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Zusammenfassung 

Hintergrundinformationen: Bakterien gehören zu den ältesten Lebensformen und sind ein 

elementarer Bestandteil aller ökologischen Lebensräume auf der Erde. Der Mensch als 

Holobiont ist ein eigenständiges Ökosystem mit einer Vielzahl von ökologischen Nischen 

und einer großen bakteriellen Vielfalt. Durch innere oder äußere Einflüsse kann es zu 

Veränderungen der Umweltbedingungen kommen, die eine veränderte Zusammensetzung 

des Mikrobioms zur Folge haben. Eine solche Dysbiose wirkt sich auf den 

Gesundheitszustand des Menschen aus und kann zu schweren Krankheiten führen. Das 

orale Mikrobiom gehört mit zu den komplexesten Mikrobiomen des Menschen. Es bildet 

eine natürliche Barriere gegen Krankheitserreger und beugt somit u.a. lokalen Krankheiten 

wie Karies oder Parodontitis vor. Die Metaproteomik ermöglicht es, die exprimierten 

Proteine des Mikrobioms und deren Interaktion mit dem Wirt zu untersuchen. Diese 

Technologie überwindet somit die Beschränkung auf Laborkulturen und ermöglicht die 

Untersuchung des Mikrobioms direkt in seinem natürlichen Lebensraum. Die 

Metaproteomik bietet eine Reihe von Instrumenten zur Vertiefung des Verständnisses des 

oralen Mikrobioms hinsichtlich des Gesundheitszustandes des Menschen. 

Ziele: Ein Ziel dieser Dissertation war es einen Arbeitsablauf für die Durchführung von 

Metaproteomstudien des oralen Mikrobioms zu erarbeiten, beginnend bei der 

Probensammlung über die Präparation der Proben für die Massenspektrometrie bis hin zur 

bioinformatischen Auswertung. Diesen Arbeitsablauf galt es für das Mikrobiom des 

Speichels sowie für die Biofilme auf der Zunge und des supragingivalen Plaques zu 

etablieren bzw. zu adaptieren. Darauf aufbauend wurden Metaproteomstudien 

durchgeführt, um die drei Mikrobiome bei gesunden Probanden hinsichtlich ihrer 

exprimierten Proteine, deren metabolischer Bedeutung und Interaktionen mit dem Wirt 

sowie deren taxonomische Zuordnung zu studieren. 

Studiendesign: Die Dissertation umfasst drei Studien mit drei unterschiedlichen Kohorten. 

Allen Studien ist gemein, dass die Kohorten sich aus oral gesunden Probanden im Alter von 

20-30 Jahren zusammensetzten. 
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In der ersten Studie verglichen wir die Salivette® sowie den Paraffinkaugummi anhand von 

fünf Probanden, um die effektivste Methode zur Sammlung von Speichel für 

Metaproteomstudien zu identifizieren. 

In der zweiten Studie wurden die Mikrobiome von Speichel und Zunge anhand von 24 

Probanden miteinander verglichen und dafür eine Auswertestrategie entwickelt, um der 

Komplexität dieser Metaproteomstudie gerecht zu werden. 

Im Rahmen unserer dritten randomisierten Einzelblindstudie, die auf einem Cross-over-

Design basierte, erhielten 16 Probanden vier unterschiedliche lokale 

Behandlungsschemata, um deren Auswirkung auf das Plaque-Mikrobiom zu untersuchen. 

Die Behandlungen bestanden aus zwei Lutschtabletten, die Bestandteile des 

Lactoperoxidase-Systems in unterschiedlichen Konzentrationen enthielten, einer 

Lutschtablette mit einem Placebo-Wirkstoff sowie Listerine® Total Care™ Mundspülung als 

Positivkontrolle.  

Alle Proben wurden, basierend auf einem Bottom-Up-Ansatz, unter Verwendung von nano 

LC-MS/MS Massenspektrometern in einer datenabhängigen Messstrategie (DDA, data- 

dependant acquisition mode) vermessen. Die bioinformatische Auswertung erfolgte für die 

erste Studie mit Hilfe der Proteome Discoverer Software. Für die Studien zwei und drei 

wurde die Trans-Proteomic Pipeline eingesetzt. Die taxonomische sowie funktionelle 

Zuordnung der identifizierten Proteine erfolgte für alle Studien anhand der Prophane 

Software. 

Ergebnisse: Für den Paraffinkaugummi konnten wir mit 1.005 bakteriellen Metaproteinen 

dreimal so viele Metaproteine identifizieren im Vergleich zur Salivette® mit 313 

Metaproteinen. 76,5 % der Metaproteine der Salivette® wurden ebenfalls mit dem 

Paraffinkaugummi gefunden. Insgesamt wurden 38 Genera und 90 Spezies identifiziert, 

wovon 13 Genera und 44 Spezies nur mit dem Paraffinkaugummi identifiziert werden 

konnten. Die größte funktionelle Diversität wurde ebenfalls mit dem Paraffinkaugummi 

detektiert. 

Das Metaproteom des Speichel- und Zungen-Mikrobioms basiert auf 3.969 bakteriellen 

Metaproteinen sowie 1.857 humanen Proteinen. Die Anzahl der nur für das Zungen-

Mikrobiom identifizierten Metaproteine, war doppelt so hoch, im Vergleich zum Speichel. 
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Die Metaproteine konnten 107 Genera sowie 7 Phyla zugeordnet werden. Funktionell 

wurden für das Speichel-Mikrobiom signifikant höhere Metaproteinabundanzen für die 

Zellmotilität gefunden. Beim Zungen-Mikrobiom hingegen wiesen die Metaproteine der 

Biosynthese von sekundären Metaboliten, Signaltransduktion oder der Replikation höhere 

Abundanzen auf. 

Im Rahmen der Plaque-Studie identifizierten wir durchschnittlich 1.916 (± 465) bakterielle 

Metaproteine je Probe, die wir taxonomisch und funktionell 116 Genera sowie 1.316 

Proteinfunktionen zuordnen konnten. Die Plaque inhibierende Wirkung von Listerine® 

zeigte sich durch eine Reduktion der Metaproteinidentifikation von durchschnittlich 23,5 % 

nach der Behandlung. Darüber hinaus zeigte die Mehrheit der bakteriellen Metaproteine 

reduzierte relative Abundanzen während für die Metaproteine humanen Ursprungs eine 

Erhöhung der Proteinabundanzen gegenüber der Kontrolle vor Behandlung zu verzeichnen 

war. Aus funktioneller Sicht waren insbesondere metabolische Prozesse, welche für das 

Zellwachstum und die Zellteilung wichtig sind, betroffen. Im Gegensatz dazu erhöhten sich 

durch die LPO Lutschtabletten sowohl die Identifikation der Metaproteine als auch die 

relative Abundanz für die Mehrheit der Proteine. Nach den durch die Metaproteomdaten 

erhaltenen funktionellen Informationen liegen Hinweise für einen wachsenden Biofilm vor. 

Die Metaproteine, die eine erhöhte Abundanz nach Behandlung mit den LPO-Dragees 

zeigten, wurden taxonomisch hauptsächlich Erst- (S. gordonii) und Zweitbesiedlern (F. 

nucleatum) sowie Bakterien zugeordnet, die einem gesunden Biofilm zuträglich sind. 

Fazit: Im Rahmen dieser Dissertation wurde ein vollständiger Metaproteom Arbeitsablauf 

von der Probensammlung, über die Probenpräparation bis hin zu Datenanalyse für das 

Speichel-, Zungen- und Plaque-Mikrobiom erarbeitet. In drei Studien konnten wir dessen 

Anwendbarkeit demonstrieren und erreichten vergleichbare Ergebnisse zu anderen 

Metaproteomstudien, beispielsweise bezüglich der Proteinidentifikation. Für die Sammlung 

von Speichelproben stellte sich der Paraffinkaugummi  für Metaproteomstudien  als die 

Methode der Wahl heraus. Für das Zungen-Mikrobiom veröffentlichten wir die ersten 

Metaproteomdaten. Darüber hinaus publizierten wir die erste Metaproteomstudie, welche 

die beiden Mikrobiome von Speichel und Zunge miteinander vergleicht. Hinsichtlich des 

Plaque-Mikrobioms handelte es sich ebenfalls um die erste Metaproteomstudie, die ein 
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anerkanntes und etabliertes zahnklinisches Modell mit den Vorzügen der Metaproteomiks 

verbindet. Die Ergebnisse liefern erste Daten, um (auf längere Sicht gesehen) ein Produkt 

zur täglichen Mundhygiene entwickeln zu können, welches die bakterielle 

Zusammensetzung des Plaque-Biofilms positiv beeinflusst. 

