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Abstract: Klebsiella pneumoniae is a common member of the intestinal flora of vertebrates. In addition
to opportunistic representatives, hypervirulent (hvKp) and antibiotic-resistant K. pneumoniae (ABR-
Kp) occur. While ABR-Kp isolates often cause difficult-to-treat diseases due to limited therapeutic
options, hvKp is a pathotype that can infect healthy individuals often leading to recurrent infection.
Here, we investigated the clinical K. pneumoniae isolate PBIO3459 obtained from a blood sample,
which showed an unusual colony morphology. By combining whole-genome and RNA sequencing
with multiple in vitro and in vivo virulence-associated assays, we aimed to define the respective
Klebsiella subtype and explore the unusual phenotypic appearance. We demonstrate that PBIO3459
belongs to sequence type (ST)20 and carries no acquired resistance genes, consistent with phenotypic
susceptibility tests. In addition, the isolate showed low-level virulence, both at genetic and phenotypic
levels. We thus suggest that PBIO3459 is an opportunistic (commensal) K. pneumoniae isolate. Genomic
comparison of PBIO3459 with closely related ABR-Kp ST20 isolates revealed that they differed only in
resistance genes. Finally, the unusual colony morphology was mainly associated with carbohydrate
and amino acid transport and metabolism. In conclusion, our study reveals the characteristics of a
Klebsiella sepsis isolate and suggests that opportunistic representatives likely acquire and accumulate
antibiotic resistances that subsequently enable their emergence as ABR-Kp pathogens.

Keywords: Enterobacterales; K. pneumoniae; virulence; next-generation sequencing; biofilm; exopolysaccharides

1. Introduction

Klebsiella pneumoniae belongs to the Enterobacterales and is divided into opportunis-
tic (commensal), hypervirulent (hvKp) and generally antibiotic-resistant (ABR-Kp) sub-
types [1]. While the latter mostly affects immunocompromised patients in healthcare
settings and causes pneumonia, bacteremia, and urinary tract infections, hvKp can infect
healthy individuals leading to severe diseases including liver abscesses and meningitis [1].
Specific virulence characteristics allow hvKp to cause “metastatic” infection in multiple
body sites [2]. HvKp are usually classified by hypermucoviscosity, historically charac-
terized by a positive string test, and high siderophore production [3]. However, typing
based on specific genetic biomarkers has been shown to be more accurate [4]. Russo
et al. proposed peg-344 (metabolite transporter), iroB (salmochelin), iucA (aerobactin), and
the plasmid-based genes prmpA and prmpA2 (mucoid phenotype regulators) as particular
biomarkers [4]. ABR-Kp isolates usually act as opportunistic pathogens but are increasingly
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difficult to treat due to the exhibition of multiple antibiotic resistance (ABR) features [5]. In
addition, in recent years, multiple studies have reported on the emergence of convergent
strains combining both hypervirulence and ABR [2,6].

As K. pneumoniae are ubiquitous in soil and water, the environment likely represents
a reservoir for colonization or infection of humans and animals with these potentially
harmful opportunists [7–10]. Interestingly, several studies have shown that environmental
K. pneumoniae isolates share high similarities with clinical representatives [11–14], although
capsule types might differ [15]. In addition, K. pneumoniae from the environment are usu-
ally antibiotic-susceptible, reflecting the broad use of antibiotics in the clinical setting [11].
Once acquired by humans, K. pneumoniae may colonize the gastrointestinal tract espe-
cially in hospitalized patients, from where it can disseminate into the bloodstream upon
epithelial cell wall damage [16]. Following E. coli, K. pneumoniae is the second leading
reason for bloodstream infections [17,18], often in patients suffering from cancer or diabetes
mellitus [19].

Here, we investigated a clinical K. pneumoniae isolate (PBIO3459) from a blood culture
that showed an unusual colony morphology. As it is known that particular phenotypes,
e.g., small colony variants [20], reflect bacterial fitness and/or virulence and thus affect
potential treatment [21,22], we decided to further investigate our isolate with the altered
morphology. To classify PBIO3459, it was phenotypically compared to an archetypal hvKp
and a multidrug-resistant (MDR) K. pneumoniae isolate with some hypervirulence features
(convergent type). Additionally, the isolate was investigated at genomic, transcriptomic
and phylogenetic levels.

2. Materials and Methods
2.1. Sample Isolation and Bacterial Isolates

The sample of interest (PBIO3459) was isolated from a blood culture during routine
diagnostic procedures at the University Medicine Greifswald (Germany). The bacterial
species K. pneumoniae was confirmed by MALDI-TOF MS (VITEK MS, bioMérieux, Marcy
l’Etoile, France) and phenotypic antibiotic susceptibility testing (AST) was performed using
the VITEK 2 system (bioMérieux, Marcy l’Etoile, France).

Other isolates were used as reference and control for the performed assays: a multidrug-
resistant K. pneumoniae ST307 isolate from a clonal outbreak in the same university hos-
pital (PBIO1953, [6]), a hypervirulent K. pneumoniae ST86 isolate (hvKP1, [23,24]), and an
Escherichia coli K12 (ST10) (W3110, [25]), as well as an E. coli ST131 (IMT18399, [26]). All
isolates were stored at −80 ◦C in lysogeny broth (LB; Carl Roth, Karlsruhe, Germany)
containing 20% (v/v) glycerol (anhydrous; Merck, Darmstadt, Germany).

For initial characterization, PBIO3459 was plated on chromogenic agar (CHROMagar,
Paris, France), MacConkey agar (Carl Roth, Karlsruhe, Germany) and on Simmons citrate
agar (Carl Roth, Karlsruhe, Germany) supplemented with 5 g/L bile salts (Sigma-Aldrich,
St. Louis, MO, USA), 10 g/L myo-inositol (Carl Roth, Karlsruhe, Germany) and 10 g/L
tryptophan (Sigma-Aldrich, St. Louis, MO, USA). The supplemented Simmons agar showed
reliable results for detecting Klebsiella species [27].

