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Cold physical plasma is a partially ionized gas that generates various components identified as potential anticancer compounds. Due to its topical
application, cold plasmas are suitable, especially in dermatological applications. We, therefore, tested the cold plasma effects in skin cancer cells
in vitro. An atmospheric pressure argon plasma jet was used as the plasma source. The plasma exposure alone reduced the metabolic activity and
induced lethal effects in a treatment time-dependent fashion in both cell lines investigated. This was accompanied by executioner caspases 3 and
7, cleavage indicative of apoptosis and reduced cell migration and proliferation. Recent research also indicated roles of novel indirubin derivatives
with potent anticancer effects. Three candidates were tested, and reduced metabolic activity and viability in a dose-dependent manner were found.
Strikingly, one compound exerted notable synergistic toxicity when combined with plasma in skin cancer cells, which may be promising for future
in vivo experiments. © 2022 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

1. Introduction

Plasma technology is an enabler for many processes in
industry and manufacturing. Its properties are especially
beneficial for surface modifications and thermo-sensitive
surfaces. The latter was possible due to the development of
plasma systems operated at low temperatures. This spurred
the inherent idea of investigating the potential of such sources
for medical purposes, primarily of plasma sources operated at
about body temperature.1) Throughout the past two decades,
significant progress has been made in studying plasma
technology for biomedical applications in terms of plasma
medicine devices’ design, construction, characterization, and
biological effects. A few handfuls of plasma systems have
even been tested on human probands and patients, and some
have entered daily clinical practice in hundreds of medical
centers, such as the atmospheric pressure argon plasma jet
kINPen.2) Its main indication is the treatment of chronic
wounds and ulcers. Strikingly, its experimental usage in
palliative squamous cell carcinoma patients with ulcerating
and infected tumor wounds showed a decline in tumor mass
in some of the patients, albeit the intent-to-treat was
antimicrobial and anti-fungal effects on the tumor
surfaces.3)

Skin cancer is a widespread type of malignancy. While
some types of skin cancer, such as actinic keratosis and basal
cell carcinoma, have a modest malignancy, squamous cell
carcinomas and especially melanomas in late stages are
frequently causing tumor-related deaths.4) Since plasma is a
topical treatment option, it appears plausible to test plasma
treatment against skin cancer as a novel research line. A
number of reports have been published in this regard
already.5) In addition, plasma therapy could be combined
with other compounds. Recently, a component of traditional
medicine, indirubin and its derivatives have raised attention
among chemists and oncologists to generate new sub-classes
of compounds with potential anti-skin-cancer efficacy.6)

To this end, we tested here the toxicity of the kINPen
argon plasma jet against skin cancer cells in vitro, especially
with regard to metabolic activity, viability, and migration and
motility. In addition, three indirubin compounds were in-
vestigated for their anti-skin-cancer properties and afterward
combined with plasma treatment. Strikingly, one compound
exerted notable synergistic toxicity when combined with
plasma in skin cancer cells, which may be promising for
future in vivo experiments.

2. Materials and methods

2.1. Cell culture
The human cancer cell lines A431 (squamous cell carcinoma;
ATCC: CRL-1555) and A375 (skin malignant melanoma;
ATCC: CRL-1619) were cultured in fully supplemented cell
culture medium, i.e. Roswell Park Memorial Institute (RPMI)
1640 medium with 10% fetal bovine serum, 1% glutamine,
and 1% penicillin and streptomycin (all Corning, Germany).
Cells were cultured under standard conditions at 37 °C, 95%
humidity, and 5% CO2 in a cell culture incubator (Binder,
Germany). The day before experiments, cells were seeded at
a density of 1× 104 in 96 well flat-bottom plates or 5× 105

