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Abstract: Acute pancreatitis (AP) is a major, globally increasing gastrointestinal disease and a biliary
origin is the most common cause. However, the effects of bile acids (BAs), given systemically,
on the pancreas and on disease severity remains elusive. In this study, we have investigated the
roles of different circulating BAs in animal models for AP to elucidate their impact on disease
severity and the underlying pathomechanisms. BAs were incubated on isolated acini and AP was
induced through repetitive injections of caerulein or L-arginine; pancreatic duct ligation (PDL); or
combined biliopancreatic duct ligation (BPDL). Disease severity was assessed using biochemical
and histological parameters. Serum cholecystokinin (CCK) concentrations were determined via
enzyme immunoassay. The binding of the CCK1 receptor was measured using fluorescence-labeled
CCK. In isolated acini, hydrophobic BAs mitigated the damaging effects of CCK. The same BAs
further enhanced pancreatitis in L-arginine- and PDL-based pancreatitis, whereas they ameliorated
pancreatic damage in the caerulein and BPDL models. Mechanistically, the binding affinity of the
CCK1 receptor was significantly reduced by hydrophobic BAs. The hydrophobicity of BAs and the
involvement of CCK seem to be relevant in the course of AP. Systemic BAs may affect the severity of
AP by interfering with the CCK1 receptor.

Keywords: acute pancreatitis; bile acids; CCK1R binding; hydrophobicity

1. Introduction

Acute pancreatitis (AP) is one of the most frequent non-malignant gastroenterological
disorders requiring hospitalization. In recent decades, its incidence has increased steadily
worldwide, with an annual aggregate cost of more than USD 2.63 billion in the United
States [1,2]. Approximately one fifth of AP patients suffer from local or systemic compli-
cations and (multi-)organ failure, with a mortality rate of up to 40% in the most severe
cohort [3]. Despite intensive efforts, no causal treatment is available for this condition,
and therefore, management is solely based on symptomatic and supportive therapy or
dealing with its complications [4]. AP is considered to originally occur in the pancreatic
acinar cells, which are vulnerable to extracellular pathological stimuli [5]. In these exocrine
units, digestive proteases, beginning with trypsin [6], are prematurely activated after co-
localization with the lysosomal hydrolase cathepsin B. Imbalances between the activation
and degradation of digestive enzymes may result in injury of the acini [7]. Among various
etiologies, migrating gallstones are one of the most common causes of AP, which accounts
for 30–50% of all cases [8].
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Bile acids (BAs), the largest component of bile juice, have recently gained attention for
their pathological role in both rodents and humans [9]. Starting from cholesterol, primary
BAs are synthesized and subsequently conjugated in the liver with glycine or taurine [10].
Two major primary BAs are cholic acid and chenodeoxycholic acid. After secretion into
the duodenum, they are metabolized to the secondary BAs, lithocholic acid and deoxy-
cholic acid, by the gut microbiome. BAs in the intestine are reabsorbed, mainly in the
distal ileum, and finally, return to the liver via enterohepatic circulation for recycling. In
rodents, taurine-conjugated forms such as taurocholic acid and taurodeoxycholic acid are
predominant [11–13]. BAs can also be classified according to their chemical properties.
Depending on the hydroxylation, BAs are differentiated by their hydrophobicity index with
different biological effects. There are, in total, approximately 20 different BAs, including
primary compounds and their taurine- as well as glycine-conjugated forms, with hydropho-
bicity indices from −0.84 to +1.23. The more hydrophobic BAs are present, the higher the
hydrophobicity indices, and vice versa. Among them, lithocholic acid (LCA) is one of the
most hydrophobic agents [14,15]. Noticeably, taurolithocholic acid 3-sulfate (TLCS) is a
strongly hydrophobic compound and was previously used in other studies on AP [16–18].
Tauroursodeoxycholic acid (TUDCA) is a typical hydrophilic BA and was approved for
the treatment of some biliary disorders such as primary sclerosis cholangitis. Moreover,
an emerging role of TUDCA is discussed for many other diseases, including AP [19–21],
which makes this BA an attractive candidate for further investigations.

In addition to their ability to emulsify lipids, BAs show more and more clear effects in
regulating many pathological processes [22]. The pathogenetic effects of some BAs have
been reported for several diseases such as liver, biliary and metabolic disorders [9,23].
However, in pancreatitis, knowledge of the role of BAs is limited and mainly based on
retrograde ductal infusion models, which remain controversial as the extent of the intra-
pancreatic duct pressure and characteristics of infused agents also seem to contribute to
acute inflammation [24]. Although it has been shown that AP is highly prevalent among
hepatobiliary disorders [25], data on susceptibility to the development and modulation of
pancreatitis in cholestatic disorders that are accompanied by increased serum levels of BAs
are insufficient. In particular, the mechanisms through which BAs affect acinar cells, when
given systemically, have not been elucidated.

This study aims to investigate the impact of various BAs using in vitro-to-in vivo
models and addresses the underlying mechanisms through which BAs modulate the
severity of AP.