2.2. Whole-Genome Sequencing

A randomly selected single colony from LB agar (LB and 1.5% agar [Carl Roth, Karl-
sruhe, Germany]) was cultured overnight in 5 mL of LB under shaking conditions (130 rpm)
at 37 ◦C. Total DNA was extracted using the MasterPure DNA Purification Kit for Blood, v.2
(Lucigen, Middleton, WI, USA), according to the manufacturer’s instructions. The isolated
DNA was quantified fluorometrically using the Qubit 4 fluorometer and the corresponding
dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). DNA was sent to
the Microbial Genome Sequencing Center (MiGS), now SeqCenter (Pittsburgh, PA, USA),
and after library preparation using the Illumina DNA Prep Kit and IDT 10 bp UDI in-
dices (Illumina, San Diego, CA, USA), sequenced on an Illumina NextSeq 2000, producing
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2 × 151 bp reads. In addition, DNA was sequenced on the Oxford Nanopore platform to
obtain long reads.

2.3. Sequence Assembly and Genomic Analyses

Short-read data were trimmed (adapter-trimming, contaminant-filtering, quality-
trimming, polymer-trimming) using BBDuk from BBTools v.38.90 (https://sourceforge.
net/projects/bbmap/, accessed on 3 March 2022). Read QC of raw and trimmed reads was
assessed using FastQC v.0.11.9 (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, accessed on 3 March 2022). A short-read-only assembly of the trimmed reads was
conducted by using the assembly pipeline shovill v.1.1.0 (https://github.com/tseemann/
shovill, accessed on 3 March 2022) in combination with SPAdes v.3.15.2 [28] and polished by
first mapping the trimmed reads to the assembly using BWA v.0.7.17 [29]. After SAMtools
v.1.12-processing (SAM-to-BAM conversion, sorting, duplicate-marking) [30], the draft
contigs were corrected using Pilon v.1.23 [31]. Hybrid assembly with short- and long-read
data was conducted using Unicycler v.0.4.9 [32] in combination with SPAdes v.3.13.0 [28].
Assemblies were checked for peculiarities in the assembly metrics and additionally as-
sessed using CheckM v.1.1.3 [33] to estimate genome completeness and contamination.
Automatic annotation was performed using Prokka v.1.14.6 [34]. In silico multi-locus
sequence typing (MLST) and antibiotic resistance and virulence detection were carried out
using mlst v.2.19.0 (https://github.com/tseemann/mlst, accessed on 4 March 2022; using
the PubMLST database [35]), ABRicate v.1.0.0 (https://github.com/tseemann/abricate,
accessed on 4 March 2022; using the ResFinder [36], PlasmidFinder [37], and VFDB [38]
databases), and Kleborate v.2.2.0 [39] with Kaptive v.2.0.0 [40].

According to Kleborate, a resistance score of 0 describes the absence of ESBL and
carbapenemase genes (a potentially colistin-resistant genotype is not considered in this
case). A resistance score of 1 corresponds to the presence of ESBL genes and the absence of
carbapenemase genes, whereas a score of 2 indicates the presence of carbapenemase genes
without colistin resistance genes (ESBL genes or OmpK mutations are not considered).
Accordingly, a resistance score of 3 is characterized by the presence of carbapenemase
genes in combination with a colistin-resistant genotype. A virulence score of 0 describes
the absence of the siderophores yersiniabactin (ybt), colibactin (clb), and aerobactin (iuc),
whereas a score of 1 indicates the presence of only yersiniabactin. A virulence value of
2 corresponds to the presence of yersiniabactin and colibactin (or colibactin only) and
3 describes the presence of aerobactin (without yersiniabactin or colibactin).

To identify genomes of ABR-Kp closely related to PBIO3459, all K. pneumoniae GenBank
assemblies were downloaded from the National Center for Biotechnology Information
(NCBI) Assembly site (accessed on 25 August 2022) using “NCBI:txid573” as the search term.
Sequence type (ST) was determined using mlst v.2.19.0. All ST20 genomes (n = 293) were
analyzed with Kleborate v.2.2.0 to identify genomes with a resistance score ≥ 1. In addition,
Mash v.2.3 [41,42] was used to create a sketch archive (sketch size 1,000,000) of PBIO3459
and all ST20 genomes. The pairwise distance from PBIO3459 to all sequences in the sketch
archive was then calculated. The Kleborate and Mash results were combined, and the two
genomes most closely related to PBIO3459 with a resistance score ≥ 1 (GCA_021917825.1
and GCA_022235845.1) were selected for synteny analysis. Contigs of the two isolates
were ordered according to the alignment position to the genome of PBIO3459. Reordered
genomes of GCA_021917825.1 and GCA_022235845.1 were annotated using Prokka v.1.14.6.
The synteny plot was generated using the gbk files as input for pyGenomeViz v.0.2.1 (mode:
pgv-mummer; identity threshold of 50%; https://github.com/moshi4/pyGenomeViz, ac-
cessed on 25 August 2022). Genome coverage was calculated based on the align_coords.tsv
file. PIRATE v.1.0.4 [43] was used to build a pangenome of the three genomes and to
identify the presence and absence of genes.

The downloaded ST20 genomes from NCBI were used to generate a core single-
nucleotide polymorphism (SNP)-based phylogeny. Genomes were used as input for snippy
v.4.6.0 (https://github.com/tseemann/snippy, accessed on 4 October 2022) with PBIO3459
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as reference to create a whole-genome alignment. The alignments were filtered using
Gubbins v.3.2.1 [44] to remove recombinations and snp-sites v.2.5.1 [45] was used to extract
core SNPs. A maximum likelihood (ML) tree was inferred with RAxML-NG v.1.1.0 [46]
using GTR + R. Here, 30 genomes were excluded because they were identical to another
sequence. Clustering of the tree was performed using fastbaps [47], with the final multiple
sequence alignment and the best-scoring ML tree (mid-point rooted with FigTree [https:
//github.com/rambaut/figtree, accessed on 4 October 2022]) as input. The clustered
tree was midpoint-rooted in iTOL v.6.5.8 [48] and visualized with metadata that was
retrieved from the NCBI Assembly and BioSample websites and Kleborate resistance and
virulence scores.

