) +

( (
idq Δ(:−3)) ◦ Δ) (

�2,2(E8 9 )
) )))���

C1=...=C:=0

ÈΔ(:−2) = ((idq Δ(:−3)) ◦ Δ) É
=

%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

) )
( →∏
9∈[=]

(
�1,3(E8 9 ) +

(
idq Δ(:−3)) (�2,3(E8 9 ) + �3,3(E8 9 )) )))���

C1=...=C:=0

Èdef. of Δ, A1 t (A2 t A3) ∼=
⊔
8∈[3]A8 É

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

) )
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( →∏
9∈[=]

( :−2∑
ℓ=1

�ℓ ,:−1(E8 9 ) +
(
idq Δ

) (
�:−1,:−1(E8 9 )

) )))���
C1=...=C:=0�

recursive definition of Δ(:−3)
until we reach Δ(1) = Δ,

proof can be made rigorously by induction over : ∈ ℕ

�

=
%:

%C1 . . . %C:

(( (
(C1#) � · · · � (C:#)

) ) ( →∏
9∈[=]

( :∑
ℓ=1

�ℓ ,:(E8 9 )
)))���

C1=...=C:=0

Èdef. of ΔÉ

=
%:

%C1 . . . %C:

((
(C1#) � · · · � (C:#)

) ( ∑
�=(�8)8∈[=]
∈[:]×=

��1
(E81) · · · · · ��= (E8= )

))���
C1=...=C:=0

È set ∀ 8 ∈ [:] : �8 ≔ �8 ,: É

=

∑
�=(�8)8∈[=]
∈[:]×=

%:

%C1 . . . %C:

( (
(C1#) � · · · � (C:#)

) (
��1
(E81) · · · · · ��= (E8= )

) )���
C1=...=C:=0

Èmapping

(
(C1#) � · · · � (C:#)

)
and :-fold partial derivatives are linearÉ

=

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|<:

%:

%C1 . . . %C:

( (
(C1#) � · · · � (C:#)

) (
��1
(E81) · · · · · ��= (E8= )

) )︸                                                                    ︷︷                                                                    ︸
=0 ÈLem. 2.5.9É

���
C1=...=C:=0

+
∑

�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

%:

%C1 . . . %C:

( (
(C1#) � · · · � (C:#)

) (
��1
(E81) · · · · · ��= (E8= )

) )���
C1=...=C:=0

È assumption = ≥ : É

=

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(
(red �)
max

:∏
8=1

#
(
Ẽ18

) )
���universal coefficient theorem (Thm. 2.3.3) applied to :-copies of T(+),
� has right-ordered monomials property, thus (�)

max
(eq. (2.5.2) for < = 1),

is well-defined and terms of quadratic order vanish

���.

Ad (b): We calculate

#� :(E81 ⊗ · · · ⊗ E8= )
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= . . . =
∑

�=(�8)8∈[=]
∈[:]×=

%:

%C1 . . . %C:

( (
(C1#) � · · · � (C:#)

) (
��1
(E81) · · · · · ��= (E8= )

) )���
C1=...=C:=0

���� same steps as for (a),
set ∀ 8 ∈ [:] : �8 = can ◦ inc8 : + ↩−→ T(+) t · · · t T(+)︸︷︷︸

8-th position

t · · · t T(+)

����
= 0 È since = < : we can apply Lem. 2.5.9 to each summandÉ.

Ad (c): The assertion follows by application of equation (2.4.7), (a) and (b).
Ad (d): The assertion follows by application of equation (2.4.8), (a) and (b).
Ad (e): From equation (2.4.6) we have

[#, #̃]� = # � #̃ − #̃ � #.

Then, equation (2.5.22) follows from (b) and equation (2.5.23) has a similar calculation as in the

proof of (a) for : = 2. �

2.5.12 Lemma. Let � be a u.a.u.-product in the category AlgPm for some < ∈ ℕ, which has

the right ordered monomials property. Let (+8)8∈[<] be an <-tuple of vector spaces and

consider (⊔<
8=1

T(+8),
∐<

8=1
Δ8 , 0) as the ℕ0-graded <-faced dual semigroup with primitive

comultiplication

∐<
8=1
Δ8 (using Convention 2.4.10). Assume that (E(9)

8
)8∈�9 ∈ (+9)�9 is a basis of

+9 with index set � 9 for each 9 ∈ [<] and#, #̃ ∈ Lin

(⊔<
8=1

T(+8),ℂ
)
and let can : T(

⊕<
8=1
+8) −→⊔<

8=1
T(+8) be the canonical isomorphism, then

(a) ∀ : ∈ ℕ \ {1}, ∀= ≥ :, ∀(�ℓ )ℓ∈[=] ∈ [<]×= , ∀(8 9)9∈[=] ∈
∏=
ℓ=1

��ℓ :

#� :
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)
=

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(

(red(((�8 ,�8))8∈[=]))
max

:∏
8=1

#
(
can(Ẽ18 )

) )
. (2.5.24)

Herein, Ẽ18 is defined as follows. For each 9 ∈ [:], 8 ∈ [<] let �(8)
9

: )(+8) ↩−→⊔:
9=1

⊔<
8=1

T(+8) denote the canonical homomorphic embeddings. Then, define for each

� ∈ [:]×= with |set �| = :

Ẽ1 · · · · Ẽ=̃ ≔ �(�1)
�1

(E(�1)
81
) · · · · · �(�=)�= (E

(�=)
8=
) (2.5.25)

such that (Ẽ8 9 )9∈[=̃] denotes the transition from (E8 9 )9∈[=] to a tuple, wherein segmentwise

repeated occurrences have been multiplied (eq. (2.5.9)). Then, set

(�̃A , �̃A)A∈[=̃] ≔ red

( (
(�8 , �8)

)
8∈[=]

)
, (2.5.26)

∀9 ∈ [:] : 1 9 ≔ block
({
ℓ ∈ [=̃]

��� (type
(
(�̃A , �̃A)A∈[=̃]

) )
ℓ
= 9

})
. (2.5.27)

Due to Convention 2.5.7 the expression Ẽ18 is well-defined.

(b) ∀ : ∈ ℕ \ {1}, ∀= < :, ∀(�ℓ )ℓ∈[=] ∈ [<]×= , ∀(8 9)9∈[=] ∈
∏=
ℓ=1

��ℓ :

#� :
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)
= 0. (2.5.28)
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(c) ∀= ∈ ℕ, ∀(�ℓ )ℓ∈[=] ∈ [<]×= , ∀(8 9)9∈[=] ∈
∏=
ℓ=1

��ℓ :

(exp� #)
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)

=

=∑
:=1

(
1

:!

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(

(red(((�8 ,�8))8∈[=]))
max

:∏
8=1

#
(
can(Ẽ18 )

) ))
. (2.5.29)

(d) ∀= ∈ ℕ, ∀(�ℓ )ℓ∈[=] ∈ [<]×= , ∀(8 9)9∈[=] ∈
∏=
ℓ=1

��ℓ :

(log� #)
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)

= #
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)

−
=∑
:=1

(
1

:!

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(

(red(((�8 ,�8))8∈[=]))
max

:∏
8=1

(log� #)
(
can(Ẽ18 )

) ))
. (2.5.30)

(e) ∀� ∈ [<], ∀ 8 ∈ �� :

[#, #̃]�(E8) = 0 (2.5.31)

and ∀= ∈ ℕ, ∀(�ℓ )ℓ∈[=] ∈ [<]×= , ∀(8 9)9∈[=] ∈
∏=
ℓ=1

��ℓ :

[#, #̃]�
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)

=

∑
�=(�8)8∈[=]
∈[2]×= ,
|set �|=2

(

(red(((�8 ,�8))8∈[=]))
max

(
#

(
can(Ẽ11

)
)
#̃

(
can(Ẽ12

)
)

− #̃
(
can(Ẽ11

)
)
#

(
can(Ẽ12

)
) ) )
. (2.5.32)

Proof: Ad (a): The proof is formally the same as the proof of Lemma 2.5.11 (a). We just need to

substitute + by (+8)8∈[<] and the primitive comultiplication Δ by

∐<
8=1
Δ8 . The remaining parts

are all similar to the proofs of Lemma 2.5.11 (b) – (e). �

2.5.13 Theorem. Let< ∈ ℕ. Assume that�, �̃ are u.a.u.-productswith right-orderedmonomi-

als property in the category AlgPm. According to the universal coefficient theorem (Thm. 2.3.3)

each universal product implies the existence of uniquely determined coefficients (�)�1 ,...,�: ∈ ℂ
for : ∈ ℕ, � ∈ A([:] × [<]) and �8 ∈ OM(-(8)). Denote the corresponding coefficients for � by

(�)�1 ,...,�: and for �̃ by ̃(�)�1 ,...,�: . If

∀ : ∈ ℕ, ∀� ∈ A([:] × [<]) :
(�)
max

= ̃(�)
max

, (2.5.33)

then � = �̃ as bifunctors.

Proof: Since �, �̃ are assumed to be associative, it suffices to show that
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∀� ∈ A([2] × [<]), ∀(A8 , (A(9)8 )9∈[<] , !8)8∈[2] ∈
(
Obj(AlgPm)

)×2

:

!1 � !2 = !1�̃!2.

For the u.a.u.-product � we obtain from equation (2.4.22) that

!1 � !2 =

(
exp�

(
BCH�

(
log� !̃1 , log� !̃2

) ))
◦ inc

A1tA2 ,
⊔<
9=1

T(A(9)
1
⊕A
(9)
2
) , (I)

where we refer for the used notation, introduced in Theorem 2.4.12. Since � is assumed to

have the right-ordered monomials property it follows by Lemma 2.5.12 that each involved

operation appearing on the right hand side of equation (I) is uniquely determined by the highest

coefficients (�)
max

for � ∈ A([2] × [<]). The same holds for �̃ and thus the equality of !1 � !2

and !1�̃!2 as linear functionals follows for basis elements of

⊔<
9=1

T(A(9)
1
⊕ A

(9)
2
) (look at proof

of Theorem 2.4.12 for a basis). �





Chapter 3

Symmetric u.a.u.-products induced by
partitions

In noncommutative probability moment-cumulant formulas are strongly related to partitions.

This can be seen from previous works of Hasebe and Lehner ([HL19]) or Hasebe and Saigo

([HS11]). In this chapter it is our goal to use partitions in order to define a u.a.u.-product. We

only focus on the symmetric case. The nonsymmetric case seems quite involved. We refer to

Remark 3.3.11 for a discussion on this topic. The idea to mimic the moment-cumulant formula

for a positive u.a.u.-product by means of partitions is due to Malte Gerhold. In some sense this

approach provides a simplification of the question, originally posed by Michael Schürmann, to

find necessary conditions for a somehow generalized �-product from the Definition 2.4.4 (a)
which lead to a well-defined (positive) u.a.u.-product. Proposition 5.1.6 for the single-faced

case and Proposition 5.2.4 for the multi-faced case provide such necessary conditions for the

�-product. In this section we try to clarify this approach using partitions and define sufficient

conditions which ensure a systematic construction of a symmetric u.a.u.-product induced by

partitions.

3.1 Universal class of partitions: single-colored case

This section in its character is very technical. We define necessary maps in order to define our

so-called “universal class of partitions” in the single-colored setting. For concrete examples

from where we can see the following yet to be defined maps in action, we refer the reader to

examples right after Definition 3.1.9.

We understand partitions not only as a set of subsets but as a set of sorted tuples. Therefore,

we have the following definition.

3.1.1 Definition (Partition of a subset of natural numbers, block neighboring elements).
Let ∅ ≠ - ⊆ ℕ and |- | < ∞.

(a) We say that� = {11 , . . . , 1:}with : ∈ ℕ is a partition of- if and only if for each 8 ∈ [:] the
element 18 is a block (Definition 2.5.6 (b)) and the set {set 11 , . . . , set 1:} is an ordinary

partition of the set -. The latter means that the following conditions are fulfilled

• ∀ 8 ∈ [:] : set 18 ≠ ∅,
• ∀ 8 , 9 ∈ [:] : 8 ≠ 9 =⇒ set 18 ∩ set 1 9 = ∅,
• - =

⋃:
8=1

set 18 .

65
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(b) The set of partitions of - is denoted by Part- . In the case - = [=] for some = ∈ ℕ we set

Part= ≔ Part[=]. In the case - = ℕ we set Part ≔ Partℕ. The set of all partitions in Part=
for a given = ∈ ℕ with :-blocks for : ∈ [=] is denoted by Part=,: .

(c) Let = ∈ ℕ. By 1= ∈ Part= we will denote the unique partition which consists of only one

block and call it the unit partition of Part= .

(d) For a given partition � ∈ Part- we say that two elements G1 , G2 ∈ - are block neighboring
(w. r. t. � ∈ Part-) if and only if

• G1 ≠ G2,

• there exists a block 1 ∈ � such that G1 , G2 ∈ set(1),
• there does not exist any element G3 ∈ - such that G1 < G3 < G2 or G2 < G3 < G1.

3.1.2 Convention. We introduce a graphical notation for a given partition � ∈ Part= for some

= ∈ ℕ. We call elements of a block 1 ∈ � a leg because we represent each element in set 1
by a vertical bar and we connect vertical bars of the same block by a horizontal line at the

top of the legs. If these connecting horizontal lines overlap, then we draw them at different

height. The relative height between connecting horizontal lines does not matter and can be

drawn arbitrarily. As an example, we consider� = {(1, 3), (2, 5), (4, 6)}. The following diagram

represents this partition �

1 2 3 4 5 6

. (3.1.1)

Since we do not consider ordered set partitions, it does not matter at which height we connect

the legs coming from the same block. Thus, the following partition also represents �

1 2 3 4 5 6

. (3.1.2)

Sometimes we will also drop the bottom row in diagrams and there will be no numbers at all.

It will be clear from the context which numbers need to be put in the bottom row such that we

can synonymously use a graphical notation for elements of Part.

In preparation for the definition of our so-called “universal class of partitions” we need to

introduce some maps, defined on certain subsets of Part. The idea behind the first pair of maps

is that we want to “annihilate” and “create” legs in a partitions. This is technically done by the

map defined in equation (3.1.6) respectively by the map defined in equation (3.1.9).

3.1.3 Definition.

(a) For any ℓ ∈ ℕ0 define

downℓ+2 :


ℕ −→ ℕ

8 ↦−→
{
8 for 8 ≤ ℓ + 1

8 − 1 for 8 ≥ ℓ + 2.

(3.1.3)

Let = ∈ ℕ \ {1} and � = {11 , . . . , 1:} ∈ Part= be a partition for some : ∈ ℕ with the

following notations: Each block can be expressed by 18 = (11

8
, . . . , 1

98
8
) ∈ ℕ×98 for all

8 ∈ {1, . . . , :}, where (91 , . . . , 9:) ∈ ℕ×: . Let ℓ ∈ {0, . . . , = − 1}. Then, let us assume that

for the above partition � there exists an A ∈ [:] such that ℓ + 1, ℓ + 2 ∈ set 1A . If we set
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� ≔ pos1A (ℓ + 1), then in particular � + 1 = pos1A (ℓ + 2) (Definition 2.5.6 (d)). Then, we

define for any such partition � by the preceding notations and any block 18 ∈ �

deleteℓ+2,�(18) = deleteℓ+2,�((11

8 , . . . , 1
98
8
))

≔


(
downℓ+2(11

8 ), . . . , downℓ+2(1 988 )
)
∈ ℕ×98 for 8 ≠ A(

11

A , . . . , 1
�
A , 1
(�+2)
A − 1, . . . , 1

9A
A − 1

)
∈ ℕ×(98−1)

for 8 = A

(3.1.4)

By definition for each choice 8 ∈ [:] the expression deleteℓ+2,�(18) is a block over ℕ. Let

Part(ℓ+1)∧(ℓ+2)
= ≔ {� ∈ Part= | ∃1 ∈ � : ℓ + 1, ℓ + 2 ∈ set(1) } ⊆ Part= , (3.1.5)

then the following assignment is well-defined

delete=,ℓ+2 :


Part(ℓ+1)∧(ℓ+2)

= −→ Part=−1

� = {11 , . . . , 1:}

↦−→
{
deleteℓ+2,�(11), . . . , deleteℓ+2,�(1:)

}
.

(3.1.6)

To put the above prescription in words: by delete=,ℓ+2 : Part(ℓ+1)∧(ℓ+2)
= −→ Part=−1 we

“delete” or “annihilate” the leg ℓ + 2 from the partition � ∈ Part(ℓ+1)∧(ℓ+2)
= .

(b) For ℓ ∈ ℕ0 we define

upℓ+1
:


ℕ −→ ℕ

8 ↦−→
{
8 for 8 ≤ ℓ + 1

8 + 1 for 8 ≥ ℓ + 2.

(3.1.7)

Let = ∈ ℕ and � = {11 , . . . , 1:} ∈ Part= for some : ∈ [=]. Each block 18 of � is a tuple,

i. e., 18 = (11

8
, . . . , 1

98
8
) ∈ ℕ×98 for 8 ∈ {1, . . . , :} and (91 , . . . , 9:) ∈ ℕ×: . Moreover, assume

ℓ ∈ {0, . . . , =−1}. Then, there exists A ∈ [:] such that ℓ+1 ∈ set 1A . We set� ≔ pos1A (ℓ+1).
By these notations we define for any partition � ∈ Part=−1 and any block 18 ∈ �

doubleℓ+1,�(18) = doubleℓ+1,�((11

8 , . . . , 1
98
8
))

≔


(
upℓ+1

(11

8 ), . . . , upℓ+1
(1 98
8
)
)
∈ ℕ×98 for 8 ≠ A(

11

A , . . . , 1
�
A , 1

�
A + 1, 1

(�+1)
A + 1, . . . , 1

9A
A + 1

)
∈ ℕ×(9A+1)

for 8 = A.

(3.1.8)

By definition for each choice 8 ∈ [:] the expression doubleℓ+1,�(18) is a block over ℕ.

Therefore, the following assignment is well-defined

double=,ℓ+1 :


Part= −→ Part=+1

� = {11 , . . . , 1:}

↦−→
{
doubleℓ+1,�(11), . . . , doubleℓ+1,�(1:)

}
.

(3.1.9)

To put the above prescription inwords; by double=,ℓ+1 : Part= −→ Part=+1 we can “double”

a leg from position ℓ + 1, in other words we create a copy of the leg from position ℓ + 1

right next to it.
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The intention behind the notation of Part(ℓ+1)∧(ℓ+2)
= is to read the symbol ∧ like a logical

“and”. It shall indicate that the leg ℓ + 1 and ℓ + 2 are in one block of a certain partition.

3.1.4 Lemma.

(a) ∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ : double=,ℓ+1(Part=) ⊆ Part(ℓ+1)∧(ℓ+2)
=+1

.

(b) The maps

delete=,ℓ+2 : Part(ℓ+1)∧(ℓ+2)
= −→ Part=−1 (3.1.10)

double=,ℓ+1 , : Part= −→ Part(ℓ+1)∧(ℓ+2)
=+1

(3.1.11)

are well-defined and inverse to each other, i. e.,

∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ : delete=+1,ℓ+2 ◦ double=,ℓ+1 = idPart= , (3.1.12)

∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ :

double=−1,ℓ+1 ◦ delete=,ℓ+2 = idPart(ℓ+1)∧(ℓ+2)
=

.
(3.1.13)

(c) ∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 2}, ∀� ∈ Part(ℓ+1)∧(ℓ+2)
= : |�| = |delete=,ℓ+2(�)|.

(d) ∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1}∀� ∈ Part= : |�| = |double=,ℓ+1(�)|.

Proof: This is straightforward from the definitions. �

3.1.5 Definition (Induced partition of a block). Assumewe are given a block � = (�1 , . . . , �=)
for some = ∈ ℕ. Moreover, let � = {�1 , . . . , �:} ∈ Part= be a partition with : blocks for : ∈ [=].
Then, � induces a partition {�1 , . . . , �:} of the set set � with : blocks, where the 8-th block for

each 8 ∈ [:] is given by

�8 ≔ block
(
{ � 9 | 9 ∈ set �8 }

)
≡ (� 9)9∈set(�8) ÈConv. 2.5.5 (a)É. (3.1.14)

We denote this partition by �  � and say that �  � is the partition of � induced by �.

3.1.6 Definition.

(a) Let = ∈ ℕ \ {1}, � ∈ Part= and 1, 1′ ∈ � some blocks in �. If we put

=′ ≔ |set(1)| + |set(1′)| ∈ ℕ, (3.1.15a)

1̃ ≔ block
(
set(1) ∪ set(1′)

)
∈ ℕ=′ , (3.1.15b)

then we define

release=,1,1′(�)

≔

{(
pos1̃(11), . . . , pos1̃(1A)

)
,
(
pos1̃(1

′
1
), . . . , pos1̃(1

′
A′)

)}
∈ Part=′ . (3.1.16)

We want to define the following subsets of Part= . Let ℕ \ {1}, : ∈ [=] and ℓ ∈ {0, . . . , = −
2} ⊆ ℕ0 and set

Part(ℓ+1)∧(ℓ+2)
=,:

≔ {� ∈ Part= | |�| = :, ∃1 ∈ � : ℓ + 1, ℓ + 2 ∈ set(1) } (3.1.17)
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(set of all partitions, where ℓ + 1 and ℓ + 2 belong to one block),

Part(ℓ+1)∨(ℓ+2)
=,:

≔

{
� ∈ Part=

����� |�| = :, ∃1, 1′ ∈ � :

1 ≠ 1′, ℓ + 1 ∈ set(1), ℓ + 2 ∈ set(1′)

}
(3.1.18)

(set of all partitions, where ℓ + 1 and ℓ + 2 are in different blocks),

sub

(
Part(ℓ+1)∧(ℓ+2)

=,:

)
≔


(�, �̃)

����������
� ∈ Part(ℓ+1)∧(ℓ+2)

=,:
,

∃ 1̂ ∈ � : ℓ + 1, ℓ + 2 ∈ set(1̂),
�̃ ∈ Part|set(1̂)| , |�̃| = 2,

�� ∈ (1̂  �̃) : ℓ + 1, ℓ + 2 ∈ set(�)


(3.1.19)

(set of all ordered pairs of partitions, where the first partition is a partition such that ℓ + 1

and ℓ + 2 are in one block 1̂ and the second partition is a two-block partition of the set

set(1̂) such that ℓ + 1 and ℓ + 2 are in different blocks).

(b) We define for ℕ \ {1}, : ∈ {2, . . . , =} ⊆ ℕ and ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0

UMemℓ+1

=,:
:



Part(ℓ+1)∨(ℓ+2)
=,:

−→ sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
� = {11 , . . . , 1︸︷︷︸

∼ℓ+1∈set 1

, . . . , 1′︸︷︷︸
∼ℓ+2∈set 1′

, . . . , 1:}

↦−→
({
11 , . . . , block

(
set(1) ∪ set(1′)

)
, . . . , 1:

}
,

release=,1,1′(�)
)

(3.1.20)

To put the above description in words: By UMemℓ+1

=,:
: Part(ℓ+1)∨(ℓ+2)

=,:
−→

sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
we can “unify” the legs ℓ + 1 and ℓ + 2, which belong to distinct

blocks 1 and 1′ and “memorize” the induced two-block partition by 1 and 1′.

(c) Let ℕ \ {1}, : ∈ {2, . . . , =} ⊆ ℕ and ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0

splitℓ+1

=,:−1
:



sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
−→ Part(ℓ+1)∨(ℓ+2)

=,:

(�, �̃) =
(
{11 , . . . , 1A︸︷︷︸

∼ℓ+1,ℓ+2∈set 1A

, . . . , 1:−1}, {�1 , �2}
)

↦−→
( ⋃
8∈[:−1]\{A}

{18}
)
∪

(
1A  {�1 , �2}

)
.

(3.1.21)

To put the above prescription in words: by splitℓ+1

=,:−1
: sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
−→

Part(ℓ+1)∨(ℓ+2)
=,:

we can “split” the partition � by �̃ which means we split the block neigh-

boring legs ℓ + 1 and ℓ + 2 into 2 distinct blocks, which is induced by the two-block

partition �̃.

The intention behind the notation Part(ℓ+1)∨(ℓ+2)
=,:

is to indicate by the symbol ∨ that the legs

ℓ + 1 and ℓ + 1 need to be in different blocks of a certain partition. We admit that this might not

be the best notation but at least it is different to the symbol ∧.
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3.1.7 Lemma. For = ∈ ℕ \ {1}, : ∈ {2, . . . , =} ⊆ ℕ and ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 the maps

UMemℓ+1

=,:
: Part(ℓ+1)∨(ℓ+2)

=,:
−→ sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
, (3.1.22)

splitℓ+1

=,:−1
: sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
−→ Part(ℓ+1)∨(ℓ+2)

=,:
. (3.1.23)

are well-defined and inverse to each other, i. e.,

splitℓ+1

=,:−1
◦UMemℓ+1

=,:
= idPart(ℓ+1)∨(ℓ+2)

=,:

(3.1.24)

and

UMemℓ+1

=,:
◦ splitℓ+1

=,:−1
= id

sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

) . (3.1.25)

Proof: The proof is a straightforward calculation. �

3.1.8 Convention. We set for = ∈ ℕ \ {1}, ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0, : ∈ [=] and any subset

P ⊆ Part

P= ≔ Part= ∩ P , (3.1.26)

P=,: ≔ {� ∈ P= | |�| = : }, (3.1.27)

P (ℓ+1)∧(ℓ+2)
= ≔ Part(ℓ+1)∧(ℓ+2)

= ∩ P , (3.1.28)

P (ℓ+1)∧(ℓ+2)
=,:

≔ Part(ℓ+1)∧(ℓ+2)
=,:

∩ P , (3.1.29)

P (ℓ+1)∨(ℓ+2)
=,:

≔ Part(ℓ+1)∨(ℓ+2)
=,:

∩ P , (3.1.30)

sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
≔ sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
∩ (P × P). (3.1.31)

3.1.9 Definition (Universal class of partitions). LetP ⊆ Part. We say thatP is a universal class
of partitions (abbreviated by u.c.p.) if and only if the following properties are satisfied:

(a) 11 ∈ P1,

(b) ∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 :

(
� ∈ P (ℓ+1)∧(ℓ+2)

= =⇒ delete=,ℓ+2(�) ∈ P=−1

)
,

(c) ∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ0 :

(
� ∈ P= =⇒ double=,ℓ+1(�) ∈ P=+1

)
,

(d) ∀= ∈ ℕ \ {1}, ∀ : ∈ [=], ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 :(
� ∈ P (ℓ+1)∨(ℓ+2)

=,:
=⇒ UMemℓ+1

=,:
(�) ∈ (P= × P)

)
, (3.1.32)

(e) ∀= ∈ ℕ \ {1}, ∀ : ∈ [=], ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 :(
(�, �̃) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

) )
=⇒ splitℓ+1

=,:−1
(�, �̃) ∈ P=

)
. (3.1.33)

We want to discuss the above axioms and try to give a rough explanation what might be

the idea behind these.

• By demanding the existence of axiom Definition 3.1.9 (b)we are able to replace an interval of

two elements by a leg at the position ℓ + 1. We do this by deleting the element ℓ + 2 from the
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partition � and subtract 1 from elements greater than ℓ + 2. For example

delete4,3

(
1 2 3 4

)
=

1 2 3

. (3.1.34)

• In contrast, the axiom formulated in Definition 3.1.9 (c) enables us to insert or implement an

element ℓ + 2 right after ℓ + 1 into the partition � and add 1 for elements greater than ℓ + 1.

Hence, we double the original element ℓ + 1. We could also say that this reflects the idea, that

we can replace a leg by an interval of two elements. For example

double3,3

(
1 2 3

)
=

1 2 3 4

. (3.1.35)

• The meaning of axiom Definition 3.1.9 (d) is twofold: On one hand release1,1′(�) (this is

the memory part of UMem) denotes a partition regarded as an element of P constituted

by blocks 1 and 1′ which have been released from the partition � and on the other hand

{11 , . . . , block
(
set(1) ∪ set(1′)

)
, . . . , 1:} denotes a partition in P , where the blocks 1 and 1′

have been unified to one single block. For example

UMem2

6,3

(
1 2 3 4 5 6

)
=

(
1 2 3 4 5 6

,
1 2 3 4

)
. (3.1.36)

• The last axiom Definition 3.1.9 (d) describes the possibility to replace a single block in a

partition by an appropriate two-block partition which is distinguished by the property that it

split the legs ℓ + 1 and ℓ + 2 in the original block.

split4
6,2

(
1 2 3 4 5 6

,
1 2 3 4

)
=

1 2 3 4 5 6

. (3.1.37)

Obviously, Part is a universal class of partitions. We get to knowmore examples of universal

classes of partitions in Section 4.1.

3.1.10 Lemma. Let P be a universal class of partitions. Then,

(a) ∀= ∈ ℕ : 1= ∈ P= .

Let = ∈ ℕ \ {1}, ℓ ∈ {0, . . . , = − 2} ⊆ ℕ and : ∈ [=], then

(b) P (ℓ+1)∧(ℓ+2)
=,:

= ∅ ⇐⇒ P=−1,: = ∅.

(c) sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
= ∅ ⇐⇒ P (ℓ+1)∨(ℓ+2)

=,:
= ∅.

Proof: Ad (a): We show this assertion by induction over = ∈ ℕ. For = = 1 there is nothing to

show, since by Definition 3.1.9 (a)we have 11 ∈ P . Assume 1= ∈ P= for some = ∈ ℕ as induction

hypothesis. We have to show the induction step = → = + 1. Set ℓ ≔ 0, then Definition 3.1.9 (c)
implies that 1=+1 = double=,ℓ+1(1=) ∈ P=+1.

Ad (b): Consider the implication P (ℓ+1)∧(ℓ+2)
=,:

= ∅ =⇒ P=−1,: = ∅. Assume P (ℓ+1)∧(ℓ+2)
=,:

= ∅
and P=−1,: ≠ ∅. Hence, there exists at least one partition � ∈ P=−1,: ⊆ P=−1. According to

Definition 3.1.9 (c) we can conclude that double=−1,ℓ+1(�) ∈ P (ℓ+1)∧(ℓ+2)
=,:

⊆ P= . Hence, we have

shown that P (ℓ+1)∧(ℓ+2)
=,:

≠ ∅ which contradicts our assumption.

For the other direction we have to show P=−1,: = ∅ =⇒ P (ℓ+1)∧(ℓ+2)
=,:

= ∅. We show

this by proof of contradiction, hence we assume that P=−1,: = ∅ and P (ℓ+1)∧(ℓ+2)
=,:

≠ ∅. Then,
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there exists at least one partition � ∈ P (ℓ+1)∧(ℓ+2)
=,:

. By Definition 3.1.9 (b) we can conclude that

delete=,ℓ+2(�) ∈ P=−1,: ⊆ P=−1. But this means that P=−1,: ≠ ∅which contradicts our assumption.

Ad (c): Consider the direction sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
= ∅ =⇒ P (ℓ+1)∨(ℓ+2)

=,:
= ∅. We assume

sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
= ∅ and P (ℓ+1)∨(ℓ+2)

=,:
≠ ∅, i. e., ∃� ∈ P (ℓ+1)∨(ℓ+2)

=,:
. According to Definition 3.1.9 (d)

wehave thatUMemℓ+1

=,:
(�) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
. We arrive at sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
≠ ∅which contradicts

our assumption.

For the direction P (ℓ+1)∨(ℓ+2)
=,:

= ∅ =⇒ sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
= ∅, we assume that (P (ℓ+1)∨(ℓ+2)

=,:
=

∅ and sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
≠ ∅, i. e., there exists at least one element (�, �̃} ∈ sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
.

By Definition 3.1.9 (e) we can conclude that splitℓ+1

=,:−1
(�, �̃) ∈ P (ℓ+1)∨(ℓ+2)

=,:
. This means that

P (ℓ+1)∨(ℓ+2)
=,:

≠ ∅ which contradicts our assumption. �

3.1.11 Lemma. Let P be a universal class of partitions. Let = ∈ ℕ \ {1}, ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0

and : ∈ [=]. Then:

(a) If we set delete=,ℓ+2(∅) ≔ ∅ and double=−1,ℓ+1(∅) ≔ ∅, then the following maps

delete=,ℓ+2 � P (ℓ+1)∧(ℓ+2)
=,:

: P (ℓ+1)∧(ℓ+2)
=,:

−→ P=−1,: , (3.1.38)

double=−1,ℓ+1 � P=−1,: : P=−1,: −→ P (ℓ+1)∧(ℓ+2)
=,:

(3.1.39)

are well-defined and are inverse to each other.

(b) If we set UMemℓ+1

=,:
(∅) ≔ ∅ and splitℓ+1

=,:−1
(∅) ≔ ∅, then the following maps

UMemℓ+1

=,:
� P (ℓ+1)∨(ℓ+2)

=,:
: P (ℓ+1)∨(ℓ+2)

=,:
−→ sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
, (3.1.40)

splitℓ+1

=,:−1
� sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
: sub

(
P (ℓ+1)∧(ℓ+2)
=,:−1

)
−→ P (ℓ+1)∨(ℓ+2)

=,:
(3.1.41)

are well-defined and inverse to each other.

Proof: Ad (a): The well-definedness for these maps follows from Definition 3.1.9 and Lem-

ma 3.1.10 (b). That the twomaps are inverse to each other is an implication from Lemma 3.1.4 (b).
Ad (b): That these maps are well-defined follows from Definition 3.1.9 and Lemma 3.1.10 (c).
The two maps are inverse to each other is an implication from Lemma 3.1.7. �

3.2 Partition induced exponential and logarithm: single-colored case

We want to construct a symmetric u.a.u.-product in the single-faced case by using partitions

which are elements in a universal class of partitions. But how can we do this? We need a

leitmotiv for an ansatz. For an ansatz we could use equation (2.4.22), where a universal product

� is expressed by a BCH-formula for linear functionals on a certain tensor algebra. Our partition

induced universal product shall have the right-ordered monomials property and furthermore

its highest-coefficients shall all be 1. Thus, we make a more refined ansatz. We consider

equation (2.4.22) in the case when � is positive and symmetric. Due to Lemma 2.5.11 this means

exp� · , log� · and [ · , · ]� are all uniquely determined by the highest coefficients of �. To make

things a little bit more precise; If we look at equation (2.5.24), then our philosophy will be to

replace any appearances of nonzero highest coefficients by 1 and to replace the sum which runs
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over all tuples � ∈ [:]with |�| = : by a sum which runs over partitions � coming from a certain

universal class of partitions. Symmetry of � implies that we do not have any occurrences of

the factor
1

:! in the series of exp� and log�. We will prove this result (Lemma 5.1.12) later in a

different context.

So, starting with a yet to be defined universal class of partitions P and trying to define a

universal product, could mean that we first need to define an exponential expP and a logarithm
logP for functionals on a tensor product T(+) for a vector space+ . We do not need an equivalent

for a Lie bracket because we want our partition induced universal product to be symmetric and

our leitmotiv from equation (2.4.22) tells us in this case that the Lie bracket is trivial.

3.2.1 Convention. Let +, , be some vector spaces and assume there exists a canonical linear

injection from + to, , then we will denote such a canonical map by inc+,, : + ↩−→, . In the

case of algebras A, B, we shall denote a canonical homomorphic embedding from A into B,

if it exists, by �A,B : A ↩−→ B.

In the following we want to define an “exponential” and a “logarithm” map induced by

the universal class of partitions. These are just symbols and some names, where everything is

modeled in the way it has been done in Lemma 2.5.11 but the combinatorics has been put into

nonzero highest coefficients of value 1.

In the following definition we consequently make use of Convention 2.5.7 and assume all

occurring vector spaces to be over ℂ.

3.2.2 Definition. Let P be a universal class of partitions. Let + be a vector space and ! ∈
Lin(T(+),ℂ).

(a) We define for any = ∈ ℕ

expP= ! :


+ × · · · ×+ −→ ℂ

(G1 , . . . , G=) ↦−→
∑
�∈P=

∏
1∈�

!(G1).
(3.2.1)

(b) Let = ∈ ℕ. We recursively define a map logPn
! : +×= −→ ℂ by setting for any G ∈ + and

any =-tuple (G8)8∈[=] ∈ +×=

(logP1
!)(G) = !(G) (3.2.2a)

(logPn
!)(G1 , . . . , G=), = !(G1 ⊗ · · · ⊗ G=) −

∑
�∈P= ,
�≠1=

∏
1∈�
(logP|b| !)(G1). (3.2.2b)

3.2.3 Theorem (Principle of strong induction [Grin21a, Thm. 2.60]). Let , ∈ ℤ. For each

= ∈ ℤ≥, , let A(=) be logical statement. Assume the following

Assumption 1: If < ∈ ℤ≥, is such that(
A(=) holds for every = ∈ ℤ≥, satisfying = < <

)
, (3.2.3)

then A(<) holds.
Then, A(=) holds for each = ∈ ℤ≥, .
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3.2.4 Lemma. Let P be a universal class of partitions. Assume + is a vector space and

! ∈ Lin(T(+),ℂ).

(a) The map expP= ! : +×= −→ ℂ is multilinear for all = ∈ ℕ.

(b) The map logPn
! : +×= −→ ℂ is multilinear for all = ∈ ℕ.

Proof: Ad (a): We show linearity in the 8-th entry of an =-tuple (G1 , . . . , G=) ∈ +×= for some

8 ∈ [=]. Therefore assume G ≔ (G1 , . . . , G8 + A8G′8 , . . . , G=) ∈ +×= with A8 ∈ ℂ. Then, we calculate

(using Convention 2.5.5 (a))

(expP= !)(G1 , . . . , G8 + A8G8 , . . . , G=)

=

∑
�∈P=

∏
1∈�

!(G1) Èdef. of expP= ! in eq. (3.2.1)É

=

∑
�∈P=

( ∏
1∈�
8∉set 1

!(G1)
)
!
(
· · · ⊗ (G8 + A8G′8) ⊗ · · ·

)
=

∑
�∈P=

( ∏
1∈�
8∉set 1

!(G1)
) (
!
(
· · · ⊗ G8 ⊗ · · · + A8 · · · ⊗ G′8 ⊗ · · ·

) )
È linearity of ⊗ É

=

∑
�∈P=

( ∏
1∈�
8∉set 1

!(G1)
) (
!
(
· · · ⊗ G8 ⊗ · · ·

)
+ A8!

(
· · · ⊗ G′8 ⊗ · · ·

) )
È! is ℂ-linearÉ

=

∑
�∈P=

( ∏
1∈�
8∉set 1

!(G1)
)
!
(
· · · ⊗ G8 ⊗ · · ·

)
+ A8

∑
�∈P=

( ∏
1∈�
8∉set 1

!(G1)
)
!
(
· · · ⊗ G′8 ⊗ · · ·

)
= (expP= !)(G1 , . . . , G8 , . . . , G=) + A8(expP= !)(G1 , . . . , G

′
8 , . . . , G=).

This proves that expP= ! is multilinear.

Ad (b): We prove this assertion by the principle of strong induction starting at 1. Let < ∈ ℕ.

Assume that logPn
! : +×= −→ ℂ is multilinear for every = ∈ ℕ satisfying = < <. We have to

show that it ismultilinear for= = <. Assume< = 1, then logP1
! is linear since by equation (3.2.2)

we have logP1
! = ! and ! ∈ Lin(T(+),ℂ) by assumption.

Now assume < ∈ ℕ \ {1} and logPn
! : +×= −→ ℂ is multilinear for every = ∈ ℕ satisfying

= < <. We have to show that it is multilinear for = = <. We show linearity in the 8-th entry of

an arbitrary <-tuple for some 8 ∈ [<]. We assume ("9)9∈[<] ≔ (G1 , . . . , G8 + A8G′8 , . . . , G<) ∈ +×<
with A8 ∈ ℂ and calculate

(logPm
!)(G1 , . . . , G8 + A8G′8 , . . . , G<)

= !
(
G1 ⊗ · · · ⊗ (G8 + A8G′8) ⊗ · · · ⊗ G<

)
−

∑
�∈P<
�≠1<

∏
1∈�
(logP|b| !)

(
("1)9∈set 1

)
Èdef. of logPm

! in eq. (3.2.2)É

= !(G1 ⊗ · · · ⊗ G8 ⊗ · · · ⊗ G<) + A8!(G1 ⊗ · · · ⊗ G′8 ⊗ · · · ⊗ G<)
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−
∑
�∈P<
�≠1<

∏
1∈�
(logP|b| !)

(
("9)9∈set 1

)
È! ∈ Lin(T(+,ℂ)) É

= !(G1 ⊗ · · · ⊗ G8 ⊗ · · · ⊗ G<) + A8!(G1 ⊗ · · · ⊗ G′8 ⊗ · · · ⊗ G<)

−
∑
�∈P<
�≠1<

( ∏
1∈�
8∉set 1

(logP|b| !)
(
("9)9∈set 1

) )
(logP|b| !)

(
. . . , (G8 + A8G′8), . . .

)
È∀� ∈ P< , ∃ 1̂ ∈ � : 8 ∈ set 1̂ É

= !(G1 ⊗ · · · ⊗ G8 ⊗ · · · ⊗ G<) + A8!(G1 ⊗ · · · ⊗ G′8 ⊗ · · · ⊗ G<)

−
∑
�∈P<
�≠1<

( ∏
1∈�
8∉set 1

(logP|b| !)
(
("9)9∈set 1

) )
(logP|b| !)

(
. . . , G8 , . . .

)
− A8

∑
�∈P<
�≠1<

( ∏
1∈�
8∉set 1

(logP|b| !)
(
("9)9∈set 1

) )
(logP|b| !)

(
. . . , G′8 , . . .

)
È IH applied, since ∀� ∈ P< \ {1<}, ∀1 ∈ � : |1 | < < É

= (logPm
!)(G1 , . . . , G8 . . . , G<) + A8(logPm

!)(G1 , . . . , G
′
8 , . . . , G<).

This shows logPn
! is multilinear for = = <. By strong induction we can conclude that logPn

!
is multilinear for any = ∈ ℕ. �

3.2.5 Lemma. Let P be a universal class of partitions. Assume + is a vector space and

! ∈ Lin(T(+),ℂ).

(a) There exists a unique ℂ-linear map expP ! : T(+) −→ ℂ, such that (expP !) ◦ inc+,+⊗= =
T (expP= !) for all = ∈ ℕ.

(b) There exists a unique ℂ-linear map logP ! : T(+) −→ ℂ, such that (logP !) ◦ inc+,+⊗= =
T (logPn

!) for all = ∈ ℕ.

Proof: Ad (a): Because of Lemma 3.2.4 (a), where we have shown that expP= ! : +×= −→ ℂ is

multilinear and by the universalmapping property for

⊗
8∈[=]+ = +⊗= we obtain aℂ-linearmap

T (expP= !) : +
⊗= −→ ℂ such that T (expP= !) ◦ inc+,+×= = expP= !. Since T(+) =

⊕
=∈ℕ +

⊗=
,

we have by the universal mapping property for the direct sum that there exists a uniqueℂ-linear

map expP ! : T(+) −→ ℂ, such that (expP !) ◦ inc+,+⊗= = expP= !. The statement of (b) has a
similar reasoning as (a). �

3.2.6 Remark. Let P be a universal class of partitions. As a consequence of Lemma 3.2.5 and

Definition 3.2.2, we have (using Convention 2.5.7) for any ! ∈ Lin(T(+),ℂ) and : ∈ ℕ that the

following maps are elements of Lin(T(+),ℂ)

expP ! :


T(+) −→ ℂ

G1 ⊗ · · · ⊗ G= ↦−→
∑
�∈P=

∏
1∈�

!(G1),
(3.2.4)
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logP ! :



T(+) −→ ℂ

G1 ⊗ · · · ⊗ G= ↦−→


!(G1) for = = 1

!(G1 ⊗ · · · ⊗ G=) −
∑
�∈P=
�≠1=

∏
1∈�
(logP !)(G1) else.

(3.2.5)

3.2.7 Lemma. Let P be a universal class of partitions. Let + be a vector space and ! ∈
Lin(T(+),ℂ). Then,

expP
(
logP !

)
= ! and logP

(
expP !

)
= !. (3.2.6)

Proof: Since the tensor algebra T(+) is generated by elements of+ and allmaps of consideration

are linear maps, it suffices to prove the statements for arbitrary pure tensors G1 ⊗ · · · ⊗ G= ∈
+⊗= ⊆ T(+), where = ∈ ℕ and (G8)8∈[=] ∈ +×= .(

expP (logP !)
)
(G1 ⊗ · · · ⊗ G=)

=
(
T (expP= )(logP !)

)
(G1 ⊗ · · · ⊗ G=) Èdef. of expP ! in Lemma 3.2.5 (a)É

=

∑
�∈P=

∏
1∈�
(logP !)(G1) ÈUMP & (3.2.1)É

= (logP !)(G1 ⊗ · · · ⊗ G=) +
∑

�∈P=\{1=}

∏
1∈�
(logP !)(G1) È1= ∈ P by Lemma 3.1.10 (a)É

= (logPn
!)(G1 ⊗ · · · ⊗ G=) +

∑
�∈P=\{1=}

∏
1∈�
(logP|b| !)(G1) Èdef. of logP ! in eq. (3.2.2)É

= !(G1 ⊗ · · · ⊗ G=) −
∑
�∈P=
�≠1=

∏
1∈�
(logP|b| !)(G1) +

∑
�∈P=\{1=}

∏
1∈�
(logP|b| !)(G1)

Èdef. of logP in eq. (3.2.5)É

= !(G1 ⊗ · · · ⊗ G=).

Since the map logP ! is recursively defined, we prove the equation logP
(
expP !

)
= ! by strong

induction over the “length” = ∈ ℕ of a pure tensor G1 ⊗ · · · ⊗ G= ∈ T(+). For the case = = 1, we

calculate (
logP (expP !)

)
(G1) = (expP !)(G1) Èdef. of logP ! in eq. (3.2.5)É

=

∑
�∈P1

∏
1∈�

!(G1) Èdef. of expP ! in eq. (3.2.4)É

= !(G1) È by Definition 3.1.9 (a) 11 ∈ P1 É

= !(G1).

Let = ∈ ℕ \ {1} and assume that(
logP

(
expP !

) )
(G1 ⊗ · · · ⊗ G<) = !(G1 ⊗ · · · ⊗ G<) (I)
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holds for all < ∈ ℕ such that < < =. We have to show that equation (I) holds for = = <. We

calculate(
logP (expP !)

)
(G1 ⊗ · · · ⊗ G=)

= (expP !)(G1 ⊗ · · · ⊗ G=) −
∑
�∈P=
�≠1=

∏
1∈�

(
logP (expP !)

)
(G1) Èdef. of logP in eq. (3.2.5)É

= (expP !)(G1 ⊗ · · · ⊗ G=) −
∑
�∈P=
�≠1=

∏
1∈�

!(G1) È IH applied since ∀� ∈ P= : |1 | < = É

=

∑
�∈P=

∏
1∈�

!(G1) −
∑
�∈P=
�≠1=

∏
1∈�

!(G1) Èdef. of expP in eq. (3.2.4)É

= !(G1 ⊗ · · · ⊗ G=) +
∑
�∈P=
�≠1=

∏
1∈�

!(G1) −
∑
�∈P=
�≠1=

∏
1∈�

!(G1) È by Lemma 3.1.10 (a) 1= ∈ P= É

= !(G1 ⊗ · · · ⊗ G=). �

3.2.8 Definition. Let P be a universal class of partitions. Let + be a vector space. Then, we

denote by }P the following binary operation on Lin(T(+),ℂ)

}P :

{
Lin(T(+),ℂ) × Lin(T(+),ℂ) −→ Lin(T(+),ℂ)

(!,#) ↦−→ expP
(
logP (!) + logP (#)

)
.

(3.2.7)

We collect some properties of expP , logP and }P which will be of interest in the following

sections.

3.2.9 Lemma. Let P be a universal class of partitions. Let+ be a vector space. Then, the binary

mapping }P : Lin(T(+),ℂ) × Lin(T(+),ℂ) −→ Lin(T(+),ℂ) is associative and commutative.

Proof: Proving commutativity is easily done and skip this. For associativity we have to show

that for any !8 ∈ Lin(T(+),ℂ) for 8 ∈ [3](
(!1 }P !2) }P !3

)
=

(
!1 }P (!2 }P !3)

)
.

For this, we can calculate(
(!1 }P !2) }P !3

)
= expP

(
logP (!1 }P !2) + logP (!3)

)
Èdefinition of }P in eq. (3.2.7)É

= expP

(
logP

(
expP

(
logP (!1) + logP (!2)

) )
+ logP (!3)

)
ÈLemma 3.2.7É

= expP

( (
logP (!1) + logP (!2)

)
+ logP (!3)

)
= expP

(
logP (!1) +

(
logP (!2) + logP (!3)

) )
È+ is associative on Lin(T(+),ℂ) É
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= expP

(
logP (!1) + logP

(
expP

(
logP (!2) + logP (!3)

) ))
ÈLemma 3.2.7É

= expP
(
logP (!1) + logP (!2 }P !3)

)
=

(
!1 }P (!2 }P !3)

)
. �

Now, that we know that }P is associative, we can omit putting brackets and the following

statement makes sense.

3.2.10 Corollary. Assume that all the prerequisite from Lemma 3.2.9 hold. Then, for the binary

mapping }P : Lin(T(+),ℂ) × Lin(T(+),ℂ) −→ Lin(T(+),ℂ)

∀ : ∈ ℕ \ {1}, ∀(!8)8∈[:] ∈
(
Lin(T(+),ℂ)

)×:
:

!1 }P · · · }P !: = expP
(
logP (!1) + · · · + logP (!:)

)
(3.2.8)

holds.

Proof: A simple inductive argument on : ∈ ℕ \ {1} shows the equation. The induction step is

similar to the proof for associativity of }P . Therefore, we omit the proof. �

3.2.11 Lemma. Let P be a universal class of partitions. Let +, +′ be two vector spaces, 5 ∈
Lin(+,+′), ! ∈ Lin(T(+′),ℂ) and (!8)8∈[:] ∈

(
Lin(T(+′),ℂ)

)×:
for some : ∈ ℕ \ {1}. Then,

(a) logP
(
! ◦ T( 5 )

)
= (logP !) ◦ T( 5 ),

(b) expP
(
! ◦ T( 5 )

)
= (expP !) ◦ T( 5 ),

(c)
(
!1 ◦ T( 5 )

)
}P · · · }P

(
(!: ◦ T( 5 )

)
= (!1 }P · · · }P !:) ◦ T( 5 ).

Proof: Since the tensor algebra T(+) is generated by elements of+ and allmaps of consideration

are linear maps, it suffices to prove the statements for arbitrary pure tensors G1 ⊗ · · · ⊗ G= ∈
+⊗= ⊆ T(+), where = ∈ ℕ and (G8)8∈[=] ∈ +×= .
Ad (a): We show the statement by strong induction over = ∈ ℕ. According to Theorem 3.2.3

we have to show equation (3.2.3). Let = = 1, then we need to show that the assertion is true for

= = 1. We calculate for any G1 ∈ +

logP
(
! ◦ T( 5 )

)
(G) =

(
! ◦ T( 5 )

)
(G1) Èdef. of logP · in eq. (3.2.5) on T(+) É

= !
(
5 (G1)

)
ÈUMP of T(+) É

= !(H) È 5 ∈ Lin(+,+′) =⇒ 5 (G1) ≕ H ∈ +′ É

= (logP !)(H) Èdef. of logP · in eq. (3.2.5) on T(+′) É

=
(
(logP !) ◦ 5

)
(G1).

Now, let ℕ 3 = > 1 and we assume that the expression of (a) is true for all pure tensors of length
ℓ ∈ [= − 1]. Then we calculate for any =-tuple (G8)8∈[=] ∈ +×=(

logP
(
! ◦ T( 5 )

) )
(G1 ⊗ · · · ⊗ G=)

=
(
! ◦ T( 5 )

)
(G1 ⊗ · · · ⊗ G=) −

∑
�∈P=
|�|≥2

∏
1∈�

(
logP

(
! ◦ T( 5 )

) )
(G1)
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Èdef. of logP in eq. (3.2.5) on T(+) É

= !
(
T( 5 )(G1) ⊗ · · · ⊗ T( 5 )(G=))

)
−

∑
�∈P=
|�|≥2

∏
1∈�
(logP (!)

(
T( 5 )(G1)

)
ÈT( 5 ) ∈ Alg(T(+), T(+′)), IH applied to ℓ = |1 | and (G 9)9∈set 1 ∈ +×|1 | É

= !
(
5 (G1) ⊗ · · · ⊗ 5 (G=)

)
−

∑
�∈P=
|�|≥2

∏
1∈�
(logP (!)

( (
5 (G)

)
1

)
ÈT( 5 ) ∈ Alg(T(+), T(+′)) & UMP of T(+) É

= !
(
H1 ⊗ · · · ⊗ H=

)
−

∑
�∈P=
|�|≥2

∏
1∈�
(logP !)(H1)

È 5 ∈ Lin(+,+′) =⇒ ∀ 8 ∈ [=] : 5 (G8) ≕ H8 ∈ +′ É

= (logP !)(H1 ⊗ · · · ⊗ H=) Èdef. of logP in eq. (3.2.5) on T(+′) É

= (logP !)
(
5 (G1) ⊗ · · · ⊗ 5 (G=)

)
=

(
(logP !) ◦ T( 5 )

)
(G1 ⊗ · · · ⊗ G=).

Ad (b): This is proven in a similar way as for (a), just by application of the definition of expP !
in equation (3.2.4).

Ad (c): We prove the statement by induction over : ∈ ℕ \ {1}. For the induction base : = 2 we

calculate for !1 , !2 ∈ Lin(T(+′),ℂ), 5 ∈ Lin(+,+′)(
!1 ◦ T( 5 )

)
}P

(
!2 ◦ T( 5 )

)
= expP

(
logP

(
!1 ◦ T( 5 )

)
+ logP

(
!2 ◦ T( 5 )

) )
Èdef. of }P in eq. (3.2.7) on T(+) É

= expP

( (
(logP !1) ◦ T( 5 )

)
+

(
(logP !2) ◦ T( 5 )

) )
È assertion of (a)É

= expP

( (
(logP !1) + (logP !2)

)
◦ T( 5 )

)
=

(
expP

(
(logP !1) + (logP !2)

) )
◦ T( 5 ) È assertion of (b)É

= (!1 }P !2) ◦ T( 5 ) Èdef. of }P in eq. (3.2.7) on T(+′) É.

Now, the induction step : → : + 1. Assume : ∈ ℕ \ {0, 1} and the assertion holds for such

all :′ ≤ :. Then, we can calculate

(!1 }P · · · }P !:+1) ◦ T( 5 )

=
(
(!1 }P · · · }P !:) }P !:+1

)
◦ T( 5 ) È}P is associative by Lemma 3.2.9É

=
(
(!1 }P · · · }P !:) ◦ T( 5 )

)
}P (!:+1 ◦ T( 5 ))

È induction hypothesis applied for :′ = 2É



80 Chapter 3. Symmetric u.a.u.-products induced by partitions

=
(
(!1 ◦ T( 5 )) }P · · · }P (!: ◦ T( 5 ))

)
◦ (!:+1 ◦ T( 5 )

È induction hypothesis applied for :′ = : É.

By associativity of }P the induction step follows. �

3.2.12 Lemma. LetP be a universal class of partitions. Let+ be a vector space, A be an algebra,

5 ∈ Lin(+,A) and ! ∈ Lin(A,ℂ). Then, ∀= ∈ ℕ, ∀(G8)8∈[=] ∈ +×= we have that((
∃ 9 ∈ [=] : G 9 ∈ ker 5

)
=⇒ G1 ⊗ · · · ⊗ G= ∈ ker

(
logP

(
! ◦ T ( 5 )

) ))
. (3.2.9)

Proof: Since ! ◦ T ( 5 ) ∈ Lin(T(+),ℂ) the expression logP (! ◦ T ( 5 )) is well defined. We prove

the assertion by strong induction over = ∈ ℕ. Assume = = 1 and G1 ∈ ker 5 , then(
logP (! ◦ 5 )

)
(G1) =

(
! ◦ T ( 5 )

)
(G1) Èdef. of logP in eq. (3.2.2)É

= !(T ( 5 )(G1))

= !( 5 (G1)) ÈUMP of T(+) É

= 0 È G1 ∈ ker 5 and ! ∈ Lin(T(+′),ℂ) É.

Now, let = ∈ ℕ such that = > 1. We assume that equation (3.2.9) holds for all < ∈ [= − 1]. We

have to show that this equation also holds for< = =. So let us assume 9 ∈ [=] such that G 9 ∈ ker 5 .

Then, we calculate(
logP

(
! ◦ T ( 5 )

) )
(G1 ⊗ · · · ⊗ G=)

=
(
! ◦ T ( 5 ))

)
(G1 ⊗ · · · ⊗ G=) −

∑
�∈P=
|�|≥2

∏
1∈�

(
logP

(
! ◦ T ( 5 )

) )
(G1)

Èproperty of logP from eq. (3.2.5)É

= !
(
T ( 5 )(G1) ⊗ · · · ⊗ T ( 5 )(G 9) ⊗ · · · ⊗ T ( 5 )(G=)) −

∑
�∈P=
|�|≥2

∏
1∈�

(
logP

(
! ◦ T ( 5 )

) )
(G1)

È T ( 5 ) ∈ Alg(T(+),A) É

= !
(
5 (G1) ⊗ · · · ⊗ 5 (G 9) ⊗ · · · ⊗ 5 (G=)) −

∑
�∈P=
|�|≥2

∏
1∈�

(
logP

(
! ◦ T ( 5 )

) )
(G1) ÈUMP of T(+) É

= −
∑
�∈P=
|�|≥2

∏
1∈�

(
logP

(
! ◦ T ( 5 )

) )
(G1) È G 9 ∈ ker 5 É

= −
∑
�∈P=
|�|≥2

∏
1∈�
1≠1̂

((
logP

(
! ◦ T ( 5 )

) )
(G1) ·

(
logP

(
! ◦ T ( 5 )

) )
(G
1̂
)︸                      ︷︷                      ︸

=0

)
È IH applied since ∀� ∈ P= , ∃ 1̂ ∈ � : 9 ∈ set 1̂ and |1̂ | ≤ = − 1É
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= 0. �

The next assertion seems trivial but is essential for the proof of Lemma 3.2.15.

3.2.13 Theorem ([Grin21a, Thm. 2.132]). Let ( and ) be two finite sets. Let 5 : ( −→ ) be a

bĳective map. Let 0C be an element of A ∈ {ℕ,ℤ,ℚ,ℝ,ℂ } for each C ∈ ). Then,∑
C∈)

0C =
∑
B∈(

0 5 (B). (3.2.10)

3.2.14 Convention. Let + be a vector space, = ∈ ℕ, (G8)8∈[=] ∈ +×= , � ∈ Part= , 1 ∈ � and

� ∈ Part|1 |. Then, we set (
G1

)
� ≔

(
(G8)8∈set(1)

)
�
∈ T(+), (3.2.11)

where the right hand side is defined by Convention 2.5.5 (a) and Convention 2.5.7.

The next lemmamakes a statement about the behavior of our “partition induced cumulants”

logP ! evaluated on certain elements in the tensor algebra and the relation between them.

3.2.15 Lemma. Let P be a universal class of partitions. Let + be a vector space. Furthermore,

let = ∈ ℕ \ {1}, (G8)8∈[=] ∈ +×= and (H8)8∈[=−1] ∈ +×(=−1)
be some tuples with entries in + with

the property that there exists an ℓ ∈ {0, 1, . . . , = − 2} such that

∀ 8 ∈ {0, 1, . . . , ℓ } : G8 = H8 , (3.2.12a)

∀ 8 ∈ {ℓ + 3, . . . , =} : G8 = H8−1. (3.2.12b)

Define the set

�= ≔

{
(8 9)9∈[<] ∈ [=]×<

����� < ∈ [=], ℓ + 1, ℓ + 2 ∈ {81 , . . . , 8<},
∀ 9 ∈ [< − 1] : 8 9 < 8 9+1

}
(3.2.13)

Let ! ∈ Lin(T(+),ℂ) and assume that the mapping ! satisfies the property

∀< ∈ [=], ∀(8 9)9∈[<] ∈ �= :

!(G81 ⊗ · · · ⊗ Gℓ+1 ⊗ Gℓ+2 ⊗ · · · G8< ) = !(H81 ⊗ · · · ⊗ Hℓ+1 ⊗ · · · ⊗ H8<−1). (3.2.14)

Then, the following equation holds for the above choices

(logP !)(G1 ⊗ · · · ⊗ G=) = (logP !)(H1 ⊗ · · · ⊗ H=−1) −
∑
{11 ,12}∈

P (ℓ+1)∨(ℓ+2)
=,2

(logP !)(G11
)(logP !)(G12

). (3.2.15)

Proof: We prove the statement of equation (3.2.15) by a strong induction over = ∈ ℕ \ {1} as
stated in Theorem 3.2.3. Consider the parts of equation (3.2.12) for the choices of = = 2 and ℓ = 0.

In the first step we claim that

!(G12
) = !(H11

). (I)

But the above equation is just a reformulation of equation (3.2.14) for = = 2 and ℓ = 0.

Now, we proceed with the verification of equation (3.2.15) for the case = = 2 and ℓ = 0 and

we calculate

(logP !)(G1 ⊗ G2)
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= !(G1 ⊗ G2) −
∑
�∈P2

�≠12

∏
1∈�
(logP !)(G1) Èdef. of logP ! in equation (3.2.5)É

= !(H1) −
∑
�∈P2

�≠12

∏
1∈�
(logP !)(G1) È eq. (I)É

= !(H1) −
∑
�∈P2

�≠12

∏
1∈�
(logP !)(G1) ÈP1∨2

2,2 = P2 \ {12} and Convention 3.1.8É

= (logP !)(H1) −
∑
{�1 ,�2}∈
P1∨2

2,2

(logP !)(G�1
)(logP !)(G�2

) È equation (3.2.2)É.

We want to show equation (3.2.15) for any = ∈ ℕ \ {1, 2} under the assumption that

equation (3.2.15) holds for all < ∈ [= − 1]. Let G1 ⊗ · · · ⊗ G= ∈ T(+) and H1 ⊗ · · · ⊗=−1
∈ T(+) be

some pure tensors such that there exists an ℓ ∈ {0, . . . , =−2}, where the parts of equation (3.2.12)

and ! ∈ Lin(T(+),ℂ) is chosen in such way such that equation (3.2.14) is satisfied. In the first

step we claim that for this ℓ ∈ {0, . . . , = − 2} and the map ! the following equation holds

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) (II)

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(Hdeleteℓ+2,�(1))
)
(logP !)

(
Hdeleteℓ+2,�(1̂)

) )

−
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
) (∑
{�1 ,�2}∈

P
pos

1̂
(ℓ+1)∨pos

1̂
(ℓ+2)

|1̂ |,2

(logP !)
(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

) ))
,

where 1̂ denotes the unique block for a partition � ∈ P (ℓ+1)∧(ℓ+2)
=,:

such that ℓ + 1, ℓ + 2 ∈ set 1̂.
For the proof of this claim consider the following calculation

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(G1)

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
)
· (logP !)(G

1̂
)
)

È by definition of P (ℓ+1)∧(ℓ+2)
=,:

in eq. (3.1.29) ∃ 1̂ ∈ � : ℓ + 1, ℓ + 2 ∈ 1̂ É
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=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( ∏
1∈�
1≠1̂

(logP !)(G1)

·
(
(logP !)

(
Hdeleteℓ+2,�(1̂)

)
−

∑
{�1 ,�2}∈

P
pos

1̂
(ℓ+1)∨pos

1̂
(ℓ+2)

|1̂ |,2

(logP !)
(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

) ))

È IH applied to (logP !)(G
1̂
) É.

The last step in the above equation needs some justification. We want to apply the induction

hypothesis to |1̂ | insteadof=, to (pos
1̂
(ℓ+1))−1 insteadofℓ , to (G8)8∈set 1̂ and (H8)8∈deleteℓ+2,�(1̂) instead

of (G8)8∈[=] respectively (H8)8∈[=−1]. We have to show that for these index choices equation (3.2.12)

and equation (3.2.14) are satisfied. But this is the case because any subsequence of (G8)8∈set 1̂ can

be regarded as a subsequence of (G8)8∈[=]. Since |1̂ | ≤ = and our assumption that equation (3.2.15)

holds for all < ∈ {2, . . . , = − 1} ⊆ ℕ, we are allowed to apply the induction hypothesis.

Moreover, as a consequence by the definition of the map delete=,ℓ+2 in equation (3.1.6) and

by the assumption of equation (3.2.12) and equation (3.2.14) we have

∀ : ∈ {1, . . . , = − 1} ∀� ∈ Part(ℓ+1)∧(ℓ+2)
=,:

∀1 ∈ � \ {1̂} :

(logP !)(G1) = (logP !)(Hdeleteℓ+2,�(1)),
(III)

where 1̂ denotes the unique block in a partition � such that ℓ + 1, ℓ + 2 ∈ set 1̂.
Now, finally we obtain

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(G1)

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
)
(logP !)

(
Hdeleteℓ+2,�(1̂)

) )

−
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
) (∑
{�1 ,�2}∈

P
pos

1̂
(ℓ+1)∨pos

1̂
(ℓ+2)

|1̂ |,2

(logP !)
(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

) ))

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(Hdeleteℓ+2,�(1))
)
(logP !)

(
Hdeleteℓ+2,�(1̂)

) )

−
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
) (∑
{�1 ,�2}∈

P
pos

1̂
(ℓ+1)∨pos

1̂
(ℓ+2)

|1̂ |,2

(logP !)
(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

) ))
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È eq. (III)É.

This proves the statement of equation (II). Nowwe are going to further investigate the summands

of equation (II) and provide the following claim for the first summand of the right hand side,

namely

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(Hdeleteℓ+2,�(1))
)
(logP !)

(
Hdeleteℓ+2,�(1̂)

) )

=

=−1∑
:=2

∑
�∈P=−1,:

∏
1∈�
(logP !)(H1). (IV)

For the proof of this claim consider the following calculation

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(Hdeleteℓ+2,�(1))
)
(logP !)

(
Hdeleteℓ+2,�(1̂)

) )

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(Hdeleteℓ+2,�(1))

=

=−1∑
:=2

∑
�′∈

P=−1,:

∏
1∈�
(logP !)(H(double=−1,ℓ+1 ◦ delete=,ℓ+2)(1))

�
def. of double=−1,ℓ+1 � P=−1,: : P=−1,: −→ P (ℓ+1)∧(ℓ+2)

=,:
in eq. (3.1.39)

double=−1,ℓ+1 � P=−1,: is bĳective by Lemma 3.1.11 (a), Thm. 3.2.13

�

=

=−1∑
:=2

∑
�∈

P=−1,:

∏
1∈�
(logP !)(H1) ÈLemma 3.1.11 (a)É.

This proves the statement of equation (IV). Furthermore, the following assertion holds for the

second summand of the right hand side of equation (II), namely

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
) ( ∑

{�1 ,�2}∈
P

pos
1̂
(ℓ+1)∨pos

1̂
(ℓ+2)

|1̂ |,2

(logP !)
(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

) ))
(V)

=

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1).
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For the proof of this claim, consider the following calculation

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( (∏
1∈�
1≠1̂

(logP !)(G1)
) (∑
{�1 ,�2}∈

P
pos

1̂
(ℓ+1)∨pos

1̂
(ℓ+2)

|1̂ |,2

(logP !)
(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

) ))

=

=−1∑
:=2

∑
(�,{�1 ,�2})

∈sub

(
P (ℓ+1)∧(ℓ+2)
=,:

)
(∏
1∈�
1≠1̂

(logP !)(G1)
)
(logP !)

(
(G
1̂
)�1

)
(logP !)

(
(G
1̂
)�2

)
Èdef. of sub

(
P (ℓ+1)∧(ℓ+2)
=,:

)
in eq. (3.1.31)É

=

=−1∑
:=2

∑
�

∈P (ℓ+1)∨(ℓ+2)
=,:+1

∏
1∈�
(logP !)(G1)

�
UMemℓ+1

=,:+1
� P (ℓ+1)∨(ℓ+2)

=,:+1
: P (ℓ+1)∨(ℓ+2)

=,:+1
−→ sub

(
P (ℓ+1)∧(ℓ+2)
=,:

)
is bĳective by Lemma 3.1.11 (b), Thm. 3.2.13

�

=

=∑
:=3

∑
�

∈P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1).

This finishes the proof of the assertion of equation (V). Now we can plug in the results of

equation (IV) and (V) into equation (II) and obtain

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) =

∑
�∈P=−1

�≠1=−1

∏
1∈�
(logP !)(H1) −

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) (VI)

We make one final auxiliary claim

!(G1 ⊗ · · · ⊗ G=) = !(H1 ⊗ · · · ⊗ H=−1). (VII)

This is a immediate consequence from equation (3.2.14).

Now, we are ready to finish the proof of the statement of equation (3.2.15) for arbitrary

= ∈ ℕ \ {1, 2} by strong induction. For this, we consider the following calculation

(logP!)(G1 ⊗ · · · ⊗ G=)

= !(G1 ⊗ · · · ⊗ G=) −
∑
�∈P=
�≠1=

∏
1∈�
(logP !)(G1)

= !(G1 ⊗ · · · ⊗ G=) −
=∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) −

=∑
:=2

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1)

� =⋃
:=2

(P (ℓ+1)∧(ℓ+2)
=,:

∪ P (ℓ+1)∨(ℓ+2)
=,:

) = P= \ {1=}
�
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= !(G1 ⊗ · · · ⊗ G=) −
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) −

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,2

∏
1∈�
(logP !)(G1)

−
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) ÈP (ℓ+1)∧(ℓ+2)

=,= = ∅ É

= !(G1 ⊗ · · · ⊗ G=) −
∑

�∈P=−1

�≠1=−1

∏
1∈�
(logP !)(H1) +

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1)

−
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�
(logP !)(G1) −

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,2

∏
1∈�
(logP !)(G1) È eq. (VI)É

= !(G1 ⊗ · · · ⊗ G=) −
∑

�∈P=−1

�≠1=−1

∏
1∈�
(logP !)(H1) −

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,2

∏
1∈�
(logP !)(G1)

= !(H1 ⊗ · · · ⊗ H=−1) −
∑

�∈P=−1

�≠1=−1

∏
1∈�
(logP !)(H1) −

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,2

∏
1∈�
(logP !)(G1) È eq. (VII)É

= (logP !)(H1 ⊗ · · · ⊗ H=−1) −
∑
�∈

P (ℓ+1)∨(ℓ+2)
=,2

∏
1∈�
(logP !)(G1) Èdef. of logP ) in eq. (3.2.5)É. �

The next lemma tells us that the logarithm logP ! w. r. t. a universal class of partitions P is

uniquely determined by the application of ! to right-ordered monomials and some uniquely

determined coefficients �� for all � ∈ Part. Notice that we do not make any further statements

about the properties of the coefficients ��. The essence of the following lemma is only to say

that in the calculation of the logP ! only right-ordered monomials appear.

3.2.16 Lemma. Let P be a universal class of partitions. Let + be vector space and ! ∈
Lin(T(+),ℂ). Then, we have

∀= ∈ ℕ, ∀(G8)8∈[=] ∈ +×= , ∀� ∈ Part= , ∃�� ∈ ℂ :

(logP !)(G1 ⊗ · · · ⊗ G=) =
∑

�∈Part=

��
∏
1∈�

!(G1) (3.2.16)

Proof: The induction base = = 1 follows from equation (3.2.5). For the induction step = → =+1

we have

(logP !)(G1 ⊗ · · · ⊗ G=+1)

= !(G1 ⊗ · · · ⊗ G=+1) −
∑

�∈P=+1

|�|≥2

∏
1∈�
(logP !)(G1) È eq. (3.2.5)É
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= !(G1 ⊗ · · · ⊗ G=+1) −
∑

�∈Part=+1

|�|≥2

�′�
∏
1∈�
(logP !)(G1)

È∀� ∈ Part=+1 : �′� ≔ 1, for � ∈ P , �′� ≔ 0, elseÉ

= !(G1 ⊗ · · · ⊗ G=+1) −
∑

�∈Part=+1

|�|≥2

�′�
∏
1∈�

( ∑
�∈Part|set 1 |

��
∏
1′∈�

!(G1′)
)

È induction hypothesis appliedÉ

= !(G1 ⊗ · · · ⊗ G=+1) −
=+1∑
:=2

∑
�∈Part=+1

|�|=:

�′�
∏
1∈�

( ∑
�∈Part|set 1 |

��
∏
1′∈�

!(G1′)
)

(I)

=

∑
�∈Part=+1

��
∏
1∈�

!(G1).

