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A decreased estimated glomerular filtration rate (eGFR) leading to chronic

kidney disease is a significant public health problem. Kidney function is a

heritable trait, and recent application of genome-wide association studies

(GWAS) successfully identified multiple eGFR-associated genetic loci. To

increase statistical power for detecting independent associations in GWAS

loci, we improved our recently developed quasi-adaptive method estimating

SNP-specific alpha levels for the conditional analysis, and applied it to theGWAS

meta-analysis results of eGFR among 783,978 European-ancestry individuals.

Among known eGFR loci, we revealed 19 new independent association signals

that were subsequently replicated in the United Kingdom Biobank (n =

408,608). These associations have remained undetected by conditional

analysis using the established conservative genome-wide significance level

of 5 × 10–8. Functional characterization of known index SNPs and novel

independent signals using colocalization of conditional eGFR association

results and gene expression in cis across 51 human tissues identified two

potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and

three candidate genes across other tissues: SLC22A2, LRP2, and CDKN1C.

These colocalizations were not identified in the original GWAS. By applying

our improved quasi-adaptive method, we successfully identified additional

genetic variants associated with eGFR. Considering these signals in

colocalization analyses can increase the precision of revealing potentially

functional genes of GWAS loci.
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Introduction

Glomerular filtration rate estimated from serum creatinine

(eGFR) is used to quantify kidney function and define chronic

kidney disease (CKD). CKD defined by low eGFR <60 ml/min/

1.73 m2 is strongly associated with an increased risk of major

adverse clinical outcomes such as end-stage kidney disease

(ESKD), cardiovascular (CV) outcomes, and mortality (Go

et al., 2004; Chronic Kidney Disease PrognosisMatsushita

et al., 2010; Hemmelgarn et al., 2010; Astor et al., 2011; Bello

et al., 2011; Gansevoort et al., 2011; Gansevoort et al., 2013;

Weiner et al., 2014; Matsushita et al., 2015). A better

understanding of the biological mechanisms underlying

kidney function is a prerequisite for initiating targeted

treatments and reducing patient mortality, comorbidity, and

associated healthcare costs. eGFR is a heritable trait with

estimated h2 = 39%, and recent application of genome-wide

association studies (GWAS) successfully identified multiple

eGFR-associated genetic loci (Okada et al., 2012; Pattaro et al.,

2012; Mahajan et al., 2016; Pattaro et al., 2016; Hishida et al.,

2018; Kanai et al., 2018; Lee et al., 2018; Wuttke et al., 2019).

Allelic heterogeneity within a GWAS locus is a common

characteristic of complex traits and conditional analyses

successfully identified multiple independent associations with

eGFR. For instance, Gorski et al. (2017) (Gorski et al., 2017)

detected 57 independent signals among the 49 loci. Morris et al.

(2019) (Morris et al., 2019) delineated 127 distinct signals across

the 93 loci. Hellwege et al. (2019) (Hellwege et al., 2019)

discovered 18 independent signals at 15 loci, and Wuttke

et al. (2019) (Wuttke et al., 2019) identified 253 independent

SNPs at 228 loci explaining 7.3% of the eGFR variation.

To identify an independent signal, the SNPs of a locus are

conditioned by the known significant associations. In case

individual genotypes of a sample are available, the genotypes

of known signals are added as covariates to the associationmodel.

Alternatively, these conditional associations can be

approximated by using summary statistics and an appropriate

linkage disequilibrium (LD) panel. Usually, the established

genome-wide significance level of 5 × 10–8 was applied as a

significance threshold for the conditional analysis, which is also

the significance level for the primary GWAS. Since the

conditional analysis is applied on a specific genomic region

and not on a genome-wide scale, 5 × 10–8 is too conservative

and implies a loss of power. In Ghasemi et al. (2021) (Ghasemi

et al., 2021), we developed a quasi-adaptive method to determine

SNP-specific significance levels in conditional analysis.

Although GWAS have discovered multiple eGFR-associated

loci, the underlying genes that influence genetic associations have

often remained unknown. Integration of GWAS signals and

expression quantitative trait loci (eQTL) studies (Nica and

Dermitzakis, 2013) to estimate the relation between gene

expression of nearby genes and eGFR, termed colocalization

(Giambartolomei et al., 2014), allows the identification of

candidate genes and improves the functional interpretation of

GWAS results. For instance, FGF5, CDKL5, TPSAN33, and

METTL10 colocalized with the eGFR-associated loci in

kidney-specific tissues (Graham et al., 2019), and Wuttke

et al. (2019) (Wuttke et al., 2019) detected 17 underlying

genes expressed in kidney tissues including UMOD, KNG1,

and FGF5.

Here, we improved and applied our quasi-adaptive method

to the publically available GWAS meta-analysis results of

783,978 European-ancestry individuals (Wuttke et al., 2019) of

the CKDGen Consortium to uncover additional independent

signals for eGFR. Replication of the identified novel independent

signals was conducted using individual-level participant data of

the United Kingdom Biobank (UKBB) (Bycroft et al., 2018). The

UKBB was not included in the primary GWAS meta-analysis,

and thus represents an independent dataset for replication. We

run colocalization analyses based on associations with eGFR and

with gene expression (eQTLs) in cis across 49 human tissues

included in the Genotype-Tissue Expression (GTEx) project v827,

as well as the microdissected human glomerular and tubulo-

interstitial kidney portions from 187 individuals from the

NEPTUNE study (Gillies et al., 2018). Since the presence of

multiple independent signals within a GWAS locus reduces

power of colocalization, we provided the colocalization

analyses with conditional eGFR-association analysis and eQTL

to detect potential causal genes and compared these results to the

unconditional approach. Our colocalization analyses used the

latest version of GTEx-v8 compared to the GTEx-v6 in the

previous report of eGFR (Wuttke et al., 2019).