2.4. RNA Isolation and Sequencing

Randomly selected colonies were picked from chromogenic, LB and brain heart in-
fusion (BHI; Merck, Darmstadt, Germany) agar plates, respectively, and placed into 1 mL
of phosphate buffered saline (PBS) each until the optical density measured at λ = 600 nm
(OD600) reached 0.2. Total RNA was extracted using the RNeasy Micro Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The isolated RNA was checked
for purity and quantified using a Qubit 4 fluorometer. RNA was sent on dry ice to the
Competence Centre for Genomic Analysis (CCGA, Kiel, Germany) and prepared using the
Illumina stranded total RNA kit with Ribozero Plus (Illumina, San Diego, CA, USA). Re-
sulting library preparations were paired-end sequenced (2 × 100 bp reads) using Illumina
NovaSeq 6000 (Illumina, San Diego, CA, USA).

2.5. Transcriptomic Analysis

Adapter and quality trimming of the raw sequencing reads was performed using Trim
Galore v.0.6.7 (https://github.com/FelixKrueger/TrimGalore, accessed on 2 May 2022).
The assembly of PBIO3459 was used as reference for mapping the trimmed reads using
Bowtie 2 v.2.4.4 [49]. Then, the number of genes was calculated using featureCounts
v.2.0.1 [50] based on the annotation of PBIO3459. Differential gene expression was calcu-
lated using DESeq2 v.1.36.0 [51] in R v.4.2.0 (https://www.R-project.org/, accessed on
2 May 2022). The analysis was performed in default mode with one exception; genes
with rowSums of <10 in the count table were removed prior to the analysis. Genes were
considered differentially expressed if the absolute log2 fold change was greater than or
equal to 2 and the adjusted p value was less than or equal to 0.05.

2.6. Growth Kinetics

Growth kinetics were measured using a microplate reader (CLARIOstar Plus, BMG
LABTECH, Ortenberg, Germany) and performed in LB at 37 ◦C and 40 ◦C. Single colonies
were picked from LB agar plates and incubated in 5 mL of LB on a rotary shaker at
130 rpm and 37 ◦C overnight. The bacterial suspension was set to 0.5 McFarland standard
turbidity in the respective medium. Kinetics were measured on 96-well plates (Nunc™,
Thermo Fisher Scientific, Waltham, WA, USA) and therefore 200 µL of the adjusted bacterial
suspension was added to each well. For the kinetics, OD600 was measured every 30 min for
24 h, with double-orbital shaking at 200 rpm between the measurements. Each kinetic was
performed with three biological and three technical replicates.

2.7. Mucoid Phenotype

Hypermucoviscosity was tested using the string test. Therefore, a sterile inoculation
loop was placed on a single colony on an agar plate and picked up. If a string of 5 mm or
longer formed, the test was defined as positive [52].

The hypermucoviscosity was also tested with a sedimentation assay as described
previously [53]. A bacterial suspension with a turbidity according to the 0.5 McFarland
standard was prepared in 0.9% (w/v) NaCl solution. From this suspension, 50 µL were
added to 5 mL of LB and incubated on a rotary shaker at 130 rpm and 37 ◦C for 24 h.

https://github.com/rambaut/figtree
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After incubation, 1.5 mL of the cultures were given in 2 mL reaction tubes (Carl Roth,
Karlsruhe, Germany) and centrifuged at 1000× g for 5 min at room temperature (RT). Then,
200 µL of the supernatant and 200 µL of the initial culture were transferred separately
into a 96-well plate and the OD600 was measured. The assay was only performed with
K. pneumoniae isolates.

The ability to produce exopolysaccharides was tested using BHI agar plates supple-
mented with 5% (w/v) sucrose (Carl Roth, Karlsruhe, Germany) and 0.08% (w/v) congo
red (Carl Roth, Karlsruhe, Germany) as previously described [54]. A single colony was
taken from an agar plate, streaked onto the BHI agar plates, and then incubated overnight
at 37 ◦C. The assay was done with the K. pneumoniae isolates with addition of PBIO1961
(K. pneumoniae) and PBIO2010 (K. pneumoniae) as positive and negative control, respectively.
Exopolysaccharide producers would show black colonies while non-producers would show
orange to white colonies.

2.8. Serum Resistance

To determine the survival in human blood, serum resistance was tested in 50% human
serum as described elsewhere [53]. Overnight cultures were diluted 1:100 with fresh LB and
incubated on a rotary shaker at 130 rpm and 37 ◦C until the OD600 reached 0.5 McFarland
standard turbidity. From this suspension, 1 mL was given into a 1.5 mL reaction tube (Carl
Roth, Karlsruhe, Germany) and centrifuged at 7500× g for 5 min at RT. The supernatant
was discarded and the pellet was resuspended in 1 mL of PBS. On a 96-well plate, 100 µL
of the bacterial suspension were mixed with 100 µL of human serum (US origin, Sigma-
Aldrich, St. Louis, MO, USA). Then, 10 µL were taken from each well and serial dilutions
were plated on LB agar plates to quantify the colony forming units (CFUs) per mL in
the inoculum. The 96-well plate was incubated at 37 ◦C for 4 h. A second serial dilution
was performed to determine the number of survived CFUs/mL. All LB agar plates were
incubated overnight at 37 ◦C and formed colonies were counted the next day. Serum-
resistant hvKP1 (K. pneumoniae ST86) was used as positive control and serum-sensitive
W3110 (E. coli K12 ST10) was used as a negative control.