2. Results
2.1. Impact of Hydrophobic and Hydrophilic BAs in Mouse Isolated Acini

We first investigated protease activation on the cellular level in isolated acini upon
exposure to BAs with different levels of hydrophobicity. We initially performed in vitro
experiments with lower concentrations (50, 100 and 200 µM) of BAs but no clear changes in
intracellular protease activation were observed. The intracellular activities of trypsin and
cathepsin B (CTSB), a known trypsinogen activator, were significantly higher when treated
with 500 µM TLCS or LCA in comparison to the control cells. Interestingly, these hydropho-
bic BAs did not further enhance the effect of CCK in isolated living acini, and co-incubation
of them with supramaximal CCK (1 µM) reduced intracellular protease activation com-
pared to CCK alone (Figure 1A,B,D,E). The stimulation of acini with submaximal CCK
concentrations led to peak amylase secretion at a concentration of 100 pM. The addition
of the hydrophobic bile acids TLCS and LCA attenuated the amylase secretion, showing
a similar effect as under conditions of supramaximal CCK (Figure 1C,F). Conversely, the
hydrophilic bile acid TUDCA did not alter intracellular protease activity in acini either in
unstimulated conditions or after supramaximal doses of CCK (Figure 1G,H). In parallel,
exposure to physiologic CCK concentrations did not modify amylase secretion (Figure 1I).
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Figure 1. Impact of BAs in CCK-stimulated acini. (A,B) TLCS alone, a hydrophobic BA, induced
intracellular protease activation, as shown for trypsin and cathepsin B, which was less prominent than
with supramaximal CCK (1 µM). Co-incubation of CCK and TLCS attenuated the protease activation.
(C) Stimulation of isolated acini with different concentrations of CCK showed a peak at 100 pM,
which was blocked after co-incubation with TLCS. (D–F) Similarly, LCA alone, another hydrophobic
BA showed the same results as TLCS in stimulating acinar cells and mitigating the impact of CCK.
(G–I) In contrast, the hydrophilic TUDCA neither altered intracellular protease activation, nor
decreased amylase secretion following co-incubation of CCK and TUDCA. Concentration for TLCS,
LCA and TUDCA was 500 µM. All results were based on 5 experiments per group. Statistically
significant differences for more than 3 groups were tested via one-way ANOVA followed by Tukey’s
multiple comparison test, and significance levels of p < 0.05 are marked by an asterisk. ns: non
significant; RFU: Relative Fluorescence Units.

We further tested for the potentially toxic effects of BAs given at final concentrations of
500 µM on pancreatic acini; however, neither in the lactate dehydrogenase (LDH) (Figure 2A)
nor the propidium iodide (PI) exclusion (Figure 2B) measurements did we observe an increase
in cellular damage by BAs, which remained comparable to the control cells. Then, the addition
of CCK enhanced both LDH release (Figure 2A) and PI exclusion (Figure 2B), indicating cell
injury, which was reversed by hydrophobic but not hydrophilic BAs.

These results suggest that hydrophobic but not hydrophilic BAs induced intracellular
protease activation and mitigated the impact of CCK in isolated acini.
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Figure 2. Release of LDH and propidium iodide exclusion in mouse isolated acini. Addition of
bile acids TLCS and TUDCA in a final concentration of 500 µM to isolated acini did not increase LDH
release (A) or propidium iodide exclusion (B), indicating no relevant cellular toxicity. Supramaximal
CCK stimulation of acini increased both LDH release (A) and PI exclusion (B), which was reduced
by TLCS but not TUDCA, compatible with protease activation in isolated acini. Graphs represent at
least 5 animals per group. Statistically significant differences for more than 3 groups were tested via
one-way ANOVA followed by Tukey’s multiple comparison test, and significance levels of p < 0.05
are marked by an asterisk. ns: non significant.

2.2. BAs Were Elevated in the Serum and Reached the Pancreas after Intravenous or Intraperitoneal
Administration in Mice

Since the times for harvesting samples after inducing AP were 4 h in the caerulein
model, 24 h in the duct ligation models and 72 h in the L-arginine model, we measured the
total bile acid (TBA) concentrations in the serum and in the pancreas homogenates after
intravenous (i.v.) or intraperitoneal (i.p.) injection up to three days. After tail vein injection
of TLCS, serum concentrations increased quickly within 5 min, then, decreased and almost
disappeared from circulation after one hour. Reabsorption through the enterohepatic
circulation led to the second peak, which occurred at 8 h, and serum concentrations slowly
reduced during the monitoring time. LCA and TUDCA were intraperitoneally injected,
which led to slower increases in serum concentrations, showing a maximum at around
one hour. The concentrations were then maintained at a higher level than in the controls
(Figure 3A,B). The injected BAs, either i.v. or i.p., all reached the pancreas, as shown by
the significant elevation of TBA concentration in pancreas homogenates for all three BAs
(Figure 3C). The data demonstrate that BAs can reach the pancreas in an in vivo experiment
either via i.v. or i.p. injection.
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Figure 3. Elevation of BAs in circulation and in pancreas of mice after systemic administration.
Pharmacokinetics of TLCS, LCA and TUDCA were assessed via measurement of total BA concentra-
tions at different intervals after i.v. or i.p. injection up to 72 h. (A) After i.v. injection of TLCS, serum
concentrations (purple line) increased quickly within 5 min, then decreased, and were cleared up
from circulation after 60 min. A second peak occurred at 8 h, resulting from enterohepatic circulation
through reabsorption, and serum concentrations slowly reduced during the monitoring time. In-
traperitoneal injection of TUDCA (green line) or LCA (orange line) led to a delayed increase in serum
concentrations, showing a maximum at around one hour. Concentrations then gradually decreased
and were maintained at a slightly higher level than in controls (blue line). The mean absolute BA
concentrations after administrating TLCS, LCA and TUDCA were 374.53 ± 21.07, 173.24 ± 12.25
and 164 ± 10.93 µM, respectively. (B) Illustration of serum BA concentrations during the first 4 h
for clearer presentability. (C) All the injected BAs reached the pancreas, as shown by significant
elevation of TBA concentration in pancreas homogenates. The mean value of TBA concentrations
in the pancreas homogenate were 30.65 ± 2.73, 49.58 ± 5.33, 46.17 ± 4.95 and 42.13 ± 5.39 µM/mg
protein for control mice, and TLCS-, LCA- and TUDCA-injected mice, respectively. Graphs repre-
sent at least 5 animals per group. Statistically significant differences for more than 3 groups were
tested via one-way ANOVA followed by Tukey’s multiple comparison test, and significance levels of
p < 0.05 are marked by an asterisk. ns: non significant.