For the last step we have used that the map

5: :

{
Part=+1,: −→ Part|set 11 | × · · · × Part|set 1: |

{11 , . . . , 1:} ↦−→
(
{11}, . . . , {1:}

)
is a bĳection for all : ∈ [= + 1], i. e., we can sort all terms appearing in equation (I) by

∏
1∈� !(G1)

for any � ∈ Part=+1. The coefficient in front of them is denoted by ��. �

3.3 Partition induced universal product: single-colored case

We continue our quest to find a partition induced universal product by using a universal class of

partitions. So far, we have a partition induced exponential expP , a partition induced logarithm

logP and an operation }P living on a certain tensor algebra. The leitmotiv for the construction of

these building pieces was to mimic the formula of equation (2.4.22) for a positive and symmetric

u.a.u.-product in the single-faced case. Any universal product needs to be defined on the free

product A1tA2 for algebras A1 and A2. By Theorem 2.1.2 we know that A1tA2

∼= T(A1⊕A2)/�.
Maybe we can lift !1 }P !2 to the quotient algebra T(A1 ⊕ A2)/�? In this sense, it is our goal

to define a universal product !1 � !2 as a linear map on A1 t A2. We explicitly do this on

T(A1 ⊕ A2)/� and therefore we shall apply the results of Section 3.2 to the case + = A1 ⊕ A2.

Lemma 3.3.2 then shows we actually may pass }P over to the quotient algebra.

3.3.1 Convention. Let (A9)9∈[:] be a :-tuple of algebras for some : ∈ ℕ. Consider the following

commutative diagram for all A ∈ [:]⊕:
8=1

A8 T(
⊕:

8=1
A8)

AA

←↪ →inc

←

→
⊕:

8=1
Δ8 ,A

←

→ T (
⊕:

8=1
Δ8 ,A )

, (3.3.1)
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wherein we put (“map-like Kronecker delta”)

∀A ∈ [:] : Δ8 ,A ≔
{

0: A8 −→ AA for 8 ≠ A

idAA : AA −→ AA for 8 = A.
(3.3.2)

We shall use the following abbreviation

∀A ∈ [:] : j8 ≔ T
( :⊕
8=1

Δ8 ,A

)
. (3.3.3)

In Lemma 3.2.9 we have shown that }P is an associative binary operation. Hence, we can

omit putting brackets for products with respect to }P . Therefore, the following statement makes

sense.

3.3.2 Lemma. Let P be a universal class of partitions. Let (A8)8∈[:] be a :-tuple of algebras and
(!8)8∈[:] ∈

∏:
8=1

Lin(A8 ,ℂ)) for some : ∈ ℕ \ {1}. Let = ∈ ℕ \ {1} and � = (�8)8∈[=] ∈ [:]×= and
assume that the tuple � has the property

∃ℓ ∈ {0, . . . , = − 2} ⊆ ℕ : �ℓ+1 = �ℓ+2. (3.3.4)

Then, for any (08)8∈[=] ∈
∏=

8=1
A�8 the equation

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(

∈T(
⊕:

8=1
A8)︷                                    ︸︸                                    ︷

01 ⊗ · · · ⊗ 0ℓ+1 ⊗ 0ℓ+2 ⊗ · · · ⊗ 0=)

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗ 0=) (3.3.5)

holds.

Proof: We can consider two different cases. In both cases let 01 ⊗ · · · ⊗ 0= ∈ A�1
⊗ · · · ⊗ A�= ,

where (�8)8∈[=] ∈ [:]×= satisfies equation (3.3.4). In the first case it is assumed, that

∃ 2 ∈ [:], ∀ 8 ∈ [=] : �8 = 2 (I)

and in the second case that

∃ 9 ∈ [=] \ {ℓ + 1, ℓ + 2} : �9 ≠ �ℓ+1. (II)

We begin with the proof for the first case and calculate(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(01 ⊗ · · · ⊗ 0=)

=

(
expP

( :∑
8=1

logP (!8 ◦ j8)
) )
(01 ⊗ · · · ⊗ 0=) È eq. (3.2.8)É

=

∑
�∈P=

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
) )
(01) Èproperty of expP in eq. (3.2.4)É
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=

∑
�∈P=

∏
1∈�

(
logP (!2 ◦ j2)

)
(01)

������
case defined in (I)

=⇒ ∀ 9 ∈ [=],∀ 8 ∈ [:] \ {2} : 0 9 ∈ ker j8

apply Lemma 3.2.12 to !8 instead of !

and j8 instead of 5 , use Convention 3.3.1

������
=

(
expP

(
logP (!2 ◦ j2)

) )
(01 ⊗ · · · ⊗ 0=) Èproperty of expP in eq. (3.2.4)É

= (!2 ◦ j2)(01 ⊗ · · · ⊗ 0=) È by Lemma 3.2.7 expP is inverse to logP É

= !2
(
j2(01) ⊗ · · · ⊗ j2(0=)

)
È j2 ∈ Alg(T(A1 ⊕ A2),A1) É

= !2(01 · · · · · (0ℓ+1 · 0ℓ+2) · · · · · 0=)

= (!1 ◦ j2)(01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗ 0=)

=

(
expP

(
logP (!2 ◦ j2)

) )
(01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗ 0=)

Èproperty of expP · from eq. (3.2.4)É

= . . . =
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗ 0=)�

same steps apply as in the beginning of the calculation,

since ∀ 8 ∈ [=],∀ 9 ∈ [:] \ {2} : 08 ∈ ker j9

�
.

Before proving the second case, we set

∀ 8 ∈ [=] : G8 ≔ 08

∀ 8 ∈ {1, . . . , ℓ } ⊆ ℕ : H8 ≔ G8

Hℓ+1 ≔ 0ℓ+1 · 0ℓ+2

∀ 8 ∈ {ℓ + 2, . . . , = − 1} ⊆ ℕ : H8 ≔ 08+1.

(III)

For the second case we verify the assertion by direct calculation for some = ∈ ℕ \ {1}.(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(01 ⊗ · · · ⊗ 0=)

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(G1 ⊗ · · · ⊗ G=)

=

(
expP

( :∑
8=1

logP (!8 ◦ j8)
) )
(G1 ⊗ · · · ⊗ G=) È eq. (3.2.8)É

=

∑
�∈P=

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) Èproperty of expP · from eq. (3.2.4)É

=

=∑
:=1

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) +

=∑
:=1

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)
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�
=⋃
:=1

(P (ℓ+1)∨(ℓ+2)
=,:

∪· P (ℓ+1)∧(ℓ+2)
=,:

) = P=

�

=

∑
{11 ,12}∈

P (ℓ+1)∨(ℓ+2)
=,2

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G11
)
) ( ( :∑

8=1

logP (!8 ◦ j8)
)
(G12
)
)

+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) +

=∑
:=1

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

ÈP (ℓ+1)∨(ℓ+2)
=,1

= ∅ É

= 0 +
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

+
=∑
:=1

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

��������
according to Conv. 3.3.1 we have j8 = T (

⊕:
9=1
Δ9 ,8)

and ∀ 8 ∈ [:] \ {�ℓ+1} : 0ℓ+1 , 0ℓ+2 ∈ ker(j8)
application of Lemma 3.2.12 to

∑:
8=1

logP (!8 ◦ j8) yields
case defined in eq. (II)

=⇒ ∀� ∈ P (ℓ+1)∨(ℓ+2)
=,2

, ∀1 ∈ � : G1 ∈ ker

(∑:
8=1

logP (!8 ◦ j8)
)

��������
=

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) +

( :∑
8=1

logP (!8 ◦ j8)
)
(G1 ⊗ · · · ⊗ G=)

+
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

=

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) + 0 +

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

ÈP (ℓ+1)∧(ℓ+2)
=,= = ∅ É

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) +

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)
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=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

(∏
1∈�
1≠1′

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

)
·
( :∑
8=1

logP (!8 ◦ j8)
)
(G1′)

)

+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

È∀� ∈ P (ℓ+1)∧(ℓ+2)
=,:

∃1′ ∈ � : ℓ + 1, ℓ + 2 ∈ set 1′ É

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

(∏
1∈�
1≠1′

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

)
· logP (!�ℓ+1

◦ j�ℓ+1
)(G1′)

)

+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

È∀ 8 ∈ [:] \ {�ℓ+1} : 0ℓ+1 , 0ℓ+2 ∈ ker(j8), then apply Lemma 3.2.12É

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( ∏
1∈�
1≠1′

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

)

·
( (

logP (!�ℓ+1
◦ j�ℓ+1

)
)
(Hdeleteℓ+2,�(1′))

−
∑
{�1 ,�2}∈

Ppos1′ (ℓ+1)∨pos1′ (ℓ+2)
|1′ |,2

(
logP (!�ℓ+1

◦ j�ℓ+1
)
) (
(G1′)�1

) (
logP (!�ℓ+1

◦ j�ℓ+1
)
) (
(G1′)�2

) ))

+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

�
prequisites of Lemma 3.2.15 are satisfied, then apply eq. (3.2.15) to

!�ℓ+1
◦ j�ℓ+1

instead of ! and (G8)8∈set(1′) instead of (G8)8∈[=]

�

=

=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

((∏
1∈�
1≠1′

( :∑
8=1

logP (!8 ◦ j8)
)
( G1︸︷︷︸
=H1

)
)
·
( :∑
8=1

logP (!8 ◦ j8)
)
(Hdeleteℓ+2,�(1′))

)
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−
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( ∏
1∈�
1≠1′

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

·
∑
{�1 ,�2}∈

Ppos1′ (ℓ+1)∨pos1′ (ℓ+2)
|1′ |,2

( :∑
8=1

logP (!8 ◦ j8)
) (
(G1′)�1

) ( :∑
8=1

logP (!8 ◦ j8)
) (
(G1′)�2

) ))

+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

�
∀ 8 ∈ [:] \ {�ℓ+1} : 0ℓ+1 , 0ℓ+2 , 0ℓ+1 · 0ℓ+2 ∈ ker(j8)
then apply Lemma 3.2.12

�

=

=−1∑
:=2

∑
�∈P=−1,:

�≠1=−1

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(H1)

−
=−1∑
:=2

∑
�∈

P (ℓ+1)∧(ℓ+2)
=,:

( ∏
1∈�
1≠1′

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

)

·
∑
{�1 ,�2}∈

Ppos1′ (ℓ+1)∨pos1′ (ℓ+2)
|1′ |,2

( :∑
8=1

logP (!8 ◦ j8)
) (
(G1′)�1

) ( :∑
8=1

logP (!8 ◦ j8)
) (
(G1′)�2

))

+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

�
def. of double=−1,ℓ+1 � P=−1,: : P=−1,: −→ P (ℓ+1)∧(ℓ+2)

=,:
in eq. (3.1.39)

double=−1,ℓ+1 � P=−1,: is bĳective by Lemma 3.1.11 (a), Thm. 3.2.13

�

=

=−1∑
:=2

∑
�∈P=−1,:

�≠1=−1

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(H1)

−
=−1∑
:=2

∑
(�,{�1 ,�2})

∈sub

(
P (ℓ+1)∧(ℓ+2)
=,:

)
( ∏
1∈�
1≠1′

( ( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

)

·
( :∑
8=1

logP (!8 ◦ j8)
) (
(G1′)�1

) ( :∑
8=1

logP (!8 ◦ j8)
) (
(G1′)�2

))
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+
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

Èdef. of sub

(
P (ℓ+1)∧(ℓ+2)
=,:

)
in eq. (3.1.31)É

=

=−1∑
:=2

∑
�∈P=−1,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(H1)

−
=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1) +

=∑
:=3

∑
�∈

P (ℓ+1)∨(ℓ+2)
=,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(G1)

�
UMemℓ+1

=,:+1
� P (ℓ+1)∨(ℓ+2)

=,:+1
: P (ℓ+1)∨(ℓ+2)

=,:+1
−→ sub

(
P (ℓ+1)∧(ℓ+2)
=,:

)
is bĳective by Lemma 3.1.11 (b), Thm. 3.2.13

�

=
( :∑
8=1

logP (!8 ◦ j8)
)
(H1 ⊗ · · · ⊗ H=−1)︸                                       ︷︷                                       ︸

=0

+
=−1∑
:=2

∑
�∈P=−1,:

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(H1)

È∀ 8 ∈ [:] \ {�ℓ+1} : Hℓ+1 = 0ℓ+1 · 0ℓ+2 ∈ ker(j8), then apply Lemma 3.2.12É

=

=−1∑
:=1

∑
�∈P=−1,:︸      ︷︷      ︸

=
∑

�∈P=−1

∏
1∈�

( :∑
8=1

logP (!8 ◦ j8)
)
(H1)

=

(
expP

( :∑
8=1

logP (!8 ◦ j8)
) )
(H1 ⊗ · · · ⊗ H=−1) Èproperty of expP from eq. (3.2.4)É

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(H1 ⊗ · · · ⊗ H=−1) Èdefinition of }P in eq. (3.2.7)É

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

) (
01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗

)
Èdef. of (H8)8∈[=] in eq. (III)É. �

3.3.3 Remark. Assume (A8)8∈[:] is an :-tuple of algebras for some : ∈ ℕ \ {1}, then we define

(1,...,: ≔ { 0 ⊗ 0′ − 0 · 0′ | 8 ∈ [:] : 0, 0′ ∈ A8 } ⊆ T(
:⊕
8=1

A8), (3.3.6)

�1,...,: ≔ 〈(1,...,:〉 (3.3.7)

i. e., �1,...,: denotes the smallest two-sided ideal in T(
⊕:

8=1
A8) such that �1,...,: ⊇ (1,...,: . If we

set

�(
1,...,:

≔


=∑
8=1

(
2B8 + GB8 + B8H +

#8∑
9=1

G 9B8H 9

) ������ =, #8 ∈ ℕ, 2 ∈ ℂ, B8 ∈ (1,...,: ,

G, H, G 9 , H 9 ∈ T(
⊕:

8=1
A8)

, (3.3.8)
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then it is a standard task to show that �1,...,2 = �(
1,...,:

(for instance look at [MV04, Prop. 23.3]).

3.3.4 Lemma. Let P be a universal class of partitions. Let (A8)8∈[:] be a :-tuple of algebras for
some : ∈ ℕ \ {1} and !8 ∈ Lin(A8 ,ℂ) for each 8 ∈ [:]. Then �(

1,...,:
⊆ ker((!1 ◦ j1) }P · · · }P

(!: ◦ j:)) ⊆ T(
⊕:

8=1
A8).

Proof: Due to equation (3.3.8) any element of �(
1,...,:

is a linear combination of elements with

certain elements from the set (1,...,: multiplied with arbitrary elements from T(
⊕:

8=1
A8) and

due to the fact that (!1 ◦ j1) }P · · · }P (!: ◦ j:) is a linear map, it suffices to show(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

) (
01 ⊗ · · · ⊗ 0ℓ+1 ⊗ 0ℓ+2 ⊗ · · · ⊗ 0=

− 01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗ 0=
)
= 0

for any = ∈ ℕ \ {1}, for any ℓ ∈ {0, . . . , = − 2}, for any � = (�8)8∈[=] ∈ [:]×= with �ℓ+1 = �ℓ+2

and for any (08)8∈[=] ∈
∏=

8=1
A�8 . But, the above equation is just a restatement of the assertion of

Lemma 3.3.2. Therefore, equation (3.3.5) implies the assertion. �

Because of Lemma 3.3.4, we may define the following:

3.3.5 Definition (Universal product induced by a universal class of partitions). Let P be a

universal class of partitions. Let (A8)8∈[:] be a :-tuple of algebras and !8 ∈ Lin(A8 ,ℂ), 8 ∈ [:]
for some : ∈ ℕ \ {1}. From the universal property of the quotient space and by Lemma 3.3.4

there exists a unique linear map lift
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
∈ Lin(T(

⊕:
8=1

A8)/�1,...,: ,ℂ)
such that the following diagram commutes

T(
⊕:

8=1
A8) ℂ

T(
⊕:

8=1
A8)

/
�1,...,:

← →(!1◦j1)}P ···}P (!: ◦j: )

←

� pr ←

→

lift
(
(!1◦j1)}P ···}P (!:◦j: )

) . (3.3.9)

If we apply the above setting to the case : = 2, then we set

(!1 ◦ j1) }̃P (!2 ◦ j2) ≔ lift
(
(!1 ◦ j1) }P (!2 ◦ j2)

)
. (3.3.10)

Let us denote by i9 : A9 ↩−→ T(A1 ⊕ A2)/�1,2 the canonical injections. Then,

i1 t i2 : A1 t A2 −→ T(A1 ⊕ A2)/�1,2 (3.3.11)

is the canonical isomorphism of algebras, depicted by the following diagram for 8 ∈ [2]

A1 t A2

A8 T(A1 ⊕ A2)
/
�1,2

A1 t A2

←→ i1ti2

←

→

id
←↪

→
�8

←↪ →i8

←↪

→

�8 ←→ �1 t �2

. (3.3.12)
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By this we define

!1 �P !2 :


A1 t A2 −→ ℂ

0 ↦−→
( (
(!1 ◦ j1) }̃P (!2 ◦ j2)

)
◦ (i1 t i2)

)
(0).

(3.3.13)

Finally, we set

�P :

{
Lin(A1 ,ℂ) × Lin(A2 ,ℂ) −→ Lin(A1 t A2 ,ℂ)

(!1 , !2) ↦−→ !1 �P !2.
(3.3.14)

3.3.6 Remark. The construction of the free product of algebras from Theorem 2.1.2 can be

generalized to a finite indexed family of algebras (A8)8∈� with |� | < ∞. This means for � = [:]
for some : ∈ ℕ by the definition of the ideal �1,...,: from equation (3.3.7) we have

T(
⊕:

8=1
A8)

/
�1,...,:

∼=
⊔
8∈[:]

A8 . (3.3.15)

In other words, the left hand side of the above equation satisfies the universal property of the

coproduct for (A8)8∈[:] in the category Alg in the sense discussed in Remark 1.1.7.

By the above remark in mind, the assertion of the next lemma makes sense.

3.3.7 Lemma. Let P be a universal class of partitions. For any : ∈ ℕ \ {1} and (A8 , !8)8∈[:] ∈
(Obj(AlgP))×: we have ( (

(!1 �P !2) �P !3

)
· · ·

)
�P !:

= lift
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ can,

(3.3.16)

where }P here denotes the binary operation on the dual space of T(
⊕:

8=1
A8) and can is the

canonical isomorphism of algebras, i. e., can : (((A1tA2)tA3) . . . )tA: −→ T(
⊕:

8=1
A8)/�1,...,: .

Proof: We prove the statement by induction over : ∈ ℕ \ {1}. The induction base : = 2 holds,

since equation (3.3.13) gives us

!1 �P !2 =
(
(!1 ◦ j1) }̃P (!2 ◦ j2)

)
◦ (i1 t i2),

where i1 t i2 : A1 t A2 −→ T(A1 ⊕ A2)/�1,2 denotes the canonical isomorphism of algebras.

We now perform the induction step : → : + 1 and assume that : ∈ ℕ \ {1}, and that

equation (3.3.16) holds for all :′ ≤ :. We set

∀ :′ ∈ ℕ \ {1} : A1t···t:′ ≔
( (
(A1 t A2) t A3

)
· · ·

)
t A:′ .

By �1t···t:,:+1 ⊆ T(A1t···t: ⊕ A:+1) we mean the two-sided ideal from Remark 3.3.3 in equa-

tion (3.3.7), where we use A1t···t: instead of A1 and A:+1 instead of A2. Moreover, we recall the

definition for all :′ ∈ ℕ \ {1} that �1,...,:′ ⊆ T(
⊕

8∈[:′] A8) denotes the two-sided ideal generated

by the set { 0 ⊗ 0′ − 0 · 0′ | 8 ∈ [:′] : 0, 0′ ∈ A8 }.
In the first step we claim that the following diagram is a commutative diagram of algebra
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homomorphisms

T(A1t···t: ⊕ A:+1) A1t···t:

T(
⊕:+1

8=1
A8)

T(
⊕:

8=1
A8) T(

⊕:
8=1

A8)
/
�1,...,: .

← →
T (idA

1t···t:⊕0)

←

→

can

← →T

(⊕:+1

8=1
incA8 ,A1t···t:⊕A:+1

)

←

→
T(

⊕:
8=1

idA8
⊕0) ← →pr

. (I)

Because all maps of consideration are homomorphisms of algebras and since the tensor algebra

T(
⊕

3

8=1
A8) is generated by elements of

⊕
3

8=1
A8 , it suffices to prove the commutativity for an

element of the form inc
A8 ,T(

⊕
3

8=1
A8)(0) for some 0 ∈ A8 and any 8 ∈ [: + 1]. Let 8 ∈ [:], then for

the lower path in the diagram we have(
pr ◦ T(

:⊕
8=1

idA8 ⊕ 0)
) (

inc
A8 ,T(

⊕:+1

8=1
A8)(0)

)
= pr ◦ incA8 ,T(A1⊕A2)(0) ÈUMP of tensor algebraÉ

And for the upper path in the diagram we have(
can ◦ T (idA

1t···t: ⊕ 0) ◦ T

( :+1⊕
8=1

incA8 ,A1t···t:⊕A:+1

) ) (
inc

A8 ,T(
⊕:+1

8=1
A8)(0)

)
=

(
can ◦ T (idA

1t···t: ⊕ 0) ◦ incA8 ,T(A1t···t:⊕A:+1
)
)
(0)

= can
(
�A8 ,A1t2

(0)
)

= pr ◦ incA8 ,T(A1⊕A2)(0) ÈUMP of free product of algebrasÉ.

If 0 ∈ A:+1 both sides of the equation give zero. This proves the statement of equation (I).

We use the above commutativity of the diagram for the following calculation

lift
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ can ◦ T (idA

1t···t: ⊕ 0) ◦ T

( :+1⊕
8=1

incA8 ,A1t···t:⊕A:+1

)
= lift

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ pr ◦T(

:⊕
8=1

idA8 ⊕ 0) È eq. (I)É

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ T(

:⊕
8=1

idA8 ⊕ 0) È eq. (3.3.9)É

=
(
!1 ◦ T (

:⊕
9=1

Δ9 ,1 ◦ T(
:⊕
8=1

idA8 ⊕ 0)
)

}P · · · }P
(
!: ◦ T (

:⊕
9=1

Δ9 ,: ◦ T(
:⊕
8=1

idA8 ⊕ 0)
)
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�
Conv. 3.3.1,

⊕:
8=1

idA8 ⊕ 0 ∈ Lin(
⊕:+1

8=1
A8 ,

⊕:
8=1

A8), Lemma 3.2.11 (c)
�

=
(
!1 ◦ T (

:⊕
9=1

Δ9 ,1 ⊕ 0)
)
}P · · · }P

(
!: ◦ T (

:⊕
9=1

Δ9 ,: ⊕ 0)
)
. (II)

As a last preparatory step, we claim that the following diagram is commutative for all 8 ∈ [: + 1]

A8

⊕:+1

8=1
A8 T(

⊕:+1

8=1
A8)

A1t···t: ⊕ A:+1 A1t···t:
⊕

A:+1 T(A1t···t:
⊕

A:+1)

←
↪

→ ĩnc8

←↪ → ←↪ →

←
→

⊕:
8=1

ĩnc8

←

→ T(
⊕:

8=1
ĩnc8)

←↪ → ←↪ →

. (III)

The commutativity of the diagram is given by the universal mapping property of the tensor

algebra. Now, we calculate for an arbitrary basis element of A
1t···t(:+1) with = ∈ ℕ, � = (�8)8∈[=] ∈

A([: + 1]) and ∀ 8 ∈ [=] : 08 ∈ A�8 such that 08 is a basis vector of A�8(( (
(!1 �P !2) �P !3

)
· · ·

)
�P !:+1

) (
�A�

1
,A

1t···t(:+1)(01) · · · · · �A�= ,A1t···t(:+1)(0=)
)

= (!1t···t: �P !:+1)
(
�A�

1
,A

1t···t:tA:+1
(01) · · · · · �A�= ,A1t···t:tA:+1

(0=)
)

È!1t···t: ≔
( (
(!1 �P !2) �P !3

)
· · ·

)
�P !: , A

1t···t(:+1) = A1t···t: t A:+1 É

=
(
(!1t···t: ◦ T (idA

1t···t: ⊕ 0)) }̃P (!:+1 ◦ T (0 ⊕ idA:+1
))
) (

i�1
(01) · · · · · i�= (0=)

)
�
∀ 9 ∈ [:] : i9 : A9 ↩−→ T(A1t···t: ⊕ A:+1) −� T(A1t···t: ⊕ A:+1)/�1t···t:,:+1

induction base applied to (A1t···t: , !1t···t:), (A:+1 , !:+1) ∈ Obj(AlgP)

�
=

(
(!1t···t: ◦ T (idA

1t···t: ⊕ 0)) }P (!:+1 ◦ T (0 ⊕ idA:+1
))
)(

incA�
1
,T(A

1t···t:⊕A:+1
)(01) · · · · · incA�= ,T(A1t···t:⊕A:+1

)(0=)
)

È eq. (3.3.9), projection is homomorphism of algebrasÉ

=

( (
(!1t···t: ◦ T (idA

1t···t: ⊕ 0)) }P (!:+1 ◦ T (0 ⊕ idA:+1
))
)

◦ T(
:⊕
8=1

incA8 ,A1t···t:⊕A:+1
)
) (

inc
A�

1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
È eq. (III), T( · ) is homomorphism of algebrasÉ

=

( (
!1t···t: ◦ T (idA

1t···t: ⊕ 0) ◦ T(
:+1⊕
8=1

incA8 ,A1t···t:⊕A:+1
)
)

}P
(
!:+1 ◦ T (0 ⊕ idA:+1

) ◦ T(
:+1⊕
8=1

incA8 ,A1t···t:⊕A:+1
)
) )

(
inc

A�
1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
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ÈLem. 3.2.11 (c)É

=

( (
!1t···t: ◦ T (idA

1t···t: ⊕ 0) ◦ T(
:+1⊕
8=1

incA8 ,A1t···t:⊕A:+1
)
)

}P
(
!:+1 ◦ T (

:+1⊕
8=1

Δ8 ,:+1)
) )

(
inc

A�
1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
�
T (0 ⊕ idA:+1

) ◦ T(
:+1⊕
8=1

incA8 ,A1t···t:⊕A:+1
) = T (

:+1⊕
8=1

Δ8 ,:+1)
�

=

((
lift

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ can

◦ T (idA
1t···t: ⊕ 0) ◦ T(

:+1⊕
8=1

incA8 ,A1t···t:⊕A:+1
)
)

}P
(
!:+1 ◦ T (

:+1⊕
8=1

Δ8 ,:+1)
) )

(
inc

A�
1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
È induction hypothesis applied to !1t···t: É

=

(( (
!1 ◦ T (

:⊕
9=1

Δ9 ,1 ⊕ 0)
)
}P · · · }P

(
!: ◦ T (

:⊕
9=1

Δ9 ,: ⊕ 0)
) )

}P
(
!:+1 ◦ T (

:+1⊕
8=1

Δ8 ,:+1)
) )

(
inc

A�
1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
È eq. (II)É

=

( (
!1 ◦ T (

:+1⊕
9=1

Δ9 ,1)
)
}P · · · }P

(
!: ◦ T (

:+1⊕
9=1

Δ9 ,:+1)
) )

(
inc

A�
1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
È}P is associative by Lem. 3.2.9É

=

(
lift

(
(!1 ◦ j1) }P · · · }P (!:+1 ◦ j:+1)

)
◦ pr

)
(
inc

A�
1
,T(

⊕:+1

8=1
A8)(01) · · · · · inc

A�= ,T(
⊕:+1

8=1
A8)(0=)

)
È eq. (3.3.3), eq. (3.3.9)É
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=

(
lift

(
(!1 ◦ j1) }P · · · }P (!:+1 ◦ j:+1)

)
◦ can

)
(
�A�

1
,A

1t···t(:+1)(01) · · · · · �A�= ,A1t···t(:+1)(0=)
)

È pr is homomorphism of algebrasÉ. �

We have a very similar result to Lemma 3.3.7 which turns out to be useful proving associa-

tivity of �P .

3.3.8 Lemma. Let P be a universal class of partitions. For any : ∈ ℕ \ {1} and (A8 , !8)8∈[:] ∈
(Obj(AlgP))×: we have

!1 �P
(
· · ·

(
!:−2 �P (!:−1 �P !:)

) )
= lift

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ can,

(3.3.17)

where }P here denotes the binary operation on the dual space of T(
⊕:

8=1
A8) and can

is the canonical isomorphism of algebras, i. e., can : A1 t (· · · (A:−2 t (A:−1 t A:))) −→
T(

⊕:
8=1

A8)/�1,...,: .

Proof: The proof is analogously done like the proof of Lemma 3.3.7 by some “minor” notational

modifications. We therefore omit the proof. �

3.3.9 Theorem. Let P be a universal class of partitions. The above defined map

�P : Lin(A1 ,ℂ) × Lin(A2 ,ℂ) −→ Lin(A1 t A2 ,ℂ) fulfills the properties of a symmetric u.a.u.-

product, which has the right ordered-monomials property, i. e.,

(a) �P is unital: Let �8 : A8 −→ A1 t A2 denote the canonical homomorphic insertions for

8 ∈ {1, 2}, then
∀ 8 ∈ {1, 2} : (!1 �P !2) ◦ �8 = !8 . (3.3.18)

(b) �P is associative:

∀ 8 ∈ {1, 2, 3} ∀!8 ∈ Lin(A8 ,ℂ) : (!1 �P !2) �P !3 = !1 �P (!2 �P !3) ◦ can, (3.3.19)

where can : (A1 t A2) t A3 −→ A1 t (A2 t A3) is the canonical algebra homomorphism.

(c) �P is universal: If �8 : B8 −→ A8 for 8 ∈ {1, 2} are homomorphisms of algebras, then

(!1 �P !2) ◦ (�1 q �2) = (!1 ◦ �1) �P (!2 ◦ �2). (3.3.20)

(d) �P is symmetric: ∀ 8 ∈ {1, 2} ∀!8 ∈ A8 :

!1 �P !2 = (!2 �P !1) ◦ can, (3.3.21)

where can : A1 t A2 −→ A2 t A1 is the canonical isomorphism of algebras.

(e) �P has the right-ordered monomials property.

Proof: Ad (a): Let us assume that 0 ∈ A1. We calculate(
(!1 �P !2) ◦ �1

)
(0)
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=

( (
(!1 ◦ j1) }̃P (!2 ◦ j2)

)
◦ (i1 t i2)

) (
�1(0)

)
Èdef. of � in eq. (3.3.13)É

=
(
(!1 ◦ j1) }̃P (!2 ◦ j2)

) (
(i1(0))

)
ÈUMP of A1 t A in eq. (3.3.11)É

=
(
(!1 ◦ j1) }P (!2 ◦ j2)

)
(0)

�
i1 : A1 ↩−→ T(A1 ⊕ A2) −� T(A1 ⊕ A2)/�1,2,
definition of !1 }̃P !2 in eq. (3.3.9)

�
=

∑
�∈P1

∏
1∈�

(
logP (!1 ◦ j1) + logP (!2 ◦ j2)

)
(01) Èdef. of }P in eq. (3.2.7)É

=
(
logP (!1 ◦ j1) + logP (!2 ◦ j2)

)
(0) È11 ∈ P1 by Def. 3.1.9 (a)É

= (!1 ◦ j1)(0) + (!2 ◦ j2)(0) Èproperty of logP ! in eq. (3.2.5)É

= !1(0) È 0 ∈ A1 by assumptionÉ.

Since 0 ∈ A1 has been arbitrarily chosen, we have proven equation (3.3.18) for any element of

A1. A similar proof holds for (!1 �P !2) ◦ �2 = !2.

Ad (b): Associativity of �P follows from associativity of }P in Lemma 3.2.9 and application of

the assertions of Lemma 3.3.7 and Lemma 3.3.8.

Ad (c): Let �8 : B8 −→ A8 be algebra homomorphisms for 8 ∈ [2]. By the universal mapping

property of the free product of the algebras B1 and B2 we can see that the following diagram is

commutative for each 8 ∈ [2]

B8 A8

T(B1 ⊕B2)/�B B1 tB2 A1 t A2 T(A1 ⊕ A2)/�A

←↪

→

iB
8

←
↪→ �B

8

← →�8

←
↪→ �A

8

←↪
→

iA
8

← →
�B
1
t �B

2

← →
'

← →�1q�2 ← →
iA
1
tiA

2

(I)

Thus, we have

' ◦ (�B
1
t �B

2
)−1 = (iA

1
t iA

2
) ◦ (�1 q �2). (II)

We calculate for any = ∈ ℕ, (�8)8∈[=] ∈ {1, 2}×= and any (18)8∈[=] ∈
∏=

8=1
B�8(

(!1 �P !2) ◦ (�1 q �2)
) (
�B�1

(11) · · · · · �B�= (1=)
)

=

(
(!1 �P !2) ◦

(
(iA

1
t iA

2
)−1 ◦ ' ◦ (�B

1
t �B

2
)−1

) ) (
�B�1

(11) · · · · · �B�= (1=)
)

È eq. (II) & iA
1
t iA

2
, �B

1
t �B

2
are isomorphismsÉ

=

(( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
)
◦ (iA

1
t iA

2
)
)

◦
(
(iA

1
t iA

2
)−1 ◦ ' ◦ (�B

1
t �B

2
)−1

) ) (
�B�1

(11) · · · · · �B�= (1=)
)

Èdef. of !1 � !2 in eq. (3.3.13)É

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
)
◦ '

) (
iB�1

(11) · · · · · iB�= (1=)
)
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ÈUMP of free product of algebras in left triangle diagram in eq. (I)É

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
) ) (

'
(
iB�1

(11)
)
· · · · · '

(
iB�= (1=)

) )
È' is homomorphism of algebrasÉ

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
) ) (

iA�1

(
��1
(11)

)
· · · · · iA�=

(
��= (1=)

) )
È outer diagram in eq. (I) is commutativeÉ

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
)
◦ pr�A

)
(
incA�

1
,T(A1⊕A2)

(
��1
(11)

)
· · · · · incA�= ,T(A1⊕A2)

(
��= (1=)

) )
È iA�8 = pr�A ◦ incA�8 ,T(A1⊕A2) & pr�A is homomorphism of algebrasÉ

=
(
(!1 ◦ jA

1
) }P (!2 ◦ jA

2
)
) (

incA�
1
,T(A1⊕A2)

(
��1
(11)

)
· · · · · incA�

1
,T(A1⊕A2)

(
��= (1=)

) )
Èdef. · }̃P · in eq. (3.3.9)É

=
(
(!1 ◦ jA

1
) }P (!2 ◦ jA

2
)
) (
��1
(11) ⊗ · · · ⊗ ��= (1=)︸                       ︷︷                       ︸
∈ T(A1⊕A2)

)
È ⊗ is multiplication on T(A1 ⊕ A2) for pure tensorsÉ

=

( (
(!1 ◦ jA

1
) }P (!2 ◦ jA

2
)
)
◦ T(�1 ⊕ �2)

)
(11 ⊗ · · · ⊗ 1=)

=

( (
!1 ◦ jA

1
◦ T(�1 ⊕ �2)

)
}P

(
!2 ◦ jA

2
◦ T(�1 ⊕ �2)

) )
(11 ⊗ · · · ⊗ 1=)

È �1 ⊕ �2 ∈ Lin(B1 ⊕B2 ,A1 ⊕ A2), then apply Lemma 3.2.11 (c)É

=
(
(!1 ◦ �1 ◦ jB

1
) }P (!2 ◦ �2 ◦ jB

1
)
)
(11 ⊗ · · · ⊗ 1=)������

it suffices to show (jA
8
◦ T(�1 ⊕ �2))(1) = (�8 ◦ jB8 )(1) for 1 ∈ B1 ⊕B2,

because all maps are morphisms of algebras and

T(B1 ⊕B2) is generated by B1 ⊕B2

moreover use Conv. 3.3.1

������
=

( (
(!1 ◦ �1 ◦ jB

1
) }̃P (!2 ◦ �2 ◦ jB

2
)
)
◦ (iB

1
t iB

2
)
) (
�B�1

(11) · · · · · �B�= (1=)
)

Èproperty of lifted map in eq. (3.3.11)É

=
(
(!1 ◦ �1) � (!2 ◦ �2)

) (
�B�1

(11) · · · · · �B�= (1=)
)
Èdef. of !1 �P !2 in eq. (3.3.13)É.

Since the algebra B1 tB2 is generated by elements from �B
1
(B1) ∪ �B

2
(B2) and we apply linear

maps to such elements, the assertion follows from the above calculation.

Ad (d): We firstwant to showhow T(A1⊕A2)/�1,2 andT(A2⊕A1)/�2,1 are isomorphic as algebras.

Therefore, let 5 : A1 ⊕ A2 −→ A2 ⊕ A1 be the map which swaps elements. We extend this as a
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homomorphism of algebras by T( 5 ) : T(A1 ⊕A2) −→ T(A2 ⊕A1) and can furthermore lift this as

a homomorphic quotient map T̃( 5 ) : T(A1 ⊕A2)/�1,2 −→ T(A2 ⊕A1)/�2,1, since T( 5 ) respects the
ideal �1,2, which is easily shown. We can apply the same procedure to , : A2 ⊕ A1 −→ A1 ⊕ A2

and end up with T̃(,) : T(A2 ⊕ A1)/�2,1 −→ T(A1 ⊕ A2)/�1,2. It can be shown that T̃( 5 ) and T̃(,)
are inverse to each other. For the following calculation we want to set some notations. Let

�8 : A1 ↩−→ A1 t A2 and �′
8
: A8 ↩−→ A2 t A1 denote the canonical algebra homomorphisms.

Furthermore, any map having a prime “′” attached to it, shall be understood in the setting

associated to A2 t A1. Now let (�8)8∈[=] ∈ A([2]) and let each 08 ∈ A�8 be a basis vector. Then we

calculate for a basis vector of A2 t A1(
(!2 �P !1) ◦ can

) (
��1
(01) · · · · · ��= (0=)

)
= (!2 �P !1)

(
�′�1

(01) · · · · · �′�= (0=)
)
Èdef. of canÉ

=

( (
(!2 ◦ j′

1
) }̃P (!1 ◦ j′

2
)
)
◦ (i′

1
t i′

2
)
) (
�′�1

(01) · · · · · �′�= (0=)
)

Èdef. of � in eq. (3.3.13) with i′9 : A9 ↩−→ T(A2 ⊕ A1) −� T(A2 ⊕ A1)/�2,1 É

=
(
(!2 ◦ j′

1
) }̃P (!1 ◦ j′

2
)
) (
(i′�1

(01) · · · · i′�= (0=))
)
ÈUMP of A1 t A in eq. (3.3.11)É

=

( (
(!2 ◦ j′

1
) }̃P (!1 ◦ j′

2
)
)
◦

(
T̃( 5 ) ◦ T̃(,)

) ) (
(i′�1

(01) · · · · i′�= (0=))
)

È T̃( 5 ) ◦ T̃(,) = idÉ

=

( (
(!2 ◦ j′

1
) }P (!1 ◦ j′

2
)
)
◦

(
T( 5 ) ◦ T(,)

) ) (
incA�

1
,T(A2⊕A1)(01) ⊗ · · · ⊗ incA�= ,T(A2⊕A1)(0=)

)
Èdef. of !1 }̃P !2 in eq. (3.3.9), T̃( 5 ), T̃(,) are quotient mapsÉ

=

( (
(!2 ◦ j′

1
) }P (!1 ◦ j′

2
)
)
◦ T( 5 )

) (
incA�

1
,T(A1⊕A2)(01) ⊗ · · · ⊗ incA�= ,T(A1⊕A2)(0=)

)
ÈUMP of tensor algebra & def. of T(,) É

=

( (
!2 ◦ j′

1
◦ T( 5 )

)
}P

(
!1 ◦ j′

2
◦ T( 5 )

) ) (
incA�

1
,T(A1⊕A2)(01) ⊗ · · · ⊗ incA�= ,T(A1⊕A2)(0=)

)
ÈLem. 3.2.11 (c)É

=

( (
!2 ◦ j2

)
}P

(
!1 ◦ j1

) ) (
incA�

1
,T(A1⊕A2)(01) ⊗ · · · ⊗ incA�= ,T(A1⊕A2)(0=)

)
È j′

1
◦ T( 5 ) = j2 , j

′
2
◦ T( 5 ) = j1 É

=

( (
!1 ◦ j1

)
}P

(
!2 ◦ j2

) ) (
incA�

1
,T(A1⊕A2)(01) ⊗ · · · ⊗ incA�= ,T(A1⊕A2)(0=)

)
È}P is commutative by Lem. 3.2.9É

= (!2 �P !1)
(
��1
(01) · · · · · ��= (0=)

)
È analogous steps from start of calculationÉ.

Ad (e): We need to show that equation (2.5.1) is satisfied according to �P , i. e., the only nonzero

universal coefficients of�P are the right-orderedones. We show this by induction over : ∈ ℕ\{1}.
For the induction base : = 2 we let = ∈ ℕ, � = (�8)8∈[=] ∈ A([2]), (A8 , !8)8∈[2] ∈ (Obj(AlgP))×2

and
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(08)8∈[=] ∈
∏=

8=1
A�8 . Then, we calculate

(!1 �P !2)
(
��1
(01) · · · · · ��= (0=)

)
=

( (
(!1 ◦ j1) }̃P (!2 ◦ j2)

)
◦ (i1 t i2)

) (
��1
(01) · · · · · ��= (0=)

)
Èdef. of � in eq. (3.3.13)É

=
(
(!1 ◦ j1) }̃P (!2 ◦ j2)

) (
i�1
(01) · · · · · i�= (0=)

)
ÈUMP of A1 t A in eq. (3.3.11)É

=

( (
(!1 ◦ j1) }̃P (!2 ◦ j2)

)
◦ pr

) (
inc�1
(01) · · · · · inc�= (0=)

)
�
i8 : A1

inc8
↩−→ T(A1 ⊕ A2)

pr
−� T(A1 ⊕ A2)/�1,2

projection pr from eq. (3.3.9) is homomorphism of algebras

�
=

(
(!1 ◦ j1) }P (!2 ◦ j2)

) (
inc�1
(01) · · · · · inc�= (0=)

)
Èdef. of }P in eq. (3.3.9)É

=
(
(!1 ◦ j1) }P (!2 ◦ j2)

)
(01 ⊗ · · · ⊗ 0=)

= expP

(
logP

(
!1 ◦ j1

)
+ logP

(
!2 ◦ j2

) )
(01 ⊗ · · · ⊗ 0=) Èdef. of }P in eq. (3.2.7)É

=

∑
�∈P=

∏
1∈�

(
logP

(
!1 ◦ j1

)
(01) + logP

(
!2 ◦ j2

)
(01)

)
Èdef. of expP in eq. (3.2.4)É

=

∑
�∈P=

∏
1∈�

( ∑
�∈Part|set 1 |

��

((∏
1′∈�
(!1 ◦ j1)(01′)

)
+

(∏
1′∈�
(!2 ◦ j2)(01′)

)))
ÈLemma 3.2.16É.

If we use Convention 2.5.7, we can see that linear functionals !8 ◦ j8 are only applied to ordered

monomials 0 91 ⊗ · · · ⊗ 0 9ℓ ∈ T(A1 ⊕ A2). Since �P is a universal product we may consult

equation (2.3.12) and conclude that termswith universal coefficients which are not right-ordered

do not exist. This shows equation (2.5.1) in the case : = 2 .

For the induction step : → :+1 we assume that equation (2.5.1) is true for some : ∈ ℕ \ {1}.
Then, we have by associativity

(!1 �P · · · �P !: �P !:+1) =
(
(!1 �P · · · �P !:) �P !:+1

)
.

Then, we may apply the induction base to the right hand side of the above equation and from

the induction hypothesis we obtain the statement of equation (2.5.1) in the case for : + 1. �

3.3.10 Definition (Partition induced universal product). Let � be a symmetric u.a.u.-product

with right-ordered monomials property in the category AlgP. We say that � is a partition
induced universal product (for P) if and only if there exists some universal class of partitions P
such that � = �P .

3.3.11 Remark. One might ask if it is possible to define an analogous partition induced uni-

versal product which is not symmetric. We have tried to do this but we could not succeed.

We want to outline possible problems. The idea is the same as in the nonsymmetric case.

The leitmotiv is formula (2.4.21) for a positive u.a.u.-product and incorporates Lemma 2.5.12.

To keep things simple we only discuss the single-faced case. A possible universal class of

partitions P should now consist of ordered partitions, i. .e., partitions � ∈ P are now to be

understood as tuples of blocks rather than just a set of blocks as in the symmetric case. Then,
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the definitions of expP and logP from Remark 3.2.6 are formally the same but now the sum

runs over a set of ordered set partitions and therefore we need an occurring factor
1

|�|! , in
pure analogy to equation (2.5.20) and equation (2.5.21). Since P is now a set of ordered set

partitions, this will put us in the position to define a non-trivial partition induced commutator
bracket [ · , · ]P w. r. t. P by

[#1 ,#2]P (G1 ⊗ · · · ⊗ G=) ≔
∑

(11 ,12)∈P=

(
#1(G11

)#2(G12
) − #1(G12

)#2(G11
)
)
. (3.3.22)

This equation is purely inspired by equation (2.5.23). The first thingwe tried is to find sufficient

conditions for P such that equation (3.3.22) leads to a definition of a Lie bracket. This should

put some constraints on P .

Assume we have found sufficient conditions for P which ensure that [ · , · ]P is a Lie bracket,

then we could set

}P :


Lin(T(+),ℂ) × Lin(T(+),ℂ) −→ Lin(T(+),ℂ)

(!,#) ↦−→ expP

(
BCHP

(
logP (!), logP (#)

) )
,

(3.3.23)

where BCHP ( · , · ) denotes the BCH-series w. r. t. to the Lie-bracket [ · , · ]P in the sense of

equation (1.2.21). Thus, we arrive at a similar stage as done in Definition 3.2.8 in the symmetric

case. But now things get really worse. In order to define a universal product on the free

product of algebras A1 t A2 we need an analogous result to Lemma 3.3.2. In the symmetric

case we had the idea that a partition induced cumulant logP needs to satisfy Lemma 3.2.15 as

a sufficient condition to prove Lemma 3.3.2. Lemma 3.3.2 is the key to see most of the defining

axioms of a partition induced universal products. So, yes, cumulants seem to be a powerful

tool. But we could not succeed doing so in the nonsymmetric case. We had some ideas what

a partition induced cumulant needs to satisfy but we were not able to prove an analogous

result to Lemma 3.3.2 in the nonsymmetric setting. The problem is the BCH-formula itself. It

leads to nearly uncontrollable appearances of 0ℓ+1 and 0ℓ+2 separated by different terms (in the

sense of Lemma 3.3.2). In the nonsymmetric case not only the logarithm logP is a source for

“splitting” 0ℓ+1 and 0ℓ+2 but also the the Lie bracket [ · , · ]P . Terms with 0ℓ+1 and 0ℓ+2 split in

equation (3.3.23) can cancel at different “stages” because partitions � are now tuples of blocks

andwe have to deal with weighting factors
1

|�|! which complicates the calculations enormously,

at least for us.

We were not able to see any potential structure for a universal class of partitions consisting of

ordered partitions. Maybe, we need to find a propermathematical object, already known to the

mathematical community, which includes the definition of our universal classes of partitions.

We can only speculate about a possible embedding of P into a bigger frame of mathematical

objects but a hands on definition for P which leads to a partition induced universal product

in the sense of equation (3.3.23) and Lemma 3.3.2 in the nonsymmetric case was out of reach

for us.

3.4 Partition induced universal product: multi-colored case

We want to extend the above developed technique for the construction of a partition induced

universalproduct!1�P!2 on the free productof algebrasA1tA2 to themore specific assumption

that each algebra A8 is isomorphic to an <-fold free product of subalgebras A
(9)
8
⊆ A8 , i. e.,
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A8
∼= A

(1)
8
t · · · tA

(<)
8

. Such a universal product needs to satisfy equation (2.1.19) for morphisms

in the category Algm and we may expect more examples than in the single-faced case. Once

again, we are going to mimic equation (2.4.22) for a positive and symmetric u.a.u.-product in

the category AlgPm. Therefore, our guidance are Sections 3.1 – 3.3 which will be extended to the

<-faced case in this section. Since each algebra A now can have <-faces, we need to pay respect

to this circumstance when we want to establish a partition induced universal product in the

category AlgPm for some < ∈ ℕ. Thus, we need partitions which are capable of this information.

We call such partitions <-colored partitions.

We have chosen to treat the single-colored case separately from the <-colored case because

our intention was to highlight the differences between these cases. Mostly, these differences are

only of technical nature and formulas get extended by a color index. We hope that this might

contribute to clarity of our presented results. To make this work not too bloated, we omit or

sometimes shorten most of the proofs in this section because they have their counterparts in the

single-colored case in the Sections 3.1 – 3.3.

3.4.1 Definition (Block overℕ×[<], <-colored partition, block neighboring elements). Let
< ∈ ℕ.

(a) If = ∈ ℕ, then we say that an =-tuple G =
(
(G8 ,1 , G8 ,2)

)
8∈[=] ∈ (ℕ × [<])×= is a block (over

ℕ × [<]) if type(G) is a block over ℕ, where type( · ) has been defined in (2.3.18).

(b) Let - = {G1 , . . . , G=} ⊆ ℕ × [<] be a set. Then, we denote by block- ∈ (ℕ × [<])×=
the associated block originated from the finite set - such that type

(
block-

)
is a block

in the sense of Definition 2.5.6 (b). The block block- is unique and always exists by

the well-ordering principle of ℕ. By the operation set( · ) we turn any given block

G =
(
(G8 ,1 , G8 ,2)

)
8∈[=] ∈ (ℕ × [<])×= into a set by

set G ≔
:⋃
8=1

{(G8 ,1 , G8 ,2)}. (3.4.1)

Let ∅ ≠ - ⊆ ℕ × [<] and |- | < ∞.

(c) An (<-colored) partition � of - ⊆ ℕ × [<] is a finite set of blocks � = {11 , . . . , 1:} such
that the following conditions are fulfilled

• ∀ 8 ∈ [:] : set 18 ≠ ∅,
• ∀ 8 , 9 ∈ [:] : 8 ≠ 9 =⇒ set

(
type(18)

)
∩ set

(
type(1 9)

)
= ∅,

• - =
⋃:
8=1

set 18 .

(d) The set of<-colored partitions of- ⊆ ℕ×[<] is denoted by Part- . If � = (�8)8∈[=] ∈ [<]×=
and - = {(1, �8), . . . , (=, �=)}, then we set Part� ≔ Part- . The set of all partitions in Part�
for a given � = (�8)8∈[=] ∈ [<]×= with :-blocks for : ∈ [=] is denoted by Part�,: .

(e) If � = (�8)8∈[=] ∈ [<]×= for some = ∈ ℕ, then we denote by 1� ∈ Part� the unique partition
which consists of only one block and call it the unit partition of Part�.

(f) Let - ⊆ ℕ × [<]. For a given partition � ∈ Part- we say two elements G1 , G2 ∈ - are

block neighboring (w. r. t. � ∈ Part-) if and only if

• G1 ≠ G2
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• col(G1) = col(G2)
• there exists a block 1 ∈ � such that type(G1), type(G2) ∈ set(1),
• there does not exist any element G3 ∈ - such that type(G1) < type(G3) < type(G2) or

type(G2) < type(G3) < type(G1)

Sometimes, we are sloppy and just speak of partitions although we mean <-colored

partitions and not just partitions in the sense of Definition 3.1.1. It will be clear from the

context for which value of < ∈ ℕ certain partitions are <-colored. We will identify 1-colored or

single-colored partitions with partitions in the sense of Definition 3.1.1.

3.4.2 Convention. Let <, = ∈ ℕ and � ∈ [<]×= . We introduce a graphical notation for a given

partition � ∈ Part�. We call elements of a block 1 ∈ � a leg because we represent each element

in set 1 by a vertical bar with a bracket attached at the bottom of the vertical bar. If the block

1 = (11 , . . . , 1A) has A ∈ ℕ elements, then wewrite for the 8-th leg of the block 1 into this bracket

type(18), col(18). We connect vertical bars of the same block by a horizontal line at the top of

the legs. If these connecting horizontal lines overlap, then we draw them at different height.

The relative height between connecting horizontal lines does not matter and can be drawn

arbitrarily.

Later, when we specialize to the case < = 2 the attached bracket at the bottom of a leg becomes

a circle and in this circle will stand only the value of col(18). Thus, we have partitions where

each leg has an attached color label at the bottom of the leg and the diagram may or may

not have an attached bottom row which indicates type(�). Most of the times we will omit the

bottom row which will be clear from the context. As an example we consider the partition

� =
{(
(1, �1), (3, �3), (4, �4)

)
,
(
(2, �2), (5, �5)

)}
and its three equivalent graphical incarnations

(1,�
1
) (2,�

2
) (3,�

3
) (4,�

4
) (5,�

5
)
∼

�
1

�
2

�
3

�
4

�
5

1 2 3 4 5

∼
�
1

�
2

�
3

�
4

�
5

(3.4.2)

Once again, we need to be able to annihilate and create legs with a certain color in an

<-colored partition. This will be technically ensured by the following definition.

3.4.3 Definition (delete and double maps). Let < ∈ ℕ. This is an extension of Definition 3.1.3.

(a) Let = ∈ ℕ \ {1} and � = {11 , . . . , 1:} ∈ Part� be a partition for some : ∈ ℕ. Each

block is given by 18 =
(
(18 ,1,1 , 18 ,1,2), . . . , (18 , 98 ,1 , 18 , 98 ,2)

)
∈ (ℕ × [<])×98 for all 8 ∈ {1, . . . , :},

where (91 , . . . , 9:) ∈ ℕ×: . Let ℓ ∈ {0, . . . , = − 1}. Let � be some partition of :-blocks

such that there exists A ∈ [:] and ℓ + 1, ℓ + 2 ∈ set
(
type(1A)

)
and �ℓ+1 = �ℓ+2. If we set

� ≔ postype(1A )(ℓ + 1), then in particular � + 1 = postype(1A )(ℓ + 2). Then, we define for any
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such partition � ∈ Part� by the preceding notations and any block 18 ∈ �

deleteℓ+2,�(18) = deleteℓ+2,�

( (
(18 ,1,1 , 18 ,1,2) . . . , (18 , 98 ,1 , 18 , 98 ,2)

) )

≔



((
downℓ+2(18 ,1,1), 18 ,1,2

)
, . . . ,

(
downℓ+2(18 , 98 ,1), 18 , 98 ,2

) )
∈ (ℕ × ℕ)×98 for 8 ≠ A(
(1A,1,1 , 1A,1,2), . . . , (1A,�,1 , �ℓ+1), (1A,�+2,1 − 1, 1A,�+2,2), . . . , (1A, 9A ,1 − 1, 1A, 9A ,2)

)
∈ (ℕ × ℕ)×(98−1)

for 8 = A.

(3.4.3)

By definition for each choice 8 ∈ [:] the expression deleteℓ+2,�(18) is a block over ℕ × [<].
Define for some � = (�8)8∈[=] ∈ [<]×= with the property there exists some ℓ ∈ {0, . . . , = −
2} ⊆ ℕ such that �ℓ+1 = �ℓ+2

Part(ℓ+1)∧(ℓ+2)
� ≔ {� ∈ Part� | ∃1 ∈ � : ℓ + 1, ℓ + 2 ∈ set

(
type(1)

)
}

⊆ Part� , (3.4.4)

then the following assignment is well-defined

delete�,ℓ+2 :


Part(ℓ+1)∧(ℓ+2)

� −→ Part�̃

� = {11 , . . . , 1:}

↦−→
{
deleteℓ+2,�(11), . . . , deleteℓ+2,�(1:)

}
,

(3.4.5)

where �̃ ∈ [<]×(=−1)
is determined by � such that

∀ 8 ∈ [ℓ + 1] : �̃8 = �8 , (3.4.6a)

∀ 8 ∈ [= − 1] \ [ℓ + 1] : �̃8 = �8+1. (3.4.6b)

(b) Let = ∈ ℕ and � = {11 , . . . , 1:} ∈ Part�̃ for some : ∈ [=] and �̃ = (�̃8)8∈[=] ∈ [<]×(=). Each
block 18 is a tuple, i. e., 18 =

(
(18 ,1,1 , 18 ,1,2), . . . , (18 , 98 ,1 , 18 , 98 ,2)

)
∈ (ℕ×ℕ)×98 for 8 ∈ {1, . . . , :}

and (91 , . . . , 9:) ∈ ℕ×: . Moreover, assume ℓ ∈ {0, . . . , = − 1}. Then, there exists A ∈ [:]
such that ℓ + 1 ∈ set

(
type(1A)

)
. We set � ≔ postype(1A )(ℓ + 1). Then, we define for any

partition � ∈ Part�̃ and any block 18 ∈ �

doubleℓ+1,�(18) = doubleℓ+1,�
(
(18 ,1,1 , 18 ,1,2), . . . , (18 , 98 ,1 , 18 , 98 ,2)

)

≔



((
upℓ+1

(18 ,1,1), 18 ,1,2
)
. . . ,

(
upℓ+1

(18 , 98 ,1), 18 , 98 ,2
) )

∈ (ℕ × ℕ)×98 for 8 ≠ A(
(1A,1,1 , 1A,1,2), . . . , (1A,�,1 , �̃ℓ+1), (1A,� + 1, �̃ℓ+1),

(1A,�+1,1 + 1, 1A,�+1,2), . . . (1A, 9A ,1 + 1, 1A, 9A ,2)
)

∈ (ℕ × ℕ)×(9A+1)
for 8 = A.

(3.4.7)
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By definition for each choice 8 ∈ [:] the expression doubleℓ+1,�(18) is a block overℕ × [<].
Therefore, the following assignment is well-defined

double�̃,ℓ+1 :


Part�̃ −→ Part�

� = {11 , . . . , 1:}

↦−→
{
doubleℓ+1,�(11), . . . , doubleℓ+1,�(1:)

}
,

(3.4.8)

where � = (�8)8[=] ∈ [<]×=+1
is determined by �̃ such that

∀ 8 ∈ [ℓ + 1] : �8 = �̃8 , (3.4.9a)

�ℓ+2 = �̃ℓ+1 , (3.4.9b)

∀ 8 ∈ [= + 1] \ [ℓ + 2] : �8 = �̃8−1. (3.4.9c)

3.4.4 Lemma (delete and double are inverse).

(a) ∀< ∈ ℕ, ∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ0 , ∀ �̃ = (�̃8)8∈[=] ∈ [<]×= :

double�̃,�̃ℓ+1
(Part�̃) ⊆ Part(ℓ+1)∧(ℓ+2)

� .

(b) The maps

delete�,ℓ+2 : Part(ℓ+1)∧(ℓ+2)
� −→ Part�̃ , (3.4.10)

double�̃,ℓ+1 : Part�̃ −→ Part(ℓ+1)∧(ℓ+2)
� (3.4.11)

are well-defined and inverse to each other, i. e.,

∀< ∈ ℕ, ∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1}, ⊆ ℕ0 , ∀ �̃ = (�̃8)8∈[=] ∈ [<]×= :

delete�,ℓ+2 ◦ double�̃,ℓ+1 = idPart�̃ (3.4.12)

and

∀< ∈ ℕ, ∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ0 , ∀� = (�8)8∈[=] ∈ [<]×= :

double�̃,�̃ℓ+1
◦ delete�,ℓ+2 = idPart(ℓ+1)∧(ℓ+2)

�
. (3.4.13)

(c) ∀< ∈ ℕ, ∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 , ∀� = (�8)8∈[=] ∈ [<]×= , ∀� ∈
Part(ℓ+1)∧(ℓ+2)

� : |�| = |delete�,ℓ+2(�)|.
(d) ∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ0 , ∀ �̃ = (�̃8)8∈[=] ∈ [<]×= , ∀� ∈ Part=−1 : |�| =
|double�̃,ℓ+1(�)|.

Proof: The proof is a straightforward application of the definitions and is omitted. �

An example for the above defined maps is postponed to Example 3.4.10.

3.4.5 Definition (Induced partition). Let � =
(
(�1,1 , �1,2), . . . , (�=,1 , �=,2)

)
be a block over ℕ ×

[<] for =, < ∈ ℕ. Moreover, let � = {�1 , . . . , �:} ∈ Part� be a partition with : blocks for : ∈ [=]
and � = (�8)8∈[=] ∈ [<]×= , then � induces a partition {�1 , . . . , �:} of the set set � with : blocks,
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where the 8-th block for each 8 ∈ [:] is given by

�8 ≔ block
({
(� 9 ,1 , � 9 ,2)

�� 9 ∈ set
(
type(�8)

) })
≡

(
(� 9 ,1 , � 9 ,2)

)
9∈set(type(�8)) ÈConv. 2.5.5 (a)É (3.4.14)

We denote this partition by �  � and say that �  � is the partition of � induced by �.

3.4.6 Definition (split and UMem maps).

(a) Let = ∈ ℕ \ {1}, < ∈ ℕ, � = (�8)8∈[=] ∈ [<]×= and � ∈ Part� and 1, 1′ ∈ � some blocks in

�. If we put

=′ ≔ |set(1)| + |set(1′)| ∈ ℕ, (3.4.15a)

1̃ ≔ block
(
set(1) ∪ set(1′)

)
∈ (ℕ × ℕ)=′ , (3.4.15b)

�̃ ≔ col(1̃), (3.4.15c)

then we define for the above two blocks 1 =
(
(11,1 , 11,2), . . . , (1A,1 , 1A,2))

)
and 1′ =(

(1′
1,1
, 11,2), . . . , (1′A′,1 , 1A′,2))

)
release�,1,1′(�) ≔

{((
pos1̃(11,1), 11,2

)
, . . . ,

(
pos1̃(1A,1), 1A,2

) )
,( (

pos1̃(1
′
1,1), 1′1,2

)
, . . . ,

(
pos1̃(1

′
A′,1), 1′A′,2

) )}
∈ Part�̃ . (3.4.16)

We want to define the following subsets of Part�. Let = ∈ ℕ \ {1}, : ∈ [=] and ℓ ∈
{0, . . . , = − 2} ⊆ ℕ0, < ∈ ℕ, � = (�8)8∈[=] ∈ [<]×= with �ℓ+1 = �ℓ+2. Then,

Part(ℓ+1)∧(ℓ+2)
�,:

≔ {� ∈ Part� | |�| = :, ∃1 ∈ � : ℓ + 1, ℓ + 2 ∈ set(type(1)) },
(3.4.17a)

Part(ℓ+1)∨(ℓ+2)
�,: ≔

{
� ∈ Part�

����� |�| = :, ∃1, 1′ ∈ � : 1 ≠ 1′,

ℓ + 1 ∈ set(type(1)), ℓ + 2 ∈ set(type(1′)

}
, (3.4.17b)

sub

(
Part(ℓ+1)∧(ℓ+2)

�,:

)
≔

 (�, �)
�������
� ∈ Part(ℓ+1)∧(ℓ+2)

�,: , ∃ 1̂ ∈ � : ℓ + 1, ℓ + 2 ∈ set(type(1̂))
� ∈ Partcol(1̂) , |� | = 2

�� ∈ (1̂  �) : ℓ + 1, ℓ + 2 ∈ set
(
type(�)

)
.

(3.4.17c)

We define for = ∈ ℕ \ {1}, < ∈ ℕ, : ∈ {2, . . . , =} ⊆ ℕ0, ℓ ∈ {0, . . . , = − 2} ⊆ ℕ and
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� = (�8)8∈[=] ∈ [<]×=

UMemℓ+1

�,: :



Part(ℓ+1)∨(ℓ+2)
�,: −→ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:−1

)
� = {11 , . . . , 1︸︷︷︸

∼ℓ+1∈set(type(1))

, . . . , 1′︸︷︷︸
∼ℓ+2∈set(type(1′))

, . . . , 1:}

↦−→
(
{11 , . . . , block

(
set(1) ∪ set(1′)

)
, . . . , 1:},

release�,1,1′(�)
)
.

(3.4.18)

(b) Let = ∈ ℕ \ {1}, : ∈ {2, . . . , =} ⊆ ℕ, ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 and � = (�8)8∈[=] ∈ [<]×=

splitℓ+1

�,:−1
:



sub

(
Part(ℓ+1)∧(ℓ+2)

�,:−1

)
−→ Part(ℓ+1)∨(ℓ+2)

�,:

(�, �̃) =
(
{11 , . . . , 1A︸︷︷︸

∼ℓ+1,ℓ+2∈set(type(1A ))

, . . . , 1:−1}, {�1 , �2}
)

↦−→
( ⋃
8∈[:−1]\{A}

{18}
)
∪

(
1A  {�1 , �2}

)
.

(3.4.19)

3.4.7 Lemma (split and UMem are inverse). For = ∈ ℕ \ {1}, < ∈ ℕ, : ∈ {2, . . . , =} ⊆ ℕ0 and

ℓ ∈ {0, . . . , = − 2} ⊆ ℕ and � = (�8)8∈[=] ∈ [<]×= the maps

UMemℓ+1

�,: : Part(ℓ+1)∨(ℓ+2)
�,: −→ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:−1

)
, (3.4.20)

splitℓ+1

�,:−1
: sub

(
Part(ℓ+1)∧(ℓ+2)

�,:−1

)
−→ Part(ℓ+1)∨(ℓ+2)

�,: (3.4.21)

are well-defined and inverse to each other, i. e.,

splitℓ+1

�,:−1
◦UMemℓ+1

�,: = idPart(ℓ+1)∨(ℓ+2)
�,:

(3.4.22)

and

UMemℓ+1

�,: ◦ splitℓ+1

�,:−1
= id

sub

(
Part(ℓ+1)∧(ℓ+2)

�,:−1

) . (3.4.23)

Proof: The proof is a straightforward calculation and is omitted for convenience of the rea-

der. �

An example for the above defined maps is postponed to Example 3.4.10.

3.4.8 Convention. We set for = ∈ ℕ \ {1}, < ∈ ℕ, � = (�8)8∈[=] ∈ [<]×= , ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0,

: ∈ [=] and any subset P ⊆ Part�

P� ≔ Part� ∩ P , (3.4.24)

P�,: ≔ {� ∈ P� | |�| = : }. (3.4.25)

Now assume �ℓ+1 = �ℓ+2

P (ℓ+1)∧(ℓ+2)
� ≔ Part(ℓ+1)∧(ℓ+2)

� ∩ P , (3.4.26)
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P (ℓ+1)∧(ℓ+2)
�,: ≔ Part(ℓ+1)∧(ℓ+2)

�,: ∩ P , (3.4.27)

P (ℓ+1)∨(ℓ+2)
�,: ≔ Part(ℓ+1)∨(ℓ+2)

�,: ∩ P , (3.4.28)

sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
≔ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:−1

)
∩ (P × P). (3.4.29)

3.4.9 Definition (<-colored universal class of partitions). Let < ∈ ℕ. Let P ⊆⋃
=∈ℕ

⋃
�=(�8)8∈[=]∈[<]×= Part�. We say thatP is an<-colored universal class of partitions (abbreviated

by <-colored u.c.p.) if and only if the following properties are satisfied:

(a) ∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ A([<]) : 1� ∈ P�.

(b) ∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 :(
�ℓ+1 = �ℓ+2 , � ∈ P (ℓ+1)∧(ℓ+2)

� =⇒ delete�,ℓ+2(�) ∈ P�̃

)
. (3.4.30)

(c) ∀= ∈ ℕ, ∀ �̃ = (�̃8)8∈[=] ∈ [<]×= , ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ0 , :(
� ∈ P�̃ =⇒ double�̃,ℓ+1(�) ∈ P�

)
. (3.4.31)

(d) ∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀ : ∈ [=], ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 , :(
�ℓ+1 = �ℓ+2 , � ∈ P (ℓ+1)∨(ℓ+2)

�,: =⇒ UMemℓ+1

�,: (�) ∈ P�

)
. (3.4.32)

(e) ∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀ : ∈ [=], ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 :(
�ℓ+1 = �ℓ+2 , (�, �̃) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
=⇒ splitℓ+1

�,:−1
(�, �̃) ∈ P�

)
. (3.4.33)

(f) Define for =, : ∈ ℕ, �, �′ ∈ [<] and � = (�8)8∈[=] ∈ [<]×=

cCol�,(�,�′) :


Part� −→ Part(�,�2 ,...,�=−1 ,�′)

{11 , . . . , 1:} ↦−→
{(
(1, �), . . .

)
, 12 , . . . , 1:−1 ,

(
(. . . , (=, �′))

)}
,

(3.4.34)

wherein 11 denotes the unique block in � ∈ Part�, such that 1 ∈ set(pr
1
(11)) and 1:

denotes the unique block in � ∈ Part�, such that = ∈ set(pr
1
(1:)). Then, it needs to hold

∀= ∈ ℕ \ {1}, ∀ : ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= , ∀� ∈ [<], ∀�′ ∈ [<] :(
� ∈ P� =⇒ cCol�,(�,�′)(�) ∈ P(�,�2 ,...,�=−1 ,�′)

)
. (3.4.35)

(g) Define for =, < ∈ ℕ, � = (�8)8∈[=] ∈ [<]×= , � ∈ P� and any block 1 =
(
(18 ,1 , 18 ,2)

)
8∈[A] ∈ �

mirrorB(1) ≔
( (
(= + 1) − pos1= (1(A+1)−8 ,1), 1(A+1)−8 ,2

) )
8∈[A]
∈

(
[=] × [<]

)×A
. (3.4.36)

By this we define

mirror� :


Part� −→ Part(�(A+1)−8)8∈[A]

{11 , 12 , . . . , 1:}

↦−→ {mirrorB(1:),mirrorB(1:−1), . . . ,mirrorB(11)}.

(3.4.37)

Then, it needs to hold

∀= ∈ ℕ, ∀ : ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= :

(� ∈ P� =⇒ mirror�(�) ∈ P(�(A+1)−8)8∈[A]). (3.4.38)
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In contrast to the single-colored case we have two more axioms and all the maps behave a

little bit differently in the multi-colored case. In a more sloppy or condensed way we formulate

once again the definitions for an <-colored universal class of partitions, where we try to avoid

any technical notations and use some diagrams instead (Convention 3.4.2). Notice the gray color

label which stands for some arbitrary color. Thus, we say that P as a subset of all <-colored

partitions is an <-colored universal class of partitions if and only if

(1-block) it contains all alternating one-block partitions of <-colored partitions

(delete) � ∈ P with ∃ block 1 ∈ � such that 1 = . . .
ℓ+1 ℓ+2

. . . =⇒ �′ ∈ P , where �′ has the

same blocks as � except 1 = . . .
ℓ+1

. . .

(double) reversal of (delete)

(UMem) � ∈ P with ∃ blocks 11 , 12 ∈ � such that 11 = . . .
ℓ+1

. . . and 12 = . . .
ℓ+2

. . . =⇒
(�′, �) ∈ P × P , where �′ has the same blocks as � except 11 , 12 which are replaced

by their union and � ∈ P is the two-block partition defined by 11 and 12.

(split) reversal of (UMem)

(cCol) � ∈ P =⇒ �′ ∈ P , where �′ has the same blocks as � except with changed color of

the first or last leg

(mirror) � ∈ P =⇒ �′ ∈ P , where �′ is the “from-left-to-right” mirrored partition �

3.4.10 Example. Let P be a two-colored universal class of partition. We claim that

1 2 3 4

∈ P =⇒
1 2 3 4 5

∈ P ∧
1 2

∈ P . (3.4.39)

For the proof we calculate

1 2 3 4

∈ P

=⇒ �1 ≔
1 2 3 4 5 6

∈ P
�
two times application of

cCol and double

�

=⇒ �2 ≔
1 2 3 4 5 6

∈ P
�

= mirror( ),
�2 = split4· ,2(�1 , )

�
=⇒ (�3 ,�4)

≔ (
1 2 3 4 5 6

,
1 2 3 4

) ∈ P × P
�
(�3 ,�4) = UMem3

· ,3(�2)
�

=⇒ (
1 2 3 4 5

,
1 2

) ∈ P × P
�
multiple application of

cCol and delete

�
.

3.4.11 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Then,

(a) ∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= : 1� ∈ P�

Let = ∈ ℕ \ {1} and ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 and � = (�8)8∈[=] ∈ [<]×= with �ℓ+1 = �ℓ+2 and let �̃
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be determined by � according to equation (3.4.6), then

(b) P (ℓ+1)∧(ℓ+2)
�,: = ∅ ⇐⇒ P�̃,: = ∅

(c) sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
= ∅ ⇐⇒ P (ℓ+1)∨(ℓ+2)

�,: = ∅

Proof: Ad (a): By Definition 3.1.9 (a) we already know that for each alternating sequence

(�8)8∈[=] ∈ A([<]) we have 1� ∈ P�. It remains to show this assertion for non-alternating

sequences (�8)8∈[=] ∈ [<]×= . This can be done by induction (over the number of application of

double-operations). We omit this somehow technical, but not complicated, inductive proof. The

proofs of (b) and (c) are analogous to the proofs of Lemma 3.1.10 (b) and (c). We emphasize that

the change color and mirror property of the <-colored universal class of partitions P are not

needed for this proof. �

3.4.12 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

= ∈ ℕ \ {1}, � = (�)8)8∈[<] ∈ [<]×= , ℓ ∈ {0, . . . , = − 2} ⊆ ℕ0 and : ∈ [=].