2.9. Siderophore Production

The ability to produce siderophores was tested using a previously described method [53].
Briefly, bacterial cultures were again set to 0.5 McFarland standard turbidity in 0.9%
(w/v) NaCl solution and diluted 1:100 in 5 mL of iron-chelated M9 medium (200 µM
2,2′-dipyridyl [Carl Roth, Karlsruhe, Germany] added M9 minimal salt medium [MP
Biomedicals, Irvine, CA, USA]) supplemented with 0.3% (w/v) casamino acids (c-M9-CA,
BD, Franklin Lakes, NJ, USA) in sterile 15 mL tubes (Sarstedt, Nürnbrecht, Germany). After
incubation on a rotary shaker at 130 rpm and 37 ◦C for 24 h, 1 mL of sample was given
into 1.5 mL reaction tubes and centrifuged for 20 min at 4900× g and RT. A 96-well plate
was prepared with 100 µL of Chromazurol S (CAS) shuttle solution (composited according
to [55]) and 100 µL of the supernatant were added. Fresh media served as blank and
15 mM aqueous EDTA solution (Carl Roth, Karlsruhe, Germany) as a positive control. After
incubation in the dark for 30 min at RT, the OD was measured at λ = 630 nm. Secretion of
siderophores was calculated as previously described [56] and expressed as a percentage
unit of siderophore production. The non-siderophore producing E. coli isolate (W3110) was
used as a negative control.

2.10. Long-Term Colonies, Cellulose Production and Biofilm Formation

To test the production of cellulose and/or curli fimbriae, a long-term colony assay was
performed as described previously [57]. Briefly, 20 mL of dye (containing 50 mg congo red
and 25 mg Coomassie-Brilliant-Blue G-250 [Carl Roth, Karlsruhe, Germany] dissolved in
deionized water and ethanol [99%, v/v; 1:7]) was filter sterilized into 1 L of LB Lennox (Carl
Roth, Karlsruhe, Germany) containing 1.8% (w/v) span agar (Hellmuth Carroux, Hamburg,
Germany). From overnight cultures, 5 µL were dropped onto the agar plates. The plates
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were hermetically sealed and incubated at 28 ◦C for 5 days followed by visual evaluation.
Purple colonies would mark the production of curli fimbriae, structured areas indicated
the production of cellulose and white colonies did not show any of the structures [58].

Cellulose production was also tested using a calcofluor assay in 24-well microtiter
plates (Sarstedt, Nürnbrecht, Germany). Calcofluor has a high affinity for cellulose and
allows the quantification of cellulose production [59,60]. For this purpose, LB Lennox
was prepared with 1.8% (w/w) span agar. An aqueous 0.2% (w/v) calcofluor solution
(Sigma-Aldrich, St. Louis, MO, USA) was sterile filtered and 2 mL were added to 100 mL of
the span agar solution. Of this solution, 1 mL was transferred into each well of the 24-well
plate and allowed to harden. Colonies from agar plates were taken and added to sterile PBS
until OD600 = 0.5 was reached and 5 µL of the suspension were dropped onto the center
of each well. After 5 days of incubation at 28 ◦C, the fluorescence intensity was measured
using the microplate reader (excitation 400–415 nm, emission 480–520 nm).

Biofilm formation was tested with a crystal-violet (CV) assay [26]. From overnight
cultures in LB, a 1:100 dilution in M9 medium supplemented with 1 mM magnesium sulfate
(Carl Roth, Karlsruhe, Germany) and 0.4% glucose (Carl Roth, Karlsruhe, Germany) was
prepared and incubated on a rotary shaker at 130 rpm and 37 ◦C until 0.5 McFarland stan-
dard turbidity was reached. The OD was then set to 0.01 in the supplemented M9 medium
and 200 µL of this suspension were placed into a 96-well plate, which was incubated at
28 ◦C for 24 h. Additionally, triplicates of 200 µL of sterile medium were used as controls
and blanks. The OD600 was then measured using the microplate reader. The 96-well plate
was washed thrice with deionized water to remove planktonic cells and air-dried for 10 min.
Then, the cells were fixed in 250 µL of methanol (Merck, Darmstadt, Germany) for 15 min.
After air-drying, cells were stained with 250 µL of a 0.1% (w/v) aqueous CV solution
(Sigma-Aldrich, St. Louis, MO, USA) for 30 min, before the plate was washed three times
with deionized water and dried for 10 min. Subsequently, the bound CV was dissolved in
300 µL of a mixture of 80 parts ethanol (99.8% (v/v); Carl Roth, Karlsruhe, Germany) and
20 parts acetone (Merck, Darmstadt, Germany) at RT with horizontal shaking at 200 rpm for
30 min. Finally, 125 µL of this solution were transferred to a new 96-well plate and the OD
was measured at λ = 570 nm using the microplate reader. The strength of biofilm formation
was expressed as specific biofilm formation (SBF). The SBF was calculated according to the
following formula [61]: SBF = (B − NC)/G, where B is the OD570 of the stained bacteria,
NC is the OD570 of the stained control wells to eliminate the fraction of CV adhering to the
polystyrene surface due to abiotic factors, and G is the OD600 representing the density of
cells grown in the media.

W3110 and the biofilm-producing IMT18399 were used as controls. W3110 was used
as a negative control for cellulose production, while both isolates were used as positive
controls for the other assays.

