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Zusammenfassung

Zusammenfassung

Hintergrundinformationen: Bakterien gehoéren zu den altesten Lebensformen und sind ein
elementarer Bestandteil aller 6kologischen Lebensrdaume auf der Erde. Der Mensch als
Holobiont ist ein eigenstandiges Okosystem mit einer Vielzahl von 6kologischen Nischen
und einer groRen bakteriellen Vielfalt. Durch innere oder duBere Einflisse kann es zu
Veranderungen der Umweltbedingungen kommen, die eine verdanderte Zusammensetzung
des Mikrobioms zur Folge haben. Eine solche Dysbiose wirkt sich auf den
Gesundheitszustand des Menschen aus und kann zu schweren Krankheiten flihren. Das
orale Mikrobiom gehort mit zu den komplexesten Mikrobiomen des Menschen. Es bildet
eine natirliche Barriere gegen Krankheitserreger und beugt somit u.a. lokalen Krankheiten
wie Karies oder Parodontitis vor. Die Metaproteomik ermoglicht es, die exprimierten
Proteine des Mikrobioms und deren Interaktion mit dem Wirt zu untersuchen. Diese
Technologie Uberwindet somit die Beschrankung auf Laborkulturen und ermdglicht die
Untersuchung des Mikrobioms direkt in seinem natirlichen Lebensraum. Die
Metaproteomik bietet eine Reihe von Instrumenten zur Vertiefung des Verstandnisses des
oralen Mikrobioms hinsichtlich des Gesundheitszustandes des Menschen.

Ziele: Ein Ziel dieser Dissertation war es einen Arbeitsablauf fir die Durchfiihrung von
Metaproteomstudien des oralen Mikrobioms zu erarbeiten, beginnend bei der
Probensammlung Uber die Praparation der Proben fiir die Massenspektrometrie bis hin zur
bioinformatischen Auswertung. Diesen Arbeitsablauf galt es fiir das Mikrobiom des
Speichels sowie fir die Biofilme auf der Zunge und des supragingivalen Plaques zu
etablieren bzw. zu adaptieren. Darauf aufbauend wurden Metaproteomstudien
durchgefihrt, um die drei Mikrobiome bei gesunden Probanden hinsichtlich ihrer
exprimierten Proteine, deren metabolischer Bedeutung und Interaktionen mit dem Wirt
sowie deren taxonomische Zuordnung zu studieren.

Studiendesign: Die Dissertation umfasst drei Studien mit drei unterschiedlichen Kohorten.
Allen Studien ist gemein, dass die Kohorten sich aus oral gesunden Probanden im Alter von

20-30 Jahren zusammensetzten.



Zusammenfassung

In der ersten Studie verglichen wir die Salivette® sowie den Paraffinkaugummi anhand von
funf Probanden, um die effektivste Methode zur Sammlung von Speichel fir
Metaproteomstudien zu identifizieren.

In der zweiten Studie wurden die Mikrobiome von Speichel und Zunge anhand von 24
Probanden miteinander verglichen und dafiir eine Auswertestrategie entwickelt, um der
Komplexitat dieser Metaproteomstudie gerecht zu werden.

Im Rahmen unserer dritten randomisierten Einzelblindstudie, die auf einem Cross-over-
Design  basierte, erhielten 16  Probanden vier unterschiedliche lokale
Behandlungsschemata, um deren Auswirkung auf das Plaque-Mikrobiom zu untersuchen.
Die Behandlungen bestanden aus zwei Lutschtabletten, die Bestandteile des
Lactoperoxidase-Systems in unterschiedlichen Konzentrationen enthielten, einer
Lutschtablette mit einem Placebo-Wirkstoff sowie Listerine® Total Care™ Mundspuilung als
Positivkontrolle.

Alle Proben wurden, basierend auf einem Bottom-Up-Ansatz, unter Verwendung von nano
LC-MS/MS Massenspektrometern in einer datenabhingigen Messstrategie (DDA, data-
dependant acquisition mode) vermessen. Die bioinformatische Auswertung erfolgte fir die
erste Studie mit Hilfe der Proteome Discoverer Software. Fiir die Studien zwei und drei
wurde die Trans-Proteomic Pipeline eingesetzt. Die taxonomische sowie funktionelle
Zuordnung der identifizierten Proteine erfolgte fir alle Studien anhand der Prophane
Software.

Ergebnisse: Fir den Paraffinkaugummi konnten wir mit 1.005 bakteriellen Metaproteinen
dreimal so viele Metaproteine identifizieren im Vergleich zur Salivette® mit 313
Metaproteinen. 76,5 % der Metaproteine der Salivette® wurden ebenfalls mit dem
Paraffinkaugummi gefunden. Insgesamt wurden 38 Genera und 90 Spezies identifiziert,
wovon 13 Genera und 44 Spezies nur mit dem Paraffinkaugummi identifiziert werden
konnten. Die grofSte funktionelle Diversitat wurde ebenfalls mit dem Paraffinkaugummi
detektiert.

Das Metaproteom des Speichel- und Zungen-Mikrobioms basiert auf 3.969 bakteriellen
Metaproteinen sowie 1.857 humanen Proteinen. Die Anzahl der nur fiir das Zungen-

Mikrobiom identifizierten Metaproteine, war doppelt so hoch, im Vergleich zum Speichel.
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Die Metaproteine konnten 107 Genera sowie 7 Phyla zugeordnet werden. Funktionell
wurden fir das Speichel-Mikrobiom signifikant hohere Metaproteinabundanzen fiir die
Zellmotilitat gefunden. Beim Zungen-Mikrobiom hingegen wiesen die Metaproteine der
Biosynthese von sekundaren Metaboliten, Signaltransduktion oder der Replikation héhere
Abundanzen auf.

Im Rahmen der Plaque-Studie identifizierten wir durchschnittlich 1.916 (+ 465) bakterielle
Metaproteine je Probe, die wir taxonomisch und funktionell 116 Genera sowie 1.316
Proteinfunktionen zuordnen konnten. Die Plaque inhibierende Wirkung von Listerine®
zeigte sich durch eine Reduktion der Metaproteinidentifikation von durchschnittlich 23,5 %
nach der Behandlung. Dariiber hinaus zeigte die Mehrheit der bakteriellen Metaproteine
reduzierte relative Abundanzen wahrend fir die Metaproteine humanen Ursprungs eine
Erhéhung der Proteinabundanzen gegeniiber der Kontrolle vor Behandlung zu verzeichnen
war. Aus funktioneller Sicht waren insbesondere metabolische Prozesse, welche flir das
Zellwachstum und die Zellteilung wichtig sind, betroffen. Im Gegensatz dazu erhéhten sich
durch die LPO Lutschtabletten sowohl die Identifikation der Metaproteine als auch die
relative Abundanz fiir die Mehrheit der Proteine. Nach den durch die Metaproteomdaten
erhaltenen funktionellen Informationen liegen Hinweise fir einen wachsenden Biofilm vor.
Die Metaproteine, die eine erhdhte Abundanz nach Behandlung mit den LPO-Dragees
zeigten, wurden taxonomisch hauptsachlich Erst- (S. gordonii) und Zweitbesiedlern (F.
nucleatum) sowie Bakterien zugeordnet, die einem gesunden Biofilm zutraglich sind.

Fazit: Im Rahmen dieser Dissertation wurde ein vollstandiger Metaproteom Arbeitsablauf
von der Probensammlung, liber die Probenpraparation bis hin zu Datenanalyse fiir das
Speichel-, Zungen- und Plaque-Mikrobiom erarbeitet. In drei Studien konnten wir dessen
Anwendbarkeit demonstrieren und erreichten vergleichbare Ergebnisse zu anderen
Metaproteomstudien, beispielsweise bezliglich der Proteinidentifikation. Fir die Sammlung
von Speichelproben stellte sich der Paraffinkaugummi fiir Metaproteomstudien als die
Methode der Wahl heraus. Fir das Zungen-Mikrobiom veroffentlichten wir die ersten
Metaproteomdaten. Dariiber hinaus publizierten wir die erste Metaproteomstudie, welche
die beiden Mikrobiome von Speichel und Zunge miteinander vergleicht. Hinsichtlich des

Plague-Mikrobioms handelte es sich ebenfalls um die erste Metaproteomstudie, die ein
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anerkanntes und etabliertes zahnklinisches Modell mit den Vorziigen der Metaproteomiks
verbindet. Die Ergebnisse liefern erste Daten, um (auf langere Sicht gesehen) ein Produkt
zur taglichen Mundhygiene entwickeln zu konnen, welches die bakterielle

Zusammensetzung des Plaque-Biofilms positiv beeinflusst.
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Background: Bacteria are one of the oldest life forms and an elementary component of all
ecological habitats on earth. Humans as holobionts are an ecosystem on their own with a
wide range of ecological niches and great bacterial diversity. Internal or external influences
can cause changes in environmental conditions, which result in a changed microbiome
composition. This dysbiosis affects the health status of humans and can lead to serious
diseases. The oral microbiome is one of the most complex microbiomes in humans. It forms
a natural barrier against pathogens and can support prevention of diseases such as caries
or periodontitis. Metaproteomics enables the study of the expressed proteins of the
microbiome and their interaction with the host. This technology thus overcomes the
limitations of not being limited to laboratory cultures, but to study the microbiome directly
in its natural habitat. Metaproteomics offers a set of tools to deepen the understanding of
the oral microbiome in health and disease.

Objective: One aim of this dissertation was to develop a workflow to perform
metaproteomic studies of the oral microbiome, from sample collection to preparation of
samples for mass spectrometry and their bioinformatic analysis. This workflow aimed to
should be established and adapted for the analysis of microbiomes of saliva as well as the
biofilms of tongue and supragingival plaque. Based on these results, proof-of-principle
metaproteomic studies were performed to study the three microbiomes in healthy
volunteers regarding their expressed proteins, their metabolic relevance, and their
interactions with the host as well as their taxonomic assignment.

Study Design: The dissertation includes three studies with three different cohorts. All
studies have in common that the cohorts consisted of orally healthy subjects aged 20-30
years.

In the first study, we compared Salivette® as well as paraffin gum based on five subjects to
determine the most effective method of collecting saliva for metaproteomic studies.

In the second study, we compared the saliva and tongue microbiomes using 24 subjects and

established a data analysis strategy for this more complex metaproteomic study.
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In our third single-blind randomized trial, based on a cross-over design, 16 subjects received
four local treatment schemes to investigate their effect on the plague microbiome. The
treatments consisted of two lozenges containing components of the lactoperoxidase
system at different concentrations, one lozenge containing a placebo, and Listerine® Total
Care™ mouthwash as a positive control. All samples were measured, based on a bottom-up
approach, using nano LC-MS/MS mass spectrometers in data-dependent acquisition mode.
Bioinformatic analysis was performed for study one using the Proteome Discoverer
software. For the studies two and three, the Trans-Proteomic Pipeline was applied.
Taxonomic as well as functional assignment of the identified proteins was performed for all
studies using the Prophane software.

Results: For the paraffin gum, we were able to identify three times as many metaproteins
with 1,005 metaproteins compared to the Salivette® with 313 metaproteins. 76.5% of the
metaproteins of the Salivette® were also found with the paraffin gum. A total of 38 genera
and 90 species were identified, of which 13 genera and 44 species were identified
exclusively with the paraffin gum. The greatest functional diversity was also detected with
the paraffin gum.

The metaproteome of the salivary and tongue microbiome is based on 3,969 bacterial
metaproteins and 1,857 human proteins. The number of metaproteins exclusively identified
for the tongue microbiome, was twice as high compared to saliva. The metaproteins could
be assigned to 107 genera as well as seven phyla. Functionally, significantly higher
metaprotein abundances were found for the salivary microbiome for cell motility.
Regarding the tongue microbiome, the metaproteins of biosynthesis of secondary
metabolites, signal transduction or replication showed higher abundances.

In the plaque study, we identified on average 1,916 (+ 465) bacterial metaproteins per
sample, which we were able to assign taxonomically and functionally to 116 genera and
1,316 protein functions. The plaque inhibitory effect of Listerine was revealed by a
reduction in metaprotein identification of 23.5% on average after treatment. In addition,
the majority of bacterial metaproteins showed reduced relative abundances while for the
metaproteins of human origin an increase in protein abundances was observed compared

to the control before treatment. From a functional point of view, metabolic processes for
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cell growth and division, were particularly affected. In contrast, for the LPO lozenges, both
metaprotein identification and relative abundance increased for most proteins. According
to the functional information obtained by the metaproteomic data, a growing biofilm can
be assumed here. The metaproteins that showed increased abundance after treatment with
the LPO lozenges were taxonomically assigned mainly to first (S. gordonii) and second
colonizers (F. nucleatum) as well as bacteria that, according to current knowledge, are
conducive to a healthy biofilm.

Conclusion: In the context of this dissertation, a complete metaproteome workflow from
sample collection, sample preparation to data analysis for the salivary, tongue and dental
plague microbiome was established. In three studies we were able to demonstrate its
applicability and achieved comparable results, for example regarding protein identification,
to other metaproteome studies. For the collection of saliva samples, the paraffin gum for
metaproteomic studies was the method of choice. For the tongue microbiome, we
published the first metaproteome data. In addition, we published the first metaproteome
study comparing the two microbiomes of saliva and tongue. Regarding the plaque
microbiome, this is the first metaproteomic study that combines a recognized and
established dental clinical model with the advantages of metaproteomics. The results
provide initial data to develop, as a long-term goal, a daily oral hygiene product to positively

influence the bacterial composition of the plaque biofilm.
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Characterization of the human oral microbiome in health and during

different treatments

Bacteria - the hidden rulers of this world

Let us start with a hypothetical experiment. Imagine a world in which all bacteria
disappeared from one day to the next. What might such a world would look like? Surely,
rotten fruits and vegetables would be a thing of the past (1). Epidemics such as the plague,
which cost millions of lives in the Middle Ages (2,3) or the forgotten pandemic tuberculosis
(4), which kills even today more than one million people per year (5), would not be worth
discussing. Possibly even Napoleon's Russian invasion would have been different without
the bacterium Rickettsia prowazekii, the cause of spotted fever (6). A world in which we
want to live and can live? Louis Pasteur once put it this way: "Life would not long remain
possible in the absence of microbes." (7). Presumably, life would not be completely
impossible, but the world would be a different one, reduced in its diversity (8). However,
eukaryotic life would not be possible considering the lack of mitochondria (9).

Bacteria are among the first known life forms on Earth (10), whose existence began 3 - 4
billion years ago (11,12) and is ubiquitously found throughout the ecosphere (13-15).
Regarding the diversity of bacteria, this is the subject of ongoing discussions (16). Estimates
range from 10,000 (17) to trillions of different bacterial species on this planet (18—-21) based
on a similarity of 97% from an operational taxonomic unit (22—-24). In contrast, what is
unquestionable is their enormous impact on almost all physicochemical and
biogeochemical processes on Earth (25,26). These processes are involving complex
interactions with the physiosphere as well as intra- and inter-specific interactions (27-29).
Bacteria exhibit long residence times in the atmosphere and undergo inter-continental
migrations, such as from Asia to North America (30). The fauna in its present form would
not be imaginable without bacteria dissolving bound phosphates from the soil (25) and in
interaction with yeasts and fungi, called the rhizosphere (31,32), playing an elemental role

to plant health and growth (33-35).
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This drastic mental experiment at the beginning was of theoretical nature and assumed a
maximum loss of biodiversity for bacteria. Nevertheless, the decrease of biodiversity (36) in
the Anthropocene is also verifiable for bacteria (37) and affects not exclusively the fauna
and flora (38). Not only since the Corona pandemic (39) we are aware that interventions in
ecosystems (40,41), usually accompanied by a loss of biodiversity (42,43) lead to changes in
function and provided services of the ecosystem and thus modify at least adjacent
ecosystems (44—-46).