(a) If we set delete�,ℓ+2(∅) ≔ ∅ and double�̃,ℓ+1(∅) ≔ ∅, then the following maps

delete�,ℓ+2 � P (ℓ+1)∧(ℓ+2)
�,: : P (ℓ+1)∧(ℓ+2)

�,: −→ P�̃,: , (3.4.40)

double�̃,ℓ+1 � P�̃,: : P�̃,: −→ P (ℓ+1)∧(ℓ+2)
�,: (3.4.41)

are well-defined and inverse to each other.

(b) If we set UMemℓ+1

�,: (∅) ≔ ∅ and splitℓ+1

�,:−1
(∅) ≔ ∅, then the following maps

UMemℓ+1

�,: � P
(ℓ+1)∧(ℓ+2)
�,: : P (ℓ+1)∧(ℓ+2)

�,: −→ sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
, (3.4.42)

splitℓ+1

�,:−1
� sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
: sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
−→ P (ℓ+1)∨(ℓ+2)

�,: (3.4.43)

are well-defined and inverse to each other.

Proof: Ad (a): The well-definedness for these maps follows from Definition 3.4.9 and Lem-

ma 3.4.11 (b). That the twomaps are inverse to each other is an implication from Lemma 3.4.4 (b).
Ad (b): The well-definedness for these maps follows from Definition 3.4.9 and Lemma 3.4.11 (c).
That the two maps are inverse to each other is an implication from Lemma 3.4.7. �

3.4.13 Lemma (cCol and mirror have left inverse). For =, : ∈ ℕ, �, �′ ∈ [<] and � = (�8)8∈[=] ∈
[<]×= we have

cCol(�,�2 ,...,�=−1 ,�′),(�1 ,�=) ◦ cCol�,(�,�′) = idPart� (3.4.44)

mirror(�(A+1)−8)8∈[A] ◦ mirror� = idPart� (3.4.45)

Proof: The proof is a straightforward calculation and is omitted. �

3.4.14 Convention. Wewant to extendConvention 2.5.7 to the setting of blocks overℕ×[<] for
some < ∈ ℕ, in the following sense. Let + be a vector space, = ∈ ℕ and G ≔ (G8)8∈[=] ∈ +×= be
some =-tuple ofelements in+ . Then,wedefine for G andforanyblock 1 = (18)8∈[ℓ ] ∈ ([=]×[<])×ℓ
with ℓ ∈ [=]

G1 ≔ Gtype(1) ≡ Gtype(11) ⊗ · · · ⊗ Gtype(1=) ∈ T(+) ÈConv. 2.5.7É. (3.4.46)
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3.4.15 Definition (Exponential and logarithm induced by P�). Let P be an <-colored uni-

versal class of partitions for some < ∈ ℕ. Let (+8)8∈[<] be an <-tuple of vector spaces. Set

+ ≔
⊕<

8=1
+8 and let ! ∈ Lin(T(+),ℂ).

(a) Let = ∈ ℕ. We define for any � = (�8)8∈[=] ∈ [<]×=

expP�
! :


+�1
× · · · ×+�= −→ ℂ

(G1 , . . . , G=) ↦−→
∑
�∈P�

∏
1∈�

!(G1).
(3.4.47)

(b) Let = ∈ ℕ. We recursively define a map logP� ! :

∏=
8=1
+�8 −→ ℂ by setting

∀� ∈ [<], ∀G ∈ +� , : (logP� !)(G) ≔ !(G), (3.4.48a)

∀� = (�8)8∈[=] ∈ [<]×= , ∀(G8)8∈[=] ∈
=∏
8=1

+�8 :

(logP� !)(G1 , . . . , G=) ≔

!(G1 ⊗ · · · ⊗ G=) −
∑
�∈P�
�≠1�

∏
1∈�
(logP(�

i
)
i∈set(col(b))

!), (G1),

(3.4.48b)

where we use Convention 2.5.5 (a) in equation (3.4.48b).

3.4.16 Lemma (expP�
and logP� are multilinear). Let P be an <-colored universal class of

partitions for some < ∈ ℕ. Let (+8)8∈[<] be an <-tuple of vector spaces, Moreover, let + ≔⊕<
8=1
+8 and ! ∈ Lin(T(+),ℂ). Then,

(a) the map expP�
! :

∏
8∈[=]+�8 −→ ℂ is multilinear for all = ∈ ℕ and for all � = (�8)8∈[=] ∈

[<]×= ,
(b) the map logP� ! :

∏
8∈[=]+�8 −→ ℂ is multilinear for all = ∈ ℕ and for all � = (�8)8∈[=] ∈

[<]×= .

Proof: The proof of Lemma 3.2.4 can be adapted to the multi-colored case with analogous

arguments. �

3.4.17 Lemma (Exponential and Logarithm induced by P). Let P be an <-colored universal

class of partitions for some < ∈ ℕ. Let (+8)8∈[<] be an <-tuple of vector spaces, Moreover, let

+ ≔
⊕<

8=1
+8 and ! ∈ Lin(T(+),ℂ). Then,

(a) there exists a unique linear map expP ! : T(+) −→ ℂ, such that for all = ∈ ℕ and for

each � = (�8)8∈[=] ∈ [<]×= the following diagram commutes⊗=
8=1
+�8 ℂ

T(+)

←
↪

→inc

← →
T (expP�

!)

←

→
expP !

, (3.4.49)
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(b) there exists a unique linear map logP ! : T(+) −→ ℂ, such that for all = ∈ ℕ and for each

� = (�8)8∈[=] ∈ [<]×= the following diagram commutes⊗=
8=1
+�8 ℂ

T(+)

←
↪

→inc

← →T (logP� !)

←

→

logP !
. (3.4.50)

Proof: We need several universal properties and the reasons are similar to the ones of the proof

of Lemma 3.2.5 for the single-colored case. �

3.4.18 Remark. Let P be an <-colored universal class of partitions for some < ∈ ℕ. As a

consequence of Lemma 3.4.17 and Definition 3.4.15, we obtain for any < ∈ ℕ, for any <-tuple

of vector spaces (+8)8∈[<] and for any ! ∈ Lin(T(+),ℂ), where+ ≔
⊕<

8=1
+8 , that the following

maps are elements of Lin(T(+),ℂ)

expP ! :



T(+) ∼=
⊕
=∈ℕ

⊕
�=(�8)8∈[=]
∈[<]×=

⊗
8∈[=]

+�8 −→ ℂ

G1 ⊗ · · · ⊗ G= ↦−→
∑
�∈P�

∏
1∈�

!(G1),
(3.4.51)

logP ! :



T(+) ∼=
⊕
=∈ℕ

⊕
�=(�8)8∈[=]
∈[<]×=

⊗
8∈[=]

+�8 −→ ℂ

G1 ⊗ · · · ⊗ G= ↦−→


!(G1) for = = 1

!(G1 ⊗ · · · ⊗ G=) −
∑
�∈P�
�≠1�

∏
1∈�
(logP !)(G1) else.

(3.4.52)

Here we have used an implication of equation (1.1.14) for the isomorphism of T(+).

3.4.19 Lemma (expP and logP are inverse). LetP be an<-colored universal class of partitions

for some < ∈ ℕ. Let (+8)8∈[<] be an <-tuple of vector spaces. Moreover, if + ≔
⊕<

8=1
+8 and

! ∈ Lin(T(+),ℂ), then

expP
(
logP !

)
= ! and logP

(
expP !

)
= !. (3.4.53)

Proof: The proof for the single-colored case (Lemma 3.2.7) can be directly extended to the

purpose of the multi-colored case. �

3.4.20 Definition. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

(+8)8∈[<] be an <-tuple of vector spaces. Set+ ≔
⊕<

8=1
+8 and let ! ∈ Lin(T(+),ℂ). We denote

by }P the following binary operation on Lin(T(+),K)

}P :

{
Lin(T(+),ℂ) × Lin(T(+),ℂ) −→ Lin(T(+),ℂ)

(!,#) ↦−→ expP
(
logP (!) + logP (#)

)
.

(3.4.54)
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We collect some properties of expP , logP and }P , which will be of interest in the following

sections.

3.4.21 Lemma (}P is associative and commutative). Let P be an <-colored universal class of

partitions for some < ∈ ℕ. Let (+8)8∈[<] be an <-tuple of vector spaces. Set + ≔
⊕

8∈[<]+8 .
Then, the binary mapping }P : Lin(T(+),ℂ) × Lin(T(+),ℂ) −→ Lin(T(+),ℂ) is associative

and commutative.

Proof: The proof is formally the same as the proof in the single-colored case (Lemma 3.2.9). �

3.4.22 Lemma. LetP be an<-colored universal class of partitions for some< ∈ ℕ. Let (+8)8∈[<],
(+′

8
)8∈[<] be two<-tuples of vector spaces. We set+ ≔

⊕<
8=1
+8 and+

′ ≔
⊕<

8=1
+′
8
. Assume 5 ∈

Lin(+,+′) and ∀ 8 ∈ [<] : 5 (+8) ⊆ +′8 . Let ! ∈ Lin(T(+′),ℂ) and (!8)8∈[:] ∈
(
Lin(T(+′),ℂ)

)×:
for some : ∈ ℕ \ {1}, then

(a) logP
(
! ◦ T( 5 )

)
= (logP !) ◦ T( 5 ),

(b) expP
(
! ◦ T( 5 )

)
= (expP !) ◦ T( 5 ),

(c)
(
!1 ◦ T( 5 )

)
}P · · · }P

(
(!: ◦ T( 5 )

)
= (!1 }P · · · }P !:) ◦ T( 5 ).

Proof: The tensor algebra T(+) is generated by pure tensors G1 ⊗ · · · ⊗ G= ∈
⊗

8∈[=]+�8 for all

� = (�8)8∈[=] ∈ [<]×= and for all = ∈ ℕ. Since all maps of consideration are linear maps, it suffices

to show the stated equations on such generators of T(+).
Ad (a): We show the statement by strong induction over = ∈ ℕ. The only difference to the

single-colored case (Lemma 3.2.11) is that the linear map 5 is assumed to additionally fulfill

∀ 8 ∈ [<] : 5 (+8) ⊆ +′8 . Thus, for the induction base we can formally perform the same proof as in

the single-colored case. Now, let ℕ 3 = > 1 and we assume that the expression of (a) is true for
all pure tensors of length ℓ ∈ [= − 1]. Then, we calculate for any sequence (G8)8∈[=] ∈

∏
8∈[=]+�8

for any � = (�8)8∈[=] ∈ [<]×=(
logP

(
! ◦ T( 5 )

) )
(G1 ⊗ · · · ⊗ G=)

= T
(
logP�

(
! ◦ T( 5 )

) )
(G1 ⊗ · · · ⊗ G=) Èdef. of logP · in eq. (3.4.50)É

=
(
! ◦ T( 5 )

)
(G1 ⊗ · · · ⊗ G=) −

∑
�∈P�
|�|≥2

∏
1∈�

(
logP

(
! ◦ T( 5 )

) )
(G1)

Èdef. of logP� · in eq. (3.4.48b) on

=⊗
8=1

+�8 É

= !
(
T( 5 )(G1) ⊗ · · · ⊗ T( 5 )(G=))

)
−

∑
�∈P�
|�|≥2

∏
1∈�
(logP !)

(
T( 5 )(G1)

)
ÈT( 5 ) ∈ Alg(T(+), T(+′)), IH applied to ℓ = |1 | and (G 9)9∈set(type(1)) ∈

∏
9∈set(type(1))

+�9 É

= !
(
5 (G1) ⊗ · · · ⊗ 5 (G=)

)
−

∑
�∈P�
|�|≥2

∏
1∈�
(logP (!)

( (
5 (G)

)
1

)
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ÈT( 5 ) ∈ Alg(T(+), T(+′)), UMP of T(+) É

= !
(
H1 ⊗ · · · ⊗ H=

)
−

∑
�∈P�
|�|≥2

∏
1∈�
(logP !)(H1)

È 5 ∈ Lin(+,+′) =⇒ ∀ 8 ∈ [=] : 5 (G8) ≕ H8 ∈ +′ É

= (logP� !)(H1 ⊗ · · · ⊗ H=)�
∀8 ∈ [=] : H8 ∈ 5 (+8) ⊆ +′8 =⇒ H1 ⊗ · · · ⊗ H= ∈

⊗=
8=1
+′�8 ,

then apply def. of logP� ! in eq. (3.4.48b) on

⊗=
8=1
+′�8

�
=

(
(logP� !) ◦ T( 5 )

)
(G1 ⊗ · · · ⊗ G=)

Ad (c): The proof is similar to the proof of Lemma 3.2.11 (c) and is therefore omitted. �

3.4.23 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

(+8)8∈[<] be an <-tuple of vector spaces and A be an algebra. Furthermore, for + ≔
⊕<

8=1
+�8

let 5 ∈ Lin(+,A) and ! ∈ Lin(A,ℂ). Then

∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= , ∀(G8)8∈[=] ∈
∏=

8=1
+�8 :((

∃ 9 ∈ [=] : G 9 ∈ ker 5
)
=⇒ G1 ⊗ · · · ⊗ G= ∈ ker

(
logP (! ◦ T ( 5 ))

))
(3.4.55)

Proof: Formally, there is no difference to the single-colored case and we can extend the argu-

ments used in the proof of Lemma 3.2.12 to there multi-colored case by suitable replacements

of the occurring sets and maps. �

3.4.24 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

(+8)8∈[<] be an<-tuple of vector spaces and set+ ≔
⊕<

8=1
+8 . Assumewe are given = ∈ ℕ \ {1},

� = (�8)8∈[=] ∈ [<]×= , (G8)8∈[=] ∈
∏=

8=1
+�8 and (H8)8∈[=−1] ∈ +×(=−1)

such that there exists

ℓ ∈ {0, 1, . . . , = − 2} ⊆ ℕ0 with the property

�ℓ+1 = �ℓ+2 (3.4.56)

and

∀ 8 ∈ {0, 1, . . . , ℓ } : G8 = H8 ∈ +�8 , (3.4.57a)

Hℓ+1 ∈ +�ℓ+1
(3.4.57b)

∀ 8 ∈ {ℓ + 3, . . . , =} : G8 = H8−1 ∈ +�8 . (3.4.57c)

Define the set

�= ≔≔

{
(8 9)9∈[:] ∈ [=]×:

����� : ∈ [=], ℓ + 1, ℓ + 2 ∈ {81 , . . . , 8<},
∀ 9 ∈ [: − 1] : 8 9 < 8 9+1

}
(3.4.58)

Let ! ∈ Lin(T(+),ℂ) such that it satisfies

∀ : ∈ [=] ∀(8 9)9∈[:] ∈ �= :

!(G81 ⊗ · · · ⊗ Gℓ+1 ⊗ Gℓ+2 ⊗ · · · G8: ) = !(H81 ⊗ · · · ⊗ Hℓ+1 ⊗ · · · ⊗ H8:−1).



118 Chapter 3. Symmetric u.a.u.-products induced by partitions

Then, the following equation holds for the above choices

(logP !)(G1 ⊗ · · · ⊗ G=) = (logP !)(H1 ⊗ · · · ⊗ H=−1) −
∑
{�1 ,�2}∈
P (ℓ+1)∨(ℓ+2)
�,2

(logP !)(G�1
) · (logP !)(G�2

). (3.4.59)

Proof: The proof in the single-colored case (Lemma 3.2.15) can be directly adapted to the

multi-colored case, since we have multi-colored counterparts for the delete and UMem maps,

and each of these maps is bĳective in the multi-colored case too. Check the sketch of the proof

of Lemma 3.4.27 for a list of replacements for the transition from the single-colored to the

multi-colored case. �

3.4.25 Lemma. LetP be an<-coloreduniversal class of partitions for some< ∈ ℕ. Let (+8)8∈[<])
be an <-tuple of vector spaces. If + ≔

⊕<
8=1
+8 and ! ∈ Lin(T(+),ℂ), then

∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= , ∀(G8)8∈[=] ∈
∏

9∈[=]+�9 , ∀� ∈ Part� , ∃�� ∈ ℂ :

(logP !)(G1 ⊗ · · · ⊗ G=) =
∑

�∈Part�

��
∏
1∈�

!(G1) (3.4.60)

holds.

Proof: The proof is done analogously to the proof of Lemma 3.2.16. We only have to replace

Part= by Part� and the calculations made in the proof of Lemma 3.2.16 formally remain the

same. �

Now we are going to apply the statements from above to the situation of <-faced algebras.

3.4.26 Convention. Let < ∈ ℕ, : ∈ ℕ \ {1} (A8 , (A(9)8 )9∈[<])8∈[:] ∈ (Obj(Algm))×: and define

A1⊕···⊕: ≔
<⊕
9=1

A
(9)
1⊕···⊕: ≔

<⊕
9=1

( :⊕
8=1

A
(9)
8

)
. (3.4.61)

If we set �
(9)
A : A

(9)
A ↩−→ ⊔<

9=1
A
(9)
A as the canonical insertion map, then we have the following

commutative diagram for all A ∈ [:]⊕<
9=1

⊕:
8=1

A
(9)
8

T

(⊕<
9=1

⊕:
8=1

A
(9)
8

)

⊔
9∈[<] A

(9)
A
∼= AA ,

←↪ →inc

←

→
⊕<

9=1

⊕:
8=1
Δ
(9)
8 ,A

←

→ T
(⊕<

9=1

⊕:
8=1
Δ
(9)
8 ,A

)
(3.4.62)

wherein we put (“colored map-like Kronecker delta”)

∀ 9 ∈ [<], ∀A ∈ [:] : Δ(9)
8 ,A
≔


0: A

(9)
8
−→ AA for 8 ≠ A

�
(9)
A : A

(9)
A ↩−→ AA for 8 = A.

(3.4.63)

We use the following abbreviation

∀A ∈ [:] : jA ≔ T
( <⊕
9=1

:⊕
8=1

Δ
(9)
8 ,A

)
. (3.4.64)
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With respect to the definitions made in equation (3.4.54), we have for !8 ∈ Lin(A8 ,ℂ) for
8 ∈ {1, 2} by Definition 3.4.20 and Convention 3.4.26 that(

(!1 ◦ j1) }P (!2 ◦ j2)
)
∈ Lin

(
T(A1⊕2),ℂ

)
, (3.4.65)

since A1⊕2 =
⊕<

8=1
(A(8)

1
⊕ A

(8)
2
). This means we apply the definition of }P made in Defini-

tion 3.4.20 to the vector space A1⊕2 instead of + and to

⊕<
8=1
(A(8)

1
⊕ A

(8)
2
) instead of

⊕<
8=1
+8 .

We make the following important statement, which will be the essential property to lift

this binary operation between linear functionals to a map which possesses the properties of an

universal product.

3.4.27 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

: ∈ ℕ \ {1}, (A8 , (A 9

8
)9∈[<])8∈[:] ∈ (Obj(Algm))×: and (!8)8∈[:] ∈

∏:
8=1

Lin(A8 ,ℂ)). Let = ∈ ℕ \ {1}
and (�8)8∈[=] ∈ ([:] × [<])×= and assume the tuple � has the property that

∃ℓ ∈ {0, . . . , = − 2} ⊆ ℕ : �ℓ+1 = �ℓ+2. (3.4.66)

Then, for any (08)8∈[=] ∈
∏=

8=1
A
(col(�8))
type(�8) holds

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(

∈T(
⊕<

9=1

⊕:
8=1

A
(9)
8
)︷                                    ︸︸                                    ︷

01 ⊗ · · · ⊗ 0ℓ+1 ⊗ 0ℓ+2 ⊗ · · · ⊗ 0=)

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
(01 ⊗ · · · ⊗ (0ℓ+1 · 0ℓ+2) ⊗ · · · ⊗ 0=). (3.4.67)

Proof: The proof is similar to the proof of Lemma 3.3.2 (single-colored case). Therefore, we do

not do the proof in full detail, since the formal steps of reasoning from the proof of Lemma 3.3.2

are valid, if we use the following replacements (here we read the symbol “↦→” as “replaced by”)

• � ∈ [:]×= ↦→ � ∈ ([:] × [<])×= ,
• P= as u.c.p. defined inDefinition 3.1.9 ↦→Pcol(�) as u.c.p. of<-colors defined in Definition 3.4.9,

• expP and logP defined in Lemma 3.2.5 ↦→ expP and logP defined in Lemma 3.4.17,

• j8 defined in equation (3.3.3) ↦→ j8 defined in equation (3.4.64),

• application of Lemma 3.2.15 ↦→ application of Lemma 3.4.24.

Now, we can use the proof of Lemma 3.3.2 and apply the above list of replacements. �

3.4.28 Remark. Let < ∈ ℕ, : ∈ ℕ \ {1} and (A8 , (A(9)8 )9∈[<])8∈[:] ∈ (Obj(Algm))×: , then we define

(1,...,: ≔ { 0 ⊗ 0′ − 0 · 0′ | 8 ∈ [:], 9 ∈ [<] : 0, 0′ ∈ A
(9)
8
} ⊆ T(A1⊕···⊕:), (3.4.68)

�1,...,: ≔ 〈(1,...,:〉, (3.4.69)

i. e., �1,...,: denotes the smallest two-sided ideal in T(A1⊕···⊕:) (here A1⊕···⊕: is defined in

eq. (3.4.61)), such that �1,...,: ⊇ (1,...,: . If we set

�(
1,...,:

≔


=∑
8=1

(
2B8 + GB8 + B8H +

#8∑
9=1

G 9B8H 9

) ������ =, #8 ∈ ℕ, 2 ∈ ℂ, B8 ∈ (1,...,: ,

G, H, G 9 , H 9 ∈ T(A1⊕···⊕:)

, (3.4.70)

then it is a standard task to show that �1,...,: = �(
1,...,:

.
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3.4.29 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

: ∈ ℕ \ {1} (A8 , (A(9)8 )9∈[<])8∈[:] ∈ (Obj(Algm))×: and (!8)8∈[:] ∈
∏:

8=1
Lin(A8 ,ℂ)), then �(

1,...,:
⊆

ker((!1 ◦ j1) }P · · · }P (!: ◦ j:)) ⊆ T(A1⊕···⊕:).

Proof: The proof is formally the same as the proof of Lemma 3.3.4. We emphasize that in

particular the statement of Lemma 3.4.27 is needed for this proof. �

3.4.30 Definition (Universal product induced by an<-colored universal class of partitions).
Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let : ∈ ℕ \ {1}
(A8 , (A(9)8 )9∈[<])8∈[:] ∈ (Obj(Algm))×: and (!8)8∈[:] ∈

∏:
8=1

Lin(A8 ,ℂ)). From the universal

property of the quotient space and by Lemma 3.4.29 there exists a unique linear map

lift
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
∈ Lin(T(A1⊕···⊕:)/�1,...,: ,ℂ) such that the following diagram is

commutative

T(A1⊕···⊕:) ℂ

T(A1⊕···⊕:)
/
�1,...,:

← →(!1◦j1)}P ···}P (!: ◦j: )

←

� pr ←

→

lift
(
(!1◦j1)}P ···}P (!:◦j: )

) . (3.4.71)

If we apply the above setting to the case : = 2, then we set

(!1 ◦ j1) }̃P (!2 ◦ j2) ≔ lift
(
(!1 ◦ j1) }P (!2 ◦ j2)

)
. (3.4.72)

Let us denote by i(9)
8

: A
(9)
8

↩−→ T(
⊕<

9=1
(A(9)

1
⊕ A

(9)
2
)/�1,2 the canonical injections for each 8 ∈ [2]

and 9 ∈ [<]. Then, ⊔
9∈[<]
(i(9)

1
t i(9)

2
) : A1 t A2 −→ T(A1⊕2)/�1,2 (3.4.73)

is the canonical isomorphism of algebras, depicted by the following diagram for 8 ∈ [2], 9 ∈ [<]⊔
9∈[<](A

(9)
1
t A

(9)
2
)

A
(9)
8

T

(⊕<
9=1
(A(9)

1
⊕ A

(9)
2

)/
�1,2

⊔
9∈[<](A

(9)
1
t A

(9)
2
)

←
→

⊔
9∈[<](i

(9)
1
ti(9)

2
)

←

→

id

←↪

→
�
(9)
8

←↪ →
i(9)
8

←↪

→

�
(9)
8

←
→

⊔
9∈[<](�

(9)
1
t �(9)

2
)

. (3.4.74)

Then, we define

!1 �P !2 :


A1 t A2

can∼=
⊔
8∈[<]
(A(8)

1
t A

(8)
2
) −→ ℂ

0 ↦−→
( (
(!1 ◦ j1) }̃P (!2 ◦ j2)

)
◦

( ⊔
9∈[<]
(i(9)

1
t i(9)

2
)
)
◦ can

)
(0).

(3.4.75)
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Finally, we set

�P :

{
Lin(A1 ,ℂ) × Lin(A2 ,ℂ) −→ Lin(A1 t A2 ,ℂ)

(!1 , !2) ↦−→ !1 �P !2.
(3.4.76)

Similar to Remark 3.3.6 we have for < ∈ ℕ, : ∈ ℕ \ {1} (A8 , (A(9)8 )9∈[<])8∈[:] ∈ (Obj(Algm))×:

T

(
A1⊕···⊕:

)/
�1,...,:

∼=
⊔
9∈[<]

(⊔
8∈[:]

A
(9)
8

)
, (3.4.77)

�1,...,: is the ideal from equation (3.4.69).

3.4.31 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let

: ∈ ℕ \ {1} (A8 , (A 9

8
)9∈[<])8∈[:] ∈ (Obj(Algm))×: and (!8)8∈[:] ∈

∏:
8=1

Lin(A8 ,ℂ)). Then( (
(!1 �P !2) �P !3

)
· · ·

)
�P !:

= lift
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ can,

(3.4.78)

where }P here denotes the binary operation on the dual space of T(A1⊕···⊕:) and can is the

canonical isomorphism of algebras can : (((A1 t A2) t A3) . . . ) t A: −→ T(A1⊕···⊕:)/�1,...,: .

Proof: There is formally not much difference to the proof of Lemma 3.3.7, i. e., the case < = 1

but much “bigger clouds of indices”. We will just outline the main differences which will result

in highlighting, where the color index can appear. As in the case < = 1 for induction base there

is nothing to show. Now, we want to consider the induction step : → :+1. We need to be aware,

where the color index might enter the stage. As for the case < = 1 we set

∀ :′ ∈ ℕ \ {1} : ∀ :′ ∈ ℕ \ {1} : A1t···t:′ ≔
( (
(A1 t A2) t A3

)
· · ·

)
t A:′ .

We claim that the following diagram is commutative

T(
⊕<

9=1
(A(9)

1t···t: ⊕ A
(9)
:+1
) A1t···t:

T(
⊕<

9=1

⊕
8∈[:+1] A

(9)
8
)

T(A1⊕···⊕:) T(A1⊕···⊕:)
/
�1,...,:

←→
T (

⊕<
9=1
(id

A
(9)
1t···t:

⊕0))

←

→ can

← →
T

(⊕<
9=1

⊕
8∈[:+1] inc

A
(9)
8
,A
(9)
1t···t:⊕A

(9)
:+1

)

←

→
T(

⊕<
9=1
(
⊕:

8=1
id

A
(9)
8

⊕0))

← →pr

.

The proof is formally the same as in the case < = 1. The main difference is that for the definition

of the maps j8 we need to apply equation (3.4.64) instead of equation (3.3.3). Furthermore, the

application of Lemma 3.2.11 (c) is replaced by the application of Lemma 3.4.22 (c), which said

that

∀ : ∈ ℕ \ {1} :
(
!1 ◦ T( 5 )

)
}P · · · }P

(
(!: ◦ T( 5 )

)
= (!1 }P · · · }P !:) ◦ T( 5 )

for 5 ∈ Lin(+,+′) and ∀ 8 ∈ [<] : 5 (+8) ⊆ +′8 . The last criterion displays a condition on the color

index, we additionally have to check in the case< > 1. We claim that this prerequisite is fulfilled

when we formally follow the steps of the proof of Lemma 3.3.7 since the map 5 in our situation

is the direct sum of maps, i. e., 5 =
⊕<

9=1
5 (9) with 5 (9) : +9 −→ +′

9
. We are not going to further

elaborate on the proof since technically the same steps as in the case of Lemma 3.3.7 with the

above modifications may be applied. �
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3.4.32 Theorem. Let P be an <-colored universal class of partitions for some < ∈ ℕ and(
A8 , (A(9)8 )9∈[<] , !8

)
8∈[2] ∈ (Obj(AlgPm))×2

. Then, the above defined map �P : Lin(A1 ,ℂ) ×
Lin(A2 ,ℂ) −→ Lin(A1 t A2 ,ℂ) fulfills the properties of a symmetric <-faced u.a.u.-product

with right-ordered monomials property, i. e.,

(a) �P is unital: Let �8 : A8 −→ A1 t A2 denote the canonical homomorphic insertions for

8 ∈ {1, 2}, then
∀ 8 ∈ {1, 2} : (!1 �P !2) ◦ �8 = !8 . (3.4.79)

(b) �P is associative:

∀ 8 ∈ {1, 2, 3} ∀!8 ∈ A8 : (!1 �P !2) �P !3 = !1 �P (!2 �P !3) ◦ can, (3.4.80)

where can : (A1 t A2) t A3 −→ A1 t (A2 t A3) is the canonical algebra homomorphism.

(c) �P is universal: If �8 : B8 −→ A8 for 8 ∈ {1, 2} are homomorphisms of algebras and

∀ 8 ∈ {1, 2}, ∀ 9 ∈ [<] : �8(B(9)8 ) ⊆ A
(9)
8
, (3.4.81)

then

(!1 �P !2) ◦ (�1 q �2) = (!1 ◦ �1) �P (!2 ◦ �2). (3.4.82)

(d) �P is symmetric: ∀ 8 ∈ {1, 2} ∀!8 ∈ A8 :

!1 �P !2 = (!2 �P !1) ◦ can, (3.4.83)

where can : A1 t A2 −→ A2 t A1 is the canonical isomorphism of algebras.

(e) �P has the right-ordered monomials property.

Proof: Ad (a): This proof is similar to the proof of Theorem 3.3.9 (a) and can be transferred to

the multi-colored case.

Ad (b): Associativity is shown formally in the way as in the case < = 1, i. e., in the proof of

Theorem 3.3.9 (b). Essential for this proof is the associativity of }P , i. e., Lemma 3.4.21 and

Lemma 3.4.31.

Ad (c): Although the proof is similar to the proof of Theorem 3.3.9 (c), we shall make the proof

since morphisms in the <-faced setting need to respect the faces of the algebras and we want to

see where this property enters the proof. Let �8 : B8 −→ A8 be an algebra homomorphism for

8 ∈ [2]. By the universal mapping property of the free product of the algebras B
(9)
1

and B
(9)
2

as

in equation (3.4.74) we can see that the following diagram is commutative for each 8 ∈ [2] and
9 ∈ [<]
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T(A1⊕2)/�A
1,2

A
(9)
8

⊔
9∈[<](A

(9)
1
tB

(9)
2
)

B
(9)
8

⊔
9∈[<](B

(9)
1
tB

(9)
2
)

T(B1⊕2)/�B
1,2

←↪ →
�
(9)
A8

←
↪

→i(9)
A8

←

→⊔
9∈[<](i

(9)
A

1

ti(9)
A

2

)

←
↪

→i(9)
B8

←↪ →
�
(9)
B8

←

→
�8 ←

→

�1q�2

←

→⊔
9∈[<](�

(9)
B

1

t �(9)
B

2

)

←

→

' (I)

Thus, we have

' ◦
( ⊔
9∈[<]
(�(9)

B1

t �(9)
B2

)︸            ︷︷            ︸
≕ �

)−1

=

( ⊔
9∈[<]
(i(9)

A1

t i(9)
A2

)︸            ︷︷            ︸
≕i

)
◦ (�1 q �2). (II)

We calculate for any = ∈ ℕ, (�8)8∈[=] ∈ {1, 2}×= , (�8)8∈[=] ∈ [<]×= and any (1(�8)�8 )8∈[=] ∈
∏=

8=1
B
(�8)
�8(

(!1 �P !2) ◦ (�1 q �2)
) (
�(�1)
B�

1

(11) · · · · · �(�=)B�=
(1=)

)
=

(
(!1 �P !2) ◦ (i−1 ◦ ' ◦ �−1)

) (
�(�1)
B�

1

(11) · · · · · �(�=)B�=
(1=)

)
È eq. (II) & i, � are isomorphismsÉ

=

(( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
)
◦ i

)
◦

(
i−1 ◦ ' ◦ �−1

) ) (
�(�1)
B�

1

(11) · · · · · �(�=)B�=
(1=)

)
Èdef. of · � · in eq. (3.4.75)É

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
)
◦ '

) (
i(�1)
B�

1

(11) · · · · · i(�=)B�=
(1=)

)
È according to eq. (3.4.74) � and i are inverse to each otherÉ

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
) ) (

'
(
i(�1)
B�

1

(11)
)
· · · · · '

(
i(�=)
B�=
(1=)

) )
È' is homomorphism of algebrasÉ

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
) ) (

i(�1)
A�

1

(
��1
(11)

)
· · · · · i(�=)

A�=

(
��= (1=)

) )
È outer diagram in eq. (I) is commutativeÉ

=

( (
(!1 ◦ jA

1
) }̃P (!2 ◦ jA

2
)
)
◦ pr�A

1,2

) (
inc

A
(�

1
)

�
1

,T(A1,2)
(
��1
(11)

)
· · · · · inc

A
(�= )
�= ,T(A1,2)

(
��= (1=)

) )
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È i(9)
A8
= pr�A

1,2
◦ inc

A
(9)
8
,T(A1,2)

, pr�A
1,2

is homomorphism of algebrasÉ

=
(
(!1 ◦ jA

1
) }P (!2 ◦ jA

2
)
) (

inc
A
(�

1
)

�
1

,T(A1,2)
(
��1
(11)

)
· · · · · inc

A
(�= )
�= ,T(A1,2)

(
��= (1=)

) )
Èdef. · }̃P · in eq. (3.4.71)É

=
(
(!1 ◦ jA

1
) }P (!2 ◦ jA

2
)
) (
��1
(11) ⊗ · · · ⊗ ��= (1=)︸                       ︷︷                       ︸
∈
⊗

9∈[=] A
(� 9 )
1,2
⊆T(A1,2)

)
È ⊗ is multiplication in T(A1⊕2) for pure tensorsÉ

=

( (
(!1 ◦ jA

1
) }P (!2 ◦ jA

2
)
)
◦ T(�1 ⊕ �2)

)
(11 ⊗ · · · ⊗ 1=)

=

( (
!1 ◦ jA

1
◦ T(�1 ⊕ �2)

)
}P

(
!2 ◦ jA

2
◦ T(�1 ⊕ �2)

) )
(11 ⊗ · · · ⊗ 1=)�

�1 ⊕ �2 ∈ Lin(B1 ⊕B2 ,A1 ⊕ A2),
by eq. (3.4.81) prequisites of Lem. 3.4.22 (c) are fulfilled

�
=

(
(!1 ◦ �1 ◦ jB

1
) }P (!2 ◦ �2 ◦ jB

1
)
)
(11 ⊗ · · · ⊗ 1=)������

it suffices to show (jA
8
◦ T(�1 ⊕ �2))(1) = (�8 ◦ jB8 )(1) for 1 ∈ B

(9)
1
⊕B

(9)
2
,

because all maps are morphisms of algebras and in particular linear,

T(B1⊕2) = T(
⊕<

9=1
(B(9)

1
⊕B

(9)
2
) is generated by B

(9)
1
⊕B

(9)
2

for all 9 ∈ [<]
moreover use Conv. 3.4.26 and assumption from eq. (3.4.81)

������
=

( (
(!1 ◦ �1 ◦ jB

1
) }̃P (!2 ◦ �2 ◦ jB

2
)
)
◦ i

) (
�(�1)
B�

1

(11) · · · · · �(�=)B�=
(1=)

)
Èproperty of lifted map in eq. (3.4.71)É

=
(
(!1 ◦ �1) � (!2 ◦ �2)

) (
�(�1)
B�

1

(11) · · · · · �(�=)B�=
(1=)

)
Èdef. of !1 �P !2 in eq. (3.4.75)É

Since the algebra B1 tB2 is generated by elements from

⋃
8∈[2]

⋃
9∈[<] �

(9)
B8
(B(9)

8
) and we apply

linear maps to such elements, the assertion follows from the above calculation.

Ad (d): There is not much difference to the proof of Theorem 3.3.9 (d). Thus, formally the same

steps can be done. The only difference is to take care of the color index. Define 5 (9) : A
(9)
1
⊕

A
(9)
2
−→ A

(9)
2
⊕ A

(9)
1

in the canonical way. Then T(
⊕

9∈[<] 5
(9)) : T(A1⊕2) −→ T(A2⊕1) and

5 (9)(A(9)
1
⊕ A

(9)
2
) ⊆ A

(9)
2
⊕ A

(9)
1

and therefore Lemma 3.4.22 (c) can be applied.

Ad (e): Since the definition of the universal product �P for an <-colored universal class of

Partitions P formally looks the same as in the case for one color, we just refer to the proof of

Theorem 3.3.9 (e) and notice that we have to replace in particular

• � ∈ [:]×= by � = (�8 ,1 , �8 ,2)8∈[=] ∈ ([:] × [<])×= , this means ��1
(01) · · · · · ��= (0=) is replaced by

�
(�2,1)
�1,1
(01) · · · · · �(�=,2)�=,1 (0=). Here �(8)

9
: A
(8)
9

↩−→ ⊔
2

9=1

⊔<
8=1

A
(8)
9

denotes the canonical homomorphic

insertion map,

• the usage of Lemma 3.2.16 by Lemma 3.4.25.
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�

3.4.33 Definition (Partition induced universal product). Let < ∈ ℕ. Let � be a symmetric

u.a.u.-product with right-ordered monomials property in the category AlgPm. We say that � is

a partition induced universal product (for P) if and only if there exists some <-colored universal

class of partitions P such that � = �P .





Chapter 4

On the classification of universal classes
of partitions

In the preceding chapter we have seen that universal classes of partitions have the potential to

define a partition induceduniversal product. This insight is the legitimization to look for concrete

examples of universal classes of partitions to obtain possible new examples for symmetric u.a.u.-

products. In the single- and two-colored case we were able to classify universal classes of

partitions. This classification turns out to be fruitful once we have shown that any positive and

symmetric u.a.u.-product in the category AlgPm for some < ∈ ℕ induces an <-colored universal

class of partitions. We do this in Chapter 5.

4.1 Classification of universal classes of partitions: single-colored
case

4.1.1 Convention.

(a) Let - be a set, then we denote generic projection maps by

∀8 ∈ [2] : pr8 :

{
- × - −→ -

(G1 , G2) ↦−→ G8 .
(4.1.1)

(b) We set for any : ∈ ℕ and any universal class of partitions P ⊆ Part

P · ,: ≔
⋃
=∈ℕ

P=,: (4.1.2)

Thus, we have a distinction to the set of all partitions in P with =-legs denoted by P= .

(c) Let � ∈ Part. Then, this partition has = ∈ ℕ legs and : ∈ ℕ blocks. Our maps delete,
double, UMem and split carry this information about the number of legs and blocks in

form of indices attached to the operator names. Sometimes we will just put a dot ·
instead of the concrete value for = and :, but the concrete values should be clear from

the context whenever such a map is applied to a certain partition. As an example, let

ℓ ∈ {0, . . . , = − 2}, then we put

UMemℓ+1

· , · (�) = UMemℓ+1

· ,: (�) ≔ UMemℓ+1

=,:
(�) (4.1.3)

We could have also introduced new maps without these indices attached to the operator

names but we leave it like this to be more flexible whenever we want to highlight a

127
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dependence on the leg index or the block index. On the other hand, sometimes we

will completely hide any dependence of indices of the above mentioned maps. Then,

we understand such occurrences of the above mentioned maps without indices as a

placeholder of the same concrete map with any valid index choice.

4.1.2 Definition. We want to recursively define a map GenerateTwoBlocks which assigns to

each partition � ∈ Part with : blocks for some : ∈ ℕ \ {1} a (:−1)-tuple of two-block partitions.

Let : = 2 and � ∈ Part · ,: , then set

GenerateTwoBlocks(�) = (�). (4.1.4)

Now, assume : ∈ ℕ \ {2} and GenerateTwoBlocks has been defined for each partition � ∈
Part · ,:−1. Let � ∈ Part · ,: . We can naturally order the blocks of � by their smallest legs in the

blocks, i. e., for two blocks 1, 1′ ∈ �we can put 1 < 1′ if and only if� < �′, where� = min(set 1)
and �′ = min(set 1′). With respect to this order we have a first block 11 ∈ � and a second block

12 ∈ �. In the first block 11 there exists a leg ℓ + 1 ∈ set 11, such that ℓ + 2 = min(set 12). Then,
the ordered tuple(

(pr
2
◦UMemℓ+1

· ,: )(�),GenerateTwoBlocks
(
(pr

1
◦UMemℓ+1

· ,: )(�)
) )

(4.1.5)

defines a (: − 1)-tuple of two-block partitions, where pr
1
denotes the projection to the first

component of the pair and pr
2
denotes the projection to the second component of the pair.

4.1.3 Example. Let P be a universal class of partitions. Assume

� =
1 2 3 4 5 6 7 8 9

∈ P9,4. (4.1.6)

Then, GenerateTwoBlocks(�) leads to(
1 2 3 4

,
1 2 3 4 5 6

,
1 2 3 4 5 6 7 8 9

)
∈ P4,2 × P6,2 × P9,2. (4.1.7)

4.1.4 Lemma.

(a) For any : ∈ ℕ the map GenerateTwoBlocks : Part · ,: −→ (Part · ,2)×(:−1)
is injective.

(b) Let P ⊆ Part be a universal class of partitions, then GenerateTwoBlocks �P : P −→
(P · ,2)×(:−1)

.

Proof: Ad (a): We omit this direct but technical proof. We notice that we can “reconstruct”

a partition � ∈ Part · ,: from GenerateTwoBlocks(�), in other words give a left inverse to

GenerateTwoBlocks by a successive application of the map split.

Ad (b): This follows from the definition of the map GenerateTwoBlocks and the fact that P is a

universal class of partitions and therefore needs to satisfy Definition 3.1.9 (d). �

4.1.5 Proposition. Let P and R be two single-colored universal classes of partitions. Denote

by P · ,2 the set of all two-block partitions of P respectively by R · ,2 the set of all two-block

partitions ofR.

Tfae: (a) P = R,

(b) P · ,2 = R · ,2, i. e., all the two-block partitions are the same.
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Proof: (a) =⇒ (b) Since P · ,2 ⊆ P and R · ,2 ⊆ R, the assertion follows directly from the

assumption.

(b) =⇒ (a) Wewant to show thatR ⊆ P . Therefore, let� ∈ R be any partitionwith :-blocks, i.e.

� ∈ R · ,: for some : ∈ ℕ \ {1, 2}. Since the map GenerateTwoBlocks is injective by Lemma 4.1.4,

we can uniquely associate a partition � to a (: − 1)-tuple of two-block partitions from R. Since

R · ,2 = P · ,2 and since the map GenerateTwoBlocks as an injection has a left inverse, we obtain

that � ∈ P . A similar proof holds for the equation P ⊆ R. �

Proposition 4.1.5 is our main tool to perform the classification in the single-colored case.

4.1.6 Definition (Crossing partition). For any partition � ∈ Part we set

Cross(�) ≔


(
(?1 , ?2), (@1 , @2)

)
∈ ℕ×2 × ℕ×2

�������
?1 < @1 < ?2 < @2 , ∃1, 1′ ∈ � :

1 ≠ 1′, {?1 , ?2} ⊆ set 1,
{@1 , @2} ⊆ set 1′

 (4.1.8)

Elements of the set Cross(�) are called crossings. For a partition � ∈ Part we say it is a partition
with crossing or just crossing if and only if Cross(�) ≠ ∅.

4.1.7 Definition.

(a) A partition � ∈ Part is said to be one block if and only if |�| = 1. The set of all partitions

which are one block is denoted by 1B.

(b) A partition � ∈ Part= is said to be interval for some = ∈ ℕ if and only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set(1) =⇒ 9 ∈ set(1)

)
(4.1.9a)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

)
. (4.1.9b)

The set of all interval partitions is denoted by I.

(c) A partition � ∈ Part= is said to be noncrossing for some = ∈ ℕ if and only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set 1 =⇒

(
9 ∈ set 1

)
∨

(
∃1′ ∈ � \ {1} : 9 ∈ set(1′),

set(1′) ⊆ [8 + 1, : − 1] ⊆ ℕ
) )

(4.1.10)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

)
. (4.1.11)

The set of all partitions which are noncrossing for any = ∈ ℕ is denoted by NC.

4.1.8 Remark. It can be shown that our definition of interval and noncrossing partitions is

equivalent to the one used in [Spe97].
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4.1.9 Lemma.

(a) The set of all one block partitions 1B is a universal class of partitions.

(b) The set of all interval partitions I is a universal class of partitions.

(c) The set of all noncrossing partitions NC is a universal class of partitions.

Proof: For the assertions we need to check the properties (a) till (e) of Definition 3.1.9.

Ad (a): We show that 1B fulfills these axioms. Since 1B is the class of all one block partitions,

this implies 11 ∈ 1B. Moreover, the effect of the maps delete and double is diagrammatically

represented by

delete=,ℓ+2

(
1
. . . ℓ+1 ℓ+2

. . . =

)
=

1
. . . ℓ+1

. . . =

∈ 1B

and

double=−1,ℓ+1

(
1
. . . ℓ+1

. . . =−1

)
=

1
. . . ℓ+1 ℓ+2

. . . =

∈ 1B.

For the other properties is nothing to show, since these make statements about partitions with

more than one block. But 1B only has partitions with exactly one block. Hence, 1B is a universal

class of partitions.

Ad (b): Of course, 11 ∈ I. Let � ∈ I with the property that there exists a block 1 in � such that

ℓ + 1, ℓ + 2 ∈ set 1, then we have

delete=,ℓ+2(�) = delete=,ℓ+2

(
1
. . . . . . . . . ℓ+1 ℓ+2

. . . . . . . . . =

)
=

1
. . . . . . . . . ℓ+1

. . . . . . . . . =

∈ I.

Furthermore, for any partition � ∈ I we have

double=−1,ℓ+1(�) = double=−1,ℓ+1

(
1
. . . . . . . . . ℓ+1

. . . . . . . . . =−1

)
=

1
. . . . . . . . . ℓ+1 ℓ+2

. . . . . . . . . =−1

∈ I.

Now, consider an arbitrary partition � ∈ I, where ℓ + 1 and ℓ + 2 are in two different blocks of �.
Then, we observe

UMemℓ+1

=,:
(�) = UMemℓ+1

=,:
(�)

(
1
. . . . . . . . . ℓ+1 ℓ+2

. . . . . . . . . =−1

)
=

(
1
. . . . . . . . . ℓ+1 ℓ+2

. . . . . . . . . =

,
. . . �

1
�

2
. . .

)
∈ I × I,

where �8 = pos18 (ℓ + 8) and 18 is the block in � such that ℓ + 8 ∈ set 18 for each 8 ∈ {1, 2}. On the

other hand, we have for any � ∈ sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
∩ (I × I)

splitℓ+1

=,:−1
(�, �̃) = splitℓ+1

=,:−1

(
1
. . . . . . . . . ℓ+1 ℓ+2

. . . . . . . . . =

,
. . . . . .

)
=

1
. . . . . . . . . ℓ+1 ℓ+2

. . . . . . . . . =

∈ I

This shows that I satisfies the axioms of a universal class of partitions.
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Ad (c): Of course, 11 ∈ NC. Next, we assume that � ∈ ∩(Part(ℓ+1)∧(ℓ+2)
= ∩NC) and � ≠ ∅. It imme-

diately follows delete=,ℓ+2(�) ∈ NC, since this “triple legs scenario” of equation (4.1.11) is still sat-

isfied for the remaining legs of delete=,ℓ+2(�). Analogouslywe can show that double=,ℓ+1(�) ∈ NC
for such partition �.

Next, we show that UMemℓ+1

=,:
(�) ∈ NC for any � ∈ (Part(ℓ+1)∨(ℓ+2)

=,:
∩NC) with � ≠ ∅. For

this, we have to show that pr
1
(UMemℓ+1

=,:
(�)) ∈ NC and pr

2
(UMemℓ+1

=,:
(�)) ∈ NC. We show both

assertions by contradiction. Assume that pr
2
(UMemℓ+1

=,:
(�)) ∉ NC. By definition pr

2
(UMemℓ+1

=,:
(�))

is a two-block partition with blocks 1 and 1′. If this two-block partition has a crossing, then

this crossing after the application of the map splitℓ+1

=,:−1
remains. By Lemma 3.1.7 we have

splitℓ+1

=,:−1
◦UMemℓ+1

=,:
= id

sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
. This would imply that� ∉ NC, but this is a contradiction

to the assumption. Hence, we have shown that pr
2
(UMemℓ+1

=,:
(�)) ∉ NC.

Assume now that pr
1
(UMemℓ+1

=,:
(�)) ∉ NC holds. Then, a possible crossing can only occur

between the “unified block”, i. e., the block such that ℓ + 1, ℓ + 2 are elements of this block, and

any other block of pr
1
(UMemℓ+1

=,:
(�)). This is justified by the following consideration. If a crossing

occurs between two blocks, where none of the two blocks is the unified block, then the crossing

remains after the application of splitℓ+1

· , · . This would imply that � ∉ NC, which is a contradiction.

Therefore, we can assume that the crossing occurs between two blocks, where one of the blocks

is the unified block. Denote the unified block in pr
1
(UMemℓ+1

=,:
(�)) by 1 and the other block in

this partition, which causes the crossing, by 1′. Then, there exist legs ?1 , ?2 and @1 , @2 in the

partition pr
1
(UMemℓ+1

=,:
(�)) such that

?
1

@
1

?
2

@
2

. . . . . . . . . . . . . . .
,

i. e. ?1 < @1 < ?2 < @2. There are two possibilities for the legs to which block they belong. Either

the ?-legs belong to block 1 and the @-legs belong to the block 1′ or the other way around. In the

following we want to assume that the @-legs belong to block 1 and the ?-legs to the block 1′. The
claim for the other possibility is analogously shown. Crucial for the proof is only the relative

position of the ?- and @-legs to each other, not the affiliation to a certain block. For instance,

one possible case of a crossing in the partition pr
1
(UMemℓ+1

=,:
(�)), which is caused by the unified

block, is represented by the following diagram

. . . . . .. . . . . . . . . . . .ℓ+1 ℓ+2
?
1

?
2

@
1

@
2
. . .

.

Hence, in the unified block there exists a leg @1, which lies between two legs ?1 and ?2 of

another block which we called 1′. Now, the leg @1 either belongs to a block of �, where

the leg ℓ + 1 belongs to or it belongs to the block, where the leg ℓ + 2 belongs to. Assume

it belongs to the block of ℓ + 1 and call this block 1̃. If we apply splitℓ+1

=,:−1
to UMemℓ+1

=,:
(�)

a crossing occurs between the blocks 1̃ and 1′, since the unified block 1 just gets split into

two blocks, but the relative position of the ?- and @-legs is not changed by the map splitℓ+1

=,:−1
.

Since splitℓ+1

=,:−1
◦UMemℓ+1

=,:
= idPart(ℓ+1)∨(ℓ+2)

=,:

, we obtain the partition � has a crossing which is a

contradiction to the assumption. All the other cases have a similar argumentation. Therefore, it

must hold that UMemℓ+1

=,:
(�) ∈ (sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
∩ (NC × NC)).

Now we want to prove that splitℓ+1

=,:−1
(�, �̃) ∈ NC if (�, �̃) ∈ sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
. Assume a

crossing in the partition splitℓ+1

=,:−1
(�, �̃) stems from the “insertion” of two blocks of �̃ into �.

Then, this would mean �̃ = pr
2
((UMemℓ+1

=,:
◦ splitℓ+1

=,:−1
)(�, �̃)) ∉ NC, since the map UMemℓ+1

=,:
does
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not the change the relative position of legs to each other. But �̃ ∉ NC is a contradiction to the

assumption. Therefore, if splitℓ+1

=,:−1
(�, �̃) has a crossing, then it is not possible that it is caused by

the two blocks of �̃. Assume splitℓ+1

=,:−1
(�, �̃) has a crossing and is caused by two blocks, where

none of the two blocks originated from the splitting or in the words: none of the two blocks in

splitℓ+1

=,:−1
(�, �̃) has the legs ℓ + 1 or ℓ + 2 as an element. Similarly, like in the previous case by

application of UMemℓ+1

=,:
we conclude that � ∉ NC which is a contradiction to the assumption.

Therefore, if splitℓ+1

=,:−1
(�, �̃) has a crossing, it is not possible that this crossing stems from the

above described two blocks. Let us assume that splitℓ+1

=,:−1
(�, �̃) has a crossing which is caused

by two blocks, where exactly one of the blocks has the property ℓ + 1 or ℓ + 2 is an element in

this block. Assume that the crossing appears between a block 1′ of splitℓ+1

=,:−1
(�, �̃), where the leg

ℓ + 2 does not belong to and a block 1, where the leg ℓ + 1 belongs to. Then, there would occur

a crossing between the unified block in � = pr
1
((UMemℓ+1

=,:
◦ splitℓ+1

=,:−1
)(�, �̃)) and the block 1′,

which remains unchanged. But this is a contradiction to the assumption that � ∈ NC. Therefore,
it must hold that splitℓ+1

=,:−1
(�, �̃) ∈ NC. �

4.1.10 Definition (Reduced partition, Generating set of partitions).

(a) We call a partition � ∈ Part reduced if and only if for each block 1 in � there do not exist

any block neighboring legs (Definition 3.1.1 (d)) in the block 1. For any given partition

� ∈ Part there exists a unique reduced partition, denoted by red� ∈ Part which we

obtain by induction and use of the map delete (in order to “delete” all block neighboring

legs of a block).

(b) Let � ⊆ Part. Since universal classes of partitions are stable under intersection, we may

define another universal class of partitions

Gen(�) ≔
⋂
P⊇�

P a UCP

P . (4.1.12)

We also say that � generates a partition � ∈ Part if and only if � ∈ Gen(�). We can extend

this terminology to sets of partitions � ⊆ Part and say that � generates a set of partitions �
if and only if � ⊆ Gen(�). If � consists of only one element, i. e., � = {,}, then we write

Gen(,) instead of Gen({,}).

4.1.11 Remark.

(a) Let P ⊆ Part be a universal class of partitions, then for each = ∈ ℕ we have a surjective

map red(P · ,2) −→ P · ,2, i. e., by a finite application of the map double we can start from

a reduced two-block partition and can generate any two-block partition of P .

(b) This is a rather informal discussion of the expression Gen(�) if � ⊆ Part. We recursively

define for all = ∈ ℕ

�(1) ≔
⋃

f∈
{ delete, double, pr

1
◦UMem,

pr
2
◦UMem, id

} im

(
f ◦ inc�,Part

)
∪ im

(
split ◦ inc�×�,Part×Part

) (4.1.13a)
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�(=+1) ≔
⋃

f∈
{ delete, double, pr

1
◦UMem,

pr
2
◦UMem, id

} im

(
f ◦ inc�(=) ,Part

)
∪ im

(
split ◦ inc�(=)×�(=) ,Part×Part

)
,

(4.1.13b)

whenever the abovemaps delete · , · , double · , · ,UMem ·· , · , split ·· , · might be well-defined for

valid index choices. In this setting we can see that

Gen(�) =
⋃
=∈ℕ

�(=) ⊆ Part . (4.1.14)

(c) Let � ⊆ Part, then � ⊆ Gen(�). If � ⊆ P ⊆ Part, where P is some universal class of

partitions, then we have Gen(�) ⊆ P .

4.1.12 Lemma. Let �′, � ⊆ Part and assume �′ ⊆ �.

Tfae: (a) Gen(�′) = Gen(�),

(b) � ⊆ Gen(�′).

Proof: The equivalence of the assertions follows from Remark 4.1.11 (c). �

4.1.13 Lemma. Let P ⊆ Part be an universal class of partitions and assume � ⊆ P is given.

Tfae: (a) Gen(�) = P ,

(b) red

(
P · ,2

)
⊆ Gen(�), i. e., � generates all reduced two-block partitions of P .

Proof: The equivalence of both assertions follows from Proposition 4.1.5, Remark 4.1.11 (c) and
(a). �

4.1.14 Lemma. It holds Gen( ) = I.

Proof: Obviously red(I · ,2) = { } and now the assertion follows from Lemma 4.1.13. �

4.1.15 Lemma.

(a) Gen
( )

= Gen
(
{ , }

)
.

(b) Gen
(
{ , }

)
= NC.

Proof: Ad (a): Set G ≔ Gen
( )

. If we can show ∈ G =⇒ ∈ G, then the assertion

follows from Lemma 4.1.12. We can calculate

� = ∈ G

=⇒ �1 = ∈ G È�1 = double3,3(�) É

=⇒ �2 = ∈ G È�2 = split3
4,2(�1 ,�) É

=⇒ �3 = ∈ G È�3 = (pr
2
◦UMem2

4,3)(�2) É.

Ad (b): Since red(NC · ,2) = { , }, the assertion follows from Lemma 4.1.13. �
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4.1.16 Lemma.

(a) Gen
( )

= Gen
(
{ , , }

)
.

(b) Gen
(
{ , , }

)
= Part.

Proof: Ad (a): We set G ≔ Gen
( )

. By Lemma 4.1.12 it suffices to show

{ , , } ⊆ G .

We show ∈ G =⇒ ∈ G. For this, consider the following calculation

� = ∈ G

=⇒ �1 ≔
1 2 3 4 5 6

∈ G È�1 = double · ,3(�) É

=⇒ �2 ≔
1 2 3 4 5 6

∈ G È�2 = split3
6,2(�1 , ) É

=⇒ �3 ≔
1 2 3 4

∈ G È�3 = (pr
2
◦UMem2

6,3)(�2) É

=⇒ �4 ≔ ∈ G È�4 = delete4,3(�3) É.

From Lemma 4.1.15 (a) follows ∈ G =⇒ ∈ G.
Ad (b): Put G ≔ Gen

(
{ , , }

)
. We can determine that { , } is the set of reduced

and noncrossing two-block partitions of Part. We need to determine the set of reduced two-block

partitions of Part which have at least one crossing. Denote the set of such partitions by -. We

can see that the following two types of such partitions exist. Let � ∈ -, then either there exists

: ∈ ℕ such that

� =
. . .

1 3 2:+12 4 2: 2:+2

(I)

or there exists a : ∈ ℕ \ {1} such that

� =
. . .

1 3 2:+12 4 2:

. (II)

We want to regard as a partition of type from equation (I) for : = 1. Hence, partitions of

the type from equation (II) are characterized by the property that the first and the last leg are

in one block. Partitions of the type from equation (I) are characterized by the property that the

first and the last leg are not in one block.

Weneed to show that∀ : ∈ ℕ partitions� ∈ Part · ,2 of type fromequation (I) andequation (II)

are in G. We prove this claim by induction over : ∈ ℕ. For the proof for the induction base

: = 1 for partitions of type from equation (II) we notice the following. We need to show

∈ G =⇒ ∈ G. This is shown by the following calculation

� = ∈ G

=⇒ �1 ≔
1 2 3 4 5 6

∈ G È�1 = (double · , · )2(�) É

=⇒ �2 ≔
1 2 3 4 5 6

∈ G È�2 = split4
6,2(�1 , ) É

=⇒ �3 ≔
1 2 3 4 5 6

∈ G È�3 = (pr
1
◦UMem3

6,3)(�2) É
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=⇒ �4 ≔ ∈ G È�4 = delete6,4(�3) É.

From the abovewe can conclude by a successive application of double · , · to that partitions

of the form like . . . are an element of G. We omit the proof for the induction base for

partitions of type from equation (I) and just proof the induction step : → : + 1 for partitions of

type from equation (II). Let us assume that � ∈ - and � is of type from equation (II) and the

above assertion holds for some : ∈ ℕ \ {1}. Then, we calculate

� =
. . .

1 3 2:+12 4 2:

∈ G È IHÉ

=⇒ �1 ≔ . . .
1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

∈ G È�1 = (double · ,1)3(�) É

=⇒ �2 ≔ . . .
1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

∈ G È�2 = split3· ,2(�1 , . . . ) É

=⇒ �3 ≔ . . .
1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

∈ G È�3 = (pr
1
◦UMem4

· ,3)(�2) É

=⇒ �4 ≔ . . .
1 2 3 5 2(:+1)+14 6 2(:+1)

∈ G È�4 = delete · ,5(�3) É.

The proof for partitions � ∈ - which are of type from equation (I) is proven analogously. The

only difference is that there exists an additional leg in the higher block according to the diagrams

from above, which denotes the last leg in the partition. �

4.1.17 Theorem. Let < = 1 and P be a universal class of partitions. Then, the only possible

cases for P are

• the u.c.p. of one block partitions 1B,

• the u.c.p. of interval partitions I,

• the u.c.p. of noncrossing partitions NC,

• the u.c.p. of all partitions Part.

These universal classes of partitions satisfy

1B ( I ( NC ( Part . (4.1.15)

Proof: We go through all the possible cases. We start with the following claim.

Claim 1. Assume that P is a universal class of partitions and P ⊆ 1B and P ≠ ∅, then P = 1B.

Since P is a universal class of partitions we have that the reduced one-block part 11 = ∈ P . But

Gen( ) = 1B and now the result follows from Remark 4.1.11 (c).

Claim 2. Assume that P is universal class of partitions such that P ⊆ I and P \ 1B ≠ ∅, then P = I.

Let � denote a partition such that � ∈ P \ 1B ⊆ I. Then, there needs to exist a : ∈ ℕ \ {1}
such that � ∈ P · ,: , i. e., � has : blocks as an interval partition. Now, we can calculate with the

existence of ℓ ∈ {0, . . . , = − 2} such that

� =
. . . . . . . . . . . . . . .ℓ+1

∈ P

=⇒ (pr
2
◦UMemℓ+1

=,:
)(�) =

. . . . . .
∈ P ÈP is UCPÉ

=⇒ ∈ P È successive application of delete · , · , P is UCPÉ
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From Remark 4.1.11 (c)we obtain Gen( ) ⊆ P . In Lemma 4.1.14 we have stated that Gen( ) = I
and therefore I ⊆ P , which shows Claim 2.

Claim 3. Assume that P is universal class of partitions, P ⊆ NC and P \ I ≠ ∅, then P = NC.

Let � denote a partition such that � ∈ P \ I ⊆ NC. Since � is not an interval partition, but is

noncrossing, we can see from equation (4.1.11) that there must exist a so-called “nesting” for �,
i. e.,

� =
. . . . . .8 :. . . . . .9. . . . . .

Now, we show if � has such a nesting, then this implies ∈ P . We calculate

� =
. . . . . .8 :. . . . . .9. . . . . .

∈ P

=⇒ �1 = . . . . . .8 : . . .9 . . .
∈ P È successive application of pr

1
◦UMem ·· , · É

=⇒ �2 = . . . . . .8 : . . .9 . . .
∈ P · ,2 È apply pr

2
◦UMem8

· , · to �1 É

=⇒ �3 = ∈ P È successive application of delete · , · É.

From Remark 4.1.11 (c) we obtain Gen( ) ⊆ P . In Lemma 4.1.15 we have stated that

Gen( ) = NC and therefore NC ⊆ P which shows Claim 3.

Claim 4. Assume that P is universal class of partitions and P ⊆ Part and P \ NC ≠ ∅, then
P = Part.

Let � ∈ P denote a partition from the above prerequisite such that � ∈ P \ NC. Then, � needs

to have a crossing, since � ∉ NC. We show for such � ∈ P that this implies the existence of a

partition �̃ ∈ P of the following two types. Either there exists some : ∈ ℕ such that

�̃ =
. . .

1 3 2:+12 4 2: 2:+2

∈ P (I)

or there exists some : ∈ ℕ \ {1} such that

�̃ =
. . .

1 3 2:+12 4 2:

∈ P . (II)

We want to regard as a partition of type from equation (I) for : = 1. We want to describe a

so-called “unification procedure” which is build upon a finite number of operations within the

universal class of partitions P . Whenever this unification procedure is applied to a partition �
with a crossing it gives us the existence of a partition �̃ ∈ P which is either type from equation (II)

or from equation (I). In fact behind this unification procedure is nothing but a recursive definition

of a certain map, but we prefer a somehow algorithmic or informal description of this recursive

map to better illustrate its behavior.

Assume that a partition � ∈ P has a crossing. Then, according to equation (4.1.8) the set

Cross(�) is not empty. Hence, there exist

(
(?1 , ?2), (@1 , @2)

)
∈ ℕ2×ℕ2

such that

(
(?1 , ?2), (@1 , @2)

)
∈

Cross(�). This implies the existence of two blocks 1? and 1@ such that 1? , 1@ ∈ � and {?1 , ?2} ⊆
set(1?) and {@1 , @2} ⊆ set(1@). If the partition � has only two blocks, then �̃ ≔ red� gives the

desired result. If the partition � has more than two blocks, then proceed as follows. We have an

order for the blocks of � due to the description of this order in Definition 4.1.2. We are able to

unify the first and the second block in the partition � by UMem. If the block 1? has been unified

and all block neighboring legs have been deleted by delete in (pr
1
◦UMem)(�), then address this
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block by 1? and set � ≔ red(�). The same holds for the block 1@ . We repeat this procedure until

either 1? is the first block of � and the second leg of � is the minimal leg of 1@ or either 1@ is the

first block � and the second leg of � is the minimal leg of 1? . The procedure needs to terminate

since in each step we reduce the amount of blocks in �. After this procedure has terminated we

unify the first and the second leg in the partition red� and then we put �̃ ≔ (pr
2
◦UMem1

· , · )(�).
We want to refer to this procedure as the unification procedure. Also compare this unification

procedure against the map GenerateTwoBlocks defined in Definition 4.1.2. We end up with a

partition �̃ ∈ P which has two blocks and has at least one crossing and which is either of type

from equation (II) or equation (I).

Now, let P̃ denote the set of all two-block partitions � ∈ P · ,2 such that � is of type from

equation (II) or equation (I) for some : ∈ ℕ. So far we have shown

P \ NC ≠ ∅ =⇒ P̃ ≠ ∅.

We want to show P̃ ≠ ∅ =⇒ ∈ P . Let � ∈ P̃ and assume it is of type from equation (II) for

some : ∈ ℕ \ {1}. By a (: − 1)-times application of double · , · to �, we obtain that

�1 ≔ . . .
1 3

. . .
2:+1 2:+:2 4 2:

∈ P .

By this we calculate

� =
. . .

1 3 2:+12 4 2:

∈ P

=⇒ �2 ≔ . . .
1 2 2: 2:+2 4:2:+1 2:+3

. . .
4:−1

∈ P

È�2 =
∧ (2: − 1)-application of double · ,1 to � É

=⇒ �3 ≔ . . .
1 3 2:−1 2:+2 4:2 4 2: 2:+1 2:+3 4:−1

. . .
∈ P È�3 = split1

4:,2
(�2 ,�1) É

=⇒ �4 ≔ . . .
1 2 : . . .:+1 :+2 2:

È�4 = (pr
2
◦UMem2:

4:,3
)(�3) É

=⇒ ∈ P È successive application of delete · , · to �4 É.

There is an analogous proof in the case that � is of type from equation (I).

Next, we want to show P̃ ≠ ∅ =⇒ ∈ P . For this, consider the following calculation

for a partition � ∈ P̃ of type from equation (II).

� =
. . .

1 3 2:+12 4 2:

∈ P

=⇒ �1 ≔ . . .
1 3 2:+22 4 5 2:+1

∈ P È�1 = double2:,4(�) É

=⇒ �2 ≔ . . .
1 3 2:+22 4 5 2:+1

∈ P È�2 = split4
2:+2,2

(�1 , . . . ) É

=⇒ �3 ≔ . . .
1 2 3 4

∈ P È�3 = (pr
2
◦UMem1

2:+2,2
)(�2) É

=⇒ �4 ≔
1 2 3 4 5

∈ P È successive application of delete · , · to �3 É

=⇒ �5 ≔
1 2 3 4 5 6

∈ P È�5 = double5,3(�4) É



138 Chapter 4. On the classification of universal classes of partitions

=⇒ �6 ≔
1 2 3 4 5 6

∈ P È�6 = split3
6,2(�5 , ) É

=⇒ ∈ P È�6 = (pr
2
◦UMem1

6,3)(�5) É.

Thus, we have shown that ∈ P and by Remark 4.1.11 (c) we obtain Gen( ) ⊆ P . In

Lemma 4.1.16 we have shown that Gen( ) = Part and therefore Part ⊆ P and this finishes

the proof of Claim 4. �

4.1.18 Lemma. Let P be a Universal Class of Partitions and = ∈ ℕ, then P= is a complete lattice

by reversed refinement.

Proof: If P = NC, then we refer for the proof to [NS06, Prop. 9.17]. For the other cases of P
the proof is similar and can also be compared with the proof of Lemma 4.2.48 in the case of a

two-colored universal class of partitions. �

4.2 Classification of universal classes of partitions: two-colored case

4.2.1 Convention.

(a) We set for any : ∈ ℕ, < ∈ ℕ and any <-colored universal class of partitions P

P · ,: ≔
⋃
=∈ℕ

⋃
�∈[<]×=

P�,: . (4.2.1)

(b) Let< ∈ ℕ. We extend the Convention 4.1.1 (c) for the single-colored case to the<-colored

case. Furthermore, it can occur that the maps mirror and cCol can be applied to partitions

where the maps do not carry any indices or just have some placeholders attached to

them. Which indices need to be chosen is determined by the partition to which we apply

these maps.

4.2.2 Definition. Let < ∈ ℕ and � ∈ [<]×= . In Definition 4.1.2 we have defined a natural order

between blocks of a single-colored partition and we can do this similarly in the multi-colored

case. Let � ∈ P�. For two blocks 1, 1′ ∈ � we can put 1 < 1′ if and only if � < �′, where

� = min

(
set

(
type(1)

) )
and �′ = min

(
set

(
type(1′)

) )
. With respect to this order we have a first

block 11 ∈ � and a second block 12 ∈ �. In the first block 11 there exists a leg ℓ+1 ∈ set
(
type(11)

)
such that ℓ + 2 = min

(
set

(
type(12)

) )
. By these notations we put

BorderLeg(�) ≔ ℓ + 1 (4.2.2)

4.2.3 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let � ∈ P�,:

for some � ∈ [<]×= and : ∈ ℕ \ {1}. If ℓ + 1 ≔ BorderLeg(�) and

� =
(1,�

1
) (2,�

2
) . . . (ℓ ,�ℓ ) (ℓ+1,�ℓ+1

) (ℓ+2,�ℓ+2
) . . .

∈ P�,: , (4.2.3)

then

(1,�
1
) (2,�

2
) . . . (ℓ ,�ℓ ) (ℓ+1,�ℓ+1

) (ℓ+2,�ℓ+2
) . . .

∈ P�,:−1

and

(1,�
1
) (2,�

2
) . . . (ℓ ,�ℓ ) (ℓ+1,�ℓ+1

) (ℓ+2,�ℓ+2
) . . .

∈ P(...,�ℓ+1 ,�ℓ+2 ,... ),2 (4.2.4)
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which is equivalent to

UMemℓ+1

�,: (�) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
. (4.2.5)

Proof: We prove this assertion by induction over ℓ ∈ ℕ. For the induction base ℓ = 0 we have

a block 1 ∈ � such that 1 ∈ set
(
type(1)

)
and a block 1′ ∈ � \ {1} such that 2 ∈ set

(
type(1′)

)
.

Assume that �1 ≠ �2, then we calculate

� =
(1,�

1
) (2,�

2
) . . .

∈ P�,:

=⇒ �1 ≔
(1,�

2
) (2,�

2
) . . .

∈ P(�2 ,�2 ,�3 ,...,),: È�1 = cCol�,(�2 ,�=)(�) É

=⇒ (�2 , �̃2) ≔
(
(1,�

2
) (2,�

2
) . . .

,
(1,�

2
) (2,�

2
) . . .