2.3. Hydrophobicity-Dependent Effects of BAs in CCK-Dependent Mouse AP Models

We next investigated the role of hydrophilic and hydrophobic BAs in an in vivo model
dependent on the CCK analogue caerulein. Prior to caerulein administration, mice received
an injection of TLCS, LCA or TUDCA (50 mg/kg bodyweight). Pancreatic damage was
assessed through serological markers, protease activity in the pancreas homogenates, his-
tology, and lung MPO for the determination of extra-pancreatic damage. While neither
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TUDCA, TLCS nor LCA alone had any effect in unstimulated mice, pretreatment with
hydrophobic TLCS or LCA attenuated pancreatic injury, as observed for serum amylase
(Figure 4A) and lipase (Figure 4B), as well as trypsin and chymotrypsin activities in the
pancreatic homogenates (Figure 4C,D). Lung MPO measurements showed a decrease result-
ing from TLCS or LCA in caerulein-induced pancreatitis, indicating collateral attenuation
of extra-pancreatic damage (Figure 4E), and local pancreatic damage was decreased after
the addition of these hydrophobic BAs, as well (Figure 4F,G). In contrast, the hydrophilic
TUDCA did not alter the activation of any of these parameters.

Figure 4. Attenuated severity of caerulein-induced AP following hydrophobic BAs in mice.
(A,B) AP was induced by repetitive injections of caerulein, a cholecystokinin analogue. One hour or
30 min prior to the first caerulein injection, mice received a dose of 50 mg/kg TUDCA, LCA or TLCS.
Serum amylase and lipase were elevated after 4 h of caerulein pancreatitis. Both enzyme activities
decreased after pretreatment with TLCS or LCA, but not TUDCA. (C,D) We further determined
pancreatic trypsin activity at 4 h and chymotrypsin activity at 1 h in pancreatic homogenates, which
were both elevated in pancreatitis. Pretreatment with TLCS and LCA reduced these activities but
TUDCA did not affect them in comparison with caerulein alone. (E) Lung MPO, an indicator of
extra-pancreatic damage in AP, showed the same manner as pancreatic parameters, in which it was at-
tenuated by TLCS as well as LCA, but not TUDCA, in caerulein-induced AP. (F,G) The corresponding
histopathological damage was compatible with the biochemical indicators of AP, showing amelio-
ration in the presence of hydrophobic TLCS or LCA and remaining unchanged in treatment with
hydrophilic TUDCA. All graphs represent 4–6 animals per group. Statistically significant differences
for more than 3 groups were tested via one-way ANOVA followed by Tukey’s multiple comparison
test, and significance levels of p < 0.05 are marked by an asterisk. ns: non significant.
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2.4. Aggravating Effects of Hydrophobic BAs in CCK-Independent AP Models in Mice

As our results from CCK- or CCK analogue-dependent experimental pancreatitis mod-
els indicate a reduction in severity in the presence of hydrophobic BAs, we were interested
in the impact of BAs in conditions unrelated to CCK. L-arginine-induced pancreatitis is
characterized by CCK-independent signaling pathways, which makes this model interest-
ing for investigations of BA-related effects. In L-arginine-induced AP, there was maximal
damage at 72 h, which was further enhanced by TLCS but ameliorated by TUDCA, as
demonstrated by changes in serum amylase (Figure 5A) and lipase (Figure 5B) activities.
Correspondingly, trypsin (Figure 5C) and chymotrypsin (Figure 5D) activities in pancreatic
homogenates were elevated in L-arginine pancreatitis, indicating the activation of digestive
proteases, and were even more enhanced after pretreatment with TLCS. On the other
hand, TUDCA had an opposite effect (Figure 5C,D). Lung MPO enzyme activity for extra-
pancreatic injury (Figure 5E) and local pancreatic damage, assessed via hematoxylin- and
eosin-stained pancreatic sections, demonstrated aggravation of the disease under TLCS,
while for TUDCA, a reversed effect was observed (Figure 5F,G).

Figure 5. Effects of BAs in L-arginine-induced AP in mice. BAs were given via the same application
route as for caerulein pancreatitis and mice were humanely killed after 72 h. (A,B) L-arginine induced
AP, as shown by elevations of serum amylase and lipase after L-arginine injection. Pretreatment
with TLCS caused disease aggravation, as shown by an increase in the enzyme activities, while
TUDCA ameliorated disease severity. Neither TLCS nor TUDCA alone altered enzyme activities in
the absence of L-arginine. (C,D) Pancreatic trypsin activity and chymotrypsin activity were enhanced
in L-arginine pancreatitis. Protease activity was enhanced by TLCS pre-treatment and reduced when
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mice received TUDCA. (E) Lung MPO changed similarly to pancreatic damage, in which TLCS
increased but TUDCA mitigated enzyme activity. (F,G) Organ damage, shown by histology in L-
arginine pancreatitis, was more severe with TLCS but milder when TUDCA was added in comparison
to L-arginine alone. All graphs represent 4–6 animals per group. Statistically significant differences
for more than 3 groups were tested via one-way ANOVA followed by Tukey’s multiple comparison
test, and significance levels of p < 0.05 are marked by an asterisk.