The goal of various research groups and consortia, such as the Earth Microbiome Project
(EMP) (47,48) is to advance the characterization of microbiomes of various ecosystems all
over the world and their functional interactions with a global point of view (49). The very
widely divergent estimates regarding the diversity of prokaryotes show how limited our
knowledge is in these matters (50,51). Research collaborations, combined with new
technical achievements, could ensure that the so far unexplored realms of the bacterial
microcosm (52) provide us with profound insights into what the essences of life might be
(16). The development of applications to specifically manage microbial communities (53),
such as by transplanting a healthy microbiome (54), can be initiated from these results. This
will enable solutions to some of the most challenging anthropogenic problems (55), ranging
from agriculture due to eutrophication (56), to water pollution due to chemicals, to
challenges in human and veterinary medicine (57). There is a growing understanding that
living beings are healthy when they live in a healthy environment (58,59). Holistic
approaches such as microbial ecology or systems biology will be a key contributor to

increase our knowledge (60).
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We are not alone - Humans as holobionts

In the previous chapter, we got a first impression regarding the global relevance of bacteria
for the ecosphere, the same context in which humans are embedded. In the following
chapters of this dissertation, we consider the human being as a separate dynamic entity
apart from this global context (59). Humans themselves are to be understood as an
ecosystem of their own with diverse ecological niches accompanied by their own exclusive
microbiome (61,62) or in other words: "Humans are holobionts" (63). In 1991, Lynn
Margulis introduced the term holobiont (63), which is a macroscopic eukaryotic
multicellular organism that maintains synergistic relationships with a variety of diverse
microorganisms such as archaea, bacteria or fungi (64—66). In addition to humans, there are
numerous examples of other holobionts, such as honey bees (67), Hydra (64) or Euprymna
scolopes (68). In general we can say, they all have in common that the host is surpassed by
the microbiome (65,69) regarding to its own cell number, cell types and genetic diversity
(70-74). An average human with a height of 1.72 m, a weight of 70 kg and a resulting body
surface of 1.85 sgm? has an estimated 3.72 x 10*3 cells (75), but is colonized by at least 10
microbial cells (52). However, a recent study has calculated that the ratio between human
and bacterial cells is more like 1:1 compared to the previously assumed 1:10 ratio (76). If
we consider the more than 200 different cell types of the human species (77), it is also
apparent that bacteria colonizing humans have a higher diversity, with more than 1000
different species (61,78). Thus, the microbiome provides humans with several million genes,
i.e., additional genetic information and variation (65). Consequently, this hologenome
(79,80) provides humans with a wide variety of functionalities, such as metabolism of
vitamins (81,82) or enhanced metabolism of food (83), that humans would not be able to
metabolize with their own approximately 20,000 genes (73). The microbiome thus plays a
crucial role regarding the evolution and development of humans (84).

The Human Microbiome Project (HMP) was established in 2007 by the National Institute of
Health and is dedicated to characterizing and cataloging the microbiomes found in and on
humans (85). A key area of research for the HMP is the impact of the microbiome on a

person's health status (85). It has already been shown that even the type of delivery, i.e.,
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the decision for a natural birth or a cesarean section (86,87), has an influence on whether a
baby is more susceptible to infections (88) and has an increased need for antibiotics in the
first years of life resulting in even greater disruptions of the microbiome (89-91). Microbial
symbionts train our immune system and ensure proper establishment of the mucosal
immune system (92),e.g. by modulating the levels of cytokines of T helper cells (93,94). At
the same time, genetic factors of the host ensure which bacteria can colonize in humans
and establish themselves as healthy microflora (95). Several studies have already shown
that each person has their own individual microbiome, which appears to be stable to a
certain extent (96—98). Here, a distinction is generally made between the core microbiome
(85,96,99,100) and the variable microbiome (85,101), the latter being influenced primarily
by the genotype and lifestyle of the host (85,101). The Core Microbiome, on the other hand,
is constant in composition for a given ecological niche (85,99,100), such as the oral cavity
(102) or the gut (81).

Changes in the composition of the microbiome, e.g., due to changes in lifestyle (103), can
lead to diseases (104,105). The underlying cause is a disturbed balance of the microbiome
(106,107), leading to a decreased or a loss of function of symbiotic processes and
functionalities between host and microbiome (108,109). Dysbiosis is usually accompanied
by a reduction in diversity (110) and has been associated with numerous diseases (111—
113). The spectrum ranges from locally definable diseases such as periodontal diseases
(114) or inflammation of the pancreas (115) to systemic diseases such as obesity (116),
diabetes (117), cancer (118) or to degenerative diseases such as Alzheimer's (119) or
Parkinson's disease (120).

The etiology is still in the dark as how the shift from a healthy microbiome to a disease-
associated microbiome occurs. First indications for a possible theory suggest that previously
symbiotic relationships with a microorganism become pathogenic through the formation of
virulence factors and a disproportionate multiplication of the same (121). Another theory,
at its core, is that dysbiosis allows pathogenic germs to colonize and become the dominant
species in the first place (69,122-124).

Microbiomics initially tried to understand what characterizes a healthy microbiome. Which

bacteria can be detected and in what relation? How stable or variable is this microbiome?
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Which active metabolic processes can be identified and how do they interact with each
other or with the physiology of the host? (121). Answers to these and other questions form
the basis for being able to distinguish a healthy microbiome from a diseased microbiome
(125). The goal is to develop individual therapies for complex diseases associated with
dysbiosis. To this end, targeted approaches are being pursued to rebalance diseased
microbiomes instead of eradicating individual species, as it is the case with antibiotic
therapies so far (95,126). Essentially, three general approaches to microbiome
management have been established for this purpose: a) supplementation with beneficial or
absent bacteria in the microbiome b) colonization with bioengineered microorganisms or c)
administration of drugs that alter specific metabolic pathways of bacteria. Initial treatments
to restore microbiomes have been successfully applied (127,128). The initial successes from
over 10 years of human microbiome research is promising, but we are only at the very
beginning regarding our understanding of the microbiome and its role in humans (129).

Now, one might ask, which technical methods and approaches does science have at its
command for gaining deeper insights into the human microbiome? Therefore, in the next
chapter the technical principles applied in microbiome research will be discussed and their

potential but also some basic challenges faced by each technique will be highlighted.
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Rediscovering the world thanks to high-throughput technologies

The EMP and HMP consortia were founded more than 10 years ago to promote the
characterization of microbiomes in different habitats (47,48,85). However, the technical
basis, or rather the technical revolutions, were laid years before, without which the current
microbiome studies (130) would not have been able to establish itself as a research field
(131).

First, let's take a brief look back into the past of microbiology. The beginnings of "classical"
microbiology reach back to the 16th century when Robert Hooke and Antoni van
Leeuwenhoek constructed the first microscopes and began to explore the microcosm
(132,133). Another milestone that should be highlighted here, are the development of
culture media for growing bacteria in the laboratory (134). Initially, the development of
liquid culture media by Spallanzani in the 18th century, improved by Louis Pasteur and
followed by Robert Koch, who developed the first solid culture media in the 19th century
(135-137). Until today, these methods form the basis for microbiological research and
provide deep insights into the biological mechanisms of bacterial cells under defined
laboratory conditions (134). Nevertheless, it is important to keep in mind that these in vitro
studies only allow a limited understanding of bacteria and their behavior in their
environment (138). On the one hand, the mentioned culture media implies that bacteria
can be cultivated in the laboratory (139). It is estimated that only 2 % of all known bacteria
can be cultivated in the laboratory, whereby a differentiation must be made here depending
on the habitat (140). For example, approximately 50 % of oral cavity bacteria can be
cultured (141). Another aspect relates to the selectivity of the culture media, which means
that only a limited number of bacteria can be studied at the same time (139,142). As a
result, the behavior of bacteria in the laboratory is different compared to their natural
habitat, where they interact with their environment and compete with other bacterial
species (138,143). Bacteria like SAR11 (Alphaproteobacteria) (144,145), or isolates of the
phylum Synergistetes (146,147) cannot exist outside of their natural habitat and therefore
cannot be grown using classical microbiological culture media, because too many symbiotic

relationships exist within the bacterial community (143,148).

-16 -



Characterization of the human oral microbiome in health and during different treatments

In the last decades, technical achievements such as Next Generation Sequencing (NGS)
(149) or Mass spectrometry (MS) analyses (150) have led to the development of methods
that overcome the previous challenges of "classical" microbiology (69). In the era of 'OMIC'
technologies (151) it is now possible to collect and study samples directly from the habitat,
whether or not the bacteria can be cultured (152). Basically, OMICs approaches can be
divided into four areas: Metagenomics (153), metatranscriptomics (154), metaproteomics
(155) and metabolomics (156). In addition, a variety of other OMICs areas have evolved
(157-159), but these will not be part of further considerations.

Let us start by taking a closer look at the metagenomics and metatranscriptomics
approaches, which are based on the method of Next Generation Sequencing (NGS) (160)
and have evolved from Sanger's dideoxy nucleotide method (161). Depending on the field
of application or scientific question, various NGS platforms have been established on the
market, such as pyrosequencing (162), sequencing by oligonucleotide ligation and detection
(SOLID) (163) or sequencing by hybridization (164), to name just a few. They all enable a
massive parallelization of sequencing and thus also a potentiation of the throughput of
samples to be analyzed (165). Briefly, all methods determine the sequence of nucleotides
of DNA and RNA molecules. In a first step, the DNA library is prepared. For this purpose, the
DNA molecules are fragmented enzymatically or mechanically, which have different lengths
depending on the sequencing method used. Subsequently, the DNA double strands are
denatured into DNA single strands and adaptors (short artificial DNA pieces) are ligated to
the fragments. In addition, the now single-stranded fragments provided with adaptors are
enriched using various PCR-based methods and finally sequenced. In the data analysis
phase, the raw data determined by the NGS platform are assigned to nucleotides by so-
called process base calling. The result of base calling are reads, i.e., the nucleotide sequence
of a fragment (149,153,165). These reads can then be aligned against reference genomes
using bioinformatics tools (166—168).

In the area of metagenomics, to provide an understanding of which bacteria live in a habitat
and in what proportion they are present, methods such as 16S rRNA analysis or whole
genome sequencing are used (60). This can elucidate which species are present and the

theoretical potential for metabolic pathways (169,170). Metatranscriptome analyses, on
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the other hand, analyze messenger and non-coding RNAs (171,172). Thus, these studies
provide insight into gene expression as well as regulatory networks within a microbiome
(172).

Unfortunately, next generation sequencing methods cannot provide any information about
which metabolic pathways are active or in which quantities the building blocks of life, the
proteins, and their substrates are metabolized by enzymatic activity (173,174). These
questions can be addressed and answered using metaproteomics (175,176) and
metabolomics (177). Both latter OMICs approaches are enabled using mass spectrometers
(MS) (178) or nuclear magnetic resonance (NMR) as an additional method for metabolomics
(179). Mass spectrometry enables both rapid and sensitive identification and quantification
of peptides, proteins, or metabolites (180). In general, mass spectrometry involves ionizing
the sample material and measuring the mass-to-charge (m/z) ratio of ions that are present
in the gas phase (181-183). The mass spectrometric process can be divided into five steps:
Physicochemical separation of the sample material, ionization, mass selection, detection,
and data analysis (150,181-184). Prior the measurement in the mass spectrometer, the
sample mixture is separated by e.g. liquid chromatography to remove excess sample
volume, existing solvents and to separate the components of a complex samples mixture
(185). The actual measurement of the sample is subsequently performed on the mass
spectrometer (150). An ion source is used to ionize the analyte and transfer it to the gas
phase (184). Depending on the type and nature of the sample, different types of ionization
are available, such as electrospray ionization (ESI) (186), matrix-assisted laser
desorption/ionization (MALDI) (187) or the fast atom bombardment (FAB) (188). Mass
selection is then performed in the analyzer according to the mass-to-charge ratio of ions
(181-183). Again, a wide variety of analyzers are available, such as the quadrupole mass
spectrometer (189) or the time-of-flight mass spectrometer (TOFMS) (190,191). In the
detector, such as the Faraday Cup (192), secondary electron multiplier (SEV) (193) or
microchannel plates (MCP) (194), the previously separated ions are detected. Finally, the
measured mass spectra are evaluated using special software and against appropriate
reference databases (195). One of the most efficient and common applications is a nano

high performance liquid chromatography (nano HPLC) in combination with tandem mass

-18 -



Characterization of the human oral microbiome in health and during different treatments

spectrometry (MS/MS) (196,197). In this thesis, separation of the peptide mixtures was
performed using a C18 reverse phase nano HPLC, which was coupled to a Q Exactive
Orbitrap mass spectrometer.

Despite the enormous potential of OMICs technologies, it still requires a great effort to, for
example, detect specific targets within a microbiome for influencing the microbiome (198).
Each of the OMICs technologies presented faces their own unique challenges (199). For
example, in human samples, the high content of human DNA (200) or human proteins is an
aspect that should not be underestimated (201,202). Furthermore, metagenome analyses
cannot differentiate whether the measured DNA originates from dead or metabolic active
bacteria (203). Metaproteomics faces the difficulty that proteins have an enormous
dynamic range regarding their concentration (204), and low abundance proteins are
masked by high abundance proteins in the measurements (202,204). In addition, the
enormous complexity of microbiomes confronts all OMICs technologies with the challenge
of optimally evaluating and interpreting the huge amounts of data generated by each
measurement (205). Here, high-quality reference databases and proper bioinformatics
provide two essential elements for solving this issue, which have made enormous progress
especially in recent years (206).

In the future, however, it will be the combination of "classical" microbiology (Who is there?)
with metagenomics and metatranscriptomics (What can they do?) as well as
metaproteomics and metabolomics (What are they doing?) that will play the decisive role

in gaining a holistic understanding of the composition and functioning of a microbiome (69).
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Metaproteomics - A global view of the microbiome in its natural

habitat

Let us summarize to this point. We have seen the important role of bacteria in a global
context and that they influence almost all physicochemical and biogeochemical processes
on earth (25,26). We have broadened our understanding of humans by considering them as
holobionts (63-66). For the study of this complex interplay between humans and bacteria,
we have a wide variety of methods at our disposal, which we explored in some detail in the
previous chapter (153—156). In the following, we will go into metaproteomics in more detail,
considering the studies performed in the context of this dissertation. The aim of the
dissertation is to characterize the human oral microbiome using metaproteomics, with two
main focuses. First, the development and establishment of a workflow starting with the
sample collection, the preparation of the samples for MS analysis and the evaluation of the
obtained data (207,208). Second, the application of the workflow to characterize the three
oral habitats saliva, tongue and supragingival plaque with respect to their microbial and
functional composition (209,210).

The term metaproteomics goes back to a publication by Rodriguez-Valera from 2004,
meaning "to detect the genes expressed most abundantly in the environments under
different nutrient regimes or external forcing" (155). The first metaproteomic study was
published by Paul Wilmes and Philip L. Bond also in 2004 (211). In this study, both
investigated the metaproteome of a laboratory-produced activated sludge system
optimized for biological phosphorus removal using 2D gel analysis (211). Since then, more
than 900 publications have been published (website: https://pubmed.ncbi.nim.nih.gov;
search term: "metaproteomics"; as of June 25, 2022). Several new definitions of the original
term metaproteomics have emerged, which allow an even more precise differentiation
(212). However, he terms are not always used unambiguously (212). As before,
metaproteomics is understood as a gene-centered approach (155,211,212). It is primarily
focused on identifying the entirety of the expressed proteins of a microbiome, which allow
conclusions to be made on the metabolic activity of the microbiome under different

environmental conditions. Identifying the members of the microbiome that are the origin

-20-



Characterization of the human oral microbiome in health and during different treatments

of the metabolic activity is somewhat less of a focus (155,211,212). This gap is filled by the
term "community proteomics", where the focus is to identify not only which metabolic
activity is present, but also which members of the microbiome are mainly responsible for
metabolic activity (155,211,212). This dissertation can be assigned to both definitions,
because on the one hand we have developed a workflow to optimize the set of identifiable
proteins. We published our methods and protocols used in the laboratory as well as for the
data analysis in a book chapter of the book series "Methods in Molecular Biology".
(207,208). On the other hand, we have directly applied this workflow and had a closer look
at the composition of the microbiome in three oral habitats and their metabolic activity
(209,210).

In general, the experimental procedure of a metaproteome study can be summarized as
follows: At the beginning there is the collection of samples from the respective habitat
followed by cell disruption as well as the extraction of proteins from the given sample. The
metaproteome studies primarily use a gel-free bottom-up approach, which requires the
tryptic digestion of the proteins into peptides. Depending on the questions of the studies,
the peptides are optionally fractionated with different methods, separated, and then
measured with a mass spectrometer. A labelling strategy would also be possible to improve
the quantifiability of the complex metaproteome data. However, such fractionation and
labelling strategies are costly and time-consuming (213). For protein identification, the
obtained mass spectra are searched against a protein sequence database, which in turn is
qguantified and both taxonomically and functionally assigned using software programs

especially designed for metaproteomic approaches (131,214-217).

Sample collection

The aim of all omics studies is to study the microbiome in its habitat (218). Access to the
habitat to be studied can become a challenge (219,220). This is particularly evident, for
example, in the study of marine ecosystems (221) or Acid Mine Drainage (AMD) from metal
mines (222), where large-scale expeditions are usually required. Another example is that
there are several seasons to wait if the microbial changes are to be investigated over the

year (223,224).
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When studying human samples, there are additional aspects to consider besides the
challenges of sample collection (225,226). For example, it was important for our studies to
assemble cohorts of oral healthy subjects to characterize the composition of the oral
microbiome in a healthy state (227). A variety of legal regulations had to be considered and
the study had to be legitimized by ethics applications (see ethics applications with
registration number BB 070/16 (207-209) and registration number DRKS00022810) (210).
In addition, close cooperation and training of the clinical staff members was necessary
(227), which performed the sample collection e.g. partly for the plaque study (210).
Another challenge for all studies is the alteration of samples during collection or storage, as
studies have shown with saliva (228,229). We addressed protein degradation and
denaturation by being on-site at the clinic during sample collection and adding protease
inhibitors. In addition, samples were immediately frozen in liquid nitrogen and stored
at - 80° (207-210).

