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Influenza A Virus (IAV) infection followed by bacterial pneumonia often leads

to hospitalization and death in individuals from high risk groups. Following

infection, IAV triggers the process of viral RNA replication which in turn

disrupts healthy gut microbial community, while the gut microbiota plays an

instrumental role in protecting the host by evolving colonization resistance.

Although the underlying mechanisms of IAV infection have been unraveled,

the underlying complex mechanisms evolved by gut microbiota in order to

induce host immune response following IAV infection remain evasive. In this

work, we developed a novel Maximal-Clique based Community Detection

algorithm for Weighted undirected Networks (MCCD-WN) and compared its

performance with other existing algorithms using three sets of benchmark

networks. Moreover, we applied our algorithm to gut microbiome data

derived from fecal samples of both healthy and IAV-infected pigs over a

sequence of time-points. The results we obtained from the real-life IAV dataset

unveil the role of the microbial families Ruminococcaceae, Lachnospiraceae,

Spirochaetaceae and Prevotellaceae in the gut microbiome of the IAV-

infected cohort. Furthermore, the additional integration of metaproteomic

data enabled not only the identification of microbial biomarkers, but also

the elucidation of their functional roles in protecting the host following IAV

infection. Our network analysis reveals a fast recovery of the infected cohort

after the second IAV infection and provides insights into crucial roles of

Desulfovibrionaceae and Lactobacillaceae families in combating Influenza A

Virus infection. Source code of the community detection algorithm can be

downloaded from https://github.com/AniBhar84/MCCD-WN.
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1. Introduction

Trillions ofmicroorganisms are living inside ofmulticellular,

living organisms (Elgamal et al., 2021). The bacteria in the

gut microbiome play an instrumental role in food digestion,

regulation of the immune system and protecting the host against

infectious disease caused by pathogenic bacteria. The microbial

community is formed by interacting microorganisms which

act as either predators or symbionts. Symbionts interact with

each other in order to gain benefits from each other whereas,

predators grapple with each other for the same source of

nutrition (Kuntal et al., 2019). Dysbiosis, caused by changes in

the gut microbiome, may not only trigger autoimmune diseases

such as obesity, hypertension, diabetes, allergic disorders such

as food allergy (Lee et al., 2021), but can also lead to the

development of colorectal, hepatocellular and breast cancers

(Vernocchi et al., 2020).

Influenza A Virus (IAV) is known to cause acute upper

respiratory tract infection in animals such as human, pig

etc. Following IAV infection, the host immune system plays

an instrumental role to counter the infection and prevent

serious disease, whereas IAV tries to provoke viral replication

by escaping from host’s immune surveillance (Chen et al.,

2018). Interaction between commensal microbiota and invading

viruses often disrupts the healthy gut microbiota community

and such disruptions facilitate increasing the transmission of

viral infection (Li et al., 2019). In order to protect the host

from viral infection, microbiota adopts complex mechanisms

such as induction of host immune response (Khan et al., 2021).

Previous studies showed the occurrences of co-infections with

viral pathogens in a substantial number of patients with a

respiratory tract disease (Stefanska et al., 2013; Hoefnagels et al.,

2021; Pacheco et al., 2021; Pettigrew et al., 2021). The presence

of certain diseases in mammals may lead to an alteration in

microbial community and such alteration may have an impact

on host-immune response. Although a number of studies have

been carried out to unravel the underlying mechanisms of IAV

infection (Yildiz et al., 2018; Kaul et al., 2020), the mechanisms

through whichmicrobiota evolves the induction of host immune

response still remain unknown. Hence, it is necessary to gain

a better understanding of the interaction between microbial

groups and provide insights into the driver microbial families

and their functions that facilitate the induction of the host

immune system in order to mitigate IAV infection.

Due to the advancement of next-generation sequencing

technology such as 16s ribosomal RNA (rRNA) sequencing,

it has become feasible not only to profile hundreds of

microorganisms from a single analysis, but also semi-quantify

the relative abundance of microbiome members during the

progression of infectious diseases. However, although 16s rRNA

sequencing has been widely used to mine the microbiome, while

it provides information about abundance of species, it gives

only very limited information about the function of identified

microbial communities (Cortes et al., 2019). This limitation is

dealt with the use of shotgun metagenomics. Since, shotgun

metagenomics is expensive, proteomics has turned up as an

alternative approach. Metaproteomics facilitates the study of

all proteins in microbiomes, facilitating an understanding of

the functional consequences of the microbiome (Cortes et al.,

2019). Hence, the integration of both 16s rRNA sequencing

and metaproteomics data may be advantageous to unveil key

microbiome families and their role in the progression of

infectious diseases.

Given the complexity of the microbial interactions, gut

microbiota can be modeled as a network where each node

represents an Amplicon Sequence Variant (ASV) and an edge

between each pair of nodes represents a predicted association

between the corresponding ASVs. In the context of network

analysis, community detection algorithms are often used to

partition a set of nodes into a number of communities, where

nodes belonging to each community are tightly connected with

each other. Nodes in each community are supposed to have

many within-community edges, but few between-community

edges (Yang et al., 2016). Many community detection algorithms

have been proposed over the last two decades (Newman, 2004;

Derényi et al., 2005; Ahn et al., 2010; Horvath, 2011; Alvarez

et al., 2015; Benson et al., 2016; Yang et al., 2016; Lu et al.,

2018). These algorithms are broadly categorized into modularity

optimization based approaches (Newman, 2006a; Reichardt and

Bornholdt, 2006; Blondel et al., 2008), clique based methods

(Derényi et al., 2005; Benson et al., 2016; Lu et al., 2018),

minimum-cut based methods (Newman, 2004) and hierarchical

clustering based approaches (Ahn et al., 2010; Horvath, 2011;

Alvarez et al., 2015).

Clique-based community detection methods have achieved

augmented attention over the last decades (Derényi et al., 2005;

Benson et al., 2016; Lu et al., 2018). One such algorithm is

the k-clique percolation method (Derényi et al., 2005) which

starts with finding all the k-cliques in a graph and subsequently

merges two k-cliques having k − 1 edges in common between

them. A single giant clique can be produced if the value of

k is small, whereas a larger value of k yields multiple small

communities. Hence, the selection of k affects the outcome of

the algorithm. Another algorithm (Benson et al., 2016) based

on network motifs was proposed to detect communities in

a given graph. Moreover, this algorithm uses the size of the

network motifs to build the co-occurrence count matrix in

which each value is set to the number of motifs containing

the corresponding pair of nodes. Thus, this algorithm ignores

the edge weights and the effects of partitions on the co-

occurrence count matrix. Recently (Lu et al., 2018), proposed

another clique based community detection algorithm which

constructs a clique-conductance matrix accumulating both the

size and number of maximal cliques containing a pair of

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2022.979320
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bhar et al. 10.3389/fmicb.2022.979320

vertices. Although this algorithm overcomes the limitations of

the algorithm proposed by Benson et al. (2016), it ignores

the edge weights. In addition, most of the existing clique-

based algorithms (Derényi et al., 2005; Benson et al., 2016;

Lu et al., 2018) use only the local properties of nodes to

compute the similarity matrix and ignore the global importance

of the nodes. In this paper, we proposed a novel Maximal-

Clique based Community Detection algorithm for Weighted

Network (MCCD-WN) in order to partition an undirected

weighted graph by leveraging the information contained in all

the maximal cliques in the given graph and taking both the local

and global influence of the nodes into consideration. Moreover,

maximal-cliques have biological importance in microbial co-

occurrence network. Connectivity between the nodes tends to

be higher in infected microbial network compared to healthy

microbial network due to colonization activity during infection.

Such variability in the node connectivity can be observed in

maximal-clique structure.

The identified communities can further be used to detect

different types hubs such as kinless, provincial and connector

hubs. Theoretically the connector and provincial hubs are

defined as the nodes which are highly connected between the

modules and within a module, respectively. The kinless hubs are

highly connected not only between the modules, but also within

a module and hence, the kinless hubs are functionally more

important to conciliate stabilization in the functional networks

in the gut microbiome (Mangangcha et al., 2020; Shi et al., 2020).