2.11. Infection of Galleria mellonella Larvae

The mortality of the K. pneumoniae isolates (PBIO1953, hvKP1, PBIO3459) was tested
using larvae of the wax moth Galleria mellonella as model organisms, as described pre-
viously [62]. Several single colonies were suspended in PBS until an OD600 of 1.0 was
reached (approx. 2 × 109 CFU/mL). The bacterial suspensions were then centrifuged at
12,000× g and RT for 5 min and washed twice with PBS. The suspension was diluted to
2 × 107 CFU/mL. Larvae (proinsects, Minden, Germany) were randomly divided into
groups of 10 individuals each and 10 µL of the adjusted bacterial suspensions were injected
into the left proleg. In addition, 10 µL of PBS was injected into a group of larvae to ensure
that death was not due to trauma from the injection. Each group was placed in 90 mm glass
Petri dishes, kept at 37 ◦C in the dark, and death was recorded every 24 h. Individuals
were considered dead when they no longer responded to physical stimuli and showed
pigmentation. The assay was repeated three times, results for each isolate were pooled and
Kaplan–Meier plots were generated to show mortality rates [63].
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2.12. Data Visualization and Statistical Analyses

Statistical analyses were performed using GraphPad Prism v.7.05 for Windows (Graph-
Pad Software, San Diego, CA, USA). All phenotypic experiments were performed with
three biological replicates. Unless otherwise indicated, data were expressed as mean and
standard deviation. Statistical significance was assessed by analysis of variation (ANOVA)
with Dunnett’s multiple comparison post hoc test. p values of less than 0.05 were used to
indicate significant statistical differences among the results.

3. Results
3.1. PBIO3459 Lacks Typical Antibiotic Resistance and Hypervirulence-Associated Genes

PBIO3459 was isolated from a blood sample of a patient with diabetes mellitus and
gastroenteritis and exhibited colony morphology unusual for Klebsiella (Figure 1a). On
blood, MacConkey, and chromogenic agar, colonies demonstrated a rough, dry, and ele-
vated surface (Figure 1a), whereas on LB and supplemented Simmons agar, colonies with
a smooth and even surface were observed. Species identification using MALDI-TOF MS
revealed PBIO3459 as K. pneumoniae. Whole-genome sequence (WGS) analysis showed
that PBIO3459 belonged to ST20 and capsule biosynthesis (KL) and lipopolysaccharide
antigen (O) loci were KL28 and O1/O2v2, respectively. Interestingly, the insertion sequence
(IS) ISKPn74, previously described in a hvKp isolate [53], was found within the K locus
(identity: 1050/1056 bp, 99%). In addition, we identified IS903B (identity: 1029/1057 bp,
97%) within the O locus and in the region between both loci. PBIO3459 carried a plasmid
with incompatibly group (Inc)FIA and Col-plasmids but no acquired antibiotic resistance
genes, which was confirmed by AST as only intrinsic ampicillin and amoxicillin phenotypic
resistances were detected.

Using VFDB to assign virulence factors, overall 109 different genes were identified. The
most abundant genes were associated with metabolic factors (n = 29), immune modulation
(n = 22), adherence (n = 19), and effector delivery systems (n = 18). The metabolic factors
were mainly related to iron uptake and transport such as the two siderophore systems
yersiniabactin (fyuA, irp1, irp2, ybtAEPQSTUX), and enterobactin (entABCDF, fepABCDG,
fes). In addition, some genes encoding for salmochelin (iroEN) and aerobactin (iutA)
siderophores were present, but we did not detect the complete systems. Adherence genes
were mainly related to fimbriae and pili and all genes associated with effector delivery
systems encoded for the type VI (14/18) and type II secretion systems (4/18).

3.2. PBIO3459 Demonstrates General Low Virulence but Increased Biofilm Formation

To gain further insights regarding the assignation of PBIO3459 to a particular subtype,
it was tested in phenotypic fitness-, virulence-, and resilience-associated assays (Figure 1)
and compared to different reference strains, i.e., an archetypical hypervirulent (hvKP1)
and an extensively drug-resistant K. pneumoniae with enhanced virulence (convergent
strain PBIO1953).

Regarding basic growth at two different temperatures, aiming at testing healthy (37 ◦C)
as well as diseased (fever) conditions (40 ◦C), the three isolates showed similar kinetics in
LB medium (Figure 1b,c). However, comparing the area under the curve (AUC) at 37 ◦C, the
AUC of PBIO1953 (62.05, p < 0.0001) was significantly lower than that of PBIO3459 (69.73),
while it was not significant for hvKP1 (69.1) compared to PBIO3459 (p = 0.37). Comparison
of the AUCs at 40 ◦C showed that the AUC of PBIO3459 (70.96) was significantly higher
than those of hvKP1 (66.31, p < 0.0001) and PBIO1953 (59.48, p < 0.0001) (Figure 1b).
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Figure 1. Phenotypic virulence-associated features of PBIO3459. (a) PBIO3459 on blood agar with
sponge-like colonies. (b,c) Heatmap of growth kinetics in LB at different temperatures and cor-
responding area under the growth curve (AUC) (n = 3). The results are given as mean values
with standard deviation. (d) Determination of the mucoid phenotype using a sedimentation assay
(n = 3). The results are given as mean ratios of OD600 of supernatant after centrifugation at 1000× g
for 5 min and total OD600 and standard deviation. (e) Siderophore production of the respective
isolates, shown as siderophore production unit (spu) and standard deviation (n = 3). (f) Survival in
50% human serum after 4 h of incubation. Results are given as mean values and standard deviation
of log2 fold change of CFU/mL (n = 3). (g) Kaplan–Meier plot of mortality rates in the Galleria
mellonella larvae infection model (n = 3). Results are given as mean mortality after injection of
2 × 105 CFU. Statistical significance was tested with one-way ANOVA and (for (g)) two-way ANOVA
(with Dunnett’s multiple comparison post hoc test); * p < 0.05, ** p < 0.01, **** p < 0.0001.
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Next, we tested whether PBIO3459 demonstrated any typical hypervirulence-associated
features. In the hypermucoviscosity string test, only hvKP1 colonies formed a string longer
than 5 mm and were thus defined positive. For PBIO1953 and PBIO3459, the string test was
negative. Second, we performed a sedimentation experiment. Mucus production affects the
sedimentation behavior of cells as mucus is more viscous than the surrounding medium.
During centrifugation, mucus-producing cells sediment more slowly due to the viscous
properties. The ratio between the supernatant and the OD600 of the complete culture can
be calculated and compared with the different isolates to assess hypermucoviscosity. The
highest mean ratio was observed for hvKP1 (0.39). Ratios of PBIO3459 (0.25; p = 0.30) and
PBIO1953 (0.20; p = 0.15) were lower but not statistically significant (Figure 1d). Similar
results were obtained for siderophore production, where high values were measured for
PBIO1953 and hvKP1, while PBIO3459 produced a significantly lower amount (p < 0.0001)
(Figure 1e). This matches the WGS data, where only yersiniabactin and enterobactin
siderophore systems were found, while aerobactin, the dominant siderophore in hvKp [64],
was absent. When we challenged the isolates with 50% human serum, both PBIO3459
(p = 0.0085) and PBIO1953 (p = 0.0143) showed significantly lower CFU levels than hvKP1
after 4 hours of incubation (Figure 1f). Finally, to explore the isolates’ ultimate viru-
lence potential, we performed in vivo mortality in Galleria mellonella larvae (Figure 1g).
As expected, hvKP1 showed the highest mortality rate (50.0% after 24 h; 60.0% after
48 h; 70.0% after 72 h) whereas PBIO3459 killed significantly lower numbers of larvae
(10.0% after 24 h, p = 0.0004; 10.0% after 48 h, p < 0.0001; 10.0% after 72 h, p < 0.0001). Except
for the time point after 24 h, the mortality rate of PBIO3459 was also significantly lower
than that of PBIO1953 (16.7% after 24 h, p = 0.69; 46.7% after 48 h, p = 0.0010; 53.3% after
72 h, p = 0.0002).