in 24 well flat-bottom plates (both Eppendorf, Germany) cells
per well in 100 μl (96 well well plates) or 500 μl (24 well
plates) of fully supplemented cell culture medium. In some
experiments, catalase (5 μg ml−1) was added to the culture
medium. Therefore, catalase was present in cultures before
cold plasma exposure was performed.
2.2. Plasma source and treatment
The atmospheric pressure argon plasma jet kINPen (neoplas,
Germany) was employed for plasma treatment. As feed gas,
argon (Air Liquide, Germany) was used at two standard liters
per minute to ignite the plasma at about 1 MHz with a
dissipated power of about 1W.7) During the treatment, the jet
was positioned for the indicated time over the geometrical
center of each well at the same height, which was ensured by
a programmed, motorized xyz stage (CNC, Germany) with
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100 μm precision. The 24 well and 96 well plates were
treated with a customized template. Argon gas alone
(plasma= off) was used to control for any effects exerted
by the inert gas, which was not the case throughout the study
(data not shown). After the plasma treatment, evaporated
water was compensated by adding predetermined amounts of
double-distilled water to restore iso-osmolarity.
2.3. Small molecules and combination treatment
This study used three different Indirubin-derived small mole-
cules to analyze potential additive effects in combination
with cold plasma treatment. Therefore, Indirubin-3′-oxime
(I-3oxime) was purchased from Sigma-Aldrich, and the drugs
3-[3′-Oxo-benzo[b]thiophen-2′-(Z)-yliden]−1-(β-D-manno-
pyranosyl)oxindole (KD85) and (Z)-3-(3-Oxobenzo[b]thio-
phen-2(3H)-yliden)indolin-2-one (KD88) were provided ex-
ternally (see acknowledgments). Briefly, glycosylated isatin
was prepared by cyclizing the glycosylated aniline with oxalyl
chloride and following condensated with thiaindan-3′-one.8)
Small molecules were initially solved in DMSO and stored at
−20 °C. Drugs were further diluted in RPMI1640 medium and
added to adherent cells. After incubation, tumor toxicity in
response to treatment was determined by evaluating metabolic
activity and cell viability. The drugs were left in the cultures
across the entire cultivation period of 3 and 24 h, and in some
cases, 48 h. For combination treatment, the cells were seeded
one night before the start of the experiment, as above, before
the drugs were added, or the wells were left untreated. One
hour later, the wells were exposed to cold plasma or were left
untreated. The drugs were not washed away in combination
treatment regimens.
2.4. Metabolic activity
Metabolic activity was investigated by the alamar blue assay.
Therefore, 100 μM of 7-hydroxy-3H-phenoxazin-3-on-10-
oxid (resazurin; Alfa Aesar, Germany) was added to the cells
20 h after plasma exposure or drug application. Subsequently,
cells were incubated for 3–4 h under standard conditions at
37 °C, 95% humidity, and 5% CO2 in a cell culture incubator.
In living cells, non-fluorescent resazurin is metabolized into
fluorescent resorufin in a NAD(P)H/H+-dependent reaction,9)

thereby indicating the cell’s metabolic state. Resorufin fluor-
escence was determined at λex 530 nm and λem 590 nm using a
microplate reader (F200; Tecan, Switzerland). In some experi-
ments, to determine the metabolic activity as early as 3 h after
treatment, resazurin was added to all wells immediately after
cold plasma treatment or drug addition.
2.5. Flow cytometry
Tumor-toxicity of cold plasma and small molecules was
characterized 24 h after treatment in 24 well plates using flow
cytometry. Cells were stained with sytox blue dead cell stain
(ThermoFisher, Germany) and activated caspase 3 and 7
detection reagent (ThermoFisher, Germany) for 30min at
37 °C. Cells were washed and acquired using flow cytometry
(CytoFLEX S; Beckman-Coulter, Germany). Gating and quan-
tifying mean fluorescence intensities were performed using
Kaluza 2.1 analysis software (Beckman-Coulter, Germany).
2.6. Generation of GFP-expressing cancer cells by
CRISPR-Cas9 genome editing
Prior to transfection of A431 cancer cells, GFP donor DNA was
generated and cleaned up using the TrueTag DNA Donor Kit
(ThermoFisher, Germany) according to the manufacturerʼs
protocol. Based on general protocols for Alt-R CRISPR-Cas9