  



Summary 

- 7 - 

Summary 

Background: Bacteria are one of the oldest life forms and an elementary component of all 

ecological habitats on earth. Humans as holobionts are an ecosystem on their own with a 

wide range of ecological niches and great bacterial diversity. Internal or external influences 

can cause changes in environmental conditions, which result in a changed microbiome 

composition. This dysbiosis affects the health status of humans and can lead to serious 

diseases. The oral microbiome is one of the most complex microbiomes in humans. It forms 

a natural barrier against pathogens and can support prevention of diseases such as caries 

or periodontitis. Metaproteomics enables the study of the expressed proteins of the 

microbiome and their interaction with the host. This technology thus overcomes the 

limitations of not being limited to laboratory cultures, but to study the microbiome directly 

in its natural habitat. Metaproteomics offers a set of tools to deepen the understanding of 

the oral microbiome in health and disease. 

Objective: One aim of this dissertation was to develop a workflow to perform 

metaproteomic studies of the oral microbiome, from sample collection to preparation of 

samples for mass spectrometry and their bioinformatic analysis. This workflow aimed to 

should be established and adapted for the analysis of microbiomes of saliva as well as the 

biofilms of tongue and supragingival plaque. Based on these results, proof-of-principle 

metaproteomic studies were performed to study the three microbiomes in healthy 

volunteers regarding their expressed proteins, their metabolic relevance, and their 

interactions with the host as well as their taxonomic assignment. 

Study Design: The dissertation includes three studies with three different cohorts. All 

studies have in common that the cohorts consisted of orally healthy subjects aged 20-30 

years. 

In the first study, we compared Salivette® as well as paraffin gum based on five subjects to 

determine the most effective method of collecting saliva for metaproteomic studies. 

In the second study, we compared the saliva and tongue microbiomes using 24 subjects and 

established a data analysis strategy for this more complex metaproteomic study. 
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In our third single-blind randomized trial, based on a cross-over design, 16 subjects received 

four local treatment schemes to investigate their effect on the plaque microbiome. The 

treatments consisted of two lozenges containing components of the lactoperoxidase 

system at different concentrations, one lozenge containing a placebo, and Listerine® Total 

Care™ mouthwash as a positive control. All samples were measured, based on a bottom-up 

approach, using nano LC-MS/MS mass spectrometers in data-dependent acquisition mode. 

Bioinformatic analysis was performed for study one using the Proteome Discoverer 

software. For the studies two and three, the Trans-Proteomic Pipeline was applied. 

Taxonomic as well as functional assignment of the identified proteins was performed for all 

studies using the Prophane software. 

Results: For the paraffin gum, we were able to identify three times as many metaproteins 

with 1,005 metaproteins compared to the Salivette® with 313 metaproteins. 76.5% of the 

metaproteins of the Salivette® were also found with the paraffin gum. A total of 38 genera 

and 90 species were identified, of which 13 genera and 44 species were identified 

exclusively with the paraffin gum. The greatest functional diversity was also detected with 

the paraffin gum. 

The metaproteome of the salivary and tongue microbiome is based on 3,969 bacterial 

metaproteins and 1,857 human proteins. The number of metaproteins exclusively identified 

for the tongue microbiome, was twice as high compared to saliva. The metaproteins could 

be assigned to 107 genera as well as seven phyla. Functionally, significantly higher 

metaprotein abundances were found for the salivary microbiome for cell motility. 

Regarding the tongue microbiome, the metaproteins of biosynthesis of secondary 

metabolites, signal transduction or replication showed higher abundances. 

In the plaque study, we identified on average 1,916 (± 465) bacterial metaproteins per 

sample, which we were able to assign taxonomically and functionally to 116 genera and 

1,316 protein functions. The plaque inhibitory effect of Listerine was revealed by a 

reduction in metaprotein identification of 23.5% on average after treatment. In addition, 

the majority of bacterial metaproteins showed reduced relative abundances while for the 

metaproteins of human origin an increase in protein abundances was observed compared 

to the control before treatment. From a functional point of view, metabolic processes for 
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cell growth and division, were particularly affected. In contrast, for the LPO lozenges, both 

metaprotein identification and relative abundance increased for most proteins. According 

to the functional information obtained by the metaproteomic data, a growing biofilm can 

be assumed here. The metaproteins that showed increased abundance after treatment with 

the LPO lozenges were taxonomically assigned mainly to first (S. gordonii) and second 

colonizers (F. nucleatum) as well as bacteria that, according to current knowledge, are 

conducive to a healthy biofilm. 

Conclusion: In the context of this dissertation, a complete metaproteome workflow from 

sample collection, sample preparation to data analysis for the salivary, tongue and dental 

plaque microbiome was established. In three studies we were able to demonstrate its 

applicability and achieved comparable results, for example regarding protein identification, 

to other metaproteome studies. For the collection of saliva samples, the paraffin gum  for 

metaproteomic studies  was the method of choice. For the tongue microbiome, we 

published the first metaproteome data. In addition, we published the first metaproteome 

study comparing the two microbiomes of saliva and tongue. Regarding the plaque 

microbiome, this is the first metaproteomic study that combines a recognized and 

established dental clinical model with the advantages of metaproteomics. The results 

provide initial data to develop, as a long-term goal, a daily oral hygiene product to positively 

influence the bacterial composition of the plaque biofilm. 

 

 

 

 

 

 

 

 

 

 

 



Summary 

- 10 - 

  



Characterization of the human oral microbiome in health and during different treatments 

- 11 - 

Characterization of the human oral microbiome in health and during 

different treatments 

Bacteria - the hidden rulers of this world 

Let us start with a hypothetical experiment. Imagine a world in which all bacteria 

disappeared from one day to the next. What might such a world would look like? Surely, 

rotten fruits and vegetables would be a thing of the past (1). Epidemics such as the plague, 

which cost millions of lives in the Middle Ages (2,3) or the forgotten pandemic tuberculosis 

(4), which kills even today more than one million people per year (5), would not be worth 

discussing. Possibly even Napoleon's Russian invasion would have been different without 

the bacterium Rickettsia prowazekii, the cause of spotted fever (6). A world in which we 

want to live and can live? Louis Pasteur once put it this way: "Life would not long remain 

possible in the absence of microbes." (7). Presumably, life would not be completely 

impossible, but the world would be a different one, reduced in its diversity (8). However, 

eukaryotic life would not be possible considering the lack of mitochondria (9). 

Bacteria are among the first known life forms on Earth (10), whose existence began 3 - 4 

billion years ago (11,12) and is ubiquitously found throughout the ecosphere (13–15). 

Regarding the diversity of bacteria, this is the subject of ongoing discussions (16). Estimates 

range from 10,000 (17) to trillions of different bacterial species on this planet (18–21) based 

on a similarity of 97% from an operational taxonomic unit (22–24). In contrast, what is 

unquestionable is their enormous impact on almost all physicochemical and 

biogeochemical processes on Earth (25,26). These processes are involving complex 

interactions with the physiosphere as well as intra- and inter-specific interactions (27–29). 

Bacteria exhibit long residence times in the atmosphere and undergo inter-continental 

migrations, such as from Asia to North America (30). The fauna in its present form would 

not be imaginable without bacteria dissolving bound phosphates from the soil (25) and in 

interaction with yeasts and fungi, called the rhizosphere (31,32), playing an elemental role 

to plant health and growth (33–35). 
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This drastic mental experiment at the beginning was of theoretical nature and assumed a 

maximum loss of biodiversity for bacteria. Nevertheless, the decrease of biodiversity (36) in 

the Anthropocene is also verifiable for bacteria (37) and affects not exclusively the fauna 

and flora (38). Not only since the Corona pandemic (39) we are aware that interventions in 

ecosystems (40,41), usually accompanied by a loss of biodiversity (42,43) lead to changes in 

function and provided services of the ecosystem and thus modify at least adjacent 

ecosystems (44–46). 

The goal of various research groups and consortia, such as the Earth Microbiome Project 

(EMP) (47,48) is to advance the characterization of microbiomes of various ecosystems all 

over the world and their functional interactions with a global point of view (49). The very 

widely divergent estimates regarding the diversity of prokaryotes show how limited our 

knowledge is in these matters (50,51). Research collaborations, combined with new 

technical achievements, could ensure that the so far unexplored realms of the bacterial 

microcosm (52) provide us with profound insights into what the essences of life might be 

(16). The development of applications to specifically manage microbial communities (53), 

such as by transplanting a healthy microbiome (54), can be initiated from these results. This 

will enable solutions to some of the most challenging anthropogenic problems (55), ranging 

from agriculture due to eutrophication (56), to water pollution due to chemicals, to 

challenges in human and veterinary medicine (57). There is a growing understanding that 

living beings are healthy when they live in a healthy environment (58,59). Holistic 

approaches such as microbial ecology or systems biology will be a key contributor to 

increase our knowledge (60). 
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We are not alone - Humans as holobionts 

In the previous chapter, we got a first impression regarding the global relevance of bacteria 

for the ecosphere, the same context in which humans are embedded. In the following 

chapters of this dissertation, we consider the human being as a separate dynamic entity 

apart from this global context (59). Humans themselves are to be understood as an 

ecosystem of their own with diverse ecological niches accompanied by their own exclusive 

microbiome (61,62) or in other words: "Humans are holobionts" (63). In 1991, Lynn 