In this work, we applied our MCCD-WN algorithm to a time-

series 16s rRNA sequencing dataset containing the abundance of

ASVs in healthy and IAV infected cohorts in order to (i) identify

driver ASVs and their corresponding microbial families at each

time-point, (ii) find out different types of hub ASVs in the co-

abundance network and their corresponding families at each

time-point and (iii) provide insights into the functionalities of

the microbiome families of the identified driver and hub ASVs

at each time-point for both the healthy and infected states by

integrating a metaproteome data.

2. Materials and methods

2.1. Materials

2.1.1. Artificial datasets

In order to evaluate the performance of the proposed

community detection algorithm MCCD-WN, we used the

LFR benchmark (Lancichinetti et al., 2008; Lancichinetti and

Fortunato, 2009), which is a generalization of Girvan-Newman

benchmark (Girvan and Newman, 2002) and assumes a power-

law degree distribution of the nodes, similar to biological

networks (Jing et al., 2021). The LFR benchmark uses a

parameter called mixing parameter (µw) which is delineated

as the ratio of the external degree of a node to the total

degree of the node. Hence, a higher value of µw disrupts

the community structure as each node will have a higher

external degree than within-community degree. In this work,

we generated three different sets of networks, AN1, AN2, and

AN3 using the LFR benchmark with 500, 3000 and 5000 nodes,

respectively. Each of these three sets of networks contains a

set of disjoint communities. For AN1 and AN3, we set the

parameters k (average degree) to 25, beta (exponent for the

weight distribution) to 1.1, minc (minimum for the community

sizes) to 10, and maxc (maximum for the community sizes) to

50. In case of AN2, we set the parameters k (average degree)

to 15, beta (exponent for the weight distribution) to 1.1, minc

(minimum for the community sizes) to 20, andmaxc (maximum

for the community sizes) to 50. The values of maxk (maximum

degree) for AN1, AN2 and AN3 benchmark networks are set to

50, 300, and 500, respectively. The value of the mixing parameter

for the edge weights (µw) varies from 0.1 to 0.8 for each set of

the networks.

2.1.2. Real-life datasets

The real data we use is from an influenza infection

experiment carried out in pigs at the Department of

Experimental Animal Facilities and Biorisk Management

of the Friedrich Loeffler Institute within the H1N1pdm09

animal experiment (Schwaiger et al., 2019; Gierse et al.,

2020, 2021). H1N1 infection was carried out in 19 pigs, three

additional animals were used as controls. Fecal samples of

all animals in the healthy cohort were used subsequently to

generate 16s rRNA gene sequences, while samples of 19, 16, 12,

and eight animals in the infected cohort were taken at days 0,

7, 21, and 25, respectively. Sequences obtained from 16s rRNA

sequencing experiment of the infected cohort are available

at European Nucleotide Archive (ENA) with project number

PRJEB42450 and accession number ERP126308 whereas, the

sequences for the healthy cohort can be downloaded from

European Nucleotide Archive (ENA) using project number

PRJEB39963 and accession number ERP123542. Fecal samples

of all pigs from the healthy cohort and three pigs from the

infected cohort were used for metaproteomic analysis. The

mass spectrometry proteomics data can be obtained from

ProteomeXchange Consortium using the dataset identifier

PXD020775. Abundances of the microbial proteins measured

across the same set of time-points i.e., days 0, 7, 21, and 25, were

used in this work. Days 0 and 21 are reported to be the days

of first and second IAV infection, respectively. The purpose of

the second infection was to trigger the host immune response

and explicate the crosstalk between host immune system and

gut microbiome. Moreover, it is reported that the presence of

influenza A virus matrix protein was observed after the first

infection, whereas it was not detected after the second infection,

implying a fast recovery of the infected animals (Gierse et al.,

2021).
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2.2. Methods

Figure 1 shows a schematic diagram of the overall workflow

used in this work. Initially, co-abundance networks were built

for both the healthy and infected cohorts. Subsequently, the

co-abundance networks were analyzed to extract the driver

ASVs. In addition, the co-abundance networks were used to find

communities which were thereafter used to provide insights into

the role of microbial families in subduing pathogen colonization

and identify ASVs acting as different types of hubs. Finally, we

leveraged the metaproteomics data in order to provide insights

into functional role of microbial families of the identified driver

and hub ASVs.

2.2.1. Co-abundance network construction

In order to build a reliable co-abundance network, amplicon

sequence variants (ASVs) present in at least 30% of all

the samples and having an average relative abundance value

> 0.01% were used. SparCC, a method designed to estimate

the correlation values for compositional data (Friedman and

Alm, 2012), was then used to compute the correlation coefficient

between each pair of ASVs. The significance of the correlation

coefficients was established using randomly permuted data and

a p-value cutoff < 0.05. In this work, we built one network at

each time-point for both the healthy and infected cohorts.

2.2.2. Identification of key-drivers

After constructing the co-abundance network at each time-

point, we considered ASVs present in both the healthy and

infected networks in order to obtain a comparable set of

nodes for performing a comparative analysis on both the

networks. The properties of the co-abundance networks were

computed using the R package igraph (Csardi and Nepusz,

2006). The topological properties of each of the co-abundance

networks are shown in Figure 2A. For each of the time-points,

a lower Jaccard Edge Index (JEI) score between the healthy

and infected co-abundance networks implies the occurrence of

rewiring. Moreover, it is of interest to observe that the infected

network has a higher edge density and lower average distance

as compared to the healthy network at each time-point. This

tendency might be an indication of colonization activity in

the infection setting (Kuntal et al., 2019). In order to identify

driver ASVs at each time-point, we used the neighborhood shift

(netshift) score (Kuntal et al., 2019). The netshift score of a node

i is computed as

nesh(i) = 1− (T1− (T2+ T3)), (1)

where

T1 =
[3i]

H ∩ [3i]
I

[3i]H ∪ [3i]I
, (2)

T2 =
[3i]

I − [3i]
H

max degree in I
, (3)

T3 =
[3i]

I − [3i]
H

[3i]H ∪ [3i]I
, (4)

and [3i]
I (or [3i]

H) represents the set of direct neighbors of

node i in the infected (or healthy) network. A node having a

higher nesh score is considered to have a higher neighborhood

shift in the infected network over a healthy network. Since the

netshift score does not account for the edge weights between

a node and its interacting partners, we used the betweenness

centrality score and a Shannon entropy based node importance

metric to estimate the importance of each node in the healthy

and infected networks. The betweenness centrality score (Kuntal

et al., 2019) of the ith node in the healthy (or infected) network

is normalized as

BWscaled(i) =
BW(i)− BWmin

BWmax − BWmin
, (5)

where BW(i) represents the betweenness value of node i in the

healthy (or infected) network, and BWmin and BWmax denote

the minimum andmaximum values of all betweenness centrality

scores in the healthy (or infected) network, respectively.

Subsequently, the relative importance of the ith node is

computed using equation-6

△BW(i) = (BWscaledI (i)− BWscaledH (i)), (6)

where BWscaledH (i) and BWscaledI (i) denote the normalized

betweenness centrality scores of node i in the healthy and

infected networks, respectively. A node having a positive △BW

value has more importance in the infected network than in the

healthy network. In addition to the betweenness centrality score,

we used a Shannon entropy based metric to estimate the node

importance based on its strength in the healthy and infected

network. The Shannon entropy of a node i (Li et al., 2015) can

be computed as

H(i) = −

n
∑

j=1

pijlog(pij), (7)

where pij =
wij

∑n
j=1 wij

; wij denotes the weight between nodes i

and j. Subsequently, the entropy of a network is computed as

H(V) = −

n
∑

i=1

n
∑

j=1

pijlog(pij), (8)

where V represents the set of n number of nodes in the network.

In order to compute the importance of a node i in the network,

we removed the ith node along with its edges from the network

and then computed the entropy (H(V−i)) of the resultant graph

(Omar and Plapper, 2020). Subsequently, the normalized node
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FIGURE 1

Workflow used in this work.

importance score is computed using equation 9 so that H(V) is

always scaled to 1,

impscaled(i) =
H(V − i)−min∀i∈V (H(V − i))

H(V)−min∀i∈V (H(V − i)
. (9)

Finally, the relative importance of the ith node based on the

Shannon entropy based metric is computed as

△imp(i) = (impscaledI (i)− impscaledH (i)), (10)

where impscaledI (i) and impscaledH (i) denote the importance of

the ith node in the infected and healthy networks, respectively.

An ASV i is considered to be a driver ASV if it has a

higher neighborhood-shift score and positive △BW(i) and

△imp(i) values.