mediated genome editing, 6 μl sgRNAACTB (1μM; Integrated
DNA Technologies), 6 μl Cas9 Nuclease V3 (1 μM; Integrated
DNA Technologies), and 88 μl OptiMEM I were incubated for
5 min at room temperature. Subsequently, 100 μl of the formed
sgRNA:Cas9 complexes as well as 500 ng of the synthesized N-
puro-GFP donor DNA were added to 1 × 106 cells in 400 μl
medium in a 24 well plate and were transferred into cells via
lipofection with RNAiMax (ThermoFisher, Germany). After
cells reached 80%–90% confluency, GFP-positive cells were
single-cell sorted using a MoFlo AstriosEQ (Beckman-Coulter,
Germany) based on their fluorescence intensity (λex= 488 nm;
λem= 525 ± 25 nm) into 96 well flat-bottom plates containing
100 μl of fully-supplemented cell culture media per well. For
clone selection after 3–4 weeks of incubation, grown popula-
tions were tested for comparability with the A431 wildtype
(WT) cell line and their GFP expression intensity using a
microplate reader (F200; Tecan, Switzerland). Further, GPF
protein expression in response to plasma application was
monitored by high content imaging (Operetta CLS;
PerkinElmer, Germany) using a 20× air objective (NA= 0.4).
Images were acquired in brightfield and fluorescence channels
(λex= 475 nm; λem= 515 nm) before and 24 h after exposure
using Harmony 4.9 software (PerkinElmer, Germany).
2.7. Scratch assay
To examine the impact of cold plasma on cell migration
in vitro, 1× 106 cells were seeded in a 24-well plate and
incubated under standard conditions (37 °C, 95% humidity,
5% CO2). After reaching confluence, scratches were per-
formed across the well center using a 200 μl pipette tip.
Detached cells were removed through medium exchange, and
adherent cells were plasma-treated (60 s). After exposure, the
gap closure was monitored with an Axio Observer Z.1
microscopy (Zeiss, Germany) before and 24 h and 48 h after
exposure to evaluate cell migration and proliferation10) within
a pilot experiment with three technical replicates per sample.
2.8. Microscopy
High content imaging (Operetta CLS; PerkinElmer,
Germany) was used to analyze plasma-triggered apoptosis
induction 3 and 24 h after treatment. Briefly, cells were
stained with Caspase 3/7 detection reagent (Thermo
Scientific, Germany) for 30 min at 37 °C, and images were
acquired in brightfield and fluorescence channel
(λex= 475 nm; λem= 515 nm) using a 20× air objective
(NA= 0.4). The experiment and subsequent algorithm-based
quantitative image analysis were achieved using Harmony
4.9 software (PerkinElmer, Germany).
2.9. Statistical analysis
Statistical analysis was performed using Prism 9.3 (GraphPad
Software, USA). The determination of IC25 values was done
using nonlinear regression analysis against log2 transformed
exposure times. Data are mean ± standard deviation (SD) of two
independent experiments unless otherwise indicated. Two-way
analysis of variances (ANOVA) was used to compare difference
between groups and statistically significant differences were
marked (*= p< 0.05; **= p< 0.01; ***= p< 0.001).