Disease severity and its dependence on BAs showed a similar pattern in the PDL
model, which was independent of CCK as well. One day after ligation, AP was observed
as shown by elevated levels of serum lipase, amylase, chymotrypsin in homogenates and
lung MPO. Pretreatment with TLCS increased enzyme activities by about 25–40%, while
there was attenuated severity under TUDCA (Figure 6A–D). In addition, the severity of
histological damage correlated with findings from the enzyme measurements (Figure 6I,K).

Surprisingly, decreased severity of pancreatitis was observed in the BPDL model
following TLCS injection. Both enzyme activities (Figure 6E–H) and organ damage were
reduced (Figure 6J,L). This reduction resembled findings seen in the caerulein-induced
pancreatitis model (Figure 4). On the other hand, TUDCA treatment did not alter disease
severity in the caerulein model. Apparently, combined ligation of both ducts is related
to CCK, as measurements of CCK concentrations in serum showed an almost three-fold
increase after simultaneous ligation of the pancreatic and bile ducts after 30 min, while
after pancreatic duct ligation alone, serum CCK remained unaffected (Figure 6M).

2.5. Interaction of Hydrophobic and Hydrophilic BAs with CCK1R on Mouse Isolated Acini

Our findings underline the differential effects of hydrophobic and hydrophilic BAs
in AP and their dependence on the stimulus and the presence of CCK. Since this peptide
hormone binds to the G-protein-coupled CCK1 receptor on pancreatic acinar cells, causing
multiple cellular signaling functions [26], we next wanted to clarify to what extent BAs
act on CCK1R in acinar cells. When we incubated freshly isolated mouse acini with
Alexa-488-labeled CCK, we could visualize the binding of the CCK to its receptor via
immunofluorescence. The co-incubation of acini with 500 µM TLCS drastically reduced
the fluorogenic signal from acini, suggesting that TLCS had affected the binding of CCK1R
on the cellular surface with Alexa-488 CCK. When 500 µM TUDCA was added instead of
TLCS, the signal intensity on the surface was similar to the situation wherein only Alexa-488
CCK stimulation was used (Figure 7A). Quantification of the total fluorescence intensities
derived from fluoroscopy confirmed our observations (Figure 7B) and suggests decreased
binding between CCK1R on the membrane of living acini and CCK in the presence of
hydrophobic BAs. Moreover, co-incubation of isolated acini with TLCS and CCK reduced
intracellular calcium mobilization compared to CCK alone (Figure 7C). Distinguishably,
the hydrophilic bile acid TUDCA affected neither CCK1R-CCK binding nor intracellular
calcium mobilization. When we pre-treated C57BL/6J mice with devazepide, a CCK1R
inhibitor, at a dose of 1 mg/kg bodyweight, and induced AP using caerulein, serum
amylase and lipase activities were abrogated and the addition of TLCS did not further
decrease the activity (Figure 7D,E). Similarly, trypsin activity was quenched by devazepide
(Figure 7F). In parallel, both macroscopic inspection and histopathologic evaluation in
caerulein-treated mice showed edema and injury of the pancreas, which was almost absent
after devazepide application and could not be further attenuated by TLCS (Figure 7G,H).
These results support the hypothesis that TLCS acts via an interaction with the CCK1
receptor, leading to impairment of the intracellular signaling pathways for AP.
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Figure 6. Impact of BAs in mouse AP models based on duct ligation. (A,B) Pancreatic duct ligation
(PDL) caused a strong increase in serum amylase and lipase, which was further enhanced by pre-
treatment with TLCS but mitigated by TUDCA. (C,D) Pancreatic chymotrypsin and lung MPO levels
were higher when injecting additional TLCS but lower after treatment with TUDCA. (E–H) Ligation
of both distal common bile duct and main pancreatic duct (BPDL) led to an increase in amylase, lipase,
chymotrypsin and lung MPO, similar to the PDL model. However, pre-treatment with TLCS reduced
enzyme activities, while the addition of TUDCA did not alter disease severity. (I,K) Organ injury,
including the extent of edema in HE-stained slides, demonstrated increased severity with TLCS but
attenuation with TUDCA in the PDL model for acute pancreatitis. (J,L) In contrast, local histological
damage was reduced by TLCS when both the bile and the pancreatic duct were ligated. Additional
TUDCA treatment did not show any effect compared to duct ligation alone. (M) Endogenous CCK
levels were significantly higher in the BPDL compared to the PDL model, indicating involvement of
CCK in the former. All graphs represent 4–7 animals per group. Statistically significant differences
for more than 3 groups were tested via one-way ANOVA followed by Tukey’s multiple comparison
test, and significance levels of p < 0.05 are marked by an asterisk. ns: non significant.
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Figure 7. Interaction of BAs with the CCK1 receptor and intracellular calcium release in mice.
(A) Fluorescence-labeled CCK (Alexa-488 CCK, yellow signal) is located on the membrane of mouse
living acinar cells, suggesting binding to the CCK-receptor (left image). This binding was decreased
after co-incubation with TLCS, a hydrophobic BA (middle image), but was unchanged when in-
cubated with TUDCA, a hydrophilic BA (right image). (B) Total quantification of the fluorescent
signals after incubating acini with Alexa-488 CCK showed a decrease in the fluorescence intensity
after addition of a hydrophobic BA, but no reduction with a hydrophilic BA. (C) The time course
data of the intracellular calcium mobilization measured at 30, 45, 60 and 75 s, which peaked at 30 s
and was followed by a quick decrease in the calcium changes. CCK quickly induced intracellular
calcium mobilization in mouse acini, which was clearly reduced by simultaneously adding TLCS
to CCK, but was not significantly different when compared to co-incubating CCK and TUDCA.
(D,E) When we inhibited CCK1R using the specific inhibitor devazepide and induced AP using
caerulein, serum amylase and lipase increases were abrogated and the addition of TLCS showed no
further inhibitory effect. (F) Mouse pancreatic trypsin activity was also quenched by devazepide.
(G,H) In parallel, both macroscopic observation and histopathologic images demonstrated edema
and injury of the pancreas, which were almost absent after devazepide treatment. No additional
reduction was observed with TLCS when mice received devazepide beforehand. All results were
based on at least 5 animals per group. Statistically significant differences for more than 3 groups were
tested via one-way ANOVA followed by Tukey’s multiple comparison test, and significance levels of
p < 0.05 are marked by an asterisk. ns: non significant.