2.2.3. Identification of modules of bacterial
ASVs

To extract modules from the co-abundance network, we

applied a novel community detection algorithm MCCD-WN

which leverages all the maximal cliques of a given network. An

undirected weighted graph is defined as G = {V ,E,W}, where

V corresponds to a set of vertices, E corresponds to a set of

edges and W is a symmetric weight matrix of size ‖V × V‖

where each element W[i, j] represents the weight between each

pair of connected vertices i and j. In graph theory, a clique is

defined as a subgraph where every pair of nodes is connected

with each other. A maximal clique is a clique that can not be

expanded by adding any other vertex which is not a part of it.

A k-clique is a clique having k number of vertices. In this work,

we leveraged all the maximal k-cliques to find a set of modules

in a given network by ensuring that there are very few cliques

having lower density between different modules, whereas the

number of cliques having higher density within the samemodule

is relatively high. To achieve our goal, we first constructed a

similarity matrix by utilizing both the global importance and

local information of the nodes. In order to compute the global

importance of the ith node, we used the PageRank algorithm

(Page et al., 1999). PageRankmethod aims at ranking a set of web

pages by assigning a weight based on the behavior of a random

surfer which is similar to a Markov chain process. The estimated

weight of a node represents the probability that a random surfer

visits a web page either by following a hyperlink or directly by
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FIGURE 2

(A) Topological properties of healthy and infected co-abundance networks at each of the time-points. (B) Coreness values of the ASVs

belonging to the infected-core-hub community in the control network and the ASVs belonging to the control-core-hub community.

entering the address of the page in the web browser. Thus a

pagerank score captures the influence of a node on every other

vertex in a network and can be used as a global importance score

of a node in a given network. The pagerank score is computed

by equation 11

imp_globali = β
∑

j∈3i

imp_globalj

degj
+

1− β

N
, (11)

where 3i denotes the direct neighbors of the ithe node,

degj corresponds to the degree of node j and N denotes the

total number of vertices in the given graph. In the PageRank

algorithm, β ∈ {0, 1} is used to denote the probability that a

random surfer will continue to follow the hyperlink structure

and is usually set to 0.85. Subsequently, we used Equation (12)

to compute each element of the first structural similarity matrix

Sim_1, based on the global importance values of the nodes,

Sim_1[i, j] =

∑

x∈(3i∩3j)
imp_globalx

√

∑

x∈3i
imp_globalx

√

∑

x∈3j
imp_globalx

.

(12)

The weight matrixW is used as the second similarity matrix

Sim_2 as denoted by Equation (13):

Sim_2[i, j] =W[i, j]. (13)

Finally, Equation (14) was used to compute the final

similarity matrix,

Sim[i, j] = (α ∗ Sim_1[i, j])+ ((1− α) ∗ Sim_2[i, j]), (14)

where the value of α is set experimentally. In the context of

spectral clustering, the problem of optimizing the conductance

function is considered as computationally intractable and can

be converted into a relaxed, tractable eigenvector problem

in order to obtain an approximate solutions. In the context

of an undirected weighted graph partitioning problem, the

conductance function is given by

φ(C1,C2, ..,CK ) =
cut(Ci,Ci)

volume(Ci)
, (15)

where {C1,C2, ..,CK} are the set of communities such that (Ci ∩

Cj) = ∅, ∀(i, j)i 6=j ∈ {1, 2, ..,K} and
⋃

i Ci = V . In spectral

clustering, we aim at minimizing the ratio φ(C1,C2, ..,CK ).

Moreover, the normalized cut ensuresmaximization of the intra-

cluster similarity as long as the volume(C) is maximized and the

cut with the remaining vertices is minimized.

Now, we define the clique conductance function based

on the information obtained from all maximal k-cliques in

order to partition the given undirected weighted graph. The

weight matrix for a clique-induced graph is computed using

Equation (16),

Wclq[i, j] =
∑

l∈Clqk

∑

(i,j)∈l Sim[i, j]

‖l‖ ∗ (‖l‖ − 1)
, (16)

where Clqk denotes the set of all maximal k-cliques, ‖l‖ is the

size of lth maximal clique and Wclq[i, j] represents how tightly

two vertices i and j are connected in the lth maximal k-clique.
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In the context of a clique conductance function optimization

problem, cut(C,C) =
∑

i∈C,j∈C Wclq[i, j] and volume(C) =
∑

i∈C,j∈V Wclq[i, j]. Although the identification of all maximal

cliques is known to be an NP-hard problem, retrieval of all

maximal cliques is not problematic because the co-abundance

network of bacterial ASVs is sparse. Algorithm 1 demonstrates

the steps of our method to partition a weighted undirected

graph. For a binary clustering problem, we divided the

nodes into two groups based on the sign of values in the

eigenvector corresponding to the second smallest eigenvalue

of the normalized laplacian matrix Lclq of the clique-induced

graph. In order to find more than two clusters, we have used

the K-median algorithm as it is less sensitive to outliers. The

problem of computing cluster centroids is converted into a L1-

median computing problem and solved using the algorithm

proposed byVardi and Zhang (2000). The L1-median computing

algorithm proposed by Vardi et al., an improved version of the

Weiszfeld algorithm (Weiszfeld and Plastria, 2009), is capable

of dealing with the situation where the median is found to be

one of the data points in the cluster. In order to obtain better

performance and reproducible clusters, we used Algorithm 2

which is similar to the K-means++ algorithm (Arthur and

Vassilvitskii, 2007) for initial centroids selection. Algorithm 2

starts with finding a seed node as the one having the lowest

betweenness centrality score. The intuition behind the selection

of the seed node is that the seed node is unlikely to act as a bridge

node between different communities.

2.2.4. Estimating the number of communities

In order to estimate the number of communities, we used an

iterative approach shown in Figure 3. We applied our algorithm

to extract different number (K) of communities and computed

the modularity score (Q) (Newman, 2006b) for every value of K

using Equation (17),

Q =
1

2m

∑

i,j∈V

(W[i, j]−
degidegj

2m
)δ(Ci,Cj), (17)

where degi and degj denote the degree of nodes i and j. δ(Ci,Cj)

is set to 1 if both the nodes belong to the same community,

otherwise δ(Ci,Cj) is set to 0.W[i, j] represents the weight of the

edge between nodes i and j. m is the sum of all the edge weights

in the network. Finally, the number of communities is set to the

value of K which results in the maximum modularity (Q) score.

2.2.5. Identification of ASVs preventing
pathogen colonization

In order to provide insights into the commensal bacteria

playing a crucial role in conquering pathogen colonization,

Require: Undirected weighted graph G = {V ,E,W},

where W ∈ R
n×n and K, the number of communities.

Ensure: A set of disjoint communities {C1,C2, ..,CK }

Step I. Extract all maximal cliques using the

algorithm proposed by Eppstein et al. (2010)

Step II. Compute the weight matrix Wclq, for the

clique induced graph using equation 16.

Step III. Compute the degree matrix Dclq from

Wclq and normalized laplacian matrix Lclq using

D
− 1

2

clq
(Dclq −Wclq)D

− 1
2

clq
.

if K = 2 then

Step IVa. Compute the second eigenvector Eclq ∈ R
n

of Lclq

Step IVb. Assign ith object to community C1

if the ith element of Eclq is greater than 0;

otherwise, assign ith object to community C2.

else

Step Va. Compute the first K eigenvectors Mclq ∈

R
n×K of Lclq

Step Vb. Compute a matrix Tclq ∈ R
n×K by

normalizing the rows of matrix Mclq to norm 1

by setting Tclq[i, j] =
Mclq[i,j]

(
∑K

k=1 Mclq[i,k]
2)

1
2

Step Vc. Select K number of initial centroids

using Algorithm 2.

Step Vd. Apply K-median clustering algorithm

to Tclq to get K number of disjoint communities

{C1,C2, ..,CK }

end if

Algorithm 1. Proposed weighted graph partitioning algorithm.

Require: Undirected weighted graph G = {V ,E,W},

where W ∈ R
n×n, normalized matrix Tclq ∈ R

n×K and K,

the number of communities.

Ensure: K number of initial centroids.

Step I. S← ∅

Step II. Compute the betweenness centrality

score of each vertex in the graph G and select

the vertex (p) having the lowest betweenness

centrality score as the initial centroid.