As the unusual rough appearance of PBIO3459 on certain nutrient media might be
associated with modified capsular polysaccharides, the production of exopolysaccharides
was investigated using BHI agar supplemented with sucrose and congo red (Figure 2a).
Upon exopolysaccharides production, the respective bacterium grows in grayblackish
colonies, whereas orange and white colonies indicate no exopolysaccharide production.
PBIO1953 was tested negative for exopolysaccharides showing orange colonies; hvKP1
grew in gray-blackish colonies and was therefore tested positive. The result of PBIO3459
could not be determined clearly, as colonies showed a red-grayish color.

In addition to capsular components, many Klebsiella isolates form biofilms, which
have been previously related to intestinal colonization and infection. Here, we tested
the production of important biofilm-associated cellulose and curli fimbriae structures in
long-term colonies. PBIO1953 and hvKP1 were white and unstructured and thus classified
negative for curli and cellulose production, whereas colonies of PBIO3459 could not be
assigned to any particular phenotype as they appeared differently than the positive control
(Figure 2b). To further explore the biofilm-associated results, we performed a crystal violet
experiment that tested the isolates’ ability to adhere to plastic surfaces, revealing that
PBIO1953 and PBIO3459 had similar specific biofilm formation capacities whereas hvKP1
had a lower adhesion affinity. However, note that these differences were not statistically
significant (Figure 2c). Cellulose production was tested additionally, using the fluorescent
dye calcofluor. In summary, the assay suggests PBIO3459 as an extensive cellulose producer
(Figure 2d).
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Figure 2. Representative images of phenotypic assays and phenotypic assays related to biofilm
forming abilities and pathogenesis. (a) Production of exopolysaccharides. Isolates were plated on BHI
agar and incubated for 24 h at 37 ◦C. PBIO1953 was tested negative for the production of exopolysac-
charides, hvKP1 was tested positive and the result for PBIO3459 could not be determined clearly. The
negative control (NC) was tested negative and the positive control (PC) positive. (b) Cellulose and
curli fimbriae production was investigated in long-term colonies. PBIO1953 and hvKP1 produced
neither structures while the phenotype of PBIO3459 differed from usual (control) long-term colonies.
The PC produced both curli fimbriae and cellulose. (c) Adherence ability given as specific biofilm
factor. Results are given as mean values with standard deviation. (d) Cellulose production of the
respective isolates. Results are expressed as mean fluorescence intensities with standard deviation
(n = 3). Statistical significance was tested with one-way ANOVA (with Dunnett’s multiple comparison
post hoc test); **** p < 0.0001.
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3.3. PBIO3459 Is Closely Related to Antibiotic-Resistant Klebsiella

To address the genomic relatedness of antibiotic-resistant ST20 isolates and PBIO3459,
we selected two publicly available K. pneumoniae ST20 genomes based on the following
two criteria: (i) a Kleborate resistance score of ≥1 and (ii) the most shared k-mers using
a Mash-approach. Like PBIO3459, the two identified genomes GCA_021917825.1 and
GCA_022235845.1 demonstrated the K/O loci KL28 (for the former unknown KL28) and
O1/O2v2, respectively, and a virulence score of 1. Kleborate revealed a resistance score
of 1 for GCA_021917825.1 with 14 resistance genes conferring resistance to six antibiotic
classes (aminoglycosides, quinolones, sulfonamides, trimethoprim, beta-lactams, including
third-generation cephalosporins and monobactams). In contrast, GCA_022235845.1 had
a resistance score of 2 and exhibited seven resistance genes to three antibiotic classes
(quinolones, beta-lactams, including carbapenems). When comparing the two genomes
to PBIO3459, we noticed high sequence similarities, reflected by high genomic coverage
(Figure 3). GCA_021917825.1 and GCA_022235845.1 sequences both covered over 96% of
the complete genome of PBIO3459 whereas, in contrast, PBIO3459 covered approximately
93% of the draft genomes of GCA_021917825.1 and GCA_022235845.1 (Figure 3) suggesting
that all three genomes possessed unique genomic areas, e.g., mobile genetic elements.
To investigate these slight differences at the gene level, we performed group clustering
using PIRATE. Most groups (83.77%; 4739/5657) were found in all three genomes, while
we detected only 1.77% (100/5657) exclusively in PBIO3459, and 4.40% (249/5657) and
6.15% (348/5657) were present in GCA_021917825.1 and GCA_022235845.1 only. Most
unique genes were hypothetical proteins (HP). Interestingly, in addition to HP, heavy metal
resistance (HMR) and heat shock proteins were found in the GCA genomes. Twenty-four
percent (24/100) of the unique groups in PBIO3459 were of plasmid origin and another 25%
(25/100) were associated with prophages, which are not uncommon in human-associated,
clinical strains [65]. In summary, the investigated ST20 genomes only differed in the
presence of ABR and HMR genes.
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Figure 3. Synteny plot of PBIO3459 compared to most related, publicly available genomes of MDR
K. pneumoniae ST20 strains. Genomes were selected based on a Kleborate resistance score ≥ 1
and most shared k-mers using a Mash-based approach. The synteny plot shows a large extent of
similar (gray) or inverted regions (teal) of the draft assembly PBIO3459 and the selected genomes.
cov: genome coverage.