The emerging list of novel eGFR-associated variants and

genes influencing kidney disease etiology facilitate CKD targeted

treatment and prevention.

Methods

Additional independent eGFR-associated
signals identification by quasi-adaptive
method

We obtained the CKDGen Consortium 2019 eGFR-

association GWAS meta-analysis results for European-ancestry

(Wuttke et al., 2019) from https://ckdgen.imbi.uni-freiburg.de.

The downloaded file included chromosome, position (b37), SNP

rsid, effect allele, non-effect allele, effect allele frequency, beta,

standard error, p-value, and sample size for each variant. Wuttke

et al. (2019) (Wuttke et al., 2019) identified 253 independent

genome-wide-significant eGFR-associated SNPs through

approximate conditional analyses implemented in GCTA

(Yang et al., 2011) (GCTA COJO Slct algorithm) across

228 European-ancestry-specific and replicated loci. To identify

additional independent eGFR-associated secondary signals, we

applied our quasi-adaptive method to the aforementioned
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GWAS meta-analysis with 8,885,712 genetic variants and

783,978 individuals. The method incorporated LD structure

from individual-level genotype data of 15,000 randomly

selected European-ancestry participants of the UKBB (Bycroft

et al., 2018). The selected UKBB LD reference sample underwent

the same data preparation procedure as described in (Wuttke

et al., 2019) and (Teumer et al., 2019), except for the minor allele

frequency (MAF) cut-off. We excluded SNPs with a MAF <0.
0001. The final dataset for estimating the LD structure included

13,558 unrelated European-ancestry individuals and 36, 228,

692 genetic variants. We used the published 228 replicated

index SNPs (i.e., variants with the smallest p-value of a locus)

as the basis for applying our method (Wuttke et al., 2019). A one

megabase window around the index SNPs was considered as

primary loci. Overlapping loci at which two adjacent index SNPs

were less than one megabase apart or with pairwise correlation

r2 > 0.1 were merged using the lower-bound and the upper-

bound of the merged regions as new locus borders, and the SNP

with the smallest p-value as the new index SNP. This resulted in a

final list of 190 independent loci (Supplementary Table S1). All

SNPs except the index SNP were considered candidate SNPs

within each locus. We conducted conditional analyses on this

dataset using GCTA (GCTACOJO-cond algorithm) by adjusting

for the corresponding index SNP across the 190 loci. The number

of tested SNPs equals to the number of candidate SNPs included

in the conditional analyses across the 190 loci. As described in

Ghasemi et al. (2021) (Ghasemi et al., 2021), our method

prioritizes the candidate SNPs and assigns a SNP-specific

α-threshold to the candidate SNPs in conditional analysis. The

pairwise correlation (r2) and chromosomal distance (d) between

the candidate SNPs and respective index SNP needed as inputs

for our method were retrieved by the INTERSNP tool (Herold

et al., 2009). Let m2 be the number of tested SNPs from N2 loci

(here, N2 = 190 with the index reflecting the analysis of

secondary signals). Of note, m2 and N2 were named as m and

N in the original paper (Ghasemi et al., 2021). The pre-weight

based on r2 (wr2i
) with optimal r2 � 0.3 and a pre-weight based

on d (wdi) which down-weighted SNPs at higher distance step-

wise-strong are assigned to a candidate SNP(i), (1≤ i≤m2 ) as:

wr2i
� 1 − ∣∣∣∣r2i − 0.3

∣∣∣∣ − 0.3
1 − 0.3

wdi �
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
0.5
0.25
0.125
0.0625

if 0<d≤ 1Kb
if 1Kb< d≤ 10Kb
if 10Kb< d≤ 50Kb
if 50Kb< d≤ 100Kb
if 100Kb< d≤ 500Kb

,

The pre-weight wr2i
and wdi are combined (with more

emphasis on d than on r2) by the geometric mean

wi � (wk
di
× wr2i

) 1
k+1, with k � 5, to assign an optimal weightWi �

wi × m2∑m2
i�1wi

to SNP(i).

The quasi-adaptive method is applied onN2 loci, spends type

I error rate (α) overm2 candidate SNPs by incorporatingWi into

the weighted Šidák correction (Kang et al., 2009), and assigns the

SNP-specific α-thresholds to SNP(i) by Gi(α, r2, d ) as follows:

Gi(α, r2, d ) � 1 − (1 − α) Wi
m2 , i � 1, 2, . . . , m2 (1)

SNP(i) is a secondary signal if the conditional p-value is

smaller than Gi(α, r2, d ).
(Ghasemi et al., 2021) showed that Equation 1 has the overall

best power in detecting secondary signals while controlling the

family-wise error rate (FWER) at the α-level. In our study, α was

set to 0.05.