The collection of saliva samples is non-invasive (230) and various methods of collection are
available (231). These include passive drooling (232), an unstimulated saliva sampling
method, as well as the Salivette® (233) and paraffin gum (234), the last two involving active
stimulation of saliva flow. All three methods have been used in previous metaproteomic
studies (201,235-237). In our study of human saliva, we chose the paraffin gum (207-209),
because our own study (207) as well as a study by Golatowski et al. (231) gave the best
results regarding of sample volume obtained, number of protein identifications, and
technical reproducibility. We demonstrated that more than three times as many bacterial
proteins could be identified using the paraffin gum compared to the Salivette® (paraffin
gum: 1,005 proteins; Salivette®: 313 proteins) (207). For saliva collection, subjects chewed
on the paraffin gum for 1 min while spitting several times into a 50 ml Falcon tube (207).
For the collection of biofilm samples from the tongue, we modified a previously published
protocol for DNA analyses (238,239), since no metaproteomic studies on the tongue were
available at this time. A sterile wooden spatula was placed dorsally on the outstretched
tongue for 5 s with light pressure. The process was then repeated with the other side of the

wooden spatula. The wooden spatula was transferred to a 50 ml Falcon tube containing 2
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ml of sterile 1x PBS and vortexed for 30 s. The wooden spatula was then discarded
(208,209).

Plague samples were collected with a sterile curette by a dentist. The supragingival plaque
was from 24 tooth surfaces from all 4 quadrants of the maxilla and mandible, which were
pooled in 3 ml of sterile 1x PBS and vortexed for 30 s to produce a suspension (210). For
collection of plaque samples, we modified the sample collection protocol of a

metaproteomic study by Belda-Ferre (203).

Sample Preparation and Mass spectrometry

Samples taken directly from the habitat are characterized by a high microbiological
complexity and heterogeneity (240), which are additionally less controllable compared to
laboratory cultures (241). Complexity and heterogeneity mean that different types of cells
like bacteria, fungi or human tissues are present in different abundances (202). This, in turn,
influences the choice of cell disruption, as cell disruption is easier for eukaryote cells or
Gram-positive bacteria than for Gram-negative bacteria (242,243). Various possibilities of
mechanical and non-mechanical lysis (enzymes, heating, detergents) are available (244),
and it is necessary to find out for each habitat, which is the method of choice (214,245,246).
We decided, based on previous analyses in the laboratory, to use a non-mechanical cell lysis
by ultrasonication (247) for all our studies (207-210).

In addition, such complex samples sometimes contain a not to be underestimated number
of interfering substances, which affect both the protein extraction and the analyses with
the mass spectrometer (248,249). To address this issue, we enriched the proteins using TCA
precipitation, which facilitated the protein determination by Bradford (207-210).

More important is the large dynamic range of human proteins, which cover a range of 7
orders of magnitude (250,251). Examples such as alpha-amylase (AMY) (252), Mucin-5B
(MUCSB) or lysozymes (LYZ) (253) are present in high abundance in saliva and overlay the
low-abundant proteins of the bacteria during mass spectrometry measurements (237).
Removal of especially high abundant human proteins from the sample would be one way
to enrich bacterial proteins (254). At the same time, it should be noted that this could result

in an interference with other analytes and to a loss of information (255). After all, one of

-23-



Characterization of the human oral microbiome in health and during different treatments

the strengths of metaproteomics is to reveal the protein interactions between humans as
hosts and their microbiome (256,257). A more appropriate alternative is to fractionate the
samples prior to mass spectrometric analyses to reduce the complexity of the peptide
mixtures to be measured (258).

We applied this approach in our studies by centrifuging the samples in several steps,
enriching the proteins, and purifying the peptides derived by trypsin using u-C18 material,
for optimal preparation for mass spectrometric analyses. Further separation was achieved
by using the reversed phase liquid chromatography (RPLC) method by first loading the
precolumn (75 um inner diameter, packed with 3 um C18 particles, Acclaim PepMap100,
Thermo Fisher Scientific®) with the complex peptide mixture. The peptides were separated
on an analytical column (25 cm x 75 pm, 2.6 pm C18 particles, 150 A pore size, Accucore
150-C18, Thermo Fisher Scientific®) over a 120-min gradient. A binary buffer system
consisting of 0.1% acetic acid water (buffer A) and 100% ACN in 0.1 acetic acid (buffer B)
was used as the buffer system, with a linear gradient of 2-25% of buffer B. The peptides
were analyzed using high-resolution accurate mass MS instruments of the Q Exactive

Orbitrap MS series in data-dependent acquisition mode (207-210).

Protein identification and data analysis

The strategy selection for the analysis of the metaproteomic data is an important aspect in
metaproteomics. These includes setting the right parameters for MS-search analysis to the
appropriate database and pipeline for taxonomic and functional assignment of the
identified proteins and their quantification (259).

The number of bioinformatic methods for the analysis of metaproteomic data has
constantly increased and methods have become very diverse (260-271). Primarily, the
individual applications focus on single aspects of the analysis, such as protein grouping and
their taxonomic and functional assignment (261,262,267), or they offer solutions for the
protein inference problem (263-265). However, standardized protocols covering the entire
evaluation process are still in the process of being established (272).

Standardized and proven protocols of data analysis from the field of proteomics provide a

first guideline for metaproteomics but can only be adopted to a limited extent (273). It is
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still difficult to assess how the parameter settings like the number and diversity of PTM's or
the maximum number of missed cleavages for the analysis of raw data, affect the results of
metaproteomic datasets (273,274). Therefore, the parameter settings we chose are based
on the optimized values for the mass spectrometers used in our laboratory and several
publications that were most relevant at this time (259,269,273-278). The details of the
parameter settings can be found in the publication Rabe et al. 2021 (208).

One of the next questions is on which database the data interpretation should be based.
Studies have shown that the selection of the reference database has a considerable
influence on the results (276). Basically, three strategies for the selection of the database
can be distinguished. If a new habitat shall be investigated, without intensive knowledge
about the composition of the microbiome, the most suitable strategy is the general search
against publicly available databases (222,279,280) such as UniProt (281,282), NCBI (283) or
eggNOG (284). However, the results at this point should be critically questioned as these
databases are enormously large and no specific search is performed against the habitat
microbiome (285). Problems such as the protein inference are particularly striking in this
context. Furthermore, a high false discovery rate (FDR) inaccuracy and a loss of search
sensitivity must be considered due to the wide variety of proteins and their unknown
protein sequence size (286—-289). Combined and iterative searches of different databases,
reducing the database size based on the identified species of the previous search run, offer
a possibility to increase the number of high confidence PSMs and reduce the number of
false negatives (287,290).

The method of choice is to create a protein sequence database from the same sample that
is used for metaproteomic analysis (276,291). Crucial for such a database is the availability
of the necessary financial and technical capacities as well as the human expertise to perform
such a multi-omics approach (292). Nevertheless, the effort is worthwhile, as the peptide
identifications are up to 1.5-fold higher compared to the non-specific databases (293).

A hybrid approach is to use public genome databases that are specific to a habitat. A variety
of such databases have now been established (49,294,295). We chose this hybrid approach
and used the, 16S rRNA-based, human oral microbiome database (HOMD), which is

provided and maintained by the Forsyth Institute (294,296,297). The HOMD focuses on the
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human oral microbiome and defines a new phylotype from a sequence similarity of less
than 98.5 % (294). This database thus provides the basis for taxonomic classification of even
previously unknown bacterial isolates of the human oral cavity while adhering to strict
quality criteria (296).

For taxonomic and functional classification, we used the open-source program Prophane,
which was developed for metaproteomics in the research group of Katharina Riedel by
Stephan Fuchs (262), who gratefully supported this dissertation by individual adaptations
of Prophane. Metaproteomics requires specialized tools to address the challenges of
assigning identified peptides at the protein level (202,298,299). Taxonomic classification is
even more complex in comparison to a proteomics approach due to a taxonomic inference
problem (265). Peptide sequences are not only assigned to multiple proteins, known as the
protein inference problem (300,301), but these proteins can also belong to multiple species
(265). For this reason, the taxonomic assignments become less unambiguous as one moves
from the superkingdom to the species level (273,302). Prophane addresses this problem by
grouping proteins that have been assigned with multiple peptides into metaproteins
(262,272). Taxonomic and functional classification is then performed by using the lowest
common ancestor (LCA) approach. As a complementary note, functional assignment is often
limited by lack of gene annotation. Estimates suggest that between 30% and 50% of gene
sequences in a genome lack functional annotation (303). Moreover, the comparability of
different functional annotation databases (UniProtkB (281,282), eggNOG (284), TIGRFAMs
(304), or COG/KOG (305)) is difficult because they use different approaches for functional
classification. For our studies, COG/KOG (305) as well as TIGRFAMs (304) were used.

The main steps of our metaproteomic analysis strategy can be summarized as follows (208):
We used the open-source data analysis software Trans-Proteomic Pipeline developed in
Ruedi Aebersold's group to interpret the raw mass spectrometric data
(http://tools.proteomecenter.org/software.php) (306-308). The database search was
performed using the Comet algorithm (http://comet-ms.sourceforge.net/) (309,310)
against a Decoy reference database, which consisted of the HOMD (www.homd.org)
(294,296) as well as human sequences from the UniProt database (www.uniprot.org)

(281,282). Peptides and proteins identified by individual modules of the TPP were filtered
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based on a false discovery rate cutoff of protFDR < 0.05. For the subsequent analyses in
Prophane (www.prophane.de) only proteins that contained at least one unique peptide
were allowed. Based on the Lowest-Common-Ancestor algorithm (311), taxonomic
assignment was performed as well as functional assighment using COG/KOG (305) and
TIGRFAM (304) classification. The data were also relatively quantified by prophane using

NSAF (normalized spectral abundance factor) values (312).
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Metaproteomic insights on the microbiomes of saliva, tongue, and

dental plaque

The oral cavity (cavum oris) in humans is a space which merges posteriorly into the middle
pharynx, is bounded anteriorly by the lips (labia), laterally by the cheeks (bucca), inferiorly
by the mucous membrane of the floor of the mouth and is separated from the nasal cavity
by the soft and hard palate (313,314).

The oral cavity, in a functional perspective, is the starting point of digestion by ingestion of
food, the comminution of food by teeth and tongue, the initiation of enzymatic digestion,
and the process of swallowing to transfer the food into the digestive tract
(121,296,314,315). In addition, the oral cavity plays an essential role regarding to
respiration, but also sound formation and facial expressions, which are elementary
components of human speech and communication (314,315). Furthermore, there are
sensory functionalities (taste, temperature, pain, palpation), thermal regulation
mechanisms and the secretion of saliva and crevicular fluid, which have immunological
functions (314-317).

As another distinctive characteristic, the oral cavity is composed of a variety of different
ecological niches (314,318). The teeth form a permanent hard tissue structure in the body
that intersects a soft tissue structure, the gingiva (313,319). The tonsils are characterized
by deep crypts (319). The tongue is characterized by papillae on the dorsal side whereas on
the ventral side there is mainly a mucosal epithelium (319,320). The physicochemical
characteristics differ depending on the location of the habitat with respect to the
concentration of nutrients, oxygen, or the pH value (315,319,321,322). In addition, habitats
are exposed to regular and temporally recurring external influences that define the specific
characteristics of the habitat (321,322). These include, the quality of food (98), movements
of teeth and tongue (314,315), desquamation (323), salivary flow rate (324) or the circadian
rhythm (325), to name just a few examples.

Based on these different habitats regarding their anatomy, histology and physicochemical
conditions, the microbial composition within the oral cavity is characterized by a high

diversity and specificity (326,327). At the same time, the individual habitats are
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interconnected by saliva, which rinses the entire oral cavity (324). Thus, the term human
oral microbiome, defines all microorganisms identifiable in the oral cavity or its adjacent
extensions (296). Beside the intestinal microbiome, it is the second most complex
microbiome of the human body and was among the first human microbiomes to be studied
(61,280). As early as 1695, Antoni van Leeuwenhoek described the study of plaque and
saliva in his book "arcana naturae detecta" (328). The caries-causing bacterium
Streptococcus mutans was among the first bacteria isolated (329).

The great majority of bacteria in the oral microbiome live facultatively anaerobic or
obligately anaerobic and require a neutral pH for their growth (330). A study by Simon-Soro
et al. showed that due to the high oxygen content in the vestibulum oris, Streptococci can
be identified, whereas anaerobic Fusobacteria tend to live on the tongue (331). Nearly 700
different microbial species have now been identified, the vast majority of which have been
assigned to the phyla Firmicutes, Bacteriodetes, Proteobacteria, Actinobacteria,
Spirochaetes and Fusobacteria (99,141,296,297,332—335). The more rarely represented
species include Chlamydia, Chloroflexi, SR1, Synergistetes, Tenericutes, and TM7, in addition
to the Euryarchaeota (296,334). Despite the high diversity of intraoral habitats, a certain
stability and an oral core microbiome can be defined, which at the same time is
characterized by a high variability of low abundant species (321,326,334,336,337).

The oral microbiome is one of the first barriers for pathogenic bacteria to prevent their
colonization (121). It also trains the human immune system and influences the up- and
downregulation of pro-inflammatory immune responses (338). A disturbance of the balance
can lead to severe local as well as systemic diseases (141). A diet with predominantly simple
carbohydrates, smoking or a lack of oral hygiene, promote the shift of the healthy oral
microbiome to a pathological microbiome (327,337,339-342). Caries (343) and
periodontitis (344) are most widespread polymicrobial diseases of the dental apparatus
(345-348). However, due to the increased presence of pro-inflammatory mediators (349),
an untreated pathological oral microbiome can also be a reason for diabetes (350),
cardiovascular diseases (351), or cancer (352). Especially regarding the etiology of

polymicrobial diseases in humans, it is therefore of crucial importance to study the general
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composition and behavior of the oral microbiome while considering intra-oral and
interindividual differences (331,353).

The goal of the scientific community is therefore to define what distinguishes a healthy and
a diseased oral microbiome from one another, as well as to develop a kind of early warning
system in the case of a shift in the oral microbiome (121,148,354). This could be done, for
example, using bacteria that act as biomarkers, as has already been shown in an initial study
for plaque (Corynebacteriaceae), tongue and saliva (Veillonella, Oribacterium) (355).
Another goal is to remediate pathological microbiomes more gently through a deeper
understanding of the oral microbiome, without relying on antibiotics or antibacterial mouth
rinses and ointments, which primarily reduce the diversity of the microbiome
(339,356,357). Probiotics might a possible alternative, as shown by initial promising study
results (358,359).

Using the techniques of metaproteomics, this dissertation thesis contributes to a better
understanding of the bacteria metabolically active in the microbiome based on the
identified proteins for saliva and tongue. In addition, we consider the interactions between
bacterial and human proteome (207-209). In the plaque study performed, the effects of
different treatments on the plaque microbiome were studied in terms of changes in
proteins and metabolic pathways affected by them, to lay a first set of basic knowledge for
a possible treatment to positively influence the commensal microbiome (210).

After a brief general introduction to the studied habitats, saliva, tongue and plaque, the
main findings of the studies are presented and placed in the context of the present state of

the literature.

Saliva and Tongue

Saliva is the secretion of the salivary glands, which are classified as serous, mucous or
seromucous and are distributed throughout the oral cavity (319). In addition to hundreds
of minor salivary glands, there are three main salivary glands, the Glandula parotis, the
Glandula submandibularis and the Glandula sublingualis (230,313,319). Saliva consists of
approximately 98 % water and only the remaining 2 % is composed of a mixture of various

components such as proteins, glycoproteins, electrolytes, or immunoglobulins
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(319,360,361). This biofluid has a pH value of 7 due to the electrolytes it contains, which
provide additional buffering capacity against acids and thus protect teeth from their
demineralization (362-364). Immunoglobulins lead to antibacterial, antifungal, and
antiviral characteristics (361,365,366). The mucous salivary glands secrete as their main
component the protein mucin, which has a protective function on the soft and hard tissues
of the oral cavity (319,324,362). The serous glands, mainly produce amylases, which initiate
the digestion process of carbohydrates to glucose (252,319,324). The initiation of digestion
not only provides nutrients to the human host, but also to the existing biofilm in the oral
cavity (367,368).