Then, to investigate our isolate in a global context, we performed a phylogenetic
analysis for which we used all publicly available ST20 genomes and PBIO3459 (Figure 4).

The dataset included 264 international genomes from 35 countries. The majority
originated from Europe (37.5%; 98/264), North America (23.11%; 61/264), and Asia (18.56%;
49/264) and was isolated from humans (211/264).
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Figure 4. Phylogenetic tree of K. pneumoniae ST20 genomes using a ML approach based on SNP
alignments. The labels indicate the accession number (except PBIO3459). Annotations indicate (from
inner circle to outer circle): isolate location (A., continents), Kleborate resistance and virulence scores
(B. + C.), and isolate human or non-human origin (D.). Countries are abbreviated with alpha-3 codes;
NA: not applicable; absent star: not applicable (i.e., no metadata provided). Genomes used for the
synteny plot are highlighted in bold.

The phylogenetic tree, which is based on 8904 core SNP sites, contained three main
clades. While clade 3, as the largest, consisted of 110 genomes, clade 2 contained 92,
and clade 1 62 genomes, respectively. Most genomes with a resistance score of ≥1 and
low virulence levels belonged to clades 1 and 3. Interestingly, two clade 1-genomes
(GCA_021973675.1 and GCA_022470475.1) from North America demonstrated high resis-
tance (score = 2) and virulence (score = 3) levels, suggesting convergent Klebsiella types.
Within clade 3, nine partially unrelated genomes showed an extensively drug-resistant
genotype (resistance score 3, virulence score 0). The intra-clade distance, i.e., the number of
SNPs between the two closest as well as the most distant genomes within one clade, was
2–291 (median distance: 187) for clade 1 and 1–303 (median distance: 182) for clade 3.

Clade 2, containing PBIO3459, had an intra-clade distance of 1–190 (median distance:
104). Also note that clade 2 divided into two sub-clusters, both with genomes demonstrating
resistance scores between 0 and 2. The first cluster consisted of genomes with a virulence
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score of 0, whereas the second mainly contained genomes with a virulence score of 1.
PBIO3459 belonged to the latter and was closely related to a ST20 genome from North
America (GCA_008082375.1) that is also human-derived.

3.4. PBIO3459 Reveals Up-Regulation of Extracellular Sugar Degradation-Associated Genes

Finally, to explore potential underlying mechanisms of the two different phenotypes,
RNA sequencing was performed. As PBIO3459 showed the same (smooth) phenotype
on LB and BHI agar, both conditions were compared with the other phenotype (rough)
that occurred on chromogenic agar. Of particular interest were those genes that were
down-regulated in the rough phenotype whilst up-regulated in the smooth phenotype
and vice versa. Therefore, a double comparison was done. Genes that were differentially
expressed on chromogenic agar vs. LB agar were compared with chromogenic agar vs.
BHI agar. We identified nine down-regulated and 48 up-regulated genes on chromogenic
agar compared with both LB and BHI (Figure S1). According to the database of clusters
of orthologous groups [66], the most abundant groups within the down-regulated genes
were associated with amino acid transport and metabolism (3/9) and transcription (2/9).
Most up-regulated genes were related to carbohydrate transport and metabolism (14/48) or
energy production and conversion (7/48). The differentially expressed genes were further
investigated using the Kyoto encyclopedia of genes and genomes (KEGG) database [67–69].
The down-regulated genes did not show clear clustering regarding particular pathways
but some of the genes were related to lysine metabolism (mdcR, lysA, cadB). For the up-
regulated genes, the KEGG database detected many genes potentially involved in starch and
sucrose metabolism. In particular, genes associated with the degradation of extracellular
sugars and glucose production were found to be up-regulated. In this context, chbA, celAB,
gmuB, bglBCF (degradation of extracellular cellobiose to glucose) and treBC (degradation
of extracellular trehalose to glucose-6-phosphate) were particularly noteworthy. A similar
pattern of up-regulated genes was also seen when only comparing the data of chromogenic
agar with LB agar. Many sugar-related genes, e.g., associated with maltoporins, mannose,
galactosidases, glucosidases and cellobiose, were up-regulated, whereas amino acid-related
genes were down-regulated, e.g., associated with lysine, leucine, cysteine, and methionine.
However, it was not possible to identify unique genes associated with either the smooth or
the rough phenotype when comparing only two media, as pure media effects could not
be excluded.