Improved quasi-adaptive method to
identify multiple independent eGFR-
associated signals

The original quasi-adaptive method was developed to

determine one independent signal (secondary signal) with the

smallest conditional p-value smaller than the correspondingly

assigned G(α, r2, d ) at each locus. We extended the idea from

the main paper (Ghasemi et al., 2021) to identify multiple

independent signals (a tertiary signal, a signal of fourth, a

signal of fifth, and beyond). To detect independent tertiary

signals, only loci with confirmed secondary signals (confirmed

according to the quasi-adaptive method) were considered. We

proceeded according to the idea of the paper (Ghasemi et al.,

2021) but performed conditional analyses by adjusting for the

primary index SNP and confirmed secondary signal for each

locus. Let N3 be the number of loci with confirmed secondary

signals and m3 be the number of tested SNPs from N3 loci

(i.e., excluding index SNPs and secondary signals). Of note, the

number of tested SNPs is lower for tertiary signals detection than

for secondary signals detection (m3 <m2). As described in 2.1,

the LD structure was determined between the index SNP and

corresponding candidate SNPs at each locus. Our method was

applied on N3 loci according to the schema described in 2.1 and

the SNP-specific α-thresholds assigned to SNP(i) by equation (2)

Gi(α, r2, d ) � 1 − (1 − α) Wi
m3 , Wi � wi × m3

∑m3
i�1wi

, i � 1, 2, . . . , m3

(2)
The improved method is an iterative process that is

subsequently performed to detect higher-order independent

signals (applied to loci with confirmed independent signals

from the previous steps) until no additional independent

signals are found. Finding higher-order independent signals

keeps the FWER at the α-level because only the number of

tested SNPs and the LD structure have to be taken into account

(as shown in Equations 1, 2, where the LD structure does not

change by analyzing higher-order independent signals.

Due to the complexity of the LD structure of the major

histocompatibility complex (MHC) region, this region was
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excluded from the search for independent signals as also in the

main GWAS (Wuttke et al., 2019).

Replication of the results in the UK
biobank dataset

The novel independent eGFR-associated signals were tested

for replication by conditional association analyses using the

individual-level data of the UKBB (Bycroft et al., 2018)

cohort. This cohort was not included in the initial GWAS of

eGFR, and thus represents an independent dataset for

replication. The phenotype definition, quality control, and

analyses were performed using the same methods and scripts

of the main GWAS (Teumer et al., 2019; Wuttke et al., 2019). As

independent signals were identified from samples of European

ancestry, conditional analyses were restricted to 408,608 UKBB

participants of European ancestry with approximately 19 million

autosomal SNPs that met the inclusion criteria of

MAF ≥0.001 and imputation quality score > 0.3. For

replication of each category of independent signals (secondary,

tertiary, and beyond) across loci, a conditional analysis was

conducted by including sex- and age-adjusted residual of log

(eGFR), the first 15 genetic principal components, and the allele

dosages of all corresponding conditioned SNPs as covariates in a

mixed-model association method as implemented in BOLT-

LMM, v2.3.2 (Loh et al., 2005). Within each locus, conditional

analysis was performed for replication of an identified

independent signal by conditioning on a known index SNP

and (if present) on other known or replicated independent

signals identified before the corresponding independent signal.

Of note, non-replicated signals identified before the independent

signal under investigation were excluded from the conditional

analysis. Supplementary Table S2 shows the list of known index

SNPs and known and novel independent signals with the list of

covariates (SNPs) used for replication. Bonferroni correction of

0.05/9, 0.05/8, 0.05/6, 0.05/3, and 0.05, correcting for the number

of tested SNPs per conditional analysis, was applied to assess the

significance of the replication of secondary signals, tertiary

signals, signals of fourth, signals of fifth, and signal of sixth,

respectively.

Colocalization of eGFR signals with gene
expression in cis

In the first instance, colocalization analyses were run for

known index SNPs and novel independent signals using

unconditional eGFR association analyses in the UKBB and

expression quantitative trait (eQTL) studies (Nica and

Dermitzakis, 2013). eQTL were quantified from 49 human

tissues included in the GTEx project v8 release (Aguet et al.,

2019), and the microdissected human glomerular and

tubulointerstitial kidney portions from 187 individuals from

the NEPTUNE study (Gillies et al., 2018). For colocalization,

the effect alleles for GWAS and eQTLs were harmonized, and

tissue gene pairs with eQTL data were identified within ±

100 kilobases of the independent signals. We used the eQTL

cis window (1-megabase window from each side of the

transcriptional start site) as the region for each colocalization

test. We applied colocalization by using the approximate Bayes

factor computations with the default prior probability = 1 × 10–5

on the signals available in both GWAS and eQTL as implemented

in the coloc. fast function from the R package “gtx” version 2.1.6

(https://github.com/tobyjohnson/gtx). This function provides an

adaptation of Giambartolomei’s colocalization method

(Giambartolomei et al., 2014).

Secondly, we re-run the colocalization analyses using

conditional eGFR association analyses and the eQTL studies.

Conditional analysis was performed for a known index SNP by

adjusting for all known and novel independent signals and for a

novel independent signal by conditioning on a known index SNP

and (if present) on other known or novel independent signals

within the corresponding locus. Supplementary Table S2 shows

the list of covariates (SNPs) used in the eGFR association. We

defined a variant as a colocalized signal (same causal variant

underlying both the GWAS and eQTL association) if the

posterior probability (PP) of a variant was greater than 80%.