Step III. S← (S ∪ p)

while ‖S‖ < K do

Step IVa. For each data point q /∈ S, compute the

distance (dist(q)) between q and the nearest point

in S.

Step IVb. Select a new point q /∈ S having the

highest probability value dist(q)2
∑

q/∈S dist(q)
2 , as the new

center and add it to S (S← (S ∪ q))

end while

Algorithm 2. Initial centroids selection algorithm.
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FIGURE 3

Workflow for estimating the number of communities. k denotes the number of communities.

we identified the core-hub community in both the healthy

and infected networks as the one having the highest coreness

value. Subsequently, we computed the coreness values of the

ASVs belonging to the infected-core-hub community in the

control network and compared with the coreness values of the

ASVs belonging to the healthy-core-hub community. Figure 2B

shows that the ASVs in the infected-core-hub community have

lower coreness values in the healthy network as compared

to the healthy-core-hub community members at each time-

point. This phenomenon may imply the prevention of pathogen

colonization by the corresponding microbial families of the

commensal bacterial ASVs.

2.2.6. Identification of hub ASVs

We computed the participation coefficient score (Hall et al.,

2019) for each node using Equation (18),

PCi = 1−
∑

k∈K

degi(k)

degi
, (18)

where K denotes the number of communities, degi(k)

denotes the degree of node i within community k.

A higher value of PCi represents that the node i has

higher inter-module connections, relative to intra-module

connections. In addition to the participation coefficient,

we calculated the within-community z-score (Hall et al.,

2019).

zi =
degi(Ci)− ¯deg(Ci)

σ deg(Ci)
, (19)

where Ci is the community containing node i, degi(Ci) denotes

the intra-module degree of node i, ¯deg(Ci) and σ deg(Ci) stand

for the mean and standard deviation of intra-module degrees

of the nodes belonging to community Ci, respectively. Finally,

the nodes having a zi score greater than 0 are considered

to be hubs. Furthermore, a hub node having a PCi score ≥

0.75 is defined as a kinless hub, a hub node having a PCi

score ≥ 0.30 and < 0.75 is considered as a connector hub

and a hub node having a PCi score < 0.30 is defined as a

provincial hub.

2.2.7. Prediction of microbial biomarkers and
their functions associated with healthy and
infected cohorts

Since very limited information about the function of

microbial community is provided by 16s rRNA sequencing

experiment, we leveraged a metaproteome data obtained from

the same healthy and infected cohorts for unveiling the

functional potential of microbiome family and the microbial

proteins during IAV infection. In order to achieve this, we

applied Linear discriminant analysis Effect Size (LEfSe) to the

relative abundance of functional categories of the protein groups

belonging to the microbial families identified as hubs, key-

drivers and members of the infected core-hub community at

each time-point (Segata et al., 2011). Functional categories

having a LDA > 2.0 and p value < 0.05 are considered to

be the ones which explain the difference between the healthy

and infected classes. Finally, the LEfSe analysis was carried out

using the relative abundance of protein groups belonging to

the significantly associated functional categories in order to

identify the microbial proteins which differentiate the healthy

and infected classes.

3. Results

3.1. Results on the LFR benchmark
datasets

We applied our MCCD-WN algorithm to three sets of LFR

benchmark networks. Although the number of communities

can be provided by the user, we estimated the number of

communities along with the parameter α by optimizing the

modularity score (Q). We initialized the value of α to 1 and
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FIGURE 4

Di�erent values of the parameter α for three sets of LFR

benchmark networks AN1, AN2, and AN3.

kept reducing its value by 0.05 in every iteration. Figure 4

shows the changes in the values of α for different values of the

mixing parameter (µw), in case of each set of LFR benchmark

networks. It is of interest to observe that in order to achieve

the best performance of the MCCD-WN algorithm, the global

node importance score is playing a crucial role for a relatively

higher value of the mixing parameter µw. In order to evaluate

the performance of the proposed MCCD-WN algorithm and

compare its performance with the other existing algorithms, we

have used the F1 score (Laarhoven and Marchiori, 2016) as an

evaluation metric, which can be defined by equation 20,

F1(C,C
∗) = 2 ∗

|C ∩ C∗|

|C| + |C∗|
, (20)

where C and C∗ indicate the ground truth community and

community produced by the community detection algorithm.

The F1 score denotes howwell a community detection algorithm

finds the ground-truth communities. F1 ranges from 0 to 1,

where a higher value indicates a better performance of the

algorithm. Figure 5 demonstrates that the proposed algorithm

obtained the highest F1 score in case of the benchmark datasets

AN1 (µw = 0.7 and 0.8), AN2 (µw = 0.8) and AN3

(µw = 0.7) whereas, it produces very similar F1 scores as

the other best performing algorithms for the remaining LFR

benchmark networks.

In addition to F1 score, we also used Modularity score (Q)

as delineated in equation 17 for evaluating the performance

of the proposed algorithm. Modularity score ranges from

–1 to +1 and a higher modularity score indicates a better

structure of the communities found in the given network.

Figure 6 shows that the proposed algorithm achieved

either equal or very close modularity scores to the ones

obtained by the best performing algorithms for all the

benchmark networks.

Moreover we carried out a study on the computing time for

each of the benchmark networks. From Figure 7, it can be well

seen that the proposed algorithm has reasonable computation

speeds on each of the benchmark networks.

3.1.1. Similarity between real networks and LFR
benchmark networks

In order to compare the real co-abundance networks

obtained from Section 2.2.1 with the LFR benchmark networks,

we used AN1 in silico networks. Supplementary Figures 1, 2

compare AN1 benchmark networks with the co-abundance

networks in terms of the number of nodes, number of edges,

edge density value and clustering coefficient. Moreover, we

estimated the quality of the community structures present in

the real networks by computing the absolute difference between

the clustering coefficients of the real networks with that of

each benchmark network. From Supplementary Figures 3, 4 it

can be well seen that the real networks are comparable to the

benchmark networks generated using a mixing parameter (µw)

value less than or equal to 0.5.

3.2. Results on real-life data

3.2.1. Reproducibility testing of the proposed
workflow

In order to test the reproducibility of the proposed workflow,

we computed the size of intersection between the microbial

families reported to be instrumental in Borey et al. (2021) and

Gierse et al. (2021) and the ones found by applying our workflow

to these two datasets. The sequences of the first dataset (Borey

et al., 2021) were downloaded from the NCBI Sequence Read

Archive using accession number PRJNA647267 and processed

using SHAMAN tool (Volant et al., 2020) in order to obtain

the OTU abundance matrix and annotation table. In case of the

second experiment (Gierse et al., 2021), We used the sequence

data obtained from the fecal samples of healthy and infected

cohorts. Supplementary Figures 5A,B show that we achieved

descent Jaccard similarity coefficient scores 0.70 and 0.66 for

these two datasets, respectively.

3.2.2. Infected networks indicate a faster
recovery after the second infection

The network analysis of gut microbiome data of IAV

infected pigs revealed a strong negative correlation between

the edge density values and modularity scores of the co-

abundance network of infected cohort across all the time-points.

Figure 8A exhibits the lowest modularity score and highest

edge density value at day 21. This phenomenon indicates the

maximum disruption of microbial communities and highest

rise in the colonization activity triggered by the second IAV

infection, whereas at day 25, a relatively lower edge density value

and higher modularity score indicate a reduction in both the

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.979320
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bhar et al. 10.3389/fmicb.2022.979320

FIGURE 5

Performance comparison in terms of F1-score.

FIGURE 6

Performance comparison in terms of modularity score.

colonization activity and disruption in microbial communities,

respectively (Baldassano and Bassett, 2016). In Figure 8B, we

demonstrated the number of communities found in ASV co-

abundance networks for the healthy and infected cohorts at each

time-point.

3.2.3. Microbial families for the ASVs identified
as key-driver and members of
infected-core-hub communities

Figure 9 shows the interactions between the microbial

families of ASVs found to undergo rewiring in the infected co-

abundance network and their interaction partners at each of

the time-points. In Figure 10A, we can see that at each time-

point the majority of the driver ASVs belong to the family

Ruminococcaceae. Figure 10B shows that the majority of the

ASVs in the identified infected-core-hub communities belong

to the family Ruminococcaceae at Day 0, 21, and 25, whereas at

Day 7most of such ASVs come from the family Lachnospiraceae.

The microbial families of the ASVs belonging to the infected-

core-hub communities may play a crucial role in subduing

pathogen colonization.