3. Results

3.1. Cytotoxicity in cold plasma-treated skin cancer
cells in vitro
To evaluate the toxicity of cold plasma in skin cancer cells,
two different cell lines were treated with kINPen-generated
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plasma [Fig. 1(a)] for different exposure times. The number
of viable and terminally dead cells was determined using flow
cytometry [Fig. 1(b)]. A plasma exposure-time dependent
viability reduction was observed 24 h after treatment in A375
melanoma cells and A431 squamous cell carcinoma cells
in vitro, with A431 cells showing less susceptibility to
plasma-induced cell death [Fig. 1(c)]. Furthermore, iterating
the cell concentration (i.e. increasing the cell number while
keeping the volume of cell culture medium constant) revealed
notable differences in cell survival. While treatment of
5× 104 and 1× 105 cells per well reduced skin cancer cell
viability similarly, 5× 105 challenged cells showed no
response to plasma-triggered toxicity as indicated by the
calculated IC25 values [Fig. 1(d)]. Thus, the cell number used
to perform experiments influences the plasma sensitivity of
cancer cells. The previous results were validated by assessing
the metabolic activity of cells with the alamar blue assay
3 and 24 h post plasma treatment [Fig. 1(e)]. A decline of
metabolically active cells was found already 3 h after plasma
application and was lower following 24 h incubation. ROS

are considered primary mediators of plasma-induced biolo-
gical effects,11) and catalase was added (an enzyme cata-
lyzing the decomposition of hydrogen peroxide to water and
oxygen) as a control condition to confirm the effect of ROS.
Catalase reduced the cytotoxic effects of plasma in treated
skin cancer cells [Fig. 1(e)]. To understand the molecular
basis of plasma-induced cytotoxicity, plasma-treated skin
cancer cells tested for activation of executioner caspases 3
and 7, known to be involved in the onset of apoptotic
regulated cell death. Caspase activation was found at early
(3 h) and late (24 h) after plasma treatment [Fig. 2(a)],
confirming apoptosis to be involved in plasma-induced skin
cancer cell cytotoxicity. In addition, we wondered whether
plasma treatment affects the general protein expression of
gene sets required for cellular maintenance. To this end, a
stably transduced GFP-positive skin cancer cell line was
plasma-treated, and fluorescence microscopy was used to find
similar GFP expression in viable GFP-expressing cells 24 h
after treatment [Fig. 2(b)]. Next, the question was whether
skin cancer cell migration and motility were affected by

(a) (b) (c)

(d)
(e)

Fig. 1. (Color online) Plasma treatment reduces viability in skin cancer cells in vitro. (a) photographic image of the atmospheric pressure argon plasma jet
kINPen; (b) representative flow cytometry dot plot showing forward scatter (FSC) against the fluorescent DNA dye sytox blue indicative of terminally dead
cells; (c) relationship between plasma treatment time and reduction in viability in A431 and A375 skin cancer cells 24 h post plasma treatment as determined
using flow cytometry; (d) relationship between plasma treatment time as well as the number of cells and reduction in viability in A431 skin cancer cells 24 h
post plasma treatment and calculated IC25 values; (e) metabolic activity of A431 skin cancer cells 3 h and 24 h post plasma treatment and influence of catalase
addition added to the cells prior to plasma exposure. Data are one representative of three independent experiments. Cat = catalase.
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plasma treatment. To this end, confluent cell cultures were
scratched and exposed to plasma or not, followed by
microscopy at different time points. Plasma treatment re-
duced the ability of skin cancer cells to migrate into and re-
populate the gap [Fig. 2(c)].
3.2. Indirubin mono and combination treatment led to
a declined
Indirubins were suggested as promising anticancer agents,
and we tested three derivates for their cytotoxic effects in
skin tumor cells by analyzing their metabolic activity and
viability 3 h, 24 h, and 48 h after substance addition to
different concentrations. At 3 h, I-3-oxime (I3O) and KD85
already showed some metabolic activity but not viability
decline, while KD88 showed no effects [Fig. 3(a)]. This
indicated that upon drug addition, toxicity was quickly
established but that this was not due to necrotic cell death
but rather regulated cell death because the former would have
led to elevated numbers of terminally dead cells already at
3 h. At 24 h, IO3 and KD85 but not KD88 markedly reduced
viability and metabolic activity [Fig. 3(b)]. Notably, IO3 was
effective at concentrations between 10 μM and 100 μM,
while KD85 had high tumor cell toxicity already between
1 and 10 μM. One hundred micromolar of KD85 killed all
cells in the culture. A similar trend for all drugs and
concentrations was observed 48 h after drug addition
[Fig. 3(c)]. To test whether the three indirubin derivates
showed combined toxicity with plasma treatment, skin cancer
cells were plasma-treated, and afterward, the drugs were
added at a clinically realistic low concentration of 1 μM.
Cellular metabolic activity was assessed 3 and 24 h later. At