Saliva has been the focus of numerous metagenomic studies (335,369-372), which is not
surprising since saliva can be collected easily and non-invasively (230). It is dominated by
the five phyla Actinobacteria, Bacteriodetes, Firmicutes, Fusobacteria, and Proteobacteria
(99,373,374). At the genus level, especially Streptococcus, but also Prevotella, Veillonella,
Fusobacterium, Rothia, Neisseria and Haemophilus have been identified to define the
salivary core microbiome (99,326,331,375). Initial metaproteome studies (201,235-
237,269,376,377), in addition to our own, were able to confirm the taxonomic distribution
based on protein assignments. We identified 1,647 human proteins, which is slightly less
than comparable studies (236,237), but with 2,633 metaproteins we detected more
bacterial proteins (209). As explained in more detail in previous chapters, we attribute this
to the different size and composition of the cohorts, as we had only healthy study
participants to examine the healthy microbiome. Other factors include different protocols
and strategies regarding sample collection and preparation, mass spectrometric
measurements, and data analyses (208,209).

From a microbiological point of view, saliva is the result of the various habitats of the oral
cavity, for example, due to detaching bacteria from biofilms or oral mucosal surfaces
(323,327,330). The tongue with its biofilm is also a reservoir of bacteria (378). There is even
the hypothesis that the bacterial composition of saliva is essentially influenced by the
tongue or even originates from the tongue (336,378,379).

The tongue is a muscular structure consisting of nine individual muscles, which is covered

by a mucous membrane and innervated in a complex manner by several nerves (313). The
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entire tongue, in addition to several salivary glands (324), is covered by various types of
papillae, which can be categorized into two groups (320). The mechanical papillae group
consists of the Papillae filiformes, Papillae conicae and Papillae lentiformes, which are
responsible for the tactile sensation of the tongue. The Papillae fungiformes, Papillae
vallatae and Papillae foliatae are responsible for the sense of taste, with the Papillae
fungiformes  additionally forming the source of temperature sensitivity
(313,319,320,380,381). In the cavities between the papillae, a biofilm is formed, which can
be observed as a whitish coating on the tongue (61,382). This biofilm seems to be the cause
that saliva and tongue show a great similarity regarding their microbiome
(326,331,336,379).

Therefore, we designed our metaproteomic study to analyze not only the salivary
microbiome but also the tongue microbiome in the same cohort of 24 healthy volunteers
and to compare both microbiomes (208,209). An important result was that the relative
abundance of bacterial metaproteins in the studied biofilm of the tongue was significantly
higher with 40.8 % compared to saliva with 21.7 %, in which the bacteria live planktonically.
The taxonomic assignment of the proteins confirmed the dominant phyla and genera
previously named for saliva, also for the tongue with the difference that the bacterial
metaproteins occurred in higher abundance for the tongue. This seems to be another hint
for the hypothesis that there is a taxonomic similarity between saliva and tongue (336).
We detected a wide bacterial diversity, which is probably mainly due to the interindividual
difference between the subjects, regarding to their dietary habits (383), genetic background
(384) and oral hygiene (339) as already described in more detail in the previous chapters.
Nevertheless, we identified significant differences between saliva and tongue of non-
dominant genera such as Gemella, Granulicatella, Treponema or Peptoniphilus, which shape
the profiles of both microbiomes (209).

Human proteins with the highest abundance were, as expected, a-amylase (AMY1A) (385)
and glyceraldehyde-3-phosphate (GAPDH) (386), both in saliva and in tongue swabs. In
contrast to the tongue, higher abundances of immune defense proteins were found in
saliva. Probably due to the scraping of the biofilm from the tongue during the sampling

process, we identified significantly higher abundances of cytoskeletal proteins such as
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repetin (RPTN), which is involved in the development of the formation of cornified cell
envelopes (320).

At least 30% of the 2,633 bacterial metaproteins of saliva and 3,307 bacterial metaproteins
of the tongue were of ribosomal origin or functionally mapped to translation. Moreover, for
the planktonic bacteria in saliva more metaproteins of cell motility showed a higher
abundance (235). For the tongue, higher abundances for metaproteins of signal
transduction and for synthesis of secondary metabolites were identified, suggesting intra-
and interbacterial communication within the tongue biofilm (387).

In summary, we were able to demonstrate the applicability of our workflow from sample
preparation to analysis of metaproteomic data. These results were comparable to other
metaproteomic studies and provided good technical reproducibility. In addition, this is the
first study providing metaproteomic data for the tongue. Furthermore, it is the first
metaproteome study comparing the microbiomes of saliva and tongue. We identified a
great taxonomic diversity, accompanied with taxonomic as well as functional similarity

between the two microbiomes (208,209).

Supragingivale Plaque

Supragingival plaque is a biofilm that develops over time on tooth surfaces. The biofilm
consists of a complex microbial community embedded in a structure of extracellular
substances called exopolysaccharides (388,389). The formation of the biofilm can be
divided into the 5 phases called association, adherence, microcolony formation, biofilm
maturation with EPS synthesis, and aging including detachment of planktonic bacteria
(388,390). During association, a pellicle layer, including glyco- and salivary proteins, forms
on the tooth surface within a few minutes (391,392). Subsequently, first colonizers form a
loose association with this pellicle layer within a few hours. The initial colonizers include
mainly Streptococcus spp. but also Capnocytophaga spp., Prevotella spp. or
Propionibacterium spp (393-396). Bacterial adherence forms the basis for further
maturation of the biofilm, with initial formation of microcolonies and the beginning of
vertical growth of the biofilm, usually within the first 24 hours (397). In the fourth phase,

maturation of the biofilm takes place, and a matrix is established through the synthesis of
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exopolysaccharides. This allows the establishment of a complex community structure
(398,399). Water channels are formed, which supply the bacteria with water, but also
remove toxic substances (390). The matrix of exopolysaccharides also ensures a stable pH
via binding cations and store nutrients (399). In this phase, bridging species such as
Fusobacterium nucleatum or Prevotella intermedia play a central role, providing the link
between first and late colonizers, such as Eubacterium spp. or Treponema spp
(395,396,400). The denser the colonization of the biofilm, the more important intra- as well
as interspecific communication via quorum sensing becomes (401). Quorum sensing is a
form of chemical communication that allows bacteria to react to changing environmental
conditions and thus to find new ecological niches to ensure the survival of the population
(401-403). This organizational structure thus allows the biofilm to show a great resistance
to external environmental factors such as nutrient limitation, the human immune system,
and antibiotics (388,399,404).

The Plaque biofilm is always associated with diseases such as caries or periodontitis (405).
However, the plaque biofilm basically possesses several properties that are beneficial to
human health (406). A biofilm in a state of balanced equilibrium forms a barrier against
disease-associated bacteria (337). In the context of the extended ecological plaque
hypothesis, it is assumed that cariogenic bacteria already colonize the plaque biofilm but
are not competitive at a neutral pH and commensals prevent them from dominating the
biofilm (407,408). Studies of the immune system have shown its ability to distinguish
between commensals and pathogens. The Dysbiosis of the biofilm triggers an inflammatory
reaction of the immune system (409,410).

In addition to genetic causes of the host or a reduced salivary flow rate, a diet of simple
carbohydrates in combination with poor oral hygiene is a major factor regarding the
bacterial shift towards a pathogenic biofilm (121,141,411). This is supported by a study that
despite a lack of oral hygiene in combination with a lack of refined sugars in the diet, the
biofilm grew but signs of gingival inflammation or the number of pathogenic bacteria did
not increase (412). Refined sugar lowers the normally neutral pH value, which is an

advantage to acidogenic bacterial species such as Streptococci spp. (S. mutans, S. oralis).
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The basis for the development of caries, the demineralization of the tooth substance
(413,414).

Saliva serves as a natural plaque control in the oral cavity, including the salivary flow rate
that mechanically removes bacteria (121), the stabilization of the pH or the contained
components of the innate immune system such as the lactoperoxidase system (330,415).
The enzyme lactoperoxidase, catalyzes the oxidation of anions in the presence of hydrogen
peroxide (H,03) to highly reactive reaction products, which are toxic to bacteria (416). In
our study, we aimed for lactoperoxidase to catalyze H,0;, derived from the H,0, donor
carbamide peroxide (CPO), and the substrate thiocyanate (SCN°), to hypothiocyanite (OCSN-
) (210,417,418). Although daily oral hygiene products already use the mechanism of the LPO
system, most of them aim to reduce the biofilm or microbiome entirely, including
commensal bacteria (415,419,420). However, in addition to the mechanical teeth cleaning
routine via toothbrushes, the aim should be to influence the plaque biofilm formation that
the commensal bacteria are promoted, and pathogenic bacteria cannot establish or
dominate the biofilm.

The aim of our study was to evaluate the effect on plague formation of two lozenges
containing the components of the LPO system in high (Drug B - 0.083 % H,0, accordingly a
1:2 H0,/SCN" relation) and low (Drug C - 0.04 % H,0, accordingly a 1:4 H20,/SCN- relation)
concentrations. For comparison, we used a lozenge as a placebo (Drug D) and the
mouthwash Listerine (Drug A), known for its plaque inhibitory effect (421,422), as a positive
control. Sixteen subjects, serving as their own control, were given each of the four
treatment regimens over a 4-day period in a dentally approved cross-over design (423). No
additional oral hygiene practices, such as brushing or flossing, were used during treatment.
Between each treatment, there was a recovery phase of 10 days where subjects followed
their usual oral hygiene routine. The study was designed as a randomized single-blind trial.
Furthermore, the aim was also to combine the results of the clinical part of the study with
the results of metaproteomics (210,424).

With 1,916 (+ 465) bacterial and 442 (+ 171) human proteins per sample, we achieved

higher protein identifications than comparable metaproteome studies (203,425-427),
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which we attribute primarily to the high number of 128 samples measured, in addition to
different methods of sample preparation and data analysis (259,428,429).

The expected high proportion of bacteria in the biofilm, was observed by the relative
abundance of metaproteins, which averaged three-quarters of the sample except for
samples after Listerine treatment (Drug A).

The plaque inhibitory effect of Listerine was observed by a reduction in the relative
abundance of metaproteins from an average of 74.1 % before treatment to 59.1 % after
treatment. Despite the same amounts of proteins used for MS measurement, the identified
metaproteins reduced abundance on average by 23.5% after treatment with a
corresponding increase in human proteins. The abundance of metaproteins that have
functions in metabolic processes for bacterial growth were significantly reduced. The
opposite observations were made for Drug B (0.083 % H202 accordingly a 1:2 H202/SCN-
relation), Drug C (0.04 % H202 accordingly a 1:4 H202/SCN- relation), and Drug D (placebo).
The taxonomic assignment of the metaproteins is consistent with the findings of recent
studies. The plaque biofilm is composed of eight phyla. The phyla Actinobacteria,
Firmicutes, Fusobacteria, Proteobacteria, and Bacteriodetes play a major role whereas the
Spirochaetes, Synergistetes, and an unclassified phylum play a minor role
(99,102,332,338,430,431). We also showed a high taxonomic diversity of the plaque biofilm,
as reflected by the assignment of metaproteins to 116 genera and 351 species.

For Drug D (placebo), unexpectedly, there were slight significant changes in the abundances
of metaproteins detected, for example the increase for the secondary colonizer
Capnocytophaga spp. or for metaproteins involved in small molecule interactions. This is
attributable to the high interindividual variance of the subjects as well as to the sugar
alcohols contained in the lozenge, which influence the microbiome (432-437).

Drug C showed a similar change in the metaproteome as Drug D, suggesting that the
concentration of the LPO system is too low to influence plaque biofilm development beyond
that of a placebo.

The greatest changes in the metaproteome were apparent under Drug B treatment. We
found an increase in metaprotein identifications and metaprotein abundances for bacteria

that are either associated with oral health or play a decisive role as commensals for plaque
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biofilm formation. In addition to increased metaprotein abundances for Lachnospiraceae
ssp. or Abiotrophia defectiva (438,439), we noted changes for Streptococcus gordonii, which
is a competitor for the cariogenic bacterium Streptococcus mutans through the production
of hydrogen peroxide (440—443). For the 4th phase of biofilm development, its growth, the
bridging species Fusobacterium nucleatum or late colonizers Prevotella intermedia and
Prevotella nigrescens are of great relevance, for whom we also found increased
metaprotein abundances (394,396,397,444).

In conclusion, this complementary study demonstrated the influence of lozenges with two
different concentrations of the LPO system on plaque formation. This is the first
metaproteomic study that attempts to harmonize the results of classical microbiology and
collected clinical parameters within the context of an established clinical model. The initial
results will form the basis for further studies to advance the development of a product for

daily oral hygiene that positively affects the commensal bacteria of the oral biofilm (210).
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Metaproteomics in the light of future developments

As we have learned in the previous chapters, metaproteomics faces many challenges to be
overcome in the future (428). Starting with the enormous complexity and heterogeneity of
samples (445-447) to the evaluation of the enormous datasets (448) as well as their
integration with other 'omics' technologies (449). At the same time, we have seen the
potential of metaproteomics. With our studies we could show that metaproteomics is not
only the determination of the pure number of proteins and their relative abundance (207—-
210). Also, in the sense of community proteomics (450), these proteins can be assigned to
the individual members of the microbiome and their functional role within the microbiome
can be determined (451,452). Finally, let us have a look at future trends and developments
in metaproteomics to ask the question "Quo Vadis metaproteomics?".

First, it can be pointed out that one focus will be on the optimization and standardization
of sample collection and preparation, which must be worked out individually for each
habitat (226,453). The reason for this lies in the complexity and heterogeneity of each
habitat, which, in addition to a large number of expected proteins (AMD biofilm: 4.77 x 10°
proteins (428,454); surface freshwater: 6 x 107 proteins (428,455); human saliva: 16. 2 x 10°
proteins (428,456)) also have individual challenges to extract proteins from each habitat
(soil: humic acids (457); saliva: high percentage of human proteins (201,202)). The
standardization of protocols will allow to some extent to establish comparability between
samples of a habitat (458).

Metaproteomics will also benefit from the technical advancements of mass spectrometers
(459). In addition to the enhanced sensitivity of the instruments, the increased use of the
data-independent acquisition (DIA) method also promises improved results (460,461).
Analogous to the DDA method, the DIA method also fragments all the peptide ions in a first
step, followed by a sequential analysis of mass windows. The difference in DIA is that a
much smaller mass window of precursor ions is considered in each cycle of selection and
fragmentation. This smaller mass window is then gradually shifted over the entire mass
range under consideration (462). As a result, all precursor ions are selected and analyzed,

leading to improved peptide identification (463). Most importantly, this means better
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coverage of low abundance proteins (464,465). In one of the first metaproteomic studies,
Aakko et al. demonstrated the applicability of the DIA method to metaproteomics based on
human fecal samples and laboratory-assembled microbial mixtures (466). Since all ions are
analyzed one can also re-analyze data and pick-up new details, e.g., when new post-
translational modifications are discovered.

Another essential component that will sustainably change metaproteomics is the area of
evaluation and interpretation of the data obtained by mass spectrometry. The development
of specific metaproteomic software solutions (448), the application of multi-omics
approaches (449) and machine learning or artificial intelligence (467) will play a decisive
role in this context.

Over the last few years, a variety of software solutions have been established (260-
266,272). There are software solutions that specialize in protein grouping and taxonomic
and functional assignment (iMetalab (261), MetaProteomeAnalyzer (267,272), Prophane
(262,272). Unipept (263,264) as well as MetaTryp 2.0 (265) on the other hand specialize in
peptide level analysis to address the protein inference problem (468). Still another software
program is even specifically designed for a habitat, such as MetaPro-IQ for the gut
microbiome (266). The use of software solutions developed specifically for metaproteomics
provide improved reproducibility of metaproteomic studies because they promote
standardization within and between research groups (213,287). In addition, pipelines
attempt to address specific problems in the analysis of metaproteomic data, such as the
grouping of redundant proteins (metaproteins) (262,272) or the taxonomic (taxonomy
inference problem) (468) and functional assignment of metaproteins (262,272).
Nevertheless, it is crucial to critically compare workflows (213,287), because different
approaches and strategies are used to analyze the data (260-267,272). A promising
approach is the combination of the two open-source tools MetaProteomeAnalyzer and
Prophane, which are specialized in metaproteomics and enable scientists to handle the
entire analysis process from the creation of the protein database to the visualization of the
results in one integrated workflow (272).

Metaproteomic studies will produce increasing amounts of data due to improved mass

spectrometers or more extensive gene databases, so the use of machine learning or
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artificial intelligence algorithms will undoubtedly contribute to the optimization of quality
and quantity (469). In the field of mass spectrometry, machine learning algorithms have
been developed and used for many years for the prediction of retention time (470,471) or
MS/MS spectrum prediction (472—474). Classical examples are machine learning algorithms
like random forests (475) or gradient boosting (476). Another application of machine
learning algorithms is the sequence database search to improve the quality of peptide and
protein identification (474). First promising approaches are already being pursued in the
field of proteomics (477). For the presented metaproteom software solutions (260—
267,272), it will be important to adapt these approaches and make them usable for
metaproteomics in the future.