Margulis introduced the term holobiont (63), which is a macroscopic eukaryotic 

multicellular organism that maintains synergistic relationships with a variety of diverse 

microorganisms such as archaea, bacteria or fungi (64–66). In addition to humans, there are 

numerous examples of other holobionts, such as honey bees (67), Hydra (64) or Euprymna 

scolopes (68). In general we can say, they all have in common that the host is surpassed by 

the microbiome (65,69) regarding to its own cell number, cell types and genetic diversity 

(70–74). An average human with a height of 1.72 m, a weight of 70 kg and a resulting body 

surface of 1.85 sqm² has an estimated 3.72 x 1013 cells (75), but is colonized by at least 1014 

microbial cells (52). However, a recent study has calculated that the ratio between human 

and bacterial cells is more like 1:1 compared to the previously assumed 1:10 ratio (76). If 

we consider the more than 200 different cell types of the human species (77), it is also 

apparent that bacteria colonizing humans have a higher diversity, with more than 1000 

different species (61,78). Thus, the microbiome provides humans with several million genes, 

i.e., additional genetic information and variation (65). Consequently, this hologenome 

(79,80) provides humans with a wide variety of functionalities, such as metabolism of 

vitamins (81,82) or enhanced metabolism of food (83), that humans would not be able to 

metabolize with their own approximately 20,000 genes (73). The microbiome thus plays a 

crucial role regarding the evolution and development of humans (84). 

The Human Microbiome Project (HMP) was established in 2007 by the National Institute of 

Health and is dedicated to characterizing and cataloging the microbiomes found in and on 

humans (85). A key area of research for the HMP is the impact of the microbiome on a 

person's health status (85). It has already been shown that even the type of delivery, i.e., 
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the decision for a natural birth or a cesarean section (86,87), has an influence on whether a 

baby is more susceptible to infections (88) and has an increased need for antibiotics in the 

first years of life resulting in even greater disruptions of the microbiome (89–91). Microbial 

symbionts train our immune system and ensure proper establishment of the mucosal 

immune system (92),e.g. by modulating the levels of cytokines of T helper cells (93,94). At 

the same time, genetic factors of the host ensure which bacteria can colonize in humans 

and establish themselves as healthy microflora (95). Several studies have already shown 

that each person has their own individual microbiome, which appears to be stable to a 

certain extent (96–98). Here, a distinction is generally made between the core microbiome 

(85,96,99,100) and the variable microbiome (85,101), the latter being influenced primarily 

by the genotype and lifestyle of the host (85,101). The Core Microbiome, on the other hand, 

is constant in composition for a given ecological niche (85,99,100), such as the oral cavity 

(102) or the gut (81). 

Changes in the composition of the microbiome, e.g., due to changes in lifestyle (103), can 

lead to diseases (104,105). The underlying cause is a disturbed balance of the microbiome 

(106,107), leading to a decreased or a loss of function of symbiotic processes and 

functionalities between host and microbiome (108,109). Dysbiosis is usually accompanied 

by a reduction in diversity (110) and has been associated with numerous diseases (111–

113). The spectrum ranges from locally definable diseases such as periodontal diseases 

(114) or inflammation of the pancreas (115) to systemic diseases such as obesity (116), 

diabetes (117), cancer (118) or to degenerative diseases such as Alzheimer's (119) or 

Parkinson's disease (120). 

The etiology is still in the dark as how the shift from a healthy microbiome to a disease-

associated microbiome occurs. First indications for a possible theory suggest that previously 

symbiotic relationships with a microorganism become pathogenic through the formation of 

virulence factors and a disproportionate multiplication of the same (121). Another theory, 

at its core, is that dysbiosis allows pathogenic germs to colonize and become the dominant 

species in the first place (69,122–124). 

Microbiomics initially tried to understand what characterizes a healthy microbiome. Which 

bacteria can be detected and in what relation? How stable or variable is this microbiome? 
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Which active metabolic processes can be identified and how do they interact with each 

other or with the physiology of the host? (121). Answers to these and other questions form 

the basis for being able to distinguish a healthy microbiome from a diseased microbiome 

(125). The goal is to develop individual therapies for complex diseases associated with 

dysbiosis. To this end, targeted approaches are being pursued to rebalance diseased 

microbiomes instead of eradicating individual species, as it is the case with antibiotic 

therapies so far (95,126). Essentially, three general approaches to microbiome 

management have been established for this purpose: a) supplementation with beneficial or 

absent bacteria in the microbiome b) colonization with bioengineered microorganisms or c) 

administration of drugs that alter specific metabolic pathways of bacteria. Initial treatments 

to restore microbiomes have been successfully applied (127,128). The initial successes from 

over 10 years of human microbiome research is promising, but we are only at the very 

beginning regarding our understanding of the microbiome and its role in humans (129).  

Now, one might ask, which technical methods and approaches does science have at its 

command for gaining deeper insights into the human microbiome? Therefore, in the next 

chapter the technical principles applied in microbiome research will be discussed and their 

potential but also some basic challenges faced by each technique will be highlighted. 
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Rediscovering the world thanks to high-throughput technologies 

The EMP and HMP consortia were founded more than 10 years ago to promote the 

characterization of microbiomes in different habitats (47,48,85). However, the technical 

basis, or rather the technical revolutions, were laid years before, without which the current 

microbiome studies (130) would not have been able to establish itself as a research field 

(131). 

First, let's take a brief look back into the past of microbiology. The beginnings of "classical" 

microbiology reach back to the 16th century when Robert Hooke and Antoni van 

Leeuwenhoek constructed the first microscopes and began to explore the microcosm 

(132,133). Another milestone that should be highlighted here, are the development of 

culture media for growing bacteria in the laboratory (134). Initially, the development of 

liquid culture media by Spallanzani in the 18th century, improved by Louis Pasteur and 

followed by Robert Koch, who developed the first solid culture media in the 19th century 

(135–137). Until today, these methods form the basis for microbiological research and 

provide deep insights into the biological mechanisms of bacterial cells under defined 

laboratory conditions (134). Nevertheless, it is important to keep in mind that these in vitro 

studies only allow a limited understanding of bacteria and their behavior in their 

environment (138). On the one hand, the mentioned culture media implies that bacteria 

can be cultivated in the laboratory (139). It is estimated that only 2 % of all known bacteria 

can be cultivated in the laboratory, whereby a differentiation must be made here depending 

on the habitat (140). For example, approximately 50 % of oral cavity bacteria can be 

cultured (141). Another aspect relates to the selectivity of the culture media, which means 

that only a limited number of bacteria can be studied at the same time (139,142). As a 

result, the behavior of bacteria in the laboratory is different compared to their natural 

habitat, where they interact with their environment and compete with other bacterial 

species (138,143). Bacteria like SAR11 (Alphaproteobacteria) (144,145), or isolates of the 

phylum Synergistetes (146,147) cannot exist outside of their natural habitat and therefore 

cannot be grown using classical microbiological culture media, because too many symbiotic 

relationships exist within the bacterial community (143,148). 
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In the last decades, technical achievements such as Next Generation Sequencing (NGS) 

(149) or Mass spectrometry (MS) analyses (150) have led to the development of methods 

that overcome the previous challenges of "classical" microbiology (69). In the era of 'OMIC' 

technologies (151) it is now possible to collect and study samples directly from the habitat, 

whether or not the bacteria can be cultured (152). Basically, OMICs approaches can be 

divided into four areas: Metagenomics (153), metatranscriptomics (154), metaproteomics 

(155) and metabolomics (156). In addition, a variety of other OMICs areas have evolved 

(157–159), but these will not be part of further considerations. 

Let us start by taking a closer look at the metagenomics and metatranscriptomics 

approaches, which are based on the method of Next Generation Sequencing (NGS) (160) 

and have evolved from Sanger's dideoxy nucleotide method (161). Depending on the field 

of application or scientific question, various NGS platforms have been established on the 

market, such as pyrosequencing (162), sequencing by oligonucleotide ligation and detection 

(SOLiD) (163) or sequencing by hybridization (164), to name just a few. They all enable a 

massive parallelization of sequencing and thus also a potentiation of the throughput of 

samples to be analyzed (165). Briefly, all methods determine the sequence of nucleotides 

of DNA and RNA molecules. In a first step, the DNA library is prepared. For this purpose, the 

DNA molecules are fragmented enzymatically or mechanically, which have different lengths 

depending on the sequencing method used. Subsequently, the DNA double strands are 

denatured into DNA single strands and adaptors (short artificial DNA pieces) are ligated to 

the fragments. In addition, the now single-stranded fragments provided with adaptors are 

enriched using various PCR-based methods and finally sequenced. In the data analysis 

phase, the raw data determined by the NGS platform are assigned to nucleotides by so-

called process base calling. The result of base calling are reads, i.e., the nucleotide sequence 

of a fragment (149,153,165). These reads can then be aligned against reference genomes 

using bioinformatics tools (166–168). 