3 h, the toxicity of the drugs alone (shown at “ctrl”) was
modest, and combination effects with plasma treatment were
not apparent for all compounds but KD85 (Fig. 4, upper
panel). In addition, plasma treatment showed, in principle, a
treatment time-dependent effect, as expected. At 24 h, the
tendencies of the mono treatments (Figs. 1–3) and the
combination treatment at 3 h were confirmed. KD88 alone
showed no toxicity (Fig. 3). Hence, combination effects with
plasma exposure were the lowest, resulting in the highest
metabolic activity rates (Fig. 4, lower panel). Because plasma
treatment without any drug even reduced metabolic activity
to a greater extent than in the presence of KD88, it can even
be speculated that KD88 has antioxidant or protective
properties in the tumor cells. I3O alone showed toxicity at
higher concentrations, while at a lower concentration in
combination with plasma treatment, the resulting toxicity
was overall modest and similar to that of the absence of any
compound. Strikingly, KD85 showed a synergistic effect
with only 5 s of plasma treatment and remained at baseline
for longer plasma treatment times.

4. Discussion

The present work investigated the cytotoxicity of cold
physical plasma and indirubin small molecules as single
and combination treatments in human skin cancer cells.
Besides dose-response relationships, we found a notable
synergistic effect of plasma treatment with one of the
indirubin compounds.
Plasma treatment is known to have anti-cancer properties

in skin cancer and various other types of malignancies

(a) (b)

(c)

Fig. 2. (Color online) Plasma treatment induces apoptosis via caspase activation and decreases cell motility. (a) quantification of activated caspases 3 and 7 in
A431 cells (at least 2000 individual cells per time point and condition analyzed) at 3 and 24 h post plasma treatment as determined using high content imaging
analysis; (b) brightfield and fluorescence microscopy of wildtype and stably GFP-transduced A431 cells indicating no loss of GFP translation 24 h after plasma
treatment; (c) scratch assay of A431 cells with or without plasma treatment, indicating loss in motility or proliferation. Data are median of one representative of
three experiments (a), one representative of several GFP clones (b), and one technical replicate of three replicates within a pilot experiment (c).
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in vitro and in vivo.5,12,13) Our in vitro work showed a decline
in metabolic activity and cell viability in a plasma treatment
time-dependent fashion, which is in line with previous
reports using other plasma sources and skin cancer cell
lines.14,15) Moreover, we found induction of apoptosis to
precede cellular demise in plasma-treated skin cancer cells.
This cell death pathway is commonly observed in eukaryotic
cells following plasma exposure,16,17) independent of their
malignancy status. Along similar lines, a hampered migration
and motility in plasma-treated skin cancer cells in our study
has been observed in previous reports in plasma
medicine,18,19) also for melanoma cell lines exposed to the
cold plasma of the kINPen jet,20,21) making our findings

consistent with the literature. The relationship between cell
number and plasma-induced toxicity has been less studied. At
higher cell concentrations, the plasma exposure was non-
toxic to the tumor cells, even at long treatment times.
Considering the many millions of non-malignant and malig-
nant cells present in very tiny tumors of, e.g. a few cubic
millimeters only, it becomes clear that the in vitro models are
limited in assessing the suitability of plasma sources for
anticancer treatment in terms of stoichiometric application.
More powerful plasma sources with higher energy densities
and appropriate safety profiles are needed if a decrease in
tumor mass is the goal. Alternatively, this could be achieved
via multiple treatment sessions as done in the cancer patient