In addition to developments that are specific to the research area of metaproteomics, there
will be a need to conduct more studies based on multiomics approaches (478)
(alternatively: integrative omics (479) or panomics (159)). An example is the
implementation of the Integrated Human Microbiome Project (480,481) as a follow-up and
extension of the HMP (61,85). The goal of multiomics is to combine the results of the
different omics technologies because each omics approach reflects only a reductionistic
picture of reality (482). After all, the microbiome and environmental conditions are
mutually dependent, which in turn influences the genotype and phenotype of the
microbiome and host (483). It is this integrative approach that will allow us to obtain new
associations or relationships between gene and protein expression and their influence on
the metabolome (256). Considering individual medicine (159), biomarkers can already be
discovered today that announce the change from a healthy to a pathogenic microbiome
(484,485). Furthermore, clear targets can be identified to positively influence the
microbiome without resorting to eradicative therapies (486).

The standardization of protocols, artificial intelligence and multiomics are elementary
components to further develop metaproteomics. These developments will ensure that the
results of metaproteomics will be qualitatively enhanced and allow even more detailed
insights into the interrelationships and actions of a microbiome. The goal of personalized
medicine, where medical treatments and decisions are tailored to the individual patient, we

may thus come a decisive step closer (487).
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ABSTRACT

The value of saliva as a diagnostic tool can be increased by taxonomic and functional
analyses of the microbiota as recently demonstrated. In this proof-of-principle study, we
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compare two collection methods (Salivette® (SV) and paraffin gum (PG)) for stimulated saliva

from five healthy participants and present a workflow including PG preparation which is

suitable for metaproteomics.

For a better understanding of the microbial species com-
position in health and disease of the oral cavity [1,2],
saliva offers a wide range of possibilities as shown in
metagenomic studies [3-5]. In addition, metaproteomics
provides detailed impressions of active metabolic path-
ways under certain environmental conditions, which
cannot be accomplished by metagenomics [6-8]. First
metaproteome studies for saliva have already been per-
formed [9-12]. Here, we conducted a comparative proof-
of-principle study for two saliva-stimulating collection
methods (Salivette® (SV) and paraffin gum (PG)) to
identify the most suitable way to perform metaproteome
studies on human saliva.

We collected stimulated saliva from five healthy
dental students (three men and two women) aged
20-30 years on two consecutive days. Under the
supervision of an experienced dentist, the students
examined each other and none of them had a
probing depth of >4 mm. Based on a question-
naire we ensured that all participants met our
inclusion criteria (Supplemental Table 1).

All subjects were chewing on a PG for 1 min.
Within this minute all volunteers spat saliva into a
sterile 50 ml Falcon tube for several times. On the
next day, the participants had to chew on the SV
for 1 min and the soaked cotton roll was trans-
ferred into a specific salivation vessel. Previous
experiments showed that the order of the chosen
saliva collection methods had no influence on the
results (data not shown). Afterwards, all samples

KEYWORDS

Saliva; metaproteomics;
human oral microbiome;
whole saliva proteomics;
collection method; nLC-MS/
Ms

were centrifuged for 15 min at 11,500 g (4°C).
Saliva collected by PG was separated into super-
natant (PG_SN) and pellet (PG_P). SV samples
were again centrifuged for 30 min at 17,000 g at
4°C (Salivette supernatant — SV_SN and Salivette
pellet — SV_P). For SV_P only a tiny pellet was
seen. Pellets were resuspended in 700 pl (PG_P)
and 300 pl (SV_P) TE-Buffer. Ultrasound treated
pellets were centrifuged for further separation
(PG_P_SN, PG_P_P, SV_P_SN) as presented in
Figure 1 and Supplemental Table 2. For the SV_P
samples no pellet was seen after centrifugation.

Protein precipitation of each fraction (1,000 pl -
SV_SN, PG_SN; 700 pl - PG_P_P, PG_P_SN,
300 pl - SV_P_SN) was conducted with TCA.
Depending on the size of the resulting pellet, it
was dissolved in an 8 M Urea and 2 M Thiourea
solution (Supplemental Table 3). Protein concen-
trations of the lysates were determined using a
Bradford Assay (BSA standard curve) [13]. Four
micrograms of protein were reduced (dithiothrei-
tol), alkylated (iodo acetamid) and digested with
trypsin (ratio 1:25 w/w) for 17 h. Peptide lysates
were desalted with two microgram ZipTip-pC18-
tips. Tryptic peptide mixtures were analyzed in
triplicates by shotgun nano LC MS/MS on an
Ultimate® 3000 Nano LC connected to a Q
Exactive plus (Supplemental Table 4).

Seventy-five MS-raw files were analyzed as one batch
(Supplemental Table 5) with the Proteome Discoverer

CONTACT Alexander Rabe @ alexander.rabe@uni-greifswald.de
Supplemental data for this article can be accessed here.

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-83 -



2 (& A RABEETAL

Comparative analysis of Salivette® and paraffin gum preparations for establishment of a metaproteomics

analysis pipeline for stimulated human saliva

Fractionation of saliva samples

Salivette®

®

)

£2

© ® centrifugation centrifugation

v 0

oL L J

£%

[

o

(7]

SV_SN 5 SV.P
© o
@ £a
E o
i o
o

ultrasonication
centrifugation

T

SV_|

SN

Paraffin gum

centrifugation

collected saliva with
paraffin gum

PG_SN

1 ml Saliva

bl
<8
o

Pellet in 700 pl
TE-Buffer

ultrasonication
centrifugation
-——

<

PG_P_SN PG_P_P

Supernatant after
ultrasonication
Pellet in 700 pl
TE-Buffer

Figure 1. Fractionation procedure of saliva samples collected with Salivette® and paraffin gum. Fractions labeled in red were

used for proteome analysis.

(v2.0.0.802) software using a database (size: 622 MB)
including 20,154 sequences from the Homo sapiens pro-
teome (UniProtKB/Swissprot, www.uniprot.org, 01/06/
16) [14] and 1,079,644 sequences from 371 different
species of the Human Oral Microbiome Database
(HOMD, www.homd.org, 12/08/2016) [15,16]. Protein
groups were accepted, if covered with > 2peptides and
identified in at least two out of three technical replicates.
Based on the Lowest-Common-Ancestor-Algorithm-
Approach [17] prophane (www.prophane.de, version
2.1.05) was used to perform taxonomic assignment
using NCBI [18], BLASTP [19,20] and our database;
and functional assignment using COG/KOG [21].
Saliva collection with the PG resulted in a higher
volume of saliva (4.1 + 0.8 ml) compared to the SV

(1.9 £ 0.1 ml), which is in accordance with a previous
report [22], and vyielded also higher protein levels
(Supplemental Table 3).

Relative quantification based on NSAF values
(normalized spectral abundance factor) revealed that
Homo sapiens made up the biggest proportion of
spectral counts, which differed between the two saliva
collection methods and fractions (Supplemental
Table 3).

Regarding the human proteome, we refer to the
paper by Golatowski et al. [22], which has extensively
examined the human proteome data generated by SV
and PG preparations. Compared to the previous
study, we identified more human proteins, which is
expected  since used more

we advanced
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instrumentation (QExactive plus vs. Orbitrap Velos).
However, an overlap of around 76.0% was reached
comparing the same fractions (Supplemental
Figure 2) [22].

With regard to bacterial proteins, more than three
times more protein groups were identified (Figure 2
(a)) using the PG (PG_P_SN: 1,005 protein groups)
compared to the SV (SV_P_SN: 313 protein groups).
Recent reports identified 1,946 [9] and 2,234 [10]
bacterial proteins in human saliva. We assume that
our lower protein identification rate is caused by
more stringent filter parameters (paragraph 5,
Supplemental Table 5) and the use of unique rather
than distinct peptides. Furthermore, our study
included only five subjects in comparison to other
metaproteome studies [9,10].

A comparison of the two fractions (Figure 2(b))
with the highest numbers of protein groups (PG_P_P
and PG_P_SN) revealed that 76.5% of the total of

Comparative analysis of Salivette® and paraffin gum preparations for establishment of a metaproteomics

analysis pipeline for stimulated human saliva

JOURNAL OF ORAL MICROBIOLOGY (&) 3

1,313 protein groups were identified with the
PG_P_SN fraction (overlap PG-SV: Supplemental
Figure 1). A principal component analysis showed
that the inter-subject variability was by far larger
(PG_P_P: 31%; PG_P_SN: 31.6%) than the technical
variance of the analysis (Figure 2(c,d)) and that the
technical variance for the PG_P_P (14.9%) fraction
was higher in comparison to the PG_P_SN fraction
(13.4%). This technical variance is in accordance with
a previous study [22]. The results imply that the
PG_P_SN fraction is to be favoured due to the high-
est protein identification of all fractions and its tech-
nical reproducibility.

In total, 38 genera and 90 species could be identi-
fied, comparing those fractions of the PG (PG_P_SN)
and the SV_P_SN with the highest protein group
identification (Figure 3(a,b)). Within both fractions
(Figure 3(a) - orange) 25 genera and 37 species were
covered including the most prominent genera, like
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Figure 2. Evaluation of protein identification rate for two stimulated saliva collection methods. (A) The number of identified
salivary bacterial proteins for each fraction collected with Salivette® and paraffin gum, respectively. (B) Venn diagram showing
the overlap of the number of proteins for the paraffin gum pellet (PG_P_P) and its supernatant (PG_P_SN) fraction and those
which were exclusively identified in one of the two fractions. (C, D) Principal component analysis illustrates the technical
reproducibility and biological variability for the paraffin gum pellet and its supernatant fraction based on three technical

replicates for each fraction.
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Figure 3. Voronoi treemaps demonstrate taxonomical (A) and functional (B) coverage for SV_P_SN and PG_P_SN. Relative
quantification is based on averaged normalized NSAF - values (normalized spectral abundance factor) and presented as
polygonal areas. Taxa and protein functions, which were exclusively found in the Salivette® samples (SV_P_SN, red) and
paraffin gum samples (PG_P_SN, green) or were identified with both collection methods (orange) are displayed. The treemaps
are taxonomically resolved to the species level or functionally to the specific protein function. To keep the figures as brief and
clear as possible only the names down to the genus level and to general cellular processes are shown.

Actinomyces, Prevotella, Streptococcus or Rothia as in
previous analyses [9,10,12]. Thirteen genera like
Granulicatella and 44 species were exclusively found
within the PG_P_SN fraction (green). The SV_P_SN
fractions (Figure 3(a) - red) did not provide any new
genera but nine species. Since the SV_P_SN fraction
does not offer any added value with respect to tax-
onomy, we suggest using the PG_P_SN fraction.

Similar observations could also be made on the
functional level based on the COG-system (Figure 3
(b)) [31]. From 291 COGs found in total, 165 COGs
were identified exclusively for the PG_P_SN fraction
(Figure 3(b) - green). The main functions (metabo-
lism, cellular processes/signalling and information
storage/processing) were covered with both methods
(103 COGs - Figure 3(b) - orange). Just a small
number of COGs could be observed in the
SV_P_SN fractions (23 COGs - Figure 3(b) - red).

Based on this proof-of-principle study, collection
of human saliva with the PG turned out as the
method of choice for stimulated salivary metaproteo-
mics, because it offers the best results in terms of
protein identification, technical reproducibility, tax-
onomy and functional identification. Future studies
must explore larger cohorts to describe the healthy
and diseased saliva microbiome.
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ABSTRACT ARTICLE HISTORY
Background: The human oral microbiome influences initiation or progression of diseases like Received 1 May 2019
caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of Revised 30 July 2019
microbial and host proteins and their interactions to improve understanding of oral diseases. Accepted 7 August 2019
Objective: In this study, we provide a detailed metaproteomics perspective of the composi-
tion of salivary and tongue microbial communities of young healthy subjects.

Des'ign: Stimulated saliva and tongue samples were collected from 24'hea.|thyl volunteers, metaproteomics: healthy
subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the human oral microbiome;
Prophane tool. NLC-MS/MS

Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue,

respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in

both sample types. Twice the amount of bacterial metaproteins were uniquely identified for

the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed

the microbiome. Comparative analysis identified significant functional differences between

the microbial biofilm on the tongue and the microbiome of saliva.

Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong

similarity based on identified protein functions and deduced bacterial composition, certain

specific characteristics were observed. Both microbiomes exhibit a great diversity with seven

genera being most abundant.

KEYWORDS
Saliva; tongue;

Introduction Traditional knowledge and current scientific stu-
dies have shown that a shift in the balance of the oral
bacterial composition can indicate pathological
changes [13]. This includes diseases such as halitosis
[14,15], dental caries [16] and periodontitis [17,18] as
well as systemic diseases like diabetes [19], respira-
tory diseases [20], cardiovascular diseases [21] and
even cancer [9,22] due to the production of pro-
inflammatory mediators [23].

However, initially the healthy microbiome [1,24-27]
has to be defined before disease-related or disease-
causing alterations can be described, which might ulti-
mately lead to the development of diagnostic tools for
better treatment or prevention of disease [2,28,29].
Many studies have already been initiated for this pur-
pose using next generation sequencing [9,25,30-34].
Metagenomics provides an impression of the diversity
of organisms on the tongue but also of the metabolic
potential which might be present [29,35]. As
a complementary approach, metaproteomics offers
a possibility to measure protein intensities to
capture active protein functions and taxonomic units

The human oral cavity with its various hard (teeth
with supragingival and subgingival plaque) and soft
tissues (tongue, throat, tonsils, cheeks) forms
a complex ecosystem for more than 700 different
species and phylotypes [1-6]. Current estimations
indicate that saliva and dental plaque contain up to
10° and 10" bacteria per ml [7], respectively. Thus,
the oral cavity is the second largest microbial ecosys-
tem in humans after the intestine [4,8].

Saliva is the most interesting biofluid in the oral
cavity, as it comes into contact with all surfaces and
thus represents a fingerprint of the general composition
of the oral microbiome [5]. However, other microenvir-
onments also need to be investigated in a comparative
way to obtain a comprehensive view of the oral micro-
biome [9-11]. Therefore, it is not surprising that the
analysis of the tongue microbiome is also gaining more
and more attention, since tongue diagnostics has been
used in traditional Chinese medicine since more than
3,000 years to assess the patient’s state of health [12,13].

CONTACT Alexander Rabe @ alexander.rabe@uni-greifswald.de @ Interfaculty Institute for Genetics and Functional Genomics, Department of
Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, Greifswald 17475, Germany

@ Supplemental data for this article can be accessed here.
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within the microbiome. Furthermore, simultaneous
analysis of the microbial and human proteome can
also provide insights into interactions between
microbes and their host [35].

For our community proteomics study, we collected
saliva and tongue samples from 24 oral healthy volunteers
[36]. Our primary goal was to describe and compare the
microbial composition of saliva and tongue dorsum
based on metaproteome data of young healthy indivi-
duals. We combined different open-source software
applications, which were mainly developed for the ana-
lysis of metaproteome data. At the same time, we com-
pared our pipeline to other salivary metaproteomic
studies [37-40] to gain information on effectiveness and
accuracy.

Material and methods
Study population

Saliva and tongue samples were collected from 9 male
and 15 female dental students from the dental school
of the University Medicine Greifswald. The range of
ages was 20-30 years with an average age of 25 years.
They were non-smokers, no alcohol or drug addicts
and had no systemic disease or antibiotic treatment
within the last six months. Further, the subjects were
not taking medication permanently. Women during
pregnancy or breastfeeding were not considered. The
oral health of the volunteers was ensured by the fact
that the students examined each other under the
guidance of an experienced dentist fulfilling the
inclusion criteria: no cavitated teeth, maximal two
fillings, probing depth (< 3 mm) and bleeding on
probing value of less than 10%. The subjects included
did not eat, drink or brush their teeth during 5 h
before sampling, which was done during the students’
university course in the late morning and early after-
noon. The ethics council of the University Medicine
of Greifswald approved our study and it was carried
out in compliance with the recommendations of the
Helsinki Declaration as amended by Somerset West
in 1996.

Sampling

Saliva

Stimulated saliva was collected with a commercially
available paraffin chewing gum (Ivoclar Vivadent
GmbH, Ellwangen, Germany) based upon a modified
protocol published previously [41]. Volunteers chewed
the paraffin gum for 1 min to stimulate natural salivation.
During the chewing process, the subjects collected saliva
in the oral cavity and spat into a sterile 50 ml Falcon tube
for several times. Twenty pl of a protease inhibitor
(Sigma Aldrich, St. Louis, MO,; v/v 1:20) per 1 ml col-
lected saliva was added to prevent protein degradation by

proteases. For transportation the collected saliva was
stored on dry ice and finally at —80°C until use [36].

Tongue samples

Tongue samples were taken from the middle third of
the outstretched tongue dorsum with a sterile wooden
spatula (NOBA Verbandmittel Danz GmbH and
Co KG, Wetter, Germany), 18 mm x 150 mm. The
sterile wooden spatula was pressed onto the tongue
for 5 swith light and even pressure and then turned
over to repeat the process on the other side. After this
procedure, the spatula was transferred into a 50 ml
Falcon tube containing 2 ml sterile 1 x PBS (gibco®,
Thermo Fisher Scientific, Waltham, MA; pH = 7.4)
and 40 pl of a protease inhibitor and vortexed for 30 s.
The spatula was discarded. For transportation the sam-
ple was stored on dry ice and then stored at —80°C until
further processing.