In the area of metagenomics, to provide an understanding of which bacteria live in a habitat 

and in what proportion they are present, methods such as 16S rRNA analysis or whole 

genome sequencing are used (60). This can elucidate which species are present and the 

theoretical potential for metabolic pathways (169,170). Metatranscriptome analyses, on 
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the other hand, analyze messenger and non-coding RNAs (171,172). Thus, these studies 

provide insight into gene expression as well as regulatory networks within a microbiome 

(172). 

Unfortunately, next generation sequencing methods cannot provide any information about 

which metabolic pathways are active or in which quantities the building blocks of life, the 

proteins, and their substrates are metabolized by enzymatic activity (173,174). These 

questions can be addressed and answered using metaproteomics (175,176) and 

metabolomics (177). Both latter OMICs approaches are enabled using mass spectrometers 

(MS) (178) or nuclear magnetic resonance (NMR) as an additional method for metabolomics 

(179). Mass spectrometry enables both rapid and sensitive identification and quantification 

of peptides, proteins, or metabolites (180). In general, mass spectrometry involves ionizing 

the sample material and measuring the mass-to-charge (m/z) ratio of ions that are present 

in the gas phase (181–183). The mass spectrometric process can be divided into five steps: 

Physicochemical separation of the sample material, ionization, mass selection, detection, 

and data analysis (150,181–184). Prior the measurement in the mass spectrometer, the 

sample mixture is separated by e.g. liquid chromatography to remove excess sample 

volume, existing solvents and to separate the components of a complex samples mixture 

(185). The actual measurement of the sample is subsequently performed on the mass 

spectrometer (150). An ion source is used to ionize the analyte and transfer it to the gas 

phase (184). Depending on the type and nature of the sample, different types of ionization 

are available, such as electrospray ionization (ESI) (186), matrix-assisted laser 

desorption/ionization (MALDI) (187) or the fast atom bombardment (FAB) (188). Mass 

selection is then performed in the analyzer according to the mass-to-charge ratio of ions 

(181–183). Again, a wide variety of analyzers are available, such as the quadrupole mass 

spectrometer (189) or the time-of-flight mass spectrometer (TOFMS) (190,191). In the 

detector, such as the Faraday Cup (192), secondary electron multiplier (SEV) (193) or 

microchannel plates (MCP) (194), the previously separated ions are detected. Finally, the 

measured mass spectra are evaluated using special software and against appropriate 

reference databases (195). One of the most efficient and common applications is a nano 

high performance liquid chromatography (nano HPLC) in combination with tandem mass 
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spectrometry (MS/MS) (196,197). In this thesis, separation of the peptide mixtures was 

performed using a C18 reverse phase nano HPLC, which was coupled to a Q Exactive 

Orbitrap mass spectrometer. 

Despite the enormous potential of OMICs technologies, it still requires a great effort to, for 

example, detect specific targets within a microbiome for influencing the microbiome (198). 

Each of the OMICs technologies presented faces their own unique challenges (199). For 

example, in human samples, the high content of human DNA (200) or human proteins is an 

aspect that should not be underestimated (201,202). Furthermore, metagenome analyses 

cannot differentiate whether the measured DNA originates from dead or metabolic active 

bacteria (203). Metaproteomics faces the difficulty that proteins have an enormous 

dynamic range regarding their concentration (204), and low abundance proteins are 

masked by high abundance proteins in the measurements (202,204). In addition, the 

enormous complexity of microbiomes confronts all OMICs technologies with the challenge 

of optimally evaluating and interpreting the huge amounts of data generated by each 

measurement (205). Here, high-quality reference databases and proper bioinformatics 

provide two essential elements for solving this issue, which have made enormous progress 

especially in recent years (206). 

In the future, however, it will be the combination of "classical" microbiology (Who is there?) 

with metagenomics and metatranscriptomics (What can they do?) as well as 

metaproteomics and metabolomics (What are they doing?) that will play the decisive role 

in gaining a holistic understanding of the composition and functioning of a microbiome (69). 
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Metaproteomics - A global view of the microbiome in its natural 

habitat 

Let us summarize to this point. We have seen the important role of bacteria in a global 

context and that they influence almost all physicochemical and biogeochemical processes 

on earth (25,26). We have broadened our understanding of humans by considering them as 

holobionts (63–66). For the study of this complex interplay between humans and bacteria, 

we have a wide variety of methods at our disposal, which we explored in some detail in the 

previous chapter (153–156). In the following, we will go into metaproteomics in more detail, 

considering the studies performed in the context of this dissertation. The aim of the 

dissertation is to characterize the human oral microbiome using metaproteomics, with two 

main focuses. First, the development and establishment of a workflow starting with the 

sample collection, the preparation of the samples for MS analysis and the evaluation of the 

obtained data (207,208). Second, the application of the workflow to characterize the three 

oral habitats saliva, tongue and supragingival plaque with respect to their microbial and 

functional composition (209,210). 

The term metaproteomics goes back to a publication by Rodriguez-Valera from 2004, 

meaning "to detect the genes expressed most abundantly in the environments under 

different nutrient regimes or external forcing" (155). The first metaproteomic study was 

published by Paul Wilmes and Philip L. Bond also in 2004 (211). In this study, both 

investigated the metaproteome of a laboratory-produced activated sludge system 

optimized for biological phosphorus removal using 2D gel analysis (211). Since then, more 

than 900 publications have been published (website: https://pubmed.ncbi.nlm.nih.gov; 

search term: "metaproteomics"; as of June 25, 2022). Several new definitions of the original 

term metaproteomics have emerged, which allow an even more precise differentiation 

(212). However, he terms are not always used unambiguously (212). As before, 

metaproteomics is understood as a gene-centered approach (155,211,212). It is primarily 

focused on identifying the entirety of the expressed proteins of a microbiome, which allow 

conclusions to be made on the metabolic activity of the microbiome under different 

environmental conditions. Identifying the members of the microbiome that are the origin 
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of the metabolic activity is somewhat less of a focus (155,211,212). This gap is filled by the 

term "community proteomics", where the focus is to identify not only which metabolic 

activity is present, but also which members of the microbiome are mainly responsible for 

metabolic activity (155,211,212). This dissertation can be assigned to both definitions, 

because on the one hand we have developed a workflow to optimize the set of identifiable 

proteins. We published our methods and protocols used in the laboratory as well as for the 

data analysis in a book chapter of the book series "Methods in Molecular Biology". 

(207,208). On the other hand, we have directly applied this workflow and had a closer look 

at the composition of the microbiome in three oral habitats and their metabolic activity 

(209,210).  

In general, the experimental procedure of a metaproteome study can be summarized as 

follows: At the beginning there is the collection of samples from the respective habitat 

followed by cell disruption as well as the extraction of proteins from the given sample. The 

metaproteome studies primarily use a gel-free bottom-up approach, which requires the 

tryptic digestion of the proteins into peptides. Depending on the questions of the studies, 

the peptides are optionally fractionated with different methods, separated, and then 

measured with a mass spectrometer. A labelling strategy would also be possible to improve 

the quantifiability of the complex metaproteome data. However, such fractionation and 

labelling strategies are costly and time-consuming (213). For protein identification, the 

obtained mass spectra are searched against a protein sequence database, which in turn is 

quantified and both taxonomically and functionally assigned using software programs 

especially designed for metaproteomic approaches (131,214–217). 

 

Sample collection 

The aim of all omics studies is to study the microbiome in its habitat (218). Access to the 

habitat to be studied can become a challenge (219,220). This is particularly evident, for 

example, in the study of marine ecosystems (221) or Acid Mine Drainage (AMD) from metal 

mines (222), where large-scale expeditions are usually required. Another example is that 

there are several seasons to wait if the microbial changes are to be investigated over the 

year (223,224). 
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When studying human samples, there are additional aspects to consider besides the 

challenges of sample collection (225,226). For example, it was important for our studies to 

assemble cohorts of oral healthy subjects to characterize the composition of the oral 

microbiome in a healthy state (227). A variety of legal regulations had to be considered and 

the study had to be legitimized by ethics applications (see ethics applications with 

registration number BB 070/16 (207–209) and registration number DRKS00022810) (210). 

In addition, close cooperation and training of the clinical staff members was necessary 

(227), which performed the sample collection e.g. partly for the plaque study (210). 

Another challenge for all studies is the alteration of samples during collection or storage, as 

studies have shown with saliva (228,229). We addressed protein degradation and 

denaturation by being on-site at the clinic during sample collection and adding protease 

inhibitors. In addition, samples were immediately frozen in liquid nitrogen and stored 

at - 80° (207–210). 