Results

Novel eGFR-associated multiple
conditionally independent signals

To detect additional eGFR-associated independent signals,

our method was applied on 190 loci derived from the GWAS

meta-analysis (Wuttke et al., 2019) (Methods and

Supplementary Table S1). Our method identified in total

87 independent signals, including 53 secondary signals

(Supplementary Table S3), 20 tertiary signals (Supplementary

Table S4), 10 signals of fourth (Supplementary Table S5), three

signals of fifth (Supplementary Table S6), and one signal of

sixth (Supplementary Table S7), of which 27 were novel

(Table 1). Of note, all novel SNPs were secondary or higher-

order signals. We have listed the differences between the

previous analysis (Wuttke et al., 2019) and our analysis in

Supplementary Tables S3-S7 in a column labeled “Known”. At a

locus, an SNP detected by our method was considered known

(yes) if it was exactly the independent signal or in high LD

(r2 > 0.8) with a SNP detected by Wuttke et al. (2019) (Wuttke

et al., 2019). We detected 60 known loci, of which 54 loci

comprised the same independent signal identified in the

previous GWAS, and six loci with independent signals in

high LD with the identified independent signals from the

aforementioned GWAS.
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TABLE 1 Summary of novel independent eGFR-associated signals identified by quasi-adaptive method and replication results.

— Chr Signal Index Closest gene D [bp] r2 Pos (b37) EA EAF GWAS-MA GCTA α-

threshold

Replication-UKBB

Effect Se P Effect Se P Effect Se P

Secondary
signal

3 rs147877018 rs1397764 TFDP2 62,539 0.031 141,813,349 A 0.081 −0.0047 0.0007 1.18E-
12

−0.0035 0.0007 1.13E-
07

1.33E-07 −0.0042 0.0006 1.80E-
11

4 rs59664098 rs7667050 PPARGC1A 50,300 0.001 23,863,409 A 0.070 −0.0037 0.0007 2.30E-
07

−0.0038 0.0007 8.66E-
08

1.31E-07 −0.0011 0.0007 8.70E-
02

6 rs3904600 rs6921580 RREB1 −94,049 0.107 7,109,665 C 0.370 0.0027 0.0004 4.91E-
14

0.0018 0.0003 9.75E-
08

1.37E-07 0.0030 0.0004 1.80E-
16

7 rs12111979 rs700753 LOC730338 59,613 0.170 46,813,297 T 0.420 0.0004 0.0003 2.38E-
01

0.0017 0.0003 8.07E-
08

1.39E-07 0.0007 0.0004 4.70E-
02

8 rs4566 rs10086569 SLC7A13 −886,127 0.002 86,361,082 T 0.610 0.0020 0.0004 1.03E-
08

0.0019 0.0004 5.90E-
08

7.37E-08 0.0011 0.0003 1.50E-
03

12 rs2300127 rs11062167 SLC6A13 −49,290 0.011 315,449 T 0.570 0.0023 0.0004 1.62E-
10

0.0019 0.0004 1.99E-
07

2.35E-07 0.0008 0.0003 2.20E-
02

12 rs11056376 rs10846157 RERG −17,637 0.020 15,307,394 A 0.910 0.0040 0.0007 5.43E-
10

0.0034 0.0006 2.03E-
07

2.36E-07 0.0021 0.0006 6.00E-
04

12 rs3730071 rs2634675 ZNF641 427,943 0.001 49,168,798 A 0.029 −0.0058 0.0011 1.86E-
07

−0.0060 0.0011 7.20E-
08

7.37E-08 −0.0040 0.0010 5.40E-
05

16 rs438339 rs113956264 RPL3L 6,421 0.001 2,003,425 T 0.880 0.0035 0.0007 5.36E-
08

0.0034 0.0007 1.60E-
07

4.17E-07 0.0010 0.0006 8.60E-
02

Tertiary
signal

2 rs807574 rs807624 DDX1 24,768 0.055 15,807,239 A 0.600 0.0011 0.0004 1.45E-
03

0.0019 0.0003 8.09E-
08

7.62E-07 0.0019 0.0004 9.90E-
08

7 rs13227214 rs3757387 IRF5 164,269 0.057 128,740,355 C 0.460 −0.0024 0.0003 1.12E-
12

−0.0018 0.0003 5.64E-
08

2.40E-07 −0.0027 0.0003 6.60E-
15

9 rs7035892 rs2039424 PIP5K1B 107,868 0.089 71,540,042 A 0.840 0.0053 0.0006 1.27E-
17

0.0037 0.0006 1.23E-
09

2.43E-07 −0.0016 0.0008 6.20E-
02

11 rs81205 rs233438 KCNQ1 4,412 0.261 2,798,804 A 0.540 0.0034 0.0004 4.73E-
20

0.0018 0.0003 1.28E-
07

1.45E-06 0.0020 0.0004 3.50E-
07

11 rs294345 rs3925584 DCDC1 −93,675 0.012 30,666,660 T 0.067 −0.0057 0.0007 2.32E-
14

−0.0035 0.0007 3.01E-
07

4.21E-07 −0.0001 0.0008 8.50E-
01

11 rs1193692 rs11227260 KAT5 42,911 0.025 65,504,069 A 0.600 −0.0027 0.0005 4.33E-
09

−0.0024 0.0005 2.86E-
07

7.54E-07 −0.0020 0.0007 4.50E-
03

15 rs4775830 rs1153855 GATM −127,414 0.167 45,533,344 A 0.430 −0.0017 0.0004 1.14E-
06

0.0019 0.0003 4.65E-
09

2.49E-07 0.0018 0.0004 2.10E-
06

20 rs75041355 rs6127099 CYP24A1 6,360 0.056 52,737,762 A 0.034 0.0083 0.0011 3.66E-
14

0.0059 0.0011 4.87E-
08

1.36E-06 0.0031 0.0012 8.90E-
03

(Continued on following page)
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TABLE 1 (Continued) Summary of novel independent eGFR-associated signals identified by quasi-adaptive method and replication results.