Sample preparation

Cell disruption

Saliva preparation were performed using a published
protocol [40], which was slightly modified [36]. The
collected saliva was first thawed on ice and centrifuged
for 15 min at 4°C at 11,500 g. The supernatant was
discarded, and the remaining pellet was resuspended in
700 pl TE buffer (10 mM Tris; 1 mM EDTA; pH 8.0).
An ultrasound treatment (Labsonic U - B. Braun
Melsungen AG, Melsungen, Germany) was carried
out for 3 x 30 s on ice (50% power of the device) to
disrupt the cells in the pellet followed by another cen-
trifugation step (30 min, 4°C, 16,200 g). The super-
natant was stored on ice for further preparation.

For the tongue samples, our preliminary tests
showed that the prior vortexing of the sample in con-
nection with the Freeze-and-Thaw process in sterile 1
x PBS (gibco *, pH 7.4 - CaCl, - MgCl,) is a well-suited
cell disruption method for this sample type.

MS sample preparation

After thawing on ice, 1 ml of the respective super-
natant of the tongue samples and 700 ul of the pre-
pared saliva were used for protein precipitation by
TCA. DTT was added to the samples (0.02 g/100 pl),
samples were vortexed for 10 s and incubated at 37°C
for 30 min. For the subsequent precipitation of the
proteins, TCA (100%) was added up to a final con-
centration of 15% and samples were stored on ice for
60 min. The precipitated samples were centrifuged
for 45 min (17,000 g, 4°C). To remove the TCA,
supernatants were discarded, 500 pl of 100% cold
acetone was added and centrifuged for another
15 min (17,000 g, 4°C). The washing step was
repeated once again. Samples were vacuum dried for
1 min. The remaining pellets were diluted in 50 pl
(saliva) and 35 ul (tongue) 1 x UT solution (8 M
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urea/2 M thiourea). To define the technical variance
and the reproducibility of our study, all samples were
prepared in triplicates. A Bradford assay [42] was
performed to determine the protein concentration
of saliva (@ 6.4 pg/pl + 2.3 pg/ul) and tongue samples
(@ 1.7 pg/ul + 1.6 pg/ul). Four pg protein were
reduced with DTT (2.5 mM final concentration, incu-
bation for 60 min at 60°C) and alkylated with TAA
(10 mM final concentration, incubation for 30 min at
37°C in the dark). After a 1:10 dilution of the 1 x UT
solutions, protein digestion was conducted with tryp-
sin in a ratio of 25:1 (w/w) over a period of 17 h.
Peptide mixtures were purified with ZipTipCs
material.

NLC MS/MS measurement

Proteolytic digestion of the proteins with trypsin was
followed by analyzing the 144 samples using nano-LC
-MS/MS (Supplemental Table 1). The complex pep-
tide mixtures were separated according to their phy-
sicochemical properties by means of a reverse phase
nano HPLC on an Ultimate® 3000 Nano HPLC
(Thermo Scientific). The peptide mixtures were

(a)

Centrifugation
>

Clean Timberplate in
2ml Sterile PBS

V{1 |
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loaded onto a precolumn (Acclaim PepMapl00,
Thermo Scientific: 75 pm inner diameter, 3 pm Cig-
particles), subsequent separation of the tryptic pep-
tides took place on a 25 pm analytical column
(Accucore PepMap RSLC, Thermo Scientific: 25 cm
X 75 pm, 2.6 pm C18 particles) via a linear gradient
(120 min, 2-25% buffer B) using a binary buffer
system consisting of 2% acetonitrile in 0.1% acetic
acid (buffer B). The mass spectrometric data were
acquired by means of a data-dependent acquisition
procedure on a QExactive™ Plus as described before
[36] and revealed 5,749,982 spectra. To assure a high
quality of our MS data, only spectra with a mFDR <
0.06% were accepted, resulting in 1,933,390 spectra.
A complete overview of the laboratory workflow is
given in Figure 1(a). All metaproteomic data sets
were uploaded to the publicly accessible MassIVE
database with the dataset link ftp://massive.ucsd.
edu/MSV000084137 and doi:10.25345/C53H2C.

Data analyses

To evaluate our metaproteomic data we used a two-
step data analyzing pipeline (Figure 1(b)). We

Trypsin

TCA Precipitation ——»

Sterile Timberplate

L g

| Oral Cavity ‘ | Sampling

‘ Cell Disruption |

(b) Raw Mass Spec Data Peptide Identification . | Peptide Validation |
msconvert D Comet D IPﬁ)Dbat’ | I> D
PeptideProphet
o Full MS scan
s £ 8 e
8 2 2 Peptide Protein A Taxonom
f(:’ g Peptide B Y
c m/z P S— Peptide C| —» |Protein B
- E ~— Peptide Functi O
s [ o e gPeptide ] protein unction gag
£ o

Figure 1. Laboratory workflow for saliva and tongue microbiome analysis (a). Tongue samples were collected with a sterile
wooden spatula and transferred into sterile PBS. Salivation was stimulated by chewing a paraffin gum and the subjects spit into
a Falcon tube®. Saliva was centrifuged and the resulting pellet was solved in TE-buffer and treated with ultrasonication. Proteins
from saliva and tongue samples were precipitated with TCA and digested with trypsin. Peptide mixtures were measured with
a Q Exactive™ Plus (LC-MS/MS). Bioinformatic workflow for metaproteomic data analysis (b). The Trans-Proteomic Pipeline was
used for the following four steps: (1) Raw-data conversion to mzML-data format. (2) MS/MS database search by the Comet
project for peptide identification based on a combined database (Human Swissprot + Human Oral Microbiome Database). (3)
Validation of identified peptides. (4) Protein assignment and data filtering by stabilizing false discovery rates (mFDR, pepFDR)
with a protFDR of 5.0 %. Finally, the online web-tool Prophane was applied to conduct taxonomic and functional prediction and

the statistical analyses were performed in R.
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identified spectra, peptides and proteins with strin-
gent criteria using the Trans-Proteomic Pipeline
(http://tools.proteomecenter.org/software.php),
which was developed at the Seattle Proteome Centre.
The annotation of the proteins regarding their tax-
onomy and cellular function was performed by
Prophane (www.prophane.de), developed at the
Institute for Microbiology at the University of
Greifswald.

In detail, msconvert (version: 3.0; peak picking based
on Vendor algorithm - MS Levels: 1-2) converted the .
raw-files into readable .mzML-format [43]. Peptides
were identified using the Comet algorithm (http://
comet-ms.sourceforge.net/, version: 2016.01 rev. 2)
[44,45]. The sequence database (size: 964 MB) consisted
of 1,079,744 sequences from the human oral micro-
biome database (HOMD, www.homd.org, 12/08/2016)
[1,46], 20,154 human sequences from UniProt
(UniProtKB/Swissprot, www.uniprot.org, 01/06/2016)
[47] and their reverse sequences for decoy searches to
calculate the false discovery rate. The search algorithm
considered trypsinated proteins with a maximum of
two missed cleavages. Peptide masses were not allowed
to exceed the tolerance range of + 10 ppm and only
monoisotopic masses were included into the analyses.
Variable oxidations of methionine [+15.9949] and fixed
carbamidomethylation of cysteine [+57.021464] were
also considered. Peptides identified by Comet [44,45]
were weighted and the probability for their existence
was calculated with the modules iProphet [48], Peptide
Prophet and filtered using Mayu (version: 1.08) [49].
The ProteinProphet assigned the peptides to their cor-
responding proteins and were accepted with a false
discovery rate < 0.05. All proteins, which were covered
with at least one unique peptide, were extracted from
the data set by an R script (version: 3.4.1) [50] and
finally uploaded into the tool Prophane (www.pro
phane.de). To determine the taxonomic origin of the
proteins, Prophane used the Lowest-Common-
Ancestor algorithm [51] based on the results of
BLASTP (e-value: < 0.01) [52,53] and the database
described above. Proteins of bacterial origin are referred
as metaproteins, because proteins of one protein group
can be assigned to one or more species [54,55]. Thereby,
the term ‘meta’ indicates that a different taxonomic
distribution could form the basis of a protein group
[56]. Metaproteins are referred to as ‘heterogeneous’,
if an assignment was not successful on the correspond-
ing taxonomic level (www.prophane.de). (Meta-)
Protein functions were classified according to COG/
KOG classification (RPS-BLAST 2.2.28+ algorithm;
e-value: < 0.01) [57]. The relative quantification of the
proteins was performed by spectral counting [58]. The
MS/MS spectra obtained were counted and then nor-
malized by prophane using the normalized spectral
abundance factor (NSAF-values) [59-62].

Statistical analyses

The evaluation and statistical analyses were per-
formed in R (version 3.4.1) [50]. In general, a global
median normalization was performed for the raw
NSAF values. The mean value was calculated for the
three measured replicates per sample. Depending on
the respective analysis, the sums of the mean NSAF
values were calculated to sum up subject-specific
spectra per metaprotein, protein, genus or functional
subrole.

The factomineR package (version: 1.36) [63] was
used for PCA analyses. We did not include missing
values and subtracted the column means from their
corresponding columns. The centered columns were
divided by their standard deviation to unify variance
scaling of the data. The data were log, transformed.

We used the metacoder package (version: 0.1.3) to
create heat trees for taxonomic analyses [64]. For
Figure 3 A/B, the sum of the log, transformed col-
umn means (color intensity) was plotted against the
sum of the spectral counts (thickness of the indivi-
dual branches) per taxonomy. For Figure 5, the ratios
of the column mean between saliva and tongue were
calculated and plotted against the sum of the spectral
counts. Resulting missing values were removed.

Our statistical analyses were based on a paired
two-sided Wilcoxon signed rank test. The confidence
interval was set at 0.95 and the p-value was adjusted
for multiple testing using the Benjamini-Hochberg
method. A fold-change cutoff = 1.5 and a p-value
cutoff = 0.05 were set for the volcano plots.

Results
General metaproteome data

We collected one saliva and one tongue sample from
each of the 24 subjects and prepared them in three
technical replicates. Based on our quality criteria and
the combined database of human and bacterial pro-
tein sequences, 31,386 distinct peptides for saliva and
31,215 distinct peptides for tongue samples were
identified (pepFDR < 1.43%) and assigned to proteins
(Supplemental Table 2).

To decrease the number of shared peptides and
thus the likelihood of incorrect assignments, only
proteins containing at least one unique peptide and
a protFDR < 5.0 % were considered resulting in 4,280
saliva proteins of which 1,647 proteins were of
human origin and 2,633 bacterial metaproteins. In
tongue samples 4,644 proteins were identified of
which 1,337 were human proteins and 3,307 bacterial
metaproteins.

To quantify our identified proteins, we used a relative
quantification approach. For this purpose, Prophane was
used to calculate the normalized spectral abundance
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factor (NSAF-values) based on spectral counts [60] using
the longest sequence in each protein group. Our data
showed variations regarding the proportions of human
and bacterial abundances in our samples. While human
proteins accounted for 78.2% and bacterial metaproteins
for 21.7% in saliva, the ratio was different for the tongue.
Human proteins accounted for only 59.1% whereas the

Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy
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proportion for bacteria was almost twice as high (40.8%).
These differences were also reflected regarding the num-
ber of identified proteins. Atleast 50% of the bacterial and
human proteins (Bacteria: 1,971 metaproteins and
Humans: 1,154 proteins) could be identified in both the
saliva and on the tongue (Figure 2(a,c)). However, more
than twice as many specific bacterial metaproteins could

Bacteria Human
(a) (c)
1,336 183
662 520
@ saliva
) @ Tongue .
Rel. metaprotein abundances : Rel. metaprotein abundances
(b) O Saliva/Tongue (d)
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Figure 2. Venn diagrams displaying the number of identified metaproteins in the studied saliva and tongue samples for bacteria
(a) and human species (c). Histograms of relative metaprotein abundances based on log, normalized spectral abundance factors
(NSAF-values) [60] for bacterial (b) and human proteins (d). The figure emphasizes the distribution of metaproteins for saliva
(blue), tongue (red) or shared between both (grey).
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Fusobacterium
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r
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Figure 3. Heat trees of taxonomic composition of the healthy saliva (a) and tongue (b) microbiome. Coloration is defined by
log, sum normalized spectral abundance factors (NSAF-values) [60]. The number of spectral counts for each branch determines
its thickness.
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be identified for the tongue (1,336 metaproteins) com-
pared to saliva (662 metaproteins), which was also asso-
ciated with the above mentioned higher relative
abundance (Figure 2(a,b)). For the human salivary pro-
teins, we observed the opposite. 520 proteins were only
found in saliva, almost three times as many specific
proteins (Figure 2(c,d)) as on the tongue (183 proteins).

A principal component analysis (PCA), which was
performed with the relative protein intensity data
revealed that the interindividual variance was by far
greater than the technical variance (Supplemental
Figure 1 and 2). We assessed the inter-subject variability
(biological CV) and nLC-MS/MS measurement accuracy
between the triplicates for each saliva and tongue sample
(technical CV) based on the calculation of the coefficient
of variance on NSAF values [60]. Our calculations
showed an averaged biological CV of 32% for saliva and
tongue. The technical CV for those samples was clearly
lower for the tongue (18%) and the saliva (16%) samples.

Furthermore, we were interested in the degree of
increase for protein identification by measuring the
samples in triplicates. We found that the identifica-
tion rate of proteins increased after two measure-
ments by an average of 17.3% and after the third
measurement by additionally 9.3%. Thus, including
the results of three technical replicates increased the
number of covered proteins by 28.2%.

Taxonomic profile of saliva and tongue

The taxonomic composition of the oral microbiome
has been shown to have an impact on human health
[8]. For each protein the taxonomic assignment of the
best hit of BLAST [52,53] against the NCBI nr data-
base was used to get a first impression of the diversity
and quantity of bacteria in saliva and on the tongue.

In total, we identified seven phyla (Supplemental
Figure 3), of which Actinobacteria, Bacteriodetes,
Firmicutes, Fusobacteria, and Proteobacteria were

(a) (b)

Bifidobacterium

Rathia

e Fusobacterium

4 0000

Neisseria
st 22003 G 185

heterogeneous

Granulcatolla ygiegags  Selenomonas

Veilonelia

—logyo BH adjusted p-value

Treponema

Treponema _sBifidobacterium e 012

3 2 ] Z 1 saiva
logz median over pairwise NSAF ratios
cutofts:fod-change=1.5 / pvalue=0.05

most common and have been detected in all subjects.
A comparison of the two sample types revealed that
Proteobacteria and Firmicutes appeared almost in an
equal abundance, while Actinobacteria emerged as
more abundant on the tongue. Bacteriodetes and
Fusobacteria showed a contrary trend and were iden-
tified in smaller abundances on the tongue. The two
other phyla Spirochaetes and Synergistetes contributed
with only a small proportion to the bacterial commu-
nity. Furthermore, we could identify Chlamydiae, but
only for five subjects in saliva and therefore they were
excluded from further analysis. At the genus level we
could assign 93.9 % of all 3,969 bacterial metaproteins
to 107 different genera and we found a high similarity
between saliva and tongue with an overlap of 89
genera (83.0%). To gain insight into the distribution
at the genus level, we created heat trees where
summed relative abundances of spectral counts were
plotted (Figure 3(ab)). In general, we identified
higher bacterial abundances on the tongue in com-
parison to saliva. For saliva and the tongue, we recog-
nized a high bacterial diversity but only the seven
genera Rothia, Prevotella, Streptococcus, Veillonella,
Fusobacterium, Neisseria, and Haemophilus mainly
determined the composition of both microbiomes.
In summary, we could observe a great diversity in
saliva and tongue dominated by seven phyla and
genera, but we could only observe small and non-
significant differences when the two sample types
were compared to each other (Supplemental
Table 3). Likely more subtle differences were masked
by the large interindividual differences in the micro-
biomes observed in this and other studies.

To increase the sensitivity of our analyses, we per-
formed a pairwise analysis (paired Wilcoxon signed
rank test, p-value: < 0.05) at genus level. Figure 4(a,b)
illustrates ten genera with significant differences.
Fusobacterium, Selenomonas, Bifidobacterium and
Treponema were found to be significantly increased in

Gemella
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Figure 4. Significant taxonomic profile differences on the genus level between saliva and tongue are displayed in the volcano
plot (a) by depicting the results of a two-paired Wilcoxon signed rank test. The comparison plots (b) show the sum of the NSAF
values for those genera identified as significantly higher abundant in saliva or on the tongue. Metaproteins in the group
‘heterogeneous’ could not be assigned unambiguously to a genus.
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saliva compared to the tongue. The opposite was the
case for Rothia, Gemella, Granulicatella, Peptoniphilus,
Veillonella and Neisseria. Furthermore, we identified
significant changes in the category ‘heterogeneous’,
which cannot be further described, since an assignment
on genus level was not feasible.