The collection of saliva samples is non-invasive (230) and various methods of collection are 

available (231). These include passive drooling (232), an unstimulated saliva sampling 

method, as well as the Salivette® (233) and paraffin gum (234), the last two involving active 

stimulation of saliva flow. All three methods have been used in previous metaproteomic 

studies (201,235–237). In our study of human saliva, we chose the paraffin gum (207–209), 

because our own study (207) as well as a study by Golatowski et al. (231) gave the best 

results regarding of sample volume obtained, number of protein identifications, and 

technical reproducibility. We demonstrated that more than three times as many bacterial 

proteins could be identified using the paraffin gum compared to the Salivette® (paraffin 

gum: 1,005 proteins; Salivette®: 313 proteins) (207). For saliva collection, subjects chewed 

on the paraffin gum for 1 min while spitting several times into a 50 ml Falcon tube (207). 

For the collection of biofilm samples from the tongue, we modified a previously published 

protocol for DNA analyses (238,239), since no metaproteomic studies on the tongue were 

available at this time. A sterile wooden spatula was placed dorsally on the outstretched 

tongue for 5 s with light pressure. The process was then repeated with the other side of the 

wooden spatula. The wooden spatula was transferred to a 50 ml Falcon tube containing 2 
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ml of sterile 1x PBS and vortexed for 30 s. The wooden spatula was then discarded 

(208,209).  

Plaque samples were collected with a sterile curette by a dentist. The supragingival plaque 

was from 24 tooth surfaces from all 4 quadrants of the maxilla and mandible, which were 

pooled in 3 ml of sterile 1x PBS and vortexed for 30 s to produce a suspension (210). For 

collection of plaque samples, we modified the sample collection protocol of a 

metaproteomic study by Belda-Ferre (203). 

 

Sample Preparation and Mass spectrometry 

Samples taken directly from the habitat are characterized by a high microbiological 

complexity and heterogeneity (240), which are additionally less controllable compared to 

laboratory cultures (241). Complexity and heterogeneity mean that different types of cells 

like bacteria, fungi or human tissues are present in different abundances (202). This, in turn, 

influences the choice of cell disruption, as cell disruption is easier for eukaryote cells or 

Gram-positive bacteria than for Gram-negative bacteria (242,243). Various possibilities of 

mechanical and non-mechanical lysis (enzymes, heating, detergents) are available (244), 

and it is necessary to find out for each habitat, which is the method of choice (214,245,246). 

We decided, based on previous analyses in the laboratory, to use a non-mechanical cell lysis 

by ultrasonication (247) for all our studies (207–210). 

In addition, such complex samples sometimes contain a not to be underestimated number 

of interfering substances, which affect both the protein extraction and the analyses with 

the mass spectrometer (248,249). To address this issue, we enriched the proteins using TCA 

precipitation, which facilitated the protein determination by Bradford (207–210). 

More important is the large dynamic range of human proteins, which cover a range of 7 

orders of magnitude (250,251). Examples such as alpha-amylase (AMY) (252), Mucin-5B 

(MUC5B) or lysozymes (LYZ) (253) are present in high abundance in saliva and overlay the 

low-abundant proteins of the bacteria during mass spectrometry measurements (237). 

Removal of especially high abundant human proteins from the sample would be one way 

to enrich bacterial proteins (254). At the same time, it should be noted that this could result 

in an interference with other analytes and to a loss of information (255). After all, one of 
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the strengths of metaproteomics is to reveal the protein interactions between humans as 

hosts and their microbiome (256,257). A more appropriate alternative is to fractionate the 

samples prior to mass spectrometric analyses to reduce the complexity of the peptide 

mixtures to be measured (258). 

We applied this approach in our studies by centrifuging the samples in several steps, 

enriching the proteins, and purifying the peptides derived by trypsin using µ-C18 material, 

for optimal preparation for mass spectrometric analyses. Further separation was achieved 

by using the reversed phase liquid chromatography (RPLC) method by first loading the 

precolumn (75 µm inner diameter, packed with 3 µm C18 particles, Acclaim PepMap100, 

Thermo Fisher Scientific®) with the complex peptide mixture. The peptides were separated 

on an analytical column (25 cm x 75 µm, 2.6 µm C18 particles, 150 Å pore size, Accucore 

150-C18, Thermo Fisher Scientific®) over a 120-min gradient. A binary buffer system 

consisting of 0.1% acetic acid water (buffer A) and 100% ACN in 0.1 acetic acid (buffer B) 

was used as the buffer system, with a linear gradient of 2-25% of buffer B. The peptides 

were analyzed using high-resolution accurate mass MS instruments of the Q Exactive 

Orbitrap MS series in data-dependent acquisition mode (207–210). 

 

Protein identification and data analysis 

The strategy selection for the analysis of the metaproteomic data is an important aspect in 

metaproteomics. These includes setting the right parameters for MS-search analysis to the 

appropriate database and pipeline for taxonomic and functional assignment of the 

identified proteins and their quantification (259). 

The number of bioinformatic methods for the analysis of metaproteomic data has 

constantly increased and methods have become very diverse (260–271). Primarily, the 

individual applications focus on single aspects of the analysis, such as protein grouping and 

their taxonomic and functional assignment (261,262,267), or they offer solutions for the 

protein inference problem (263–265). However, standardized protocols covering the entire 

evaluation process are still in the process of being established (272). 

Standardized and proven protocols of data analysis from the field of proteomics provide a 

first guideline for metaproteomics but can only be adopted to a limited extent (273). It is 
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still difficult to assess how the parameter settings like the number and diversity of PTM's or 

the maximum number of missed cleavages for the analysis of raw data, affect the results of 

metaproteomic datasets (273,274). Therefore, the parameter settings we chose are based 

on the optimized values for the mass spectrometers used in our laboratory and several 

publications that were most relevant at this time (259,269,273–278). The details of the 

parameter settings can be found in the publication Rabe et al. 2021 (208). 

One of the next questions is on which database the data interpretation should be based. 

Studies have shown that the selection of the reference database has a considerable 

influence on the results (276). Basically, three strategies for the selection of the database 

can be distinguished. If a new habitat shall be investigated, without intensive knowledge 

about the composition of the microbiome, the most suitable strategy is the general search 

against publicly available databases  (222,279,280) such as UniProt (281,282), NCBI (283) or 

eggNOG (284). However, the results at this point should be critically questioned as these 

databases are enormously large and no specific search is performed against the habitat 

microbiome (285). Problems such as the protein inference are particularly striking in this 

context. Furthermore, a high false discovery rate (FDR) inaccuracy and a loss of search 

sensitivity must be considered due to the wide variety of proteins and their unknown 

protein sequence size (286–289). Combined and iterative searches of different databases, 

reducing the database size based on the identified species of the previous search run, offer 

a possibility to increase the number of high confidence PSMs and reduce the number of 

false negatives (287,290). 

The method of choice is to create a protein sequence database from the same sample that 

is used for metaproteomic analysis (276,291). Crucial for such a database is the availability 

of the necessary financial and technical capacities as well as the human expertise to perform 

such a multi-omics approach (292). Nevertheless, the effort is worthwhile, as the peptide 

identifications are up to 1.5-fold higher compared to the non-specific databases (293). 

A hybrid approach is to use public genome databases that are specific to a habitat. A variety 

of such databases have now been established (49,294,295). We chose this hybrid approach 

and used the, 16S rRNA-based, human oral microbiome database (HOMD), which is 

provided and maintained by the Forsyth Institute (294,296,297). The HOMD focuses on the 
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human oral microbiome and defines a new phylotype from a sequence similarity of less 

than 98.5 % (294). This database thus provides the basis for taxonomic classification of even 

previously unknown bacterial isolates of the human oral cavity while adhering to strict 

quality criteria (296). 

For taxonomic and functional classification, we used the open-source program Prophane, 

which was developed for metaproteomics in the research group of Katharina Riedel by 

Stephan Fuchs (262), who gratefully supported this dissertation by individual adaptations 

of Prophane. Metaproteomics requires specialized tools to address the challenges of 

assigning identified peptides at the protein level (202,298,299). Taxonomic classification is 

even more complex in comparison to a proteomics approach due to a taxonomic inference 

problem (265). Peptide sequences are not only assigned to multiple proteins, known as the 

protein inference problem (300,301), but these proteins can also belong to multiple species 

(265). For this reason, the taxonomic assignments become less unambiguous as one moves 

from the superkingdom to the species level (273,302). Prophane addresses this problem by 

grouping proteins that have been assigned with multiple peptides into metaproteins 

(262,272). Taxonomic and functional classification is then performed by using the lowest 

common ancestor (LCA) approach. As a complementary note, functional assignment is often 

limited by lack of gene annotation. Estimates suggest that between 30% and 50% of gene 

sequences in a genome lack functional annotation (303). Moreover, the comparability of 

different functional annotation databases (UniProtKB (281,282), eggNOG (284), TIGRFAMs 

(304), or COG/KOG (305)) is difficult because they use different approaches for functional 

classification. For our studies, COG/KOG (305) as well as TIGRFAMs (304) were used. 