3.2.4. Changes in the relative proportion of hub
ASVs belonging to microbial families

In Figures 10C,D, we showed the relative proportion of

hub ASVs assigned to their corresponding family levels in

both the healthy and infected cohorts. From these two figures

we not only observe a change in the relative proportion of

hubs between the healthy and infected cohort at each time-

point, but also a change across all the time-points in the

infected cohort.
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FIGURE 7

Performance comparison in terms of running time (in seconds) on a log-linear scale.

FIGURE 8

(A) Average edge density and modularity scores of the co-abundance networks for infected cohort. ρ denotes the Spearman correlation

coe�cient between average edge density and modularity scores across all time-points. (B) Number of communities obtained for

real-life dataset.

3.2.5. Identification of dominant microbial
families

In Figure 11, we show the heatmap of the relative abundance

of ASVs aggregated at their family levels and selected the

microbiome families which contain ASVs having a mean-

relative abundance greater than 5%. The selected microbial

families are referred to as dominant families in this work

and further used for unveiling their functional roles using the

metaproteome data.

3.2.6. ASVs belonging to a non-dominant
microbial family were found as kinless hubs

In Figure 10D, it is of interest to see that ASVs assigned to

the family Desulfovibrionaceae are found to act as kinless hubs.

Although Desulfovibrionaceae was not found as a dominant

family in our analysis at day 21, it is known to produce hydrogen

sulfide (H2S), higher concentration of which is reported to

increase the seriousness of IAV infection (Santana et al., 2021),

while a reduced amount of H2S is found to protect against the

viral infection (Dilek et al., 2020).

3.2.7. Functional roles of the proteins of
dominant microbial families

In order to identify the microbial functions associated

with both the healthy and infected states and the

corresponding protein biomarkers, we performed a Linear

discriminant analysis Effect Size (LEfSe) analysis using
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FIGURE 9

Network consisting of driver ASVs and their interaction partners at each of the time-points. Green nodes represent the names of families of

corresponding driver ASVs. Thickness of edges is proportional to the corresponding correlation coe�cient value. The network is drawn using

Gephi tool (Bastian et al., 2009).

the abundance of microbial functions obtained from our

metaproteome experiment.

At day 0 (Figure 12) we found family Ruminococcaceae

as a dominant family. Ruminococcaceae have previously been

reported to be associated with H1N1-infected animals (Sencio

et al., 2020). In addition, LEfSe analysis revealed the association

of “Ribosomal proteins synthesis and modification” with the

infected cohorts. A previous study reported that the ribosomal

proteins not only play an instrumental role to trigger the

viral infection by interacting with viral proteins, but also are

involved in activating immune pathways against viral infection

(Li, 2019).

Besides Ruminococcaceae, families Prevotellaceae and

Lachnospiraceaewere found to be dominant at day 7 (Figure 13).

Both of these families are found to be linked to immune response

against Influenza A virus infection (Borey et al., 2021). LEfSe

analysis of the functional composition of those microbial

families revealed a lower relative abundance for “ATP-proton

motive force interconversion” which may indicate the inhibition

of viral replication during influenza infection by disrupting

the proton motive force (PMF) (Domenech et al., 2020). It is

of interest to see that our LEfSe analysis based on the relative

abundance of proteins participating in the enriched microbial

functions shows a higher relative-abundance of Glutamate
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FIGURE 10

(A) Relative proportion of driver ASVs assigned to the corresponding microbiome families at each of the time-points. (B) Relative proportion of

ASVs belonging to the infected-core-hub communities, assigned to the corresponding microbiome families at each of the time-points. (C)

Relative proportion of ASVs identified as hubs in healthy co-abundance networks. (D) Relative proportion of ASVs identified as hubs in infected

co-abundance networks.

dehydrogenase in the infected cohort because a higher level of

glutamine is reported to be essential in the immune system cells

during infection (de Oliveira et al., 2016). Moreover, a decrease

in the relative-abundance of a well known virulence factor

flagellin may be caused due to the activation of innate immune

response (Hayashi et al., 2001). In addition, chaperonins are

found to be prominent from our LEfSe analysis and Young

(1990) showed that targeting chaperonins by the immune

response plays both the protective and pathogenic roles.

In addition to the Ruminococcaceae and Lachnospiraceae

families, Spirochaetaceae is found to be a dominant family

at day 21, as shown in Figure 14. Moreover, our network

analysis predicted the involvement of Ruminococcaceae in

subduing pathogen colonization. Interestingly, our prediction is

supported by the findings from LEfSe analysis of the functional

composition of the family Ruminococcaceae. We observed a

lower mean relative abundance of “glycolysis” in the infected

cohort suggesting a significant reduction in the viral replication

(Kohio and Adamson, 2013). Furthermore, LEfSe analysis of

the relative abundance of proteins belonging to the function

“unclassified” revealed a lower abundance of iron storage protein

ferritin in the infected cohort, indicating a recovery from
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FIGURE 11

Heatmap showing the relative abundance of ASVs aggregated at the family level. (A) ASVs belonging to the infected-core-hub communities. (B)

ASVs identified as hubs in the infected cohort. (C) ASVs identified as key-drivers in the infected cohort. Microbial families marked with “*” are

identified as dominant families.

FIGURE 12

(A) Linear discriminant analysis e�ect size (LEfSe) scores of the enriched functions of the dominant microbiome family, ASVs of which are found

to be the member of infected-core-hub community or act as hubs or key-drivers in the infected cohort at day 0. (B,C) Linear discriminant

analysis e�ect size (LEfSe) scores of the predicted biomarkers involved in the enriched microbial functions associated with healthy and infected

cohorts at day 0.

infection (Lalueza et al., 2020; Perricone et al., 2020). In addition,

“glycolysis” and “pentose phosphate pathway” functions of

the families Spirochaetaceae and Lachnospiraceae, respectively,

were found to be enriched in the infected cohorts. These

findings suggest that glycolysis may play an instrumental role

in the activation of the innate immune response, by rising

the metabolic flux through the pentose phosphate pathway

(Ganeshan and Chawla, 2014). Moreover, Elongation factor Tu

(EF-Tu), assigned to the function “translation factors (protein

synthesis)” of the family Lachnospiraceae is prominent in the

infected cohort. The prokaryotic EF-Tu is reported to play

critical role in both the enhancement of virulence factor

and activation of the host immune system (Harvey et al.,

2019). Furthermore, glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) is found to be a marker associated with the function

“glycolysis.” Sheng and Wang (2009) and Awan (2021) reported

the role of GAPDH in the immune system and hence, it might

be used as a therapeutic target.
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FIGURE 13

(A–C) Linear discriminant analysis e�ect size (LEfSe) scores of the enriched functions of the dominant microbiome family, ASVs of which are

found to be the member of infected-core-hub community or act as hubs or key-drivers in the infected cohort at day 7. (D–H) Linear

discriminant analysis e�ect size (LEfSe) scores of the predicted biomarkers involved in the enriched microbial functions associated with healthy

and infected cohorts at day 7.

FIGURE 14

(A–C) Linear discriminant analysis e�ect size (LEfSe) scores of the enriched functions of the dominant microbiome family, ASVs of which are

found to be the member of infected-core-hub community or act as hubs or key-drivers in the infected cohort at day 21. (D–G) Linear

discriminant analysis e�ect size (LEfSe) scores of the predicted biomarkers involved in the enriched microbial functions associated with healthy

and infected cohorts at day 21.

At day 25 (Figure 15) our network analysis based on

16srRNA data predicts the role of Lactobacillaceae family in

subduing pathogen colonization. LEfSe analysis of relative

abundance of the proteins assigned to “unclassified” function

reveals the association of surface-layer proteins with the

infected cohort. Acosta et al. (2019) and Wakai et al. (2021)

reported that a higher concentration of the surface-layer

protein of Lactobacillaceae family inhibits the viral replication.
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FIGURE 15

(A–C) Linear discriminant analysis e�ect size (LEfSe) scores of the enriched functions of the dominant microbiome family, ASVs of which are

found to be the member of infected-core-hub community or act as hubs or key-drivers in the infected cohort at day 25. (D–G) Linear

discriminant analysis e�ect size (LEfSe) scores of the predicted biomarkers involved in the enriched microbial functions associated with healthy

and infected cohorts at day 25.