)
∈ sub

(
P1∧2

(�2 ,�2 ,�3 ,...,),:−1

)
È (�2 , �̃2) = UMem1

(�2 ,�2 ,�3 ,...,),:(�1) É

=⇒ (�3 , �̃3) ≔
(
(1,�

1
) (2,�

2
) . . .

,
(1,�

1
) (2,�

2
) . . .

)
∈ sub

(
P1∧2

�,:−1

)
È (�3 , �̃3) =

(
cCol�,(�1 ,�=)(�2), cCol(�2 ,�2 ,...,�ℓ+1 ,�ℓ+2 ,...,�A ),(�1 ,�A )(�̃2)

)
É.

In the case �1 = �2 we can directly apply UMem1

�,: to � and obtain the desired result. For the

induction step ℓ → ℓ + 1 we assume that the assertion holds for ℓ ∈ ℕ. Let � ∈ P� and assume

�1 = �2. Then, the induction hypothesis holds for �1 ≔ delete�,2(�) ∈ P(�1 ,�3 ,... ) since we have

deleted the second leg. This means (�2 , �̃2) ≔ UMemℓ+1

(�1 ,�3 ,... ),:(�1) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
(�1 ,�3 ,... ),:−1

)
. Then,

(�3 , �̃3) ≔ (double(�1 ,�3 ,... ),1(�2), double(�1 ,�3 ,... ),1(�̃2)) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
�,:−1

)
.

Hence, we have doubled the first leg in �2 resp. �̃2.

In the case �1 ≠ �2, we can achieve the same color for the first and the second leg by

cCol�,(�2 ,�=)(�) ∈ P(�2 ,�2 ,... ). Then, the argumentation from above applies and for the last step we

can change the color of the first leg back to �1. �

4.2.4 Remark. The importance of Lemma 4.2.3 relies in the fact that it allows us to unify the

first and the second block of a partition � ∈ P� by UMemℓ+1

�,: although �ℓ+1 ≠ �ℓ+2 and the image

is an element of P ×P . This is an essential implication of the axiom of Definition 3.4.9 (f) since
we can change the color of the first leg of a partition and we stay in P . A similar assertion to

Lemma 4.2.3 holds for two blocks at the end of a partition � ∈ Part�. By using the axiom of

“mirror symmetry” from Definition 3.4.9 (g) the leg BorderLeg(�), which was at the beginning

of a partition �, gets shifted towards the end of � after application of mirror� to �.

4.2.5 Lemma. Let P be an <-colored universal class of partitions for some < ∈ ℕ. Let � ∈ P�,:

for some � ∈ [<]×= and : ∈ ℕ\{1}. If A ≔ BorderLeg(�) ∈ ℕ, then for any ℓ ∈ {0, . . . , A−2} ⊆ ℕ0

and � ∈ Pcol(1),2 such that (�, �) ∈ sub

(
P (ℓ+1)∧(ℓ+2)
�,:

)
we have

splitℓ+1

�,:−1
(�, �) ∈ P�,: (4.2.6a)

= splitℓ+1

�,:−1

(
(1,�

1
) (2,�

2
) . . . (ℓ+1,�ℓ+1

) (ℓ+2,�ℓ+2
) . . . (A,�A ) (A+1,�A+1

) . . .
,
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(1,�
1
) (2,�

2
) . . . (ℓ+1,�ℓ+1

) (ℓ+2,�ℓ+2
) . . .

)
∈ P�,: (4.2.6b)

Proof: We prove this claim by induction over ℓ ∈ {0, . . . , A − 2} ⊆ ℕ0 for any A ∈ ℕ. For the

induction base ℓ = 0 we assume �1 ≠ �2 and calculate

(�, �) =
(
(1,�

1
) (2,�

2
) . . . (A,�A ) (A+1,�A+1

) . . .
,
(1,�

1
) (2,�

2
) . . . (A,(pr

2
(1))A )

)
∈ sub

(
P1∧2

�,:

)
=⇒ (�1 , �̃1) ≔

(
(1,�

2
) (2,�

2
) . . . (A,�A ) (A+1,�A+1

) . . .
,
(1,�

2
) (2,�

2
) . . . (A,(pr

2
(1))A )

)
∈ P × P

È (�1 , �̃1) =
(
cCol�,(�2 ,�=)(�), cColpr

2
(1),(�2 ,(pr

2
(1)))(�)

)
É

=⇒ �2 ≔
(1,�

2
) (2,�

2
) . . . (A,�A ) (A+1,�A+1

) . . .
È split1�,:−1

(�1 , �̃1) É ∈ P

=⇒ �3 ≔
(1,�

1
) (2,�

2
) . . . (A,�A ) (A+1,�A+1

) . . .
∈ P È�3 = cCol�,(�1 ,�=)(�2) É.

In the case �1 = �2 we can directly apply split1�,:−1
to (�, �) and obtain the desired result. For the

induction step ℓ → ℓ + 1 we assume that the assertion holds for some ℓ ∈ [A − 3]. Let (�, �) ∈
sub

(
P (ℓ+2)∧(ℓ+3)
�,:

)
. Then, the inductionhypothesis holds for (�1 , �̃1) ≔ (delete�,2(�), delete�,2(�)) ∈

sub

(
P (ℓ+1)∧(ℓ+2)
(�1 ,�3 ,... ),:

)
because we have deleted the second leg in each partition. This means �2 ≔

splitℓ+1

(�1 ,�3 ,... ),:−1
(�1 , �̃1) ∈ P(�1 ,�3 ,... ),: . Then, �3 ≔ double�,1(�2) ∈ P�,: since we have doubled the

first leg. The existence of �3 ∈ P proves the induction step.

In the case �1 ≠ �2, we can achieve the same color for the first and the second leg by

cCol�,(�2 ,�=)(�) ∈ P(�2 ,�2 ,... ). Then, the argumentation from above applies and for the last step we

can change the color of the first leg back to �1. �

4.2.6 Remark. The importance of Lemma 4.2.5 relies in the fact that it allows us to split block

neighboring legs ℓ + 1 and ℓ + 2 in the first block although �ℓ+1 ≠ �ℓ+2 and the image is an

element of P . This is an essential implication of the axiom of Definition 3.4.9 (f) since we

can change the color of the first leg of a partition and we stay in P . A similar assertion to

Lemma 4.2.5 holds for the two blocks at the end of a partition � ∈ Part�. By using the axiom of

“mirror symmetry” from Definition 3.4.9 (g) the leg BorderLeg(�), which was at the beginning

of a partition �, gets shifted towards the end of � after application of mirror� to �.

4.2.7 Convention.

(a) Forany<-coloredpartition� = {11 , . . . , 1:}withℕ 3 : blocksweputbyConvention 2.3.5

type(�) ≔
{
type(11), . . . , type(1:)

}
(4.2.7)

(b) We want to introduce the following convention to display legs with their attached color

label in a partition for the two-colored case. We set

(ℓ ,�ℓ )
↦−→


ℓ

for �ℓ = 1

ℓ

for �ℓ = 2.
(4.2.8)

Whenever a leg in a partition can take both colors of white and black we also draw it

with a gray sublabel . For instance the color of the first leg respectively the last leg of a
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partition can be independently chosen to be either white or black by Definition 3.4.9 (g).
Therefore, we can draw them both with a gray sublabel.

4.2.8 Definition. Let <, : ∈ ℕ \ {1}, = ∈ ℕ \ [: − 1] and � ∈ [<]×= . We want to recursively

define a map GenerateTwoBlocks which assigns to each partition � ∈ Part�,: with : Blocks a

(: − 1)-tuple of two-block partitions. If : = 2 and � ∈ Part�,: , then set

GenerateTwoBlocks(�) = (�). (4.2.9)

Now, assume : ∈ ℕ \ {2} and GenerateTwoBlocks has been defined for each� ∈ Part · ,:−1. Then,

for any � ∈ [<]×= and � ∈ Part�,: the ordered tuple(
(pr

2
◦UMemℓ+1

�,: )(�),GenerateTwoBlocks
(
(pr

1
◦UMemℓ+1

· ,: )(�)
) )

(4.2.10)

defines an (:−1)-tuple of two-block partitions. The assignment is well-defined by Lemma 4.2.3.

4.2.9 Example. Let P be a two-colored universal class of partitions. Assume

� =
1 2 3 4 5 6 7 8 9

∈ P · ,4. (4.2.11)

Then, GenerateTwoBlocks(�) leads to(
1 2 3 4

,
1 2 3 4 5 6

,
1 2 3 4 5 6 7 8 9

)
∈ P · ,2 × P · ,2 × P · ,2. (4.2.12)

4.2.10 Lemma.

(a) Let < ∈ ℕ and define for any : ∈ ℕ the set Part · ,: ≔
⋃
=∈ℕ

⋃
�∈[<]×= Part�: . The map

GenerateTwoBlocks : Part · ,: −→ (Part · ,2)×(:−1)
is injective.

(b) Let P ⊆ Part be an <-colored universal class of partitions for < ∈ ℕ, then

GenerateTwoBlocks �P : P −→ (P · ,2)×(:−1)
.

Proof: Ad (a): The proof is technical but can be directly done. Like in the single-colored

case we notice that we can “reconstruct” a partition � ∈ Part · ,: from GenerateTwoBlocks(�).
In other words, we can give a left inverse to GenerateTwoBlocks by a successive application of

Lemma 4.2.5.

Ad (b): This is a consequence from Lemma 4.2.3. �

We have an analogous result to Proposition 4.1.5 for the multi-colored case.

4.2.11 Proposition. Let P and R be two <-colored universal classes of partitions for < ∈ ℕ.

Denote the set of all two-block partitions of P by P · ,2 resp. the set of all two-block partitions

ofR byR · ,2.

Tfae: (a) R = P ,

(b) R · ,2 = P · ,2.

Proof: The proof in this multi-colored case follows by an analogous reasoning from the single-

colored case (Proposition 4.1.5). �
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4.2.12 Definition (Crossing partition). Let <, = ∈ ℕ and � ∈ [=]. For any partition � ∈ Part�
we set

Cross(�) ≔


(
(?1 , ?2), (@1 , @2)

)
∈ ℕ×2 × ℕ×2

�������
?1 < @1 < ?2 < @2 , ∃1, 1′ ∈ � :

1 ≠ 1′, {?1 , ?2} ⊆ set
(
type(1)

)
,

{@1 , @2} ⊆ set
(
type(1′)

)
. (4.2.13)

We call elements of the set Cross(�) crossings. For partition � ∈ Part� we say it is a partition
with crossing or just crossing if and only if Cross(�) ≠ ∅. If 2 ≔

(
(?1 , ?2), (@1 , @2)

)
∈ Cross(�),

then we say that ?1 is the first outer leg of the crossing 2, @1 is the first inner leg of the crossing 2,
?2 is the second inner leg of the crossing 2 and @2 is the second outer leg of the crossing 2.

Next, we are going to define certain types of two-colored partitions. It will turn out that

these in fact satisfy the properties of a universal class of partitions. To decide if a given partition

� is an element of a certain type of two-colored partitions, we need to check what we call a

“triple legs scenario” within this partition �

8

. . .

9

. . .
:

�8
� 9

�:

(4.2.14)

depending on the colors �8 , � 9 , �: ∈ { , }. This means that, whenever there are legs 8 and :,

which belong to one block of the partition �, and there is a leg 9, then we need to answer the

question “what is the allowed relative position of the legs 8 , 9 , : in the partition � depending on

the colors �8 , � 9 , �: ∈ , ?”.

4.2.13 Definition. Let < = 2. For any = ∈ ℕ we define the following types of partitions

(a) A partition � ∈ Part� is said to be a one block for � = (�8)8∈[=] ∈ { , }×= if and only if

|�| = 1 ⇐⇒ type(�) ∈ 1B. The set of all partitions which are one block for any � is

denoted by 1B{ , }.

(b) A partition � ∈ Part� is said to be an interval for � = (�8)8∈[=] ∈ { , }×= if and only if

type(�) ∈ I ⇐⇒

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
=⇒ 9 ∈ set

(
type(1)

) )
(4.2.15a)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

)
. (4.2.15b)

The set of all partitions which are an interval for any � is denoted by I{ , }.

(c) A partition � ∈ Part� is said to be interval-noncrossing for � = (�8)8∈[=] ∈ { , }×= if and

only if

type(�) ∈ NC (4.2.16a)

and ∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒ (9 , �9) ∈ set(1)

)
(4.2.16b)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

)
. (4.2.16c)
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The set of all partitions which are interval-noncrossing for any � is denoted by I NC .

(d) A partition � ∈ Part� is said to be noncrossing-interval for � = (�8)8∈[=] ∈ { , }×= if and

only if

type(�) ∈ NC (4.2.17a)

and ∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒ (9 , �9) ∈ set(1)

)
(4.2.17b)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

)
. (4.2.17c)

The set of all partitions which are interval-noncrossing for any � is denoted by NC I .

(e) A partition � ∈ Part� is said to be pure noncrossing for � = (�8)8∈[=] ∈ { , }×= if and only

if

type(�) ∈ NC (4.2.18a)

and ∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒

(
(9 , �9) ∈ set(1)

)
∨

(
∃1′ ∈ � \ {1} : 9 ∈ set(type(1′)),

set(type(1′)) ⊆ [8 + 1, : − 1] ⊆ ℕ,

set(col(1′)) =
)

(4.2.18b)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

)
(4.2.18c)

and ∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒

(
(9 , �9) ∈ set(1)

)
∨

(
∃1′ ∈ � \ {1} : 9 ∈ set(type(1′)),

set(type(1′)) ⊆ [8 + 1, : − 1] ⊆ ℕ,

set(col(1′)) =
)

(4.2.18d)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

)
.

(4.2.18e)

The set of all partitions which are pure noncrossing for any � is denoted by pureNC.

(f) A partition � ∈ Part� is said to be noncrossing for � = (�8)8∈[=] ∈ { , }×= if and only if

type(�) ∈ NC. (4.2.19)

The set of all partitions which are noncrossing for any � is denoted by NC{ , }.
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(g) A partition � ∈ Part� is said to be interval-crossing for � = (�8)8∈[=] ∈ { , }×= if and only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒ (9 , �9) ∈ set(1)

)
(4.2.20a)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

)
. (4.2.20b)

The set of all partitions which are interval-crossing for any � is denoted by I A .

(h) A partition � ∈ Part� is said to be crossing-interval for � = (�8)8∈[=] ∈ { , }×= if and only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒ (9 , �9) ∈ set(1)

)
(4.2.21a)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

)
. (4.2.21b)

The set of all partitions which are interval-crossing for any � is denoted by A I .

(i) A partition � ∈ Part� is said to be noncrossing-crossing for � = (�8)8∈[=] ∈ { , }×= if and

only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒

(
(9 , �9) ∈ set(1)

)
∨

(
∃1′ ∈ � \ {1} : 9 ∈ set(type(1′)),

set(type(1′)) ⊆ [8 + 1, : − 1] ⊆ ℕ,

set(col(1′)) =
)

(4.2.22a)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

)
.

(4.2.22b)

The set of all partitions which are noncrossing-crossing for any � is denoted by NC A .

(j) A partition � ∈ Part� is said to be crossing-noncrossing for � = (�8)8∈[=] ∈ { , }×= if and

only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 = =⇒

(
(9 , �9) ∈ set(1)

)
∨

(
∃1′ ∈ � \ {1} : 9 ∈ set(type(1′)),

set(type(1′)) ⊆ [8 + 1, : − 1] ⊆ ℕ,

set(col(1′)) =
)

(4.2.23a)

=
∧

(
8 . . .

9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

)
.

(4.2.23b)



4.2 Classification of universal classes of partitions: two-colored case 145

The set of all partitions which are noncrossing-crossing for any � is denoted by A NC .

(k) A partition � ∈ Part� is said to be binoncrossing for � = (�8)8∈[=] ∈ { , }×= if and only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.24a)

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.24b)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.24c)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨ {
any block structure only with

-legs between outer legs

}
(4.2.24d)

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.24e)

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.24f)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.24g)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨ {
any block structure only with

-legs between outer legs

} . (4.2.24h)

The set of all partitions which are binoncrossing for any � is denoted by biNC.

(l) A partition � ∈ Part� is said to be pure crossing for � = (�8)8∈[=] ∈ { , }×= if and only if

∀ 9 ∈ [=], ∀ 8 ∈ [9 − 1], ∀ : ∈ [=] \ [9], ∀1 ∈ � :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.25a)

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.25b)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.25c)
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∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨ {
any block structure only with

-legs between outer legs

}
(4.2.25d)

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.25e)

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.25f)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨
. . . . . . . . . . . .8 9 :

(4.2.25g)

∨
. . . . . . . . . . . . . . .8 9 :

8 . . .
9

. . . :

=⇒
8 . . . 9 . . . :

∨ {
any block structure only with

-legs between outer legs

} . (4.2.25h)

The set of all partitions which are pure crossing for any � is denoted by pureC.

4.2.14 Remark. It can be shown that our definition of interval-noncrossing is equivalent to

the definition provided by [Liu19]. Furthermore, it can be shown that our definition of

binoncrossing partitions is equivalent to the usual one, for instance used in [CNS15]. We can

actually see what literally makes these partitions binoncrossing, if we connect white labeled

legs to an upper line. As an example we have

=
∧

. (4.2.26)

4.2.15 Lemma. The set of all one block partitions 1B{ , } is a two-colored universal class of

partitions.

Proof: We need to check the properties for a two-colored universal class of partitions from

Definition 3.4.9 for < = 2. By definition of 1B{ , } in Definition 4.2.13 (a) it is clear that

Definition 3.4.9 (a) is satisfied. It remains to check the properties of (b) – (g). Therefore let

f ∈ {delete, double, cCol,mirror} and let � be a one block partition for some � = (�8)8∈[=] ∈ [<]×< .
Denote the left inverse of f by g. The existence of g is well definedby the assertions of Lemma 3.4.4,

Lemma 3.4.7 and Lemma 3.4.13. Assume that f(�) ∉ 1B{ , }, then this means that |f(�)| ≥ 2. For

each left inverse g of f we have |(g◦ f)(�)| ≥ 2. But this would imply that� ∉ 1B{ , }, since g◦ f = id
which is a contradiction to the assumption � ∈ 1B{ , }. Similar statements hold for UMem and

split. By proof of contradiction the properties of Definition 3.4.9 (b) – (g) are fulfilled. �

4.2.16 Lemma. The set of all interval partitions I{ , } is a two-colored universal class of parti-

tions.

Proof: Since 1B{ , } ⊆ I{ , } we have that Definition 3.4.9 (a) is satisfied. It remains to check

the properties of Definition 3.4.9 (b) – (g). This means we have to prove for f ∈ {delete, double,
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pr
1
◦UMem, pr

2
◦UMem, cCol,mirror}

� ∈ 1B{ , } =⇒ f(�) ∈ 1B{ , }

and

(�, �̃) ∈
(
sub

(
Part(ℓ+1)∧(ℓ+2)

�,:

)
∩ (1B{ , } × 1B{ , })

)
=⇒ split(�, �̃) ∈ 1B{ , } .

If a partition � ∉ I{ , }, then according to equation (4.2.15a) this is equivalent to the following

statement

∃ 9 ∈ [=], ∃ 8 ∈ [9 − 1], ∃ : ∈ [=] \ [9], ∃� ∈ � :(
8 , : ∈ set

(
type(�)

) )
∧

(
9 ∉ set

(
type(�)

) )
=
∧

8 . . . 9 . . . :

. (I)

If a partition is not element of I{ , }, then according to the diagram of equation (I) we let 1 9
denote the block of � such that 9 ∈ set(pr

1
(1 9)).

Let � ∉ I{ , }, then we claim f(�) ∉ I{ , } for f ∈ {delete, double}. The relative order of

the blocks of f(�) and f(1 9) remains in f(�) as � and 1 9 have in �. This holds independently of

the fact if a leg has been deleted respectively doubled before the position 8, between 8 and 9,

between 9 and : or after :. Since delete and double are inverse to each other, it follows by proof

of contradiction that � ∈ I{ , } =⇒ f(�) ∈ I{ , }.
Next, we want to show �̃ ∈ I{ , } =⇒ UMem(�̃) ∈ I{ , } × I{ , }. We show this proof of

contradiction. For this, assume �̃ ∈ I{ , } and �′ ≔ (pr
2
◦UMem ·· , · )(�̃). Hence, �′ is a two block

partition. Furthermore, set� ≔ (pr
1
◦UMem ·· , · )(�̃). By definition of the image of the map UMem,

we have (�,�′) ∈ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:

)
, hence there exists a block 1 in �, which can get split by

{�, 1 9}. Then, the two blocks of the two-block partition 1  {�, 1 9} have the same relative order

in split(�,�′) as � and 1 9 in �′. Assume now � ∉ I{ , } and (�,�′) ∈ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:

)
. Wemake

the following case consideration. A block 1 in � gets split by �′ which is neither � nor 1 9 . Then,

the relative order of � and 1 9 remains in split(�,�′) as � and 1 9 have in �. Assume the block � gets
split. Only block neighboring legs (with the same color) can get split up and the split point can be

before or after the position 9. Then, it is obvious that split(�,�′) ∉ I{ , }. For the last case assume

that the block 1 9 gets split. In this case also follows that split(�,�′) ∉ I{ , }. Now, since split is the
left inverse of UMem it follows by contradiction that �̃ ∈ I{ , } =⇒ UMem(�̃) ∈ I{ , } × I{ , }.

Next, we want to show (�, �′) ∈ ((I{ , } × I{ , }) ∩ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:

)
=⇒ � ≔ split(�, �′) ∈

I{ , }. Assume therefor that � ∉ I{ , }. Assume two neighboring legs with the same color of

different blocks get unified such that not both blocks are � and 1 9 . Then, the relative order of �
and 1 9 remains in (pr

1
◦UMem)(�) as of � and 1 9 in�. Assume now that � and 1 9 get unified. Then,

the relative order of � and 1 9 remains in (pr
2
◦UMem)(�) as of � and 1 9 in�. Since UMem is the left

inverse to split it follows by contradiction that (�, �′) ∈ (I{ , } × I{ , }) ∩ sub

(
Part(ℓ+1)∧(ℓ+2)

�,:

)
=⇒

� ∈ I{ , }.
It is clear that if f ∈ {cCol,mirror}, then � ∈ I{ , } =⇒ f(�) ∈ I{ , }. �

4.2.17 Remark. The above proof could also be heavily shortened by referencing to the fact that

the set I is a universal class of partitions. Instead we have chosen going a longer way, since

the concept of the above proof will be a role model for the following proofs. We use a proof

of contradiction because it is much easier to track a “defect” in a partition which prevents it

from being an element in a certain two-colored universal class of partitions.
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4.2.18 Lemma. The set of all interval-noncrossing partitions I NC is a two-colored universal

class of partitions.

Proof: It is clear that Definition 3.4.9 (a) is satisfied. We prove the remaining axioms by

proof of contradiction. Therefor we need an equivalent characterization for the fact that a

partition � ∉ I NC . The negation of statements of equations (4.2.16a) and (4.2.16b) lead to

� ∉ I NC ⇐⇒
type(�) ∉ NC (I)

or ∃ 9 ∈ [=], ∃ 8 ∈ [9 − 1], ∃ : ∈ [=] \ [9], ∃� ∈ � :(
8 , : ∈ set

(
type(1)

)
, �9 =

)
∧

(
(9 , �9) ∉ set(�)

)
(II)

=
∧

8 . . . 9 . . . :

.

Hence, we have to make two case considerations: equation (I) or equation (II). Assume

that type(�) ∉ NC. We have already proven that the class NC is closed under the operations

delete, double,UMem and split. This is equivalent to say that if a partition is noncrossing, then

it remains noncrossing under the operations delete, double,UMem and split. We easily convince

ourselves that the same is true for the operations cCol and mirror. Now, we perform the proof of

contradiction. Assume � ∈ I NC and type(f(�)) ∉ NC for f ∈ {delete, double, cCol,mirror}. Let
g denote the left inverse for type ◦ f. The left inverse satisfies , ∈ {delete, double,UMem} in the

case < = 1. Then, , ◦ ( 5 ◦ type) = id and we obtain type(�) ∉ NC, which is a contradiction to the

assumption. A similar statement holds for UMem and split.
Now, we claim that if a partition � ∈ Part� satisfies the statement of equation (II), then

the partition f(�) for f ∈ {delete, double, cCol,mirror} satisfies it too. A similar statement holds

for UMem and split. The proof is performed analogously like in the proof of Lemma 4.2.16

because the color of the leg 9 is now specified to . Assuming that � ∈ I NC and f(�) satisfies
equation (II) leads to a contradiction using the left inverse of f. A similar statement holds for

UMem and split. This shows that I NC is a two-colored universal class of partitions. �

4.2.19 Lemma. The set of all interval-noncrossing partitions NC I is a two-colored universal

class of partitions.

Proof: The proof is similar to the proof of Lemma 4.2.18. �

4.2.20 Lemma. The set of all pure noncrossing partitions pureNC is a two-colored universal

class of partitions.

Proof: We prove this statement by contradiction. We first give an equivalent characterization

of equation (4.2.18) for a partition to be pure noncrossing, which is � ∈ pureNC ⇐⇒

type(�) ∈ NC (Ia)

and ∀1 ∈ � :(
type(1) is nested block =⇒

(
set(col(1)) = { }

)
∨

(
set(col(1)) = { }

) )
(Ib)

=
∧
(

. . . . . . . . .
1

=⇒
(

. . . . . . . . .
1

)
∨

(
. . . . . . . . .

1

) )
.
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Starting from the above wewant to formulate an equivalent characterization for a partition � not

being pure noncrossing. According to equation (Ia) and equation (Ib) we have � ∉ pureNC ⇐⇒

pr
1
(�) ∉ NC (II)

or ∃� ∈ � : (
type(�) is nested block

)
∧

( (
set(col(�)) ≠ { }

)
∧

(
set(col(�)) ≠ { }

) )
(III)

=
∧

. . .
�

. . . . . . . . . . . . .

Assuming that� ∉ pureNCmeans considering two cases. In the first casewe assume that term (II)

holds. But we have already seen that the set of all noncrossing partitions is a universal class of

partitions. Therefore, by proof of contradiction we obtain � ∈ pureNC =⇒ type(�) ∈ NC.
Now, let us assume that the term in (III) holds for a partition � ∈ Part�. Then, for

f ∈ {delete, double, cCol,mirror} the partition f(�) fulfills the term in (III) too. The proof is

performed analogously like the proof of Lemma 4.2.16, where the unique block of the leg 9 has

to be replaced by the block �, which is an inner block and has at least two legs, where one leg

has the color and the other one has the color . Assuming that � ∈ pureNC and f(�) satisfies
the term in (III) leads to a contradiction using the left inverse of f. A similar statement holds for

UMem and split. This shows that pureNC is a two-colored universal class of partitions. �

4.2.21 Lemma. The set of all noncrossing partitions NC{ , } is a two-colored universal class of

partitions.

Proof: The proof relies on the fact that the set of all noncrossing partitions NC is a universal

class of partitions, which we have already proven. �

4.2.22 Lemma. The set of all interval-crossing partitions I A is a two-colored universal class

of partitions.

Proof: The proof is similar to the proof of Lemma 4.2.18. �

4.2.23 Lemma. The set of all crossing-interval partitions A I is a two-colored universal class

of partitions.

Proof: The proof is similar to the proof of Lemma 4.2.18. �

4.2.24 Lemma. The set of all noncrossing-crossing partitions NC A is a two-colored universal

class of partitions.

Proof: Wewant toprove this statementbyproofof contradiction. For this, weneedan equivalent

characterization for a partition � ∉ NC A . For � ∈ NC A and f ∈ {delete, double, cCol,mirror}
and from equation (4.2.22a) we obtain that f(�) ∉ NC A ⇐⇒

∃ 9 ∈ [=], ∃ 8 ∈ [9 − 1], ∃ : ∈ [=] \ [9], ∃� ∈ f(�) :
(
8 , : ∈ set

(
type(�)

)
, �9 =

)
(Ia)

∧
(
(9 , �9) ∉ set(�) (Ib)

∧
(
∀1′ ∈ � \ {�} : 9 ∉ set(type(1′))

)
(Ic)

∨ set(type(1′)) * [8 + 1, : − 1] ⊆ ℕ
)

(Id)
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∨ set(col(1′)) ≠
) )
. (Ie)

Hence, if a partition f(�) ∉ NC A , it can be satisfied by 3 different case, i. e., the terms in (Ia),

(Ib) and at least one of the 3 terms in (Ic), (Id) or (Ie) is true.

Assume for a partition� ∈ NC A and for f ∈ {delete, double, cCol,mirror} that the following

statement is true

(� ∈ NC A ) ∧
(
(Ia) ∧ (Ib) ∧ (Ie)︸              ︷︷              ︸)

(II)

=
∧

. . . 9 . . . . . .8 :

.

Hence, the block in f(�) which inherits leg 9 but not 8 and :, has the property that at least two

legs have different colors. It can be shown that this also holds for the partition of (g◦ f)(�), where

g is the left inverse of f. The proof is analogous to the proof of Lemma 4.2.18 and Lemma 4.2.20.

Finally, this leads to a contradiction to the assumption that � ∈ NC A . Therefore, the statement

of (II) is false. A similar statement holds for UMem and split.
Assume for a partition� ∈ NC A and for f ∈ {delete, double, cCol,mirror} that the following

statement is true

(� ∈ NC A ) ∧
(
(Ia) ∧ (Ib) ∧ (Ic)

)
. (III)

In other words, in f(�) there is no block, such that the leg 9 is an element of this block. This also

holds for the partition (g ◦ f)(�), where g is the left inverse of f. This leads to a contradiction to

the assumption that � ∈ NC A . Therefore the statement of (III) is false. A similar statement

holds for UMem and split.
Assume for a partition� ∈ NC A and for f ∈ {delete, double, cCol,mirror} that the following

statement is true

(� ∈ NC A ) ∧
(
(Ia) ∧ (Ib) ∧ (Id)︸              ︷︷              ︸)

(IV)

=
∧

(
. . . 8 . . . . . .9 :

)
∨

(
. . . . . . . . .8 9 :

)
. (V)

This means in the partition f(�) the block which inherits the leg 9 but not the legs 8 and : has the

property, that it has a crossing with the block of the legs 8 and :. If we track the relative order

of the legs 8, 9 and : in the partition (g ◦ f)(�), where g is the left inverse of f, then the crossing

of (V) remains. This is a contradiction to the assumption that � ∈ NC A . A similar statement

holds for UMem and split.
So far we have shown that (II) ∨ (III) ∨ (IV) is false, therefore its negation must be true,

which is � ∈ NC A =⇒ f(�) ∈ NC A for f ∈ {delete, double, cCol,mirror}. Analogously for

UMem and split. This shows that NC A is a two-colored universal class of partitions. �

4.2.25 Lemma. The set of all crossing-noncrossing partitions A NC is a two-colored universal

class of partitions.

Proof: The is similar to the proof of Lemma 4.2.24. �

4.2.26 Lemma. The set of all binoncrossing partitions biNC is a two-colored universal class of

partitions.
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Proof: We prove this property by contradiction. Therefor we need implications for a partition

not being an element in the set biNC. Let � ∈ biNC and f ∈ {delete, double, cCol,mirror}. If we

perform the negation of the expressions of (4.2.24), then we obtain f(�) ∉ biNC ⇐⇒

∃ 9 ∈ [=], ∃ 8 ∈ [9 − 1], ∃ : ∈ [=] \ [9] : (I)

. . . 9 . . . . . .8 :

occurs in f(�) (II)

or

. . . 8 . . . . . .9 :

occurs in f(�) (III)

or

. . . . . . . . .8 9 :

occurs in f(�) (IV)

or

. . . 8 . . . . . .9 :

occurs in f(�) (V)

or

. . . . . . . . .8 9 :

occurs in f(�). (VI)

Assume � ∈ biNC and the situation characterized in the diagram in (II). This is a special case

of a case which has already been treated in the proof of Lemma 4.2.24. The difference is that

the color of the legs 8 and : have been specified to . Therefore, it can be shown that a similar

diagram as (II) occurs in the partition (g ◦ f)(�), where g is the left inverse of f. But this leads to a

contradiction to the assumption that � ∈ biNC. Thus, the statement � ∈ biNC ∧ (I) ∧ (II) is false.

A similar statement holds for UMem and split.
Assume now � ∈ biNC and the situation characterized in the diagram in (III). This case

is characterized by the property that in the partition f(�) exists a crossing, where the interior

legs of the crossing both share the same color, i. e., in this case they have the color . We have to

show that this property also holds for the partition (g ◦ f)(�), where g is the left inverse of f. We

already know that from the case < = 1 that the following implication is true

� ∈ NC =⇒ f(�) ∈ NC.

This is equivalent to the implication

f(�) ∉ NC =⇒ � ∉ NC.

Let � ∈ biNC and f(�) ∉ biNC, then by the above implication we obtain

f
(
type(�)

)
∉ NC =⇒ (g ◦ f)

(
type(�)

)
∉ NC,

where the crossing in (g ◦ f)
(
type(�)

)
is caused by the blocks of the legs 8 and 9 in the partition

�. It is clear that the colors of the legs 8 and 9 can not be changed by any left inverse g of f. This
shows that in the partition (g ◦ f)(�) a similar situation as in (III) occurs which is a contradiction

to the assumption � ∈ biNC. Therefore the statement � ∈ biNC ∧ (I) ∧ (III) is false. A similar

statement holds for UMem and split.
Analogously we can show that the statements

� ∈ biNC ∧ (I) ∧ (IV),

� ∈ biNC ∧ (I) ∧ (V),

� ∈ biNC ∧ (I) ∧ (VI)

are false. A similar statement holds for UMem and split. In all cases we have led the assumption

� ∈ biNC∧ f(�) ∉ biNC to a contradiction and the assertion follows by proof of contradiction. �
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4.2.27 Lemma. The set of all pure crossing partitions pureC is a two-colored universal class of

partitions.

Proof: The proof of this assertion is similar to the proof of Lemma 4.2.26. W use the notation

from there. This means for any f ∈ {delete, double, cCol,mirror} that a partition f(�) ∉ pureC is

equivalently characterized by the following properties

∃ 9 ∈ [=], ∃ 8 ∈ [9 − 1], ∃ : ∈ [=] \ [9] :

. . . 9 . . . . . .8 :

occurs in f(�)

or

. . . 8 . . . . . .9 :

occurs in f(�)

or

. . . . . . . . .8 9 :

occurs in f(�)

or

. . . 8 . . . . . .9 :

occurs in f(�)

or

. . . . . . . . .8 9 :

occurs in f(�).

The last fourdiagrams show that there are twoblockswhich lead to a crossing and the interior legs

of this crossing have different colors. This can be seen in similarity to the proof of Lemma 4.2.26,

where an occurring crossing with same colored inner legs forbids the belonging of a partition

to the set biNC. Therefore, the proof is analogously done and the assertion follows. �

4.2.28 Definition (Reduced partition, Generating set of partitions). Let = ∈ ℕ and � =

(�8)8∈[=] ∈ { , }×= .

(a) We call a partition � ∈ Part{ , } reduced if and only if for each block 1 in � there do

not exist block neighboring legs (with the same color) in the block 1. For any given

partition � ∈ Part{ , } there exists a unique reduced partition denoted by red� ∈ Part,
which we obtain by induction and the map delete and cCol in order to “delete” all block

neighboring legs within a block.

(b) Let Part{ , } be the set of all two-colored partitions. Let � ⊆ Part{ , }. Since two-colored

universal classes of partitions are stable under intersection, we may define another

two-colored universal class of partitions

Gen(�) ≔
⋂
P⊇�

P a 2-col. UCP

P . (4.2.27)

We also say that � generates a partition � ∈ Part if and only if � ∈ Gen(�). We can extend

this terminology to sets of partitions � ⊆ Part and say that � generates a set of partitions �
if and only if � ⊆ Gen(�). If � consists of only one element, i. e., � = {,}, then we write

Gen(,) instead of Gen({,})). By this we define

4.2.29 Remark.

(a) Let P ⊆ Part{ , } be a universal class of partitions. Then, for each = ∈ ℕ and � ∈ { , }×=
we have a surjective map red(P�,2) −→ P�,2, i. e., by a finite application of the map double
and cCol we can start from a reduced two-block partition and can generate any two-block

partition of P�,2.
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(b) This is a rather informal discussion of the expression Gen(�) if � ⊆ Part{ , }. We

recursively define for all = ∈ ℕ

�(1) ≔
⋃

f∈
{ delete, double, pr

1
◦UMem,

pr
2
◦UMem, cCol,mirror, id

} im

(
f ◦ inc�,Part

)
∪ im

(
split ◦ inc�×�,Part×Part

) (4.2.28a)

�(=+1) ≔
⋃

f∈
{ delete, double, pr

1
◦UMem,

pr
2
◦UMem, cCol,mirror, id

} im

(
f ◦ inc�(=) ,Part

)
∪ im

(
split ◦ inc�(=)×�(=) ,Part×Part

)
,

(4.2.28b)

wherever the above maps delete · , · , double · , · ,UMem ·· , · , split ·· , · , cCol · , · ,mirror · might be

well-defined for valid index choices. In this setting we can see that

Gen(�) =
⋃
=∈ℕ

�(=). (4.2.29)

(c) Let � ⊆ Part{ , }, then � ⊆ Gen(�). If � ⊆ P ⊆ Part, where P is some universal class of

partitions, then we have Gen(�) ⊆ P .

4.2.30 Lemma. Let �′, � ⊆ Part{ , } and assume �′ ⊆ �.

Tfae: (a) Gen(�′) = Gen(�),

(b) � ⊆ Gen(�′).

Proof: The equivalence of the assertions follows from Remark 4.2.29 (c). �

For the following proofs of lemmas we need to determine the set of all two-block partitions

for a given two-colored universal class of partitions. For � = (�8)8∈[=] ∈ { , }×= and a partition

� ∈ Part� with two blocks we can see from Definition 4.2.13 that we need to distinct between

three cases for type(�):

• type(�) can be an interval partition, i. e.,

. . . . . . , (4.2.30)

• type(�) can be a noncrossing partition which is not an interval partition, i. e.,

. . . . . . . . . , (4.2.31)

• type(�) can be a crossing partition, i. e.,

. . . . . . . . . . . . . . . . . . . . . , (4.2.32a)

. . . . . . . . . . . . . . . . . . . . . . . . . (4.2.32b)

The difference between diagram (4.2.32a) and diagram (4.2.32b) is that the first and the last

leg lie in different blocks or the first and the last leg are in the same block.
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If we want to determine all two-block partitions for a two-colored universal class of partitions,

we need to decide how we are allowed to “decorate” the legs by or in the diagrams (4.2.30),

(4.2.31) and (4.2.32). This is one of the tasks we have to look in the following.

4.2.31 Lemma. Let P ⊆ Part{ , } be an universal class of partitions and assume � ⊆ P is given.

Tfae: (a) Gen(�) = P ,

(b) red

(
P · ,2

)
⊆ Gen(�), i. e., � generates all reduced two-block partitions of P .

Proof: The equivalence of both assertions follows from Proposition 4.2.11, Remark 4.2.29 (c)
and (a). �

4.2.32 Lemma. It holds that Gen( ) = I{ , }.

Proof: Weneed todetermine all reduced two-blockpartitions of I{ , }. Thefirst step is determine

a general form for an arbitrary two-block partition of I{ , }. Therefor we have to decide how we

can attach colors to the legs of a two-block partition � of equations (4.2.30), (4.2.31) and (4.2.32)

such that the expression of (4.2.15a) is fulfilled. But in this case it is trivial because according

to Definition 4.2.13 (b) we have � ∈ I{ , } :⇐⇒ type(�) ∈ I. Therefore, an arbitrary two-block

partition of I{ , } has the form

(1,�
1
) . . . (ℓ ,�ℓ ) (ℓ+1,�ℓ+1

) . . . (=,�= )
, (I)

where (�8)8∈[=] ∈ { , }×= . By Definition 3.4.9 (f) we know that the first and the last leg in each

partition can take any color and by a finite application of double we see that can generate

any partition of the form from equation (I). We can now use Lemma 4.2.31 and the assertion

follows. �

4.2.33 Lemma.

(a) Gen
( )

= Gen
(
{ , }

)
,

(b) Gen
(
{ , }

)
= I NC .

Proof: Ad (a): From Lemma 4.2.30 we can see that this statement is shown by proving the

equation

∈ Gen
( )

. (I)

For this, we consider the following calculation, where we abbreviate G ≔ Gen
( )

� = ∈ G

=⇒ �1 = ∈ G È�1 = double · ,3(�) É

=⇒ �2 = ∈ G È�2 = split3· ,2(�1 ,�) É

=⇒ �3 = ∈ G È�3 = (pr
2
◦UMem2

· ,3)(�2) É.

This proves the statement of equation (I).

Ad (b): We claim

red

(
(I NC ) · ,2

)
⊆ Gen

(
{ , }

)
. (II)

We determine therefor all reduced two-block partitions of I NC . Let � ∈ red(I NC ) be a

partition consisting of two blocks. According to equation (4.2.16a) we have type(�) ∈ NC. Then,
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type(�) is either of type from diagram (4.2.30) or of type from diagram (4.2.31). If type(�) is an
interval partition, then � has the form

(1,�
1
) . . . (ℓ ,�ℓ ) (ℓ+1,�ℓ+1

) . . . (=,�= )
, (III)

where (�8)8∈[=] ∈ { , }×= . This is in accordance to diagram (4.2.16c). If type(�) is noncrossing,
but not of the type from equation (III), then we have to decide how we can attach colors to the

legs. Hence in this case � has the form

(1,�
1
) . . . (0,�0 ) (1,�1 ) . . . (2,�2 ) (3,�3 ) . . . (=,�= )

. (IV)

Here we have ∀ 8 ∈ {1, . . . , 0} ∪ {3, . . . , =} ⊆ ℕ : �8 ∈ { , }, which is in accordance to dia-

gram (4.2.16c). We are left to determine possible cases for 8 ∈ {1, . . . , 2} ⊆ ℕ. We obtain that

∀ 8 ∈ {1, . . . , 2} ⊆ ℕ : �8 = . Any other choice for �8 leads to a contradiction of diagram (4.2.16c).

By Definition 3.4.9 (f) we know that the first and the last leg in each partition can take any color

and by finite application of double we see that can generate any partition of the form from

equation (III). Moreover by the same reasoning we can see that generates any partition of

the form from (IV), in other words we have shown equation (II). We can now use Lemma 4.2.31

and the assertion follows. �

4.2.34 Lemma.

(a) Gen
( )

= Gen
(
{ , }

)
,

(b) Gen
(
{ , }

)
= NC I .

Proof: The proof is similar to the proof of Lemma 4.2.33. �

4.2.35 Lemma.

(a) Gen
(
{ , }

)
= Gen

(
{ , , }

)
,

(b) Gen
(
{ , , }

)
= pureNC.

Proof: Ad (a): By application of Lemma 4.2.30 we can see that this statement is similar to

Lemma 4.2.33 (a).
Ad (b): We claim

red

(
(pureNC) · ,2

)
⊆ Gen

(
{ , , }

)
. (I)

We determine therefor the set of all reduced two-block partitions of pureNC. Let� ∈ red(pureNC)
which has two blocks. Then due to equation (4.2.18a) we have type(�) ∈ NC. If type(�) is an
interval partition, then from the above we already know that generates �. From the proof of

Lemma 4.2.33 it is clear that or generates � in the case that type(�) is noncrossing but

not an interval. This is in accordance to diagram (4.2.18c). Thus, we have shown equation (I)

and the assertion now follows from Lemma 4.2.31. �

4.2.36 Lemma.

(a) Gen
( )

= Gen
(
{ , , , }

)
,

(b) Gen
(
{ , , , }

)
= NC{ , }.

Proof: Ad (a): Set G ≔ Gen
( )

. By application of Lemma 4.2.30 it suffices to show that

{ , , } ⊆ G .
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Therefor we calculate

� ≔ ∈ G

=⇒ �1 ≔ ∈ G È two times application of doubleÉ

=⇒ �2 ≔ ∈ G È�2 = split3· ,2(�1 ,mirror(�)) É

=⇒ �3 ≔ ∈ G È�3 = (pr
2
◦UMem3

· ,3)(�) É

=⇒ �4 ≔ ∈ G È 2 times application of deleteÉ

Furthermore, we have

� ≔ ∈ G

=⇒ �1 ≔ ∈ G È�1 = double · ,3(�) É

=⇒ �2 ≔ ∈ G È�2 = split2· ,2(�1 , ) É

=⇒ �3 ≔ ∈ G È�3 = (pr
2
◦UMem1

· ,3)(�2) É

Likewise, we can prove ∈ G, which finishes the proof of (a).
Ad (b): We claim

red

(
(NC{ , }) · ,2

)
⊆ Gen

(
{ , , , }

)
. (I)

We determine therefor the set of all reduced two-block partitions ofNC{ , }. Let� ∈ red(NC{ , })
and assume it has two blocks. Due to equation (4.2.19) we have pr

1
(�) ∈ NC. If pr

1
(�) is an

interval, then we already know that generates �. In the other case � can have the form

(1,�
1
) . . . (0,�0 ) (1,�1 ) . . . (2,�2 ) (3,�3 ) . . . (=,�= )

. (II)

Here we have (�8)8∈[=] ∈ { , }×= . We make the following case considerations.

Assume ∀ 8 ∈ {1, . . . , 2} ⊆ ℕ : �8 = , then we already know that generates �.
Assume ∀ 8 ∈ {1, . . . , 2} ⊆ ℕ : �8 = , then we already know that generates �.
Assume �8 is alternating between and and starts with �1 = . Let =′ denote the number

of legs with color in the interval [1, 2] ⊆ ℕ, then we prove by induction over =′ ∈ ℕ that we can

generate any noncrossing, non-interval partition with the above properties. We only prove the

induction step, since the induction base is analogously proven. Therefore, assume the assertion

is true for some =′ ∈ ℕ. Then, for = → = + 1 we consider

� =
. . .1 (2,�2 )

∈ NC{ , } È induction hypothesisÉ

=⇒ �1 = . . .1+2 (2+2,�2 )
∈ NC{ , } È�1 = (double · ,1)2(�) É

=⇒ �2 = . . .1+2 (2+2,�2 )
∈ NC{ , }�

= mirror
( )

∈ NC{ , } , �2 = split1· ,2
(
�1 ,

)�
=⇒ �3 = . . .1 (2+2,�2 )

∈ NC{ , } È�3 = (pr
1
◦UMem1+1

· ,3 )(�2) É
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=⇒ �4 = . . .1 (2+1,�2 )
∈ NC{ , } È�4 = delete · ,1+2(�2) É

=⇒ �5 = . . .1 (2+2,�2 )
∈ NC{ , } È analogous reasons from aboveÉ

In a similar way we can generate any partition of type from equation (II), where �8 is alternating
between and and starts with �1 = . This characterizes all reduced two-block partitions of

NC{ , } because the first and the last leg in a partition can take any color, which allows us to

generate an arbitrary sequence of legs with and attached to them. Thus, we have shown

equation (I). We can now use Lemma 4.2.31 and the assertion follows. �

4.2.37 Lemma.

(a) Gen
( )

= Gen
(
{ , , }

)
,

(b) Gen
(
{ , , }

)
= I A .

Proof: Ad (a): By application of Lemma 4.2.30 it suffices to show that

{ , , } ⊆ Gen
( )

.

For the above reduced partitions of consideration, legs with the color can only occur as the

first or last leg. Therefore, it is clear that we can apply the same methods as in the case < = 1,

since we can assume that the first and last leg have the color . We refer for a proof to the proof

of Theorem 4.1.17.

Ad (b): We claim

red

(
(I A ) · ,2

)
⊆ Gen

(
{ , , }

)
. (I)

We determine the set of all reduced two-block partitions of I A . Therefor we note that a

partition �which is interval-crossing shares the same properties of a partition, which is interval-

noncrossing except that type(�) does not need to be noncrossing. Hence, it is clear that the set{
,

}
generates all reduced two-block partitions � such that type(�) ∈ NC. It remains to

determine two-block partitions of I A which are of type from equation (4.2.32), i. e., which

possess a crossing. According to Definition 4.2.12 we need to consider the set Cross(�). From
equation (4.2.20a) we obtain

∀� ∈ I A :

( (
(?1 , ?2), (@1 , @2)

)
∈ Cross(�) =⇒ �?2

= �@1
=

)
.

We also say that if a crossing in a partition � occurs, then the inner legs of any crossing need to

have the color . Legs with color can not participate in a crossing as inner legs. Therefore the

most general forms for a reduced partition � ∈ I A with crossing are the following 2 types

∀ : ∈ ℕ :

. . .
1 3 2:+12 4 2: 2:+2

∈ I A (II)

or

∀ : ∈ ℕ \ {1} :
. . .

1 3 2:+12 4 2:

∈ I A .

Wewant to regard as a partition of type from equation (II) for : = 1. In the single-colored

case we can see from Lemma 4.1.16 that the partition generates all reduced two-block

partitions with crossing. For the proof of the claim that the partition generates all reduced

two-block partitions of I A with crossing, we refer therefore to the above < = 1 case. We can

do this because the first and the last leg in such partitions can take any color and only legs with

the color can participate as inner legs of crossings. This shows the statement of equation (I)

and the assertion now follows from Lemma 4.2.31. �
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4.2.38 Lemma.

(a) Gen
( )

= Gen
(
{ , , }

)
,

(b) Gen
(
{ , , }

)
= A I .

Proof: The proof is similar to the proof of Lemma 4.2.37. �

4.2.39 Lemma.

(a) Gen
(
{ , }

)
= Gen

(
{ , , , }

)
,

(b) Gen
(
{ , , , }

)
= NC A .

Proof: Ad (a): By application of Lemma 4.2.30 it suffices to show that

{ , , , } ⊆ Gen
(
{ , }

)
The proof can be taken from the proof of Lemma 4.2.37 (a).
Ad (b): Since { , , , } ⊆ NC A we may apply Lemma 4.2.31 to prove this

assertion. Thus, we need to determine the set of reduced two-block partitions of NC A . We

can see from equation (4.2.22a) that the condition for legs with color of a partition � needs

to satisfy such that � ∈ NC A is the same condition as in equation (4.2.18b) for a partition �
to be pure noncrossing. Equation (4.2.22a) does not impose any condition on legs with color

. Therefore, reduced two-block partitions of NC A , which are noncrossing, are generated by

{ , , } according to the proof of Lemma 4.2.35. Like in the case of partitions, which

are interval-crossing, inner legs of an occurring crossing in a noncrossing-crossing partition

need to be of color . Therefore, we can show as in the proof of Lemma 4.2.37, that the partition

generates all reduced two-block partitions of NC A with crossing. �

4.2.40 Lemma.

(a) Gen
(
{ , }

)
= Gen

(
{ , , , }

)
,

(b) Gen
(
{ , , , }

)
= A NC .

Proof: The proof is similar to the proof of Lemma 4.2.39. �

4.2.41 Lemma.

(a) ) Gen
( )

= Gen{ , , , }
)
,

(b) Gen
(
{ , , , }

)
= biNC.

Proof: Ad (a): Set G ≔ Gen
( )

. By application of Lemma 4.2.30 it suffices to show that

{ , , } ⊆ G . (I)

We set

G 3 �1 ≔ mirror
( )

= = .

By this we calculate

� =

=⇒ �2 ≔ ∈ G È�2 =
∧
two times application of double · ,1 to � É
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=⇒ �3 ≔ ∈ G È�3 = split1· ,2(�2 ,�1) É

=⇒ �4 ≔ ∈ G È (pr
2
◦UMem2

· ,3)(�3) É

=⇒ ∈ G È two times application of delete · , · to �4 É

Furthermore, we calculate

� = ∈ G

=⇒ �1 ≔ ∈ G È�1 = double · ,2(�) É

=⇒ �2 ≔ ∈ G È�2 = split2(�1 , ) É

=⇒ ∈ G

We have an analogous calculation for the statement ∈ G =⇒ ∈ G. The above

calculations show that equation (I) holds.

Ad (b): Since { , , , } ⊆ biNCwe shall apply Lemma 4.2.31 to prove this assertion.

Therefor we need to determine the set of all reduced two-block partitions of biNC. As in the

previous cases it is clear that { , , } generates all reduced two-block partitions of biNC
which are noncrossing. It remains to determine reduced two-block partitions of biNC which are

crossing. From Definition 4.2.12 (k)we obtain

∀� ∈ biNC :

( (
(?1 , ?2), (@1 , @2)

)
∈ Cross(�) =⇒ (�?2

= , �@1
= ) ∨ (�?2

= , �@1
= )

)
.

Hence, we can say that whenever a crossing in a partition � ∈ biNC occurs, the inner legs need

to differ in their colors. This gives us four types of reduced two-block partitions of biNC which

are crossing, namely

∀ : ∈ ℕ :

. . .
1 3 2:+12 4 2: 2:+2

∈ biNC, (II)

∀ : ∈ ℕ \ {1} :
. . .

1 3 2:+12 4 2:

∈ biNC, (III)

∀ : ∈ ℕ :

. . .
1 3 2:+12 4 2: 2:+2

∈ biNC,

∀ : ∈ ℕ \ {1} :
. . .

1 3 2:+12 4 2:

∈ biNC.

It suffices to show that we can generate partitions of the type from equation (III) and (II), since

the other two types can be obtained by application of mirror. We want to regard as a

partition of type from equation (II) for : = 1. Put

� ≔ { , , , }.

First, we show ∈ � =⇒ ∃= ∈ ℕ : ∈ �(=) with notation of �(=) taken from

equation (4.2.28b). Consider therefore the following calculation

� = ∈ �

=⇒ �1 ≔
1 2 3 4 5 6

∈ Gen(�) È�1 = (double · , · )2(�) É
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=⇒ �2 ≔
1 2 3 4 5 6

∈ Gen(�) È = mirror( ), �2 = split4· ,2(�1 , ) É

=⇒ �3 ≔
1 2 3 4 5 6

∈ Gen(�) È�3 = (pr
1
◦UMem3

· ,3)(�2) É

=⇒ �4 ≔ ∈ Gen(�) È�4 = delete · ,4(�3) É.

We prove that we can generate partitions of the type from equation (II) by induction over : ∈ ℕ.

The proof that we can generate partitions of the type from equation (III) is done similarly. We

just give a proof for the induction step : → : + 1 because the proof for the induction base is

similar. Hence,

� =
. . .

1 3 2:+12 4 2:

∈ �

=⇒ �1 ≔ . . .
1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

∈ Gen(�) È�1 = (double · ,1)3(�) É

=⇒ �2 ≔ . . .
1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

∈ Gen(�) È�2 = split3· ,2(�1 , . . . ) É

=⇒ �3 ≔ . . .
1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

∈ Gen(�) È�3 = (pr
1
◦UMem4

· ,3)(�2) É

=⇒ �4 ≔ . . .
1 2 3 5 2(:+1)+14 6 2(:+1)

∈ Gen(�) È�4 = delete · ,5(�3) É.

We have shown that the set Gen(�) contains all reduced two-block partitions of biNC which

proves the assertion by Lemma 4.2.31. �

4.2.42 Lemma.

(a) Gen
(
{ , }

)
= Gen

(
{ , , , , }

)
,

(b) Gen
(
{ , , , , }

)
= pureC.

Proof: Ad (a): By application of Lemma 4.2.30 it suffices to show that

{ , , , , } ⊆ Gen
(
{ , }

)
.

The proof is similar to Lemma 4.2.37 (a) and is therefore omitted.

Ad (b): Since { , , , , } ⊆ pureC we shall apply Lemma 4.2.31 to prove

the assertion. We need to determine the set of all reduced two-block partitions of pureC. The
reasoning is similar to the proof of Lemma 4.2.41 (b). The difference is that now

∀� ∈ biNC :

( (
(?1 , ?2), (@1 , @2)

)
∈ Cross(�) =⇒ (�?2

= �@1
= ) ∨ (�?2

= �@1
= )

)
(I)

holds. This means that inner legs of a crossing need to have the same color. The steps from

the proof of Lemma 4.2.41 can be easily modified such that they do not violate equation (I)

and we obtain that Gen(�) contains all reduced two-block partitions of pureC which proves the

assertion. �

4.2.43 Lemma.

(a) Gen
(
{ , }

)
= Gen

(
{ , }

)
= Gen

(
{ , }

)
,

(b) Gen
(
{ , }

)
= Gen

(
{ , }

)
= Gen

(
{ , }

)
,

(c) G ≔ Gen
(
{ , }

)
= Part{ , }.
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Proof: Ad (a): We claim that if P denotes a two-colored universal class of partitions, then

∈ P ∧
(

∈ P ∨ ∈ P ∨ ∈ P
)

=⇒ ∈ P ∧ ∈ P ∧ ∈ P (I)

The above equation tells us that whenever is partition of a universal class of partitions P
and in P is at least one crossing partition with four legs, then P inherits all crossing partitions

with four legs. Hence the partition has the potential to change the color of a leg at position

2 and 3 in a crossing partition with four legs. We demonstrate this for the leg at position 2 and

assume it has color . Hence, if we assume ∈ P and for instance ∈ P , then

� ≔ ∈ P

=⇒ �1 ≔ ∈ P È�1 = (double · ,1)2(�) É

=⇒ �2 ≔ ∈ P È�2 = split1· ,2(�,mirror( )) É

=⇒ �3 ≔ ∈ P È�3 = (pr
1
◦UMem3

· ,3)(�2) É

=⇒ �4 ≔ ∈ P È�4 = delete · ,4(�4) É

=⇒ �5 ≔ ∈ P È�5 = double · ,2(�4) É

=⇒ �6 ≔ ∈ P È�6 = split2· ,2(�5 ,mirror( )) É

=⇒ �7 ≔ ∈ P È�7 = (pr
2
◦UMem1

· ,3)(�6) É.

Assume we want to change the color of the leg at position 3 of a crossing partition with four

legs. Then, we can apply the above procedure, we just have to additionally use mirror in the first

and last step. The above argumentation proves the statement of equation (I). The assertion now

follows from equation (I), from the fact that Gen( · ) is a universal class of partitions and from

Lemma 4.2.30.

Ad (b): For the proof of the last equality in (b) by Lemma 4.2.30 it suffices to show

∈ Gen
(
{ , }

)
, (II)

∈ Gen
(
{ , }

)
. (III)

Let P denote any two-colored universal class of partitions, then we claim(
∈ P ∨ ∈ P

)
∧ ∈ P =⇒ ∈ P . (IV)

For the proof of the above implication let us assume that ∈ P , then we calculate

� = ∈ P
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=⇒ �1 ≔ ∈ P Èproof of Lemma 4.2.41 (b) É

=⇒ �2 ≔ ∈ P È�2 = (double · ,2)2(�1) É

=⇒ �3 ≔ ∈ P È�3 = split2· ,2(�3 , ) É

=⇒ �4 ≔ ∈ P È�4 = (pr
1
◦UMem1

· ,3)(�3) É

=⇒ �5 ≔ ∈ P È�5 = delete · ,2(�4) É

=⇒ �6 ≔ ∈ P È�6 = (double · ,5 ◦ double · ,3)(�5) É

=⇒ �7 ≔ ∈ P�
2 times application of split( · , . . . . . . ),
∈ P because of Lemma 4.2.41 (a)

�
=⇒ �8 ≔ ∈ P È 2 times application of pr

1
◦UMemÉ

=⇒ �9 ≔ ∈ P È successive application of deleteÉ.

If ∈ P , then the proof of equation (IV) is analogous to the above one because P is

closed under application of mirror. Therefore, we omit the proof in this case. Since Gen( · ) is a
two-colored universal class of partitions, we obtain from equation (IV) that

∈ Gen
(
{ , }

)
∩ Gen

(
{ , }

)
.

This implies

Gen
(
{ , }

)
⊇

{
,

}
⊆ Gen

(
{ , }

)
=⇒ Gen

(
{ , }

)
⊇ Gen

({
,

})
⊆ Gen

(
{ , }

)
, (V)

where the last step follows from Remark 4.2.29 (c). From (a) we obtain { , } ⊆
Gen({ , }). By this, by an application of Lemma 4.2.30 and by equation (V), we finally

obtain the statements of equations (II) and (III).

Ad (c): In order to prove this assertion, we shall use Lemma 4.2.31. Hence, we will show that

all reduced two-block partitions of Part{ , } form a subset of G. The first observation is that any

partition � ∈ Part{ , } which is noncrossing and where the color of the legs can be freely put

needs to be an element of NC{ , }. From (b) we can conclude that ∈ G. This shows that

G inherits all two-colored noncrossing partitions because in Lemma 4.2.36 we have shown that

Gen
( )

= NC{ , }.

It remains to show that a partition with an “arbitrary” crossing is an element of G. The
classes pureC and biNC inherit crossing partitions which need to respect colorizing the legs in

a certain way. Therefore, we need to determine the most general form of a reduced, crossing

two-block partition where we do not impose any restrictions on the color of the legs. For the

most general form of a reduced two-colored two-block partition with a nonzero number of

crossings we need to distinct between two cases, namely

∀= ∈ ℕ, ∀0, 3 ∈ ℕ, (18)8∈[=] , (28)8∈[=] ∈ ℕ×= , ∀ 9 ∈ [=], ∀(8)8∈[0] , (�
9

8
)8∈[1 9] , (�

9

8
)8∈[2 9] , (�8)8∈[3] ∈
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A({ , } :


1
. . . 0 �1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2= �
1

. . . �3

∈ G (VI)

and

∀= ∈ ℕ \ {1}, ∀0, 3 ∈ ℕ, (18)8∈[=] , (28)8∈[=−1] ∈ ℕ×(=−1) , ∀ 9 ∈ [=], ∀(8)8∈[0] , (�
9

8
)8∈[1 9] , (�

9

8
)8∈[2 9] ,

(�8)8∈[3] ∈ A({ , } :


1
. . . 0 �1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=̃
1

. . . �=̃
1=̃

�=̃
1

. . . �=̃2=̃
�=
1

. . . �=
1=

�
1

. . . �3

∈ G . (VII)

In equation (VII) we have set =̃ ≔ = − 1. We have to show that above two types of crossing

partitions are contained in G for any = ∈ ℕ. First, we prove the existence of crossing partitions

of type from equation (VI) in G by induction over = ∈ ℕ. For the induction base = = 1 we have

to show that

∀0, 1, 2, 3 ∈ ℕ, ∀ ≔ (8)8∈[0] , � ≔ (�)8∈[1] , � ≔ (�8)8∈[2] , � ≔ (�8)8∈[3] ∈ A({ , }) :

m2bC(, �, �, �) ≔


1
. . . 0 �

1
. . . �1 �

1
. . . �2 �

1
. . . �3

∈ G . (VIII)

We can think of m2bC( · ) as an abbreviation of “minimal two-block crossing partition”. We show

the statement of equation (VIII) by induction in several steps. We first show by induction over

2 ∈ ℕ that

∀2 ∈ ℕ, ∀1 , �1 , � ≔ (�8)8∈[2] , �1 ∈ A({ , }) :

m2bC(1 , �1 , �, �1) =


1 �
1

�
1
. . . �2 �

1

∈ G . (IX)

We notice that (a) and (b) imply {
, ,

}
⊆ G .

From this we can conclude that the induction base 2 = 1 for equation (IX) holds. Now, we

perform the induction step 2 → 2 + 1 ≕ 2̃ and calculate

�1 ≔


1 �
1

�
1
. . . �2 �

1

∈ G

=⇒ �2 ≔


1 �
1

�
1
. . . �2 �2 �2̃ �

1

∈ G�
change color of last leg in �1 by cCol, double last leg by double,
change color of last leg

�
=⇒ �3 ≔


1 �

1
�

1
. . . �2 �2 �2̃ �

1

∈ G�����
by (b)we have ∈ G, therefore

�2̃ �2
∈ G, then use Lem. 4.2.5

to split the legs with color �1 and �2̃ in mirror(�2) by
�2̃ �2

,

afterwards apply mirror once more to the split partition

�����
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=⇒ �4 ≔


1 �
1

�
1
. . . �2 �2 �2̃ �

1

∈ G

Èunify the legs with color �2 in �3 by pr
1
◦UMemÉ

=⇒ �5 ≔


1 �
1

�
1
. . . �2 �2̃ �

1

∈ G Èdelete leg with �2 in �4 by deleteÉ

Now, we show that

∀1, 2 ∈ ℕ, ∀1 , � ≔ (�8)8∈[1] , � ≔ (�8)8∈[2] , �1 ∈ A({ , }) :


1 �

1
. . . �1 �

1
. . . �2 �

1

∈ G . (X)

To show this, we consider the following calculation

�1 ≔


1 �
2

�
2

�
3
. . . �1 �1 �

1
�

1
. . . �2 �

1

∈ G È eq. (IX)É

=⇒ �2 ≔


1 �
1

�
1

�
2
. . . �1 �1 �

1
�

1
. . . �2 �

1

∈ G

��� by (b)we have ∈ G, and by Lem. 4.2.36 generates any

noncrossing two-colored partition, then split the block neighboring legs

with color �1 in �1 with the regarding noncrossing partition

���
=⇒ �3 ≔


1 �

1
�
1

�
2
. . . �1 �1 �

1
�

1
. . . �2 �

1

∈ G�
� ∈ G =⇒ ∈ G,
split the block neighboring legs with �1 by the relevant interval partition

�

=⇒ �4 ≔


1 �
1

�
2

�
3
. . . �1 �1 �

1
�

1
. . . �2 �

1

∈ G

Èunify the legs with �1, then delete block neighboring legsÉ

=⇒ �5 ≔


1 �
1
. . . �1 �

1
. . . �2 �

1

∈ G È apply pr
1
◦UMem to the first leg in �4 É.

Thus, we have proven equation (X). This also shows that equation (VIII) holds, since we can

generate any sequence of legs at the beginning and the end of a partition by a finite application

of cCol and double.
So far we have shown the induction base = = 1 of equation (VI). Now we perform the

induction step = → = + 1 ≕ =̃ and calculate

�1 ≔
�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2=

∈ G

È induction hypothesisÉ

=⇒ �2 ≔
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�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2= �=2= �=̃
1

. . . �=̃
1=̃

∈ G

�
insert sequence of legs at the end

by a finite application of cCol and double

�
=⇒ �3 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2= �=2= �=̃
1

. . . �=̃
1=̃

∈ G

�
by a combination of mirror and Lem. 4.2.5 we can

split at the forelast leg in �2 by partition m2bC from eq. (IX)

�
=⇒ �4 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2= �=̃
1

. . . �=̃
1=̃

∈ G

Èunify the legs with �=2= in �6, then delete block neighboring legsÉ

=⇒ �5 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=2= �=̃
1

. . . �=̃
1=̃

�=̃
1=̃

�=̃
1

. . . �=̃
1=̃

∈ G

�
insert sequence of legs at the end

by a finite application of cCol and double

�
=⇒ �6 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=2= �=̃
1

. . . �=̃
1=̃

�=̃
1=̃

�=̃
1

. . . �=̃2=̃

∈ G

�
by a combination of mirror and Lem. 4.2.5 we can

split at the last leg in �5 by partition m2bC from eq. (IX)

�
=⇒ �7 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=̃
1

. . . �=̃
1=̃

�=̃
1

. . . �=̃2=̃

∈ G

�
unify the legs with �=̃

1=̃
,

then delete block neighboring legs of the same block and the same color

�
This shows the induction step = → = + 1 of equation (VI). The induction base of equation (VII)

for = = 2 can be obtained from the “minimal two-block crossing partition” m2bC(, �, �, �) ∈ G
by a similar reasoning as in the previous induction base made. We can also compare this to a

similar argument used in the proof of Lemma 4.1.16 (b) for the single-colored case. The proof of

the induction step = → = + 1 of equation (VII) is also similar to the proof of the induction step

= → = + 1 of equation (VI). Therefore, we omit these proofs. �
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4.2.44 Theorem. Let < = 2. The sets of partitions from Definition 4.2.13 are all possible

two-colored universal classes of partitions.

Proof: In the above lemmas we have shown that all the sets of partitions defined in Defini-

tion 4.2.13 satisfy the axioms for a two-colored universal class of partitions. It remains to show

that these define all possible choices of a two-colored universal class of partitions. The proper

subset relation ( defines a (strict) partial order on the set of all two-colored universal classes of

partitions. We recall that if (-, ≤) is a partially ordered set, then we say that an element G ∈ -
is an immediate predecessor of H ∈ - if and only if G < H, i. e., G ≤ H, G ≠ H, and if there is

no element I ∈ - such that G < I < H. We use the notation ipred(H) to denote the set of all

immediate predecessors of H.

With respect to this partial order we list for each universal class of partition P from

Definition 4.2.13 all possible immediate predecessors, denoted by ipred(P), among the set of

universal classes of partition from Definition 3.4.9.

ipred
(
1B{ , }

)
⊇ {∅}, ipred

(
I{ , }

)
⊇

{
1B{ , }

}
,

ipred
(
I NC

)
⊇

{
I{ , }

}
, ipred

(
NC I

)
⊇

{
I{ , }

}
,

ipred
(
pureNC

)
⊇

{
I NC ,NC I

}
, ipred

(
biNC

)
⊇

{
pureNC

}
,

ipred
(
NC{ , }

)
⊇

{
pureNC

}
, ipred

(
I A

)
⊇

{
I NC

}
,

ipred
(
A I

)
⊇

{
NC I

}
, ipred

(
NC A

)
⊇

{
pureNC, I A

}
,

ipred
(
A NC

)
⊇

{
pureNC,A I

}
, ipred

(
pureC

)
⊇

{
NC A ,A NC

}
,

ipred
(
Part{ , }

)
⊇

{
biNC,NC{ , } , pureC

}
.

Using the defining properties in Definition 3.4.9 for each universal class of partitions P from

above it is not hard to check the above claims. If we are able to prove that for a given universal

class of partitions P from Definition 3.4.9 in the above list the relation ⊇ can be replaced by =,

then we have shown that Definition 3.4.9 defines all possibilities of two-colored universal classes

of partitions. We want to present our strategy for the proof that in the above equations holds =

instead of ⊇. Assume for a set � holds {�, �} ⊆ ipred(�) and we want to show that this implies

{�, �} = ipred(�). Assume there exists another set � ≠ � and � ≠ � such that � ∈ ipred(�). It
is not possible that � ⊆ �, because this would contradict the assumption that � ∈ ipred(�). By
the same reasoning we obtain that � * �. If we are able to show that � = �, then this would

contradict the assumption that � ∈ ipred(�) and we obtain that {�, �} = ipred(�).
Claim 1. ipred

(
1B{ , }

)
= {∅}

We already know that ipred
(
1B{ , }

)
⊇ {∅}. Assume P ≠ ∅ is a universal class of partitions for

< = 2 and P ∈ ipred
(
1B{ , }

)
, then P = 1B{ , }. From Definition 3.4.9 (b) we know that all

alternating one block partitions are in P . By a finite application of double we can generate any

one block partition, i. e., any element of 1B{ , }. This proves P = 1B{ , } and contradicts the

assumption that P ∈ ipred
(
1B{ , }

)
. This proves Claim 1

Claim 2. ipred
(
I{ , }

)
=

{
1B{ , }

}
We already know that ipred

(
I{ , }

)
⊇

{
1B{ , }

}
. Let P ≠ 1B{ , } be a two-colored universal

class of partitions and P ∈ ipred
(
I{ , }

)
. We have P \ 1B{ , } ≠ ∅, i. e., there exists a partition

� ∈ P \ 1B{ , }. From Lemma 4.2.32 we know that the set { } generates I{ , }. Therefore, it
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suffices to show � ∈ P =⇒ ∈ P . Since � ∉ 1B{ , } it must have at least two blocks. But

we have assumed that � ∈ I{ , } and this yields for each block 1 of � that set(1) is an interval.

This is shown by contradiction to Definition 4.2.13 (b). According to Lemma 4.2.3 we can apply

UMem to the first leg of the second block and to its predecessor and obtain that

(1,�
1
) . . . (ℓ ,�ℓ ) (ℓ+1,�ℓ+1

) . . . (=,�= )
∈ P .

Since the first and the last leg can take both colors, we can apply delete to the first and the last

leg. A finite application of delete on these legs yields that ∈ P and implies P = I{ , }. This
contradicts the assumption P ∈ ipred

(
I{ , }

)
and the Claim 2 follows.