— Chr Signal Index Closest gene D [bp] r2 Pos (b37) EA EAF GWAS-MA GCTA α-

threshold

Replication-UKBB

Effect Se P Effect Se P Effect Se P

Signal of 4th 2 rs2075251 rs35472707 LRP2 15,877 0.016 170,011,458 A 0.750 −0.0028 0.0004 8.41E-
12

−0.0021 0.0004 1.12E-
07

1.76E-06 −0.0031 0.0004 2.80E-
15

6 rs6912283 rs881858 LINC01512 −442,115 0.000 43,364,494 A 0.560 −0.0009 0.0004 1.34E-
02

−0.0018 0.0003 8.72E-
08

5.50E-07 −0.0018 0.0004 4.20E-
07

9 rs4745268 rs2039424 PIP5K1B −26,649 0.107 71,405,525 T 0.310 0.0035 0.0004 4.45E-
19

0.0022 0.0004 1.00E-
08

1.82E-06 0.0012 0.0004 6.00E-
03

11 rs1056819 rs233438 KCNQ1 155,469 0.002 2,949,861 T 0.200 −0.0021 0.0004 2.10E-
06

−0.0023 0.0004 1.65E-
07

5.51E-07 −0.0022 0.0004 9.50E-
07

20 rs2585441 rs6127099 CYP24A1 6,553 0.056 52,737,955 C 0.190 −0.0039 0.0005 6.57E-
14

−0.0025 0.0005 1.45E-
06

3.18E-06 −0.0026 0.0004 1.00E-
08

20 rs6062357 rs2261092 ZGPAT 538,806 0.001 62,892,739 T 0.450 0.0020 0.0004 2.19E-
08

0.0019 0.0004 8.24E-
08

5.50E-07 0.0013 0.0003 2.50E-
04

Signal of 5th 6 rs76426793 rs12207180 SLC22A2 −66,715 0.005 160,566,392 A 0.120 −0.0022 0.0005 4.85E-
05

−0.0023 0.0005 1.29E-
06

1.73E-06 −0.0049 0.0006 2.50E-
16

7 rs2695565 rs2365286 LINC01006 139,133 0.000 156,397,312 A 0.200 0.0022 0.0004 6.54E-
07

0.0023 0.0004 5.27E-
07

9.67E-07 0.0027 0.0004 7.00E-
10

15 rs4886425 rs10851885 NRG4 −2,179,960 0.001 74,124,543 A 0.170 −0.0027 0.0005 4.26E-
09

−0.0023 0.0005 4.58E-
07

5.43E-07 −0.0003 0.0004 4.50E-
01

Signal of 6th 7 rs6951593 rs2365286 LINC01006 12,546 0.110 156,270,725 A 0.047 0.0060 0.0010 4.65E-
10

0.0042 0.0009 3.90E-
06

7.69E-06 0.0038 0.0009 1.30E-
05

This table contains the list of novel independent eGFR-associated signals identified by the quasi-adaptive method and replication results. Chr: chromosome; Signal: novel independent signal identified by quasi-adaptive method; Index: known index SNP in

the corresponding locus has previously been reported in GWAS of eGFR; Closest gene: the closest gene to index SNP; D[bp]: the distance between index SNP and signal; r2: pairwise LD correlation between index SNP and signal using UKBB reference sample;

Pos: position of signal; EA: effect allele of signal; EAF: frequency of the effect allele of signal; GWAS-MA: European-ancestry-specific GWASmeta-analysis; GCTA: approximate conditional analyses implemented in GCTA; Effect: effect of signal; Se: standard

error of signal; P: p-value of signal; α-threshold: SNP-specific α-threshold assigned by quasi-adaptive method to a signal; Replication-UKBB: replication analysis by BOLT-linear mixed model in United Kingdom Biobank data set; Bold font indicates

replicated independent signals.
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Replication of novel multiple independent
signals in European-ancestry individuals

To assess the validity of our newly identified independent

signals, we conducted conditional eGFR-association analyses

using individual-level genotype data among

408,608 European-ancestry participants of the UKBB as

independent replication (Methods). For 27 novel independent

signals, we conducted 27 conditional analyses (Supplementary

Table S2). In total, replication was achieved for 19 signals (Five

secondary signals, five tertiary signals, six signals of fourth, two

signals of fifth, and one signal of sixth) after applying multiple

testing corrections (Methods, Table 1 and Figure 1A). Of note,

seven of these signals achieved genome-wide significant

conditional p-values, and additional four signals were

nominally significant (p < 0.05) in the replication analysis.

Effect estimates for the replicated signals showed a strong

correlation (r2 = 0.937) with the discovery results (Figure 1B).