3. Discussion

Being the leading cause of AP, the biliary origin has been extensively investigated
in several studies, but so far, they have almost exclusively been based on the retrograde
infusion of BAs into the pancreatic duct [17,27]. To the best of our knowledge, systematic
analyses of systemically administered BAs focusing on their impact in AP and investigation
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of their underlying mechanisms are still lacking. Secondly, a large number of cholestatic
disorders are caused not only by obstruction of the bile ducts but also by hepatocellular
damage, and lead to an increase in serum BA concentrations [28]; however, their potential
impact on AP has not been elucidated so far, which might even enhance the necessity to
focus on their systemic role, as well. In the present study, we were able to demonstrate
that systemic BAs modulate the severity of AP depending on its pathogenesis and the hy-
drophobicity of BAs. While hydrophobic BAs aggravate severity under disease conditions
that are independent of CCK or its analogues, they reverse CCK-induced injury based on
an interaction with the CCK receptor on acinar cells.

In isolated living acini, we confirmed previous studies [16,18], which showed that
TLCS and LCA can induce significant activation of pancreatic enzymes. Following pre-
incubation with these strongly hydrophobic BAs, concomitant CCK application reverted
intracellular zymogen and lysosomal protease activation, while this was not the case with
hydrophilic BAs. These BA-dependent differences seem to be related to their ability to
interact with CCK receptors, namely CCK1R, which is abundantly expressed on acinar
cells and has the highest affinity to the octapeptide CCK [29,30]. Receptor binding is
markedly reduced in the presence of hydrophobic compared to hydrophilic BAs, as we
demonstrated using CCK labeled with the fluorophore Alexa-488 that was detectable by
fluorescence microscopy. As the activation of G-protein-coupled receptors led to a release of
intracellular Ca2+, a crucial regulator of pancreatic acinar cell secretion [31,32], we further
assessed intracellular calcium release and confirmed a reduction in Ca2+ mobilization,
which was less pronounced after incubation with TLCS but remained steady after TUDCA.
It is noteworthy that the TLCS-induced decrease in intracellular Ca2+ released by CCK was
not strong, so additional intracellular mechanisms may also lead to a decrease in protease
activation and pancreatic damage. Our BA concentrations were in the same range as others
have used in previous studies [16,18] and isolated acini did not show signs of cellular
necrosis upon TLCS stimulation. Therefore, we assume that the TLCS-related reduction in
intracellular protease activation in CCK-stimulated acini is primarily based on alterations
of intracellular signaling and not a consequence of cytotoxicity.

The impact of BAs on CCK1R function was studied by Desai et al. in Chinese hamster
ovary (CHO) cell lines expressing CCK1R. They showed an inhibitory effect with hydropho-
bic taurochenodeoxycholic (TCDC) acid but not with hydrophilic tauroursodeoxycholic
acid (TUDCA), and proposed a direct interaction of BAs with the CCK1 receptor, likely at
the same site where cholesterol binds, leading to a conformational change in the helical
bundle domain [33]. The intracellular calcium responses following CCK stimulation and
BA exposure were also delayed by TCDC, but not TUDCA, similar to our results.

The translation of ex vivo findings into in vivo models that, at least partly, are based on
CCK or its analogues confirmed our observations of the attenuating effects of hydrophobic
BAs. In both caerulein-induced and BPDL pancreatitis, which caused an elevation of CCK,
the severity of pancreatitis was decreased by hydrophobic BAs but not by the hydrophilic
TUDCA. Previous studies reported that a lack of BAs in the duodenum, as seen after ob-
struction of the distal bile duct, triggers a feedback regulation to produce more endogenous
CCK [34]. Our results are in line with this observation as CCK strongly increased in mice
that underwent combined pancreatic and bile duct ligation in comparison to sham-operated
or only pancreatic duct-ligated mice, where significant CCK-elevation was absent. These
findings further confirm our observations from ex vivo models and propose a modulating
effect of BAs on AP severity in vivo, depending on their hydrophobicity and the presence
of CCK in the initial phase of the disease.