Claim 3. ipred
(
I NC

)
=

{
I{ , }

}
Wealreadyknow that ipred

(
I NC

)
⊇

{
I{ , }

}
. LetP be a two-coloreduniversal class ofpartitions,

P ∈ ipred
(
I NC

)
and P ≠ I{ , }. We have P \ I{ , } ≠ ∅, i. e., ∃� ∈ P \ I{ , }. � has more than

one block because we already know that 1B{ , } ⊆ I{ , } and we have assumed that � ∉ I{ , }.
Therefore, � has at least two blocks. In � there is at least one block which is not of an interval

type. Because if every block in �would be of interval type, then this would imply that � ∈ I{ , }.
But this would again contradict our assumption that � ∉ I{ , }. Choose a block of � which is

not of interval type and denote the block by 1. The block 1 has a “gap”, i. e., there exist natural

numbers �ℓ < �ℓ+1 ∈ ℕ such that set(1) \ [�ℓ , �ℓ+1] ⊆ set(1). In the interval [�ℓ , �ℓ+1] are legs

which belong to a block 1′ ≠ 1. Since� ∈ I NC , the partition needs to be noncrossing. Therefore,

set(1′) ⊆ [�ℓ , �ℓ+1]. We need to determine the color of the legs in block 1′. Block 1′ can not have

any legs of color because this would violate the condition of equation (4.2.16c). Hence, block

1′ can only have legs of color . By Lemma 4.2.3 we can successively apply UMem to � until

block 1 is the first block in the partition. By a finite application of delete, we can achieve that

after the first leg of the partition comes the first and only leg of the second block. Denote the

partition obtained in such a way by �′. If we unify the first and second leg of the partition �′ by
pr

2
◦UMem, then we obtain (3,�̃) . . . ∈ P . By a finite application of delete we can delete all

block neighboring legs at the end of this partition and obtain

∈ P .

In Lemma 4.2.33 we have shown that Gen
( )

= I NC . This implies I NC ⊆ P which is

a contradiction to the assumption that P ∈ ipred(I NC ). Hence, by proof of contradiction we

have shown the assertion of Claim 3.

Claim 4. ipred
(
NC I

)
=

{
I{ , }

}
The proof of this claim is similar to the proof of Claim 3 and is omitted.

Claim 5. ipred
(
pureNC

)
=

{
I NC ,NC I

}
We already know that ipred

(
pureNC

)
⊇

{
I NC ,NC I

}
. We prove the other direction by

contradiction. We assume therefor that P is a two-colored universal class of partitions and P ∈
ipred(pureNC), P ≠ I NC and P ≠ NC I . By this we have P \ I NC ≠ ∅ and P \NC I ≠ ∅. We

obtain ∃�1 ∈ P such that �1 ∉ I NC and ∃�2 ∈ P such that �2 ∉ NC I . By an analogous proof

ofClaim 3we conclude that�1 ∈ P =⇒ ∈ P and likewise�2 ∈ P =⇒ . Also compare

this with the proof of Lemma 4.2.18, where we have provided an equivalent characterization

of the fact � ∉ I NC . In Lemma 4.2.35 we have shown that Gen
(
{ , }

)
= pureNC and

this implies pureNC ⊆ P . This contradicts our assumption that P ∈ ipred(pureNC). By proof of

contradiction we have shown that Claim 5 holds.
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Claim 6. ipred
(
NC{ , }

)
=

{
pureNC

}
We already know ipred

(
NC{ , }

)
⊇

{
pureNC

}
. We prove the other direction by proof of contradic-

tion. We assume therefor that P is a two-colored universal class of partitions, P ∈ ipred(NC{ , })
and P ≠ pureNC. By this we have P \ pureNC ≠ ∅. Thus, we obtain that a partition � ∈ P
needs to exists such that � ∉ pureNC. In the proof of Lemma 4.2.20 we have provided an

equivalent characterization of the fact � ∉ pureNC. From there we can convince ourselves that

since � ∈ NC{ , }, in particular it is non-crossing, we have an inner block � which has at least

two legs with different colors. In other words, we have the following occurrence in the partition

�

. . . . . .

...

�
. . . . . . . . . . . . . . . .

By a successive application of Lemma 4.2.3 and by a further application of delete to �, we can

achieve that the block � becomes the second block in the partition and its minimal leg is the

second leg of the partition �. Then, we can apply pr
2
◦UMem1

· , · and obtain that

(2,�
1
) (=+1,�= )
. . . . . . ∈ P ,

where � = (�8)8∈[=] ∈ A({ , }) for some = ≥ 2. We claim that the existence of the above two-block

partition in P , implies that ∈ P . Consider therefor the following calculation

� ≔
(2,�

1
) (=+1,�= )
. . . . . . ∈ P

=⇒ �1 ≔
(2,�

1
) (=+1,�= ) (=+2,�= )

. . .
(2=+2,�

1
)

. . . . . . ∈ P

È =-times application of doubleÉ

=⇒ �2 ≔
(2,�

1
) (=+1,�= ) (=+2,�= )

. . .
(2=+2,�

1
)

. . . . . . ∈ P

È�2 = split2=+2

· ,2 (�1 ,mirror(�)) É

=⇒ �3 ≔ ∈ P

È�3 = (pr
2
◦UMem=+1

· ,3 )(�2) & successive application of deleteÉ

Now we calculate

� ≔
(2,�

1
) (=+1,�= )
. . . ∈ P

=⇒ �1 ≔
(2,�

1
) (3,�

2
) (4,�

2
)
. . .

(=+1,�= )
∈ P È�1 = double · ,3(�) É

=⇒ �2 =
(2,�

1
) (3,�

2
) (4,�

2
)
. . .

(=+1,�= )
∈ P È�2 = split3· ,2(�1 ,

(1,�
1
) (2,�

2
) (3,�

2
)
. . . ) É

=⇒ �3 ≔
(2,�

1
) (3,�

2
)
∈ P È�3 = (pr

2
◦UMem1

· ,3)(�2) É

If �1 = and �2 = we conclude that ∈ P . If �1 = and �2 = , then by application of

mirror we conclude the same. In Lemma 4.2.36 we have shown Gen
( )

= NC{ , } and this

implies NC{ , } ⊆ P which contradicts our assumption P ∈ ipred(NC{ , }). Therefore, we have

shown that Claim 6 holds.

Next, we show that

biNC ∩ NC{ , } = pureNC. (I)
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Assume � ∈ pureNC. Then, from the defining properties of � for being pure noncrossing

in Definition 4.2.13 (e), we can see that these are shared by the defining properties for being

binoncrossing (Definition 4.2.13 (k)) and for being noncrossing (Definition 4.2.13 (f)). For the
other direction we assume that � ∈ biNC ∩ NC{ , }. Since � ∈ NC{ , }, the partition � needs

to be noncrossing. Hence, any occurrences of possible relative positions of legs to each other,

which lead to a crossing in �, are ruled out. If we do this in Definition 4.2.13 (k) we are left

with conditions which have been imposed in Definition 4.2.13 (e), i. e., which are the defining

properties for a partition for being pure crossing. This shows equation (I).

Claim 7. ipred
(
biNC

)
=

{
pureNC

}
We already know that ipred

(
biNC

)
⊇

{
pureNC

}
. We prove the other direction by proof of

contradiction. Hence, we assume there exists another two-colored universal class of partitions

denoted byP such thatP ∈ ipred
(
biNC

)
and ∅ ≠ P ≠ pureNC. Therefore, we haveP \pureNC ≠ ∅.

Hence, there exists a partition � ∈ P such that � ∉ pureNC. From equation (I) we can see that

� ∉ NC{ , } because � ∈ P ⊆ biNC. The fact � ∉ NC{ , } implies that � needs to have a

crossing. Therefore, the set Cross(�), defined in equation (4.2.13), is not empty. Hence, there

exist

(
(?1 , ?2), (@1 , @2)

)
∈ ℕ2 × ℕ2

such that

(
(?1 , ?2), (@1 , @2)

)
∈ Cross(�). Because � ∈ biNC and

because of Definition 4.2.13 (k)we have

(�?2
= , �@1

= ) ∨ (�?2
= , �@1

= ). (II)

This implies the existence of two blocks 1? and 1@ such that 1? , 1@ ∈ � and {?1 , ?2} ⊆ set(1?) and
{@1 , @2} ⊆ set(1@). If the partition � only has two blocks, then we make � reduced by � ≔ red�.
If the partition � has more than two blocks, then proceed as follows. By a successive application

of Lemma 4.2.3 to � we are able to unify the first and the second block in the partition �. If the
block 1? has been unified in � and all block neighboring legs with the same color have been

deleted by delete, address this block by 1? and set � ≔ red(�) afterwards. The same holds for

the block 1@ . We repeat this procedure until either 1? is the first block of � and the second leg of

� is the minimal leg of 1@ or either 1@ is the first block � and the second leg of � is the minimal

leg of 1? (look at Definition 4.2.2 for an order on the blocks of an <-colored partition). The

procedure needs to terminate since in each step we reduce the amount of blocks in �. After this

procedure has terminatedwe unify the first and the second leg in the partition � by (pr
2
◦UMem).

We want to refer to this procedure as the unification procedure. Also compare this unification

procedure against the map �4=4A0C4)F>�;>2:B defined in Definition 4.2.8. We already had a

similar unification procedure in the single-colored case, introduced in the proof of Claim 4 of

Theorem 4.1.17. Whenever this unification procedure is applied to a partition with a crossing,

it gives us the existence of a partition which is one of the following four types of two-block

partition. We denote the resulting partition again by �. In particular, this means that there either

exists a natural number : ∈ ℕ \ {1} such that � ∈ P is exactly one of the following two types

� =
. . .

1 3 2:+12 4 2:

(III)

or � =
. . .

1 3 2:+12 4 2:

, (IV)

or ∃ : ∈ ℕ such that � ∈ P is exactly one of the following two types

� =
. . .

1 3 2:+12 4 2: 2:+2

(V)

or � =
. . .

1 3 2:+12 4 2: 2:+2

. (VI)
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Like in the < = 1 case we regard the partition as a partition of type from equation (V)

for : = 1 and the partition as a partition of type from equation (VI) for : = 1. Because of

equation (II) the color of the legs in the above four types must be alternating.

Claim 8. If � ∈ P is of type from equation (III), equation (IV), equation (V) or equation (VI), then

this implies ∈ P .

For the proof of the above claim let � ∈ P be a partition of type from equation (III) for some

: ∈ ℕ \ {1}. By (: − 1)-times application of double to � we can insert legs at the end only with

color , i. e.,

�1 ≔ . . .
1 3

. . .
2:+1 2:+:2 4 2:

∈ P . (VII)

By this we calculate

� =
. . .

1 3 2:+12 4 2:

∈ P

=⇒ �2 ≔ . . .
1 2 3 4 2: 2:+2 4:2:+1 2:+3

. . .
4:−1

∈ P

È�2 =
∧ (2: − 1)-application of double · ,1 to � É

=⇒ �3 ≔ . . .
1 2 3 4 2: 2:+2 4:2:+1 2:+3

. . .
4:−1

∈ P È�3 = split1· ,2(�2 ,�1) É

=⇒ �4 ≔ . . .
1 2 : . . .:+1 :+2 2:

∈ P È�4 = (pr
2
◦UMem2:

· , · )(�3) É

=⇒ ∈ P È successive application of delete · , · to �4 É

We can apply the above proof of Claim 8 in the case that � ∈ P is of type from equation (IV),

where we only need to swap the occurring colors. There is a similar proof for this claim in the

case that the partition� ∈ P is of type from equation (V). The only difference is that� ≠ mirror(�)
and therefore �1 ∈ P from equation (VII) is obtained by inserting (: − 1) legs of color at the

end of the partition mirror(�). Then, we may apply the same steps from the proof above. For a

partition of type from equation (VI) we only need to swap the colors. Now, that we know that

∈ P , we can deduce that any two-block interval partition must be an element of P .

Claim 9. If � ∈ P is of type from equation (III), equation (IV), equation (V) or equation (VI), then

this implies ∈ P .

For the proof of above claim we let � ∈ P be of type from equation (III) for some : ∈ ℕ \ {1} and
calculate

� =
. . .

1 3 2:+12 4 2:

∈ P

=⇒ �1 ≔ . . .
1 3 2:+22 4 5 2:+1

∈ P È�1 = double · ,4(�) É

=⇒ �2 ≔ . . .
1 3 2:+22 4 5 2:+1

∈ P È�2 = split4
2:+2,2

(�1 , . . . ) É

=⇒ �3 ≔ . . .
1 2 3 4

∈ P È�3 = (pr
2
◦UMem1

· ,2)(�2) É

=⇒ �4 ≔
1 2 3 4 5

∈ P È successive application of delete · , · to �3 É

=⇒ �5 ≔
1 2 3 4 5 6

∈ P È�5 = double · ,3(�4) É
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=⇒ �6 ≔
1 2 3 4 5 6

∈ P È�6 = split3· ,2(�5 , ) É

=⇒ ∈ P È�6 = (pr
2
◦UMem1

· ,3)(�5) É

This finishes the proof for Claim 9 because the proof for partitions of the remaining types is

analogously done. In Lemma 4.2.41 we have shown that Gen
( )

= biNC and this implies

biNC ⊆ P which contradicts our assumption P ∈ ipred(biNC). Therefore, we have shown that

Claim 7 is true.

From Definition 4.2.13 we obtain

I A ∩ NC{ , } = I NC . (VIII)

The proof is similar to equation (I) and is therefore omitted.

Claim 10. ipred
(
I A

)
=

{
I NC

}
Wealreadyknow that ipred(I A ) ⊇ I NC . Weprove the otherdirection byproofof contradiction.

Hence, we assume there exists another two-colored universal class of partition denoted by P
such that P ∈ ipred(I A ) and ∅ ≠ P ≠ I NC . Therefore, we have P \ I NC ≠ ∅. Hence,

there exists a partition � ∈ P such that � ∉ I NC . From equation (VIII) we can see that

� ∉ NC{ , }, since � ∈ P ⊆ I A . The fact � ∉ NC{ , } implies that � needs to have a crossing.

Therefore, the set Cross(�) is not empty. Hence, there exist

(
(?1 , ?2), (@1 , @2)

)
∈ ℕ2×ℕ2

such that(
(?1 , ?2), (@1 , @2)

)
∈ Cross(�). Because � ∈ I A and Definition 4.2.13 (g) we have �?2

= �@1
= .

This implies the existence of two blocks 1? and 1@ such that 1? , 1@ ∈ � and {?1 , ?2} ⊆ set(1?)
and {@1 , @2} ⊆ set(1@). Once again we apply our so-called “unification procedure”, described in

the proof for Claim 7. After application of this unification procedure to the partition � ∈ P we

obtain that there needs to exist a partition, once again denoted by �, which as an element of P
and needs to be of type of the following two. Either there exists : ∈ ℕ \ {1} such that

. . .
1 3 2:+12 4 2:

∈ P (IX)

or there exists : ∈ ℕ such that

. . .
1 3 2:+12 4 2: 2:+2

∈ P . (X)

Like done before, we want to regard as a partition of type from equation (X) for : = 1.

If � ∈ P is of type from equation (IX) or equation (X), then this implies ∈ P . The proof

is similar to Claim 4 in the proof of Theorem 4.1.17. We can analogously show, if � ∈ P is of

type from equation (IX) or equation (X), then this implies ∈ P . In Lemma 4.2.37 we have

shown that Gen
( )

= I A and this implies I A ⊆ P , which contradicts our assumption

P ∈ ipred(I A ). Therefore, we have shown that Claim 10 is true.

Claim 11. ipred(A I ) = {NC I }
The proof of this claim is similar to the proof of Claim 10 and is therefore omitted.

Claim 12. ipred(NC A ) = {pureNC, I A }
We have ipred(NC A ) ⊇ {pureNC, I A }. We prove the other direction by contradiction. We

assume therefor the existence of P as a two-colored universal class of partitions such that

∅ ≠ P ∈ ipred(NC A ), P ≠ pureNC and P ≠ I A . Hence we obtain that ∃�1 ∈ NC A \ pureNC
and ∃�2 ∈ NC A \ I A . We can show that

NC A ∩ NC{ , } = pureNC. (XI)
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According to equation (XI) we have�1 ∉ NC{ , } because�1 ∉ pureNC and�1 ∈ P ⊆ NC A . The

fact�1 ∉ NC{ , } implies that�1 needs to have a crossing. Therefore, the setCross(�) is not empty.

Hence there exist

(
(?1 , ?2), (@1 , @2)

)
∈ ℕ2 × ℕ2

such that

(
(?1 , ?2), (@1 , @2)

)
∈ Cross(�). Because

�1 ∈ NC A and by Definition 4.2.13 (i), we have that �?2
= �@1

= . This implies the existence

of two blocks 1? and 1@ such that 1? , 1@ ∈ � and {?1 , ?2} ⊆ set(1?) and {@1 , @2} ⊆ set(1@). Once

again we apply our so-called “unification procedure”, described in the proof for Claim 7. After

application of this unification procedure to the partition �1 ∈ P , we obtain the existence of a

partition � ∈ P which needs to be one of the following two types. Either there exists : ∈ ℕ \ {1}
such that

� =
. . .

1 3 2:+12 4 2:

∈ P (XII)

or there exists : ∈ ℕ such that

� =
. . .

1 3 2:+12 4 2: 2:+2

∈ P . (XIII)

Like done before we want to regard as a partition of type from equation (XIII) for : = 1.

If � ∈ P is of type from equation (XII) or equation (XIII), then this implies ∈ P . The proof is

similar to Claim 4 in the proof of Theorem 4.1.17. We can analogously show, if � ∈ P is of type

from equation (XII) or equation (XIII), then this implies

∈ P . (XIV)

Now, let us consider �2 ∈ NC A \ I A . The negation of equation (4.2.20a) leads to

�2 ∉ I A ⇐⇒ there exist distinct blocks 1, � ∈ �, there exist indices 8 , 9 , : ∈ set(type(1)) ∪
set(type(�)) such that (

8 , : ∈ set
(
type(1)

)
, �9 =

)
∧

(
(9 , �9) ∉ set(�)

)
=
∧

8 . . . 9 . . . :

occurs in �2

Thus, we can conclude that in the partition �2 there is a block �, with two legs 8 and : and

a leg 9 between 8 and : which does not belong to block �. The color of leg 9 is . The fact

that �2 ∈ NC A can give us possibilities for the relative position of the block with the leg 9

with respect to the block �. Both blocks can not lead to a crossing because this would violate

equation (4.2.22a), which needs to be satisfied because �2 ∈ NC A . The only allowed possibility

according to equation (4.2.22a) is the following scenario

�2 =
∧

. . . . . . . . . . . .8 9 :

,

where the block with the leg 9 only consists of legs with the color . By the unification procedure

applied to �2, described in the proof of Claim 7, we obtain that

∈ P . (XV)

Equation (XIV) and (XV) yield { , } ⊂ P . In Lemma 4.2.39 we have shown that

Gen
(
{ , }

)
= NC A and this implies NC A ⊂ P which contradicts our assumption

P ∈ ipred(NC A ). Therefore, we have shown that Claim 12 is true.

Claim 13. ipred
(
A NC

)
=

{
pureNC,A I

}
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The proof of this claim is similar to the proof of Claim 12 and is therefore omitted.

Claim 14. ipred(pureC) = {NC A ,A NC }

We already know that ipred(pureC) ⊇ {NC A ,A NC }. We prove the other direction by con-

tradiction. We assume therefor the existence of P as a two-colored universal class of partitions

P such that ∅ ≠ P ∈ ipred(pureC), P ≠ NC A and P ≠ A NC . Hence we obtain that

∃�1 ∈ pureC \ NC A and ∃�2 ∈ pureC \ A NC . Looking at Definition 4.2.13 (i) for a partition
being noncrossing-crossing, we can see that it only puts restrictions on legs with color . Thus,

if a partition is not noncrossing-crossing, it is necessary that a leg with color does not satisfy

equation (4.2.22a). For the partition �1 ∉ NC A we also need to take into account that �1 must

be pure crossing. Therefore ∃
(
(?1 , ?2), (@1 , @2)

)
∈ Cross(�) such that

�?2
= �@1

= .

Applying the unification procedure to �1 and several other analogous steps as done in the proof

of Claim 12 we obtain

∈ P .

A similar reasoning holds for the implication

�2 ∈ P =⇒ ∈ P .

In Lemma 4.2.42 we have shown that Gen
(
{ , }

)
= pureC and this implies pureC ⊆ P ,

which contradicts our assumption P ∈ ipred(pureC). Therefore, we have shown that Claim 14 is

true.

Claim 15. ipred(Part{ , }) = {NC{ , } , biNC, pureC}

We already know that ipred(Part{ , }) ⊇ {NC{ , } , biNC, pureC}. We prove the other direction

by contradiction. We assume therefor the existence of P as a two-colored universal class of

partitions such that ∅ ≠ P ∈ ipred(Part{ , }), P ≠ NC{ , }, P ≠ biNC and P ≠ pureC. We have

the existence of

�1 ∈ Part{ , } \NC{ , } ,

�2 ∈ Part{ , } \biNC and

�3 ∈ Part{ , } \pureC.

Since �1 ∈ Part{ , } \NC{ , } the partition �1 needs to have at least one crossing. At this point

we do not make any further distinctions for �1. But we make the following case considerations

for �2 and �3

(a) �2 ∈ pureC and �3 ∈ biNC,

(b) �2 =
∧
. . . . . .

...

�
. . . . . . . . . . . . . . . and �3 ∈ biNC

(c) �2 ∈ pureC and �3 =
∧
. . . . . .

...

�
. . . . . . . . . . . . . . . ,

(d) �2 and �3 =
∧
. . . . . .

...

�
. . . . . . . . . . . . . . . ,
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(e) �2 or �3 have an arbitrary crossing.

According to Definition 4.2.13 (k) and (l) the above case consideration displays all cases which

can occur such that �2 ∉ biNC and �3 ∉ pureC.
Ad (a): Since �2 ∈ pureC and �2 ∉ biNC, the partition �2 needs to have a crossing. Thus, there

exists

(
(?1 , ?2), (@1 , @2)

)
∈ Cross(�2). The colors of the legs ?2 and @1 need to have the same color,

thus there are two possibilities; either �?2
= �@1

= or �?2
= �@1

= . We claim the existence of

�2 ∈ P with the above properties implies

∈ P or ∈ P .

The proof can be taken from the proof of Claim 12. Furthermore we have

P 3 �3 ∈
(
(Part{ , } \pureC) ∩ biNC

)
=⇒ ∈ P . (XVI)

The proof can be taken from the proof of Claim 7. In Lemma 4.2.43 we have shown that

Gen
(
{ , }

)
= Gen

(
{ , }

)
= Part{ , }. This implies that P = Part{ , } which

contradicts our assumption that P ∈ ipred(Part{ , }). Thus, in case of (a) we have shown that

Claim 15 is true.

Ad (b): Like in the case of (a)we can conclude from equation (XVI) that ∈ P . In the proof

of Claim 6 we have shown that

�2 =
∧
. . . . . .

...

�
. . . . . . . . . . . . . . . ∈ P =⇒ ∈ P . (XVII)

Hence, we obtain that { , } ⊆ P . But in Lemma 4.2.43 we have shown that

Gen
(
{ , }

)
⊆= Part{ , }. This implies that P = Part{ , } which contradicts our

assumption that P ∈ ipred(Part{ , }). Thus, in case of (b)we have shown that Claim 15 is true.

Ad (c): Like in the case of (a)we can conclude that

P 3 �2 ∈
(
(Part{ , } \biNC) ∩ pureC

)
=⇒ ∈ P ∨ ∈ P .

Like in equation (XVII) applied to �3 ∈ P we can conclude that ∈ P . Thus, we have

shown that { , } ⊆ P or { , } ⊆ P . This implies that P = Part{ , } which

contradicts our assumption that P ∈ ipred(Part{ , }). Thus, in case of (c) we have shown that

Claim 15 is true.

Ad (d): Since the partition P 3 �1 ∉ NC{ , }, we have Cross(�1) ≠ ∅, hence �1 must have a

crossing. By the unification procedure we obtain the existence of a “minimal two-block crossing

partition” m2bC(, �, �, �) ∈ P , defined in equation (VIII) in the proof Lemma 4.2.43 (c). This
partition � ≔ m2bC(, �, �, �) must be of the type from equation (VI) or equation (VII) of the

proof of Lemma 4.2.43 (c). We first claim the following statement

∀, �, �, � ∈ A({ , }) : m2bC(, �, �, �) ∈ P =⇒ ∈ P . (XVIII)

For the proof let us assume � ∈ P is of type from equation (VI) of the proof of Lemma 4.2.43 (c)
for some = ∈ ℕ. The proof for the other type is similar. We use the notation from equation (VI)

of the proof of Lemma 4.2.43 (c). We calculate for any �, � ∈ A({ , })

� ≔
�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2=

∈ P
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=⇒ P 3 �1 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2= �=2=
. . . �=

1

. . . �1

1
1

. . . �1

1���we insert the sequence of legs in reverse order from the beginning of �:

starting with (�=(2=+1)−8)8∈[2=], then (�
=
(1=+1)−8)8∈[1=]

until (�1

(21+1)−8)8∈[2=], then (�
1

(11+1)−8)8∈[11] are reached

���
=⇒ P 3 �2 ≔

�1

1

. . . �1

1
1

�1

1

. . . �1

2
1

. . . �=
1

. . . �=
1=

�=
1

. . . �=2= �=2=
. . . �=

1

. . . �1

1
1

. . . �1

1

��� split the last two legs of �1 by

�=2=
. . . �=

1

�=
1=

. . . �=
1

. . . �1

2
1

. . . �1

1

�1

1
1

. . . �1

1

= mirror(�) ∈ P

���
=⇒ ∈ P

�
apply pr

2
◦UMem to neighboring legs with color �=2= in �2,

then successively delete

�
Next, we want to proof

∀, �, �, � ∈ A({ , }), ∃(�1 , �2) ∈ { , }×2

:

m2bC(, �, �, �) ∈ P =⇒
�

1
�

2

∈ P . (XIX)

For the proof assume that � ∈ P is of type from equation (VI) for some = ∈ ℕ. The proof for the

other type from equation (VII) of the proof of Lemma 4.2.43 (c) is similar. We calculate

� =
�1

1

. . . �1

1
1

�1

1

. . . �=2=

∈ P

=⇒ �1 ≔
�1

1

. . . �1

1
1

�1

1
�1

1

. . . �=2=

∈ P È�1 = double(�) É

=⇒ �2 ≔
�1

1

. . . �1

1
1

�1

1
�1

1

. . . �=2=

∈ P

Èuse eq. (XVIII) to split �1 by two-block interval partitionÉ

=⇒ �3 ≔
�1

1

. . . �1

1
1

�1

1

∈ P È�3 = (pr
2
◦UMem1

· ,3)(�2) É

=⇒ �4 ≔
�1

1

. . . �1

1
1

�1

1
1

�1

1

∈ P È�4 = double(�3) É

=⇒ �5 ≔
�1

1

. . . �1

1
1

�1

1
1

�1

1

∈ P
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Èuse eq. (XVIII) to split �4 by two-block interval partitionÉ

=⇒ �6 ≔
�

1
�

2

∈ P È�6 = (pr
2
◦UMem1

· ,3)
(
mirror(�5)

)
, �1 ≔ �1

11

, �2 ≔ �1

1
É

In the proof of Claim 6 we have shown that

�2 =
∧
. . . . . .

...

�
. . . . . . . . . . . . . . . ∈ P =⇒ ∈ P (XX)

From equation (XIX), equation (XX) and Lemma 4.2.43 we can conclude P = Part{ , }, which

contradicts our assumption that P ∈ ipred(Part{ , }). Thus, in case of (d) we have shown that

Claim 15 is true.

Ad (e): In this case we have the existence of a partition � ∈ P such that Cross(�) ≠ ∅ ∧ � ∉

pureC ∧ � ∉ biNC. If � ∈ P satisfies these prerequisites, then we have the following occurrence

in the partition �, which we schematically express in a diagram

� =∧
. . . . . . . . . "

1
. . . "

2
. . . . . . . . . . . .

1
1 1

2

?
1

@
1

?
2

@
2

∈ P . (XXI)

Hence, in � ∈ P there exist two blocks 11 and 12, which lead to a crossing ((?1 , ?2), (@1 , @2)) ∈
Cross(�). This crossing violates the defining properties for biNC and pureC. Hence, there need

to exist two legs with the colors "1 and "2 such that ("1 , "2) ∈ A({ , }). Now, we claim

∃("1 , "2) ∈ A({ , }) : P 3 � from eq. (XXI) =⇒
"

1
"

2

∈ P . (XXII)

For the proof consider the following argumentation. If we apply the “unification procedure” to

� until 11 and 12 are the first two blocks of �, then we obtain by {11 , 12} ∈ P . By deleting all

block neighboring legs by delete, there needs to exist a reduced, two-block, crossing partition

m2bC(, �, �, �) ∈ P for certain , �, �, � ∈ A({ , }). We denote this two-block partition again

by � and for the proof of equation (XXII) we assume it is of type from equation (VI) of the proof

of Lemma 4.2.43 (c) for some = ∈ ℕ. There is a similar proof if it is of type from equation (VII)

of the proof of Lemma 4.2.43 (c). The legs with the color "1 ≠ "2 ∈ { , }, which exist by

equation (XXI), have to appear at a certain position in the partition �. Let us assume they appear

in one of the sequences (� 9
8
)8∈[2 9] for some 9 ∈ [=]. If these legs show up in one of the sequences

(� 9
8
)8∈[1 9] for some 9 ∈ [=], the proof is analogous to the following one. For convenience of

drawing the diagrams for the partitions let us assume 1 < 9 < =. We set A ≔ 9 − 1 and B ≔ 9 + 1,

then we calculate

� =
�1

1

. . . �A
1A �

9
1

. . . "
1

. . . "
2

. . . �
9
2 9

�B
1

. . . �=2=

∈ P

=⇒ �1 ≔
�1

1

. . . �A
1A �

9
1

. . . "
1

"
2

. . . �
9
2 9

�B
1

. . . �=2=

∈ P

���� is a reduced partition and ("1 , "2) ∈ A({ , }), hence we can assume that

there exist neighboring legs, which differ in their color, we denote the color

of these neighboring legs again by ("1 , "2) ∈ A({ , })

���
=⇒ �2 ≔

�1

1

. . . �A
1A �

9
1

. . . "
1

"
2

"
2

. . . �
9
2 9

�B
1

. . . �=2=

∈ P
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È�2 = double(�1) É

=⇒ �3 ≔
�1

1

. . . �A
1A �

9
1

. . . "
1

"
2

"
2

. . . �
9
2 9

�B
1

. . . �=2=

∈ P

Èuse eq. (XVIII) to split �2 by two-block interval partitionÉ

=⇒ �4 ≔
�1

1

. . . �A
1A �

9
1

. . . "
1

"
2

∈ P

È�4 = (pr
2
◦UMem1

· ,3)(�3) É

=⇒ �5 ≔
�1

1

. . . �A
1A �

9
1

. . . "
1

"
1

"
2

∈ P È�5 = double(�4) É

=⇒ �6 ≔
�1

1

. . . �A
1A �

9
1

. . . "
1

"
1

"
2

∈ P

Èuse eq. (XVIII) to split �5 by two-block interval partitionÉ

=⇒ �7 ≔
"

1
"

2

∈ P È�7 = (pr
2
◦UMem1

· ,3)
(
mirror(�6)

)
É

This finishes the proof of equation (XXII). Furthermore we have

P 3 � from eq. (XXI) =⇒
�

1
�

2

∈ P . (XXIII)

Once againwe can apply the above describedunification procedure to� to obtain the existence of

a reduced, two-block, crossing partition m2bC(, �, �, �) ∈ P for certain , �, �, � ∈ A({ , }).
The implication of equation (XIX) shows equation (XXIII). From equation (XXII), equation (XXIII)

and Lemma 4.2.43 we can conclude P = Part{ , } which contradicts our assumption that

P ∈ ipred(Part{ , }). Thus, in case of (e)we have shown that Claim 15 is true. �

Now, that we have classified all the two-colored universal classes of partitions we can

display them in a so-called Hasse diagram. This can be seen in Figure 4.1 at the end of this

section, where we have drawn the immediate predecessor relations as lines and the convention

is that if G ∈ ipred(H), then G is drawn below H.

4.2.45 Definition (Lattice, complete lattice [Jac85, Def. 8.2]). A lattice is a partially ordered

set % in which any two elements have a least upper bound and a greatest lower bound. A

partially ordered set is called complete lattice if every subset � ⊆ % has a least upper bound and

a greatest lower bound.

We recall the following Theorem.

4.2.46 Theorem ([Jac85, Thm. 8.1]). A partially ordered set % with greatest element 1% such

that every non-empty subset %′ ⊆ % has a greatest lower bound is a complete lattice, i. e., if

every subset %′ ⊆ % has a sup and inf.

4.2.47 Remark. Assume we have a finite partially ordered set %, where � ∧ � exists for all

�, � ∈ %. Then, by induction we can show that for any subset %′ ⊆ % its meet

∧
%′ exists. Thus,

by the above theorem we can conclude, that if % is a finite poset with greatest element 1% and

if every two elements �, � ∈ % have a meet, then % is a complete lattice.
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For a two-colored universal class of partitions P , for each = ∈ ℕ and � = (�8)8∈[=] ∈ [<]×=
its subset P� is a poset by the reversed refinement order, i. e., we write � ≤ � if and only if each

block of � is completely contained in one of the blocks of �. This is the definition given in [NS06,

Def. 9.14]. Therefore, the following statement makes sense.

4.2.48 Lemma. Let P be a two-colored universal class of partitions. If � = (�8)8∈[=] ∈ [<]×= for
some = ∈ ℕ, then P� is a complete lattice.

Proof: This is only a sketch of proof. Let P� be such a two-colored universal class of partitions.

From Definition 3.4.9 (a) we have 1� ∈ P�. Hence P� has a greatest element. It remains to show

that any two partitions �, � ∈ P� have a meet � ∧ �. From the proof of [NS06, Prop. 9.17] we

obtain a candidate for the meet of � = {+1 , . . . , +A} and � = {,1 , . . . ,,:}, namely

{+8 ∩,9 | 8 ∈ [A], 9 ∈ [:], +8 ∩,9 ≠ ∅ }. (I)

We claim the above expression defines a partition in P� and is the supremum of � and �.
Abbreviate the expression of equation (I) by � ∧ �, although we have not yet shown that the

expression of equation (I) has the desired properties. Assume that � ∧ � exists in P�, then we

need to show that � ∧ � is the greatest lower bound of � and �. Of course, it is a lower bound

of � and � in the reversed refinement order. Assume that � ∈ P� is a lower bound of � and �,
for each block 1 of � there exists a block +8 ∈ � and a block,9 ∈ � such that 1 ⊆ +8 and 1 ⊆ ,9 .

Therefore, 1 ⊆ +8 ∩,9 which implies � ≤ � ∧ �. It remains to show the existence of � ∧ � in

the regarding subset P� of a two-colored universal class of partitions P . Since we have already

classified all possible classes P , we will show existence of the partition � ∧ � for each subset P�

with arbitrary but fixed � = (�8)8∈[=] ∈ [<]×= for any = ∈ ℕ.

Let P = 1B{ , }, then � ∧ � ∈ P�, since P� only consists of one element and � ∧ � = � ∈ P�.

Let P = I{ , } and let �, � ∈ P�. Assume that �∧ � ∉ P�. According to Definition 4.2.13,(b)
the implication of equation (4.2.15a) does not hold for � ∧ �. Thus, there need to exist blocks

1, 1′ ∈ � ∧ � and legs 8 , 9 , : ∈ set(� ∧ �)) such that 1 ≠ 1′ and

8 , : ∈ set(pr
1
(1)) and 9 ∈ set(pr

1
(1′)). (II)

By definition of blocks in � ∧ �, there need to exist blocks + of � and , of � such that

1 = + ∩, . Similarly, we have blocks+′, , ′ such that 1′ = +′∩, ′. We have+ ≠ +′ or, ≠, ′.
Assume + ≠ +′, then we conclude from equation (II) that 8 , : ∈ set(pr

1
(+)) and 9 ∈ set(pr

1
(,).

This violates equation (4.2.15a) and therefore contradicts our assumption that � ∈ I{ , }. A

similar statement holds for the case , ≠ , ′. By proof of contradiction we have shown that

∀�, � ∈ P� : � ∧ � ∈ P�.

LetP = I NC and let�, � ∈ P�. Assume �∧� ∉ P�. Thus according to Definition 4.2.13 (c)
equation (4.2.16a) is not satisfied or the implication of equation (4.2.16b) is false for � ∧ �.
Assume that pr

1
(� ∧ �) ∉ NC. This means that ∃

(
(?1 , ?2), (@1 , @2)

)
∈ Cross(� ∧ �). This implies

the existence of two blocks 1, 1′ ∈ � ∧ � with 1 ≠ 1′ such that ?1 , ?2 ∈ set 1 and @1 , @2 ∈ set 1′.
Like in the above case for P = I{ , } this would imply that pr

1
(�) ∉ NC or pr

1
(�) ∉ NC which is a

contradiction to our assumption. We can look at the proof of Lemma 4.2.18 for the negation of

the implication of equation (4.2.16b). We claim that the property of equation (II) of Lemma 4.2.18

is inherited by the partition � or �, because of the definition of the blocks in � ∧ �. But this
would contradict the assumption that �, � ∈ I NC .

For convenience of the reader we do not further elaborate the proofs for the remaining

classes. We just say that they all share the same proof of concept. We let �, � ∈ P and assume
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�∧ � ∉ P . Negations for the conditions that a partition is an element in a certain universal class

of partition have been done in the proofs of Lemma 4.2.16 till Lemma 4.2.27. If we go through

all the possible scenarios of how � ∧ � can not be an element of a certain universal class, we see

by the definition of blocks in � ∧ � which are non-empty intersections of blocks from � and �,
that any violating scenario is inherited by � or � which contradicts the assumption � ∈ P and

� ∈ P . �

Part{ , }
=

Gen
(
{ , }

)

NC{ , }
=

Gen
( ) pureC

=

Gen
(
{ , }

) biNC
=

Gen
( )

NC A
=

Gen
(
{ , }

) A NC
=

Gen
(
{ , }

)

I A
=

Gen
( ) pureNC

=

Gen
(
{ , }

) A I
=

Gen
( )

I NC
=

Gen
( ) NC I

=

Gen
( )

I{ , }
=

Gen
( )

1B{ , }
=

Gen( )

←

←

←
←

←

←

←

←

←

←

←

←

←

←

←

←

←
←

←

←

←

←

←

←

←

←
←

←

←

←

←

←

←

←

←

←

←
←

Figure 4.1: Hasse diagram of all two-colored universal classes of partitions.





Chapter 5

Universal class of partitions from
positive and symmetric u.a.u.-products

In this chapter we use the classification results of the previous chapter to seek for a classification

of positive and symmetric u.a.u.-products in the single-faced case and the two-faced case. For

this, the main tool is to show that the partitions corresponding to nonzero highest coefficients for

such products obey the properties of a universal class of partitions. In Section 5.1 we explicitly

do this for the single-colored case and confirm Speicher’s classification result from [Spe97] or in

our axiomatic setting Ben Ghorbal’s and Schürmann’s result [BS02]. In Section 5.2 we provide a

partial classification result for the two-faced case.

5.1 Classification of positive and symmetric single-faced
u.a.u.-products

5.1.1 Lemma. Let � be a u.a.u.-product in the category AlgP and let : ∈ ℕ. Let

(
A8 , !8

)
8∈[:] ∈(

Obj(AlgPm)
)×:

. By Convention 3.3.1 we set

∀A ∈ [:] : j8 ≔ T
( :⊕
8=1

Δ8 ,A

)
. (5.1.1)

Put

+ ≔

:⊕
8=1

A8 (5.1.2)

and consider (T(+),Δ, 0) as the single-faced dual semigroup with primitive comultiplication

Δ from Example 2.2.8. Then,

!1 � · · · � !: =
(
(!1 ◦ j1) ~ · · · ~ (!: ◦ j:)

)
◦ inc⊔:

8=1
A8 ,T(+) (5.1.3)

where ~ denotes the convolution with respect to the primitive comultiplication Δ and

inc⊔:
8=1

A8 ,T(+) is the canonical inclusion of vector spaces.

Proof: The proof is similar to the proof of Theorem 2.4.12, where we just need to set the color

index to one, i. e., < = 1. On the other hand, we need to extend the “type index” to : ∈ ℕ

algebras. The necessary steps can be directly adjusted and therefore we omit the proof and

181
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instead refer to the proof of Theorem 2.4.12. �

Similar to the result of Lemma 2.4.6 we want to define a “linearized” version of � without

the prerequisite of a comonoid in the category Algm. Let � be an u.a.u.-product in the category

AlgPm for some < ∈ ℕ. Let : ∈ ℕ and (A8 , !8)8∈[:] ∈ (Obj(AlgPm))×: . Then, we define

):�(!1 , . . . , !:) :


:∏
8=1

A8 −→ ℂ

0 ↦−→ %=

%C1 . . . %C=

( (
(C1!1) � · · · � (C:!:)

)
(0)

)���
C1=...=C:=0

.

(5.1.4)

Thanks to the universal coefficient theorem (Theorem 2.3.3) we can see that the derivatives exist

and furthermore ):�(!1 , . . . , !:) ∈ Lin(⊔:
8=1

A8 ,ℂ). This justifies the following definition

5.1.2 Definition. Let � be a u.a.u.-product in the category AlgPm for some < ∈ ℕ. Let : ∈ ℕ
and (A8 , !8)8∈[:] ∈ (Obj(AlgPm))×: . Then, we set

):� :


:∏
8=1

Lin(A8 ,ℂ) −→ Lin

( :⊔
8=1

A8 ,ℂ
)

(!1 , . . . , !:) ↦−→ ):�(!1 , . . . , !:).

(5.1.5)

We also use the notation !1 � · · · � !: ≔ ):�(!1 , . . . , !:).

5.1.3 Remark. The relation of ):� to the :-fold operation )�: on the dual space of a given

comonoid in the category AlgP, is the following. If we consider equation (5.1.3), then we obtain

for any basis element 0 ∈ ⊔:
8=1

A8

(!1 � · · · � !:)(0)

=
%=

%C1 . . . %C=

( (
(C1!1) � · · · � (C:!:)

)
(0)

)���
C1=...=C:=0

È eq. (5.1.4)É

=
%

%C1 . . . %C=

(( (
(C1!1) ◦ j1

)
~ · · · ~

(
(C:!:) ◦ j:

) ) (
inc⊔:

8=1
A8 ,T(+)(0)

) )���
C1=...=C:=0

È eq. (5.1.3)É

=
%

%C1 . . . %C=

(( (
C1(!1 ◦ j1)

)
~ · · · ~

(
C:(!: ◦ j):

) ) (
inc⊔:

8=1
A8 ,T(+)(0)

) )���
C1=...=C:=0

=
(
(!1 ◦ j1) � · · · � (!: ◦ j:)

) (
inc⊔:

8=1
A8 ,T(+)(0)

)
(5.1.6)

ÈLem. 2.4.6 applied to ℕ0-graded comonoid T

(⊕:

8=1

A8

)
É.

Roughly speaking, the (: − 1)-fold operation ):� on
∏:

8=1
Lin(A8 ,ℂ) can be seen as a restriction

of the (: − 1)-fold operation ):� on Lin

(
T(

⊕:
8=1

A8),ℂ
)
.

5.1.4 Lemma. Assume � is a u.a.u.-product in the category AlgP. Then,

∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1], ∀� = (�8)8∈[=] ∈ [:]×= , ∀(A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
, ∀(08)8∈[=] ∈
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∏=
8=1

A�8 : (
!1 � · · · � !:

)
(01 · · · · · 0=) =

(
!1 � · · · � !:

)
(0̃1 · · · · · 0̃=̃), (5.1.7)

where (0̃8)8∈[=̃] ∈
∏=

8=1
A�̃8 is the unique tuple such that

∃ =̃ ∈ [=] : (�̃8)8∈[=̃] = red(�) ∈ A([:]. (5.1.8)

The definition of the reduced tuple red(�) is due to Convention 2.5.8.

Proof: This follows from Definition 5.1.2 and Convention 2.5.8. �

5.1.5 Lemma. Let � be u.a.u.-product with the right-ordered monomials property in the

category AlgP. With respect to the notation from Theorem 2.3.3 we have

(a) ∀ : ∈ ℕ \ {1}, ∀= ∈ ℕ \ [: − 1], ∀� = (�8)8∈[=] ∈ A([:]), ∀(A8 , !8)8∈[:] ∈(
Obj(AlgP)

)×:
, ∀(08)8∈[=] ∈

∏=
8=1

A�8 :(
!1 � · · · � !:

)
(01 · · · · · 0=) = (�)

11 ,...,1:︸  ︷︷  ︸
≡(�)

max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
, (5.1.9)

where 18 denotes the uniquemonomial inOM(-(8)� ) of degree |-(8)� | (notation introduced

in Remark 2.3.4 (b)) and (�)
max

is the highest coefficient w.r.t. �, defined in Definition 2.5.3.

(b) ∀ : ∈ ℕ \ {1}, ∀= ∈ ℕ \ [: − 1], ∀� = (�8)8∈[=] ∈ A([:]), ∃(A8 , !8)8∈[:] ∈(
Obj(AlgP)

)×:
, ∃(08)8∈[=] ∈

∏=
8=1

A�8 :

∀ 8 ∈ [:] : !8
(
9(01 , . . . , 0=)(18) = 1, (5.1.10a)(

!1 � · · · � !:
)
(01 · · · · · 0=) = (�)

max
. (5.1.10b)

Proof: Ad (a): By the given assumptions we calculate

(
!1 � · · · � !:

)
(01 · · · · · 0=)

=
%:

%C1 . . . %C:

(
(C1!1) � · · · � (C:!:)

)
(01 · · · · · 0=)

) ���
C1=...=C:=0

Èdef. of � in eq. (5.1.4)É

=
%:

%C1 . . . %C:

( ∑
�1

∈OM(-(1)� )

. . .
∑
�:

∈OM(-(:)� )

(�)�1 ,...,�:

∏
"1∈�1

(C1!1)
(
9(01 , . . . , 0=)("1)

)
. . .

∏
":∈�:

(C:!:)
(
9(01 , . . . , 0=)(":)

))���
C1=...=C:=0

È [MS17, equation (4.5)]É

=
%:

%C1 . . . %C:

(
(�)
max
(C1!1)

(
9(01 , . . . , 0=)(11)

)
. . . (C:!:)

(
9(01 , . . . , 0=)(1:)

)
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+
∑
�1

∈OM(-(1)� ),
�1≠11

. . .
∑
�:

∈OM(-(:)� )

(�)�1 ,...,�:

∏
"1∈�1

(C1!1)
(
9(01 , . . . , 0=)("1)

)
. . .

∏
":∈�:

(C:!:)
(
9(01 , . . . , 0=)(":)

)
+ · · · +

∑
�1

∈OM(-(1)� )

. . .
∑
�:

∈OM(-(8)� ),
�8≠18

. . .
∑
�:

∈OM(-(:)� )

(�)�1 ,...,�8 ,...,�:

∏
"1∈�1

(C1!1)
(
9(01 , . . . , 0=)("1)

)
. . .

∏
"8∈�8
(C8!8)

(
9(01 , . . . , 0=)("8)

)
+ · · · +

∑
�1

∈OM(-(1)� )

. . .
∑
�:

∈OM(-(:)� ),
�:≠1:

(�)�1 ,...,�:

∏
"1∈�1

(C1!1)
(
9(01 , . . . , 0=)("1)

)
. . .

∏
":∈�:

(C:!:)
(
9(01 , . . . , 0=)(":)

))���
C1=...=C:=0

= (�)
max

!1

(
9(01 , . . . , 0=)(11)

)
. . . !:

(
9(01 , . . . , 0=)(1:)

)
È∀8 ∈ [:] : �8 ≠ 18 ∈ OM(-(8)� ) =⇒ deg

( ∏
"8∈�8
(C8!8)

(
9(01 , . . . , 0=)("8)

) )
≥ 2É.

Ad (b): Let +9 be a one-dimensional vector space for each 9 ∈ [:]. Let 0 9 ∈ +9 be a basis vector

for each 9 ∈ [:]. For each 9 ∈ [:] define a linear functional on basis elements by

! 9 :

{
+9 −→ ℂ

0 9 ↦−→ 1.
(I)

Now, let � = (�8)8∈[=] ∈ [:]×= , such that (�)
max

≠ 0. We can see that ∀ 9 ∈ [:] : (T(+9), T (! 9)) ∈
Obj(AlgP). Let � 9 : +9 ↩−→

⊔:
9=1

T(+9) be the canonical inclusion map for each 9 ∈ [:]. If we use⊔:
9=1

T(+9) ' T

(⊕:
8=1
+9

)
, then we can calculate(

T (!1) � · · · � T (!:)
) (
��1
(0�1
) · · · · · ��= (0�= )

)
= (�)

max

:∏
8=1

T (!8)
(
9(0�1

, . . . , 0�= )(18)
)
ÈLem. 5.1.5 (a)É

= (�)
max

ÈUMP for T

(⊕:
8=1
+9

)
and def. of ! 9 in eq. (I)É. �

5.1.6 Proposition. Let � be a u.a.u.-product with the right-orderedmonomials property in the

category AlgP. Let : ∈ ℕ \ {1}, = ∈ ℕ \ [: − 1]. Set

�=,: ≔ { (�8)8∈[=] ∈ [:]×= | ∃ℓ ∈ {0, . . . , = − 2} ⊆ ℕ : �ℓ+1 = 1, �ℓ+2 = 2 }. (5.1.11)

Then, holds
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∀ : ∈ ℕ \ {1},∀= ∈ ℕ \ [: − 1], ∀� = (�8)8∈[=] ∈ �=,: , ∀(A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
,

∀(08)8∈[=] ∈
∏=

8=1
A�8 :(

!1 � · · · � !:
) (
01 · · · · · 0ℓ+1︸︷︷︸

∈A1

· 0ℓ+2︸︷︷︸
∈A2

· · · · · 0=
)

=

( (
!1 � !2

)
� !3 � · · · � !:

) (
01 · · · · · 0ℓ+1 · 0ℓ+2︸     ︷︷     ︸

∈A1tA2

· · · · · 0=
)
. (5.1.12)

Proof: According to Lemma 5.1.4 it suffices to show the assertion for alternating tuples � =
(�8)8∈[=] ∈ A([:]). Furthermore, let � = (�8)8∈[=] ∈ �=,: . Each =-tuple (08)8∈[=] ∈

∏=
8=1

A�8

induces an element 01 · · · · · 0= ∈
⊔=
8=1

A�8 . But by equation (1.1.17) we have a canonical algebra

isomorphism

⊔=
8=1

A8
∼= (A1 t A2) t (

⊔=
8=3

A8). By application of this isomorphism we define

01 · · · · · 0= ≕ 0̃1 · · · · · 0̃=̃ ∈ (A1 t A2) t (
=⊔
8=3

A8),

where =̃ < =, since we have assumed that � ∈ �=,: . We stress that we suppress any canonical

homomorphic insertions by this notation. Moreover, for each 8 ∈ [=̃]we either have 0̃8 ∈ A9 for

some 9 ∈ [=] \ {1, 2} or 0̃8 ∈ A1 t A2. Therefore we can define for all 8 ∈ [=̃]

�̃8 ≔

{
9 , if 0̃8 ∈ A9

1 t 2, if 0̃8 ∈ A1 t A2.

We set

�̃ ≔ (�̃8)8∈[=̃] ∈ A({1 t 2} ∪ ([:] \ {1, 2}))

and by definition for all 8 ∈ [=̃]we have that 0̃8 ∈ A�̃8 . If we set !1t2 ≔ !1�!2, then we calculate

for the right hand side of equation (5.1.12)( (
!1 � !2

)
� !3 � · · · � !:

) (
01 · · · · · (0ℓ+1 · 0ℓ+2) · · · · · 0=

)
=

(
!1t2 � !3 � · · · � !=

)
(0̃1 · · · · · 0̃=̃)

= (�̃)
max

!1t2

(
9(0̃1 , . . . , 0̃=̃)(11t2)

)
. . . !:

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
È application of Lemma 5.1.5 (a) to �̃ instead of � and 0̃8 instead of 08 É

= (�̃)
max
(!1 � !2)

(
9(0̃1 , . . . , 0̃=̃)(11t2)

)
. . . !:

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
Èdef. of !1t2 É

= (�̃)
max
(!1 � !2)

(
9(0̄1 , . . . , 0̄=̄)(11t2)

)
. . . !:

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
�
∃ =̄ ∈ ℕ, ∃ �̄ = (�̄8)8∈[=̄] ∈ A([2]), ∃(0̄8)8∈[=̄] ∈

∏=̄
8=1

A�8 :

9(0̃1 , . . . , 0̃=̃)(11t2) = 0̄1 · · · · · 0̄=̄ ∈ A1 t A2

�
= (�̃)

max
(�̄)
max

!1

(
9(0̄1 , . . . , 0̄=̄)(11)

)
!2

(
9(0̄1 , . . . , 0̄=̄)(12)

)
. . . !:

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
È application of Lemma 5.1.5 (a) to �̄ instead of � and 0̄8 instead of 08 É
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= (�̃)
max

(�̄)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
È by def. of (0̃8)8∈[=̃] and (0̄8)8∈[=̄] É. (I)

Before calculating the left hand side of equation (5.1.12), we note that the expression

(
(C1!1) �

· · · � (C:!:)
)
(01 · · · · · 0=) is polynomial in C1 , . . . , C: ∈ ℝ for any value of (08)8∈[=] ∈

∏=
8=1

A�8 . This

is a consequence of equation (2.3.12). Hence, for any partial derivative of this expression we

may apply Schwarz’s theorem. We do this without explicitly mentioning. We calculate

(
!1 � · · · � !:

) (
01 · · · · · (0ℓ+1 · 0ℓ+2) · · · · · 0=

)
=

%:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

) (
01 · · · · · (0ℓ+1 · 0ℓ+2) · · · · · 0=

) )���
C1=...=C:=0

Èdef. of � in eq. (5.1.4)É

=
%:

%C1 . . . %C:

( (
(C1!1) � (C2!2)

)
� (C3!3) � · · · � (C:!:)

) (
01· · · · · (0ℓ+1 · 0ℓ+2)

· · · · · 0=
) )���

C1=...=C:=0

È � is associativeÉ

=
%:

%C1 . . . %C:

(
(�̃)
max

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)(11t2)

)
. . . (C:!:)

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
+

∑
�1t2

∈OM(-(1t2)
�̃
)

. . .
∑
�:

∈OM(-(:)
�̃
)︸                       ︷︷                       ︸

∃ℓ∈{1t2,3,...,:} : �ℓ≠1ℓ

(�̃)�1t2 ,...,�:

∏
"1t2∈�1t2

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("1t2)

)

. . .
∏
":∈�:
(C:!:)

(
9(0̃1 , . . . , 0̃=̃)(":)

))���
C1=...=C:=0

=
%:

%C1 . . . %C:

(
(�̃)
max

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)(11t2)

)
. . . (C:!:)

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
+

∑
�1t2

∈OM(-(1t2)
�̃
),

�1t2≠11t2

(�̃)
�1t2 ,13 ,...,1:

∏
"1t2∈�1t2

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("1t2)

)

·
∏

8∈{3,...,:}
(C8!8)

(
9(0̃1 , . . . , 0̃=̃)(18)

))���
C1=...=C:=0����

∀ 8 ∈ [:] \ {1, 2}, : �8 ≠ 18 ∈ OM(-(8)� )
=⇒ deg

(∏
"8∈�8 (C8!8)

(
9(01 , . . . , 0=)("8)

) )
≥ 2,

linearity of partial derivative

����
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=
%:

%C1 . . . %C:

(
(�̃)
max

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)(11t2)

)
. . . (C:!:)

(
9(0̃1 , . . . , 0̃=̃)(1:)

)
+

∑
�1t2

∈OM(-(1t2)
�̃
),

�1t2≠11t2

(�̃)
�1t2 ,13 ,...,1:

∏
"1t2∈�1t2

"1t2≠"
′
1t2

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("1t2)

)
·
(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("′

1t2
)
)

·
∏

8∈{3,...,:}
(C8!8)

(
9(0̃1 , . . . , 0̃=̃)(18)

))���
C1=...=C:=0�

∀�1t2 ≠ 11t2 ∈ OM(-(1t2)
�̃ ), ∃! "′

1t2
∈ �1t2 :

9(0̃1 , . . . , 0̃=̃)("′
1t2
) = · · · · 0ℓ+1 · 0ℓ+2 · · · · ∈ A1 t A2

�

=
%:

%C1 . . . %C:

(
(�̃)
max

(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)(11t2)

)
. . . (C:!:)

(
9(0̃1 , . . . , 0̃=̃)(1:)

))���
C1=...=C:=0

������������������

by Thm. 2.3.3

deg

( (
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("1t2)

)
·
(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("′

1t2
)
) )
≥ 2,

because(
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)("′

1t2
)
)

∼ (C1!1)(· · · 0ℓ︸︷︷︸
∈A1

· · · )(C2!2)(· · · 0ℓ+1︸︷︷︸
∈A2

· · · ) +∑
�1

∑
�2

∏
...

∏
... . . . ,(

(C1!1) � (C2!2)
) (
9(0̃1 , . . . , 0̃=̃)("1t2)

)
∼ (C1!1)(11)(C2!2)(12) +

∑
�1

∑
�2

∏
...

∏
... . . .

and partial derivative is linear

������������������
= (�̃)

max

%2

%C1 %C2

((
(C1!1) � (C2!2)

) (
9(0̃1 , . . . , 0̃=̃)(11t2)

))���
C1=C2=0

:∏
8=3

!8
(
9(0̃1 , . . . , 0̃=̃)(18)

)
È linearity of partial derivativeÉ

= (�̃)
max

(
!1 � !2

) (
9(0̃1 , . . . , 0̃=̃)(11t2)

) :∏
8=3

!8
(
9(0̃1 , . . . , 0̃=̃)(18)

)
Èdef. of � in eq. (5.1.4)É

= (�̃)
max
(!1 � !2)

(
9(0̄1 , . . . , 0̄=̄)(11t2)

) :∏
8=3

!8
(
9(0̃1 , . . . , 0̃=̃)(18)

)
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�
∃ =̄ ∈ ℕ, ∃ �̄ = (�̄8)8∈[=̄] ∈ A([2]), ∃(0̄8)8∈[=̄] ∈

∏=̄
8=1

A�8 :

9(0̃1 , . . . , 0̃=̃)(11t2) = 0̄1 · · · · · 0̄=̄ ∈ A1 t A2

�

= (�̃)
max

(�̄)
max

!1

(
9(0̄1 , . . . , 0̄=̄)(11)

)
!2

(
9(0̄1 , . . . , 0̄=̄)(12)

) :∏
8=3

!8
(
9(0̃1 , . . . , 0̃=̃)(18)

)
È application of Lemma 5.1.5 (a) to �̄ instead of � and 0̄8 instead of 08 É

= (�̃)
max

(�̄)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
È by def. of (0̃8)8∈[=̃] and (0̄8)8∈[=̄] É. (II)

Since equations (I) and (II) are equal to eachother, wehave shown that equation (5.1.12) holds. �

5.1.7 Example. We want to give an example that if � ∉ �=,: , where the set �=,: is defined in

equation (5.1.11), then it can happen that(
!1 � · · · � !:

) (
01 · · · · · 0=

)
≠

( (
!1 � !2

)
� !3 � · · · � !:

)
(01 · · · · · 0=). (5.1.13)

This shows that the operation � is in general not associative. We already know from Theo-

rem 4.1.17 that the set of noncrossing partitions P ≔ NC is a universal class of partitions which

induces a u.a.u.-product denoted by �NC according to Theorem 3.3.9. In Theorem 3.3.9 (e)
we have shown that �P satisfies the right-ordered monomials property. Therefore, the

following calculation provides an example if � ∉ �=,: , then equation (5.1.12) does not

hold. Assume we are given (A8 , !8)8∈[3] ∈
(
Obj(AlgP)

)×3

and linear functionals !8 ≠ 0. Let

� = (�8)8∈[4] = (1, 3, 2, 3) ∉ �4,3 and a tuple (08)8∈[4] ∈
∏

4

8=1
A�8 . Then, we can calculate for

C12 , C3 ∈ ℝ \ {0}((
C12

(
!1 � !2︸   ︷︷   ︸
≕!12

) )
� (C3!3)

)
( 01︸︷︷︸
∈A1tA2

· 02︸︷︷︸
∈A3

· 03︸︷︷︸
∈A1tA2

· 04︸︷︷︸
∈A3

)

=

( (
(C12!12 ◦ j12) }̃P (!2 ◦ j3)

)
◦ (i12 t i3)

)
(01 · 02 · 03 · 04)

Èdef. of �P in eq. (3.3.13)É

=

( (
(C12!12 ◦ j12) }P (C3!3 ◦ j3)

) )
(01 ⊗ 02 ⊗ 03 ⊗ 04) Èdef. }̃P in eq. (3.3.10)É

=

( ∑
�∈P4

∏
1∈�

(
logP (C12!12 ◦ j12) + logP (C3!3 ◦ j3)

) )
(01 ⊗ 02 ⊗ 03 ⊗ 04)

Èdef. of }P in eq. (3.2.7)É

= C12!12(01 · 03)
(
(C3)2!3(02)!3(04)

)
+

(
(C12)2!12(01)!12(03)

)
C3!3(0204)

−
(
(C12)2!12(01)!12(03)

) (
(C3)2!3(02)!3(04)

)
ÈLem. 3.2.12É

=⇒
( (
!1 � !2

)
� !3

)
(01 · 02 · 03 · 04) = 0 Èdef. of � in eq. (5.1.5)É. (5.1.14)

On the other hand, we can obtain for C1 , C2 , C3 ∈ ℝ \ {0}(
(C1!1) �P (C2!2) �P (C3!3)

)
(01 · 02 · 03 · 04)
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=

( (
(C1!1) �P (C2!2)︸              ︷︷              ︸

≕!12

)
�P (C3!3)

)
(01 ⊗ 02 ⊗ 03 ⊗ 04) È �P is associativeÉ

= !12(01 · 03) ·
(
(C3)2!3(02)!3(04)

)
+

(
!12(01)!12(03)

)
C3!3(0204)

− !12(01)!12(03)
(
(C3)2!3(02)!3(04)

)
È similar calculation as aboveÉ

= C1!1(01)C2!2(03)
(
(C3)2!3(02)!3(04)

)
+ (C1!1(01))(C2!2(03))(C3!3(0204))

− C1!1(01)C2!2(03)
(
(C3)2!3(02)!3(04)

)
È �P is unitalÉ

=⇒
(
!1 � !2 � !3

)
(01 · 02 · 03 · 04) = !1(01)!2(03)!3(0204) (5.1.15)

Èdef. of � in eq. (5.1.5)É.

The twoabove calculations showequation (5.1.13) foran appropriate choice of linear functionals

!1 , !2 , !3. For instance, we can choose A8 = T(+8) for some vector spaces +8 for each 8 ∈ [3].
Assume the tuple (08)8∈[4] ∈

∏
4

8=1
+�8 are basis vectors. Then, we define linear functionals

51 : +1 −→ ℂ, 01 ↦−→ 1, 52 : +2 −→ ℂ, 03 ↦−→ 1 and 53 : +3 −→ ℂ, 02 ↦−→ 1, 04 ↦−→ 1 and on

other basis elements all maps are zero. Then, we can set ∀ 8 ∈ [3] : !8 ≔ T ( 58).

Let : ∈ ℕ, = ∈ ℕ \ [: − 1] and � ≕ (�8)8∈[=] ∈ A([:]). We want to derive two other tuples

from this tuple �. We set

( ≔
{
8 ∈ [=] | (�8 = 1) ∨ (�8 = 2)

}
. (5.1.16)

We define the following tuple � = (�8)8∈[=] ∈ [: − 1]×= by

∀ 8 ∈ [=] : �8 ≔
{

1 for 8 ∈ (

�8 − 1 else.
(5.1.17)

Then, we set

�̃ ≔ (�̃8)8∈[=] ≔ red(�) ∈ A([: − 1]). (5.1.18)

For example, if � = (1, 2, 3, 2, 4, 1) ∈ A([4]), then according to the above � = (1, 1, 2, 1, 3, 1) and
therefore �̃ = (1, 2, 1, 3, 1) ∈ A([3]). We want to define a second tuple originating from � by

�̄ ≔ (�̄8)8 ≔ red

(
(�8)8∈(

)
∈ A([2]). (5.1.19)

Notice that we make use of Convention 2.5.5 (a). As an example, for � = (1, 2, 3, 2, 4, 1) ∈ A([4])
we have �̄ = (1, 2, 1) ∈ A([2]). Using these notations we want to formulate a Corollary to

Proposition 5.1.6.

5.1.8 Corollary (to Proposition 5.1.6). Let : ∈ ℕ\{1}, = ∈ ℕ\[:−1] and assume � = (�8)8∈[=] ∈(
�=,: ∩A([:])

)
, where the set �=,: has been defined in equation (5.1.11).

Then, we have

(�)
max

= (�̃)
max
· (�̄)

max
. (5.1.20)

Proof: FromLemma5.1.5 (b)weobtain the existence of algebrasA8 , linear functionals!8 andele-

ments (08)8∈[=] ∈
∏=

8=1
A�8 such that (!1�· · ·�!:)(01·· · ··0=) = (�)

max
and

∏:
8=1

!8
(
9(01 , . . . , 0=)(18) =

1,. We can calculate

(�)
max

= (!1 � · · · � !:)(01 · · · · · 0=)
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=

( (
!1 � !2︸   ︷︷   ︸
≕!̃1

)
� !3︸︷︷︸

≕!̃2

� · · · � !:−1︸︷︷︸
≕!̃:−1

) (
01 · · · · · (0ℓ+1 · 0ℓ+2)︸        ︷︷        ︸

∈A1tA2

· · · · · 0=
)

È equation (5.1.12)É

= (�̃)
max

:∏
8=1

!̃8
(
9(01 , . . . , 0=)(18)

)
È eq. (5.1.9)É

= (�̃)
max
(!1 � !2)

( →∏
8∈(

08
)
È eq. (5.1.10a), def. of ( in eq. (5.1.16), Conv. 2.5.5 (b)É

= (�̃)
max

(�̄)
max

!1

(
9(01 , . . . , 0=)(11)

)
!2

(
9(01 , . . . , 0=)(12)

)
È eq. (5.1.9)É

= (�̃)
max

(�̄)
max

È eq. (5.1.10a)É. �

Now, we have some hope to make the transition from a u.a.u.-product � to a universal class

of partitions since we have found a possibility to “reduce” the length of a highest coefficient. For

this, we will introduce a more diagrammatic notation in the following.

5.1.9 Definition (Induced single-colored partition). We set

∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1] : )=,: ≔ { � ∈ [:]×= | |set �| = : }, (5.1.21)

) ≔
⋃
:∈ℕ

⋃
=∈ℕ\[:−1]

)=,: . (5.1.22)

We shall define a prescription which maps an =-tuple � ∈ )=,: to a partition � ∈ Part=,: with :

blocks. Let : ∈ ℕ, = ∈ ℕ \ [: − 1] and � ∈ )=,: . We set

∀ 8 ∈ [:] : ��,8 ≔ { ℓ ∈ ℕ | �ℓ = 8 }. (5.1.23)

And by this we set

indPart(�) ≔
⋃
8∈[:]
{ block(��,8) } ∈ Part=,: . (5.1.24)

Thus, we define

indPart :

{
) −→ Part

� ↦−→ indPart(�).
(5.1.25)

5.1.10 Remark. The above definedmap is not injective but surjective. Moreover, for each : ∈ ℕ
and = ∈ ℕ \ [: − 1]we have

(A([:]) ∩ )=,:) = indPart−1
(
red(Part=,:)

)
. (5.1.26)

Or in other words, we can say that indPart(�) is reduced as a (single-colored) partition (Defini-

tion 4.1.10 (a)) if and only if � is reduced as a tuple (Convention 2.5.8 for < = 1).

5.1.11 Lemma. If � is a symmetric u.a.u.-product in the category AlgP, then

∀� ∈ (: : !1 � · · · � !: = !�(1) � · · · � !�(:) ◦ can, (5.1.27)
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where (: denotes the symmetric group on the set [:] and can :

⊔:
8=1
−→ A�(1) t · · · t A�(:)

the canonical isomorphism of the free product of rearranged algebras A8 in the sense of

equation (1.1.17).

Proof: We only sketch the proof. It suffices to show the statement for a transposition � ∈ (:
since each permutation can be made up of a finite composition of transpositions. The statement

then follows by induction. Assume that � ∈ (: is a transposition. Due to Lemma 2.4.7 we have

[ · , · ]� = 0.

Then, according to Proposition 2.4.5 (e)we have for each ℓ ∈ [: − 1] ⊆ ℕ

!1 � · · · � !ℓ−1 � !ℓ � !ℓ+1 � !ℓ+2 � · · · � !:

= !1 � · · · � !ℓ−1 � !ℓ+1 � !ℓ � !ℓ+2 � · · · � !: .

Now, the statement of equation (5.1.27) in case that � is a transposition follows again by induction

and equation (5.1.6). �

The above Lemma tells us that in the case [ · , · ]� = 0 and whenever we want to calculate

!1� · · ·�!= thenwe can arbitrarily rearrange the order of !8 in this expression (up to a canonical

isomorphism).

5.1.12 Lemma. Let � be a symmetric u.a.u.-product with right-ordered monomials property

in the category AlgP. Let : ∈ ℕ, = ∈ ℕ \ [: − 1], � ∈ Part=,: . Choose � = (�8)8∈[=] ∈ )=,: such
that indPart(�) = �. Define the set

N� ≔ { �′ = (�′8)8∈[=] ∈ ℕ | ∃ 5 ∈ (: : ∀ 8 ∈ [=] : �′8 = 5 (�8) }. (5.1.28)

Then, we have

N� = (indPart)−1(�), (5.1.29)

∀�′ ∈ (indPart)−1(�) : (red �′)
max

= (red �)
max

. (5.1.30)

Proof: By definition of the map indPart in equation (5.1.25) the assertion of equation (5.1.29)

immediately follows. For the proof of equation (5.1.30) it suffices to assume � = red(�) ∈ ). If
� ∈ ) is not reduced, then the same calculation applies to red(�) due to Lemma 5.1.4. We can

calculate for some 5 ∈ (:

(�)
max

=
(
!1 � · · · � !:

)
(01 · · · · · 0=) ÈLem. 5.1.5 (b)É

=
(
!′
5 (1) � !

′
5 (2) � · · · � !

′
5 (:)

)
(0′

1
· · · · · 0′=︸      ︷︷      ︸
∈A�′

)

�
∀ 8 ∈ [:] :

(
A′
5 (8) , !

′
5 (8)

)
≔

(
A8 , !8

)
, ∀ 8 ∈ [=] : 0′

8
≔ 08 ∈ A′

�′
8

for �′ ∈ N�

�
=

(
!′

1
� · · · � !′:

)
(0′

1
· · · · · 0′=) È � is symmetric, Lem 2.4.7 and Lem. 5.1.11É

= (�
′)

max
ÈLem. 5.1.5 (a), def. of �′ ∈ N� in eq. (5.1.28)É

This shows equation (5.1.30), since equation (5.1.29) holds. �
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We want to introduce a more handy diagrammatic expression for (�)
max

for some � ∈ )
which can help us to see when we are allowed to apply the assertion of Corollary 5.1.8.

5.1.13 Convention. Set

∀� ∈ Part : � ≔ (red �′)
max

for some �′ ∈ (indPart)−1(�). (5.1.31)

This convention is well-defined since indPart : ) −→ Part is surjective and because of equa-

tion (5.1.30). Due to Remark 5.1.10 this convention implies ∀� ∈ Part : � = red�.

5.1.14 Corollary (to Proposition 5.1.6). Let : ∈ ℕ\{1}, = ∈ ℕ\[:−1]. For all � = (�8)8∈[=] ∈ )=,:
with � ≔ indPart(�) ∈ Part(ℓ+1)∨(ℓ+2)

=,:
holds

� = (pr
1
◦UMemℓ+1

=,:
)(�) · (pr

2
◦UMemℓ+1

=,:
)(�). (5.1.32)

In other words, for all (�̃, �̄) ∈ ()=,:−1 × )· ,2) with (�̃, �̄) ≔ (indPart(�̃), indPart(�̄)) ∈
sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
holds

�̃ · �̄ = splitℓ+1

=,:−1
(�̃,�̄). (5.1.33)

Proof: Both equations are equivalent since split and UMem are inverse to each other because

of Lemma 3.1.7. Therefore, it suffices to prove equation (5.1.32). Let � = (�8)8∈[=] ∈ ) such that

� ≔ indPart(�) ∈ Part(ℓ+1)∨(ℓ+2)
=,:

. At this point we may not apply Corollary 5.1.8 since �ℓ+1 ≠ 1 or

�ℓ+2 ≠ 2. We want to define a bĳection 5 : [:] −→ [:] according to the following cases

(a) (�ℓ+1 = 1) ∧ (�ℓ+2 = 2) then set 5 = id.