Figure 5 provides a more detailed picture of the dif-
ferences in taxonomic profiles of saliva and tongue sam-
ples by representing the complete calculated ratios in
a phylogenetic tree. In combination with the results of
the Wilcoxon signed rank test, it highlights the differ-
ences regarding the taxonomic composition of the two
microbiomes. Even though Rothia, Veillonella,
Fusobacterium and Neisseria belonged to the dominant
genera, they also showed great differences between saliva
and tongue, which was not the case for the genera
Prevotella, Streptococcus, Haemophilus and Actinomyees.
Genera such as Granulicatella, Gemella, Peptoniphilus or
Bifidobacterium, which do not dominate the two micro-
biomes and would thus not to be noticed at first glimpse,
also showed relevant and significant differences.

We also analyzed, whether we could identify any
gender differences in the microbiome composition,
but our results did not indicate any significant and
specific microbiomes for males or females (paired
t-test, p-value: < 0.05; fold-change > 2).

JOURNAL OF ORAL MICROBIOLOGY 7

Functional profiling of bacterial metaproteins

Metaproteome analyses enable simultaneous assessment
of expressed human and bacterial metabolic pathways.
From a global point of view, we covered 18 biological
processes based on the COG classification [57] for bac-
terial metaproteins (Supplemental Figure 4) in saliva and
on the tongue. The most common functions were trans-
lation, energy production, carbohydrate metabolism and
amino acid metabolism (Supplemental Table 4). Again,
there was a strong similarity between saliva and tongue
regarding functional composition at this global perspec-
tive. As expected, due to their high abundance the func-
tional profile was dominated by metaproteins involved in
translation with an averaged portion of 40.2% and 29.8%
for the tongue and saliva, respectively. Processes like cell
cycle, secondary metabolites, intracellular transport, sig-
nal transduction, defense mechanism and cell motility
made up less than 1%, but again in a pairwise analysis
(paired Wilcoxon signed rank test, p-value: < 0.05) all
these functions with the exception of cell motility were
found significantly increased on the tongue compared to
saliva (Figure 6). A similar conclusion could be reached
for metaproteins that are involved in bacterial cell wall
biogenesis, coenzyme and nucleotide metabolism as well
as in replication, transcription and translation processes.
Thus, only metaproteins of cell motility displayed
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Figure 5. lllustration of taxonomic differences between saliva and tongue based on median over pairwise NSAF ratios
(coloration) and the sum of spectral count (branch size). Genera marked with an * showed significant differences between
both microbiomes according to a Wilcoxon signed rank test (Benjamini-Hochberg corrected p-value < 0.05).
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Figure 6. Comparison plots show the different relative abundances of bacterial metaprotein functions with significant
differences, which were determined by a two-sided pairwise Wilcoxon signed rank test (p-value < 0.05) with a fold change
of > 1.5. The calculated p-value has been corrected according to the Benjamini-Hochberg method.

increased levels in saliva. We were not able to determine
the exact functions of all metaproteins, and thus the
remining proteins were summarized in the category
‘general function prediction only’, which was also signif-
icantly different in saliva and tongue.

Functional profiling of human proteins

As already shown in Figure 2(a,c), there was a great
overlap between human proteins in saliva and on the
tongue, which remains observable by ranking proteins
based on their relative abundance and considering the
top highest and lowest abundant proteins (Figure 7(a)).
Some of the highest proteins identified in saliva and on
the tongue were alpha-amylase (AMY1), which catalyses
the digestion of starch and glycogen [65], glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) for the
reversible oxidative phosphorylation of glyceraldehyde-
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3-phosphate [66] or the phospholipase A, inhibiting
protein annexin Al (ANXAL) [67]. However, proteins
such as the laminin subunit alpha 3 (LAMA3) belonging
to the laminin family, the glycoprotein mucin 2 (MUC2)
[68] or the F-actin-binding species repeat containing
nuclear envelope protein 2 (SYNE2) [69] could only be
found at low abundance.

Pairwise analysis of human proteins revealed that 75
proteins occur in saliva in significantly lower abun-
dance than on the tongue, while 232 proteins were
significantly higher in saliva compared to the tongue
surface (Figure 7(b)). Many proteins with increased
abundance in saliva (Figure 8) play a role in the innate
or adaptive immune system (Lypmhocyte cytosolic pro-
tein 1 - LCP1 [70]; BPI fold containing family
B member 1 - BPIFBI1 [71]; Elastase — ELANE [72];
Annexin A3 - ANXA3 [67]). Proteins with a higher
abundance on the tongue could be assigned to the
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Figure 7. The coverage of the dynamic range of human proteins is shown by plotting the mean relative abundance for saliva
and tongue (a). The human proteins are named according to their gene names and show for saliva and tongue a selection of
proteins with highest and lowest abundances (grey). Data points in red and blue display proteins with a fold change > 1.5 and
a p-value < 0.5 (paired Wilcoxon signed rank test) comparing saliva and tongue (a). Proteins with the largest changes are

highlighted with their gene names (A/B).
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Figure 8. Representation of the top five proteins with the highest increase or decrease regarding to their relative abundance in
saliva or on the tongue based on paired Wilcoxon signed rank test (p-value < 0.05).

cytoskeleton (Figure 8), e.g. Junction plakoglobin (JUP)
and Desmoplakin (DSP), playing a role in the regula-
tion of innate immunity (Tripartite motif containing
29 - TRIM29) [73] or prevent possible irreversible
protein aggregations as chaperones (Crystallin alpha
B - CRYAB).

Discussion

The primary goal of this study was to describe and
compare the human saliva and tongue microbiome
of healthy young individuals. Initially, we wanted to
explore whether we were able to achieve comparable
results in protein identification with the pipeline
described in this report compared to other metapro-
teome studies [37-40]. For the tongue analyses we
identified 4,644 proteins of which more than 70%
originated from bacterial species. To the best of our
knowledge, this is the first study providing metapro-
teome data for the tongue. Regarding salivary pro-
teins, we profiled slightly less human proteins
compared to Grassl et al. and Belstr@m et al
[39,40]. At the same time, the number of bacterial
proteins covered was slightly higher in the current
study. Possible reasons include the use of different
or modified protocols for sample collection, prepara-
tion and measurement [37-40]. The same applies to
the different data analysis strategies, which have an
impact on the peptide-protein  assignment
[44,45,74,75], especially for bacterial proteins due
to the high number of different taxa [76], which
results in many shared peptides on the protein
level [55]. Furthermore, the number of subjects
and particularly the cohorts differed. Whereas for-
mer studies included diseased subjects [38,40], in
whom large interindividual differences must be
expected, especially in the case of bacteria [22,24],
our study was confined to young healthy partici-
pants to define baseline-microbiomes of the healthy
population.

For future studies, we also wanted to clarify
whether it is necessary to analyze technical replicates
to obtain reliable metaproteome results and whether
the related significant increase in measurement time
is associated with a relevant increase in protein iden-
tifications. It became apparent that in saliva with
a technical variance of 16%, we achieved similar
results as previous (meta-) proteome studies [36,77].
Additionally, measuring three replicates, we achieved
an increase in protein identification of around 28.2%.
However, considering the good technical reproduci-
bility of the data and the threefold increase in mea-
surement time, we do not consider replicate
measurements to be the preferred solution. Rather,
we propose to cover the diversity of the metapro-
teome and thus of the microbiome by measuring
more samples from different individuals, since our
data and other microbiome studies point to large
interindividual differences [5,8,9,24,27].

As another aspect of this study, we investigated the
relative abundance of human and bacterial proteins,
where we expected a higher proportion of human
proteins in saliva than on tongue. We can confirm
these expectations with our data for several reasons.
Bacteria in saliva are planktonic whereas on the ton-
gue bacteria are likely organized in a biofilm [38]. In
addition, saliva consists to 99% of water [78], which
may lead to a dilution of the bacteria. Furthermore,
human proteins are two orders of magnitude more
abundant than those of bacteria [39], which leads to
the suppression of less abundant proteins during the
measurement [37]. In particular, alpha-amylase
(AMY1A), or S100 calcium binding protein A9
(S100A9) have to be mentioned, both displaying
high abundances in our saliva and tongue data, an
observation also made for saliva before [79]. We also
detected alpha-amylase (AMY1A) [65], glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) [66],
annexin Al (ANXA1) [67] and 62% of all saliva
human proteins on the tongue, which indicate that
the human part of the tongue surface proteome is, as
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expected, partially shaped by the surrounding sal-
iva [5,9].

The assignment of proteins to specific bacterial
species is a challenge for metaproteomic studies due
to protein homologies [55,74]. We could also confirm
the observations made by Belstr@m et al. [40] and
Rudney et al. [38], which showed that the assignment
of proteins to certain taxa decreases when approach-
ing the species level.

To the best of our knowledge, this is not only the first
study providing a metaproteomic description for the
tongue but also its comparison with saliva. Saliva and
tongue microbiome both revealed a high diversity, domi-
nated by the seven genera Rothia, Prevotella,
Streptococcus, Veillonella, Fusobacterium, Neisseria, and
Haemophilus. For saliva we confirmed the results of pre-
vious metaproteome studies at the phylum and genus
level [37-40]. Thus, Actinobacteria, Proteobacteria,
Firmicutes, Bacteriodetes and Fusobacteria were also the
five most abundant phyla [80]. The observed high diver-
sity is probably caused by a large interindividual micro-
bial variation especially at the lower taxonomic levels
[22,81]. Additionally, our data indicated that saliva and
tongue microbiomes display a strong taxonomic similar-
ity, which is in agreement with a comparative 16S RNA
study of saliva and tongue microbiomes conducted by
Hall et al. [24] as well as a study from Papaioannou et al.
[25]. At the phylum level, we initially found no significant
differences between saliva and tongue in a general com-
parison of both sample types. Increasing sensitivity by
pairwise analysis of the samples from the same indivi-
duals, the impact of interindividual differences could be
reduced and significant differences at genus level between
both microbiomes were revealed [80,82]. Our data indi-
cate, that even genera, which do not dominate the micro-
biome do clearly contribute to the differences between
the two microbiomes.

Most genera were also present in higher abun-
dances on the tongue, which could provide a further
hint that the tongue might be a reservoir contributing
to the composition of the saliva microbiome [24].
This may suggest that more attention might need to
be paid to the tongue in oral hygiene, since patho-
genic bacteria seem to be present even in a healthy
microbiome [11,38] and could be distributed from
the tongue throughout the oral cavity by saliva [24].

Although metaproteome studies are not as sensi-
tive for the determination of bacterial diversity as
metagenome studies, they provide the decisive advan-
tage of analyzing expressed metabolic pathways and
thus metabolic activity [35].

Analysis of protein functions demonstrated
besides taxonomic also functional similarity with
relevant characteristics between saliva and tongue.
Our findings are in line with previous observations
that despite an interindividual diversity between dif-
ferent habitats a functional conservation exists [83].

At least 30% of the identified proteins play a role in
translation and especially different ribosomal proteins
have been found, which supports the hypothesis that
these proteins are essential for (growing) microbes
[84] and are therefore highly conserved and abundant
in metaproteomic samples [38]. Bacteria in saliva are
in a planktonic state, which might be an explanation
that we identified a significantly increased number of
metaproteins especially with functions in cell motility
[38]. On the other hand, the tongue microbiome
exists as a biofilm with significantly different envir-
onmental conditions [2]. Biofilms are continuously
exposed to the human immune system, which might
explain the increased abundance of defense mechan-
isms metaproteins [85]. The increased occurrence of
metaprotein functions like signal transduction and
secondary metabolites may suggest increased intra-
and inter-bacterial communication [86]. Reasons for
this could include competitive or mutualistic beha-
vior [87]. Metaproteins with functions in replication,
transcription and translation might indicate a still
growing biofilm [88].

For some of the metaproteins it was not possible to
determine their functions. The same applied to the
taxonomic classification of metaproteins, which were
classified as ‘heterogeneous’. Here, currently existing
databases as well as analysis tools reached their limits.
In this case, future metaproteome analyses will ben-
efit enormously from improved databases and analy-
sis tools, which will enable a better assignment of
metaproteins on a taxonomic as well as functional
level [37,89].

Besides the digestion of glycogen by alpha-
amylase, another important function of saliva is the
maintenance of the balance of the microbiome and
the defense against pathogens by the immune system
[90]. This could be an explanation for the signifi-
cantly increased number of human proteins, whose
functions were mainly involved in the immune
response system.

The tongue is a muscular organ with a keratinized
stratified squamous epithelium and mostly cytoskeletal
proteins or the repetin (RPTN) involved in the cornified
cell envelope formation have been identified [91], which
we attribute to the fact that the sample material was
scraped off directly from the tongue, whereas saliva is
a mixture from the salivary glands [92].

Limitations of our study include the unequal distri-
bution of male and female subjects as well as the rather
small number of 24 subjects. Therefore, like Grassl et al.
[35] we could not detect sex specific differences in the
microbiome. Nevertheless, we consider the question
about the microgenderome [93] to be important and
worth studying [94]. So far, besides anti-microbial
effects of saliva [79], also significant differences in the
salivary microbiome of male and female children [95],
possibly due to the endocrine system, have been
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described. Women have about twice the chance of get-
ting caries than men [78] and thus Lukacs and
Largaespada hypothesized that possible reasons could
be factors like a reduced salivary flow rate and hormone
fluctuations [78], which likely influence the micro-
biome. Gender differences in the microbiome are also
further supported by current studies of the gut micro-
biome, which were able to detect differences between
men and women [96-98].

For this ‘proof of principle’ study a selected cohort
of dentistry students with a defined small age range
was selected. Future metaproteome studies addres-
sing the healthy oral microbiome in a larger cohort
should provide a better demographic [99] and geo-
graphical diversity [100,101]. In addition, it must be
clarified under which criteria a microbiome can be
considered as ‘healthy’ [28]. This definition is not
a trivial task as previous discussions have shown
[102-104]. In addition to the recording of clinical
parameters, the personal oral hygiene of the subjects
[105], their diet [106], genetic background [107],
socio-economic status [108] as well as other aspects
must be considered, which will increase the effort and
complexity of a study significantly. It must e.g. also
be clarified, which influence the circadian change of
the flow rate of saliva has on the time of sample
collection [109,110], even if previous studies have
shown temporal stability of the oral microbiome
over a longer period [5,111,112].

Therefore, we conclude that several basic issues
still need to be addressed in future studies of oral
microbiomes. Nevertheless, providing many different
parameters for a cohort increases the quality of
a study, which is particularly important for clinical
studies that want to distinguish between healthy and
diseased microbiomes [23,29].

Conclusions

Our metaproteome study aimed to provide a detailed
insight into the taxonomic composition and func-
tional diversity of saliva and tongue in 24 healthy
young adult volunteers. This is the first study,
which described the healthy tongue microbiome of
young subjects and compared it to saliva based on
metaproteome data. Therefore, we have developed
a strategy to evaluate large metaproteome data sets
by combining TPP and Prophane. Essentially, we
found a high bacterial diversity for saliva and tongue,
which was mainly determined by seven genera.
Globally, we identified high taxonomic similarity
and functional consistency between both micro-
biomes, although we must emphasize that interindi-
vidual differences strongly influence the taxonomic
composition. However, using comparison of paired
samples from the same individuals, we were also able
to show decisive functional differences of bacterial
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metaproteins between the biofluid saliva and the ton-
gue biofilm. The good agreement of our results with
those of already performed metagenome and meta-
proteome studies demonstrated that our workflow
can provide consistent metaproteomic results.

To ensure an even better description of the differ-
ent human microbiomes, future studies should focus
on multi-OMICs approaches. Furthermore, the size
of cohorts needs to be increased to enable a more
precise identification of interindividual differences,
which should allow a more accurate description of
the microbial profile of a healthy microbiome and the
distinctive features from dysbiotic states in patholo-
gical situations.
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1. INTRODUCTION

Mass spectrometry became the method of choice in the field of proteomics when peptides, proteins
or post-translational modifications need to be analyzed within a short time and with high accuracy
(1,2). In recent years improved sensitivity of mass spectrometers (3,4) in combination with the
availability of high-quality metagenomic databases (5-8) have enabled in depth metaproteome
analyses in addition to proteome analyses of pure cell or bacterial cultures (9). The resulting field
of metaproteomics offers the possibility to study bacteria and their actively expressed genes
directly in their natural habitat (10). It is therefore a promising approach not only to determine the
phylogenetic composition of the microbiome, but also to uncover functional aspects and their
response to changing environmental influences (11,12). This is essential to improve our
understanding of polymicrobial diseases in humans (13,14).