Depending on the location where BAs reach acinar cells, a variety of both receptor
and transporter-mediated cellular signaling mechanisms contribute to pancreatic damage.
In rat pancreatic acinar cells, Kim et al. showed evidence for the expression of the BA
transporter molecules Na+/taurocholate co-transporting polypeptide (NTCP) and organic
anion transporting polypeptide 1 (OATP1) on the luminal and basolateral site, respectively;
these are both capable of mediating BA influx into acinar cells [35]. BAs may therefore enter
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acinar cells not only via reflux to the apical pole but also because of interstitial leakage
or systemic application at the basolateral site. This route of internalization might explain
why TLCS increases pancreatic injury in L-arginine or pancreatic duct ligation-induced
pancreatitis. L-arginine is the major amino acid of histones, and Guo et al. found that
extracellular histones could inhibit the impact of CCK 20 pM on rat pancreatic acini, thus
contributing to the secretory blockade [36,37]. It would be interesting to study, in the future,
the effect of adding both L-arginine and CCK simultaneously, and possibly find the links
between BAs, L-arginine and extracellular histones in AP. Interestingly we additionally
observed a protective function of hydrophilic TUDCA. The underlying reason is still
unclear but might include: a reduction in endoplasmic reticulum stress, mitochondrial
damage in acinar cells and alterations in the gut microbiome, as reported in previous
studies [21,38]. The gut microbiome has an emerging role in the metabolism of BAs [39]
and in pancreatitis [40]. Studies about the interactions between BAs, the gut microbiome
and acute pancreatitis would be a promising approach. Further investigations will also
have to clarify whether treatment with hydrophilic BAs may eventually be helpful in
preventing or attenuating AP in humans when the etiology and mechanisms are unrelated
to CCK.

There are limitations to our work. Firstly, the low number of mice, consisting of four
animals in some control groups, that were either untreated, underwent sham operations
or received TLCS and TUDCA alone, could limit the validity of the results. In the ex-
perimental design, we calculated the number of animals based on a ‘resource equation’
approach [41,42], with a relatively low number of mice in some groups. Secondly, different
application routes for bile acids were used, as TLCS was injected intravenously while
TUDCA and LCA were administered intraperitoneally. Nevertheless, the TBA concentra-
tions in pancreas homogenates increased similarly. Moreover, previous work [43] reported
comparable effects on hepatic CYP-linked mono-oxygenase activities following i.v. or i.p.
injection. However, further research will be necessary to clarify the importance of the
application route of drugs or compounds in AP. Thirdly, this study mainly concentrated on
only two hydrophobic BAs and one hydrophilic BA in AP, which might not be fully repre-
sentative of all hydrophobic and hydrophilic BAs, respectively. Additional studies using a
broader BA spectrum and different models of AP will be necessary for a comprehensive
understanding of the role of BAs in AP.

In conclusion, our results indicate that systemic BAs can modulate the severity of
AP, which seems to be dependent on the biochemical properties of BAs such as their
hydrophobicity and the pathogenesis of AP. The influence of hydrophobic BAs on the
CCK1 receptor’s binding emerged as a central mechanism.

4. Materials and Methods
4.1. Chemicals and Materials

Amylase (11876473316) and lipase (11821792216) kits were purchased from Roche Di-
agnostics GmbH (Rotkreuz, Switzerland). Cathepsin B substrate (AMC-Arg2, I-1135.0250)
was from Bachem (Bubendorf, Switzerland). Non-sulfated CCK 26-33 amide fluorescence-
labeled (Alexa-488) was ordered from Thermo Fisher Scientific (Carlsbad, CA, USA).
Cell Meter™ No Wash and Probenecid-Free Endpoint Calcium Assay Kit (36312) was
ordered from AAT Bioquest (Sunnyvale, CA, USA). Cholecystokinin quantification EIA
Kit (RAB0039), Caerulein (17650-98-5) and L-arginine (A5006) were sold by Sigma-Aldrich
Chemie GmbH (Merk). Trypsin substrate (R-110 BZIPAR, 10208) was ordered from Bio
Trend (Pambio-Noranco, Switzerland). Chymotrypsin substrate (Suc-Ala-Ala-Pro-Phe-
AMC, I-1465.0250) was bought from Bachem (Bubendorf, Switzerland). Collagenase (14007)
from Clostridium histolyticum (EC.3.4.24.3) was provided by Serva (Heidelberg, Ger-
many). LDH Cytotoxicity Assay Kit (601170) and taurolithocholic acid-3 sulfate (18468)
were obtained from Cayman Chemical (Ann Arbor, MI, USA). Tauroursodeoxycholic acid
(S3654) was obtained from Selleck Chemicals (Houston, TX, USA). Total BA fluorogenic kit
(MET-5005) was a product from Cell Biolabs (San Diego, CA, USA).