(a)

(b)

(c)

Fig. 3. (Color online) Dose-response relationship between three indirubin compounds and plasma treatment. (a) three indirubin compounds titrated in A431
cells and metabolic activity (left) and cell viability (right) 3 h later; (b) three indirubin compounds titrated in A431 cells and metabolic activity (left) and cell
viability (right) 24 h later; (c) three indirubin compounds titrated in A431 cells and metabolic activity (left) and cell viability (right) 48 h later. Data are mean
and SD of one representative of three independent experiments for the metabolic activity assays (left side results), while flow cytometry viability analysis (right
side results) were done only once to confirm principal findings of metabolic activity analysis.
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study with the kINPen,3) or plasma cancer treatment might be
rather focused on promoting immunogenic effects,22) which
was not investigated in the current study.
We identified synergistic toxicity of KD85 indirubin and

plasma treatment. Several studies demonstrated combined
anticancer toxicity of plasma and chemotherapy,23–25)

radiotherapy,26) or pulsed electric fields.27,28) The exact
mode of action of KD85 is so far not known. Since the
toxicity of even higher KD85 levels was low at 3 h, the drug
likely induces regulated cell death by sensitizing tumor cells to
ROS as only 5 s plasma treatment already largely abrogated
cell viability. We have observed a similar phenomenon
previously in melanoma cells but not non-malignant HaCaT
keratinocytes using ADDA 5, a potent inhibitor of cytochrome
C oxidase (complex IV in mitochondrial membranes). After
cytochrome IV blockade, which by itself was only of low
toxicity, the tumor cells became exceedingly sensitive to
plasma-induced cytotoxicity by endogenous ROS amplifica-
tion and ATP crisis.29) Therefore, it can be speculated that
KD85 interferes with mitochondrial pathways. Future studies
will shed more light on molecular details of the combined
effects of cold plasma and the indirubin KD85 in cancer cells.
There was a notable discrepancy between gas-treated and

120 s plasma-treated cells compared to untreated control cells
when catalase was added before treatment [Fig. 1(e)]. Our
previous studies have shown that catalase fully scavenges
plasma-derived hydrogen peroxide in treated liquids.30) This
treatment fully protected eukaryotic cells from plasma-
induced cytotoxic effects,31) which was not the case in the

current study as catalase abrogated most but not all plasma-
mediated metabolic activity reduction. There has been spec-
ulation that cold plasma treatment leads to enzyme inactiva-
tion, explaining the lower protection. For instance, RNAse, a
principally stable enzyme, was shown to be terminally
inactivated using extended cold plasma exposure.32) Yet,
we do not believe in having rendered catalase fully inactive,
as partial protection was still achieved. Instead, other species
may have contributed to cold plasma-mediated cytotoxicity
and were targeted by the antioxidant enzyme catalase. These
species could have also led to potential modifications to the
indirubin compounds, thereby affecting their action on the
cells. For the plasma jet kINPen, it was recently shown that
its short-lived reactive species repertoire could oxidatively
modify amino acids,33,34) which also affected cellular meta-
bolic activity and cytokine release.35) In addition, plasma-
derived reactive species were shown to modify lipids, also
from human and mouse-derived samples.36,37) Moreover,
plasma-treated protein, such as the model protein ovalbumin,
was rendered more immunogenic following oxidative post-
translational modifications (oxPTMs).38) With regard to the
action of the drug, we do not believe the plasma to have
rendered its structure significantly less cytotoxic. Already 3 h
post-exposure, indirubins showed toxic effects in cells
[Fig. 3(a)], suggesting a quick intracellular action and onset
of regulated cell death. Nevertheless, it would be interesting
to investigate potential drug modifications and their func-
tional consequences after plasma treatment in future studies.
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