Since the relative abundance of S-layer protein was found

to be higher in the infected cohort compared to the healthy

cohort, we hypothesize that the S-layer protein might play an

instrumental role in combating influenza A infection. Besides,

it is of interest to see the function “pyruvate biosynthesis”

of family Prevotellaceae and “aspartate biosynthesis” of family

Lachnospiraceae have a relatively higher and lower composition

in the infected cohort, respectively. The effect of pyruvate

in alleviating influenza A virus infection is reported in

Reel and Lupfer (2021), whereas aspartate is known to be

crucial for viral genome nucleotide synthesis (Lao-On et al.,

2018).

4. Discussion

In this work we proposed a maximal-clique based

community detection algorithm to find modules in a weighted

undirected network. We compared the performance of the

proposed algorithm with some of the existing algorithms

using three sets of benchmark networks and found that

the proposed algorithm results in either the best or very

similar performance. In addition, we applied our algorithm

to a microbiome data set containing the abundance of

microbial ASVs obtained from 16S rRNA gene sequencing

in order to unveil the role of the gut microbiome in the

host immune response during IAV infection. Our Network

analysis predicts the association of microbial families such

as Ruminococcaceae, Lachnospiraceae, Spirochaetaceae,

Prevotellaceae, Lactobacillaceae with the immune response

of infected cohort. In particular, we found the role of a

low-abundant microbial family Desulfovibrionaceae as a

kinless hub at day 21 and this finding may indicate its role

in initiating the stabilization of gut microbial communities

by producing a lower concentration of hydrogen sulfide

after the second IAV infection. Moreover, the integration

of metaproteome data not only provided the functions

of the aforementioned microbial families in the host

metabolism closely linked to immune response, but

also unveiled the biomarker proteins of those dominant

families. At day 25, we observed a prominent role of

surface layer proteins of Lactobacillaceae family which

may inhibit viral infection and thus, lead to fast recovery

of infected pigs. Taken together, our results provided

insights into the involvement of the gut microbiome

and their proteins which might be beneficial for the

development of novel antiviral therapy against influenza

A viral infection.

Frontiers inMicrobiology 16 frontiersin.org

https://doi.org/10.3389/fmicb.2022.979320
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bhar et al. 10.3389/fmicb.2022.979320

Data availability statement

16S rRNA gene sequences are available at European

Nucleotide Archive (ENA), with the project number RJEB39963

(accession number ERP123542) for healthy cohort, PRJEB42450

(accession number ERP126308) for infected cohort and

the project name “KoInfekt multi-omics-pipeline-swine.”

Metaproteomics data is available at ProteomeXchange

Consortium (submitted via the PRIDE partner repository) with

the dataset identifier PXD020775.

Ethics statement

All animal experiments were approved by the State Office for

Agriculture, Food Safety and Fishery in Mecklenburg-Western

Pomerania (LALFF M-V) with reference number 7221.3-1-

035/17.

Author contributions

AB developed the method, implemented the software,

conducted the case studies, and drafted the manuscript. AM

and HW carried out the 16s rRNA sequencing experiment.

LG carried out the metaproteomics experiment. TS, CK,

and CS carried out the animal case study. LK did the

initial planning together with AB, discussed the results and

revised the manuscript. LK, TU, KR, and TCM acquired

the funding. All authors read, reviewed, and approved the

final manuscript.

Funding

This research was funded by Federal Excellence Initiative

of Mecklenburg-Western Pomerania and European Social Fund

(ESF) Grant KoInfekt (ESF/14-BM-A55-0014/16). LK and AB

acknowledge funding from the European Union (EuCanShare,

Grant No. 825903). We acknowledge support for the Article

Processing Charge from the DFG and the Open Access

Publication Fund of the University of Greifswald.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmicb.

2022.979320/full#supplementary-material

References

Acosta, M. P., Geoghegan, E. M., Lepenies, B., Ruzal,1, S., Kielian,
M., and Martinez, M. G. (2019). Surface (s) layer proteins of lactobacillus
acidophilus block virus infection via dc-sign interaction. Front. Microbiol. 10, 810.
doi: 10.3389/fmicb.2019.00810

Ahn, Y.-Y., Bagrow, J. P., and Lehmann, S. (2010). Link communities
reveal multi-scale complexity in networks. Nature 466, 761–764.
doi: 10.1038/nature09182

Alvarez, A. J., Sanz-Rodríguez, C. E., and Cabrera, J. L. (2015). Weighting
dissimilarities to detect communities in networks. Philos. Trans. AMath. Phys. Eng.
Sci. 373, 20150108. doi: 10.1098/rsta.2015.0108

Arthur, D., and Vassilvitskii, S. (2007). “K-means++: the advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’07 (Philadelphia, PA: Society for Industrial and
Applied Mathematics), 1027–1035.

Awan, A. (2021). Gapdh, interferon γ , and nitric oxide: inhibitors of
coronaviruses. Front. Virol. 1, 682136. doi: 10.3389/fviro.2021.682136

Baldassano, S. N., and Bassett, D. S. (2016). Topological distortion and
reorganized modular structure of gut microbial co-occurrence networks
in inflammatory bowel disease. Sci. Rep. 6, 26087. doi: 10.1038/srep
26087

Bastian, M., Heymann, S., and Jacomy, M. (2009). “Gephi: an open source
software for exploring and manipulating networks,” in International AAAI
Conference on Weblogs and Social Media (San Jose, CA).

Benson, A. R., Gleich, D. F., and Leskovec, J. (2016). Higher-order organization
of complex networks. Network Sci. 353, 163–166. doi: 10.1126/science.aad9029

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008).
Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008.
doi: 10.1088/1742-5468/2008/10/P10008

Borey, M., Blanc, F., Lemonnier, G., Leplat, J. J., Jardet, D., Rossignol, M. N., et
al. (2021). Links between fecal microbiota and the response to vaccination against
influenza a virus in pigs. NPJ Vaccines 6, 92. doi: 10.1038/s41541-021-00351-2

Chen, X., Liu, S., Goraya, M. U., Maarouf, M., Huang, S., and Chen, J. L. (2018).
Host immune response to influenza a virus infection. Front. Immunol. 9, 320.
doi: 10.3389/fimmu.2018.00320

Cortes, L., Wopereis, H., Tartiere, A., Piquenot, J., Gouw, J. W., Tims, S., et al.
(2019). Metaproteomic and 16s rRNA gene sequencing analysis of the infant fecal
microbiome. Int. J. Mol. Sci. 20, 1430. doi: 10.3390/ijms20061430

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex
network research. Int. J. complex Syst. 1695, 1–9.

de Oliveira, D. C., da Silva Lima, F., Sartori, T., Santos, A. C., Rogero,
M. M., and Fock, R. A. (2016). Glutamine metabolism and its effects on
immune response: molecular mechanism and gene expression. Nutrire 41, 14.
doi: 10.1186/s41110-016-0016-8

Derényi, I., Palla, G., and Vicsek, T. (2005). Clique percolation in random
networks. Phys. Rev. Lett. 94, 160202. doi: 10.1103/PhysRevLett.94.160202

Frontiers inMicrobiology 17 frontiersin.org

https://doi.org/10.3389/fmicb.2022.979320
https://www.frontiersin.org/articles/10.3389/fmicb.2022.979320/full#supplementary-material
https://doi.org/10.3389/fmicb.2019.00810
https://doi.org/10.1038/nature09182
https://doi.org/10.1098/rsta.2015.0108
https://doi.org/10.3389/fviro.2021.682136
https://doi.org/10.1038/srep26087
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1038/s41541-021-00351-2
https://doi.org/10.3389/fimmu.2018.00320
https://doi.org/10.3390/ijms20061430
https://doi.org/10.1186/s41110-016-0016-8
https://doi.org/10.1103/PhysRevLett.94.160202
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bhar et al. 10.3389/fmicb.2022.979320

Dilek, N., Papapetropoulos, A., Kinsky, T. T., and Szabo, C. (2020). Hydrogen
sulfide: an endogenous regulator of the immune system. Pharmacol. Res. 161,
105119. doi: 10.1016/j.phrs.2020.105119

Domenech, A., Brochado, A. R., Sender, V., Hentrich, K., Normark, B.
H., Typas, A., et al. (2020). Proton motive force disruptors block bacterial
competence and horizontal gene transfer. Cell Host Microbe 27, 544.e3–555.e3.
doi: 10.1016/j.chom.2020.02.002

Elgamal, Z., Singh, P., and Geraghty, P. (2021). The upper airway
microbiota, environmental exposures, inflammation, and disease. Medicina 57,
823. doi: 10.3390/medicina57080823

Eppstein, D., Löffler, M., and Strash, D. (2010). “Listing all maximal cliques
in sparse graphs in near-optimal time,” in Algorithms and Computation, eds O.
Cheong, K. Y. Chwa, and K. Park (Berlin; Heidelberg: Springer), 403–414.