The main steps of our metaproteomic analysis strategy can be summarized as follows (208): 

We used the open-source data analysis software Trans-Proteomic Pipeline developed in 

Ruedi Aebersold's group to interpret the raw mass spectrometric data 

(http://tools.proteomecenter.org/software.php) (306–308). The database search was 

performed using the Comet algorithm (http://comet-ms.sourceforge.net/) (309,310) 

against a Decoy reference database, which consisted of the HOMD (www.homd.org) 

(294,296) as well as human sequences from the UniProt database (www.uniprot.org) 

(281,282). Peptides and proteins identified by individual modules of the TPP were filtered 
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based on a false discovery rate cutoff of protFDR < 0.05. For the subsequent analyses in 

Prophane (www.prophane.de) only proteins that contained at least one unique peptide 

were allowed. Based on the Lowest-Common-Ancestor algorithm (311), taxonomic 

assignment was performed as well as functional assignment using COG/KOG (305) and 

TIGRFAM (304) classification. The data were also relatively quantified by prophane using 

NSAF (normalized spectral abundance factor) values (312). 
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Metaproteomic insights on the microbiomes of saliva, tongue, and 

dental plaque 

The oral cavity (cavum oris) in humans is a space which merges posteriorly into the middle 

pharynx, is bounded anteriorly by the lips (labia), laterally by the cheeks (bucca), inferiorly 

by the mucous membrane of the floor of the mouth and is separated from the nasal cavity 

by the soft and hard palate (313,314). 

The oral cavity, in a functional perspective, is the starting point of digestion by ingestion of 

food, the comminution of food by teeth and tongue, the initiation of enzymatic digestion, 

and the process of swallowing to transfer the food into the digestive tract 

(121,296,314,315). In addition, the oral cavity plays an essential role regarding to 

respiration, but also sound formation and facial expressions, which are elementary 

components of human speech and communication (314,315). Furthermore, there are 

sensory functionalities (taste, temperature, pain, palpation), thermal regulation 

mechanisms and the secretion of saliva and crevicular fluid, which have immunological 

functions (314–317). 

As another distinctive characteristic, the oral cavity is composed of a variety of different 

ecological niches (314,318). The teeth form a permanent hard tissue structure in the body 

that intersects a soft tissue structure, the gingiva (313,319). The tonsils are characterized 

by deep crypts (319). The tongue is characterized by papillae on the dorsal side whereas on 

the ventral side there is mainly a mucosal epithelium (319,320). The physicochemical 

characteristics differ depending on the location of the habitat with respect to the 

concentration of nutrients, oxygen, or the pH value (315,319,321,322). In addition, habitats 

are exposed to regular and temporally recurring external influences that define the specific 

characteristics of the habitat (321,322). These include, the quality of food (98), movements 

of teeth and tongue (314,315), desquamation (323), salivary flow rate (324) or the circadian 

rhythm (325), to name just a few examples. 

Based on these different habitats regarding their anatomy, histology and physicochemical 

conditions, the microbial composition within the oral cavity is characterized by a high 

diversity and specificity (326,327). At the same time, the individual habitats are 
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interconnected by saliva, which rinses the entire oral cavity (324). Thus, the term human 

oral microbiome, defines all microorganisms identifiable in the oral cavity or its adjacent 

extensions (296). Beside the intestinal microbiome, it is the second most complex 

microbiome of the human body and was among the first human microbiomes to be studied 

(61,280). As early as 1695, Antoni van Leeuwenhoek described the study of plaque and 

saliva in his book "arcana naturae detecta" (328). The caries-causing bacterium 

Streptococcus mutans was among the first bacteria isolated (329). 

The great majority of bacteria in the oral microbiome live facultatively anaerobic or 

obligately anaerobic and require a neutral pH for their growth (330). A study by Simon-Soro 

et al. showed that due to the high oxygen content in the vestibulum oris, Streptococci can 

be identified, whereas anaerobic Fusobacteria tend to live on the tongue (331). Nearly 700 

different microbial species have now been identified, the vast majority of which have been 

assigned to the phyla Firmicutes, Bacteriodetes, Proteobacteria, Actinobacteria, 

Spirochaetes and Fusobacteria (99,141,296,297,332–335). The more rarely represented 

species include Chlamydia, Chloroflexi, SR1, Synergistetes, Tenericutes, and TM7, in addition 

to the Euryarchaeota (296,334). Despite the high diversity of intraoral habitats, a certain 

stability and an oral core microbiome can be defined, which at the same time is 

characterized by a high variability of low abundant species (321,326,334,336,337). 

The oral microbiome is one of the first barriers for pathogenic bacteria to prevent their 

colonization (121). It also trains the human immune system and influences the up- and 

downregulation of pro-inflammatory immune responses (338). A disturbance of the balance 

can lead to severe local as well as systemic diseases (141). A diet with predominantly simple 

carbohydrates, smoking or a lack of oral hygiene, promote the shift of the healthy oral 

microbiome to a pathological microbiome (327,337,339–342). Caries (343) and 

periodontitis (344) are most widespread polymicrobial diseases of the dental apparatus 

(345–348). However, due to the increased presence of pro-inflammatory mediators (349), 

an untreated pathological oral microbiome can also be a reason for diabetes (350), 

cardiovascular diseases (351), or cancer (352). Especially regarding the etiology of 

polymicrobial diseases in humans, it is therefore of crucial importance to study the general 
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composition and behavior of the oral microbiome while considering intra-oral and 

interindividual differences (331,353). 

The goal of the scientific community is therefore to define what distinguishes a healthy and 

a diseased oral microbiome from one another, as well as to develop a kind of early warning 

system in the case of a shift in the oral microbiome (121,148,354). This could be done, for 

example, using bacteria that act as biomarkers, as has already been shown in an initial study 

for plaque (Corynebacteriaceae), tongue and saliva (Veillonella, Oribacterium) (355). 

Another goal is to remediate pathological microbiomes more gently through a deeper 

understanding of the oral microbiome, without relying on antibiotics or antibacterial mouth 

rinses and ointments, which primarily reduce the diversity of the microbiome 

(339,356,357). Probiotics might a possible alternative, as shown by initial promising study 

results (358,359). 

Using the techniques of metaproteomics, this dissertation thesis contributes to a better 

understanding of the bacteria metabolically active in the microbiome based on the 

identified proteins for saliva and tongue. In addition, we consider the interactions between 

bacterial and human proteome (207–209). In the plaque study performed, the effects of 

different treatments on the plaque microbiome were studied in terms of changes in 

proteins and metabolic pathways affected by them, to lay a first set of basic knowledge for 

a possible treatment to positively influence the commensal microbiome (210). 

After a brief general introduction to the studied habitats, saliva, tongue and plaque, the 

main findings of the studies are presented and placed in the context of the present state of 

the literature. 

 

Saliva and Tongue 

Saliva is the secretion of the salivary glands, which are classified as serous, mucous or 

seromucous and are distributed throughout the oral cavity (319). In addition to hundreds 

of minor salivary glands, there are three main salivary glands, the Glandula parotis, the 

Glandula submandibularis and the Glandula sublingualis (230,313,319). Saliva consists of 

approximately 98 % water and only the remaining 2 % is composed of a mixture of various 

components such as proteins, glycoproteins, electrolytes, or immunoglobulins 
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(319,360,361). This biofluid has a pH value of 7 due to the electrolytes it contains, which 

provide additional buffering capacity against acids and thus protect teeth from their 

demineralization (362–364). Immunoglobulins lead to antibacterial, antifungal, and 

antiviral characteristics (361,365,366). The mucous salivary glands secrete as their main 

component the protein mucin, which has a protective function on the soft and hard tissues 

of the oral cavity (319,324,362). The serous glands, mainly produce amylases, which initiate 

the digestion process of carbohydrates to glucose (252,319,324). The initiation of digestion 

not only provides nutrients to the human host, but also to the existing biofilm in the oral 

cavity (367,368). 

Saliva has been the focus of numerous metagenomic studies (335,369–372), which is not 

surprising since saliva can be collected easily and non-invasively (230). It is dominated by 

the five phyla Actinobacteria, Bacteriodetes, Firmicutes, Fusobacteria, and Proteobacteria 

(99,373,374). At the genus level, especially Streptococcus, but also Prevotella, Veillonella, 

Fusobacterium, Rothia, Neisseria and Haemophilus have been identified to define the 

salivary core microbiome (99,326,331,375). Initial metaproteome studies (201,235–

237,269,376,377), in addition to our own, were able to confirm the taxonomic distribution 

based on protein assignments. We identified 1,647 human proteins, which is slightly less 

than comparable studies (236,237), but with 2,633 metaproteins we detected more 

bacterial proteins (209). As explained in more detail in previous chapters, we attribute this 

to the different size and composition of the cohorts, as we had only healthy study 

participants to examine the healthy microbiome. Other factors include different protocols 

and strategies regarding sample collection and preparation, mass spectrometric 

measurements, and data analyses (208,209). 

From a microbiological point of view, saliva is the result of the various habitats of the oral 

cavity, for example, due to detaching bacteria from biofilms or oral mucosal surfaces 

(323,327,330). The tongue with its biofilm is also a reservoir of bacteria (378). There is even 

the hypothesis that the bacterial composition of saliva is essentially influenced by the 

tongue or even originates from the tongue (336,378,379). 