For better comparison, the regional association plots were

generated for the unconditional associations and the conditional

associations with the highlighted known index and the novel

independent signal separately (Supplementary Figures S1-S57).

Of note, the new independent signals rs3904600, rs13227214,

rs81205, rs2075251, rs2695565, and rs6951593 (identified by the

quasi-adaptive method based on the meta-analysis of the

previous GWAS of eGFR (Wuttke et al., 2019)) showed

smaller p-values in their unconditional analysis within the

UKBB compared to their corresponding index SNP

(Supplementary Figures S4, S19, S22, S31, S52, S55).

Colocalization with gene expression

Colocalization analyses were performed with eQTLs in cis

across 51 tissues, including kidney cortex, glomerular, and

tubulointerstitial for the 17 known eGFR-associated index

SNPs as well as for the 19 new independent signals using

unconditional and conditional eGFR results (Methods and

Supplementary Table S2).

Using unconditional eGFR associations, we identified

56 genes mapping to 13 out of 17 index SNPs for which cis-

eQTL in at least one tissue colocalized with an eGFR-associated

signal with a high PP (≥ 80%) (Supplementary Table S8 and

Supplementary Figure S58). Results for the 19 new independent

signals using unconditional GWAS associations revealed

significant colocalization in at least one tissue for 42 genes

mapping to 11 of the 19 independent signals (Supplementary

Table S8 and Figure 2A).

To determine more robust evidence of colocalization, we re-

run the colocalization for each known index SNP using the

corresponding conditional eGFR association. We identified

53 genes mapping to 11 index SNPs for which cis-eQTL in at

least one tissue colocalized with an eGFR-associated signal with a

high PP (Supplementary Table S9 and Supplementary Figure

S59). We identified 10 genes that colocalized with four index

SNPs exclusively using conditional associations, which would

have remained undetected if only colocalization of unconditional

associations had been considered (Table 2). Comparing

colocalization for index SNPs based on unconditional with

conditional associations across all tissues revealed consistent

results for 45 genes mapping to eight index SNPs

(Supplementary Table S10), which means that multiple

independent signals did not affect the colocalization analyses

at these loci. On the other hand, 11 genes mapping to six index

SNPs were detected only by colocalization using unconditional

association, indicating that multiple independent signals at these

loci affected the colocalization analyses for the corresponding

index SNPs (Supplementary Table S11).

Colocalization for each new independent signal using

conditional association analysis mapped 12 genes to eight of

the 19 independent signals with colocalization PP ≥ 80% in at

least one tissue (Supplementary Table S9 and Figure 2B). We

identified eight genes mapping to 4 novel independent signals

with consistent results between colocalization based on

unconditional and conditional associations, indicating accurate

colocalization results for novel independent signals at these loci

(Supplementary Table S10). In addition, five genes mapping to

5 novel independent signals were identified exclusively by

colocalization using conditional associations, which would

have remained undetected if only colocalization using

unconditional associations had been considered (Table 2 and

Figure 2B). On the other hand, 34 genes mapping to 9 novel

independent signals were detected only by colocalization using

unconditional associations, indicating that colocalization using

unconditional association has less power to detect accurate

results at these loci (Supplementary Table S11).

The complete comparison of the colocalization results for

known index SNPs and novel independent signals using

conditional versus unconditional associations are provided in

Supplementary Figures S60-S76.

Discussion

Application of our recently developed quasi-adaptive method

to the publicly available GWAS meta-analysis results of eGFR

among 783,978 European-ancestry individuals (Wuttke et al.,

2019) and subsequent replication in additional

408,608 individuals from UKBB identified 19 novel

independent eGFR association signals. These signals included

five secondary signals, five tertiary signals, six signals of fourth,

two signals of fifth, and one signal of sixth. These results would

have gone undetected by conditional analysis applying the

commonly used but too conservative genome-wide

significance level of 5 × 10–8. Of note, the individuals included

in the LD reference sample were also part of the replication stage,
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but an influence of the results is very unlikely because of the

substantially larger sample size in the replication analysis, and the

different methods applied (summary statistics with LD reference

vs individual level conditional analysis).

Some previous reports on eGFR support our findings. For

instance, our secondary signal rs147877018 was previously

discovered as an eGFR-associated signal through conditional

analysis implemented in GCTA (at locus-wide significance,

p < 10–5)20. In addition, Wuttke et al. (2019) (Wuttke et al.,

2019) reported ADCY6 as a novel eGFR candidate gene in

humans by performing a nested candidate gene analysis in

mice. ADCY6 has not been reported to contain genome-wide

significant eGFR-associated SNPs or to be located near known

loci. However, in our study, the secondary signal

rs3730071 was discovered near ADCY6 (Supplementary

Figure S13).