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic
survey data. PLoS Comput. Biol. 8, e1002687. doi: 10.1371/journal.pcbi.1002687

Ganeshan, K., and Chawla, A. (2014). Metabolic regulation
of immune responses. Annu. Rev. Immunol. 32, 609–634.
doi: 10.1146/annurev-immunol-032713-120236

Gierse, L. C., Meene, A., Schultz, D., Schwaiger, T., Karte, C., Schroeder, C.,
et al. (2020). A multi-omics protocol for swine feces to elucidate longitudinal
dynamics in microbiome structure and function. Microorganisms 8, 1887.
doi: 10.3390/microorganisms8121887

Gierse, L. C., Meene, A., Schultz, D., Schwaiger, T., Schroeder, C., Muecke, P.,
et al. (2021). Influenza a h1n1 induced disturbance of the respiratory and fecal
microbiome of german landrace pigs - a multi-omics characterization. Microbiol.
Spectrum 9, e0018221. doi: 10.1128/Spectrum.00182-21

Girvan, M., and Newman, M. E. J. (2002). Community structure in
social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99, 7821–7826.
doi: 10.1073/pnas.122653799

Hall, C. V., Lord, A., Betzel, R., Zakrzewski, M., Simms, L. A., Zalesky, A.,
et al. (2019). Co-existence of network architectures supporting the human gut
microbiome. iScience 22, 380–391. doi: 10.1016/j.isci.2019.11.032

Harvey, K. L., Jarocki, V. M., Charles, I. G., and Djordjevic, S. P. (2019). The
diverse functional roles of elongation factor tu (ef-tu) in microbial pathogenesis.
Front. Microbiol. 10, 2351. doi: 10.3389/fmicb.2019.02351

Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., et
al. (2001). The innate immune response to bacterial flagellin is mediated by toll-like
receptor 5. Nature 410, 1099–1103. doi: 10.1038/35074106

Hoefnagels, I., van de Maat, J., van Kampen, J. J. A., van Rossum, A.,
Obihara, C., Tramper-Stranders, G. A., et al. (2021). The role of the respiratory
microbiome and viral presence in lower respiratory tract infection severity in
the first five years of life. Microorganisms 9, 1446. doi: 10.3390/microorganisms
9071446

Horvath, S. (2011).Weighted Network Analysis. New York, NY: Springer-Verlag.

Jing, G., Zhang, Y., Liu, L., Wang, Z., Sun, Z., Knight, R., et al. (2021). A
scale-free, fully connected global transition network underlies known microbiome
diversity.mSystems 6, e0039421. doi: 10.1128/mSystems.00394-21

Kaul, D., Rathnasinghe, R., Ferres, M., Tan, G. S., Barrera, A., Pickett, B.
E., et al. (2020). Microbiome disturbance and resilience dynamics of the upper
respiratory tract during influenza a virus infection. Nat. Commun. 11, 2537.
doi: 10.1038/s41467-020-17020-y

Khan, I., Bai, Y., Zha, L., Ullah, N., Ullah, H., Shah, S. R., et al. (2021).
Mechanism of the gut microbiota colonization resistance and enteric pathogen
infection. Front. Cell Infect. Microbiol. 11, 716299. doi: 10.3389/fcimb.2021.716299

Kohio, H. P., and Adamson, A. L. (2013). Glycolytic control of vacuolar-type
atpase activity: a mechanism to regulate influenza viral infection. Virology 444,
301–309. doi: 10.1016/j.virol.2013.06.026

Kuntal, B. K., Chandrakar, P., Sadhu, S., and Mande, S. S. (2019). ‘netshift’:
a methodology for understanding ‘driver microbes’ from healthy and disease
microbiome datasets. ISME J. 13, 442–454. doi: 10.1038/s41396-018-0291-x

Laarhoven, T., and Marchiori, E. (2016). Local network community detection
with continuous optimization of conductance and weighted kernel k-means. J.
Mach. Learn. Res. 17, 5148–5175. doi: 10.48550/arXiv.1601.05775

Lalueza, A., Ayuso, B., Arrieta, E., Trujillo, H., Folgueira, D., Cueto, C., et
al. (2020). Elevation of serum ferritin levels for predicting a poor outcome in
hospitalized patients with influenza infection. Clin. Microbiol. Infect. 26, 1557.e9.
doi: 10.1016/j.cmi.2020.02.018

Lancichinetti, A., and Fortunato, S. (2009). Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E 80(1 Pt 2), 016118. doi: 10.1103/PhysRevE.80.016118

Lancichinetti, A., Fortunato, S., and Radicchi, F. (2008). Benchmark graphs
for testing community detection algorithms. Phys. Rev. E 78(4 Pt 2), 046110.
doi: 10.1103/PhysRevE.78.046110

Lao-On, U., Attwood, P. V., and Jitrapakdee, S. (2018). Roles of pyruvate
carboxylase in human diseases: from diabetes to cancers and infection. J. Mol. Med.
96, 237–247. doi: 10.1007/s00109-018-1622-0

Lee, K. H., Guo, J., Song, Y., Ariff, A., O’Sullivan, M., Hales, B., et al. (2021).
Dysfunctional gut microbiome networks in childhood ige-mediated food allergy.
Int. J. Mol. Sci. 22, 2079. doi: 10.3390/ijms22042079

Li, N., Ma, W. T., Pang, M., Fan, Q. L., and Hua, J. L. (2019). The commensal
microbiota and viral infection: a comprehensive review. Front. Immunol. 10, 1551.
doi: 10.3389/fimmu.2019.01551

Li, S. (2019). Regulation of ribosomal proteins on viral infectiondoi. Cells 8, 508.
doi: 10.3390/cells8050508

Li, Y., Zhang, G., Feng, Y., andWu, C. (2015). An entropy-based social network
community detecting method and its application to scientometrics. Scientometrics
102, 1003–1017. doi: 10.1007/s11192-014-1377-5

Lu, Z., Wahlström, J., and Nehorai, A. (2018). Community detection
in complex networks via clique conductance. Sci. Rep. 8, 5982.
doi: 10.1038/s41598-018-23932-z

Mangangcha, I. R., Malik, M. Z., Kucuk, O., Ali, S., and Singh, R. K. (2020).
Kinless hubs are potential target genes in prostate cancer network. Genomics 112,
5227–5239. doi: 10.1016/j.ygeno.2020.09.033

Newman,M. E. J. (2004). Detecting community structure in networks. Eur. Phys.
J. B 38, 321–330. doi: 10.1140/epjb/e2004-00124-y

Newman, M. E. J. (2006a). Finding community structure in networks using the
eigenvectors ofmatrices. Phys. Rev. E 74, 036104. doi: 10.1103/PhysRevE.74.036104

Newman, M. E. J. (2006b). Modularity and community structure in networks.
Proc. Natl. Acad. Sci. U.S. A. 103, 8577–8582. doi: 10.1073/pnas.0601602103

Omar, Y. M., and Plapper, P. (2020). A survey of information entropy metrics
for complex networks. Entropy 22, 1417. doi: 10.3390/e22121417

Pacheco, G. A., Gálvez, N. M. S., Soto, J. A., Andrade, C. A., and Kalergis, A. M.
(2021). Bacterial and viral coinfections with the human respiratory syncytial virus.
Microorganisms 9, 1293. doi: 10.3390/microorganisms9061293

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab.
Previous number = SIDL-WP-1999-0120.