The tongue is a muscular structure consisting of nine individual muscles, which is covered 

by a mucous membrane and innervated in a complex manner by several nerves (313). The 
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entire tongue, in addition to several salivary glands (324), is covered by various types of 

papillae, which can be categorized into two groups (320). The mechanical papillae group 

consists of the Papillae filiformes, Papillae conicae and Papillae lentiformes, which are 

responsible for the tactile sensation of the tongue. The Papillae fungiformes, Papillae 

vallatae and Papillae foliatae are responsible for the sense of taste, with the Papillae 

fungiformes additionally forming the source of temperature sensitivity 

(313,319,320,380,381). In the cavities between the papillae, a biofilm is formed, which can 

be observed as a whitish coating on the tongue (61,382). This biofilm seems to be the cause 

that saliva and tongue show a great similarity regarding their microbiome 

(326,331,336,379). 

Therefore, we designed our metaproteomic study to analyze not only the salivary 

microbiome but also the tongue microbiome in the same cohort of 24 healthy volunteers 

and to compare both microbiomes (208,209). An important result was that the relative 

abundance of bacterial metaproteins in the studied biofilm of the tongue was significantly 

higher with 40.8 % compared to saliva with 21.7 %, in which the bacteria live planktonically. 

The taxonomic assignment of the proteins confirmed the dominant phyla and genera 

previously named for saliva, also for the tongue with the difference that the bacterial 

metaproteins occurred in higher abundance for the tongue. This seems to be another hint 

for the hypothesis that there is a taxonomic similarity between saliva and tongue (336). 

We detected a wide bacterial diversity, which is probably mainly due to the interindividual 

difference between the subjects, regarding to their dietary habits (383), genetic background 

(384) and oral hygiene (339) as already described in more detail in the previous chapters. 

Nevertheless, we identified significant differences between saliva and tongue of non-

dominant genera such as Gemella, Granulicatella, Treponema or Peptoniphilus, which shape 

the profiles of both microbiomes (209). 

Human proteins with the highest abundance were, as expected, α-amylase (AMY1A) (385) 

and glyceraldehyde-3-phosphate (GAPDH) (386), both in saliva and in tongue swabs. In 

contrast to the tongue, higher abundances of immune defense proteins were found in 

saliva. Probably due to the scraping of the biofilm from the tongue during the sampling 

process, we identified significantly higher abundances of cytoskeletal proteins such as 
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repetin (RPTN), which is involved in the development of the formation of cornified cell 

envelopes (320). 

At least 30% of the 2,633 bacterial metaproteins of saliva and 3,307 bacterial metaproteins 

of the tongue were of ribosomal origin or functionally mapped to translation. Moreover, for 

the planktonic bacteria in saliva more metaproteins of cell motility showed a higher 

abundance (235). For the tongue, higher abundances for metaproteins of signal 

transduction and for synthesis of secondary metabolites were identified, suggesting intra- 

and interbacterial communication within the tongue biofilm (387). 

In summary, we were able to demonstrate the applicability of our workflow from sample 

preparation to analysis of metaproteomic data. These results were comparable to other 

metaproteomic studies and provided good technical reproducibility. In addition, this is the 

first study providing metaproteomic data for the tongue. Furthermore, it is the first 

metaproteome study comparing the microbiomes of saliva and tongue. We identified a 

great taxonomic diversity, accompanied with taxonomic as well as functional similarity 

between the two microbiomes (208,209). 

 

Supragingivale Plaque 

Supragingival plaque is a biofilm that develops over time on tooth surfaces. The biofilm 

consists of a complex microbial community embedded in a structure of extracellular 

substances called exopolysaccharides (388,389). The formation of the biofilm can be 

divided into the 5 phases called association, adherence, microcolony formation, biofilm 

maturation with EPS synthesis, and aging including detachment of planktonic bacteria 

(388,390). During association, a pellicle layer, including glyco- and salivary proteins, forms 

on the tooth surface within a few minutes (391,392). Subsequently, first colonizers form a 

loose association with this pellicle layer within a few hours. The initial colonizers include 

mainly Streptococcus spp. but also Capnocytophaga spp., Prevotella spp. or 

Propionibacterium spp (393–396). Bacterial adherence forms the basis for further 

maturation of the biofilm, with initial formation of microcolonies and the beginning of 

vertical growth of the biofilm, usually within the first 24 hours (397). In the fourth phase, 

maturation of the biofilm takes place, and a matrix is established through the synthesis of 
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exopolysaccharides. This allows the establishment of a complex community structure 

(398,399). Water channels are formed, which supply the bacteria with water, but also 

remove toxic substances (390). The matrix of exopolysaccharides also ensures a stable pH 

via binding cations and store nutrients (399). In this phase, bridging species such as 

Fusobacterium nucleatum or Prevotella intermedia play a central role, providing the link 

between first and late colonizers, such as Eubacterium spp. or Treponema spp 

(395,396,400). The denser the colonization of the biofilm, the more important intra- as well 

as interspecific communication via quorum sensing becomes (401). Quorum sensing is a 

form of chemical communication that allows bacteria to react to changing environmental 

conditions and thus to find new ecological niches to ensure the survival of the population 

(401–403). This organizational structure thus allows the biofilm to show a great resistance 

to external environmental factors such as nutrient limitation, the human immune system, 

and antibiotics (388,399,404). 

The Plaque biofilm is always associated with diseases such as caries or periodontitis (405). 

However, the plaque biofilm basically possesses several properties that are beneficial to 

human health (406). A biofilm in a state of balanced equilibrium forms a barrier against 

disease-associated bacteria (337). In the context of the extended ecological plaque 

hypothesis, it is assumed that cariogenic bacteria already colonize the plaque biofilm but 

are not competitive at a neutral pH and commensals prevent them from dominating the 

biofilm (407,408). Studies of the immune system have shown its ability to distinguish 

between commensals and pathogens. The Dysbiosis of the biofilm triggers an inflammatory 

reaction of the immune system (409,410). 

In addition to genetic causes of the host or a reduced salivary flow rate, a diet of simple 

carbohydrates in combination with poor oral hygiene is a major factor regarding the 

bacterial shift towards a pathogenic biofilm (121,141,411). This is supported by a study that 

despite a lack of oral hygiene in combination with a lack of refined sugars in the diet, the 

biofilm grew but signs of gingival inflammation or the number of pathogenic bacteria did 

not increase (412). Refined sugar lowers the normally neutral pH value, which is an 

advantage to acidogenic bacterial species such as Streptococci spp. (S. mutans, S. oralis). 
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The basis for the development of caries, the demineralization of the tooth substance 

(413,414). 

Saliva serves as a natural plaque control in the oral cavity, including the salivary flow rate 

that mechanically removes bacteria (121), the stabilization of the pH or the contained 

components of the innate immune system such as the lactoperoxidase system (330,415). 

The enzyme lactoperoxidase, catalyzes the oxidation of anions in the presence of hydrogen 

peroxide (H2O2) to highly reactive reaction products, which are toxic to bacteria (416). In 

our study, we aimed for lactoperoxidase to catalyze H2O2, derived from the H2O2 donor 

carbamide peroxide (CPO), and the substrate thiocyanate (SCN-), to hypothiocyanite (OCSN-

) (210,417,418). Although daily oral hygiene products already use the mechanism of the LPO 

system, most of them aim to reduce the biofilm or microbiome entirely, including 

commensal bacteria (415,419,420). However, in addition to the mechanical teeth cleaning 

routine via toothbrushes, the aim should be to influence the plaque biofilm formation that 

the commensal bacteria are promoted, and pathogenic bacteria cannot establish or 

dominate the biofilm. 

The aim of our study was to evaluate the effect on plaque formation of two lozenges 

containing the components of the LPO system in high (Drug B - 0.083 % H202 accordingly a 

1:2 H202/SCN- relation) and low (Drug C - 0.04 % H202 accordingly a 1:4 H202/SCN- relation) 

concentrations. For comparison, we used a lozenge as a placebo (Drug D) and the 

mouthwash Listerine (Drug A), known for its plaque inhibitory effect (421,422), as a positive 

control. Sixteen subjects, serving as their own control, were given each of the four 

treatment regimens over a 4-day period in a dentally approved cross-over design (423). No 

additional oral hygiene practices, such as brushing or flossing, were used during treatment. 

Between each treatment, there was a recovery phase of 10 days where subjects followed 

their usual oral hygiene routine. The study was designed as a randomized single-blind trial. 

Furthermore, the aim was also to combine the results of the clinical part of the study with 

the results of metaproteomics (210,424). 

With 1,916 (± 465) bacterial and 442 (± 171) human proteins per sample, we achieved 

higher protein identifications than comparable metaproteome studies (203,425–427), 
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which we attribute primarily to the high number of 128 samples measured, in addition to 

different methods of sample preparation and data analysis (259,428,429). 