(b) (�ℓ+1 = 2) ∧ (�ℓ+2 = 1) then we define 5 by 1 ↦−→ 2, 1 ↦−→ 2 and 5 �[:]\{1,2} = id.

(c) (�ℓ+1 = 2) ∧ (�ℓ+2 ≠ 1) then we define 5 by �ℓ+2 ↦−→ 1, 1 ↦−→ �ℓ+2 , and 5 �[:]\{1,�ℓ+2} = id.
Then, we apply case (b) and we obtain a composition of maps.

(d) (�ℓ+1 ≠ 2) ∧ (�ℓ+2 = 1) then we define 5 by �ℓ+1 ↦−→ 1, 1 ↦−→ �ℓ+1 , and 5 �[:]\{1,�ℓ+1} = id.
Then, we apply case (b) and we obtain a composition of maps.

(e) (�ℓ+1 ∉ {1, 2})∧(�ℓ+2 ∉ {1, 2}), then we define 5 by �ℓ+1 ↦−→ 1, �ℓ+2 ↦−→ 2, 1 ↦−→ �ℓ+1 , 2 ↦−→
�ℓ+2 and 5 �[:]\{1,2,�ℓ+1 ,�ℓ+2} = id.

For the bĳection 5 ∈ (: we define a tuple �′ = (�′
8
)8∈[=] ∈ ) by ∀ 8 ∈ [=] : �′

8
≔ 5 (�8). The tuple �′

has the property �′
ℓ+1

= 1 and �′
ℓ+2

= 2. Hence, we can calculate

indPart(�) = (red �)
max

ÈConv. 5.1.13É

= (red �′)
max

ÈLem. 5.1.12É

= (
�
red �′)
max

· (red �′)
max

ÈCor. 5.1.8É

= (pr
1
◦UMemℓ+1

=,:
)(�) · (pr

2
◦UMemℓ+1

=,:
)(�)

Èdef. of ·̃ and ·̄ in eq. (5.1.18) resp. (5.1.19), Conv. 5.1.13É. �

We want to further elaborate nonzero highest coefficients for a given symmetric u.a.u.-

product with the right-ordered monomials property. We want to use them in order to assign a
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set of partitions to such a universal product �, thus we set

P� ≔ {� ∈ Part | � ≠ 0 }. (5.1.34)

5.1.15 Theorem. Let � be a symmetric u.a.u.-product with the right-ordered monomials prop-

erty in the category AlgP. We set

∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ : (P�)(ℓ+1)∧(ℓ+2)
= ≔ P� ∩ Part(ℓ+1)∧(ℓ+2)

=,:
, (5.1.35)

∀= ∈ ℕ : (P�)= ≔ P� ∩ Part= . (5.1.36)

Then,

 = 1, (5.1.37)

∀= ∈ ℕ \ {1}, ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ, ∀� ∈ (P�)(ℓ+1)∧(ℓ+2)
= : � = delete=,ℓ+2(�) , (5.1.38)

∀= ∈ ℕ, ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ, ∀� ∈ (P�)= : � = double=,ℓ+1(�). (5.1.39)

Moreover, the induced set of partitions P� is a (single-colored) universal class of partitions.

Proof: For the proof of equation (5.1.37) we observe the following. Since � is assumed to be

unital, we have for any algebras A1 , A2 ∈ Obj(Alg) and linear functionals 0 ≠ !8 ∈ Lin(A8 ,ℂ) for
8 ∈ {1, 2} that there needs to exists an element 0 ∈ A1 such that

(!1 � !2)(�1(0)) = !1(0) ≠ 0.

If we apply equation (2.3.12) to (!1 � !2)(�1(0)), we obtain

(!1 � !2)(�1(0)) = 1︸︷︷︸
=(1)

max

·!1(0).

For the proof of equation (5.1.38) we observe the following. Let � ∈ (P�)(ℓ+1)∧(ℓ+2)
=,:

for some

: ∈ ℕ \ {1}, = ∈ ℕ \ [: − 1], ℓ ∈ {0, . . . , = − 2}. There exists � ∈ )=,: such that indPart(�) = �.
Let us fix such a tuple �. We use the assertion of Lemma 5.1.5 (b) and obtain the existence of

algebras and linear functionals such that (A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
, (0̃8)8∈[=̃] ∈

∏=̃
8=1

A(red �)8
and (

!1 � · · · � !:
)
(01 · · · · · 0=) = �︸︷︷︸

=(�)
max

:∏
8=1

!8
(
9(0̃1 , . . . , 0̃=̃)(18)

)
︸                         ︷︷                         ︸

=1

≠ 0, (I)

where the existence of the tuple (0̃8)8∈[=̃] is due to Lemma 5.1.4. We calculate(
!1 � · · · � !:

)
(01 · · · · · 0ℓ+1 · 0ℓ+2 · · · · · 0=)

=
(
!1 � · · · � !:

)
(01 · · · · · (0ℓ+10ℓ+2) · · · · · 0=) È �ℓ+1 = �ℓ+2 , 0ℓ+8 ∈ A�8 for 8 ∈ [2] É

= (red �̃)
max

:∏
8=1

!8
(
9(0̃1 , . . . , 0̃=̃)(18)

)
È �̃ ≔ (�1 , . . . , �ℓ+1 , �ℓ+3 , . . . , �=) ∈ [:]×(=−1) , red � = red �̃, Lem. 5.1.5 (a), Lem. 5.1.4É.
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By this calculation and by equation (I), for the tuple � ∈ )=,: we have found a tuple �̃ ∈ )=−1,:

such that indPart(�) = indPart(�̃) and delete=,ℓ+2(indPart(�)) = indPart(�̃).
For the proof of equation (5.1.39)we consider the following. Wedenote byA1

8
the unitization

of the algebra A8 . We have homomorphic embeddings �8 : A8 ↩−→ A1
8
. Furthermore, denote

by (!8)1 : A1
8
−→ ℂ the unique linear extension of !8 with (!8)1(1) = 1, i. e., (!8)1 is the unital

extension of ! such that

(!8)1 ◦ �8 = !8 . (II)

By the fact that �8 : A8 ↩−→ (A8)1 is a homomorphism of algebras and equation (2.1.19) we have( :⊙
8=1

(!8)1
)
◦

( :∐
8=1

�8
)
=

:⊙
8=1

((!8)1 ◦ �8︸    ︷︷    ︸
=!8

). (III)

Now, let us assume that � = (�8)8∈[=] ∈ )=,: such that � ≔ indPart(�) ∈ P�, i. e., � ≠ 0. We need

to show that � = double=,ℓ+1(�) ≠ 0. Let us further assume that � = red �. If the tuple � is not

reduced, then due to Lemma 5.1.4 the proof in this case is similar to the following one. We use

the assertion of Lemma 5.1.5 (b) and obtain the existence of algebras and linear functionals such

that (A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
, (08)8∈[=] ∈

∏=
8=1

A�8 and

(
!1 � · · · � !:

)
(01 · · · · · 0=) = �︸︷︷︸

=(�)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
︸                         ︷︷                         ︸

=1

≠ 0. (IV)

Let 1�ℓ+1
denote the unit element of the unital algebra (A�ℓ+1

)1, then we can calculate

(�)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
=

(
!1 � · · · � !:

)
(01 · · · · · 0=) È eq. (IV)É

=
%:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

)
(01 · · · · · 0=)

)���
C1=...=C:=0

È eq. (5.1.4)É

=
%:

%C1 . . . %C:

( (
(C1!1)1 � · · · � (C:!:)1

)
(
��1
(01) · · · · · ��ℓ+1

(0ℓ+1) · · · · · ��= (0=)
) )���

C1=...=C:=0

È eq. (III)É

=
%:

%C1 . . . %C:

( (
(C1!1)1 � · · · � (C:!:)1

)
(
��1
(01) · · · · · ��ℓ+1

(0ℓ+1) · ��ℓ+1
(1�ℓ+1

) · · · · · ��= (0=)
) )���

C1=...=C:=0

È (A�ℓ+1
)1 is unitalÉ

=
(
(!1)1 � · · · � (!:)1

) (
��1
(01) · · · · · ��ℓ+1

(0ℓ+1) · ��ℓ+1
(1�ℓ+1

) · · · · · ��= (0=)
)

È eq. (5.1.4)É
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= (red �̃)
max

:∏
8=1

(!8)1
(
9
(
��1
(01), . . . , ��= (0=)

)
(18)

)
È �̃ ≔ (�1 , . . . , �ℓ , �ℓ+1 , �ℓ+1 , �ℓ+2 , . . . , �=) ∈ )=+1,: , Lem. 5.1.4, Lem. 5.1.5 (a)É

= (red �̃)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
È eq. (II)É.

From the above calculation we obtain that indPart(�̃) = � and double=,ℓ+1(�) = indPart(�̃).
For the last part of the assertion we need to check the axioms from Definition 3.1.9.

• That ∈ P� is equation (5.1.37).

• That P� is closed under the delete-operation follows from equation (5.1.38).

• That P� is closed under the double-operation follows from equation (5.1.39).

• That P� is closed under the UMem-operation follows from equation (5.1.32).

• That P� is closed under the split-operation follows from equation (5.1.33).

�

5.1.16 Proposition. Let � be a symmetric u.a.u.-product with the right-ordered monomials

property in the category AlgP. Let : ∈ ℕ \ {1}. If � ∈ P� with |�| = :. Then, there exists a

(: − 1)-tuple of two-block partitions (�8)8∈[:−1] ∈
(
(P�) · ,2

)×(:−1)
such that

� =
:−1∏
8=1

�8 . (5.1.40)

Proof: We prove this assertion by induction over : ∈ ℕ \ {1}. For the induction base : = 2, the

statement follows, if we set �1 ≔ � and using � ∈ P� =⇒ � ≠ 0.

For the induction step : → : + 1, we assume that the assertion holds for : ∈ ℕ \ {1} with

� ∈ (P�)=,: for some = ∈ ℕ \ [: − 1]. We calculate

� = �̃ · �̄

��� apply eq. (5.1.32) to "smallest" neighbored legs

of the first and second block of �,

this a similar procedure as described in Def. 4.1.2

���
= �̃ · �: È �: ≔ �̄ ∈ (P�) · ,2 since � ∈ P� =⇒ � ≠ 0É

=
( :−1∏
8=1

�8

)
· �: È induction hypothesis applied to �̃ ∈ P� , |�| = : É.

The existence of the tuple (�8)8∈[:] of two-block partitions in P� proves the statement of equa-

tion (5.1.40). �

All of our theory concerning partitions is developed to determine admissible choices of

highest coefficients (�)
max

which lead to a u.a.u.-product. For the classification of universal

classes of partitions P we have seen that they possess “generators”. These generators are certain

two-block partitions which can generate any partition � ∈ P . The same also holds for nonzero
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highest coefficients which belong to two-block partitions as the following lemma shows. The

following theorem is a stronger version of Theorem 2.5.13.

5.1.17 Theorem. Assume that �, �̃ are symmetric u.a.u.-products with the right-ordered

monomials property in the category AlgP. If

∀� ∈ red

(
(P�) · ,2

)
: � = ̃� , (5.1.41)

then � = �̃ as bifunctors. Or in other words, � is uniquely determined by the highest

coefficients �, where � is a reduced two-block partition of P�

Proof: Because of Theorem 2.5.13, a u.a.u.-product with the right-ordered monomials property

is uniquely determined by its highest coefficients (�)
max

with � ∈ A([:])∩)=,: for some : ∈ ℕ, = ∈
ℕ \ [: − 1]. Equation (5.1.26), Convention 5.1.13 and equation (5.1.34) give us the following

equivalent characterization of the initial assumption: If

∀ : ∈ ℕ, ∀� ∈ red(Part · ,:) : � = ̃� ,

then � = �̃ as bifunctors.

Let us fix : = 1 and assume � ∈ Part · ,1. By equation (5.1.37) and equation (5.1.39) we have

� ∈ P� and � = 1 = ̃�.
Now, let us assume : ≥ 2 and � ∈ (P�) · ,: . Due to Proposition 5.1.16 each coefficient � can

be expressed as a product of coefficients �8 , where �8 ∈ (P�) · ,2. Now, the assertion follows. �

We still do not knowwhich values a nonzero highest coefficient can have. At this point two

different u.a.u.-products, which are represented by the same set of nonzero highest coefficients,

can induce the same universal class of partitions although their nonzero highest coefficients

might not be equal. We prospect that the choice of the value of the coefficient  determines

all the remaining coefficients � for � ∈ Part · ,2. In particular, we notice that  = 1 holds for

any u.a.u.-product which follows from unitality as we did in the proof of Theorem 5.1.15. We

continue to determine possible nonzero values for the highest coefficients of a u.a.u.-product

with the right-ordered monomials property.

5.1.18 Proposition. Let � be a symmetric u.a.u.-product with the right-ordered monomials

property in the category AlgP. Then,

∀� ∈ (P�) · ,2 : � =  . (5.1.42)

Proof: We claim

 ≠ 0,  ≠ 0 =⇒  =  . (I)

For the proof of this claim we calculate(


)
2

=  ·  È eq. (5.1.31)É

=  È eq. (5.1.33)É

=  ·  È eq. (5.1.32)É

=  ·  È eq. (5.1.38)É
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From the above we obtain that (


)
2

=  ·  .

Now, we claim

 ≠ 0,  ≠ 0 =⇒ ∀� ∈ red(Part · ,2 \NC · ,2) : � =  =  . (II)

We calculate (


)
2

=  ·  È eq. (5.1.39)É

=  È eq. (5.1.33)É

=  ·  È eq. (5.1.32)É

=  ·  È eq. (5.1.38)É

Thus, we obtain (


)
2

=  ·  .

From equation (I) follows

 ≠ 0 =⇒  =  . (III)

Let � ≔ red

(
Part · ,2 \NC · ,2

)
be the set of all reduced, two-block partitions � ∈ Part which

have a crossing. Denote by �1 the set of all partitions � ∈ � which are of type

∃ : ∈ ℕ : � =
. . .

1 3 2:+12 4 2: 2:+2

and by �2 the set of all partitions � ∈ � which are of type

∃ : ∈ ℕ \ {1} : � =
. . .

1 3 2:+12 4 2:

. (IV)

Then, � = �1 ∪· �2. Therefore, we need to consider two cases. For brevity we will only consider

the case � ∈ �2 since the other case is done analogously. We have to show

 ≠ 0 =⇒ 
. . .

1 3 2:+12 4 2:

=  (V)

for any : ∈ ℕ \ {1}. For any partition � ∈ �2 there exists a unique : ∈ ℕ \ {1} such that we can

say that � is of type from equation (IV). Thus, we prove equation (V) for � ∈ �2 by induction

over : ∈ ℕ \ {1}. For the induction base we calculate(


)
2

=  ·  È eq. (5.1.31)É

=  È eq. (5.1.33)É

=  ·  È eq. (5.1.32)É
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=  ·  È eq. (5.1.38)É.

From equation (III) we can conclude the induction base for  ≠ 0. Hence, the induction

base holds.

For the induction step : → : + 1 we calculate

. . .
1 3 2:+12 4 2:

·  = 
. . .

1 2 3 4 6 2(:+1)+25 7 2(:+1)+1

·  . . . È eq. (5.1.39)É

=  . . . È eq. (5.1.33)É

=  . . . ·  . . . . . . È eq. (5.1.32)É

= 
. . .

1 2 3 5 2(:+1)+14 6 2(:+1)
·  È eq. (5.1.38)É.

If we use the induction hypothesis for : ∈ ℕ \ {1} and the induction base for expressions on the

left hand side of the above equation, then the induction step follows.

Now, we finally prove equation (5.1.42). By Convention 5.1.13 and equation (5.1.26) it

suffices to show the assertion for � ∈ Part with � = red�. In Theorem 5.1.15 we have shown that

a symmetric u.a.u.-product with the right-ordered monomials property � induces a universal

class of partitions P�. By the classification result provided in Theorem 4.1.17 we have

1B (
I

= Gen( ) (
NC

= Gen( ) (
Part

= Gen( ) , (VI)

red(Part · ,2) = red

(
I · ,2 ∪· NC · ,2 \ I · ,2 ∪· Part · ,2 \NC · ,2

)
. (VII)

By equation (VI) we need to make the following case consideration for P�:

• P� = 1B : Then, we have (P�) · ,2 = ∅ and in particular  = 0. The statement now follows

from the definition of P� in equation (5.1.34).

• P� = I : Then, red((P�) · ,2) = { }, i. e.,  ≠ 0 and the statement follows from equa-

tion (5.1.34).

• P� = NC : Then from equation (VII) we have red((P�) · ,2) = red(I · ,2) ∪· red(NC · ,2 \ I · ,2) =
{ } ∪· { }, i.e.  ≠ 0 and  ≠ 0. The assertion of equation (5.1.42) for reduced

partitions now follows from equation (I).

• P� = Part : This means that red((P�) · ,2) = red(I · ,2) ∪· red(NC · ,2 \ I · ,2) ∪· red(Part · ,2 \NC · ,2) =
{ } ∪· { } ∪· red(Part · ,2 \NC · ,2), hence  ≠ 0 and  ≠ 0. The assertion of equa-

tion (5.1.42) for reduced partitions now follows in particular from equation (II).

�

5.1.19 Remark. Note the similarities between the calculations done in the proof of Theo-

rem 4.1.17 and the above calculations for the coefficients � in Proposition 5.1.18. We can use

the diagrammatic calculations from the proof of Theorem 4.1.17 if we combine this with the

fact from Convention 5.1.13 and Corollary 5.1.14.

Before we formulate our main theorem in this section, we need one more formula for the

calculation of the universal product �P if P is any universal class of partitions. P= is a poset

w. r. t. reversed refinement denoted by ≤. Therefore, the following assertion is well posed.



5.1 Classification of positive and symmetric single-faced u.a.u.-products 199

5.1.20 Lemma. Let P be a universal class of partitions. Then,

∀= ∈ ℕ, ∀ : ∈ [=], ∀� = (�8)8∈[=] ∈ )=,: , ∀(A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
, ∀(08)8∈[=] ∈

∏=
8=1

A�8 :

(!1 �P · · · �P !:)(01 · · · · · 0=)

=



∑
�≤indPart(�)

∏
1∈�

( :∑
8=1

(
logP (!8 ◦ j8)

)
(
→⊗

8∈set 1

08)
)

for indPart(�) ∈ P

=∑
9=:+1

∑
�∈P=,9 :
∀1∈�,

∃1′∈indPart(�) :
set 1⊆set 1′

∏
1∈�

( :∑
8=1

(
logP (!8 ◦ j8)

)
(
→⊗

8∈set 1

08)
)

for indPart(�) ∉ P .
(5.1.43)

Proof: For the following calculations we define canonical insertion maps ∀ 9 ∈ [:]

� 9 : A9 ↩−→
:⊔
8=1

A8 ,

inc9 : A9 ↩−→ T(
:⊕
8=1

A8).

Assume that indPart(�) ∈ P , then we can calculate

(!1 �P · · · �P !:)
(
��1
(01) · · · · · ��= (0=)

)
=

(
lift

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ can

) (
��1
(01) · · · · · ��= (0=)

)
È �P is associative, can neglect putting brackets, Lem. 3.3.7É

=

(
lift

(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

)
◦ pr

) (
inc�1
(01) · · · · · inc�= (0=)

)
È can :

:⊔
8=1

A8 −→ T(
:⊕
8=1

A8/�1,...,:) É

=
(
(!1 ◦ j1) }P · · · }P (!: ◦ j:)

) (
inc�1
(01) · · · · · inc�= (0=)

)
È eq. (3.3.9)É

=

(
expP

( ∑
�∈P=

logP (!8 ◦ j8)
) )
(01 ⊗ · · · ⊗ 0=) ÈCor. 3.2.10É

=

∑
�∈P=

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01) È eq. (3.2.4)É

=

∑
�∈P=

�≤indPart(�)

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01) +

∑
�∈P=

��indPart(�)

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01)

︸                                          ︷︷                                          ︸
=0

È indPart(�) ∈ P É.



200 Chapter 5. Universal class of partitions from positive and symmetric u.a.u.-products

The last sum vanishes since any partition � ∈ P= forwhich � � indPart(�) holds, has the property
that there exists a block 1 ∈ �, which is not properly contained in any block of indPart(�). Hence,

such a block has the property that there exist 8 , 9 ∈ [=]with 8 ≠ 9, 8 , 9 ∈ set 1 such that A�8 ≠ A�9 .

The result now follows in particular from Lemma 3.2.12 and equation (3.3.3).

For the case indPart(�) ∉ P we calculate

(!1 �P · · · �P !:)
(
��1
(01) · · · · · ��= (0=)

)
=

∑
�∈P=

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01) È same steps as aboveÉ

=

:−1∑
9=1

∑
�∈P=,9

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01)︸                                         ︷︷                                         ︸

=0

+
=∑
9=:

∑
�∈P=,9

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01)

=

=∑
9=:

∑
�∈P=,9

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01) ÈLem. 3.2.12, eq. (3.3.3)É

=

=∑
9=:

∑
�∈P=,9
∀1∈�,

∃1′∈indPart(�) :
set 1⊆set 1′

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01) +

=∑
9=:

∑
�∈P=,9
∃1∈�,

∀1′∈indPart(�) :
set 1*set 1′

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01)

︸                                                  ︷︷                                                  ︸
=0

È similar reasoning for the last step as in foregoing calculationÉ

=

=∑
9=:+1

∑
�∈P=,9
∀1∈�,

∃1′∈indPart(�) :
set 1⊆set 1′

∏
1∈�

( ∑
�∈P=

logP (!8 ◦ j8)
)
(01) È indPart(�) ∉ P É

�

5.1.21 Lemma. Let P be a universal class of partitions. Consider �P and let us denote its

associated operation � defined in equation (5.1.5) by �P . Then,

∀= ∈ ℕ, ∀ : ∈ [=], ∀� = (�8)8∈[=] ∈ A([:]), ∀(A8 , !8)8∈[:] ∈
(
Obj(AlgP)

)×:
, ∀(08)8∈[=] ∈∏=

8=1
A�8 :

(!1 �P · · · �P !:)(01 · · · · · 0=)

=


∏

1∈indPart(�)

( :∑
8=1

(!8 ◦ j8)(01)
)

for indPart(�) ∈ P

0 for indPart(�) ∉ P .

(5.1.44)

Proof: According to the definition of the :-fold operation )�P : in equation (5.1.4) and (5.1.5)

we need to determine an expression for (C1!1) �P · · · �P (C:!:), where we can neglect orders of
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C2
8
. Let us assume that indPart(�) ∈ P , then we calculate(
(C1!1) �P · · · �P (C:!:)

)
(01 · · · · · 0=)

=

∑
�≤indPart(�)

∏
1∈�

( :∑
8=1

(
logP

(
(C8!8) ◦ j8

) )
(01)

)
ÈLem. 5.1.20É

=

∏
1∈indPart(�)

( :∑
8=1

(
logP

(
(C8!8) ◦ j8

) )
(01)

)
+ orders of C28 È ≤ is reversed refinementÉ

=

∏
1∈indPart(�)

( :∑
8=1

(
(C8!8) ◦ j8

)
(01)

)
+ orders of C28 È recursion of logP ( · ) in eq. (3.2.5)É.

Hence, we have determined the part with linear orders of C8 and the result now follows if we

take the partial derivatives at C1 = . . . = C: = 0.

For the case indPart(�) ∉ P we can see from equation (5.1.43) that there is no term which

can contribute to linear orders of C8 and thus the result follows. �

5.1.22 Remark. In the setting of Lemma 5.1.20 we notice the following. If indPart(�) ∈ P , then

(!1 �P · · · �P !:)(01 · · · · · 0=)

=

∑
�≤indPart(�)

∏
1∈�

( :∑
8=1

(
logP (!8 ◦ j8)

)
(
→⊗

8∈set 1

08)
)

=

∑
�≤{11 ,...,1:}

∏
1∈�

( :∑
8=1

(
logP (!8 ◦ j8)

)
(
→⊗

8∈set 1

08)
)

=

( ∑
�1≤set 11

∏
1̃1∈�1

(
logP (!1 ◦ j1)

)
(
→⊗

8∈set 1̃1

08)
)
· · ·

( ∑
�:≤1:

∏
1̃:∈�:

(
logP (!: ◦ j:)

)
(
→⊗

8∈set 1̃:

08)
)

=

:∏
8=1

(
(!8 ◦ j8)(018 )

)
(5.1.45)

We can compare this result to equation (5.1.44) and see that

(!1 �P · · · �P !:)(01 · · · · · 0=) = (!1 �P · · · �P !:)(01 · · · · · 0=). (5.1.46)

The above result shortens the computation of the right hand side whenever indPart(�) ∈ P .

5.1.23 Lemma. Let P be a universal class of partitions. According to Theorem 3.3.9 (e) �P
satisfies the right-orderedmonomials property. Therefore, wemay speak of highest coefficients

for �P . Then, all the nonzero highest coefficients w.r.t �P are equal to 1 and the induced

universal class of partitions w.r.t �P is again P . In other words, if we denote the highest

coefficients belonging to �P by �, then

∀� ∈ Part : � ≠ 0 =⇒ � = 1, (5.1.47a)

P�P = P . (5.1.47b)
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Proof: Let us show that P ⊆ P�P and that equation (5.1.47a) holds. We assume � ∈ P=,: for
some = ∈ ℕ and : ∈ ℕ. Then, there exists at least one tuple � ∈ [:]×= such that indPart(�) = � ∈ P .

Let us fix this tuple � ∈ [:]×= . The universal product �P satisfies the right-ordered monomials

property by Theorem 3.3.9 (e). Therefore, we may apply Lemma 5.1.5 for evaluation of the

expression (!1�P · · ·�P !:)(01 · · · · · 0=) for 08 ∈ A�8 , which basically says that it is determined by

a product of the highest coefficient (red �)
max

and a product of evaluations of the linear functionals.

On the other hand, we can also use Lemma 5.1.21 for calculation of (!1 �P · · ·�P !:)(01 · · · · · 0=).
Comparing both equations against each other, for the highest coefficient we obtain (red �)

max
= 1.

Using Convention 5.1.13 we can see indPart(�) = 1 ≠ 0. From equation (5.1.34) we can see that

indPart(�) = � ∈ P�P . In a similar way we can prove equation (5.1.47a).

Now, let us show that P�P ⊆ P . We will show this by contraposition. Therefore let

us assume that � ∉ P . If � ∈ Part=,: for some =, : ∈ ℕ, then there exists at least one tuple

� ∈ [:]×= such that indPart(�) = � ∉ P . The universal product �P satisfies the right-ordered

monomials property by Theorem 3.3.9 (e). Therefore, we may apply Lemma 5.1.5 and if we

compare this against Lemma 5.1.21, then we obtain for the highest coefficient (red �)
max

= 0.

Using Convention 5.1.13 we can see indPart(�) = 0. From equation (5.1.34) we can see that

indPart(�) = � ∉ P�P . �

5.1.24 Theorem. Let* denote the set of all symmetric u.a.u.-products with the right-ordered

monomials property in the category AlgP such that their corresponding highest coefficients

satisfy  = 0 or  = 1. Let % denote the set of all single-colored universal classes of

partitions. Then, the map

5 :

{
* −→ %,

� ↦−→ P� .
(5.1.48)

is bĳective.

Proof: For injectivity we consider the following. From Theorem 4.1.17 we can determine the

structure of %. Thus, we can make the following case consideration. Let �, �̃ ∈ * and assume

5 (�) = 1B = 5 (�̃). This means P� = 1B = P�̃. From Proposition 4.1.5 we can conclude

(P�) · ,2 = ∅ = (P�̃) · ,2. By Theorem 5.1.17 we obtain � = �̃.
Now, let �, �̃ ∈ * and assume 5 (�) = 5 (�̃) ≠ 1B. Then, we can calculate

5 (�) = 5 (�̃)

⇐⇒ P� = P�̃ Èdef. of 5 É

⇐⇒ (P�) · ,2 = (P�̃) · ,2 ÈProposition 4.1.5É

⇐⇒ {� ∈ Part · ,2 | � ≠ 0 } = {� ∈ Part · ,2 | ̃� ≠ 0 } Èdef. of P� in eq. (5.1.34)É

=⇒ {� ∈ Part · ,2 | � =  } = {� ∈ Part · ,2 | ̃� = ̃ } ÈProp. 5.1.18É

⇐⇒ ∀� ∈ Part · ,2 : � = ̃� È  = 1 = ̃ É

⇐⇒ � = �̃ ÈThm. 5.1.17É.

This shows injectivity.

For surjectivity: We need to show that a universal product � ∈ * with the property that

P� = P for any P ∈ % exists. We claim that �P does the job. We first need to show that �P ∈ * .
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From Theorem 3.3.9 (d)we know that �P is a symmetric u.a.u.-product with the right-ordered

monomials property. For the value of the coefficient  we can obtain from Lemma 5.1.23 that

 = 0 if P · ,2 = ∅ and  = 1 if P · ,2 ≠ ∅. This shows that �P ∈ * for any P ∈ %. From

Lemma 5.1.23 we obtain 5 (�P ) = P for any P ∈ %. �

5.1.25 Corollary. Let 5 : * −→ % denote the map from equation (5.1.48). Let *̃ denotes the set

of all positive and symmetric u.a.u.-products. Then, *̃ ⊆ * and the map 5 �*̃ : *̃ −→ % \ 1B
is bĳective.

Proof: In [Voß13, Satz 1.7.7] or [SV14, Prop. 2.1] it is shown only by the use of positivity that

any positive u.a.u.-product satisfies  = 1. We have a similar result in the <-faced case (apply

Proposition 5.2.22 for < = 1). Then, positive u.a.u.-products have the right-ordered monomials

property and thus *̃ ⊆ * . Now, the assertion follows from Theorem 5.1.24. �

5.1.26 Remark. It is known that the boolean, free and the tensor product are elements of

*̃ . For instance in [Sch95] we can find their GNS-representations. By the above one-to-one

correspondence we can conclude that the boolean product equals �I, the free product equals

�NC and the tensor product equals �Part and we reproduce the result of [Spe97] or [BS02].

5.2 Partial classification of positive and symmetric two-faced
u.a.u.-products

In this section we want to move on from the single-faced case to allow<-faced algebras for some

< ∈ ℕ. Most of the statements in this section have a counterpart in the single-faced case. Thus,

mostly for the proofs in this section we can take the regarding proofs from the single-faced case,

where we need to make the following replacements

• AlgP replaced by AlgPm ,

• A([:]) replaced by A([:] × [<]) and

• (08)8∈[=] ∈
=∏
8=1

A�8 replaced by (08)8∈[=] ∈
=∏
8=1

A
(�8 ,2)
�8 ,1 .

(5.2.1)

Like we did in the single-faced case, we show for the two-faced case that nonzero highest

coefficients of a positive and symmetric u.a.u.-product induces a two-colored universal class of

partition.

5.2.1 Lemma. Let � be a u.a.u.-product in the category AlgPm for some < ∈ ℕ. Let : ∈ ℕ and(
A8 , (A(ℓ )8 )ℓ∈[<] , !8

)
8∈[:] ∈

(
Obj(AlgPm)

)×:
. Define a similar “colored map-like Kronecker delta”

as in Convention 3.4.26 with a minor modification

∀ℓ ∈ [<], ∀A ∈ [:] : Δ̃(ℓ )
8 ,A
≔


0: A

(9)
8
−→ A

(9)
8

for 8 ≠ A

id
A
(ℓ )
A

: A
(ℓ )
A −→ A

(ℓ )
A for 8 = A.

(5.2.2)

We use the following abbreviation

∀ℓ ∈ [<], ∀A ∈ [:] : j(ℓ )A ≔ T
( :⊕
8=1

Δ̃
(ℓ )
8 ,A

)
. (5.2.3)
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Put

∀ℓ ∈ [<] : +ℓ ≔
:⊕
8=1

A
(ℓ )
8

(5.2.4)

and consider (⊔<
ℓ=1

T(+ℓ ),
∐<
ℓ=1

Δℓ , 0) as the <-faced dual semigroup with primitive comulti-

plication

∐<
ℓ=1

Δℓ using Convention 2.4.10. Then,

!1 � · · · � !:

=

((
!1 ◦

( ∐
ℓ∈[<]

j
(ℓ )
1

))
~ · · · ~

(
!: ◦

( ∐
ℓ∈[<]

j
(ℓ )
:

)))
◦ inc⊔:

8=1
A8 ,

⊔<
ℓ=1

T(+ℓ ) , (5.2.5)

where ~ denotes the convolution with respect to the primitive comultiplication

∐<
ℓ=1

Δℓ and

incA1tA2 ,
⊔<
ℓ=1

T(+ℓ ) is a canonical inclusion of vector spaces.

Proof: The proof is similar to the proof of Theorem 2.4.12 where we just need to adjust the type

index : to an arbitrary value in ℕ. The necessary steps can be easily adjusted and therefore we

omit the proof and instead refer to the proof of Theorem 2.4.12. �

The definition of ):� in equation (5.1.4) has already been done for the case < ∈ ℕ, thus

there is no need for adjustment. The result of equation (5.1.6) also holds for < ∈ ℕ \ {1}, except
that the (: − 1)-fold operation � is to be seen on the dual semigroup discussed in Lemma 5.2.1.

Similar to the proof of equation (5.1.6) we can obtain

!1 � · · · � !:

=

((
!1 ◦

( ∐
ℓ∈[<]

j
(ℓ )
1

))
� · · · �

(
!: ◦

( ∐
ℓ∈[<]

j
(ℓ )
:

)))
◦ inc⊔:

8=1
A8 ,

⊔<
ℓ=1

T(+ℓ ) (5.2.6)

for the multi-faced case. The importance of expressing the (: − 1)-fold operation )�: by )�: is

given by the following implication

� is a u.a.u.-product in the category AlgPm and [ · , · ]� = 0

=⇒ ∀� ∈ (: : !1 � · · · � !: = !�(1) � · · · � !�(:) ◦ can, (5.2.7)

where (: denotes the symmetric group on the set [:] and can :

⊔:
8=1
−→ A�(1) t · · · t A�(:)

the canonical isomorphism of the free product of rearranged algebras A8 in the sense of equa-

tion (1.1.17). Since the proof for the <-faced case is done similarly to the single-faced case, we

omit it. Because the next lemma is similar to Lemma 5.1.4, we state it without proof.

5.2.2 Lemma. Assume � is a u.a.u.-product with the right-ordered monomials property in the

category AlgPm for some < ∈ ℕ. We set

∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1], ∀� =
(
(�8 ,1 , �8 ,2)

)
∈ ([:] × [<])×= , ∀(A8 , !8)8∈[:]

∈
(
Obj(AlgPm)

)×:
, ∀(08)8∈[=] ∈

∏=
8=1

A
(�8 ,2)
�8 ,1 :(

!1 � · · · � !:
)
(01 · · · · · 0=) ≔

(
!1 � · · · � !:

)
(0̃1 · · · · · 0̃=̃), (5.2.8)
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where (0̃8)8∈[=̃] ∈
∏=

8=1
A
(�̃8 ,2)
�̃8 ,1

is the unique tuple such that

∃ =̃ ∈ [=] :
(
(�̃8 ,1 , �̃8 ,2)

)
8∈[=̃] = red(�) ∈ A

(
[:] × [<]

)
. (5.2.9)

The definition of the reduced tuple red(�) is due to Convention 2.5.8.

5.2.3 Lemma. Let � be a u.a.u.-product with the right-ordered monomials property in the

category AlgPm for some < ∈ ℕ. With respect to the notation from Theorem 2.3.3 we have

(a) ∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1], ∀� =
(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ A([:] × [<]), ∀(A8 , !8)8∈[:] ∈(

Obj(AlgPm)
)×:

, ∀(08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 :

(
!1 � · · · � !:

)
(01 · · · · · 0=) = (�)

11 ,...,1:︸  ︷︷  ︸
≡(�)

max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
, (5.2.10)

where 18 denotes the uniquemonomial inOM(-(8)� ) of degree |-(8)� | (notation introduced

in Remark 2.3.4 (b)) and (�)
max

is the highest coefficient w.r.t. �, defined in Definition 2.5.3.

(b) ∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1], ∀� =
(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ A([:] × [<]),

∃
(
A8 , (A(9)8 )9∈[<] , !8

)
8∈[:] ∈

(
Obj(AlgPm)

)×:
, ∃(08)8∈[=] ∈

∏=
8=1

A
(�8 ,2)
�8 ,1 :

∀ 8 ∈ [:] : !8
(
9(01 , . . . , 0=)(18) = 1, (5.2.11a)(

!1 � · · · � !:
)
(01 · · · · · 0=) = (�)

max
. (5.2.11b)

Furthermore, each algebra A8 can be chosen to be a ∗-algebra such that for all 9 ∈ [<]we

have that A
(9)
8

is a ∗-subalgebra. Additionally, each linear functional !8 ∈ Lin(A8 ,ℂ) can
be chosen to be strongly positive.

Proof: If we put for � = (�8)8∈[=] = ((�8 ,1 , �8 ,2))8∈[=] ∈ A([:] × [<])

∀ 9 ∈ [:] : -(9)� = { Gℓ ∈ -= : �ℓ ,1 = 9 }, (I)

where -= ≔ {G1 , . . . , G=} is the set formed by = ∈ ℕ indeterminates G1 , . . . , G= then the universal

coefficient theorem (Theorem 2.3.3) in the multi-faced case looks formally the same as in the

single-faced case.

Ad (a): This follows from the definition in equation (I) and the replacements of (5.2.1). Then,

we can formally perform the same steps as in the proof of Lemma 5.1.5 (a), since the proof of

Lemma 5.1.5 (a) basically relies on the universal coefficient theorem.

Ad (b): We can slightly modify the proof of Lemma 5.1.5 (b) for the case< ∈ ℕ. Wemention that

(T(+8), T (!8)) ∈ Obj(AlgPm) gives the desired property, if we make the following modifications

for the definitions made in the proof of Lemma 5.1.5 (b)

• +8 ≔
⊕<

9=1
+
(9)
8

for some 1-dimensional vector spaces +
(9)
8
,

• 0
(9)
8
∈ + (9)

8
denotes a basis vector,

• !8�+ (9)
8

: +
(9)
8
3 0(9)

8
↦−→ 1 ∈ ℂ, then !8 ∈ Lin(+8 ,ℂ).
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We can turn each algebra A8 into a ∗-algebra if we assume that basis elements of +
(9)
8

are self-

adjoint. Then, for all 9 ∈ [<] we have that A
(9)
8

is a ∗-subalgebra. Furthermore, the above

definition for the linear functional (!8)8∈[:] ∈
∏

8∈[:] Lin(A8 ,ℂ) leads to the property that each !8
is strongly positive. �

The next statement extends the statement of Proposition 5.1.6 to the case < ∈ ℕ. Because

of its importance we formulate it here once again.

5.2.4 Proposition. Let < ∈ ℕ. Let � be a u.a.u.-product with the right-ordered monomials

property in the category AlgPm. Let : ∈ ℕ \ {1} and = ∈ ℕ \ [: − 1]. Set

�
(<)
=,:

≔

 (�8)8∈[=] ∈ ([:] × [<])
×=

�������
∃ℓ ∈ {0, . . . , = − 2} ⊆ ℕ, ∃ 8 ∈ [<] :
(�ℓ+1,1 = 1, �ℓ+2,1 = 2)
∧ (�ℓ+1,2 = �ℓ+2,2 = 8)

. (5.2.12)

Then, holds

∀ : ∈ ℕ \ {1},∀= ∈ ℕ \ [: − 1], ∀� = (�8)8∈[=] ∈ �(<)=,:
, ∀(A8 , !8)8∈[:] ∈

(
Obj(AlgPm)

)×:
,

∀(08)8∈[=] ∈
∏=

8=1
A

�8 ,2
�8 ,1 :

(
!1 � · · · � !:

) (
01 · · · · · 0ℓ+1︸︷︷︸

∈A(8)
1

· 0ℓ+2︸︷︷︸
∈A(8)

2

· · · · · 0=
)

=

( (
!1 � !2

)
� !3 � · · · � !:

) (
01 · · · · · 0ℓ+1 · 0ℓ+2︸     ︷︷     ︸

∈(A1tA2)(8)

=A
(8)
1
tA
(8)
2

· · · · · 0=
)
. (5.2.13)

Proof: Theproof is virtually the sameas theproofofProposition 5.1.6, ifweuse the replacements

from (5.2.1) and the universal coefficient theorem for the multi-faced case (Theorem 2.3.3). We

emphasize that on the righthandside of equation (5.2.13) the product 0ℓ+1 ·0ℓ+2 is to be considered

in the algebra (A1tA2)(8). This yields that it will be treated as one indeterminate in the universal

coefficient formula (equation (2.3.12)). �

5.2.5 Example. We want to give an example that if � ∉ �(<)
=,:

, where the set �
(<)
=,:

is defined in

equation (5.2.12), then it can happen that(
!1 � · · · � !:

) (
01 · · · · · 0=

)
≠

( (
!1 � !2

)
� !3 � · · · � !:

)
(01 · · · · · 0=). (5.2.14)

We already know from Lemma 4.2.26 that the set of binoncrossing partitions P ≔ biNC is

a two-colored universal class of partitions which induces a u.a.u.-product denoted by �biNC

according to Theorem 3.4.32. Assume we are given (A8 , !8)8∈[3] ∈
(
Obj(AlgPm)

)×3

for < = 2.

Let � = (�8)8∈[4] = ((1, 2), (3, 2), (2, 2), (3, 2)) ∉ �(2)
4,3

and a tuple (08)8∈[4] ∈
∏

4

8=1
A
(2)
�8 . For our

given �-tuple we can find a bĳection between the set of binoncrossing partitions biNC� and

the set of noncrossing partitions NC4. In our �-tuple only legs with color are involved

(Convention 4.2.7 (b)) and the assertion in particular follows from equation (4.2.24e), which

essentially says that∀� ∈ biNC� type(�) ∈ NCholds. Therefore, the steps of calculation formally

hold as in example 5.1.7 and the calculation in example 5.1.7 leads to an counterexample in
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this case.

Let <, : ∈ ℕ \ {1}, = ∈ ℕ \ [: − 1] and � ≕ ((�8 ,1 , �8 ,2))8∈[=] ∈ A([:] × [<]). We want to

derive two other tuples from this tuple �. We set

( ≔
{
8 ∈ [=] |

(
type(�8) = 1

)
∨

(
type(�8) = 2

) }
. (5.2.15)

We define the following tuple � = ((�8 ,1 , �8 ,2))8∈[=] ∈ ([: − 1] × [<])×= by

∀ 8 ∈ [=] : (�8 ,1 , �8 ,2) ≔
{(

1, col(�8)
)

for 8 ∈ ((
type(�8) − 1, col(�8)

)
else.

(5.2.16)

Then, we set

�̃ ≔
(
(�̃8 ,1 , �̃8 ,2)

)
8∈[=] ≔ red(�) ∈ A([: − 1]). (5.2.17)

For example, if � =
(
(1, 1), (2, 1), (3, 1), (2, 2), (4, 1), (1, 2)

)
∈ A([4] × [2]), then according to

the above � =
(
(1, 1), (1, 1), (2, 1), (1, 2), (3, 1), (1, 2)

)
and therefore �̃ =

(
(1, 1), (2, 1), (1, 2),

(3, 1), (1, 2)
)
∈ A([3] × [2]). We want to define a second tuple originating from � by

�̄ ≔
(
(�̄8 ,1 , �̄8 ,2)

)
8
≔ red

( (
(�8 ,1 , �8 ,2)

)
8∈(

)
∈ A([2]). (5.2.18)

Notice that we make use of Convention 2.5.5 (a). As an example, for � =
(
(1, 1), (2, 1), (3, 1),

(2, 2), (4, 1), (1, 2)
)
∈ A([4] × [2]) we have �̄ =

(
(1, 1), (2, 1), (2, 2), (1, 2)

)
∈ A([2]). Using these

notations we want to formulate a corollary to Proposition 5.2.4.

5.2.6 Corollary (to Proposition 5.2.4). Let < ∈ ℕ, : ∈ ℕ \ {1} and = ∈ ℕ \ [: − 1] and
assume � = ((�8 ,1 , �8 ,2))8∈[=] ∈ (�(<)=,:

∩ A([:] × [<])), where the set �
(<)
=,:

has been defined in

equation (5.2.12). Then, we have

(�)
max

= (�̃)
max
· (�̄)

max
. (5.2.19)

Proof: We just refer to the proof of Corollary 5.1.8 which displays the same formal steps of

calculation, where we just need to apply the appropriate assertions for the case < ≥ 1. �

5.2.7 Definition (Induced <-colored partition). Let < ∈ ℕ. We set

∀ : ∈ ℕ, ∀= ∈ ℕ \ [: − 1], ∀� = (�8)8∈[=] ∈ [<]×= :

)�,: ≔ { (�8 , �8)8∈[=] ∈ ([:] × [<])×= | |set(�8)8∈[=] | = : } (5.2.20)

and

)(<) ≔
⋃
:∈ℕ

⋃
=∈ℕ\[:−1]

⋃
�∈[<]×=

)�,: . (5.2.21)

Now, we want that an =-tuple � ∈ )�,: induces a partition � ∈ Part�,: with : blocks. Let

: ∈ ℕ, = ∈ ℕ \ [: − 1] and � ∈ )�,: . We set

∀ 8 ∈ [:] : ��,8 ≔ { (ℓ , �ℓ ) ∈ ℕ × ℕ | type(�ℓ ) = 8 }. (5.2.22)

And by this we set

indPart(�) ≔
⋃
8∈[:]
{ block(��,8) } ∈ Partcol(�),: . (5.2.23)
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Thus, we define

indPart :


)(<) −→

⋃
�∈)(<)

Partcol(�)

� ↦−→ indPart(�).
(5.2.24)

5.2.8 Remark. The above defined map is not injective but surjective. Moreover, for each

: ∈ ℕ, = ∈ ℕ \ [: − 1] and � ∈ [<]×= we have

A([:] × [<]) ∩ )�,: = indPart−1
(
red(Part�,:)

)
. (5.2.25)

Or in other words, we can say that indPart(�) is reduced as an (<-colored) partition (Defini-

tion 4.2.28 (a)) if and only if � is reduced as a tuple (Convention 2.5.8).

5.2.9 Lemma. Let � be a symmetric u.a.u.-product in the category AlgPm, which has the right-

orderedmonomials property. Let � = ((�8 ,1 , �8 ,2))8∈[=] ∈ )�,: for some : ∈ ℕ, = ∈ ℕ \[:−1], � ∈
[<]×= . Define the set

N� ≔ { �′ = (�′8 ,1 , �8 ,2)8∈[=] ∈ ℕ × ℕ | ∃ 5 ∈ (: : ∀ 8 ∈ [=] : �′8 ,1 = 5 (�8 ,1) }. (5.2.26)

If we set � ≔ indPart(�) ∈ Partcol(�),: , then we have

N� = (indPart)−1(�) (5.2.27)

∀�′ ∈ (indPart)−1(�) : (red �′)
max

= (red �)
max

. (5.2.28)

Proof: The proof of Lemma 5.1.12 can be formally carried over to the case < ≥ 1. We only have

to apply the regarding lemmas for the case < ≥ 1 (for instance we need equation (5.2.7)). �

Similar to Convention 5.1.13 we nowwant to use a diagrammatic approach to better handle

highest coefficients.

5.2.10 Convention. Let < ∈ ℕ. We set

∀� ∈ )(<) , ∀� ∈ Part� : � ≔ red(�′)
max

for some �′ ∈ (indPart)−1(�). (5.2.29)

This convention is well-defined since indPart : )(<) −→ Part is surjective and because of

equation (5.2.28). Due to Remark 5.2.8, this convention implies∀� ∈ )(<) , ∀� ∈ Partcol(�) : � =
red�.

We want to apply this convention to the statement of Corollary 5.2.6 as we did in Corol-

lary 5.1.14 for the case < = 1.

5.2.11 Corollary (to Proposition 5.2.4). Let< ∈ ℕ,: ∈ ℕ\{1}, = ∈ ℕ\[:−1] and � = (�8)8∈[=] ∈
[<]×= . For all � = ((�8 ,1 , �8 ,2))8∈[=] ∈ ∩)�,: with � ≔ indPart(�) ∈ Part(ℓ+1)∨(ℓ+2)

�,: holds

� = (pr
1
◦UMemℓ+1

�,: )(�)
· (pr

2
◦UMemℓ+1

pr
2
(�),: )(�)

. (5.2.30)

In other words, for all (�̃, �̄) ∈ ()�,:−1 × )· ,2) such that (�̃, �̄) ≔ (indPart(�̃), indPart(�̄)) ∈
sub

(
Part(ℓ+1)∧(ℓ+2)

=,:−1

)
holds

�̃ · �̄ = splitℓ+1

�,:−1
(�̃,�̄). (5.2.31)
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Proof: The proof is done analogously to the proof of Corollary 5.1.14. �

5.2.12 Lemma. Let< ∈ ℕ and letP be an<-colored universal class of partitions. Let us denote

the reversed refinement order for partitions by ≤. Then,

∀= ∈ ℕ, ∀ : ∈ [=], ∀� = (�8)8∈[=] ∈ [<]×= , ∀� = (�8)8∈[=] ∈ )�,: , ∀(A8 , (A(9)8 )9∈[<] , !8)8∈[:] ∈(
Obj(AlgPm)

)×:
, ∀(08)8∈[=] ∈

∏=
8=1

A
(�)
type(�8) :

(!1 �P · · · �P !:)(01 · · · · · 0=)

=



∑
�≤indPart(�)

∏
1∈�

( :∑
8=1

(
logP (!8 ◦ j8)

)
(

→⊗
8∈set(type(1))

08)
)

for indPart(�) ∈ P

=∑
9=:+1

∑
�∈P�, 9 :

∀1∈�,
∃1′∈indPart(�) :

set(type(1))⊆set(type(1′))

∏
1∈�

( :∑
8=1

(
logP (!8 ◦ j8)

)
(

→⊗
8∈set(type(1))

08)
)

for indPart(�) ∉ P .

(5.2.32)

Proof: As in the proof for the case< = 1, i. e., the proof of Lemma 5.1.20, themain observation is

the following. Given the assumptions from the above assertion let 1 denote a block of a partition

� ∈ Part�,: with the property that there exist 8 , 9 ∈ [:]with 8 ≠ 9 such that 8 , 9 ∈ set(type(1)) and
08 ∈ A

(�8)
type �8 ≠ A

(�9)
type �9 3 0 9 . For such a block 1 we have

( :∑
8=1

logP (!8 ◦ j8)
)
(

→⊗
8∈set(type(1))

08) = 0.

This follows from Lemma 3.4.23 and the definition of the map j8 in equation (3.4.64). The

remaining steps of the proof are formally the same as in the proof of Lemma 5.1.20 and we

therefore omit the details. �

5.2.13 Lemma. Let < ∈ ℕ and let P be an <-colored universal class of partitions. Consider

�P and let us denote its associated operation � defined in equation (5.1.5) by �P . Then,

∀= ∈ ℕ, ∀ : ∈ [=], ∀� = (�8)8∈[=] ∈ [<]×= , ∀� = (�8)8∈[=] ∈ )�,: , ∀(A8 , (A(9)8 )9∈[<] , !8)8∈[:] ∈(
Obj(AlgPm)

)×:
, ∀(08)8∈[=] ∈

∏=
8=1

A
(�))
type(�8) :

(!1 �P · · · �P !:)(01 · · · · · 0=)

=


∏

1∈indPart(�)

( :∑
8=1

(!8 ◦ j8)(01)
)

for indPart(�) ∈ P

0 for indPart(�) ∉ P .

(5.2.33)

Proof: There is formally no difference to the proof of the single-colored version of this assertion,

i. e., the proof of Lemma 5.1.21. �
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5.2.14 Lemma. Let P be an <-colored universal class of partitions, where < ∈ ℕ. According

to Theorem 3.4.32 (e) �P satisfies the right-ordered monomials property. Therefore we may

speak of highest-coefficients for �P . Then, all the nonzero highest coefficients w.r.t �P are

equal to 1 and the induced universal class of partitions w.r.t �P is again P . In other words, if

we denote the highest coefficients belonging to �P by � then

∀� ∈
⋃

�∈)(<)
Partcol(�) : � ≠ 0 =⇒ � = 1, (5.2.34a)

P�P = P (5.2.34b)

Proof: The proof is similar to case < = 1, i. e., to the proof of Lemma 5.1.23. �

At this point we are not able to extend the assertion of Proposition 5.1.16 to all symmetric

u.a.u.-products with the right-ordered monomials property in the category AlgPm. There we

have shown that nonzero highest coefficients can be expressed as a product of highest coefficients

which belong to two-block partitions. Although partition induced universal products �P have

this property by design, as we will see later, we need a stronger version of the right-ordered

monomials property for general universal products which might not be partition induced. We

will see later, that we are able to extend the assertion of Proposition 5.1.16 if we demand for

the product � being positive. We will see that a positive and symmetric u.a.u.-product allows

us to apply the “change color”-axiom (Definition 3.4.9 (f)) to nonzero highest coefficients. If

we think of the extension of Proposition 5.1.16 to the <-colored case as a reformulation of

Proposition 4.2.11 on the level of highest coefficients, then we may convince ourselves that the

“change color”-axiom is truly needed. We need the following two lemmas when we want to

prove that an <-faced positive and symmetric u.a.u.-product induces an <-colored universal

class of partitions.

5.2.15 Lemma. Let : ∈ ℕ and

(
A8 , (A(9)8 )9∈[<] , !8

)
∈ Obj(AlgPm)×: . We assume that on each

algebra A8 an involution ∗8 : A8 −→ A8 is defined, which turns A8 into an ∗-algebra, where each

subalgebra A
(9)
8

is a ∗8-subalgebra and each linear functional !8 is strongly positive. Assume

∀ 8 ∈ [:], ∀A, B ∈ [<], A ≠ B that there exists an algebra isomorphism iso(A),(B)
8

: A
(A)
8
−→ A

(B)
8

such that

∀ 8 ∈ [:], ∀A, B ∈ [<], A ≠ B :

∗8 ◦ iso(A),(B)
8

= iso(A),(B)
8

◦ ∗8�A(A)
8

, (5.2.35)

!8 ◦ �A(B)
8

◦ iso(A),(B)
8

= !8 ◦ �A(A)
8

(5.2.36)

!8 ◦ �A8 ◦
(
(�

A
(B)
8

◦ iso(A),(B)
8
) ⊗ �

A
(A)
8

)
= !8 ◦ �A8 ◦

(
�
A
(A)
8

⊗(�
A
(B)
8

◦ iso(A),(B)
8
)
)
, (5.2.37)

where �
A
(A)
8

: A
(A)
8

↩−→ ⊔<
9=1

A
(9)
8
∼= A8 is the canonical insertion algebra homomorphism. Let �

be a positive u.a.u.-product and abbreviate !1 � · · · � !: by
⊙:

8=1
!8 .

For all A, B ∈ [<]with A ≠ B,� = (�8)8∈[=] ∈ A([:]), ∀ 8 ∈ [=] : 08 ∈ A�8 such that 01 ∈ A
(A)
�1

holds(
:⊙
8=1

!8

)
(01 · 02 · · · · · 0=) =

(
:⊙
8=1

!8

) (
iso(A),(B)�1

(01) · 02 · · · · · 0=
)
. (5.2.38)
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Proof: Since � is positive, we deduce that

⊙:
8=1

!8 is a strongly positive linear functional on

(⊔:
8=1

A8 , ∗), where the involution ∗ is similarly defined as in Convention 2.1.14. By Remark 1.1.28

we know that

⊙:
8=1

!8 is positive. Now, we can calculate�����
(

:⊙
8=1

!8

) ( (
01 − iso(A),(B)�1

(01)︸              ︷︷              ︸
≕∗∈A�

1

)
· 02 · · · · · 0=︸      ︷︷      ︸

≕�

)�����2 =
�����
(

:⊙
8=1

!8

)
(∗ · �)

�����2

≤
(

:⊙
8=1

!8

)
(∗ · )

(
:⊙
8=1

!8

)
(�∗ · �)︸              ︷︷              ︸

≕2∈ℂ

È eq. (1.1.29)É

= 2 · !�1
(∗ · ) Èunitality of � É

= 2 · !�1

( (
01 − iso(A),(B)�1

(01)
) (
01 − iso(A),(B)�1

(01)
)∗) Èdef. of  É

= 2 · !�1

(
01 · 0∗

1
− iso(A),(B)�1

(01) · 0∗
1
+ 01 ·

(
iso(A),(B)�1

(01)
)∗ − iso(A),(B)�1

(01) ·
(
iso(A),(B)�1

(01)
)∗)

= 2 · !�1
(01 · 0

∗�
1

1
) − 2 · !�1

(
iso(A),(B)�1

(01) ·
(
iso(A),(B)�1

(01)
)∗�

1

)
− 2 · !�1

(
iso(A),(B)�1

(01) · 0∗
1

)
+ 2 · !�1

(
01 ·

(
iso(A),(B)�1

(01)
)∗) È!�1

is linear, def. of ∗ É

= 2 · !�1
(01 · 0

∗�
1

1
) − 2 · !�1

(
iso(A),(B)�1

(
01 · 0

∗�
1

1

) )
− 2 · !�1

(
iso(A),(B)�1

(01) · 0∗
1

)
+ 2 · !�1

(
01 ·

(
iso(A),(B)�1

(01)
)∗)

È eq. (5.2.35), iso(A),(B)�1

is homomorphismÉ

= 0 − 2 · !�1

(
iso(A),(B)�1

(01) · 0∗
1

)
+ 2 · !�1

(
01 ·

(
iso(A),(B)�1

(01)
)∗)

È (A(A)�1

)∗�1 ⊆ A
(A)
�1

, eq. (5.2.36)É

= 2 ·
((
!�1
◦ �A�

1

◦
(
(�

A
(B)
�
1

◦ iso(A),(B)�1

) ⊗ �
A
(A)
�
1

) )
−

(
!�1
◦ �A�

1

◦
(
�
A
(A)
�
1

⊗(�
A
(B)
�
1

◦ iso(A),(B)�1

)
))
(01 ⊗ 0

∗�
1

1
)

È eq. (5.2.35), iso(A),(B)�1

is homomorphism, (A(9)�1

)∗�1 ⊆ A
(9)
�1

É

= 0 È eq. (5.2.37)É.

The above calculation implies that(
:⊙
8=1

!8

) (
(01 − iso(A),(B)�1

(01)) · 02 · · · · · 0=
)
= 0
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=⇒
(

:⊙
8=1

!8

) (
01 · 02 · · · · · 0=

)
=

(
:⊙
8=1

!8

) (
iso(A),(B)�1

(01) · 02 · · · · · 0=
)

� (
:⊙
8=1

!8

)
is linear

�
.

This shows that equation (5.2.38) holds. �

5.2.16 Lemma. Let : ∈ ℕ and

(
A8 , (A(9)8 )9∈[<] , !8

)
∈ Obj(AlgPm)×: . We assume that on each

algebra A8 an involution ∗8 : A8 −→ A8 is defined which turns A8 into an ∗-algebra and each

subalgebra A
(9)
8

is a ∗8-subalgebra. Then, there exists an :-tuple
(
Ã8 , (Ã(9)8 )9∈[<] , !̃8

)
8∈[:] ∈

Obj(AlgPm)×: such that

(a) there exist injective homomorphisms

∀ 8 ∈ [:] : inc8 ∈ MorphAlgm

(
(A8 , (A(9)8 )9∈[<]), (Ã8 , (Ã(9)8 )9∈[<])

)
(5.2.39)

with the property

∀ 8 ∈ [:] : !̃8 ◦ inc8 = !8 , (5.2.40)

(b) ∀ 8 ∈ [:], ∀!, !′ ∈ Lin(A8 ,ℂ), ∀2 ∈ ℝ :�! + 2!′ = !̃ + 2!̃′, (5.2.41)

(c) ∀ 8 ∈ [:] there exist involutions ∗̃8 : Ã8 −→ Ã8 , which turn each Ã8 into a ∗-algebra such

that (Ã(9)
8
)∗̃8 ⊆ Ã

(9)
8
,

(d) ∀ 8 ∈ [:], ∀A, B ∈ [<], A ≠ B there exist algebra isomorphisms iso(A),(B)
8

: Ã
(A)
8
−→ Ã

(B)
8

with the properties

∗̃8 ◦ iso(A),(B)
8

= iso(A),(B)
8

◦ ∗̃8 , (5.2.42)

!̃8 ◦ �Ã(B)
8
,Ã8
◦ iso(A),(B)

8
= !̃8 ◦ �Ã(A)

8
,Ã8
, (5.2.43)

!̃8 ◦ �Ã8
◦

(
(�

Ã
(B)
8
,Ã8
◦ iso(A),(B)

8
) ⊗ �

Ã
(A)
8
,Ã8

)
= !̃8 ◦ �Ã8

◦
(
�
Ã
(A)
8
,Ã8
⊗(�

Ã
(B)
8
,Ã8
◦ iso(A),(B)

8
)
)
,

(5.2.44)

!̃8 ◦ �Ã8
◦

( (
�
Ã
(B)
8
,Ã8
◦ iso(A),(B)

8

)
⊗ idÃ8

)
= !̃8 ◦ �Ã8

◦
(
�
Ã
(A)
8
,Ã8
⊗ idÃ8

)
, (5.2.45)

where �
Ã
(A)
8
,Ã8

: Ã
(A)
8

↩−→ ⊔<
9=1

Ã
(9)
8
∼= Ã8 denotes the canonical homomorphic insertion

maps.

(e) If !8 : A8 −→ ℂ is assumed to be strongly positive, then !̃8 : Ã8 −→ ℂ is also strongly

positive.

Proof: We define

∀ 8 ∈ [:], ∀ 9 ∈ [<] : Ã
(9)
8
≔

<⊔
ℓ=1

A
(ℓ )
8
,
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∀ 8 ∈ [:] : Ã8 ≔

<⊔
9=1

Ã
(9)
8
. (I)

Hence, each algebra Ã
(9)
8

is just a copy of A8 and each copy is labeled by the index 9. Thus, the

faces of Ã8 are isomorphic to each other. Furthermore we define algebra homomorphisms by

∀ 8 ∈ [:], ∀ 9 ∈ [<] : �(9)
8

:


Ã
(9)
8
−→ A8

0 ↦−→ 0.
(II)

By this, we define linear functionals

∀ 8 ∈ [:] : !̃8 :


Ã8 −→ ℂ

0 ↦−→ ©«!8 ◦ ©«
<⊔
9=1

�
(9)
8

ª®¬ª®¬(0).
(III)

We obtain

(
Ã8 , (Ã(9)8 )9∈[<] , !̃8

)
∈ Obj(AlgPm)×: .

Ad (a): We define

∀ 8 ∈ [:], ∀ 9 ∈ [<] : inc(9)
8

:


A
(9)
8
−→ Ã

(9)
8

0 ↦−→ (�
A
(9)
8
,A8
)(0),

(IV)

where �
A
(9)
8
,A8

: A
(9)
8

↩−→ Ã
(9)
8

denotes the canonical homomorphic insertion map for each 8 ∈
[:], 9 ∈ [<]. By this, we define

∀ 8 ∈ [:] : inc8 :



A8
∼=

<⊔
9=1

A
(9)
8
−→

<⊔
9=1

Ã
(9)
8

0 ↦−→ ©«
<∐
9=1

inc(9)
8

ª®¬(0).
(V)

We claim that the map inc8 is an injective algebra homomorphism with the property

∀ 8 ∈ [:] : !̃8 ◦ inc8 = !8 .

Since the maps inc(9)
8

from equation (IV) are injective, we obtain that the map from equation (I)

is also injective. Furthermore, since each map inc8 is an algebra homomorphism, the map from

equation (I) is an algebra homomorphism, too. We have

∀ 8 ∈ [:] : inc8 ∈ MorphAlgm

(
(A8 , (A(9)8 )9∈[<]), (Ã8 , (Ã(9)8 )9∈[<])

)
,

because ∀ 8 ∈ [:] : inc8(A(9)8 ) ⊆ Ã
(9)
8

which is shown by the universal mapping property of t in

the category Algm. Now, we observe that

!̃8 ◦ inc8

=

(
!8 ◦

(
<⊔
ℓ=1

�(ℓ )
8

))
◦ ©«

<∐
9=1

inc(9)
8

ª®¬
)
Èdef. of !̃8 in eq. (III), def. of inc8 in eq. (V)É
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= !8 ◦
<⊔
9=1

�
A
(9)
8
,A8

È universal property of t, def. of �(ℓ )
8
, inc(9)

8
É

= !8 ◦ idA8 ÈA8
∼=

⊔<
8=1

A
(9)
8
É,

This finishes the proof for the statements of (a).
Ad (b): This statement follows immediately from the definition of !̃8 in equation (III).

Ad (c): We define involutions by

∀ 8 ∈ [:], ∀ 9 ∈ [<] : ∗̃(9)
8

:


Ã
(9)
8
−→ Ã

(9)
8

0 ↦−→ 0∗8 .

Once again the maps ∗̃9
8
are just copies of the maps ∗8 acting on the regarding copy of A8 labeled

by 9. By this, we define for each = ∈ ℕ, (�8)8∈[=] ∈ A([:]) and (08)8∈[=] ∈
∏�=

8=�1

A8 an involution

on generators

∀ 8 ∈ [:] : ∗̃8 :

Ã8 −→ Ã8

�̃�1
(01) · · · · · �̃�= (0=) ↦−→ �̃�=

( (
∗̃(�=)
8

)
(0=)

)
· · · · · �̃�1

( (
∗̃(�1)
8

)
(01)

)
.

(VI)

Herein �̃8 : Ã
(9)
8

↩−→ Ã8 denotes the canonical homomorphic insertion map for each 8 ∈ [:]. We

can see by the above definitions made that the stated properties of (c) are fulfilled.
Ad (d): We claim that if we set

∀ 8 ∈ [:], ∀A, B ∈ [<], A ≠ B : iso(A),(B)
8

:


Ã
(A)
8
−→ Ã

(B)
8

0 ↦−→ 0,

then the stated equations are fulfilled. Equation (5.2.42) is obviously satisfied since iso(A),(B)
8

just

acts like the identity map but embeds elements differently. For the proof of equation (5.2.43) we

let 0 ∈ Ã
(A)
8

and calculate(
!̃8 ◦ �Ã(B)

8
,Ã8
◦ iso(A),(B)

8

)
(0)

=
(
!̃8 ◦ �Ã(B)

8
,Ã8

)
( 0︸︷︷︸
∈Ã(B)

8

) Èdef. of iso(A),(B)
8
É

=
©«!8 ◦ ©«

<⊔
9=1

�
(9)
8

ª®¬ ◦ �Ã(B)8 ,Ã8

ª®¬(0) Èdef. of !̃8 É
= (!8 ◦ �(B)8 )(0) Èuniversal mapping property of tÉ

= (!8)(0) È �(B)
8

acts as identity mapÉ

= (!8 ◦ �(A)8 )( 0︸︷︷︸
∈Ã(A)

8

) È �(A)
8

acts as identity mapÉ
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=
©«!8 ◦ ©«

<⊔
9=1

�
(9)
8

ª®¬ ◦ �Ã(B)8 ,Ã8

ª®¬(0) Èuniversal mapping property of tÉ

=
(
!̃8 ◦ �Ã(A)

8
,Ã8

)
(0) Èdef. of !̃8 É.

A similar calculation holds for equation (5.2.44) and (5.2.45), where it is important to use

!̃8 = !8 ◦
(⊔

9∈[<] �
(9)
8

)
. This concludes the proof of (d).

Ad (e): For the implication to hold, we need to show that ∀ 8 ∈ [:] that !̃8 : Ã8 −→ ℂ is strongly

positive with respect to the involution ∗̃8 defined in equation (VI) on the algebra Ã8 defined in

equation (I). By Definition 1.1.27 this is equivalent to

∀ 8 ∈ [:] ∀0 ∈ (Ã8)1 : (!̃8)1
(
0(∗̃8)

1 · 0
)
≥ 0, (VII)

where (∗̃8)1 : (Ã8)1 −→ (Ã8)1 is the canonical unital extension of ∗̃8 : Ã8 −→ Ã8 . We fix an element

8 ∈ [:]. Let us denote the canonical unital extension of �
(9)
8
, defined in equation (II), by

(� 9
8
)1 : (Ã(9)

8
)1 −→ (A8)1.

From the isomorphism stated in equation (2.1.9) we obtain

(!̃8)1 = (!8)1 ◦
<⊔

1
9=1

(�(9)
8
)1 (VIII)

up to isomorphism holds. By definition of the involved involutions, we can easily see that for

each 9 ∈ [<] the map �
(9)
8

is a homomorphism of algebras with involution. We have

(Ã8)1 ∼=
<⊔

1
9=1

(Ã(9)
8
)1.

from Lemma 2.1.5. In other words, we know that (Ã8)1 is generated by

⋃<
8=1
(Ã(9)

8
)1. So,

any arbitrary element 0 ∈ (Ã8)1 can be generated by elements from

⋃<
8=1
(Ã(9)

8
)1. If we apply

equation (VIII) to an element 0(∗̃8)
1
0, use the universal mapping property of the free product of

unital algebras and that each map �
(9)
8

is a homomorphism of algebras with involution, then the

claim of equation (VII) follows since !8 has been assumed to be strongly positive, in other words

(!8)1 is positive. �

Let < ∈ ℕ. Like we did in the single-colored case, we now use all the nonzero highest

coefficients for assigning to each<-faced universal product �with the right-orderedmonomials

property a set of <-colored partitions, i. e., we set

P� ≔

{
� ∈

⋃
�∈)(<)

Partcol(�)
�� � ≠ 0

}
. (5.2.46)

5.2.17 Theorem. Let � be a partition induced universal product or a positive and symmetric

u.a.u.-product in the category AlgPm for some < ∈ ℕ. We set
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∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ :

(P�)(ℓ+1)∧(ℓ+2)
� ≔ P� ∩ Part(ℓ+1)∧(ℓ+2)

�,: , (5.2.47)

∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= : (P�)� ≔ P� ∩ Part� . (5.2.48)

Then,

(a) ∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ A({1} × [<]) :

indPart(�) = 1, (5.2.49)

(b) ∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀ℓ ∈ {0, . . . , = − 2} ⊆ ℕ, ∀� ∈ (P�)(ℓ+1)∧(ℓ+2)
� :

�ℓ+1 = �ℓ+2 =⇒ � = delete�,ℓ+2(�) , (5.2.50)

(c) ∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= , ∀ℓ ∈ {0, . . . , = − 1} ⊆ ℕ, ∀� ∈ (P�)� :

� = double�,ℓ+1(�) , (5.2.51)

(d) ∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ [<]×= , ∀� ∈ (P�)� :

(�)∗ = mirror(�) , (5.2.52)

(e) ∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀�, �′ ∈ [<], ∀� ∈ (P�)� :

� = cCol�,(�,�′)(�). (5.2.53)

Moreover, the induced set of partitions P� is an <-colored universal class of partitions.

Proof: Let us first assume that � is a partition induced universal product. Equation (5.2.34)

states that P� = P and that all nonzero highest coefficients belonging to � can only have the

value 1. Equations (5.2.49)–(5.2.52) are then only restatements of the axioms which a universal

class of partitions needs to satisfy. But � is assumed to be a partition induced universal product

and therefore there exists a universal class of partitions P and the claim follows.

For the rest of the proof we assume that � is an <-faced positive and symmetric u.a.u.-

product.

Ad (a): Assume that = ∈ ℕ and let ((A8 , (A(9)8 )9∈[<] , !8))8∈{1,2} ∈ (Obj(AlgPm))×2
. Then, we have

homomorphic insertion maps A
(9)
8

�
(9)
8

↩−→ A8

�8
↩−→ A1 t A2. Let � = (�8)8∈[=] ∈ A({1} × [<]). Then,

we can calculate for (08)8∈[=] ∈
∏=

8=1
A
(col(�8))
1

(!1 � !2)
(
(�1 ◦ �(�1,2)

1
)(01) · · · · · (�1 ◦ �(�=,2)

1
)(0=)

)
= (!1 � !2)

(
�1

(
�
(�1,2)
1
(01) · · · · · �(�=,2)

1
(0=)

) )
È �1 is homomorphism of algebrasÉ

= 1︸︷︷︸
=(�)

max
È coefficient lemmaÉ

·!1

(
��1,2 ,1(01) · · · · · ��=,2 ,1(0=)

)
È � is unitalÉ

If we choose (08)8∈[=] such that the right-hand side of the above calculation is ≠ 0, then we have

shown that (�)
max

= indPart(�) = 1.
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Ad (b): To show that equation (5.2.50) holds is similar to the proof of equation (5.1.38) and

therefore is omitted.