Perricone, C., Bartoloni, E., Bursi, R., Cafaro, G., Guidelli, G. M., Shoenfeld, Y.,
et al. (2020). Covid-19 as part of the hyperferritinemic syndromes: the role of iron
depletion therapy. Immunol. Res. 68, 213–224. doi: 10.1007/s12026-020-09145-5

Pettigrew, M. M., Tanner, W., and Harris, A. D. (2021). The lung microbiome
and pneumonia. J. Infect. Dis. 223, S241-S245. doi: 10.1093/infdis/jiaa702

Reel, J. M., and Lupfer, C. R. (2021). Sodium pyruvate affects
influenza a virus infection in vivo. J. Immunol. 206(1 Suppl.), 396978.
doi: 10.1101/2020.11.25.396978

Reichardt, J., and Bornholdt, S. (2006). Statistical mechanics of community
detection. Phys. Rev. E 74, 016110. doi: 10.1103/PhysRevE.74.016110

Santana, C. M., Gauger, P., Vetger, A., Magstadt, D., Kim, D. S., Shrestha,
D., et al. (2021). Ambient hydrogen sulfide exposure increases the severity of
influenza a virus infection in swine. Arch. Environ. Occupat. Health 76, 526–538.
doi: 10.1080/19338244.2021.1896986

Schwaiger, T., Sehl, J., Karte, C., Schaefer, A., Huehr, J., Mettenleiter, T.
C., et al. (2019). Experimental h1n1pdm09 infection in pigs mimics human
seasonal influenza infections. PLoS ONE 14, e0222943. doi: 10.1371/journal.pone.
0222943

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
doi: 10.1186/gb-2011-12-6-r60

Sencio, V., Barthelemy, A., Tavares, L. P., Machado, M. G., Soulard, D.,
Cuinat, C., et al. (2020). Gut dysbiosis during influenza contributes to pulmonary
pneumococcal superinfection through altered short-chain fatty acid production.
Cell Rep. 30, 2934.e6–2947.e6. doi: 10.1016/j.celrep.2020.02.013

Sheng, W. Y., and Wang, T. C. V. (2009). Proteomic analysis of the differential
protein expression reveals nuclear gapdh in activated t lymphocytes. PLoS ONE 4,
e6322. doi: 10.1371/journal.pone.0006322

Shi, Y., Baquerizo, M. D., Li, Y., Yang, Y., Zhu, Y. G., Peñuelas, J., et al. (2020).
Abundance of kinless hubs within soil microbial networks are associated with
high functional potential in agricultural ecosystems. Environ. Int. 142, 105869.
doi: 10.1016/j.envint.2020.105869

Frontiers inMicrobiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2022.979320
https://doi.org/10.1016/j.phrs.2020.105119
https://doi.org/10.1016/j.chom.2020.02.002
https://doi.org/10.3390/medicina57080823
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1146/annurev-immunol-032713-120236
https://doi.org/10.3390/microorganisms8121887
https://doi.org/10.1128/Spectrum.00182-21
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.isci.2019.11.032
https://doi.org/10.3389/fmicb.2019.02351
https://doi.org/10.1038/35074106
https://doi.org/10.3390/microorganisms9071446
https://doi.org/10.1128/mSystems.00394-21
https://doi.org/10.1038/s41467-020-17020-y
https://doi.org/10.3389/fcimb.2021.716299
https://doi.org/10.1016/j.virol.2013.06.026
https://doi.org/10.1038/s41396-018-0291-x
https://doi.org/10.48550/arXiv.1601.05775
https://doi.org/10.1016/j.cmi.2020.02.018
https://doi.org/10.1103/PhysRevE.80.016118
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1007/s00109-018-1622-0
https://doi.org/10.3390/ijms22042079
https://doi.org/10.3389/fimmu.2019.01551
https://doi.org/10.3390/cells8050508
https://doi.org/10.1007/s11192-014-1377-5
https://doi.org/10.1038/s41598-018-23932-z
https://doi.org/10.1016/j.ygeno.2020.09.033
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.3390/e22121417
https://doi.org/10.3390/microorganisms9061293
https://doi.org/10.1007/s12026-020-09145-5
https://doi.org/10.1093/infdis/jiaa702
https://doi.org/10.1101/2020.11.25.396978
https://doi.org/10.1103/PhysRevE.74.016110
https://doi.org/10.1080/19338244.2021.1896986
https://doi.org/10.1371/journal.pone.0222943
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1016/j.celrep.2020.02.013
https://doi.org/10.1371/journal.pone.0006322
https://doi.org/10.1016/j.envint.2020.105869
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bhar et al. 10.3389/fmicb.2022.979320

Stefanska, I., Romanowska, M., Donevski, S., Gawryluk, D., and Brydak,
L. B. (2013). Co-infections with influenza and other respiratory viruses.
Respiratory regulation-the molecular approach. Adv. Exp. Med. Biol. 756, 291–301.
doi: 10.1007/978-94-007-4549-0_36

Vardi, Y., and Zhang, C. H. (2000). The multivariate l1-median and associated
data depth. Proc. Natl. Acad. Sci. U.S.A. 97, 1423–1426. doi: 10.1073/pnas.97.4.
1423

Vernocchi, P., Gili, T., Conte, F., Chierico, F. D., Conta, G., Miccheli,
A., et al. (2020). Network analysis of gut microbiome and metabolome
to discover microbiota-linked biomarkers in patients affected by non-
small cell lung cancer. Int. J. Mol. Sci. 21, 8730. doi: 10.3390/ijms212
28730

Volant, S., Lechat, P., Woringer, P., Motreff, L., Campagne, P., Malabat, C.,
et al. (2020). Shaman: a user-friendly website for metataxonomic analysis from
raw reads to statistical analysis. BMC Bioinform. 21, 345. doi: 10.1186/s12859-020-
03666-4

Wakai, T., Kano, C., Karsens, H., Kok, J., and Yamamoto, N. (2021). Functional
role of surface layer proteins of Lactobacillus acidophilus l-92 in stress tolerance
and binding to host cell proteins. Biosci. Microbiota Food Health 40, 33–42.
doi: 10.12938/bmfh.2020-005

Weiszfeld, E., and Plastria, F. (2009). On the point for which the sum
of the distances to n given points is minimum. Ann. Operat. Res. 167, 7–41.
doi: 10.1007/s10479-008-0352-z

Yang, Z., Algesheimer, R., and Tessone, C. J. (2016). A comparative analysis
of community detection algorithms on artificial networks. Sci. Rep. 6, 30750.
doi: 10.1038/srep30750

Yildiz, S., Mazel-Sanchez, B., Kandasamy, M., Manicassamy, B., and
Schmolke, M. (2018). Influenza a virus infection impacts systemic microbiota
dynamics and causes quantitative enteric dysbiosis. Microbiome 6, 9.
doi: 10.1186/s40168-017-0386-z

Young, D. B. (1990). Chaperonins and the immune response. Semin Cell Biol. 1,
27–35.

Frontiers inMicrobiology 19 frontiersin.org

https://doi.org/10.3389/fmicb.2022.979320
https://doi.org/10.1007/978-94-007-4549-0_36
https://doi.org/10.1073/pnas.97.4.1423
https://doi.org/10.3390/ijms21228730
https://doi.org/10.1186/s12859-020-03666-4
https://doi.org/10.12938/bmfh.2020-005
https://doi.org/10.1007/s10479-008-0352-z
https://doi.org/10.1038/srep30750
https://doi.org/10.1186/s40168-017-0386-z
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	Application of a maximal-clique based community detection algorithm to gut microbiome data reveals driver microbes during influenza A virus infection
	1. Introduction
	2. Materials and methods
	2.1. Materials
	2.1.1. Artificial datasets
	2.1.2. Real-life datasets

	2.2. Methods
	2.2.1. Co-abundance network construction
	2.2.2. Identification of key-drivers
	2.2.3. Identification of modules of bacterial ASVs
	2.2.4. Estimating the number of communities
	2.2.5. Identification of ASVs preventing pathogen colonization
	2.2.6. Identification of hub ASVs
	2.2.7. Prediction of microbial biomarkers and their functions associated with healthy and infected cohorts


	3. Results
	3.1. Results on the LFR benchmark datasets
	3.1.1. Similarity between real networks and LFR benchmark networks

	3.2. Results on real-life data
	3.2.1. Reproducibility testing of the proposed workflow
	3.2.2. Infected networks indicate a faster recovery after the second infection
	3.2.3. Microbial families for the ASVs identified as key-driver and members of infected-core-hub communities
	3.2.4. Changes in the relative proportion of hub ASVs belonging to microbial families
	3.2.5. Identification of dominant microbial families
	3.2.6. ASVs belonging to a non-dominant microbial family were found as kinless hubs
	3.2.7. Functional roles of the proteins of dominant microbial families


	4. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