Int. J. Mol. Sci. 2022, 23, 13592 13 of 18

4.2. Isolation and Stimulation of Mouse Pancreatic Acini

Acini from wildtype C57BL/6J mice were freshly prepared from the pancreas based
on collagenase digestion, as described previously [6]. A cell medium containing Dulbecco’s
Modified Eagle’s Medium (DMEM), BSA 2% and 10 mM 4-(2-hydroxy-ethyl)-1-piperazine
ethanesulfonic acid (HEPES) was freshly prepared. A fresh pancreas was dissected carefully
using scissors and forceps. Blood, fat and connective tissue were removed and the clean
pancreas was then immediately and gently sheared into small pieces under 1 mm in
size in a glass flask containing cell medium and collagenase (1 mg/mouse pancreas).
The above process was repeated 2 times with freshly changed medium, and during the
15 min interval, the cells were incubated in a water bath with a shaking speed of 90 rpm
for dissociation of the cells. The sheared pancreatic pieces were gently suspended 5 times
through 1 mL pipette tips with gradually decreasing diameters followed by filtering twice
using single-use, double-layered muslin gauze. The filtered cells were centrifuged for 90 s
at 293× g, the supernatant was removed and fresh medium was added immediately. Cells
were resuspended using a 10 mL pipette and rested for 30 min at the same temperature
and buffer conditions in a shaking water bath at 45 rpm. During the whole process, cells
were maintained in the oxygenated medium at 37 ◦C. After isolation, we obtained acini
with viability of more than 90%, which were ready for further assays. For the in vitro
experiments, BAs were dissolved in DMSO and added to freshly isolated acini at a final
concentration of 500 µM. Acini were stimulated with 1 µM CCK for 30 min. Intracellular
enzyme activation was determined in a cell medium system at pH 7.4 containing 24.5 mM
HEPES, 96 mM NaCl, 11.5 mM glucose, 6 mM KCl, 1 mM MgCl2, 0.5 mM CaCl2, 2.5 mM
NaH2PO4, 5 mM sodium fumarate, 5 mM sodium glutamate, 5 mM sodium pyruvate and
1% BSA and DMEM.

4.3. CCK1 Receptor-Binding Assay

After the resting phase, freshly isolated acini were incubated with 1 µM CCK 26-33
amide fluorescence-labeled (Alexa-488), obtained from Thermo Fisher Scientific (Carlsbad,
CA, USA), with or without different BAs at a concentration of 500 µM in a water bath, at
37 ◦C, with gentle shaking 45 rpm for 30 min. Incubated cell medium was then centrifuged
at 1000 rpm for one minute and the supernatant was completely removed and very gently
washed with PBS to rule out unbound fluorescence. The pellet was re-suspended in mea-
suring buffer and the remaining fluorescence was quantified at an excitation wavelength of
490 nm, and an emission wavelength of 525 nm. Additionally, living cells were observed
under fluorescence microscopy for visualization of the binding between CCK-488 and its
receptor on the membranes of acinar cells.

4.4. Protease Activation Assays

Trypsin and cathepsin B in isolated acini were measured kinetically in a measuring
buffer containing 11.5 mM glucose, 96 mM NaCl, 1 mM MgCl2, 6 mM KCl, 2.5 mM
NaH2PO4, 0.5 mM CaCl2, 5 mM Na fumarate, 5 mM Na glutamate, 5 mM Na pyruvate,
24.5 mM HEPES and 1% BSA at pH 7.4. The substrates for cathepsin B and trypsin
were 10 µM AMC-Arg2 and 10 µM R110-IPA, respectively. In acinar cells and whole
pancreatic homogenates, chymotrypsin activity was measured using the substrate Suc-
Ala-Ala-Pro-Phe-AMC, and trypsin activity was measured using R-110 BZIPAR. Activities
of the enzymes were measured for one hour at 37 ◦C, kinetically, in a buffer (pH 8.0)
containing 5 mM CaCl2 and 100 mM Tris. Fluorometric measurements were carried out
in a FLUOStar Omega fluorometer. For AMC-based substrates, the setting was a 380 nm
excitation wavelength and 460 nm emission wavelength, and for R110-based substrates, the
wavelengths of excitation and emission were 485 nm and 520 nm, respectively. Enzymatic
activities were normalized to protein content, which was measured via Bradford assay. All
measurements were performed in triplicate.
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4.5. Quantification of Intracellular Calcium Mobilization in Living Acinar Cells

Total intracellular calcium mobilization was quantified by measuring the fluorescence
intensity within one minute after preparing the acini, according to the protocol of the Cell
Meter™ No Wash and Probenecid-Free Endpoint Calcium Assay Kit provided by AAT
Bioquest (Sunnyvale, CA, USA). Briefly, we firstly added 100 µL/well of Fluo-8E™ AM
dye-loading solution into the 96-well plate, with 100µL mouse acini already prepared in
each well. Then, we incubated the dye-loading plate in a 5% CO2 incubator at 37 ◦C for
45 min. Meanwhile, we prepared the calcium stimulator solution (CCK and BAs). Finally,
we added 50 µL of the prepared stimulator and ran the calcium flux assay immediately,
measuring the fluorescence intensity using a FLUOStar Omega fluorometer (BMG Labtech
GmbH, Ortenberg, Germany) with the bottom read mode at an excitation/emission of
490/525 nm.

4.6. Amylase and Lipase Measurement

Serum amylase and lipase activities were measured kinetically over 30 min via pho-
tometric assays using kits from Roche Diagnostics GmbH (Rotkreuz, Switzerland), with
absorbance at 405 nm and 570 nm wavelengths, respectively.

4.7. Measurement of Propidium Iodide Exclusion and Release of LDH

Propidium iodide exclusion was used to determine necrosis, and cytotoxicity was
quantified by LDH release from acini using the Cytotoxicity Assay Kit (601170), according
to the instructions of the manufacturer.

4.8. Myeloperoxidase Measurement

Lung tissue was homogenized on ice in a buffer containing 20 mM KH2PO4 at pH
7.4 and centrifuged at 10,000× g for 10 min at 4 ◦C. The pellet was resuspended in
50 mM KH2PO4 extraction buffer (pH 6.0) containing EDTA, PMSF and hexadecyltrimethy-
lammonium bromide (5%); frozen in liquid nitrogen and thawed in 4 cycles with grad-
ually smaller pipette tips; sonicated twice; and centrifuged at 10,000× g for 10 min at
4 ◦C. Myeloperoxidase (MPO) activity was measured in 50 mM KH2PO4 extraction buffer
(pH 6.0) containing 0.15 mM H2O2 and 0.53 mM o-dianisidine using a SpectraMax Spec-
trophotometer (Molecular Devices, Sunnyvale, CA, USA) at 460 nm and at 30 ◦C over
10 min. The results were calculated after dividing by the protein amount of the correspond-
ing samples.