Ad (c): The proof of equation (5.2.51) is a bit different than in the case < = 1, i. e., for equa-

tion (5.1.39). Let us fix � = ((�8 ,1 , �8 ,2))8∈[=] ∈ ([:] × [<])×= ∩ )(<) such that indPart(�) ∈ P�, i.e.

(�)
max

≠ 0. Furthermore, let us assume that � = red �. If the tuple � is not reduced, then due to

Lemma 5.2.2 the proof in this case is similar to the following one. According to Lemma 5.2.3 (b)
we can find<-faced algebras and linear functionals (A8 , (A(9)8 )9∈[<] , !8)8∈[:] ∈

(
Obj(AlgPm)

)×:
and

(08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 such that

(
!1 � · · · � !:

)
(01 · · · · · 0=) = (�)

max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
︸                         ︷︷                         ︸

=1

≠ 0. (I)

Let us denote the canonical homomorphic embedding by �
(9)
8

: A
(9)
8

↩−→ (A(9)
8
)1 and the unit of

(A(9)
8
)1 by 1

(9)
8
. For each 8 ∈ [:]we set

!̃8 ≔ !1
8 ◦ can8 ◦ pr8 , (II)

whereinwedenote natural homomorphic projectionmaps (differentlydefined to equation (4.1.1))

pr8 :
<⊔
9=1

(A(9)
8
)1 −→ ⊔<

9=1
(A(9)

8
)1
/
〈9 ∈ [< − 1] : 19

8
− 19+1

8
〉 ,

and canonical isomorphisms (Remark 2.1.4 (a), Lemma 2.1.5)

can8 :
⊔<
9=1
(A(9)

8
)1
/
〈9 ∈ [< − 1] : 19

8
− 19+1

8
〉 −→

<⊔
1

9=1

(A(9)
8
)1 −→ (A8)1.

If we set

∀ 8 ∈ [<] : Ã8 ≔

<⊔
9=1

(A(9)
8
)1 ,

then we can see that

∀ 8 ∈ [:] :
(
Ã8 ,

(
(A(9)

8
)1

)
9∈[<] , !̃8

)
∈ AlgPm .

Using the universality of � (Remark 2.1.10) we obtain

(!̃1 � · · · � !̃:) ◦
:∐
8=1

<∐
9=1

�
(9)
8
=

( (
!̃1 ◦

<∐
9=1

�
(9)
1

)
� · · · �

(
!̃: ◦

<∐
9=1

�
(9)
:

) )
= !1 � · · · � !: ÈLem. 2.1.5É. (III)

Now, we can calculate

(�)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
=

(
!1 � · · · � !:

)
(01 · · · · · 0=) È eq. (I)É
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=
%:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

)
(01 · · · · · 0=)

)���
C1=...=C:=0

È eq. (5.1.4)É

=
%:

%C1 . . . %C:

( (
C1!̃1 � · · · � C: !̃:

) (
�
(�1,2)
�1,1
(01) · · · · · �(�=,2)�=,1 (0=)

) )���
C1=...=C:=0

È eq. (III)É

=
%:

%C1 . . . %C:

( (
C1!̃1 � · · · � C: !̃:

)
(
�
(�1,2)
�1,1
(01) · · · · · �(�ℓ+1,2)

�ℓ+1,1
(0ℓ+1) · �(�ℓ+1,2)

�ℓ+1,1
(1(�ℓ+1,2)

�ℓ+1,1
) · · · · · �(�=,2)�=,1 (0=)

) )���
C1=...=C:=0

È (A(�ℓ+1,2)
�ℓ+1,1

)1 is unital algebraÉ

=
(
!̃1 � · · · � !̃:

) (
�
(�1,2)
�1,1
(01) · · · · · �(�ℓ+1,2)

�ℓ+1,1
(0ℓ+1) · �(�ℓ+1,2)

�ℓ+1,1
(1(�ℓ+1,2)

�ℓ+1,1
) · · · · · �(�=,2)�=,1 (0=)

)
= (red �̃)

max

:∏
8=1

!̃8
(
9
(
�
(�1,2)
�1,1
(01), . . . , �(�=,2)�=,1 (0=)

)
(18)

)
�
�̃ ≔

(
(�1,1 , �1,2), . . . , (�ℓ+1,1 , �ℓ+1,2), (�ℓ+1,1 , �ℓ+1,2), . . . , (�=,1 , �=,2)

)
∈ ([:] × [<])×(=+1) ∩ )(<) , Lem. 5.2.3 (a)

�

= (red �̃)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
È eq. (II), (!8)1 is unital extensionÉ.

From the above calculation we obtain indPart(�̃) = � and doublecol(�),ℓ+1
(�) = indPart(�̃).

Ad (d): Assume = ∈ ℕ and : ∈ [=]. Now, let us fix � = ((�8 ,1 , �8 ,2))8∈[=] ∈ ([:]× [<])×= ∩)(<) such
that indPart(�) ∈ P�, i. e., (�)max

≠ 0. Without loss of generality we can assume that � is reduced.
If the tuple � is not reduced, then the proof in this case is similar to the following one due to

Lemma 5.2.2. According to Lemma 5.2.3 (b)we can find <-faced algebras and linear functionals

(A8 , (A(9)8 )9∈[<] , !8)8∈[:] ∈
(
Obj(AlgPm)

)×:
and (08)8∈[=] ∈

∏=
8=1

A
(�8 ,2)
�8 ,1 such that(

!1 � · · · � !:
)
(01 · · · · · 0=) = (�)

max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
︸                         ︷︷                         ︸

=1

≠ 0. (IV)

By Lemma 5.2.3 (b), we can also assume that each algebra A8 is a ∗8-algebra such that 9 ∈ [<]
A
(9)
8

is a ∗8-subalgebra. Furthermore, we can assume that the linear functionals (!8)8∈[:] ∈∏
8∈[:] Lin(A8 ,ℂ) are strongly positive and not equal to the zero map. Now, we can calculate( (
!1 � · · · � !:

)
(01 · · · · · 0=)

)∗
=

(
%=

%C1 . . . %C=

( (
(C1!1) � · · · � (C:!:)

)
(01 · · · · · 0=)

)���
C1=...=C:=0

)∗
Èdef. of ):� in eq. (5.1.4)É

=

(
%=

%C1 . . . %C=

( (
(C1!1) � · · · � (C:!:)

)1(01 · · · · · 0=︸      ︷︷      ︸
∈

(⊔8∈[:] A8)1

)
)���
C1=...=C:=0

)∗
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Èunique unital extensionÉ

=
%=

%C1 . . . %C=

(( (
(C1!1) � · · · � (C:!:)

)1)∗(01 · · · · · 0=)
)���
C1=...=C:=0

Èderivative and complex conjugation are linearÉ

=
%=

%C1 . . . %C=

( (
(C1!1) � · · · � (C:!:)

)1 ((01 · · · · · 0=)∗
) )���

C1=...=C:=0�
positivity of � implies by Def. 2.1.15 that

⊙
8∈[:] !8 is strongly positive

on

⊔
8∈[:] A8 ,

(⊙
8∈[:] !8

)1
is hermitian by Lem. 1.1.26

�

=
%=

%C1 . . . %C=

( (
(C1!1) � · · · � (C:!:)

) (
(01 · · · · · 0=)∗︸          ︷︷          ︸

∈⊔
8∈[:] A8

) )���
C1=...=C:=0

Èunique unital extensionÉ

=
(
!1 � · · · � !:

) (
(0=)∗�=︸ ︷︷ ︸
∈A(col(�= ))

type(�= )

· · · · · (01)∗�1︸︷︷︸
∈A(col(�

1
))

type(�
1
)

)
È eq. (I), A(9)

8
is ∗8-subalgebraÉ

= (�
′)

max

:∏
8=1

!8
(
9(0∗= , . . . , 0∗1)(18)

)
È �′ = (�= , �=−1 , . . . , �1), Lem. 5.2.3 (a)É

= (�
′)

max

:∏
8=1

(
!8

(
9(01 , . . . , 0=)(18)

) )∗
È each !8 is strongly positive on A8 , also hermitian by Remark 1.1.28É

= (�
′)

max

( :∏
8=1

!8
(
9(01 , . . . , 0=)(18)

) )∗
If we take the complex conjugate of equation (IV) and compare this with the above calculation,

then we obtain ((�)
max
)∗ = (indPart(�))∗ = (�

′)
max

and mirror(indPart(�)) = �′.
Ad (e): We claim that it suffices to show that

∀= ∈ ℕ \ {1}, ∀� = (�8)8∈[=] ∈ [<]×= , ∀� ∈ [<], ∀� ∈ (P�)� :

� = cCol�,(�,�= )(�) , (V)

i. e., we can change the color of the first leg in the partition �. If we want to change the color of

the last leg in the partition �, then we can apply mirror to �, i. e., (�)∗ = mirror(�), change the

color of the first leg of mirror(�), i. e., use equation (V) and apply the map mirror once more. Now

let us show equation (V).

Assume = ∈ ℕ\{1} and : ∈ [=]. Now, let us fix � = ((�8 ,1 , �8 ,2))8∈[=] ∈ ([:]×[<])×=∩)(<) such
that indPart(�) ∈ P�, i. e., (�)max

≠ 0. Without loss of generality we can assume that � is reduced.
If the tuple � is not reduced, then the proof in this case is similar to the following one due to

Lemma 5.2.2. As discussed in the proof of (d) we can find (A8 , (A(9)8 )9∈[<])8∈[:] ∈
(
Obj(Algm)

)×:
,
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where each algebra A8 is a ∗8-algebra and A
(9)
8

is a ∗8-subalgebra for all 9 ∈ [<]. Furthermore we

can find linear functionals (!8)8∈[:] ∈
∏

8∈[:] Lin(A8 ,ℂ)which are strongly positive and not equal

to the zero map. Then, we can find (08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 such that

(
!1 � · · · � !:

)
(01 · · · · · 0=) = (�)

max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
︸                         ︷︷                         ︸

=1

≠ 0. (VI)

From Lemma 5.2.16 we obtain the existence of an :-tuple
(
Ã8 , (Ã(9)8 )9∈[<] , !̃8

)
∈ Obj(AlgPm)×: ,

which satisfies the prerequisites of Lemma 5.2.15. Therefore, we can calculate

(�)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
=

(
!1 � · · · � !:

)
(01 · · · · · 0=) È eq. (VI)É

=
%:

%C1 . . . %C:

( (
(C1!1) � · · · � (C:!:)

)
(01 · · · · · 0=)

)���
C1=...=C:=0

È eq. (5.1.4)É

=
%:

%C1 . . . %C:

( (
(C1!̃1) � · · · � (C: !̃:)

) ( :∐
8=1

inc8(01 · · · · · 0=)
) )���

C1=...=C:=0

ÈLem. 5.2.16 (a) & (b), inc8 ∈ MorphAlgm
(A8 , Ã8) universality of � É

=
%:

%C1 . . . %C:

( (
(C1!̃1) � · · · � (C: !̃:)

) (
inctype(�1)(01)︸         ︷︷         ︸
≕0̃1∈Ã

(col(�
1
))

type(�
1
)

· · · · · inctype(�=)(0=)︸          ︷︷          ︸
≕0̃=∈Ã(col(�= ))

type(�= )

) )���
C1=...=C:=0

È inc8 is homomorphism of algebrasÉ

=
%:

%C1 . . . %C:

( (
(C1!̃1) � · · · � (C: !̃:)

) ( (
iso(col(�1)),(�)

type(�1) (0̃1) · 0̃2 · · · · · 0̃=
) ))���

C1=...=C:=0

È eq. (5.2.38) may be applied to

⊙
8∈[:] C8 !̃8 by Lem. 5.2.16É

=
(
!̃1 � · · · � !̃:

) ( (
iso(col(�1)),(�)

type(�1) (0̃1) · 0̃2 · · · · · 0̃=
) )
È eq. (5.1.4)É

= (red �̃)
max

:∏
8=1

!̃8
(
9
(
iso(col(�1)),(�)

type(�1) (0̃1), . . . , 0̃=
)
(18)

)
È �̃ =

(
(type(�1), �), �2 , . . . , �=

)
∈ ([:] × [<])×= ∩ )(<), Lem. 5.2.3 (a) É

= (red �̃)
max

:∏
8=1

!8
(
9(01 , . . . , 0=)(18)

)
Èdef. of 0̃8 , eq. (5.2.45), eq. (5.2.40)É

From the above calculation we obtain � = (�)
max

= (red �̃)
max

and cColtype(�),(�,col(�=))(indPart(�)) =
indPart(�̃).
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The statement thatP� respects the axioms of an<-colored universal class of partitions, i. e.,

the defining properties of Definition 3.4.9 are satisfied now follows from the equations (5.2.49) –

(5.2.52) and Corollary 5.2.11. �

5.2.18 Remark. The class of bi-interval partitions defined by Gu and Skoufranis in [GS19,

Def. 3.5] is not a two-colored universal class of partitions. The partition is only a bi-

interval partition for certain color combinations of the first and last leg. For instance, the

partition can be considered a bi-interval partition, while the partition fails to be

bi-interval. The corresponding bi-boolean product is a symmetric u.a.u.-product which is not

positive as discussed in [GHS20]. This implies one cannot drop the assumption of positivity in

the multi-faced setting and is in contrast to the single-faced case (Theorem 5.1.15), where we

did not demand positivity of the universal product. Furthermore, we can see that if one wants

to classify all the symmetric two-faced u.a.u.-products, the two-colored universal classes of

partitions are not enough.

Now, we are ready to prove the version of Proposition 5.1.16 for the <-colored case.

5.2.19 Proposition. Let � be a partition induced universal product or a positive and symmetric

u.a.u.-product in the category AlgPm for some < ∈ ℕ. Let : ∈ ℕ \ {1}, = ∈ ℕ \ [: − 1]. If

� ∈ (P�)� with |�| = : for some � ∈ [<]×= and � ≠ 0, then there exists a (: − 1)-tuple of

two-block partitions (�8)8∈[:−1] ∈ ((P�) · ,2)×(:−1)
such that

� =
:−1∏
8=1

�8 . (5.2.54)

Proof: We prove this assertion by induction over : ∈ ℕ \ {1}. For the induction base : = 2, the

statement follows, if we set �1 = � and by using � ∈ P� =⇒ � ≠ 0.

For the induction step : → : + 1, we assume that the assertion holds for : ∈ ℕ \ {1} with

� ∈ (P�)�,: for some � ∈ [<]×= with = ∈ ℕ \ [: − 1]. We calculate

� = �̃ · �̄ ÈP� is u.c.p. by Prop. 5.2.17, Lem. 4.2.3, eq. (5.2.30)É

= �̃ · �: È �: ≔ �̄ ∈ (P�) · ,2 since � ∈ P� =⇒ � ≠ 0É

=
( :−1∏
8=1

�8

)
· �: È induction hypothesis applied to �̃ ∈ P� , |�| = : É.

The existence of the tuple (�8)8∈[:] of two-block partitions in P� proves the statement of equa-

tion (5.1.40). �

5.2.20 Theorem. Let < ∈ ℕ. Assume that �, �̃ are partition induced universal products or

positive and symmetric u.a.u.-products in AlgPm. If

∀� ∈ red(Part · ,2) : � = ̃� , (5.2.55)

then � = �̃ as bifunctors.

Proof: The proof is formally the same as for Theorem 5.1.17 in the single-faced case. The

starting point is Theorem 2.5.13 which basically tells that any u.a.u.-product � with the right-

ordered monomials property is uniquely determined by its highest coefficients. Thanks to

Theorem 5.2.17 (a) and (c) we have � = 1 for any 1-block partition � ∈ P�. For any partition
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� ∈ P� which has more than one block, the assertion follows from Proposition 5.2.19. �

The following statement is well-known.

5.2.21 Lemma. Let A be a ∗-algebra and ! : A −→ ℂ a positive linear functional. If we set

∀= ∈ ℕ, ∀ 8 ∈ [=], ∀G8 ∈ A :

� ≔ (�8 9)8 , 9∈[=] ≔
(
!(G∗8 G 9)

)
8 , 9∈[=] ∈ "=(ℂ), (5.2.56)

then the complex matrix � is positive semidefinite.

Proof: Fix some = ∈ ℕ, an =-tuple (G8)8∈[=] ∈ A×= and c ≔ (28)8∈[=] ∈ ℂ=
. Set H ≔

∑=
8=1

28G8 .

Then, we have

0 ≤ !(H∗H) ⇐⇒ 0 ≤
=∑
8=1

=∑
9=1

2̄8!(G∗8 G 9)2 9 ⇐⇒ 0 ≤ 〈c∗ , �c〉.

Since c ∈ ℂ×= has been arbitrarily chosen, we have ∀c ∈ ℂ×= : 〈c∗ , �c〉 ≥ 0. The complex matrix

� is hermitian because of equation (1.1.28). This shows that the hermitian matrix � is positive

semidefinite. �

5.2.22 Proposition. Let � be a positive and symmetric u.a.u.-product in the category AlgPm
for < ∈ ℕ. Then,

∀(�1 , �2) ∈ ([<])×2

: indPart((1,�1),(2,�2)) = 1. (5.2.57)

Proof: We shall apply Lemma 5.2.21. Denote by ℂ〈-〉 the free associative algebra over the set
-. For each 9 ∈ [<] set -(9) ≔ {G 9 , G∗9} with indeterminates G 9 and G

∗
9
and .(9) ≔ {H 9 , H∗9 } with

indeterminates H 9 and H
∗
9
. Then we set

∀ 9 ∈ [<] :
A
(9)
1
= ℂ〈-(9)〉

A
(9)
2
= ℂ〈.(9)〉.

(I)

The algebras A
(9)
8

become ∗-algebras in the canonical way. Set A8 =
⊔
9∈[<] A

(9)
8

for 8 ∈ [2].
Let !8 : A8 −→ ℂ be a ∗-algebra homomorphisms such that !1(G 9) = 1 = !1(G∗9) for 9 ∈ [<]
and !2(H 9) = 1 = !2(H∗9 ) for 9 ∈ [<]. Then, !1 � !2 : A1 t A2 −→ ℂ is well defined and

A1 t A2

∼= ℂ〈G 9 , G∗9 , H9 , H∗9 | 9 ∈ [<]〉. Now, let (�1 , �2) ∈ ([2])×2
. Then, from the universal

coefficient theorem follows

(!1 � !2)(G�1
H�2
) = ((1,�1),(2,�2))

max
!1(G�1

)!2(H�2
),

(!1 � !2)(H�2
G�1
) = ((2,�2),(1,�1))

max
!1(G�1

)!2(H�2
).

Since !8 is a homomorphism of algebras, it follows that !8 is strongly positive. Moreover, we

have assumed that � is positive and therefore we have

∀0, 1, 2 ∈ ℂ : (!1 � !2)1
( (
01 + 1G�1

+ 2H�2

)∗ (
01 + 1G�1

+ 2H�2︸              ︷︷              ︸
∈(A1tA2)1

) )
≥ 0.
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This is equivalent to ∀0, 1, 2 ∈ ℂ :

0 ≤ (!1 � !2)1
©«
©«
0

1

2

ª®®®¬
∗©«

1 G�1
H�2

G∗�1

G∗�1

G�1
G∗�1

H�2

H∗�2

H∗�2

G�1
H∗�2

H�2

ª®®®¬
©«
0

1

2

ª®®®¬
ª®®®¬

=

©«
0

1

2

ª®®®¬
∗©«

1 1 1

1 1 indPart((1,�1),(2,�2))

1

(
indPart((1,�1),(2,�2))

)∗
1

ª®®®¬
©«
0

1

2

ª®®®¬ È eq. (5.2.52)É.

By Lemma 5.2.21 the above matrix is positive semidefinite which implies that its determinant is

greater or equal than zero and therefore for the characteristic polynomial holds

indPart((1,�1),(2,�2)) + (indPart((1,�1),(2,�2)))∗ − indPart((1,�1),(2,�2))(indPart((1,�1),(2,�2)))∗ − 1 ≥ 0. (II)

In the proof of [Voß13, Satz 1.7.7] it is discussed that this complex polynomial has its global

maximum in the point (1, 0) and there takes the value 0. Thus, the only solution of equation (II)

is indPart((1,�1),(2,�2)) = 1 which we had to show. �

From now on we will only consider two-faced algebras, i. e., we set < = 2. By our

classification result, we are be able to determine possible values for the highest coefficients

which belong to two-block partitions.

5.2.23 Lemma. Let � be a positive and symmetric u.a.u.-product in the category AlgP2. Then,

(a)  ≠ 0 =⇒  = 1,

(b)  ≠ 0 =⇒  = 1,

(c)  ≠ 0 =⇒  = 1,

(d)  ≠ 0 =⇒  = 1,

(e) @ ≔  ≠ 0 =⇒ ∀ : ∈ ℕ \ {1} :

� =



|@ |2(:−1)
for � = red(�) ∈ Part{ , }

∧
(
� =

. . .
1 2 3 4 2:+1

∨ � =
. . .

1 2 3 4 2:+1

)
@ |@ |2(:−2)

for � = red(�) =
. . .

1 2 3 4 2:

∈ Part{ , }

@∗ |@ |2(:−2)
for � = red(�) =

. . .
1 2 3 4 2:

∈ Part{ , } ,

(5.2.58)

(f) @ ≔  ≠ 0 =⇒ ∀: ∈ ℕ :

� =



|@ |2(:−1)
for : ≠ 1,� = red(�) ∈ Part{ , }

∧
(
� =

. . .
1 3 2:+12 4 2:

∨ � =
. . .

1 3 2:+12 4 2:

)
@ |@ |2(:−1)

for � = red(�) =
. . .

1 3 2:+12 4 2: 2:+2

∈ Part{ , }

@∗ |@ |2(:−1)
for � =

. . .
1 3 2:+12 4 2: 2:+2

∈ Part{ , } .

(5.2.59)
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(g)  ≠ 0 ∧  ≠ 0 =⇒  =  ∈ ℂ \ {0}.

Proof: Throughout the proof we use that P� is a two-colored universal class of partitions

according to Theorem 5.2.17

Ad (a): We will follow the proof of Lemma 4.2.33 (a)(


)
2

=   È eq. (5.2.51)É

=  È eq. (5.2.31)É

=   È eq. (5.2.30)É

=   È eq. (5.2.50)É

The assertion now follows from the fact that  =  = 1 which has been shown in Proposi-

tion 5.2.22.

Ad (b): The proof is similar to the proof of (a).
Ad (c): Like in the proof of Proposition 5.1.18 we obtain the following equation(


)
2

=   .

We just need to attach black labels to the legs of the partitions and the same steps of reasoning

hold. The assertion now follows from (a).
Ad (d): The proof is similar to the proof of (c).
Ad (e): We can prove the equations by induction over : ∈ ℕ \ {1}. For the induction base : = 1

we need to show the three cases from equation (2.1.19). The cases that the last leg is at position

4 are clear, because  = ( )∗. For the other case we calculate

|@ |2 = ︸ ︷︷ ︸
=@∗

︸ ︷︷ ︸
=@

=   È eq. (5.2.51)É

=  È eq. (5.2.31)É

=  ︸ ︷︷ ︸
=1

È eq. (5.2.30), eq. (5.2.50), eq. (5.2.57)É

= 

(compare this to the proof of Lemma 4.2.36 (a)). For the induction step : → : + 1, we will only

show one of the three cases, since they all share similar steps of reasoning. So let us assume

� =
. . .

1 2 3 4 2:

. The proofs for the other case are all similar to the following calculation:

�︸︷︷︸
=@ |@ |2(:−2)

︸   ︷︷   ︸
=|@ |2

=  . . .  È induction base, eq. (5.2.51)É

=  . . . È eq. (5.2.31)É

=  . . . ︸︷︷︸
=1

È eq. (5.2.30), eq. (5.2.57)É

=  . . . È eq. (5.2.50)É.

Ad (f): We can prove the equations by induction over : ∈ ℕ. The induction base : = 1 for the

two lower cases in equations (5.2.59) is clear and for the induction base : = 2 for the first case in
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equation (5.2.59) we can calculate

︸ ︷︷ ︸
=@

︸ ︷︷ ︸
=@∗

=   È eq. (5.2.51)É

=  È eq. (5.2.31)É

=  ︸︷︷︸
=1

È eq. (5.2.30), eq. (5.2.57)É

=  È eq. (5.2.50)É.

For the induction step : → : + 1 we calculate for � ≔
. . .

1 3 2:+12 4 2:

�︸︷︷︸
=|@ |2(:−1)

 . . .︸        ︷︷        ︸
=|@ |2

=  . . .  . . . È eq. (5.2.51), induction baseÉ

=  . . . È eq. (5.2.31)É

=  . . . ︸︷︷︸
=1

È eq. (5.2.30)É

=  . . . È eq. (5.2.50)É.

The other cases use similar arguments for the induction step and we therefore omit them.

Ad (g): From Lemma 4.2.43 (a) we can conclude that

{
,

}
⊆ Gen

(
{ , }

)
.

Therefore, we may conclude that  ≠ 0. If we follow the calculation of its proof, then we

obtain the following calculation for the regarding highest coefficients


(


)
2

= 
(


)
2 È eq. (5.2.51)É

=   È eq. (5.2.53), eq. (5.2.31)É

=  ︸︷︷︸
=1

 È eq. (5.2.30), eq. (5.2.50), eq. (5.2.57)É

=   È eq. (5.2.50)É

=   È eq. (5.2.51)É

=  È eq. (5.2.53), eq. (5.2.52), eq. (5.2.31)É

=   È eq. (5.2.30), eq. (5.2.50)É.

In (d) we have shown that  ≠ 0 =⇒  = 1 and therefore the above calculation and

equation (5.2.52) imply

 =  . �

In preparation for the next lemma we define

� ≔ { , , , , , , }. (5.2.60)



226 Chapter 5. Universal class of partitions from positive and symmetric u.a.u.-products

5.2.24 Lemma. Let � be a partition induced universal product or a positive and symmetric

u.a.u.-product in the category AlgP2. Let

� = {�1 , �=} ⊆ � (5.2.61)

for = ∈ {1, 2} be the (according to Theorem 5.2.17) associated subset of generators of P�, i. e.,
P� = Gen(�). If @8 ≔ �8 ∈ ℂ \ {0} for all 8 ∈ [=], then

∀� ∈ Gen(�), ∃ polynomial ? ∈ ℂ0[G1 , G
∗
1
, G= , G

∗
=] : � = eval@1 ,@= (?), (5.2.62)

wherein ℂ[G1 , G
∗
1
, G= , G

∗
=] denotes the set of polynomials in commuting indeterminates

{G1 , G
∗
1
, G= , G

∗
=} and eval@1 ,@= : ℂ[G1 , G

∗
1
, G= , G

∗
=] −→ ℂ is the canonical evaluation homomor-

phism. Furthermore, the set of coefficients {@1 , @=} uniquely determines the product �.

Proof: It is clear that the assertion holds for partition induced universal products �P where

P is a two-colored universal class of partitions. Because, in Lemma 5.2.14 we have seen that

these products have the property that their nonzero highest coefficients are 1. The diagram of

Figure 4.1 shows us which set of generators � we need to choose for P�P = P .

Now, assume that � is a positive and symmetric two-faced u.a.u.-product. Thanks to

Theorem 5.2.17, we know that P� is a two-colored universal class of partitions. Because of our

classification result of two-colored universal classes of partitions in Theorem 4.2.44 �P must

match one of the universal class displayed in the diagram of Figure 4.1. But it is not possible

that �P = 1B{ , }. Because of Proposition 5.2.22, we have  = 1. Now, the procedure is

the following: assume P� is any instance of a two-colored universal class of partitions from

the diagram of Figure 4.1 with its set of generators � displayed there. By Proposition 5.2.19 it

suffices to show

∀� ∈ red

(
Gen(�) · ,2

)
, ∃ polynomial ? ∈ ℂ[@1 , @

∗
1
, @= , @

∗
=] : � = ?(@1 , @

∗
1
, @= , @

∗
=).

Thus, it suffices to showequation (5.2.62) for reduced two-blockpartitions ofGen(�). Throughout
the proofs of Lemma 4.2.32 to Lemma 4.2.43 we have determined all the reduced two-block

partitions for the several cases of P�. Lemma 5.2.23 then shows us that all these reduced

two-block partitions are indeed polynomials depending on @1 , @
∗
1
, @= , @

∗
= . By this and from

Theorem 5.2.20 then follows that the set of coefficients {@1 , @=} uniquely determines the product

�.
But the caseP� = Part{ , } is not covered by Lemma 5.2.23. So, let us assumeP� = Part{ , }.

We recall that in the proof of Lemma 4.2.43 (c)wehave introduced a so-called “minimal two-block

crossing partition” m2bC(, �, �, �). The first thing to notice is: if

∀2 ∈ ℕ, ∀1 , �1 , � ≔ (�8)8∈[2] , �1 ∈ A({ , }) :

� ≔ m2bC(1 , �1 , �, �1) =


1 �
1

�
1
. . . �2 �

1

,

then � is a polynomial in the indeterminates @ and @∗, where @ =  =  (look at

Lemma 5.2.23 (g)). There are some cases we have to consider but we do not further elaborate on

this. The necessary steps should be clear from the proof of Lemma 4.2.43 (c). In particular, we

can see from there that a generic reduced two-block partition with arbitrary many crossings is

generated by m2bC(, �, �, �). This shows that also those partitions are a polynomial depending

on @ and @∗. �
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In preparation for the next theorem we denote by * the set as the union of the set of

all partition induced universal products in the category AlgP2 and the set of all positive and

symmetric u.a.u.-products in the category AlgP2. We denote the set of all two-colored universal

classes of partitions by %. We set

5 :

{
* −→ %,

� ↦−→ P�
(5.2.63)

and

*̃ = 5 −1(NC{ , }) ∪ 5 −1(biNC) ∪ 5 −1(Part{ , }) (5.2.64)

(*̃ is the union of the preimage of the union NC{ , } ∪ biNC ∪ Part{ , } under 5 ).

5.2.25 Theorem. Let � be a partition induced universal product or a positive and symmetric

u.a.u.-product in the category AlgP2. Then, the map 5 : * −→ % is surjective and

5̃ ≔ 5 �*\*̃ : * \ *̃ −→ % (5.2.65)

is injective. Furthermore,

∀� ∈ * \ *̃ , ∀� ∈ Part{ , } : (� ≠ 0 =⇒ � = 1). (5.2.66)

Proof: First, we show surjectivity of the map 5 : * −→ %. We need to show that a universal

product � ∈ * with the property that P� = P for any P ∈ % exists. We claim that �P does the

job. Clearly, we have �P ∈ * . From Lemma 5.2.14 we obtain 5 (�P ) = P for any P ∈ %.
Next, we show that 5̃ ≔ 5 �*\*̃ is injective. By the statement that P� is a two-colored

universal class of partitions we have im( 5̃ ) ⊆ % \ {NC{ , } , biNC,Part{ , }}. Let � ∈ * \ *̃ ,

then from our classification result of % from Theorem 4.2.44 and the diagram of Figure 4.1

we can see that the two-colored universal class of partitions 5̃ (�) is generated by a certain

subset of Γ ≔ {�1 , �=} ⊆ { , , , , } for = ∈ [2]. From Lemma 5.2.24,

Proposition 5.2.22 and Lemma 5.2.23 (a) – (d)we can see

∀� ∈ Gen(Γ) : � = 1. (I)

Now, we can calculate

5̃ (�) = 5̃ (�̃)

⇐⇒ 5 (�) = 5 (�̃) Èdef. of 5̃ É

⇐⇒ P� = P�̃ Èdef. of 5 É

⇐⇒ {� ∈ Part{ , } | � ≠ 0 } = {� ∈ Part{ , } | ̃� ≠ 0 } Èdef. of P� in eq. (5.2.46)É

⇐⇒ {� ∈| � ≠ 0 } = Gen(Γ) = {� ∈ Part{ , } | ̃� ≠ 0 }

=⇒ ∀� ∈ Part{ , } : � = ̃� È eq. (I)É

⇐⇒ � = �̃ ÈThm. 2.5.13É. �

5.2.26 Proposition. Let � be a partition induced universal product or a positive and symmetric

u.a.u.-product.

(a) If  ≠ 0, then 0 < | | ≤ 1.
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(b) If  ≠ 0, then 0 < | | ≤ 1.

Proof: Ad (a): If � is a partition induced universal product the assertion follows from

Lemma 5.2.14. Now assume that � is a positive and symmetric u.a.u.-product. Denote by

ℂ0[-] the commutative, non-unital polynomial algebra over the set -. Assume that - = {G} for
some indeterminate G. Assume A◦ , A• , B◦ , B• are algebras such that

A◦ ∼= A• ∼= B◦ ∼= A• ∼= ℂ0[G].

Set A ≔ A◦ t A• and B = B◦ tB•. Then, A and B are two-faced algebras, i. e., A, B ∈ Alg2.

Define !1 ∈ Lin(A,ℂ) and !2 ∈ Lin(B,ℂ) by

!8(G=) =
{

1 for = even

0 for = odd.
(I)

We define an involution on ℂ0[G] by G∗ = G. Then it is clear that !8 is strongly positive for each

8 ∈ [2]. Since we have assumed that � is positive !1 � !2 : A tB −→ ℂ is strongly positive. Let

0◦ ∈ A◦ , 0• ∈ A• , 1◦ ∈ B◦ , 1• ∈ B•, then we set H1 ≔ 1•0◦ ∈ A tB and H2 ≔ 1◦0• ∈ A tB.

We obtain that the matrix(
(!1 � !2)(0◦1•1•0◦) (!1 � !2)(0◦1•1◦0•)
(!1 � !2)(0•1◦1•0◦) (!1 � !2)(0•1◦1◦0•)

)
must be positive-semidefinite, where we have applied Lemma 5.2.21 to (H1 , H2) instead of (G1 , G2).
If we use the universal coefficient theorem, equation (I), equation (5.2.52) and Lemma 5.2.23 (a)–
(b)we have that the matrix (

1

(


)∗
 1

)
is positive-semidefinite. For a positive-semidefinite matrix its determinant needs to be non-

negative and the assertion follows from this implication.

Ad (b): Ifwe take the same construction as in (a), but apply Lemma 5.2.21with H1 ≔ 0•1◦ ∈ AtB

and H2 ≔ 1◦0◦ ∈ A tB, then we have that the matrix(
(!1 � !2)(1◦0•0•1◦) (!1 � !2)(1◦0•1◦0◦)
(!1 � !2)(0◦1◦0•1◦) (!1 � !2)(0◦1◦1◦0◦)

)
must be positive-semidefinite. By the same reasoning as in (a)we obtain that the matrix(

1

(


)∗
 1

)
must be positive-semidefinite. For a positive-semidefinite matrix its determinant needs to be

non-negative and the assertion follows from this implication. �

5.2.27 Remark. By Theorem 4.2.44 and the diagram of Figure 4.1 % has been classified in terms

of sets of certain generators, i. e., ∀P ∈ %, ∃� ⊆ Part{ , } : P = Gen(�) (possible cases for �

displayed in the diagram of Figure 4.1). In other words, by Lemma 5.2.24 for any P ∈ * there

exists a � from the diagram of Figure 4.1 such thatP� = Gen(�) andP is uniquely determined
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by the set of coefficients { � ∈ ℂ | � ∈ Gen(�) }. Then,

∀� ∈ 5 −1(NC{ , }) = 5 −1

(
Gen

( ) )
:  ∈ { @ ∈ ℂ | 0 < |@ | ≤ 1 }, (5.2.67)

∀� ∈ 5 −1(biNC) = 5 −1

(
Gen

( ) )
:  ∈ { @ ∈ ℂ | 0 < |@ | ≤ 1 }, (5.2.68)

∀� ∈ 5 −1(Part{ , }) = 5 −1

(
Gen

(
{ , }

) )
:  = 

∈ { @ ∈ ℂ | 0 < |@ | ≤ 1 }.

(5.2.69)

This is just a restatement of Lemma 5.2.23 (e) – (g) and Proposition 5.2.26. Thanks to

Lemma 5.2.24, we have

∀� ∈ *̃ , ∀� ∈ Part{ , } : (� ≠ 0 =⇒ � ∈ { @ ∈ ℂ | 0 < |@ | ≤ 1 }), (5.2.70)

where the set *̃ is defined in equation (5.2.64).

5.2.28 Remark (A list of all “candidates” of positive and symmetric two-faced
u.a.u.-products). The above assertions and the classification of two-colored universal classes

of partitions leads to the existence of a well-defined mapping{
positive and symmetric two-faced u.a.u.-product

with all nonzero highest coefficients (�)�∈Part{ , } ∈ (ℂ \ {0})Part{ , }

}
3 �

↦−→ P� ∈ {two-colored universal class of partitions} (5.2.71)

and therefore to the diagram of Figure 5.1, which necessarily contains all possible types of

a positive and symmetric two-faced u.a.u.-products, characterized in terms of its associated

highest coefficients. This is justified by Theorem 2.5.13 and Theorem 5.2.17 tells us that the

highest coefficients behave as two-colored universal class of partitions. Then, we may use

the classification result of Theorem 4.2.44 (or for a more compact view use the diagram of

Figure 4.1) to decide how the (nonzero) highest coefficients can be grouped.
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� with

 =

∈{@∈ℂ|0<|@ |≤1}
↦→Part{ , }

� with 

∈{@∈ℂ|0<|@ |≤1}
↦→NC{ , }

� with

 = =1

↦→pureC

� with 

∈{@∈ℂ|0<|@ |≤1}
↦→biNC

� with

 = =1

↦→NC A

� with

 = =1

↦→A NC

� with

 =1

↦→I A

� with

 = =1

↦→pureNC

� with

 =1

↦→A I

� with

 =1

↦→I NC

� with

 =1

↦→NC I

� with

 =1

↦→I{ , }

←

←

←
←

←

←

←

←

←

←

←

←

←

←

←

←

←
←

←

←

←

←

←

←
←

←

←

←

←

←

←

←
←

←

←

←

Figure 5.1: A possible way to look at the preimage of the mapping of equation (5.2.70) with

necessary nonzero values for the highest coefficients of a symmetric two-faced

u.a.u.-product such that it is positive.

One might ask how the general prescription of a positive and symmetric two-faced u.a.u.-

product in terms of its nonzero highest coefficients looks like (compare this with the statement

of Theorem 2.5.13). In particular, how are these “deformation parameters” from Remark 5.2.27

and Proposition 5.2.26 incorporated, which could lead to the definition of a positive and

symmetric two-faced u.a.u.-product? A possible strategy to answer this question is the

following. We start with equation (2.5.29) and borrow all the notation and prerequisites

introduced in Lemma 2.5.12. Let # ∈ Lin

(⊔<
8=1

T(+8),ℂ
)
. We want to find an expression

for exp# in the case � is a two-faced positive and symmetric u.a.u.-product. Start from

equation (2.5.29) with � = (�8)8∈[=] ∈ [2]×= . Then, we calculate

(exp� #)
(
can(E(�1)

81
⊗ · · · ⊗ E(�=)

8=
)
)
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=

=∑
:=1

(
1

:!

∑
�=(�8)8∈[=]
∈[:]×= ,
|set �|=:

(

(red(((�8 ,�8))8∈[=]))
max

:∏
8=1

#
(
can(Ẽ18 )

) ))

=

=∑
:=1

(
1

:!

∑
(�8 ,�8)8∈[=]
∈red()�,: )

(

((�8 ,�8)8∈[=])
max

:∏
8=1

#
(
can(Ẽ18 )

) ))

Èdef. of )�,: in eq. (5.2.20), eq. (2.5.9)É

=

=∑
:=1

(
1

:!

∑
(�8 ,�8)8∈[=]

∈indPart−1(red(Part�,: ))

(

((�8 ,�8)8∈[=])
max

:∏
8=1

#
(
can(Ẽ18 )

) ))
�
def. of the map indPart in eq. (5.2.24), Part�,: defined in Def. 3.4.1 (d)
definition of reduced partition in Def. 4.2.28 (a)

�

=

=∑
:=1

∑
�

∈red(Part�,: )

(
�

∏
1∈�

#
(
can(Ẽ1)

) )
ÈConv. 5.2.10, Conv. 3.4.14É

=

=∑
:=1

∑
�

∈red((P�)�,: )

(
�

∏
1∈�

#
(
can(Ẽ1)

) )
È (P�)�,: defined in eq. (5.2.46)É (5.2.72)

We can compare the above result to the expression of equation (2.5.29). The difference is that

in equation (5.2.72) the sum runs only over all nonzero coefficients and all summands where

the highest coefficient is zero are neglected. Thus, we may say that equation (5.2.72) is a more

refined version of equation (2.5.29). We claim that a similar calculation holds for the logarithm

log� #. By the above expression for the exponential on the dual of

⊔:
8=1

T(+8) we obtain for

< = 2

∀= ∈ ℕ, ∀� = (�8)8∈[=] ∈ A([2] × [<]), ∀(A8 , (A(9)8 )9∈[<] , !8)8∈[2] ∈
(
Obj(AlgPm)

)×2

, ∀(08)8∈[=] ∈∏=
8=1

A
(col(�8))
type(�8) :

(!1 � !2)( 01 · · · · · 0=︸      ︷︷      ︸
∈⊔<

9=1

⊔:
8=1

A
(9)
8

)

=

((
exp�

(
BCH�

(
log� !̃1 , log� !̃2

) ))
◦ incA1tA2 ,

⊔<
9=1

T(+9)

)
(01 · · · · · 0=)

Èmoment-cummulant formula for � in eq. (2.4.21), notations from Prop. 2.4.12É

=

((
exp�

(
log� !̃1 + log� !̃2

) )
◦ incA1tA2 ,

⊔<
9=1

T(+9)

)
(01 · · · · · 0=)

È � is symmetric, Lem. 2.4.7É
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=

=∑
:=1

∑
�

∈red((P�)�,: )

(
�

∏
1∈�

(
log� !̃1 + log� !̃2)

(
can(0̃1)

) )
È eq. (5.2.72)É

=

=∑
:=1

∑
�≤indPart(�)
∈P�

(
�

∏
1∈�

(
log� !̃1 + log� !̃2)

(
can(0̃1)

) )

+
=∑
:=1

∑
��indPart(�)
∈P�

(
�

∏
1∈�

(
log� !̃1 + log� !̃2)

(
can(0̃1)

) )
ÈLem. 4.2.48É

=

=∑
:=1

∑
�≤indPart(�)
∈P�

(
�

∏
1∈�

(
log� !̃1 + log� !̃2)

(
can(01)

) )
+ 0 (5.2.73)

Èdef. of !̃8 in eq. (2.4.21), def. of 0̃1 in Lem. 2.5.12 (a) (E replaced by 0)É

To determine the occurring highest coefficients in the above formula for the computation

of (!1 � !2)(01 · · · · · 0=) we can use Lemma 5.2.24 and Lemma 5.2.23. It remains the open

questionwhich values of the “deformation parameters” lead to a positive and symmetric u.a.u.-

products? Furthermore, we need to answer the question which partition induced universal

products are actually positive? We give partial answers to these kind of questions in the next

chapter.

We want to make a conjecture, where the proof of this conjecture remains an open task. We

want to present this conjecture at this point, since it might provide a different perspective on

the diagram of Figure 5.1. In fact, equation (5.2.72) and (5.2.73) might give rise to a definition

of a symmetric u.a.u.-product only in terms of partitions. So far, our partition induced

universal products have been designed in that way that all their corresponding nonzero

highest coefficients are one. In Theorem 3.4.32 we have shown that such universal products

satisfy the properties of a symmetric u.a.u.-product. Now, is it possible to generalize the notion

of a partition induced universal product for a given <-colored universal class of partitions,

where the nonzero highest coefficients are not necessarily one? We think that this is possible,

following a similar strategyof Section 3.4, while in particularusing equation (5.2.72) and (5.2.73)

as a leitmotiv. We conjecture that the conditions of Corollary 5.2.11 and Theorem 5.2.17 (a)– (c)
for the highest coefficients of the generalized partition induced universal product are sufficient

to obtain a symmetric <-faced u.a.u.-product. In this sense by the diagram of Figure 5.1, we

couldsay that anypositive andsymmetric two-facedu.a.u.-products is necessarily a generalized

partition induced universal product. Here we use Theorem 2.5.13, since such generalized

partition induced universal products would again have the right-ordered monomials property

(like in Theorem 3.4.32 (e)). To determine all positive and symmetric two-faced u.a.u.-products

is now equivalent to show that the corresponding (generalized) partition induced universal is

positive or not.
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Further investigations on positivity

In Remark 5.2.28 we have found a mapping which helps us to find a list of all “candidates”

of positive and symmetric two-faced u.a.u.-products. This list is actually the preimage of the

mapping defined in equation (5.2.63) for elements of the classification from Theorem 4.2.44. At

this point we do not know, if some of these preimages are empty if we intersect with the set of

all positive and symmetric two-faced u.a.u.-products. This addresses two questions:

• Which two-coloreduniversal classes of partitionsP are allowed such that the partition induced

universal product �P is a positive and symmetric two-faced u.a.u.-product?

• With respect to Proposition 5.2.26 what choices for the values for the highest coefficients

 ∈ ℂ and  ∈ ℂ of a positive and symmetric u.a.u.-product are allowed such that

P� ∈ {NC{ , } , biNC,Part{ , }} and equation (5.2.73) is the prescription for a positive and

symmetric two-faced u.a.u.-product?

In this chapter we aim to show that some preimages of the mapping of equation (5.2.63) are

actually not empty when we intersect with the set of all positive and symmetric two-faced

u.a.u.-products. For this, we need to introduce some terminology what we do in Section 6.1. In

Sections 6.2, 6.3 we prove positivity for the "boolean-tensor" product �I A . In Sections 6.4, 6.5

among other things we try to find some necessary conditions on the deformation parameters

for the deformed bifree and free case to yield positive products.

6.1 General facts about representations of algebras

6.1.1 Convention. Let+ be a vector space andassume there exist two linear subspaces+1 = ℂΩ

for Ω ∈ + and +2 ⊆ + such that + = +1 ⊕ +2. Then, we set

PℂΩ :

{
+ = ℂΩ ⊕ +2 −→ ℂΩ,

E = �Ω + E2 ↦−→ �Ω
(6.1.1)

and we mean the projection onto ℂΩ with respect to the decomposition + = ℂΩ ⊕ +2.

Furthermore, we set

coordΩ :

{
+ = +1 ⊕ +2 −→ ℂ,

E = �Ω + E2 ↦−→ �
(6.1.2)

and we mean the coordinate along the vector Ω in + with respect to the decomposition

+ = ℂΩ ⊕ +2.

233
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6.1.2 Definition (Representation of an algebra, algebraically cyclic representation [Wil08,
Def. 3.1.3]). Let A be an algebra and + be a vector space. A representation � of A on + is a

homomorphism of algebras � : A −→ Lin(+). Here, Lin(+) is an algebra in the canonical way.

We say that a representation � : A −→ Lin(+) is algebraically cyclic or just cyclic if and only if

there exists a vector Ω ∈ + such that

+ = {�(0)Ω | 0 ∈ A } +ℂΩ. (6.1.3)

In this case Ω is called algebraically cyclic vector or just cyclic vector for the representation �.

6.1.3 Definition (Pointed representation [Ger17], vacuum cyclic representation). Let A be

an algebra. A pointed representation for the algebra A is an ordered triple (�,Ω, +̂), consisting
of a vector space +̂ , a representation � : A −→ Lin(ℂ⊕ +̂) and the vectorΩ ≔ (1, 0) ∈ ℂ⊕ +̂ . A

vacuum cyclic representation is a pointed representation (�,Ω, +̂), such thatΩ is an algebraically

cyclic vector for the representation �. The vector Ω is also called the vacuum vector.

6.1.4 Convention. For any pointed representation (�,Ω, +̂) for an algebra A we define the

vacuum state w.r.t. Ω by

vacΩ(�) :
{
A −→ ℂ,

0 ↦−→ coordΩ
(
�(0)Ω

)
.

(6.1.4)

It can be easily seen that vacΩ(�) ∈ Lin(A,ℂ).

6.1.5 Definition (Invariant subspace for a representation [Wil08, Def. 3.1.6]). Let A be an

algebra and � : A −→ Lin(+) be a representation. We say that a vector subspace , ⊆ + is

invariant for � if and only if

�(A), ≔ {�(0)F | 0 ∈ A, F ∈, } ⊆ ,. (6.1.5)

6.1.6 Definition (Restricted representation [Wil08, Def. 3.1.8]). Let A be an algebra and

� : A −→ Lin(+) be a representation. Let B ⊆ A be a subalgebra of A. Then, the restricted
representation ��B is defined as the map

��B :

{
B −→ Lin(+),

1 ↦−→ �(1).
(6.1.6)

Let, ⊆ + be a �-invariant subspace, then for each element 0 ∈ A the element �(0) is a linear
map from, to, . Thus, we can define the restricted representation ��, as the map

��, :

{
A −→ Lin(,),

0 ↦−→ �(0)�, .
(6.1.7)

6.1.7 Remark. One can show that��B : B −→ Lin(+) and��, : A −→ Lin(,) from the above

definition are representations.

6.1.8 Proposition (Unital GNS-construction [Wil08, Satz 3.2.1]). Let A be a unital algebra

with unit 1A ∈ A and ! ∈ Lin(A,ℂ) be a linear functional such that !(1A) = 1.

(a) The set

#! ≔ { 0 ∈ A | ∀0′ ∈ A : !(0′0) = 0 } (6.1.8)



6.1 General facts about representations of algebras 235

is a left ideal in A. It holds

#! ⊆ ker!. (6.1.9)

Denote by � ≔ �! : A −→ A/#! the canonical quotient map.

(b) The following decomposition of vector spaces is satisfied

�(A) = ℂ�(1A) ⊕ �(ker!). (6.1.10)

(c) The map

�! :


A −→ Lin

(
�(A)

)
,

0 ↦−→ �!(0) :
{
�(A) −→ �(A),

�(0′) ↦−→ �(00′)

(6.1.11)

is well-defined and

(
�! , �(1A), �(ker!)

)
is a vacuum cyclic representation for A. In

particular, �! is a homomorphism of unital algebras.

(d) The linear functional ! can be realized as a vacuum state with respect to the vacuum

vector Ω ≔ �(1A), i. e.,
! = vacΩ(�!). (6.1.12)

(e) Let  ⊆ �(ker!) be a linear subspace such that ∀0 ∈ A : �!(0)( ) ⊂  , then this implies

 = {0}. Or in other words, there does not exist a non-trivial �!-invariant subspace of
�(ker!).

Proof: Wewill mostly present only the ideas for the proof. Many parts of the proofs are similar

to the standard textbook case for theGNS-construction, where the algebra A carries an involutive

structure and the linear functional is assumed to be positive.

Ad (a): It is a standard task to show that the set #! ⊆ ker! is a vector subspace and that it has

a left ideal property.

Ad (b): We notice that for any 0 ∈ A holds

0 = !(0)1A︸  ︷︷  ︸
∈ℂ1A

+
(
0 − !(0)1A

)︸          ︷︷          ︸
∈ker!

.

Since the map � is linear we have �(0) = !(0)�(1A) + �(0 − !(0)1A) for any 0 ∈ A and therefore

�(A) = ℂ�(1A) + �(ker!).

It remains to show that this decomposition is direct, i. e., ℂ�(1A) ∩ �(ker!) = {0}. If we assume

that = ∈ ℂ�(1A) ∩ �(ker!), then there exist � ∈ ℂ and 0 ∈ ker!, such that ℂ�(1A) 3 ��(1A) =
= = �(0) ∈ �(ker!). Since �1A − 0 ∈ ker�, we have �1A − 0 ∈ #!. Because 0 ∈ ker! and

#! ⊆ ker!, we obtain

� = �!(1A) − !(0)︸︷︷︸
=0

= !(�1A − 0︸   ︷︷   ︸
∈#!

) = 0.

Ad (c): To show that �! is well-defined actually means that the map �!(0) is well-defined for

any 0 ∈ A. This holds because by the left ideal property of #! one can show that for 21 , 22 ∈ A

with �(21) = �(22) yields �(021) = �(022). One then easily shows that �! is a linear map and that

�!(1A) is the identity map and therefore �! is a representation of A on the vector space �(A). It
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remains to show that (�(ker!), �! , �(1A) is a vacuum cyclic representation for A. Because of (b)
the triple (�(ker!), �! , �(1A)) is a pointed representation for the unital algebra A. It remains to

show that Ω ≔ �(1A) is an algebraically cyclic vector for �. Thus, we need to show

�(A) = { �!�(1A) | 0 ∈ A } +ℂΩ.

This equation holds because for any 0 ∈ A we have �(0) = �(01A) = �!�(1A).
Ad (d): Since we have shown that

(
�! , �(1A), �(ker!)

)
is a vacuum cyclic representation, it

makes sense to speak about the coordinate coord�(1A)( · ) ∈ ℂ with respect to the direct sum

decomposition of �(A). For any 0 ∈ A we can calculate

coordΩ
(
�!(0)Ω

)
= coord�(1A)

(
�(0)

)
ÈΩ = �(1A) & def. of �! in eq. (6.1.11)É

= coord�(1A)
(
�
(
!(0)1A︸  ︷︷  ︸
∈ℂ�(1A)

+(0 − !(0)1A︸       ︷︷       ︸
∈�(ker!)

)
) )

= !(0) È eq. (6.1.2)É.

Ad (e): Let  be an �!-invariant subspace of �(ker!). For any element in : ∈  , there

needs to exist an element 00 ∈ ker! such that : = �(00). Since  is �!-invariant we have

∀0 ∈ A : �!(0)�(00) = �(000) ∈  ⊆ �(ker!). Therefore, we have by equation (6.1.12)

∀0 ∈ A : 0 = !(000) = coord�(1A)
(
�(000)

)
.

This shows that 00 ∈ #! which implies �(00) = 0. �

6.1.9 Lemma ([Wil08, Lem. 3.3.1]). Let A be an algebra and 0′ ∈ A.

Tfae: (a) 0′ ∈ #!1 ,

(b) !1(0′) = 0 and ∀0 ∈ A : !(00′) = 0.

Proof: We omit the proof since this is done by straightforward calculation. �

We also have a version of the statement of Proposition 6.1.8 for algebras which are not

necessarily unital. The above lemma then helps us to prove that there does not exist a non-trivial

�!-invariant subspace.

6.1.10 Lemma (General GNS-construction [Wil08, Satz 3.3.2]). Let A be an algebra and ! ∈
Lin(A,ℂ). If we set �! ≔ �!1�A, i. e., �! is the restricted representation of �!1 to A ⊆ A1

,

then the triple (
�! , �(1A1), �(ker!1)

)
(6.1.13)

is a vacuum cyclic representation for A, the subspace �(ker!1) has no non-trivial �!-invariant
subspace and

! = vacΩ(�!). (6.1.14)

Proof: We use the fact that A1 = ℂ ⊕ A. We will only discuss that there does not exist a

non-trivial subspace. We can similarly to the proof of Proposition 6.1.8 (e) show that if �(0′
0
) ∈  

for  ( �(ker!1) being an arbitrary �!-invariant subspace, this implies !1(0′
0
) = 0. Then, by

�!-invariance of  we have

∀0 ∈ A : �!(0)�(0′
0
) = �(00′

0
) ∈  ⊆ �(ker!1)
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and this by equation (6.1.14) implies !1(00′
0
) = 0. Now, we can use Lemma 6.1.9 and it follows

that 0′
0
∈ #!1 and therefore �(0′

0
) = 0. �

6.1.11 Definition (GNS-triple [Wil08, Def. 3.4.1]). Let A be an algebra. A GNS-triple for the
algebra A is an ordered triple (�,Ω, +̂), consisting of a representation � : A −→ Lin(ℂ ⊕ +̂),
the vector Ω ≔ (1, 0) ∈ ℂ ⊕ +̂ and a vector space +̂ such that

(a) (�,Ω, +̂) is a vacuum cyclic representation for A,

(b) there does not exist a non-trivial �-invariant subspace of +̂ , i. e.,

∀ vector subspaces  ⊆ +̂ : �(A) ⊆  =⇒  = {0}. (6.1.15)

6.1.12 Remark. It is obvious that the vacuum cyclic representations of Proposition 6.1.8 and

Lemma 6.1.9 are GNS-triples.

6.1.13 Convention. Due to Lemma 6.1.10 for any algebra A and ! ∈ Lin(A,ℂ) we obtain an

associated representation �!, a vacuum vector �(1A1) and a subspace �(ker!1). We set

GNS(!) ≔ �! , (6.1.16)

Ω! ≔ �(1A1), (6.1.17)

+̂! ≔ �(ker!1). (6.1.18)

We introduce the notion of “equivalent GNS-triples” ([Wil08, Def. 3.4.5]) resp. “homo-

morphic vacuum cyclic representations” ([Wil08, Def. 3.5.2]). In fact, we do not need these

definitions for the following sections. We only need them in addition with Lemma 6.1.15 for

some heuristics in order to argue, why a certain definition might not be the best and better seek

for another one. The reader can skip Definition 6.1.14 and Lemma 6.1.15 and can come back to

them when we discuss a possible definition of a universal product induced by a representation

for the so-called “boolean-tensor product” in Section 6.3.

6.1.14 Definition (Homomorphic vacuum cyclic representations [Wil08, Def. 3.5.2], equiva-
lent GNS-triples [Wil08, Def. 3.4.5]).

(a) Let A be an algebra. Let (�,Ω, +̂) and (�,Θ, ,̂) be two vacuum cyclic representations

for the algebra A. We say that � is homomorphic to � if and only if a linear and surjective

map Φ : ℂΩ ⊕ +̂ −→ ℂΘ ⊕ ,̂ exists such that

ΦΩ = Θ, (6.1.19a)

Φ(+̂) = ,̂ , (6.1.19b)

∀0 ∈ A : Φ ◦ �(0) = �(0) ◦Φ, (6.1.19c)

We say that � and � are homomorphic vacuum cyclic representations if and only if � is

homomorphic to � or � is homomorphic to �.

(b) We say that two GNS-triples (�,Ω, +̂) and (�,Θ, ,̂) for the algebra A are equivalent if
and only if they are homomorphic as vacuum cyclic representations and the mapΦ from

(a) is additionally injective.
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The name “equivalent” is chosen by intention because it can be shown that this leads to an

equivalence relation for GNS-triples.

6.1.15 Lemma ([Wil08, Satz 3.4.9]). Let A be an algebra and (�,Ω, +̂) a GNS-triple for the A

in the sense of Definition 6.1.11. If we set

! ≔ vacΩ(�), (6.1.20)

then the GNS-triple (�,Ω, +̂) is equivalent to the GNS-triple

(
GNS(!),Ω! , +̂!

)
, which is

obtained from Lemma 6.1.10 in the general GNS-construction. In other words, there exists a

linear and bĳective map Φ : +! ≔ Ω! ⊕ +̂! −→ ℂΩ ⊕ +̂ with the properties

(a) Φ ◦ PℂΩ! = PℂΩ ◦Φ

(b) Φ(+̂!) = +̂
(c) ∀0 ∈ A : Φ ◦ GNS(!)(0) = �(0) ◦Φ

Proof: We will only outline the main steps of the proof and refer for more details to the proof

of [Wil08, Satz 3.4.9]. We set

Φ0 :

{
GNS(!)(A)Ω! −→ �(A)Ω

GNS(!)(0)Ω! ↦−→ �(0)Ω.
(I)

We omit the proof for linearity of Φ0 which can be directly done. Next, we claim that Φ0 is

well-defined linear mapping. Therefor, we consider the following calculation for any 0 ∈ A such

that

GNS(!)(0)Ω! = 0

⇐⇒ GNS(!)(0)�(1A1) = 0 ÈConv. 6.1.13É

⇐⇒ �(0) Èdef. of GNS(!) = �! = �!1�A in eq. (6.1.11)É

⇐⇒ 0 ∈ #!1 È� : A1 −→ A1/#!1 É

⇐⇒ ∀0′ ∈ A1
: !1(0′0) = 0 È#! defined in eq. (6.1.8)É

⇐⇒ !(0) = 0 ∧
(
∀0′ ∈ A : !(0′0) = 0

)
ÈLem. 6.1.9É

⇐⇒ coordΩ �(0)Ω = 0 ∧
(
∀0′ ∈ A : coordΩ �(0′0)Ω = 0

)
Èdef. of ! in eq. (6.1.20)É

⇐⇒ �(0)Ω ∈ +̂ ∧
(
∀0′ ∈ A : �(0′0)Ω ∈ +̂

)
È im�(0) ⊆ ℂΩ ⊕ +̂ É

⇐⇒ ℂ
(
�(0)Ω

)
⊆ +̂ is �-invariant subspace

⇐⇒ �(0)Ω = 0 È eq. (6.1.15)É.

Now, we can see that the prescription of equation (I) satisfies Φ0(0) = 0, because by the

above we have shown that GNS(!)(0)Ω! = 0 =⇒ �(0)Ω = 0. It is easily seen, that Φ0

is now a well-defined linear map. Because, whenever GNS(!)(01)Ω! = GNS(!)(02)Ω!, then

Φ0(GNS(!)(01 − 02)Ω!) = Φ(0) = 0 and therefore Φ0(GNS(!)(01)Ω!) = Φ0(GNS(!)(02)Ω!).
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Injectivity for Φ0 for this linear map means to show that kerΦ0 = {0}. This is indeed true

because from the above we can see

�(0)Ω = 0 =⇒ GNS(!)(0)Ω! = 0. (II)

The map Φ0 is surjective because Ω is algebraically cyclic for �, and thus we have ℂΩ ⊕ +̂ =

ℂΩ + �(A)Ω. Hence, we have shown that Φ0 is a bĳective linear map.

At this point it is an open problem how to treat the vectors Ω! and Ω. For instance, it can

be the case thatΩ! ∈ �(A) andΩ ∉ �(A)Ω. But the following assertion helps us to prevent such

a dilemma, because it holds that

∀0 ∈ A :

(
�(0)Ω! = Ω! ⇐⇒ �(0)Ω = Ω

)
. (III)

For the⇐-direction of the proof the first to show is that�(0)Ω = Ω implies coordΩ! (�(0)−Ω!) = 0.

This can be shown using the properties of the GNS-construction from Lemma 6.1.10 and

Proposition 6.1.8. Now, we can conclude �(0)−�(1A1) ∈ ker(!1), since+! = ℂΩ! ⊕ +̂! and +̂! =

�(ker!1). Using thatΦ0 has an inversewe canobtain that∀0′ ∈ A : GNS(!)(0′)(�(0)−�(1A1)) = 0.

This in turn implies thatℂ(�(0)−�(1A1)) is a GNS(!)-invariant subspace of ker(!1)whichmeans

that �(0) − �(1A1) = {0} and therefore �(0) = �(1A1) ≡ Ω!. The other direction of the proof of

equation (III) uses a similar scheme.

Equation (II) now enables us to distinguish between two cases.

• Ω! ∈ �(A) and Ω ∈ �(A)Ω,

• Ω! ∉ �(A) and Ω ∉ �(A)Ω.

In the first case we set Φ ≔ Φ0 : +! −→ ℂΩ + �(A)Ω and in the second case we use the linear

extension of the mapΦ0 to define a bĳective linear mapΦ ≔ Φ0 : +! −→ ℂΩ+�(A)Ω = ℂΩ⊕ +̂
by Φ�(0) ≔ Φ0�(0) for all 0 ∈ A and ΦΩ! ≔ Ω. This shows (a).
Ad (b): We need to show that

∀� ∈ ℂ, ∀0 ∈ A :

(
�Ω! + �(0) ∈ �(ker!1) ⇐⇒ �Ω + �(0)Ω ∈ +̂

)
.

We skip the calculation. The above equation implies Φ(+̂!) = +̂ .

Ad (c): We calculate for any 0 ∈ A, 0′
0
= �1A1 + 00 ∈ A1

Φ
(
GNS(!)(0)�(0′

0
)
)
= Φ

(
�(�0) + �(000)

)
= �(�0)Ω + �(000)Ω È (a), (b)É

= �(0)
(
�Ω + �(00)Ω

)
=

(
�(0) ◦Φ

) (
�Ω! + GNS(!)(00)Ω!

)
=

(
�(0) ◦Φ

) (
�(0′

0
)
)
. �

6.1.16 Lemma. Let (�,Ω, +̂)be apointed representation foran algebraA. Assume, ⊆ ℂΩ⊕+̂
is a �-invariant subspace and Ω ∈, , then (��, ,Ω, +̂ ∩,) is a pointed representation for A.

Proof: The restricted representation ��, : A −→ Lin(,) is a representation for the algebra A.

It remains to show, = ℂΩ⊕(+̂∩,). First we show, = ℂΩ+(+̂∩,) as sets. LetF ∈, , then

since F ∈, ⊆ + = ℂΩ ⊕ +̂ there exists unique � ∈ ℂ and Ê ∈ +̂ such that F = �Ω+ Ê. Because
F − �Ω = Ê, Ω ∈ , and, is vector subspace, we obtain Ê ∈ , . Thus, we have shown that

, ⊆ ℂΩ + (+̂ ∩,). The other direction ℂΩ + (+̂ ∩,) ⊆ , is clear. Moreover, by associativity

of intersection we have

ℂΩ ∩ (+̂ ∩,) = (ℂΩ ∩ +̂) ∩, = {0} ∩, = {0}.
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Thus, we have shown, = ℂΩ ⊕ (+̂ ∩,). �

6.1.17 Lemma ([Wil08, Lem. 3.5.5]). Let (�,Ω, +̂) be a vacuum cyclic representation for an

algebra A and assume we are given a homomorphism of algebras 9 : B −→ A. If we set

 ̂ ≔ +̂ ∩ (� ◦ 9)(B)Ω. Then, we have

ℂΩ + (� ◦ 9)(B)Ω = ℂΩ ⊕  ̂. (6.1.21)

Moreover, ((� ◦ 9)�ℂΩ+(�◦9)(B)Ω ,Ω,  ̂) is a vacuum cyclic representation for B.

Proof: The triple ((� ◦ 9)�ℂΩ+(�◦9)(B)Ω ,Ω,  ̂) is a pointed representation for the algebra B by

Lemma 6.1.16. By definition of the subspace  ̂ this representation is algebraically cyclic for the

vacuum vector Ω ∈ ℂ ⊕ +̂ . �

6.1.18 Convention. Let (�,Ω, +̂) be a vacuum cyclic representation for an algebra A and

9 : B −→ A a homomorphism of algebras. Then, by the assertion of Lemma 6.1.17 we denote

by prep(� ◦ 9) a representation defined by

prep(� ◦ 9) ≔ (� ◦ 9)�ℂΩ+(�◦9)(B)Ω. (6.1.22)

We can think of prep(� ◦ 9) as something like an induced pointed representation due to

Lemma 6.1.17 and that is why we abbreviate it by prep.

6.1.19 Remark (GNS-construction in the positive case).

(a) If we are in the setting of a unital ∗-algebra A and ! ∈ Lin(A,ℂ), where ∗ is an involution

on A and ! ∈ Lin(A,ℂ) is positive, then the GNS-construction ([Pal01, Thm. 9.4.7]) gives

us the structure of a pre-Hilbert space. The main reason for this richer structure lies in

Lemma 1.1.26 and therefore by equation (1.1.29)(
∀0′ ∈ A : !(0′0) = 0

)
⇐⇒ !(0∗0) = 0. (6.1.23)

For positive functionals on the algebra A we obtain for the set #!, defined in equa-

tion (6.1.8), another equivalent characterization, namely

#! = { 0 ∈ A | !(0∗0) = 0 = 0 }. (6.1.24)

(b) We say that an ordered triple (�,Ω, +̂) is a GNS-triple for a ∗-algebra A if and only

if + = ℂΩ ⊕ +̂ is a pre-Hilbert space, i. e., a vector space with complex inner product

〈 · , · 〉 : +×+ −→ +with linearity in the secondargument,Ω ≔ (1, 0) ∈ ℂ⊕+̂ , (ℂΩ)⊥ = +̂
and � : A −→ Adj(+) is a ∗-homomorphism. Here, we set

Adj(+) ≔ {� ∈ Lin(+) | ∃� ∈ Lin(+), ∀E, F ∈ + : 〈E, �F〉 = 〈�E, F〉 } (6.1.25)

as the subalgebra of adjointable operators in Lin(+). The statement of [Pal01, Thm. 9.4.7]

shows us that for any ∗-algebra A and ! ∈ Lin(A,ℂ), where ∗ is an involution on A and

! ∈ Lin(A,ℂ) is strongly positive, a GNS-triple (�,Ω, +̂) for the ∗-algebra A exists such

that

∀0 ∈ A : !(0) = vacΩ
(
�(0)

)
. (6.1.26)
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(c) We claim that any GNS-triple (�,Ω, +̂) for a ∗-algebra A is also a GNS-triple for A in

the sense of Definition 6.1.11. In other words, we claim that the condition of Defini-

tion 6.1.11 (b) is automatically satisfied. To show this, we assume that (�,Ω, +̂) is a

GNS-triple for a ∗-algebra A with 〈Ω,Ω〉 = 1. Without loss of generality we can assume

that A is unital, otherwise we canonically extend the ∗-representation to A1
, which

again defines a GNS-triple but now for A1
. It can be shown that both GNS-triples are

homomorphic (Definition 6.1.14). So, let us assume A is unital. Assume that 0 ≠ E ∈ +̂
and sinceΩ is algebraically cyclic, there exists an element 0 ∈ A such that E = �(0)Ω. But

the following calculation shows that if we choose 0′ = 0∗ then PℂΩ(�(0′)E) ≠ 0, because

coordΩ
(
�(0∗)�(0)Ω

)
= 〈Ω,�(0∗)�(0)Ω〉 = 〈�(0)Ω,�(0)Ω〉 = 〈E, E〉 ≠ 0. (6.1.27)

Since 0 ≠ E ∈ +̂ was chosen arbitrarily we have shown that the subspace +̂ has no

non-trivial �-invariant subspaces.

(d) The orthogonal projection PℂΩ for the complete subspace ℂΩ is self-adjoint [Hei11,

2. Aufgabe zu 3.6]. Furthermore, for any element G ∈ ℂΩ ⊕ +̂ the Fourier-coefficients

determine PℂΩ(G), i. e.,
PℂΩ(G) = 〈Ω, G〉Ω. (6.1.28)

6.2 Boolean-tensor product of representations

The following definition resembles [Ger17, Def. 1].

6.2.1 Definition (Boolean-tensor product of representations). For 8 ∈ [2], let (A8 , (A(9)8 )9∈[2]) ∈
Obj(Alg2) and let (�8 ,Ω8 , +̂8) be pointed representations for the algebra A8 . Set

∀ 8 ∈ [2] : +8 ≔ ℂΩ8 ⊕ +̂8 . (6.2.1)

Then, we define

�(1)�1

:


A
(1)
1
−→ Lin(+1 ⊗ +2)

0 ↦−→ �1(0) ⊗ PℂΩ2
,

(6.2.2)

�(1)�2

:


A
(1)
2
−→ Lin(+1 ⊗ +2)

0 ↦−→ PℂΩ1
⊗�2(0),

(6.2.3)

�(2)�1

:


A
(2)
1
−→ Lin(+1 ⊗ +2)

0 ↦−→ �1(0) ⊗ id+2
,

(6.2.4)

�(2)�2

:


A
(2)
2
−→ Lin(+1 ⊗ +2)

0 ↦−→ id+1
⊗ �2(0).

(6.2.5)

The maps �
(9)
�8 are morphisms of algebras. Thus, for any (A8 , (A(9)8 )9∈[2]) ∈ Obj(Alg2) for 8 ∈ [2]
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we may define

�1 ⊲⊳ �2 :


A1 t A2

∼= (A1 t A2)(1) t (A1 t A2)(2) −→ Lin(+1 ⊗ +2),

0 ↦−→
(
(�1 ⊲⊳ �2)�(A1tA2)(1)︸                  ︷︷                  ︸

≕�(1)�
1

t�(1)�
2

t (�1 ⊲⊳ �2)�(A1tA2)(2)︸                  ︷︷                  ︸
≕�(2)�

1

t�(2)�
2

)
(0). (6.2.6)

6.2.2 Lemma.

(a) ∀ 8 ∈ [2], ∀(A8 , (A(9)8 )9∈[2]) ∈ Obj(Alg2), ∀ pointed rep. (�8 ,Ω8 , +̂8) for A8 :

(�1 ⊲⊳ �2 ,Ω1 ⊗ Ω2 , �+1 ⊗ +2) (6.2.7)

is a pointed representation for the algebra A1 t A2 with

�1 ⊲⊳ �2 : A1 t A2

−→ Lin

( =+1⊗+2︷                                                                 ︸︸                                                                 ︷
ℂ(Ω1 ⊗ Ω2) ⊕

(
(ℂΩ1 ⊗ +̂2) ⊕ (+̂2 ⊗ ℂΩ2) ⊕ (+̂1 ⊗ +̂2)︸                                            ︷︷                                            ︸

≕�+1⊗+2

)
, (6.2.8)

(b) ∀ 8 ∈ [2], ∀ involutive algebras (A8 , (A(9)8 )9∈[2]) ∈ Obj(Alg2),
∀ pointed ∗-rep. (�8 ,Ω8 , +̂8) for A8 :

(�1 ⊲⊳ �2 ,Ω1 ⊗ Ω2 , �+1 ⊗ +2) (6.2.9)

is a pointed ∗-representation for the ∗-algebra A1 tA2 and in particular the map �1 ⊲⊳ �2

is a homomorphism of ∗-algebras.