4. Discussion

To investigate the virulence and ABR potential of PBIO3459 and provide a subsequent
classification, several phenotypic assays were performed in addition to whole-genome
and RNA sequencing. The rough colonies of PBIO3459 on chromogenic media had a
sponge-like appearance, similar to rugose colony phenotypes of Nocardia spp. [70,71]
or Vibrio cholerae [72]. To our knowledge, such morphologies have not been previously
reported for K. pneumoniae. While PBIO3459 showed low virulence in hypermucoviscosity
(string and sedimentation tests), siderophore production and serum resistance assays,
as well as in vivo mortality, which are all traits typical for hvKp, good production of
exopolysaccharides and cellulose as well as biofilm formation revealed characteristics
putatively important for intestinal colonization and thus opportunistic pathogens [73].
WGS analysis revealed that only two minor siderophore systems (yersiniabactin and
enterobactin) were present, resulting in the observed low siderophore production unusual
for hvKp isolates [74,75]. Serum resistance of PBIO3459 was also low, which again seems
logical when classifying it as opportunistic pathogen that lacks the appropriate virulence
features. Indeed, hvKP1 demonstrated the opposite phenotype. It has been previously
reported that the lipopolysaccharide composition of outer membrane components [76]
but also the siderophore aerobactin [64] play important roles in bacterial serum resistance.
Changes in those lipopolysaccharides [76] or deletion of aerobactin can lead to reduced
growth in serum [64], supporting our results. Overall, concluding our phenotypic results
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and the absence of specific genetic biomarkers, PBIO3459 seemingly does not belong to
the hvKp pathotype. Since it also does not meet the criteria for being classified as MDR
representative, as supported by an antibiotic resistance score of 0 and phenotypic AST,
the opportunistic/commensal character of PBIO3459 is highly likely. We speculate that
PBIO3459 disseminated to the bloodstream from the intestinal tract, enabled by the patient’s
severe gastroenteritis and subsequent potentially disrupted blood–intestinal barrier.

Interestingly, PBIO3459 belongs to a phylogenetic background (ST20) that can cause
fatal infections. Outbreaks with MDR ST20 isolates have been reported in several countries
such as South Korea [77], Spain [78,79], Canada [80], New Zealand [81], Greece [82],
Brazil [83], and China [84–91], and isolates without ABR have occasionally been re-
ported [77,82,83,91]. In a few cases, K. pneumoniae ST20 were isolated from healthy in-
dividuals [92] or those without an underlying infection [82]. For example, Lepuschitz et al.
investigated the colonization pattern of K. pneumoniae in healthy individuals [92]. They
found a variety of different STs, including ST20 isolates; one ST20 KL102 O2v2 and one ST20
KL28 O1v2 isolate [92], with the latter demonstrating the same K and O loci as PBIO3459,
again supporting its classification. Mavrodi et al. reported an outbreak in neonates caused
mainly by K. pneumoniae ST20 [82]. They identified ST20 isolates in infected but also colo-
nized neonates [82]. It is well known that ABR can spread through mobile genetic elements
and that commensal microorganisms acquire such traits in the intestinal tract [93]. For
example, a ST20-K28 K. pneumoniae isolate carrying a hybrid plasmid with the potential for
horizontal gene transfer has been previously reported [90]. Additionally, here, we revealed
high genome sequence identities of exemplary ST20 isolates, only differing in the presence
of ABR and HMR genes. The latter follows in the context of their frequently described
co-localization on mobile genetic elements [94]. In addition, we revealed PBIO3459′s close
relationship (median intra-clade distance: 104) to ST20 genomes from different European
locations and worldwide. Of the 14 genomes most closely related to PBIO3459, eleven
were of human, and two from wastewater origin (Table S1). In addition, note that the
combination of genomic resistance and virulence features present in the two isolates from
North America might suggest their convergent character. However, this will have to be
further explored in the future. Taken together, our results suggest that ABR-Kp isolates
may descend from intestinal commensals by acquiring resistance, possibly then leading to
difficult-to-treat infections.

Finally, our RNA sequencing analysis to explore the underlying mechanisms of
PBIO3459′s two different phenotypes revealed several pitfalls. Since the exact compo-
sition of chromogenic agar is unknown, it was not possible to confidently relate the results
to meaningful biological processes and exclude media effects. LB agar only contains amino
acids as nutrients and no sugars [95]. Therefore, when LB is compared to another medium
which contains sugars as nutrients, the up-regulation of sugar-associated genes is a logical
consequence, while noticing a down-regulation of amino acid-associated genes. Some
sugar-associated genes, e.g., for mannose, fucose, rhamnose or galactofuranose, could be
related to capsular polysaccharide synthesis [96], but these genes could either be phenotype-
or simply medium-related. However, as PBIO3459 showed the same phenotype (smooth)
on LB and BHI agar, while rough colonies appeared on chromogenic medium, we investi-
gated genes that were up- or down-regulated on both, LB and BHI agar, in comparison to
chromogenic agar to receive actually meaningful data. Therefore, the up-regulated genes
associated with the degradation of extracellular sugars and glucose production might be re-
sponsible for the different phenotypes indeed. As extracellular polysaccharides can be used
as nutrient reservoirs [97], depletion or lack of available nutrients might lead to the degra-
dation of PBIO3459′s extracellular sugars. Cellulose, as an architectural polysaccharide,
might also contribute to the phenotype [97]. Cellulose is, i.a., involved in the expression
of the multicellular rdar (rough, dry, and red) morphotype of Salmonella typhimurium and
some E. coli isolates [97,98]; however, these phenotypes do not exactly match our isolate.
Another architectural polysaccharide potentially leading to rough colony morphologies is
colanic acid, which is frequently formed at low temperatures [97,99]. Interestingly, deletion
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mutants of E. coli have shown the importance of colanic acid in the formation of complex
three-dimensional structures [100]. As we have performed all biofilm-related assays at
28 ◦C, colanic acid might also be a contributing factor. However, this issue needs to be
addressed prospectively.

5. Conclusions

Here, we investigated a K. pneumoniae isolate with unusual colony morphology from a
blood sample and revealed its low-level antibiotic resistance and virulence features and
thus opportunistic character. In addition, we discussed potential underlying mechanisms
contributing to the phenotype and the probability that ABR-Kp originate from opportunistic
representatives through the acquisition of antibiotic resistance traits.
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netic analysis.
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