FIGURE 1
(A) Replication of eGFR-associated multiple independent signals identified by the quasi-adaptive method using the United Kingdom Biobank
(UKBB) genotype data among European-ancestry individuals. The x-axis shows the chromosome number, and the y-axis is the −log10(P) of the
conditional GWAS of eGFR. Color coding reflects evidence of replication, which is coded as replicated (blue) and non-replicated (black). Different
shapes showed multiple independent signals. (B), comparing genetic effect estimates between conditional analysis using GCTA on the GWAS
meta-analysis of a previous GWAS of eGFR (x-axis) and by conditional GWAS of eGFR on UKBB (y-axis). Color coding reflects replication evidence,
coded as significant (blue) and non-significant (black). Error bars correspond to 95% confidence intervals. Pearson’s correlation coefficient r2 = 0.937
(95% CI = 0.84, 0.98) for the replicated signals. The blue dashed line corresponds to the diagonal line.
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Colocalization of eGFR-associated known index SNPs and

novel independent signals and gene expression implicate specific

potential functional genes for follow-up. We investigated the

kidney by using cis-eQTL dataset from the publicly available

GTEx project (Aguet et al., 2019). However, the human kidney

tissues have been poorly covered by the GTEx study, and only the

FIGURE 2
(A,B) Colocalization of eGFR association of novel independent signals with gene expression (cis eQTLs) across tissues. (A and B) depict
colocalization results based on unconditional and conditional eGFR association analyses, respectively. Gene with at least one posterior probability of
colocalization (PP ≥ 80%) across tissues (x-axis) is shown with the respective underlying variant and chromosome number (y-axis). Colocalizations
are illustrated as dots, where dot size corresponds to the PP and are colored according to the predicted change in gene expression relative to
the lower eGFR. Color coding on the y-axis reflects the locus.
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kidney cortex with small sample size is included in this dataset.

To overcome this limitation, we also investigated kidney tissue by

using a cis-eQTL dataset frommicrodissected human glomerular

and tubulointerstitial kidney portions from 187 individuals from

the NEPTUNE study (Gillies et al., 2018).

The presence of multiple independent GWAS signals at a

locus violates the assumption required by the applied

colocalization method (one causal variant for each locus) and

likely reduces the power to detect accurate colocalization results.

In this context, Wu. et al. (2019) (Wu et al., 2019) showed that for

a locus with multiple GWAS signals and/or multiple eQTL

signals for the same gene, integration of conditional GWAS

association and conditional eQTL led to more robust evidence

of colocalization. Our project provides conditional eGFR

association tests conducted in the UKBB individual-level

genotype dataset. These tests were used to improve the

colocalization analyses of the known index SNPs and novel

independent signals to identify plausible effector genes related

to eGFR. Our findings could be improved by adding the

conditional eQTLs data, which may have affected our ability

to colocalize signals. It is worth noting that the conditional

eQTLs data are not available in our study.

The consistent results between colocalization using

unconditional and conditional associations at a locus with

multiple independent signals confirm that the colocalization

based on unconditional association has enough power to

detect accurate colocalization. On the other hand,

inconsistent results indicate that colocalization based on

unconditional association is affected by the presence of

other independent signals at a locus and has less power to

detect true colocalization. Therefore, we suggest more

accurate results based on colocalization analyses using

conditional association and eQTLs, revealing the plausible

candidate genes after eliminating the potential effect of other

multiple signals.

For instance, in tubulointerstitial and kidney cortex we

revealed the known index SNPs rs1397764 and rs1153855 as

the shared underlying variants for colocalization of lower

eGFR with lower expression of TFDP2 and

CTD−2651B20.4, respectively. This was identified by

TABLE 2 Summary of colocalization of eGFR association known index SNPs and novel independent signals with posterior probability (PP ≥ 80%). (A-B)
contain summary of colocalization of eGFR association known index SNPs and novel independent signals with a high posterior probability of
colocalization (PP) ≥ 80% in at least one tissue.

Rsid Known Chr Gene Tissue Supplementary Figure

A: New colocalizations in kidney tissues with consistent results between conditional and unconditional association analyses

rs1397764 Yes 3 TFDP2 tubulointerstitial Supplementary Figure S62A

rs13227214 No 7 TSPAN33 tubulointerstitial Supplementary Figure S76B

rs1153855 Yes 15 CTD-2651B20.4 kidney cortex Supplementary Figure S74A

B: Summary of colocalization results identified exclusively by colocalization based on conditional association analyses, across all tissues

rs35472707 Yes 2 KLHL41 brain spinal cord cervical c-1 Supplementary Figure S60A

rs2075251 No 2 LRP2 thyroid Supplementary Figure S60B

rs12207180 Yes 6 RP11−288H12.3 small intestine terminal ileum Supplementary Figure S63A

rs12207180 Yes 6 SLC22A2 esophagus gastroesophageal junction Supplementary Figure S63A

rs12207180 Yes 6 SLC22A2 esophagus muscularis Supplementary Figure S63A

rs12207180 Yes 6 SLC22A2 prostate Supplementary Figure S63A

rs12207180 yes 6 SLC22A2 testis Supplementary Figure S63A

rs12207180 yes 6 SLC22A3 artery tibial Supplementary Figure S63A

rs6912283 no 6 CRIP3 heart atrial appendage Supplementary Figure S65B

rs10086569 yes 8 RMDN1 adrenal gland Supplementary Figure S68A

rs10086569 yes 8 WWP1 muscle skeletal Supplementary Figure S68A

rs1056819 no 11 CARS1 artery tibial Supplementary Figure S71B

rs81205 no 11 CDKN1C nerve tibial Supplementary Figure S72B

rs4775830 no 15 SLC28A2-AS1 brain spinal cord cervical c-1 Supplementary Figure S74B