(c) ∀ 8 ∈ [2], ∀(A8 , (A(9)8 )9∈[2]) ∈ Obj(Alg2), ∀ pointed rep. (�8 ,Ω8 , +̂8) for A8 , ∀0 ∈ A8 :

(�1 ⊲⊳ �2)
(
�8(0)

)
◦ inc+8 ,+1⊗+2

= inc+8 ,+1⊗+2
◦ �8(0), (6.2.10)

where ∀ 8 ∈ [2] : �8 : A8 ↩−→ A1 t A2 is the canonical insertion homomorphism.

(d) ∀ 8 ∈ [2], ∀(B8 , (B(9))9∈[2]), (A8 , (A(9)8 )8∈[2]) ∈ Obj(Alg2),
∀ 98 ∈ MorphAlg2

(
(B8 , (B(9))9∈[2]), (A8 , (A(9)8 )8∈[2])

)
, ∀ pointed rep. (�8 ,Ω8 , +̂8) for A8 :

(
prep

(
�1 ◦ 91

)
⊲⊳ prep

(
�2 ◦ 92

) )
�((�1⊲⊳�2)◦(91q92)

)
(B1tB2)(Ω1⊗Ω2)+ℂΩ1⊗Ω2

=

(
prep

(
�1 ⊲⊳ �2 ◦ (91 q 92)

) )
. (6.2.11)

(e) ∀
(
A8 , (A(9)8 )9∈[2]

)
8∈[3] ∈

(
Obj(Alg2)

)×3

, ∀ 8 ∈ [3], ∀ pointed rep. (�8 ,Ω8 , +̂8) for A8 , ∀0 ∈
(A1 t A2) t A3 :

c̃an ◦
(
(�1 ⊲⊳ �2) ⊲⊳ �3

)
(0) ◦ c̃an−1

=

( (
�1 ⊲⊳ (�2 ⊲⊳ �3)

)
◦ can

)
(0). (6.2.12)
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Herein, we denote

c̃an : (+1 ⊗ +2) ⊗ +3 −→ +1 ⊗ (+2 ⊗ +3), (6.2.13)

can : (A1 t A2) t A3 −→ A1 t (A2 t A3) (6.2.14)

as canonical isomorphisms.

(f) ∀
(
A8 , (A(9)8 )9∈[2]

)
8∈[2] ∈

(
Obj(Alg2)

)×2

, ∀ 8 ∈ [2], ∀ pointed rep. (�8 ,Ω8 , +̂8) for A8 , ∀0 ∈
A1 t A2 :

c̃an ◦ (�1 ⊲⊳ �2)(0) ◦ c̃an−1

=
(
(�2 ⊲⊳ �1) ◦ can

)
(0), (6.2.15)

where

c̃an : Lin(+1 ⊗ +2) −→ Lin(+2 ⊗ +1), (6.2.16)

can : A1 t A2 −→ A2 t A1 (6.2.17)

are the canonical isomorphisms.

Proof: Ad (a): The map �1 ⊲⊳ �2 : A1 t A2 −→ Lin(+1 ⊗ +2) is indeed a homomorphism of

algebras by the we have defined it in equation (6.2.6). The pointed representation property is

obvious.

Ad (b): Assume that A1 and A2 are ∗-algebras and (�8 ,Ω8 , +̂8), 8 ∈ [2] are pointed representations

for these ∗-algebras (�8 now additionally are homomorphisms of ∗-algebras). To show that

�1 ⊲⊳ �2) homomorphism of ∗-algebras, it suffices to show that

∀ 8 ∈ [2], ∀ 9 ∈ [2], ∀0 ∈ A
(9)
8

: (�1 ⊲⊳ �2)(0∗) =
(
(�1 ⊲⊳ �2)(0)

)∗
. (I)

Wewrite �̂8 ≔ +̂8 and�8 ≔ +8 to indicate that+8 is nowa pre-Hilbert space (checkRemark 6.1.19).

We only show equation (I) for 0 ∈ A
(1)
1
, i. e., we show that �(1)�1

is a ∗-homomorphism of algebras.

The other statements for �
9
�8 are done similarly. We calculate for E8 ∈ �8

〈E1 ⊗ E2 , (�1 ⊲⊳ �2)(0)(E1 ⊗ E2)〉

= 〈E1 ⊗ E2 ,
(
�1(0) ⊗ PℂΩ2

)
(E1 ⊗ E2)〉 Èdef. of �1 ⊲⊳ �2 in eq. (6.2.6)É

= 〈E1 ⊗ E2 ,�1(0)E1 ⊗ PℂΩ2
E2〉

= 〈E1 ,�1(0)E1〉〈E2 , PℂΩ2
E2〉 È inner product for �1 ⊗ �2 É

= 〈�1(0∗)E1 , E1〉〈(PℂΩ2
)∗︸  ︷︷  ︸

=PℂΩ
2

E2 , E2〉 ÈRem. 6.1.19 (d), � is ∗-hom.É

= 〈
(
�1(0∗) ⊗ PℂΩ2

)
(E1 ⊗ E2), E1 ⊗ E2〉

This shows that �1 ⊲⊳ �2 is a ∗-homomorphism if A1 and A2 are ∗-algebras.
Ad (c): In the first step we claim that ∀ 8 ∈ [2], ∀ 9 ∈ [2], ∀0 ∈ A

(9)
8

:

(�1 ⊲⊳ �2)(0) ◦ inc+8 ,+1⊗+2
= inc+8 ,+1⊗+2

◦ �8(0). (II)

Since, +8 = ℂΩ8 ⊕ +̂8 an arbitrary element E ∈ +8 has the form E = �Ω8 + Ê for some � ∈ ℂ and

Ê ∈ +̂8 . Then,

(inc+1 ,+1⊗+2
)(E) = �Ω1 ⊗ Ω2 ⊕ Ê ⊗ Ω2 if E ∈ +2 ,
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(inc+2 ,+1⊗+2
)(E) = �Ω1 ⊗ Ω2 ⊕ Ω1 ⊗ Ê if E ∈ +2.

Going through all the four cases for 0 ∈ A
(9)
8

and using equation (6.2.6) we can easily verify

equation (II). Since, A1 t A2 is generated by the algebras A
(9)
8

and �1 ⊲⊳ �2 is a homomorphism

of algebras the statement of equation (6.2.10) follows.

Ad (d): The statement of equation (6.2.11) is well-posed by Convention 6.1.18, Lemma 6.1.17,

the fact that the expression · ⊲⊳ · is defined for pointed representations and the fact

(
(�1 ◦ 91)(B1)Ω1 +ℂΩ1

)
⊗

(
(�2 ◦ 92)(A2)Ω2 +ℂΩ2

)
⊇

(
(�1 ⊲⊳ �2) ◦ (91 q 92)

)
(A1 t A2)(Ω1 ⊗ Ω2) +ℂΩ1 ⊗ Ω2.

Compare this to the discussion provided in Remark 6.2.3 (a). Since, on the left hand side and of

the right hand side of equation (6.2.11) only homomorphisms of algebras appear and B1 tB2

is generated by B
(9)
8

for 8 , 9 ∈ [2], it suffices to show equation (6.2.11) only for elements 1 ∈ B
(9)
8
.

We perform the calculation for 1 ∈ B
(1)
1

and note that similar calculations hold for the other

cases. Let E ∈
(
(�1 ⊲⊳ �2) ◦ (91 q 92)

)
(A1 t A2)(Ω1 ⊗ Ω2) +ℂΩ1 ⊗ Ω2, then we can calculate((

prep
(
�1 ◦ 91

)
⊲⊳ prep

(
�2 ◦ 92

) )
(1)

)
E

=

((
prep

(
�1 ◦ 91

)
⊲⊳ prep

(
�2 ◦ 92

) )
�(B1tB2)(1)(1)

)
E

È (B1 tB2)(1) = B
(1)
1
tB

(1)
2
, UMP of free product of algebrasÉ

=
(
�(1)prep(�1◦91)(1)

)
E =

(
prep(�1 ◦ 91)(1) ⊗ PℂΩ2

)
E

=

(
�1

(
91(1)︸︷︷︸
≕0∈A(1)

1

)
⊗ PℂΩ2

)
E ÈConv. 6.1.18, eq. (6.1.7), 91 is morphism in Alg2 É

=
(
�(1)�1

(0)
)
E =

( (
�1 ⊲⊳ �2

)
(0)

)
E =

( (
�1 ⊲⊳ �2

) (
91(1)

) )
E

=

(
prep

(
�1 ⊲⊳ �2 ◦ (91 q 92)

)
(1)

)
E ÈUMP of free product of algebrasÉ.

Ad (e): By definition of the product for representations in equation (6.2.6) we have

(
(�1 ⊲⊳ �2) ⊲⊳ �3

)
(0) =



(
�1(0) ⊗ PℂΩ2

)
⊗ PℂΩ3

for 0 ∈ A
(1)
1(

PℂΩ1
⊗�2(0)

)
⊗ PℂΩ3

for 0 ∈ A
(1)
2

(PℂΩ1
⊗ PℂΩ2

) ⊗ �3(0) for 0 ∈ A
(1)
3(

�1(0) ⊗ id+2

)
⊗ id+3

for 0 ∈ A
(2)
1(

id+1
⊗ �2(0)

)
⊗ id+3

for 0 ∈ A
(2)
2

(id+1
⊗ id+2

) ⊗ �3(0) for 0 ∈ A
(2)
3
.



6.2 Boolean-tensor product of representations 245

A similar result holds for

( (
�1 ⊲⊳ (�2 ⊲⊳ �3)

)
◦ can

)
(0) with shifted brackets to the right. If

we now use the canonical isomorphism (+1 ⊗ +2) ⊗ +3

∼= +1 ⊗ (+2 ⊗ +3) we can see that

equation (6.2.12) holds for generating elements of (A1 t A2) t A3. Moreover, for an arbitrary

element 0 ∈ (A1 t A2) t A3 there needs to exist = ∈ ℕ \ {2}, � = (�8 ,1 , �8 ,2) ∈ ([3] × [2])×= ,
(08)8∈[=] ∈

∏=
8=1

A
(�8 ,2)
�8 ,1 such that

0 = �
(�1,2)
�1,1
(01) · · · · · �(�=,2)�=,1 (0=), (III)

where �
(9)
8

: A
(9)
8

↩−→ (A1 t A2) t A3 is the canonical homomorphic insertion map. Then, we can

calculate

c̃an ◦
(
(�1 ⊲⊳ �2) ⊲⊳ �3

)
(0) ◦ c̃an−1

= c̃an ◦
(
(�1 ⊲⊳ �2) ⊲⊳ �3

) (
�
(�1,2)
�1,1
(01) · · · · · �(�=,2)�=,1 (0=)

)
◦ c̃an−1

È eq. (III)É

= c̃an ◦
(
(�1 ⊲⊳ �2) ⊲⊳ �3

) (
�
(�1,2)
�1,1
(01)

)
◦ · · · ◦

(
(�1 ⊲⊳ �2) ⊲⊳ �3

) (
�
(�=,2)
�=,1 (0=)

)
◦ c̃an−1

È (�1 ⊲⊳ �2) ⊲⊳ �3 is hom. of algebrasÉ

= c̃an ◦
(
(�1 ⊲⊳ �2) ⊲⊳ �3

) (
�
(�1,2)
�1,1
(01)

)
◦ c̃an−1 ◦ c̃an◦

◦ · · · ◦ c̃an−1 ◦ c̃an ◦
(
(�1 ⊲⊳ �2) ⊲⊳ �3

) (
�
(�=,2)
�=,1 (0=)

)
◦ c̃an−1

È c̃an is bĳectiveÉ

=

( (
�1 ⊲⊳ (�2 ⊲⊳ �3)

)
◦ can

) (
�
(�1,2)
�1,1
(01)

)
◦ · · · ◦

( (
�1 ⊲⊳ (�2 ⊲⊳ �3)

)
◦ can

) (
�
(�=,2)
�=,1 (0=)

)
=

( (
�1 ⊲⊳ (�2 ⊲⊳ �3)

)
◦ can

) (
�
(�1,2)
�1,1
(01) · · · · · �(�=,2)�=,1 (0=)

)
=

( (
�1 ⊲⊳ (�2 ⊲⊳ �3)

)
◦ can

)
(0).

Ad (f): Since the canonical isomorphism has the property can((A1 t A2)(9)) = (A2 t A1)(9) we

can see that for each 9 ∈ [2] and 0 ∈ (A1 t A2)(9)

c̃an ◦ (�(9)�1

t �(9)�2

)(0) ◦ c̃an−1

=
(
(�(9)�2

t �(9)�1

) ◦ can
)
(0).

Now, the assertion follows from equation (6.2.6) and a similar argument used in (e) about
generating elements of the free product of algebras. �

6.2.3 Remark. For each 8 ∈ [2] let (�8 ,Ω8 , +̂8) be a GNS-triple for the algebra A8 .

(a) In the setting of the Lemma 6.2.2, we note that in generalΩ1 ⊗ Ω2 is not an algebraically
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cyclic vector for �1 ⊲⊳ �2. It can be shown that

+̂1 ⊗ Ω2 ⊆ +ℂ(Ω1 ⊗ Ω2) + (�1 ⊲⊳ �2)(A1 t A2)(Ω1 ⊗ Ω2), (6.2.18)

Ω1 ⊗ +̂2 ⊆ +ℂ(Ω1 ⊗ Ω2) + (�1 ⊲⊳ �2)(A1 t A2)(Ω1 ⊗ Ω2). (6.2.19)

But in general it is not true that

+̂1 ⊗ +̂2 ⊆ ℂ(Ω1 ⊗ Ω2) + (�1 ⊲⊳ �2)(A1 t A2)(Ω1 ⊗ Ω2). (6.2.20)

Because, once we have created an element Ω1 ⊗ E2 ∈ Ω1 ⊗ +̂2 from the vacuum Ω1 ⊗ Ω2

it is possible that (�1 ⊲⊳ �2)(0) for 0 ∈ A1 now acts as �1(0) ⊗ PℂΩ2
. Thus, the second

argument would again be projected to the vacuum part Ω2.

(b) Furthermore, we were not able to show that
�+1 ⊗ +2 ⊆ +1 ⊗ +2 has no non-trivial

�1 ⊲⊳ �2-invariant subspaces. We do not look further into a proof for this claim. Instead,

we just try to convince ourselves why a possible proof can be problematic. We let

 ⊆ �+1 ⊗ +2 be a �1 ⊲⊳ �2-invariant subspace. Assume there exists an element E ∈  
which has the following expression. Let �1 , �2 , �3 ∈ ℂ and vectors E1 ⊗ Ω2 ∈ +̂1 ⊗ ℂΩ2,

Ω1 ⊗ E2 ∈ ℂΩ1 ⊗ +̂2 and E3 ⊗ E4 ∈ +̂1 ⊗ +̂2 such that

E = �1E1 + �2E2 + �3(E3 ⊗ E4). (6.2.21)

Since (�8 ,Ω8 , +̂8) is a GNS-triple for each 8 ∈ [2] and therefore satisfies equation (6.1.15),

we have ∀ 8 ∈ [2], ∃ 08 ∈ A8 :

PℂΩ8 �8(08)E8 ≠ 0 (6.2.22)

and there exist 03 ∈ A1 , 04 ∈ A2 such that

PℂΩ1
�1(03)E3 ≠ 0 and PℂΩ2

�1(04)E4 ≠ 0. (6.2.23)

Now, we can calculate

(�1 ⊲⊳ �2)(01)(�1E1 ⊗ Ω2) (6.2.24)

= �1

(
�1(01)E1

)
⊗ Ω2 È eq. (6.2.10)É (6.2.25)

= �1

(
coordΩ1

(
�1(01)E1

)︸                 ︷︷                 ︸
≠0 È eq. (6.2.22)É

)
(Ω1 ⊗ Ω2) + �1

(
P
+̂1

�1(01)E1

)
⊗ Ω2. (6.2.26)

Since we have assumed that E ∈  ⊆ �+1 ⊗ +2 and  is �1 ⊲⊳ �2-invariant, the above

calculation implies that �1 = 0. Similarly, we can show that �2 = 0. But in general we

doubt that �3 is equal to zero. It might be the case that 03 ∈ A
(1)
1

and is the only element

such that equation (6.2.23) is satisfied. Then, (�1 ⊲⊳ �2)(03) would act by �1(03) ⊗ PℂΩ2

and thus (�1 ⊲⊳ �2)(03)(E3 ⊗ E4) = 0, since E4 ∈ +̂2. Therefore, we would not be able to

create something in the subspace ℂΩ1 ⊗ Ω2 from where we could conclude that �3 = 0

and which prevents us to conclude that  = {0}. This is not a proper counterexample

but it indicates that in general (�1 ⊲⊳ �2 ,Ω1 ⊗ Ω2 , �+1 ⊗ +2)might not be a GNS-triple for

A1 t A2.
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6.3 Positivity of the boolean-tensor product

Let us call the partition induced universal product �I A boolean-tensor product. We want

to show that this symmetric two-faced u.a.u.-product is positive. We could be tempted to

define the following, which resembles [Wil08, Chap. 4] only involving GNS-triples. Assume

(A8 , (A(9)8 )9∈[2] , !8)8∈[2] ∈ Obj(AlgP2). Then, define

!1 �1C !2 :


A1 t A2 −→ ℂ

0 ↦−→ vacΩ!
1
⊗Ω!

2

( (
GNS(!1) ⊲⊳ GNS(!2)

)
(0)

)
.

(6.3.1)

Actually, the above definition might work if

(
GNS(!1) ⊲⊳ GNS(!2),Ω!1

⊗ Ω!2
, �+!1

⊗ +!2

)
was

a GNS-triple. But in Remark 6.2.3 we have discussed that we doubt that it is a GNS-triple for

A1 tA2. At least, we were not able to show it is a GNS-triple for A1 tA2. So, we can expect that

we might run into troubles with the definition in equation (6.3.1). We were able to show that

equation (6.3.1) defines a positive and symmetric unital universal product in the category AlgP2
but we could not prove associativity. Our proof of associativity for the product of equation (6.3.1)

needs Lemma 6.1.15 but this would require that

(
GNS(!1) ⊲⊳ GNS(!2),Ω!1

⊗Ω!2
, �+!1

⊗ +!2

)
is a

GNS-triple. The problemdiscussed in Remark 6.2.3 (a) is not a big deal becausewe can restrict the

representation GNS(!1) ⊲⊳ GNS(!2) to the subspace ℂ(Ω1 ⊗Ω2) + (�1 ⊲⊳ �2)(A1 tA2)(Ω1 ⊗Ω2)
and work with this restricted representation, where Ω1 ⊗ Ω2 is now an algebraically cyclic

vector. The major problem, which prevents us to use Lemma 6.1.15, is the one discussed

in Remark 6.2.3 (b) which we can not “fix”. Lemma 6.1.15 is satisfied if we take the GNS-

construction in the positive case. But then equation (6.3.1) would only lead to a positive and

symmetric u.a.u.-product in the category of two-faced ∗-algebras with strongly positive linear

functionals defined on them. This is insufficient for our approach to show positivity of the

partition induced universal product �I A because we need to be able to speak about universal

products which are uniquely determined by their highest coefficients. Thus, for such a product

we could not apply Proposition 2.3.7 and the whole Lachs-functor machinery collapses and we

could not arrive at Theorem 2.5.13.

In spite of this possible trouble prone path, we do not gain any benefit when we restrict

ourselves to only using the GNS-representation. So, proving universality resp. associativity

of �1C would actually require some results about equivalent GNS-triples and homomorphic

vacuum cyclic representations. But acquiring all these information is not necessary. Because,

if we look at equation (6.3.1) once more we can see that we apply a product of certain pointed

representations to the vacuum and project the image to the vacuum. So, we need to look

at the boolean-tensor product of pointed representations and investigate how it does behave

if we take their vacuum expectation value for any pointed representation, not only for the

GNS-representation as a special case.

We can conclude that the definition of the �1C in equation (6.3.1) is too restrictive. Therefore,

we follow now a similar path which has been described in [Ger17] for the bimonotone product.

The product of representations ⊲⊳ has a remarkable property which is presented in the next

statement. This property will finally allow us to prove universality and associativity very easily

for a representation induced boolean-tensor product without any further knowledge about

equivalent GNS-triples or homomorphic vacuum cyclic representations.
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6.3.1 Proposition. Let ⊲⊳ be the boolean-tensor product of representations defined in Defini-

tion 6.2.1. For 8 ∈ [2] let (A8 , (A(9)8 )9∈[2]) ∈ Obj(Algm) and let (�8 ,Ω8 , +̂8), (�8 ,Θ8 , ,̂) be pointed
representations for the algebra A8 such that

∀0 ∈ A8 : vacΩ8 (�8(0)) = vacΘ8 (�8(0)). (6.3.2)

Then,

∀0 ∈ A1 t A2 : vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
= vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
. (6.3.3)

Proof: Let 0 ∈ A1 t A2. Then, there exist = ∈ ℕ \ {1}, � =
(
(�8 ,1 , �8 ,2)

)
8∈[=] ∈ A([2] × [2]) and

(08)8∈[=] ∈
∏=

8=1
A
(�8 ,2)
�8 ,1 such that

0 = �
(�1,2)
�1,1
(01) · · · · �(�=,2)�=,1 (0=), (I)

where �
(9)
8

: A
(9)
8

↩−→ A1 t A2 denote canonical homomorphic insertion maps. Define

'1(0) =



�1(0) for 0 ∈ A
(1)
1

PℂΩ1
(0) for 0 ∈ A

(1)
2

�1(0) for 0 ∈ A
(2)
1

id+1
(0) for 0 ∈ A

(2)
2

, and '2(0) =



�2(0) for 0 ∈ A
(1)
2

PℂΩ2
(0) for 0 ∈ A

(1)
1

�2(0) for 0 ∈ A
(2)
2

id+2
(0) for 0 ∈ A

(2)
1
.

There exist natural numbers A, B ∈ ℕ and tuples (48)8∈A+1 ∈ ℕ×A+B and for all D ∈ [A + B] there
exist tuples (8DE )E∈[4D] ∈ ℕ×4D such that

vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
= coordΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)Ω1 ⊗ Ω2

)
È eq. (6.1.4)É

= coordΩ1⊗Ω2

( (
(�1 ⊲⊳ �2)(0=) ◦ · · · ◦ (�1 ⊲⊳ �2)(01)

)
Ω1 ⊗ Ω2

)
È eq. (I), · ⊲⊳ · is hom. of algebrasÉ

= coordΩ1⊗Ω2

(( (
'1(01) · · · · · '1(0=)

)
Ω1

)
⊗

( (
'2(01) · · · · · '2(0=)

)
Ω2

))
ÈDef. 6.2.1É

= vacΩ1

( (
�1(081

1

· · · · · 0814
1

)
) )
· · · · · vacΩ1

( (
�1(08A

1

· · · · · 08A4A )
) )

· vacΩ2

( (
�2(08A+1

1

· · · · · 08A+1

4A+1

)
) )
· · · · · vacΩ2

( (
�2(08A+B

1

· · · · · 08A+B4A+B
)
) )

(II)

The last step needs some justification. It can be shown rigorously by induction over the

number of occurrences of PℂΩ1
and PℂΩ2

in

(
'1(01) · · · · · '1(0=)

)
and

(
'2(01) · · · · · '2(0=)

)
.

We only want to discuss this proof of induction. For the induction base we need to consider

∀ 8 ∈ [=] : 08 ∉ A
(1)
1
∪ A

(1)
2
. Then, for all 8 ∈ [=] the expressions '1(08) resp. '2(08) is equal

to either the identity map or �1(08) resp. �2(08) and the assertion follows. For the induction

step, we just notice that once '1(08) resp. '2(08) is equal to PℂΩ1
resp. PℂΩ2

, then everything
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which has been created from the vacuum is again projected to the vacuum and we obtain a

complex number vacΩ1

( (
�1(08 9

1

· · · · · 0
8
9
49

)
) )

or vacΩ2

( (
�2(08 9

1

· · · · · 0
8
9
49

)
) )
. We can do a similar

calculation for the pointed representations �8 and obtain the same result from equation (II),

where we need to replace �8 by �8 for each 8 ∈ [2]. Now, the claim follows from the assumption

in equation (6.3.2). �

Now, let us forget the definition of �1C from equation (6.3.1). Here, comes a definition

which works.

6.3.2 Definition. For any (A8 , (A(9)8 )9∈[2] , !8)8∈[2] ∈ (Obj(AlgP2))×2
and for any pointed represen-

tations (�8 ,Ω8 , +̂8) for the algebra A8 with 8 ∈ [2]with the property

∀ 8 ∈ [2], ∀0 ∈ A8 : !8(0) = vacΩ8

(
�8(0)

)
(6.3.4)

we put

!1 �1C !2 :

{
A1 t A2 −→ ℂ

0 ↦−→ vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
.

(6.3.5)

The above prescription is well-defined by Proposition 6.3.1. Furthermore, the prescription

�1C is non-trivial because at least each pointed representation (�8 ,Ω8 , +̂8) which satisfies

equation (6.3.4) can be chosen to be the GNS-triple (GNS(!8),Ω!8 , +̂!8 ).

6.3.3 Theorem. The prescription �1C is a positive and symmetric u.a.u.-product in the category

AlgP2.

Proof: We show that �1C is unital. For each 8 ∈ [2] let (A8 , (A(9)8 )8∈[2] , !8) ∈ Obj(AlgP2) and let

(�8 ,Ω8 , +̂8) be pointed representations which satisfy equation (6.3.4) for !8 . Let 0 ∈ A8 then

(!1 �1C !2)(0) = vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
= vacΩ8

(
�8(0)

)
È eq. (6.2.10)É

= !8(0)

Next, we show that �1C is universal. Let for each 8 ∈ [2] be (B8 , (B(9))9∈[2]) ∈ Obj(Alg2),
(A8 , (A(9)8 )8∈[2] , !8) ∈ Obj(AlgP2) and 98 ∈ MorphAlg2

(
(B8 , (B(9))9∈[2]), (A8 , (A(9)8 )8∈[2])

)
. Further-

more, let (�8 ,Ω8 , +̂8) be pointed representations which satisfy equation (6.3.4) for !8 and

1 ∈ B1 tB2. Then, we can calculate(
(!1 �1C !2) ◦ (91 q 92)

)
(1)

= (!1 �1C !2)(0) È 0 ≔ (91 q 92)(1) É

= vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
ÈDef. 6.3.2É

= vacΩ1⊗Ω2

(
prep

(
�1 ⊲⊳ �2 ◦ (91 q 92)

)
(1)

)
= vacΩ1⊗Ω2

((
prep

(
�1 ◦ 91

)
⊲⊳ prep

(
�2 ◦ 92

) )
�((�1⊲⊳�2)◦(91q92)

)
(B1tB2)(Ω1⊗Ω2)+ℂΩ1⊗Ω2

(1)
)

È eq. (6.2.11)É



250 Chapter 6. Further investigations on positivity

= vacΩ1⊗Ω2

((
prep

(
�1 ◦ 91

)
⊲⊳ prep

(
�2 ◦ 92

) )
(1)

)
=

(
(!1 ◦ 91) �1C (!2 ◦ 92)

)
(1)

ÈLem. 6.1.17, vacΩ8

(
prep

(
�8 ◦ 98

)
( · )

)
= (!8 ◦ 98)( · ), Def. 6.3.2É.

Next, we show associativity of �1C . For each 8 ∈ [3] let (A8 , (A(9)8 )8∈[2] , !8) ∈ Obj(AlgP2) and
(�8 ,Ω8 , +̂8) be pointed representationswhich satisfy equation (6.3.4) for!8 . Let 0 ∈ (A1tA2)tA3.

Then, we can calculate(
(!1 �1C !2) �1C !3

)
(0)

= vac(Ω1⊗Ω2)⊗Ω3

( (
(�1 ⊲⊳ �2) ⊲⊳ �3

)
(0)

)
�
(�1 ⊲⊳ �2 ,Ω1 ⊗ Ω2 , �+1 ⊗ +2) is pointed rep. for A1 t A2

(!1 �1C !2)( · ) = vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)( · )

)
, Def. 6.3.2

�
= vacΩ1⊗(Ω2⊗Ω3)

( (
�1 ⊲⊳ (�2 ⊲⊳ �3

) (
can(0)

) )
È eq. (6.2.12), can : (A1 t A2) t A3 −→ A1 t (A2 t A3) É

=
(
!1 �1C (!2 �1C !3)

) (
(can(0))

)
.

The symmetry of �1C is clear from equation (6.2.15).

In the last part of the proof we now show that �1C is positive. For each 8 ∈ [2] let
(A8 , (A(9)8 )8∈[2] , !8) ∈ Obj(AlgP2) and we additionally assume that A8 is a ∗-algebra and the linear

functional !8 ∈ Lin(A8 ,ℂ) is strongly positive. Furthermore, for each 8 ∈ [2] let (�8 ,Ω8 , +̂8) be
pointed ∗-representations which satisfy equation (6.3.4) for !8 . Such representations need to

exist by Remark 6.1.19 (b). We also have a unital extension for �8 : A8 −→ Lin(ℂΩ8 ⊕ +̂8) denoted
by �1

8
: A1

8
−→ Lin(ℂΩ8 ⊕ +̂8) such that �1

8
(1) = id

ℂΩ8⊕+̂8 . Let us denote the unit element of the

algebra (A(9)
8
)1 by 1

(9)
8

for each 8 , 9 ∈ [2]. For each 8 ∈ [2]we set

!̃8 ≔ !1
8 ◦ can8 ◦ pr8 ,

�̃8 ≔ �1
8 ◦ can8 ◦ pr8 ,

wherein we denote natural homomorphisms due to Remark 2.1.4 (a) and Lemma 2.1.5 by

pr8 :
2⊔
9=1

(A(9)
8
)1 −→ ⊔

2

9=1
(A(9)

8
)1
/
〈11

8
− 12

8
〉 ,

can8 :
⊔

2

9=1
(A(9)

8
)1
/
〈11

8
− 12

8
〉 −→

2⊔
1

9=1

(A(9)
8
)1 −→ (A8)1.

For the above definitions we claim that the map !̃1 �1C !̃2 : A1
1
t A1

2
−→ Lin(+1 ⊗ +2) satisfies

∀ 8 ∈ [2], ∀ 9 ∈ [2] : (!̃1 �1C !̃2)(1(9)8 ) = 1. (I)
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For the proof we set

∀ 8 ∈ [2] : Ã8 ≔

2⊔
9=1

(A(9)
8
)1.

Then, we can see that for each 8 ∈ [2]we have(
Ã8 ,

(
(A(9)

8
)1

)
9∈[2] , !̃8

)
∈ AlgP2 .

Thus, the expression !̃1 �1C !̃2 is well-defined. Now, we can calculate for any 8 , 9 ∈ [2]

(!̃1 �1C !̃2)(1(9)8 )

=
〈
Ω1 ⊗ Ω2 , (�̃1 ⊲⊳ �̃2)(1(9)8 )(Ω1 ⊗ Ω2)

〉
È∀ 8 ∈ [2], ∀0 ∈ Ã8 : !̃8(0) = vacΩ8

(
�̃8(0)

)
,Def. 6.3.2, eq. (6.1.28)É

=
〈
Ω1 ⊗ Ω2 , (�̃1 ⊲⊳ �̃2)(1(9)8 ) inc+8 ,+1⊗+2

(Ω8)
〉

=
〈
Ω1 ⊗ Ω2 , inc+8 ,+1⊗+2

(�̃8(1(9)8 )Ω8)
〉
È eq. (6.2.10)É

=
〈
Ω1 ⊗ Ω2 , inc+8 ,+1⊗+2

(Ω8)
〉

È �̃8 is unital alg. -hom.É

=
〈
Ω1 ⊗ Ω2 ,Ω1 ⊗ Ω2

〉
=

〈
Ω1 ,Ω1

〉︸    ︷︷    ︸
=1

〈
Ω2 ,Ω2

〉︸    ︷︷    ︸
=1

È inner product in +1 ⊗ +2 É

= 1

�
property of the vacuum vector Ω8 for the GNS-construction

in the positive case, follows from [Pal01, Thm. 9.4.7 (b) =⇒ (e)]

�
.

This shows equation (I). By equation (I) we may lift !̃1 �1C !̃2 to the quotient algebra

⊔
2

8=1

⊔
2

9=1
(A(9)

8
)1
/〈
1
(1)
1
− 1(2)

1
, 1
(1)
2
− 1(2)

2
, 1
(1)
1
− 1(1)

2

〉︸                                      ︷︷                                      ︸
≕�

and we denote this unique quotient map by lift(!1
1
�1C !1

2
). Now, we claim that

(!1 �1C !2)1 = lift(!̃1 �1C !̃2) ◦ can, (II)

where can denotes a canonical isomorphism of unital algebras

can : (A1 t A2)1 −→
2⊔
8=1

2⊔
9=1

(A(9)
8
)1/�.

This canonical isomorphism can be obtained by the help of Remark 2.1.4 (a), Lemma 2.1.5 and

is then a composition of the following canonical isomorphisms

(A1 t A2)1 ∼= A1
1
t1 A1

2

∼=
( 2⊔
9=1

(A(9)
1
)1

)
t1

( 2⊔
9=1

(A(9)
2
)1

) ∼= 2⊔
1

8=1

2⊔
1

9=1

(A(9)
8
)1
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∼=
( 2⊔
8=1

2⊔
9=1

(A(9)
8
)1

)
/�.

Since can as a homomorphism of unital algebras, preserves the unit element and by the result

of equation (I), we have (
lift(!̃1 �1C !̃2) ◦ can

)
(1(A1tA2)1) = 1.

For the proof of equation (II) it remains to show that

!1 �1C !2 =
(
lift(!̃1 �1C !̃2) ◦ can

)
�A1tA2

.

For this, we assume that 0 ∈ A1 t A2 and calculate(
lift(!̃1 �1C !̃2) ◦ can

)
�A1tA2

(0)

=
(
lift(!̃1 �1C !̃2) ◦ pr

)
�A1tA2

(0)

È pr :

2⊔
8=1

2⊔
9=1

(A(9)
8
)1 −→

( 2⊔
8=1

2⊔
9=1

(A(9)
8
)1

)
/� É

=
(
!̃1 �1C !̃2

)
�A1tA2

(0)

= vacΩ1⊗Ω2

(
(�̃1 ⊲⊳ �̃2)�A1tA2

(0)
)

= vacΩ1⊗Ω2

((
(�̃1 ⊲⊳ �̃2) ◦

( 2⊔
9=1

�
(9)
1
t

2⊔
9=1

�
(9)
2

) )
(0)

)
È �(9)

8
: A
(9)
8

↩−→
2⊔
8=1

2⊔
9=1

A
(9)
8
É

= vacΩ1⊗Ω2

( (
(�̃1 ◦

2⊔
9=1

�
(9)
1
) ⊲⊳ (�̃2 ◦

2⊔
9=1

�
(9)
1
)
)
(0)

)
ÈLem. 6.2.2 (d)É

= vacΩ1⊗Ω2

(
(�1 ⊲⊳ �2)(0)

)
È�1

8 �A8
= �8 É

= (!1 �1C !2)(0) È eq. (6.3.5)É.

From equation (II) we can deduce that �1C is positive. For this, let 0 ∈ (A1 t A2)1, then there

exist � ∈ ℂ and 00 ∈ A1 t A2 such that 0 = �1(A1tA2)1 + 00. Then, we can calculate

(!1 �1C !2)1(0∗0)

=
(
lift(!̃1 �1C !̃2) ◦ can

)
(0∗0) È eq. (II)É

=
(
lift(!̃1 �1C !̃2) ◦ pr

) (
(�1(1)

1
+ 00)∗(�1(1)

1
+ 00︸     ︷︷     ︸

≕0̃∈(A1)1t(A2)1 ÈLem. 2.1.5É

)
)

������
because � is generated by self-adjoint elements

we have an involution on the quotient

(⊔
2

8=1

⊔
2

9=1
(A(9)

8
)1

)
/�,

pr :

⊔
2

8=1

⊔
2

9=1
(A(9)

8
)1 −→

(⊔
2

8=1

⊔
2

9=1
(A(9)

8
)1

)
/�

is homomorphism of ∗-algebras

������
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= (!̃1 �1C !̃2)(0̃∗ 0̃)

=
〈
Ω1 ⊗ Ω2 , (�̃1 ⊲⊳ �̃2)(0̃∗ 0̃)(Ω1 ⊗ Ω2)

〉
È∀ 8 ∈ [2], ∀0 ∈ Ã8 : !̃8(0) = vacΩ8

(
�̃8(0)

)
,Def. 6.3.2, eq. (6.1.28)É

=
〈
(�̃1 ⊲⊳ �̃2)(0̃)(Ω1 ⊗ Ω2), (�̃1 ⊲⊳ �̃2)(0̃)(Ω1 ⊗ Ω2)

〉
È �̃1 ⊲⊳ �̃2 is ∗-hom. by Lem. 6.2.2 (b)É

= ‖(�̃1 ⊲⊳ �̃2)(0̃)‖2 ≥ 0. �

6.3.4 Lemma. Let �1C be the positive and symmetric two-faced u.a.u.-product, defined in

equation (6.3.5), and�I A be the partition inducedu.a.u.-product for the two-coloreduniversal

class of partitions I A . Using Convention 4.2.7 (b)we have

�1C = �I A . (6.3.6)

Proof: According to Lemma 5.2.24 and the classification result of the diagram of Figure 4.1, we

are done if we can show

 = 1 and  = 0.

For this, we assume for each 8 ∈ [2] that (A8 , (A(9)8 )9∈[2] , !8) ∈ (Obj(AlgP2))×2
and (�8 ,Ω8 , +̂8) are

pointed representations for the algebra A8 which satisfy equation (6.3.4) for !8 . Let us assume

01 ∈ A
(2)
1
, 02 ∈ A

(2)
2
, 03 ∈ A

(2)
1

and 04 ∈ A
(2)
1
. Then, we can calculate

(!1 �1C !2)(01 · 02 · 03 · 04)

= coordΩ1⊗Ω2

( (
�1 ⊲⊳ �2

)
(01 · 02 · 03 · 04)(Ω1 ⊗ Ω2)

)
= (can ◦ PℂΩ1⊗Ω2

)
( (
�1 ⊲⊳ �2

)
(01 · 02 · 03 · 04)(Ω1 ⊗ Ω2)

)
È iso. of vector spaces can : ℂΩ1 ⊗ Ω2 −→ ℂ, def. of coordΩ in eq. (6.1.2)É

= can

(
(PℂΩ1

⊗ PℂΩ2
)
(( (

�1(01 · 03)Ω1

)
⊗

(
�2(02 · 04)Ω2

) )))
È�1 ⊲⊳ �2 is morphism of algebrasÉ

= coordΩ1

( (
�1(01 · 03)Ω1

) )
· coordΩ2

( (
�2(02 · 04)Ω2

) )
= 1 · !1(01 · 03)!2(02 · 04) È eq. (6.1.14)É.

If we compare this with equation (5.2.10), then we obtain  = 1.

Now, we assume that 01 ∈ A
(2)
1
, 02 ∈ A

(1)
2

and 03 ∈ A
(2)
1

and calculate

(!1 �1C !2)(01 · 02 · 03 · 04)

= coordΩ1⊗Ω2

( (
�1 ⊲⊳ �2

)
(01 · 02 · 03)(Ω1 ⊗ Ω2)

)
= (can ◦ PℂΩ1⊗Ω2

)
( (
�1 ⊲⊳ �2

)
(01 · 02 · 03)(Ω1 ⊗ Ω2)

)
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È iso. of vector spaces can : ℂΩ1 ⊗ Ω2 −→ ℂ, def. of coordΩ in eq. (6.1.2)É

= (can ◦ coordΩ1⊗Ω2
)
((
�1 ⊲⊳ �2

)
(01)

((
PℂΩ1

(
�1(03)Ω1

) )
⊗

(
�2(02)Ω2

) ))

= coordΩ1

(
�1(03)Ω1

)
· can

(
(PℂΩ1

⊗ PℂΩ2
)
(( (

�1(01)Ω1

)
⊗

(
�2(02)Ω!2

) )))
= !1(01)!1(03)!2(02).

If we compare this with equation (5.2.10), then we obtain  = 0. �

6.3.5 Remark. Let (A8 , (A(9)8 )9∈[2]) ∈ Obj(Algm) and let (�8 ,Ω8 , +̂8) be a pointed representation

for the algebra A8 for each 8 ∈ [2]. Then, we define

�̃(1)�1

:


A
(1)
1
−→ Lin(+1 ⊗ +2)

0 ↦−→ �1(0) ⊗ id+2
,

(6.3.7)

�̃(1)�2

:


A
(1)
2
−→ Lin(+1 ⊗ +2)

0 ↦−→ id+1
⊗ �2(0),

(6.3.8)

�̃(2)�1

:


A
(2)
1
−→ Lin(+1 ⊗ +2)

0 ↦−→ �1(0) ⊗ PℂΩ2
,

(6.3.9)

�̃(2)�2

:


A
(2)
2
−→ Lin(+1 ⊗ +2)

0 ↦−→ PℂΩ1
⊗�2(0).

(6.3.10)

By this we set

�1 ⊲̃⊳ �2 :


A1 t A2

∼= (A1 t A2)(1) t (A1 t A2)(2) −→ Lin(+1 ⊗ +2),

0 ↦−→
(
(�1 ⊲̃⊳ �2)�(A1tA2)(1)︸                  ︷︷                  ︸

≕�̃(1)�
1

t�̃(1)�
2

t (�1 ⊲̃⊳ �2)�(A1tA2)(2)︸                  ︷︷                  ︸
≕�̃(2)�

1

t�̃(2)�
2

)
(0). (6.3.11)

It can be shown that we have a similar result as stated in Proposition 6.3.1 for �1 ⊲̃⊳ �2, i. e.,

vacΩ1⊗Ω2

(
(�1 ⊲̃⊳ �2)(0)

)
does not depend on the chosen representations whenever they satisfy

equation (6.3.2). Furthermore, for each 8 ∈ [2] we set for !8 ∈ Lin(A8 ,ℂ) and for any pointed

representations (�8 ,Ω8 , +̂8) for the algebra A8 which satisfy equation (6.3.4) for !8

!1 �C1 !2 :

{
A1 t A2 −→ ℂ,

0 ↦−→ vacΩ1⊗Ω2

(
(�1 ⊲̃⊳ �2)(0)

)
.

(6.3.12)

Analogously, it turns out that �C1 is a positive and symmetric two-faced u.a.u.-product and

�C1 = �A I .
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6.3.6 Remark. We want to discuss the positivity of some partition induced universal products

of the diagram of Figure 4.1. Throughout this discussion for each 8 ∈ [2] we will use that

(A8 , (A(9)8 )9∈[2]) ∈ Obj(Alg2), (�8 ,Ω8 , +̂8) is a pointed representation for the algebra A8 and

furthermore use the definition +8 ≔ ℂΩ8 ⊕ +̂8 for each 8 ∈ [2].

(a) It can be shown that �Part{ , } is positive, since we can define a representation product

⊲⊳C , which uses the same prescription as the “tensor product” in the single-faced case

([Sch95, Sec. 1]) which is known to be positive. We can use the the same representation

as in the single-faced case since we can ignore the faces of the algebra, i. e., we can define

the algebra homomorphism �1 ⊲⊳C �2 : A1 t A2 −→ Lin(+1 ⊗ +2) by

(�1 ⊲⊳C �2)(0) =
{
�1(0) ⊗ id+1

for 0 ∈ A1

id+2
⊗ �2(0) for 0 ∈ A2.

(6.3.13)

Then, one can use a similar prescription as in equation (6.3.1) to define a product !1�C !2

induced by ⊲⊳C . Then, one can show that �C is a positive and symmetric u.a.u.-product

which is equal to the partition induced universal product �Part{ , } .

(b) A similar construction holds for �I{ , } . Here we take the representation of the boolean

product in the single-faced case ([Sch95, Sec. 1]) which is also known to be positive.

By neglecting faces of the algebras we define a representation �1 ⊲⊳1 �2 : A1 t A2 −→
Lin(+1 ⊕ +2)

(�1 ⊲⊳1 �2)(0) =
{
�1(0) ⊗ PℂΩ1

for 0 ∈ A1

PℂΩ2
⊗�2(0) for 0 ∈ A2 ,

(6.3.14)

which leads to a definition of a positive and symmetric u.a.u.-product in the sense of

equation (6.3.1). This universal product equals the partition induced universal product

�I{ , }

(c) To show positivity for the partition induced universal product �NC{ , } , we use the

representation for the free product in the single-faced case . We set

+̂1 t +̂2 ≔

⊕
�∈A([2])

+̂� , (6.3.15a)

+̂� ≔ +̂�1
⊗ · · · ⊗ +̂�= . (6.3.15b)

In preparation for the bi-free case, we list four vector space isomorphisms !1 , !2 , '1 , '2

here ([MS17, Exa. 3])

(ℂΩ1 ⊕ +̂1) ⊗ (ℂΩ2 ⊕
⊕

�∈A([2]),
�1=2

+̂�)
!1∼= ℂ ⊕ (+̂1 t +̂2), (6.3.16a)

(ℂΩ2 ⊕ +̂2) ⊗ (ℂΩ1 ⊕
⊕

�∈A([2]),
�1=1

+̂�)
!2∼= ℂ ⊕ (+̂1 t +̂2) (6.3.16b)

and

(ℂΩ2 ⊕
⊕

�∈A([2]),
�==2

+̂�) ⊗ (ℂΩ1 ⊕ +̂1)
'1∼= ℂ ⊕ (+̂1 t +̂2), (6.3.17a)
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(ℂΩ1 ⊕
⊕

�∈A([2]),
�==1

+̂�) ⊗ (ℂΩ2 ⊕ +̂2)
'2∼= ℂ ⊕ (+̂1 t +̂2). (6.3.17b)

By this we define for each 8 ∈ [2] representations of Lin(+8) on ℂ ⊕ +̂1 t +̂2

�8 :


Lin(+8) −→ Lin(ℂ ⊕ +̂1 t +̂2),

) ↦−→ !8() ⊗ id)!−1

8 ,
(6.3.18)

�8 :


Lin(,8) −→ Lin(ℂ ⊕ +̂1 t +̂2),

) ↦−→ '8(id ⊗ ))'−1

8 .
(6.3.19)

Now, we can define a representation �1 ⊲⊳ 5 �2 : A1 t A2 −→ Lin(ℂ ⊕ +̂1 t +̂2) by

(�1 ⊲⊳ 5 �2)(0) =
{
�1

(
�1(0)

)
for 0 ∈ A1

�2

(
�2(0)

)
for 0 ∈ A2

(6.3.20)

which again leads to the definition of a positive and symmetric u.a.u.-product in the

sense of equation (6.3.1) and equals the partition induced universal product �NC{ , } .

(d) The bi-free product now incorporates the two representations �8 and �8 from (c). We can

define �1 ⊲⊳bi- 5 �2 : A1 t A2 −→ Lin(ℂ ⊕ +̂1 t +̂2) by

(�1 ⊲⊳bi- 5 �2)(0) =



�1

(
�1(0)

)
for 0 ∈ A

(1)
1

�1

(
�1(0)

)
for 0 ∈ A

(2)
1

�2

(
�2(0)

)
for 0 ∈ A

(1)
2

�2

(
�2(0)

)
for 0 ∈ A

(2)
2

(6.3.21)

which is the representation of the well-known bi-free product (we have used the notation

from [MS17, Ex. 3]). By taking care of all the involved vector space isomorphism it

can be shown that this positive and symmetric u.a.u.-product satisfies  = 1 and

 = 0 and by the Hasse diagram from Figure 4.1 we can conclude that the bi-free

product equals the partition induced universal product �biNC.

(e) Next, we discuss the positivity of the partition induced universal product �I NC . We

want to define a representation �1 ⊲⊳ 5 1 �2 : A1 t A2 −→ Lin(ℂ ⊕ +̂1 t +̂2). For this, we

consider the remarks made in (c). We have

ℂ ⊕ +̂1 t +̂2 = ℂ ⊕
⊕
8∈[2]

+̂8︸       ︷︷       ︸
≕+]

⊕
⊕

�∈A([2]),
length(�)≥2

+̂�. (6.3.22)

Then P] denotes the projection onto +] with respect to the above direct sum and

P],8 : +] −→ ℂΩ8 ⊕ +̂8 is the projection onto+8 for each 8 ∈ [2]. We define for each 8 ∈ [2]

8 :


Lin(+8) −→ Lin(ℂ ⊕ +̂1 t +̂2),

) ↦−→ inc
+8 ,ℂ⊕+̂1t+̂2

◦ ) ◦ P],8 ◦P]
(6.3.23)
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Now, we set

(�1 ⊲⊳ 5 1 �2)(0) =



�1

(
�1(0)

)
for 0 ∈ A

(1)
1

1

(
�1(0)

)
for 0 ∈ A

(2)
1

�2

(
�2(0)

)
for 0 ∈ A

(1)
2

2

(
�2(0)

)
for 0 ∈ A

(2)
2
.

(6.3.24)

This leads to the definition of the “free-boolean” product ([Liu19])

!1 � 5 1 !2 :


A1 t A2 −→ ℂ,

0 ↦−→ coordℂΩ
( (
�1 ⊲⊳ 5 1 �2

)
(0)Ω

)
,

(6.3.25)

where Ω ≔ (1, 0)ℂ ⊕ +̂1 t +̂2 and (�8 ,Ω8 , +̂8) are pointed representations which satisfy

equation (6.3.4) for !8 . Then, one can show that the highest coefficients for this positive

and symmetric u.a.u.-product fulfill

 = 1,  = 0,  = 0, (6.3.26)

where we have used Convention 4.2.7 (b). Thus, we can conclude from the Hasse

diagram from Figure 4.1 and Lemma 5.2.24, that � 5 1 = �NC I . A similar construction

holds for �I NC by defining “boolean-free” product, where we swap the color indices

in equation (6.3.24). One could also argue that the exponential expP for P = NC I ,

defined in equation (3.4.49), matches the moment formula which is the inverse of the

cumulant from [Liu19, Def. 7.1]. The two-sided inverse logP of expP is unique and

therefore matches the definition of the cumulant [Liu19, Def. 7.1]. From Theorem 2.4.8

we know that any u.a.u.-product is uniquely determined by its cumulants (logarithm)

and by a Lie-bracket with respect to the operation � which is trivial in this case since

the universal products of consideration are symmetric. Positivity of the free-boolean

product is proven in [LZ17, Sec. 7].

6.4 Tests for nonpositive universal products: first test

Since proving positivity for the remaining potential candidates of symmetric two-faced u.a.u.-

products from the diagram of Figure 5.1 is not easy, in the first place it would be good to verify if

the unclear candidates satisfy necessary conditions for positivity. Developing such a test method

would allow us to exclude nonpositive products from the diagram of Figure 5.1. Thus, we would

able to narrow down the list of candidates. In the next two sections we want to develop such

test methods for the remaining candidates, whose positivity is unclear, and present our results.

In preparation for the next statements, we need the following definition.

6.4.1 Definition (Conditionally positive linear functional [BS05]). Let D be an algebra with

involution. A linear functional ! ∈ Lin(D,ℂ) is said to be conditionally positive if and only if it

is hermitian and

∀1 ∈ D : !(1∗1) ≥ 0. (6.4.1)

In this sectionweneeda result about the so-calledSchoenberg correspondence ([Sch93, Sec. 3.2],
[Fra06, Cor. 4.13]). Theorem 2.3.14 is nearly the Schoenberg correspondence but we have left
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out any statements concerning positivity, although in its original source [BS05, Thm. 4.6] these

statements can be found. In Theorem 2.3.14 we had a different focus in mind since we were

seeking for a good definition of an exponential w. r. t. to a given universal product. Now, We

want to catch up on the missing pieces for questions on positivity and therefore we define the

following.

6.4.2 Definition (Schoenberg property for <-faced universal products [Ger21]). Let < ∈ ℕ.

Let

(
(D, (D(8))8∈[<]),Δ)

)
be an <-faced dual semigroup with involution ∗ such that Δ is a ∗-

homomorphism and for each 8 ∈ [<] the faces D(8) are ∗-subalgebras. Let � be a u.a.u.-product

in the category AlgPm. We say that � is Schoenberg if and only if exp� # is strongly positive for

every conditionally positive linear functional # ∈ Lin(D,ℂ).

From [Ger21, Rem. 5.5] we can conclude that an <-faced u.a.u.-product is Schoenberg if

and only if the Schoenberg correspondence holds, i. e.,

# is conditionally positive ⇐⇒ ∀ C > 0: exp�(C#) is strongly positive. (6.4.2)

In [SV14] the Schoenberg correspondence has been proven for dual semigroups and u.a.u.-

products in the single-faced setting. Using this result Gerhold could even extend this result to

<-faced dual semigroups and more generally to unital associative (3, <)-universal products for
3 ∈ ℕ. We only need the case 3 = 1. Thus, we have:

6.4.3 Theorem ([Ger21, Thm. 5.8]). Let< ∈ ℕ. Let � be a u.a.u.-product in the category AlgPm.

If � is positive, then � is Schoenberg.

6.4.4 Remark. We notice that we did not assume any ℕ0-grading for the <-faced dual semi-

group D in Definition 6.4.2. Although, we have defined exp� only for such ℕ0-graded dual

semigroups D with D0 = {0} (Definition 2.4.1) we can extend the definition of exp� in equa-

tion (2.4.1) and of log� in equation (2.4.2) to arbitrary dual semigroups

(
(D, (D(8))8∈[<]),Δ, 0

)
not necessarily ℕ0-graded and with D0 = {0}. The reason for this possible generalization of

the domain lies in the discussion provided in Remark 1.3.4. In our following considerations

we will have a ℕ0-graded dual semigroup, where the 0-th part of the ℕ0-grading is {0}.

In preparation for the next lemma, we define the following. Assume we are given two

one-dimensional vector spaces +1 and +2. Let us denote a basis vector of +8 by G
(8)

for each

8 ∈ [2]. Then, T(+1 ⊕ +2) can be given the structure of a ℕ0-graded two-faced dual semigroup

with primitive comultiplication, where the 0-th part of the ℕ0-grading is {0} (Conv. 2.4.10).
We want to equip ℂ〈G(1) , G(2)〉 with a ∗-structure by assuming that G(1) and G(2) are self-adjoint.
The primitive comultiplication then becomes a ∗-homomorphism of ∗-algebras. We identity

ℂ〈G(1) , G(2)〉 with T(+1 ⊕ +2) and ℂ0〈G(1) , G(2)〉 (polynomial algebra with constant term) with

T0(+1 ⊕ +2).

6.4.5 Lemma. Let � be a positive u.a.u.-product in the category AlgP2. Let ! ∈ Lin

(
T(+1 ⊕

+2),ℂ
)
such that

∀(�1 , �2) ∈ ([2])×2

: !(G(�1) ⊗ G(�2)) = 1, (6.4.3a)

∀ : ∈ ℕ \ {2}, ∀(�8)8∈[:] ∈ ([2])×: : !(G(�1) ⊗ · · · ⊗ G(�8: )) = 0 (6.4.3b)

and define the standard �-Gaussian as the unitization

�� ≔
(
exp� !

)1
: T0(+1 ⊕ +2) −→ ℂ. (6.4.4)
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Then, �� is a positive linear functional.

Proof: Since ! : T(+1 ⊕ +2) −→ ℂ is conditionally positive, the assertion follows from Theo-

rem 6.4.3. �

Let � be a positive u.a.u.-product in the category AlgP2. Since the element G(1) + G(2) ∈
ℂ〈G(1) , G(2)〉 is self-adjoint and the Gaussian �� is a positive linear functional, there needs to

exist a unique probability measure � such that

∀ : ∈ ℕ0 : M�
:
≔ ��

(
(G(1) + G(2)):

)
=

∫ ∞

−∞
C: d�(C). (6.4.5)

This is basically a conclusion of the Riesz representation theorem and the Theorem of Stone-

Weierstrass. Look at [NS06, Prop.3.13, Rem. 1.10] for further details on this topic. There is the

following equivalent characterization for the existence of a probability measure, known as the

Hamburger moment problem ([Akh65]).

6.4.6 Theorem (in this form stated in [Lac15, Thm. 7.3.1]). Let (M:):∈ℕ0
∈ ℝℕ0

be a sequence

of real numbers.

Tfae: (a) There exists a probability measure � such that

∀ : ∈ ℕ0 : M: =

∫ ∞

∞
C: d�(C). (6.4.6)

(b) It holds
∀ : ∈ ℕ0 : Δ: > 0 (6.4.7)

or

∃ :0 ∈ ℕ, ∀8 ∈ {0} ∪ [:0 − 1], ∀9 ∈ ℕ0 \ ({0} ∪ [:0 − 1]) :

(Δ8 > 0) ∧ (Δ9 = 0), (6.4.8)

where Δ: denotes the determinant of the : + 1-dimensional Hankel Matrix

∀ : ∈ ℕ0 : �: ≔

©«
M0 M1 . . . M:

M1 M2 . . . M:+1

...
...

. . .
...

M: M:+1 . . . M2: .

ª®®®®®®¬
(6.4.9)

Thus, we obtain the following test for potential positivity of a universal product. Assume

that a given symmetric u.a.u.-product � is positive, but does not satisfy the condition of

Theorem6.4.6 (b), i.ė. the negation ofTheorem6.4.6 (b) is true. This implies that Theorem6.4.6 (a)
is also not satisfied. Since we have assumed that the universal product � is positive, we obtain

that equation (6.4.5) holds. But this is a contradiction to Theorem 6.4.6 (a). Thus, � can not be

positive. In this way we may be in the position to find out which symmetric u.a.u.-products

from the diagram of Figure 5.1 are not positive and maybe we can find further restrictions for

the deformation parameters 0 < |@ | ≤ 1 for instance for positive and symmetric u.a.u.-products

� with P� = NC{ , } or P� = biNC.
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In this sense, our task is to check the existence of a “small” natural number = ∈ ℕ such

that equations of Theorem 6.4.6 (b) are violated for (M:):∈[=] ≔ (M�: ):∈[=] for various choices of
deformation parameters of certain potential positive and symmetric two-faced u.a.u.-products

and for various choices of partition induced universal products � which appear in the list of

the diagram of Figure 5.1. We shall discuss what we mean by a sufficient small natural number

after equation (6.4.10). By equation (2.5.29), Convention 5.2.10 and equation (6.4.3) we obtain

the following for any positive and symmetric two-faced u.a.u.-product

��P
(
(G(1) + G(2))=

)
=


∑

�∈[2]×=

∑
�∈Pair(P�)

� for = even

0 for = odd.

(6.4.10)

Herein, Pair(P�) denotes the so-called pair partitions of P�. A pair partition is a partition such

that each block in this partition has 2 legs. We have performed calculations to test the conditions

of Theorem 6.4.6 (b) for all : ∈ [=]where = ≤ 5 (this is what we mean by small). This involves

the computation of the explicit values of equation (6.4.10), i. e., to “count” pair partitions and

weight them with a possible occurring deformation parameter. We have done that using the

software Wolfram Mathematica 7.0. Here we present the results of our calculations. The source

code can be obtained from our GitHub repository (https://github.com/varsop/positivity).

In all the following procedures the value for the :-th moment can be adjusted in the source code.

So, if we execute one of the Mathematica files, then the program does not prompt for input but

instead needs to be adjusted manually in the source code. This is not hard to do. By default it is

set to : = 5.

First, we consider�pureNC. Then, byapplicationof theprocedureprovidedby theMathematica

file test1_pureNC.mwe obtain

(Δ8)8∈{0,...,5} = (1, 4, 32, 512, 16384, 1048576) (6.4.11)

and for the moments

(M8)8∈{0,...,10} = (1, 0, 4, 0, 24, 0, 160, 0, 1120, 0, 8064). (6.4.12)

So, at this point �pureNC does not produce any contradictions to positivity and it still might be

the case that �pureNC is positive.

Next, we consider �NC A and by symmetry of the colors likewise �A NC . By application

of the procedure provided by the Mathematica file test1_NCA.mwe obtain

(Δ8)8∈{0,...,5} = (1, 4, 48, 1920, 320000, 278400000) (6.4.13)

and for the moments

(M8)8∈{0,...,10} = (1, 0, 4, 0, 28, 0, 236, 0, 2232, 0, 23204). (6.4.14)

With more patience or better computational power we could determine even higher moments.

But at this point the universal products �NC A and �A NC do not lead to any contradiction of

positivity. So, both products might be positive.

Next, we consider �pureC. By application of the procedure provided by the Mathematica

file test1_pureC.mwe obtain

(Δ8)8∈{0,...,5} = (1, 4, 64, 4096, 1179648, 278400000) (6.4.15)

https://github.com/varsop/positivity


6.4 Tests for nonpositive universal products: first test 261

and for the moments

(M8)8∈{0,...,10} = (1, 0, 4, 0, 32, 0, 320, 0, 3616, 0, 44544). (6.4.16)

Again, it still might be the case that higher moments M: of �pureC may violate condition

Theorem 6.4.6 (b) but at this point we do not observe any contradiction to positivity. Thus, �pureC
might be positive.

Next, we consider positive and symmetric two-faced u.a.u.-products � such that P� =
NC{ , }. Let @ ≔  ∈ ℂ. In Proposition 5.2.26 (a) we have already seen that @ ∈ ℂ

needs to satisfy 0 < |@ | ≤ 1 for any positive and symmetric two-faced u.a.u.-product such

that P� = NC{ , }. We can look for further restrictions for the complex parameter @ by our

above described method. We emphasize that in this case any pair partition is a polynomial

?(@, @∗) ∈ ℂ[@, @∗]. For instance we have

 = |@ |2 ,  = @. (6.4.17)

We implemented a routine which takes account of this fact and determines the polynomial

?(@, @∗) ∈ ℂ[@, @∗] for a given pair partition of NC{ , }. Here are our results for this procedure

provided by the Mathematica file test1_NC2.m

(Δ8)8∈{0,...,5}

=

(
1, 4, 32

(
1 + Re(@)

)
, 512(1 + Re(@))3 , 16384

(
2 + Re(@)

)
6

, 1048576

(
1 + Re(@)

)
10

)
(6.4.18)

The necessary condition 0 < |@ | ≤ 1 is stronger than the restriction we obtain in order to ensure

that conditions from Theorem 6.4.6 (b) are fulfilled till : = 5. The moments M: are not very

enlightening because these are somehow lengthy polynomials ?(@, @∗) ∈ ℂ[@, @∗]. But again we

can check if we get further restrictions for @ by demanding that momentsM: need to be real and

|@ | ≤ 1 or if both conditions contradict each other for certain choices of @. But we did not obtain

any further restrictions for @. As a special case we give here the values when @ is the imaginary

unit, i. .e., @ = i

(Δ8)8∈{0,...,5} = (1, 4, 32, 512, 16384, 1048576) (6.4.19)

and for the moments

(M8)8∈{0,...,10} = (1, 0, 4, 0, 24, 0, 160, 0, 1120, 0, 8064). (6.4.20)

For the calculations of (Δ8)8∈{0,...,:} and (M8)8∈{0,...,2:} up to : ≤ 5 we can say that any positive

and symmetric two-faced u.a.u.-product � such that P� = NC{ , } necessarily needs to satisfy

0 < |@ | ≤ 1. We have discussed positivity for @ = 1 in Remark 6.3.6 (c).
At last, we look at positive and symmetric two-faced u.a.u.-products � such thatP� = biNC.

In Proposition 5.2.26 (b)we have already seen that any such product needs to satisfy 0 < |@ | ≤ 1,

where @ ≔  ∈ ℂ. We have computed the Hankel Matrices Δ: for : ∈ {0, . . . , 5}. It

is not worth to put them here because they are somehow unattractive lengthy polynomials

?(@, @∗) ∈ ℂ[@, @∗]. The same holds for the moments. By our method we did not get further

restrictions than 0 < |@ | ≤ 1. As a special case we give here the values for @ = i obtained from

the procedure provided by the Mathematica file test1_biNC.m

(Δ8)8∈{0,...,5} = (1, 4, 32, 0, 0, 0) (6.4.21)
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and for the moments

(M8)8∈{0,...,10} = (1, 0, 4, 0, 24, 0, 144, 0, 864, 0, 5184). (6.4.22)

For the calculations of (Δ8)8∈{0,...,:} and (M8)8∈{0,...,2:} up to : ≤ 5 we can say that any positive

and symmetric two-faced u.a.u.-product � such that P� = biNC necessarily needs to satisfy

0 < |@ | ≤ 1. We have discussed positivity for @ = 1 in Remark 6.3.6 (d).
Wehave not yet implementedany tests forpositive and symmetric two-facedu.a.u.-products

� such that P� = Part{ , }.

6.5 Tests for nonpositive universal products: second test

We build upon the setting introduced in Section 6.4. For a second test we again exploit the

fact that the Gaussian functional �� is a positive linear functional on the two-faced algebra

ℂ0〈G(1) , G(2)〉 whenever � is assumed to be a positive (and symmetric) two-faced u.a.u.-product.

Let = = 3. Then, we set

D ≔

{
(�8)8∈[3]

����� ∀ 8 ∈ [3] : (�8 = ∅) ∨ (�8 = 0)
∨(∃=8 ∈ [=] : �8 = (�8 , 9)9∈[=8] ∈ {1, 2}×=8 )

}
(6.5.1)

and

G�8 =



0 for �8 = ∅

1 for �8 = 0

=8∏
9=1

G(�8 , 9) for ∃=8 ∈ [=] : �8 = (�8 , 9)9∈[=8] ∈ {1, 2}×=8 .

(6.5.2)

Furthermore, for any � ∈ Dwe set

H� = G
�1 + G�2 + G�3 ∈ ℂ0〈G(1) , G(2)〉. (6.5.3)

We want to describe the definition of H� less formal. We can think of the expression H� as a linear

combination of maximal 3 “words” in ℂ0〈G(1) , G(2)〉, where each word can be the empty word,

the unit 1 of ℂ0〈G(1) , G(2)〉 or a word of maximal length three in ℂ〈G(1) , G(2)〉.
Moreover, for any given � ∈ D \ {(∅, ∅, ∅)} there exists =̃ ∈ [=] and =̃-tuple (�̃8)8∈[=̃] such

that

=∑
8=1

G�8 = H� =

=̃∑
8

G �̃8 (6.5.4)

and ∀ 8 ∈ [=̃] : �̃8 ≠ ∅. If we assume that � is a positive and symmetric u.a.u.-product, then the

matrix

G� ≔
(
(G�)8 9

)
8 , 9∈[=̃] ≔

(
��

(
(G �̃8 )∗G �̃ 9

))
8 , 9∈[=̃]

∈ "=̃(ℂ) (6.5.5)

is positive semidefinite. By equation (2.5.29), Convention 5.2.10 and equation (6.4.3) we obtain

the following for any positive and symmetric two-faced u.a.u.-product or partition induced
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universal product �P

(
��

(
(G �̃8 )∗G �̃ 9

))
8 , 9∈[=̃]

=



1 for (�̃8)8∈[=̃] = (�̃ 9)9∈[=̃] = 0∑
�∈Pair(P(�̃ 9 )9∈[=̃] )

� for (�̃8)8∈[=̃] = 0, (�̃ 9)9∈[=̃] ≠ 0

∑
�∈Pair(PRev((�̃8 )8∈[=̃])

)
� for (�̃8)8∈[=̃] ≠ 0, (�̃ 9)9∈[=̃] = 0

∑
�∈Pair(P�)

� for (�̃8)8∈[=̃] ≠ 0 ≠ (�̃ 9)9∈[=̃] ,

(6.5.6)

wherein Rev((�̃8)8∈[=̃]) denotes the tuple (�̃8)8∈[=̃] in reversed order and � denotes the tuple we

obtain if we append the tuple (�̃ 9)9∈[=̃] after the reversed tuple Rev((�̃8)8∈[=̃]). By equation (6.5.6),

we can calculate the values of the matrix of equation (6.5.5). We have done that using the

software Wolfram Mathematica 7.0. This provides another test for violation of positivity for

a certain two-faced symmetric u.a.u.-product � under the assumption that � is positive. If

we encounter any contradiction to the positive semidefiniteness of the matrix G� for a given

“decoration tuple” � ∈ D, then � can not be positive. In the following we discuss our results

for partition induced universal products and certain positive and symmetric u.a.u.-products

depending on a deformation parameter 0 < |@ | ≤ 1 from the diagram of Figure 5.1.

We consider the partition induced universal products { �pureNC , �NC A , �A NC , �pureC }.
Our procedures provided by the Mathematica files

• test2_pureNC.m for �pureNC,

• test2_NCA.m for �NC A (and by symmetry of the colors likewise for �A NC ),

• test2_pureC.m for �pureC

calculates for each � ∈ D the value of the matrix G�, determines its eigenvalues and checks if all

eigenvalues are equal to or greater than zero. The result is that G� is positive semidefinite for all

� ∈ D. So, up to this point { �pureNC , �NC A , �A NC , �pureC } do not produce any contradictions

to positivity and it still might be the case that these partition induced universal products are

positive.

Next, we consider positive and symmetric two-faced u.a.u.-products � such that P� =
NC{ , }. Let @ ≔  ∈ ℂ. In Proposition 5.2.26 (a) we have already seen that @ ∈ ℂ

needs to satisfy 0 < |@ | ≤ 1 for any positive and symmetric two-faced u.a.u.-product such that

P� = NC{ , }. We can look for further restrictions for the complex parameter @ by our above

described method. In this case there exist tuples � ∈ D such that G� depends on @ ∈ ℂ. So in

general, we were not able to retrieve all eigenvalues for such matrices, in particular for such

matrices where the degree of the characteristic polynomial is greater than four. Instead we

ask for an implication of a positive semidefinite matrix and check the value of its determinant.

Our procedure provided by the Mathematica file test2_NC2.m calculates for each � ∈ D the

value of the matrix G� and determines its determinant. We use built-in functions of Wolfram

Mathematica 7.0 to find the possible cases for @ ∈ ℂ such that ∀� ∈ D : det(G�) ≥ 0 and

0 < |@ | ≤ 1. Our procedure returned 0 < |@ | ≤ 1. Also from our second test we can say that any

positive and symmetric two-faced u.a.u.-product � such thatP� = NC{ , } necessarily needs to

satisfy 0 < |@ | ≤ 1. The value @ = 1 is also sufficient (Remark 6.3.6 (c)).
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At last, we look at positive and symmetric two-faced u.a.u.-products � such thatP� = biNC.
In Proposition 5.2.26 (b) we have already seen that @ ∈ ℂ needs to satisfy 0 < |@ | ≤ 1 for

any positive and symmetric two-faced u.a.u.-product such that P� = NC{ , }. Like in the case

P� = NC{ , } we did not check an equivalent characterization for positive semidefiniteness.

Instead, our procedure provided by the Mathematica file test2_biNC.m calculates for each � ∈ D
the value of the matrix G� and determines its determinant. We use built-in functions of Wolfram

Mathematica 7.0 to find the possible cases for @ ∈ ℂ such that ∀� ∈ D : det(G�) ≥ 0 and

0 < |@ | ≤ 1. Our procedure returned 0 < |@ | ≤ 1. Also from our second test we can say that any

positive and symmetric two-faced u.a.u.-product � such thatP� = NC{ , } necessarily needs to

satisfy 0 < |@ | ≤ 1. The value @ = 1 is sufficient. (Remark 6.3.6 (d)).
The above used two test methods show that symmetric u.a.u.-products �P for P ∈

{pureNC,NC A ,A NC , pureC} and @-deformed u.a.u.-products � such that P� ∈ {NC{ , } ,
biNC} for 0 < |@ | ≤ 1 satisfy certain necessary conditions for positivity. We think that it might

be worth to try to develop techniques which are strong enough to prove positivity for the

remaining candidates of the diagram of Figure 5.1, where positivity is unclear. It seems promis-

ingly, that recent progress for proving positivity of the three @-deformed symmetric two-faced

u.a.u.-products of the diagram of Figure 5.1 is contained in [HGU21].
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