The expected high proportion of bacteria in the biofilm, was observed by the relative 

abundance of metaproteins, which averaged three-quarters of the sample except for 

samples after Listerine treatment (Drug A). 

The plaque inhibitory effect of Listerine was observed by a reduction in the relative 

abundance of metaproteins from an average of 74.1 % before treatment to 59.1 % after 

treatment. Despite the same amounts of proteins used for MS measurement, the identified 

metaproteins reduced abundance on average by 23.5% after treatment with a 

corresponding increase in human proteins. The abundance of metaproteins that have 

functions in metabolic processes for bacterial growth were significantly reduced. The 

opposite observations were made for Drug B (0.083 % H202 accordingly a 1:2 H202/SCN- 

relation), Drug C (0.04 % H202 accordingly a 1:4 H202/SCN- relation), and Drug D (placebo). 

The taxonomic assignment of the metaproteins is consistent with the findings of recent 

studies. The plaque biofilm is composed of eight phyla. The phyla Actinobacteria, 

Firmicutes, Fusobacteria, Proteobacteria, and Bacteriodetes play a major role whereas the 

Spirochaetes, Synergistetes, and an unclassified phylum play a minor role 

(99,102,332,338,430,431). We also showed a high taxonomic diversity of the plaque biofilm, 

as reflected by the assignment of metaproteins to 116 genera and 351 species.  

For Drug D (placebo), unexpectedly, there were slight significant changes in the abundances 

of metaproteins detected, for example the increase for the secondary colonizer 

Capnocytophaga spp. or for metaproteins involved in small molecule interactions. This is 

attributable to the high interindividual variance of the subjects as well as to the sugar 

alcohols contained in the lozenge, which influence the microbiome (432–437). 

Drug C showed a similar change in the metaproteome as Drug D, suggesting that the 

concentration of the LPO system is too low to influence plaque biofilm development beyond 

that of a placebo. 

The greatest changes in the metaproteome were apparent under Drug B treatment. We 

found an increase in metaprotein identifications and metaprotein abundances for bacteria 

that are either associated with oral health or play a decisive role as commensals for plaque 
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biofilm formation. In addition to increased metaprotein abundances for Lachnospiraceae 

ssp. or Abiotrophia defectiva (438,439), we noted changes for Streptococcus gordonii, which 

is a competitor for the cariogenic bacterium Streptococcus mutans through the production 

of hydrogen peroxide (440–443). For the 4th phase of biofilm development, its growth, the 

bridging species Fusobacterium nucleatum or late colonizers Prevotella intermedia and 

Prevotella nigrescens are of great relevance, for whom we also found increased 

metaprotein abundances (394,396,397,444). 

In conclusion, this complementary study demonstrated the influence of lozenges with two 

different concentrations of the LPO system on plaque formation. This is the first 

metaproteomic study that attempts to harmonize the results of classical microbiology and 

collected clinical parameters within the context of an established clinical model. The initial 

results will form the basis for further studies to advance the development of a product for 

daily oral hygiene that positively affects the commensal bacteria of the oral biofilm (210). 
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Metaproteomics in the light of future developments 

As we have learned in the previous chapters, metaproteomics faces many challenges to be 

overcome in the future (428). Starting with the enormous complexity and heterogeneity of 

samples (445–447) to the evaluation of the enormous datasets (448) as well as their 

integration with other 'omics' technologies (449). At the same time, we have seen the 

potential of metaproteomics. With our studies we could show that metaproteomics is not 

only the determination of the pure number of proteins and their relative abundance (207–

210). Also, in the sense of community proteomics (450), these proteins can be assigned to 

the individual members of the microbiome and their functional role within the microbiome 

can be determined (451,452). Finally, let us have a look at future trends and developments 

in metaproteomics to ask the question "Quo Vadis metaproteomics?". 

First, it can be pointed out that one focus will be on the optimization and standardization 

of sample collection and preparation, which must be worked out individually for each 

habitat (226,453). The reason for this lies in the complexity and heterogeneity of each 

habitat, which, in addition to a large number of expected proteins (AMD biofilm: 4.77 x 105 

proteins (428,454); surface freshwater: 6 x 107 proteins (428,455); human saliva: 16. 2 x 106 

proteins (428,456)) also have individual challenges to extract proteins from each habitat 

(soil: humic acids (457); saliva: high percentage of human proteins (201,202)). The 

standardization of protocols will allow to some extent to establish comparability between 

samples of a habitat (458). 

Metaproteomics will also benefit from the technical advancements of mass spectrometers 

(459). In addition to the enhanced sensitivity of the instruments, the increased use of the 

data-independent acquisition (DIA) method also promises improved results (460,461). 

Analogous to the DDA method, the DIA method also fragments all the peptide ions in a first 

step, followed by a sequential analysis of mass windows. The difference in DIA is that a 

much smaller mass window of precursor ions is considered in each cycle of selection and 

fragmentation. This smaller mass window is then gradually shifted over the entire mass 

range under consideration (462). As a result, all precursor ions are selected and analyzed, 

leading to improved peptide identification (463). Most importantly, this means better 
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coverage of low abundance proteins (464,465). In one of the first metaproteomic studies, 

Aakko et al. demonstrated the applicability of the DIA method to metaproteomics based on 

human fecal samples and laboratory-assembled microbial mixtures (466). Since all ions are 

analyzed one can also re-analyze data and pick-up new details, e.g., when new post-

translational modifications are discovered. 

Another essential component that will sustainably change metaproteomics is the area of 

evaluation and interpretation of the data obtained by mass spectrometry. The development 

of specific metaproteomic software solutions (448), the application of multi-omics 

approaches (449) and machine learning or artificial intelligence (467) will play a decisive 

role in this context. 

Over the last few years, a variety of software solutions have been established (260–

266,272). There are software solutions that specialize in protein grouping and taxonomic 

and functional assignment (iMetaLab (261), MetaProteomeAnalyzer (267,272), Prophane 

(262,272). Unipept (263,264) as well as MetaTryp 2.0 (265) on the other hand specialize in 

peptide level analysis to address the protein inference problem (468). Still another software 

program is even specifically designed for a habitat, such as MetaPro-IQ for the gut 

microbiome (266). The use of software solutions developed specifically for metaproteomics 

provide improved reproducibility of metaproteomic studies because they promote 

standardization within and between research groups (213,287). In addition, pipelines 

attempt to address specific problems in the analysis of metaproteomic data, such as the 

grouping of redundant proteins (metaproteins) (262,272) or the taxonomic (taxonomy 

inference problem) (468) and functional assignment of metaproteins (262,272). 

Nevertheless, it is crucial to critically compare workflows (213,287), because different 

approaches and strategies are used to analyze the data (260–267,272). A promising 

approach is the combination of the two open-source tools MetaProteomeAnalyzer and 

Prophane, which are specialized in metaproteomics and enable scientists to handle the 

entire analysis process from the creation of the protein database to the visualization of the 

results in one integrated workflow (272). 

Metaproteomic studies will produce increasing amounts of data due to improved mass 

spectrometers or more extensive gene databases, so the use of machine learning or 
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artificial intelligence algorithms will undoubtedly contribute to the optimization of quality 

and quantity (469). In the field of mass spectrometry, machine learning algorithms have 

been developed and used for many years for the prediction of retention time (470,471) or 

MS/MS spectrum prediction (472–474). Classical examples are machine learning algorithms 

like random forests (475) or gradient boosting (476). Another application of machine 

learning algorithms is the sequence database search to improve the quality of peptide and 

protein identification (474). First promising approaches are already being pursued in the 

field of proteomics (477). For the presented metaproteom software solutions (260–

267,272), it will be important to adapt these approaches and make them usable for 

metaproteomics in the future. 

In addition to developments that are specific to the research area of metaproteomics, there 

will be a need to conduct more studies based on multiomics approaches (478) 

(alternatively: integrative omics (479) or panomics (159)). An example is the 

implementation of the Integrated Human Microbiome Project (480,481) as a follow-up and 

extension of the HMP (61,85). The goal of multiomics is to combine the results of the 

different omics technologies because each omics approach reflects only a reductionistic 

picture of reality (482). After all, the microbiome and environmental conditions are 

mutually dependent, which in turn influences the genotype and phenotype of the 

microbiome and host (483). It is this integrative approach that will allow us to obtain new 

associations or relationships between gene and protein expression and their influence on 

the metabolome (256). Considering individual medicine (159), biomarkers can already be 

discovered today that announce the change from a healthy to a pathogenic microbiome 

(484,485). Furthermore, clear targets can be identified to positively influence the 

microbiome without resorting to eradicative therapies (486). 

The standardization of protocols, artificial intelligence and multiomics are elementary 

components to further develop metaproteomics. These developments will ensure that the 

results of metaproteomics will be qualitatively enhanced and allow even more detailed 

insights into the interrelationships and actions of a microbiome. The goal of personalized 

medicine, where medical treatments and decisions are tailored to the individual patient, we 

may thus come a decisive step closer (487).  
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