4.9. Measurement of Total Bile Acid

The total BA in the serum was quantified using a Total Bile Acid Assay Kit (MET-5005,
Cell Biolabs, San Diego, CA, USA) using a FLUOStar Omega fluorometer (BMG Labtech
GmbH, Ortenberg, Germany) following the protocol of the manufacturer at an excita-
tion/emission wavelength of 560/590 nm. Briefly, pancreas tissues were homogenized
via ultra-sonification 2 times at 100% power for 10 s each in cold PBS, and centrifuged
at 10,000× g at 4 ◦C for 10 min. The concentration of TBA was determined in the su-
pernatant using the fluorometer and normalized to the corresponding protein amount.
Mouse serum was harvested after centrifugation of whole blood and diluted at least 4 times
before measuring.

4.10. Histopathological Examinations

Pancreases were fixed in 4.5% formaldehyde immediately after harvesting. Paraffin-
embedded blocks were used for staining with hematoxylin and eosin. The slides were
scanned using the Sysmex Pannoramic MIDI II slide scanner (Sysmex Europe SE, Norder-
stedt, Germany) for imaging. Damage was assessed using a modified score adapted
from Niederau et al. [44]. The extent of edema, including the cell-free areas, was quanti-
fied by the percentage of the total areas using QuantCenter software version 2.2.1.88915
from Sysmex.
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4.11. Animal Models

Wildtype C57BL/6J mice, 8–10 weeks old and weighing 23–27 g, were purchased from
Janvier Labs (Le Genest-Saint-Isle, France) and were kept under standard conditions of
temperature and humidity in ventilated cages under 12 h day/night cycles, with food
and water provided ad libitum. All mice were fasted equally 8 h prior to the experiments.
The study design and all protocols for animal care and handling were approved by the
Institutional Animal Care and Use Committee of the University of Greifswald (Reg. No.:
7221.3-1-001/20). Mice were treated with BA dose of 50 mg/kg body weight in assigned
groups half to one hour before the induction of AP. We used different BAs, including
hydrophobic and hydrophilic compounds, to see the different effects that may result from
their biochemical features. Due to their solubility and the limited volume that we can inject
into the tail vein of a mouse, hydrophobic BA TLCS (10 mg/mL) was injected i.v. while
hydrophilic TUDCA (5 mg/mL) and hydrophobic LCA (1 mg/mL) were injected i.p. after
dissolving in PBS at 37 ◦C. Due to the very low solubility of LCA and the similar effects
with TLCS, we further focused on TLCS in our experiments after the caerulein model.

Caerulein-induced pancreatitis was induced by intraperitoneal injections of the chole-
cystokinin analogue caerulein (50µg/kg/body weight) at hourly intervals for up to 4 h.
Mice were humanely killed via cervical dislocation to harvest the samples 1 h and 4 h after
the first injection of caerulein (Figure 8A).

Figure 8. Animal models for AP to test the effect of systemic BAs. (A) Caerulein model: BAs were
injected 30–60 min prior, and devazepide, if utilized, was injected 15 min before the first dose of
caerulein. Caerulein was administrated hourly and intraperitoneally in a dose of 50 µg/kg body
weight. The organs were harvested at 4 h (half-life time of devazepide). (B) L-arginine model:
BAs were added one hour before and 24 h after the first injection of L-arginine, which was injected
intraperitoneally (total dose 10 g/kg body weight), divided to three injections hourly. The mice were
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humanely killed via cervical dislocation at 72 h. (C) Duct ligation model: BAs were administrated
half to one hour prior to ligature. After laparotomy, ligature of both distal common bile duct and
main pancreatic duct (BPDL) or ligation of only one distal part of the main pancreatic duct (PDL)
was carried out. The blood was withdrawn 30 min after duct ligation to quantify the endogenous
CCK concentration. Organs were harvested 24 h after the surgical duct ligation. BA dose: 50 mg/kg
body weight.

In L-arginine pancreatitis, mice received L-arginine i.p. at a total dose of 10 g/kg of
body weight, divided into 3 injections at hourly intervals. Control mice received PBS in
parallel. Organs were harvested after 72 h (Figure 8B).

Duct ligation models were based either on the ligation of solely the main pancreatic
duct [45] or the combined ligation of the bile and major pancreatic ducts, as described
previously [46]. BAs were prepared as in the caerulein and L-arginine models. After
laparotomy, either the confluence of the distal common bile duct and the main pancreatic
duct was closed, called the bile-and-pancreatic duct ligation (BPDL) model, or only the
distal part of the major pancreatic duct was ligated, called the pancreatic duct ligation
(PDL) model (Figure 8C). For CCK quantification, blood samples were collected 30 min
after surgery. The mice were humanely killed via cervical dislocation 24 h after ligature.

4.12. Statistics

Statistical analysis was performed using GraphPad Prism version 8.4.3 (GraphPad
Software, San Diego, CA, USA). Data were presented as mean ± standard deviation (SD)
for each group of animals. We used one-way ANOVA followed by Tukey’s multiple
comparison test for comparisons of more than 3 groups. Differences were considered
significant when p < 0.05.
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