rs2261092 yes 20 EEF1A2 whole blood Supplementary Figure S75A

rs2261092 yes 20 MYT1 brain substantia nigra Supplementary Figure S75A

rs2261092 yes 20 SLC17A9 brain substantia nigra Supplementary Figure S75A

rs2261092 yes 20 ZGPAT ovary Supplementary Figure S75A

Rsid: SNP rsid; Known: SNP was reported as an index SNP in the previous report of eGFR fromWuttke et al. (2019) is labeled as “yes”, and novel independent signals identified by quasi-

adaptive method are labeled as “no”; Chr: chromosome; Supplementary Figure: comparison of the colocalization results for known index SNPs and novel independent signals using

conditional versus unconditional associations.
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colocalization based on both unconditional and conditional

association analyses (Table 2A and Supplementary Figures

S58, S59). Across other tissues, we suggest SLC22A2 as a

plausible candidate gene colocalized with index SNP

rs12207180, which was detected only after eliminating the

effect of other multiple signals at the locus (Table 2B and

Supplementary Figure S59). TFDP2, CTD−2651B20.4, and

SLC22A2 were exclusively identified by our colocalization

and have not been reported in the previous report of eGFR

(Wuttke et al., 2019). TFDP2 encodes E2F dimerization

partner (DP)-2, which forms heterodimers with the E2F

transcription factors resulting in transcriptional activation

of cell cycle-regulated genes. Although the role of TFDP2

in the context of renal disease has not been reported, several

genetic associations in or near TFDP2 have been reported in

previous GWAS of eGFR and CKD (Kottgen et al., 2010;

Pattaro et al., 2016; Hellwege et al., 2019; Morris et al., 2019;

Wuttke et al., 2019). In addition, TFDP2 was identified as a

prioritized gene for eGFR by performing a transcriptome-

wide association study (TWAS) and a summary Mendelian

randomization test (Doke et al., 2021). Furthermore, the

expression of TFDP2 was associated with the eGFR index

variant, specifically in kidney-specific eQTL associations

(Graham et al., 2019). CTD−2651B20.4 is a protein-kinase,

interferon-inducible double-stranded RNA-dependent

inhibitor, and repressor of (P58 repressor) (PRKRIR)

pseudogene with Ensembl version identifier

ENSG00000259433.2. There is no explicit function for

CTD−2651B20.4, and it has not been reported to contain or

be located near associated variants with phenotypes, diseases,

and traits in humans or other species. SLC22A2 is specifically

expressed in the kidney and plays a critical role in the renal

secretion of various cationic compounds (Aoki et al., 2008).

SLC22A2 encodes the polyspecific organic cation transporter

(OCT2) and mediates tubular uptake of organic compounds

including creatinine in the basolateral membrane of renal

tubular epithelial cells (Urakami et al., 2004). SLC22A2 has

been reported to contain or to be located near genetic

associations in multiple GWAS of eGFR and CKD (Kottgen

et al., 2010; Mahajan et al., 2016; Morris et al., 2019; Wuttke

et al., 2019).

Our colocalization of novel independent signals suggests

rs13227214 as the shared underlying variant for colocalization

of lower eGFR with lower expression of TSPAN33in

tubulointerstitial tissue, which was robustly identified based

on both unconditional and conditional association analyses

(Table 2A and Figure 2). Furthermore, in thyroid and nerve

tibial tissue, we suggest LRP2 and CDKN1C as the plausible

candidate genes colocalized with rs2075251 and rs81205,

respectively, which were detected only by colocalization based

on conditional associations (Table 2B and Figure 2B). TSPAN33,

LRP2, and CDKN1C were identified exclusively by our

colocalization of novel independent signals and would have

remained undetected if only colocalization of the

corresponding index SNPs rs3757387, rs35472707, and

rs233438 were considered at these loci (Supplementary Figure

S67, Supplementary Figure S60, and Supplementary Figure S72).

TSPAN33 is a member of the tetraspanin family and encodes a

transmembrane protein. TSPAN33 is highly expressed in the

kidney and TSPAN33 mRNA is detectable in the kidney by both

microarray and qPCR (Luu et al., 2013). Furthermore, in

colocalization analysis of kidney-specific eQTL association

(kidney cortex (Ko et al., 2017), glomerulus, and tubule-

interstitial compartments (Gillies et al., 2018), TPSAN33

showed significant colocalization with the eGFR association

(Graham et al., 2019). LRP2 encodes the megalin receptor

(Nielsen and Christensen, 2010) and connected to its seed

gene DAB2, through protein–protein interaction (Hosaka

et al., 2009). Chasman et al. (2012) identified LRP2 related to

the kidney function through connection with the previously

known eGFR gene DAB2 and prior biological knowledge

about megalin system in kidney function (Chasman et al.,

2012). CDKN1C expressed in the heart, brain, lung, skeletal

muscle, kidney, pancreas and testis. Up-regulation of miR-

199a-5p through suppressing CDKN1C might promote cell

proliferation in autosomal dominant polycystic kidney disease

tissues (Sun et al., 2015), which is a genetic disorder characterized

by the growth of numerous cysts in the kidney often causes renal

failure with many serious complications.

In summary, we have extended our quasi-adaptive method

toward identifying multiple independent SNPs within a locus,

applied this method to an eGFR meta-analysis result, and

discovered and replicated novel eGFR-associated SNPs. Using

these results, we revealed plausible candidate genes for eGFR by

colocalization, partly undetected using standard approaches.

These findings will help improve the understanding of

biological mechanisms underlying kidney function and may

subsequently help reducing the burden of CKD.
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