Metaproteomics is an emerging scientific field, and initial studies and approaches for the
investigation of the microbiome in different human habitats have been emerged (15-19). In a
metaproteomic study in young healthy humans, we compared saliva samples and tongue swabs.
QOur study includes the phylogenetic composition of both microbiomes, their translated proteins as
well as the human proteins (20). In this chapter we describe the procedure of this study from sample

collection, sample preparation for mass spectrometry up to data processing.
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2. MATERIALS

2.1 Sampling and Sample Preparation

Prepare all solutions fresh prior usage and store them at room temperature unless otherwise

specified. Follow the legal and regulatory requirements for handling biomaterials of human origin.

1.

Phosphate buffered saline (PBS): 1x, pH 7.4. Prepare 800 mL of distilled water and add
0.2 M NaCl (11.6 g), 2.5 mM KCI (0.186 g), 8 mM Na:HPO4 (1.4 g), 1.5 mM KH2PO4
(0.2 g). Adjust the pH to 7.4 and add distilled water to prepare a | L solution of 1x PBS.
Tris-HCI Buffer: 0.25 M, pH 8.0. Prepare 400 mL of distilled water and add 60.55 g Tris
to the solution. Adjust a pH of 8.0 with HCI and add distilled water to prepare a volume
0.5 L 0.25 M Tris-HCI solution.

Tris-HCI Buffer: 0.05 M, pH 8.0. Dilute 100 mL of the 0.25 M Tris-HCI Buffer in 400 mL
distilled water.

Protease inhibitor cocktail: Use a protease inhibitor provided as a lyophilized powder for
general use. Solve 1 vial of the lyophilized powder in 10 mL of 50 mM Tris-HCI Buffer
(pH 8.0). Add 0.075 mL protease inhibitor cocktail solution in 1.425 mL distilled water.
Collection of tongue samples: Sterile timber plate (18 x 150 mm).

Collection of saliva samples: Paraffin gum.

Sterile plastic tubes with a volume of 50 mL and 2 mL.

Vortex mixer.

A centrifuge that can be cooled to 4 °C and that is capable of centrifuging 50 mL sample

tubes at 11,500 xg and 2 mL sample tubes at 17,000 xg.

. Ethylenediaminetetraacetic acid (EDTA): 50 mM. Prepare 50 mL distilled water, add 1.86

¢ EDTA and add distilled water to prepare a volume of 100 mL of 50 mM EDTA.
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. Tris-aminomethane (Tris): 100 mM. Prepare 800 mL distilled water, add 12.1 g EDTA and

add distilled water to prepare a volume of 1 L of 100 mM Tris.

. Tris-EDTA Buffer (TE-Buffer): pH 8.5. Prepare 400 mL distilled water and add 100 mM

Tris and 50 mM EDTA. Adjust a pH of 8.5 and add distilled water to prepare a volume of

0.5 L TE-Buffer.

. Cell disruption: Ultrasonic device with an ultrasonic probe.

. Dithiothreitol (DTT): 1.3 M. Weigh 2 g DTT and add distilled water to prepare a volume

of 10 mL DTT.

. Trichloroacetic acid (TCA): 100 % solution.
. Cold acetone: 100% solution.
. Drying process of precipitated protein pellets: Vacuum evaporator.

. Urea-Thiourea Buffer (1x UT): 10 M. Weigh 8 M urea (1.92 g) and 2 M thiourea (0.61 g)

and add distilled water to prepare a volume of 4 mL 1x UT.

. Thermomixer to cool/heat and shake sample tubes.

2.2 Protein determination

L.

Bovine serum albumin (BSA): Prepare a BSA stock solution with a concentration of 1
mg/mL.

Bradford reagent.

Vortex mixer.

Plastic cuvettes.

Spectralphotometer for optical absorption measurement at 595 nm.
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2.3 Tryptic Digestion of Protein Samples

1.

2.

High performance liquid chromatography (HPLC) water.

Low protein binding reaction vessels.

Ammoniumbicarbonate (ABC): 20 mM ABC (0.079 g) in 12.5 mL HPLC water.
Dithiothreitol (DTT): 25 mM DTT (0.03 g) in 8 mL of 20 mM ABC.

Iodoacetic acid (IAA): 100 mM IAA (0.018 g) in | mL of 20 mM ABC (see Note 1).
Trypsin: Use 20 pg lyophilized trypsin. Solve 1 vial of the lyophilized trypsin in 1 mL of
20 mM ABC to reach a final concentration of 20 ng/uL. For the In-Solution-Digestion, add
trypsin at the ratio of 1:25, which corresponds to 8uL of a 20 ng/uL solution to a protein
amount of 4 pg (see Note 2).

Add 0.075 mL protease inhibitor cocktail solution in 1.425 mL HPLC water.
Urea-Thiourea Buffer (I1x UT): 10 M. Weigh 8 M urea (1.92 g) and 2 M thiourea (0.61 g)
and add distilled water to prepare a volume of 4 mL 1x UT.

Thermomixer or Incubator to heat sample tubes.

2.4 Purification of Peptide Samples

L.

10 pl ZipTip®-tip u-C18 material with a column of a peptide binding capacity of 2 pg.
Acetic acid: 5 % solution in HPLC water, 1 % solution in HPLC water and 0.05 % solution
in HPLC water.

Acetonitrile: 100 % solution, 80 % solution in 1 % acetic acid, 50 % solution in 1 % acetic
acid and 30 % solution in 1 % acetic acid

Buffer A: 2 % acetonitrile, 0.05 % acetic acid in HPLC water.

Clear glass micro tubes for 2 mL with neutral cap

-108 -



Bottom-up community proteome analysis of saliva samples and tongue swabs by data-dependent

acquisition nano LC-MS/MS mass spectrometry

88 6. Clear glass micro inserts (vails) for 0.1 mL.
89 7. Vacuum freeze dryer.
90

91 2.5 Buffer for HPLC

92 1. Buffer A: 0.1 % acetic acid in HPLC water.
93 2. Buffer B: 0.1 % acetic acid in 100 % acetonitrile.
94

95 2.6 Software for Metaproteomic Data Analysis

96 1. Created binary LC-MS/MS datasets (21,22)
97 2. Comet (http://comet-ms.sourceforge.net/) (23,24)
98 3. Trans-Proteomic  Pipeline  (http://tools.proteomecenter.org/software.php)  (25-27)
99 including the following modules and tools:
100 " msconvert
101 = PeptideProphet (28)
102 = iProphet (29,30)
103 = Mayu (31)
104 = ProteinProphet (32)
105 4. Webtool: Prophane (https://prophane.de/login)
106 5. Bacterial database: Human Oral Microbiome Database (http://www.homd.org/) (7,33)
107 6. Human database: UniProtKB/Swissprot (https://www.uniprot.org/) (34)
108 7. Software for statistical computing and graphics: R (https://www.r-project.org/) (35)
109
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3. METHODS

The single steps are performed at room temperature unless otherwise described. The laboratory

workflow is shown in Figure 1.

3.1 Tongue Sampling

1.

For the collection of the tongue samples kindly ask the subjects to show their tongue as far

as possible (see Note 3).

2. Place a sterile wooden spatula on the middle dorsum of the tongue with light and constant
pressure for 5 s (see Note 4).

3. Slightly draw the wooden spatula ventral over the tongue, turn it over and repeat the
procedure with the other side of the spatula.

4. Transfer the wooden spatula with the sample side into a prepared vessel containing 2 mL
sterile 1x PBS and 40 pL protease inhibitor.

5. Vortex the vessel including the spatula for 30 s.

6. Discard the wooden spatula.

7. Store the sample material on dry ice and keep at -80 °C until the next step.

3.2 Saliva Sampling

1. Provide one commercially available paraffin chewing gum for each subject. Chewing on
the gum which will stimulate the natural salivation and ensures a sufficiently large sample
volume (see Note 5).

2. The subject chews on the paraffin chewing gum over a period of 1 min, holding a sterile

vessel for collecting saliva in his hands (see Note 6).
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During the chewing process the participants spit several times into the sample vessel.
Measure the collected sample volume after 1 min using the scale of the vessel and add 20
uL of the protease inhibitor per 1 mL of saliva.

Store the sample material on dry ice and keep at -80 °C until further use.

3.3 Cell Disruption

1.

2.

Thaw the saliva samples and tongue swabs on ice.

Centrifuge the samples at 11,500 xg for 15 minutes. The centrifuge must be cooled down
to 4 °C.

Discard the resulting supernatant and resuspend the pellet with at least 500 uL TE buffer
(see Note 7).

Transfer the solved pellet into a smaller reaction vessel.

The suspension is treated with an ultrasound probe for 3 x 30 s. The samples remain on ice
during and after the ultrasonic treatment (see Note 8).

Centrifuge the samples at 4 °C and 16,200 xg for 30 minutes.

Pipette the supernatant into a new vessel for the next treatment steps. The remaining pellet

can be discarded.

3.4 Precipitation of Proteins and Protein Assay

1.

2

Add 0.6 pL. 1.3 M DTT per 100 pL sample volume and vortex the sample for 10 s.
Incubate the sample for 30 min at 37 °C.
Add TCA until a final concentration of 15 % and invert the tube several times.

Incubate the samples on ice for 60 min.
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5. Centrifuge the samples for 45 min at 4 °C and 17,000 xg.

6. Remove the supernatant with a pipette without touching the pellet.

7. Wash the pellet with 500 pL cold acetone by inverting the vessel several times.

8. Centrifuge the samples for 15 min at 4 °C and 17,000 xg and then remove the acetone.

9. Wash the pellet again with 500 pL cold acetone by inverting the vessel several times.

10. Centrifuge the sample for 15 min at 4 °C and 17,000 xg and remove the excess acetone.

11. Dry the pellet in a vacuum evaporator for 1 min to completely remove the acetone.

12. Dissolve the precipitated and dried proteins in 1x UT. For the saliva pellets you need at
least 50 pL and for the tongue pellets at least 35 pL. 1x UT (see Note 9).

13. Perform protein determination according to Bradford (36). Follow the instructions of your
local supplier for Bradford reagents. The saliva protein concentration averages 6.4 pg/pl
(+ 2.3 pg/ul), which is three times as high as the tongue samples with an average
concentration of 1.7 pg/ul ( 1.6 pg/ul) based on our study of 24 healthy subjects aged

between 20 and 30 years (20).

3.5 Reduction, Alkylation and Protein Digest

For the following steps, a protein amount of 4 pg is required. The volume for the 4 pg in our study
including 24 healthy subjects aged 20 to 30 years was typically 3.4 ul (+ 1.3 pl) for saliva and 10.9
pl (£ 4.9 pl) for the tongue samples (20). The total sample volume differs between the individual
samples depending on the determined protein concentration. For this reason, the following steps
specify the final concentrations to be achieved with the substances for reduction, alkylation, and
protein digestion in relation to the total volume of the sample. The incubation of the samples in

the following single steps was performed without shaking or any other movement.
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179 1. Add DTT to a final concentration of 2.5 mM to the protein mixture and incubate the protein
180 solution for 60 min at 60 °C, which will reduce disulfide bonds of cysteines to sulfhydryl
181 groups.

182 2. Prevent re-oxidation of the thiol groups by alkylation of the protein mixture with a final
183 concentration of 10 mM IAA at 37 °C and an incubation time of 30 min (see Note 10).
184 3. Dilute the samples 1:10 with 20 mM ammonium bicarbonate, resulting in a urea/thiourea
185 concentration of less than 2 M.

186 4. Add trypsin in the ratio 1:25 (trypsin/sample) and incubate the sample at 37 °C for 17 h in
187 the dark.

188 5. Terminate the activity of the enzyme trypsin adding 5 % acetic acid to a final concentration
189 of 1 % acetic acid to the peptide mixture.

190

191 3.6 Purification of Peptide Sample
192  Increase the purity of the peptide sample by desalting and decreasing the amount of hydrophilic

193 substances with a 10 pl ZipTip® packed with p-C18 material and a total binding capacity of 2 pg.

194

195 1. Set the volume of the pipette to 10 pL.

196 2. Activate the pu-C18 material by pressing the plunger button down and aspirate the 100 %
197 ACN solution into the ZipTip®-tip. Discard the activation solution (see Note 11).

198 3. Repeat the procedure three times in total.

199 4. Equilibrate the p-C18 material using a three-step decreasing concentration of 80 %, 50 %
200 and 30 % ACN.

201 5. Start with 80 % ACN, by aspirating the solution and discard it into the waste.
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202 6. Repeat the procedure five times in total.

203 7. Perform the same steps described in point 5 and 6 for the 50 % and 30 % ACN.

204 8. The equilibration of the p-C18

205 9.

206 10. material in the column is completed with two cycles of aspirating of 1 % acetic acid and
207 its discarding.

208 11. Load the peptides onto the equilibrated column, by performing 15-20 aspiration-dispense
209 cycles of the entire sample material (see Note 12).

210 12. Remove salts and detergents, by washing the column with five cycles of aspirating of 1 %
211 acetic acid and its discarding.

212 13. Elute the column-bound peptides by aspirating and dispensing 8 pL of 50 % ACN for three
213 times.

214 14. Aspirate 50 % ACN a fourth time and transfer the ACN-peptide mixture into a glass micro
215 vail.

216 15. Elute the column-bound peptides a second time by aspirating and dispensing 8 uL of 80 %
217 ACN for three times.

218 16. Aspirate 80 % ACN a fourth time and transfer the ACN-peptide mixture into the same
219 glass micro vail as before.

220 17. Lyophilize the samples in a vacuum freeze dryer.

221 18. Fill up the micro vails with 20 uL of buffer A to reach a peptide concentration of 0.1 pg/uL
222 (see Note 13).

223

224 3.7 LC-MS/MS measurement are performed on a nano-LC-MS/MS system.
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1. Reverse phase nano-LC/MS-MS: Load the complex peptide mixtures onto a precolumn

2. The subsequent 120-minute separation of the tryptic peptides is performed on analytical
column using a linear gradient of 2-25% with the binary buffer B.

3. The mass spectrometric analysis is performed in data-dependent acquisition mode using a
high-resolution accurate-mass MS-instrument of the Q Exactive Orbitrap MS series.
Detailed information for parameter of a LC-MS/MS method using an Ultimate 3000 and a

QExactive plus mass spectrometer (Thermo Fisher Scientific) are shown in table 1.

3.8 Bioinformatic analysis of LC-MS/MS raw data for peptide and protein identification
using the Trans-Proteomic Pipeline

Initially, the spectra data generated by mass spectrometry must be analyzed and interpreted. The
mass spectra are searched against a decoy database. In several steps, the peptides and proteins are
identified, and their probability is calculated. The data are processed with the Trans-Proteomic
Pipeline (TPP) (25-27). The TPP is Linux-based und used via command line. Figure 2 highlights

the key steps of the data analysis workflow.

1. Combine the oral microbiome database (HOMD) (7,33) and the human database
(UniProtKB/Swissprot) (34) to create a database containing both bacterial and human
protein sequences.

2. Add a decoy protein sequence to each human and bacterial protein sequence to create a

reverse decoy database from the combined database (see Note 14).
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3. Convert the result files of the mass spectrometric analysis from .raw data format to .mzML
data format using the msconvert module of the TPP (21,22).

4. Start the Comet search (23,24) using the combined sequence decoy database to interpret
the mass spectra. The settings of the search parameters are listed in table 2.

5. Use the wrapper tool xinteract (25) of the TPP to run the modules PeptidePropher (28) and
iProphet (29,30) at once. PeptideProphet converts the individual result files of the database
search into the pep.xml-format and additionally merges them into a single interact-pep.xml
result file. Furthermore, it performs a spectrum-level validation followed by peptide-level
validation of the module iProphet, which results into the interact-.ipro.pep.xml file.

6. Run the software package Mayu (31) using the interact-.ipro.pep.xml file to calculate false
discovery rates (FDR) for peptide-spectrum matches (mFDR), peptide identification
(pepFDR) and protein identification (protFDR) (see Note 15).

7. Based on the results of Mayu, calculate the iProbability (value between 0 and 1) for a
protFDR = 0.05 to refine the results of the iProphet module.

8. Start the module ProteinProphet (32) and use the calculated iProbability to determine
protein identification probabilities. ProteinProphet creates an interact-.ipro.prot.xml result

file.

3.9 Prophane - Taxonomic and Functional assignment of identified proteins
Identified spectra, peptides and proteins must be appropriately prepared for the web tool Prophane
to perform a relative quantification as well as a taxonomic and functional assignments. The data

are filtered according to quality criteria, followed by spectral counting. The proteins with their
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spectral counts are summarized in a report and uploaded to Prophane. The preparation of the data

is done with the programming language R (35).

1. Create with a filtered peptide-spectrum list based on the calculated iProbability of Mayu:

e Remove decoy proteins from the Mayu result file and the interact-.ipro.pep.xml file.

e Identify the overlap between the two files using the spectra that occur in both files.

e Select all data, whose iProbability is greater than or equal to the calculated value.

2. Use the peptide-spectrum list and the interact-.ipro.prot.xml file to perform spectral
counting.

e Assign to each peptide and spectrum of the filtered peptide-spectrum list the
corresponding protein of the interact-.ipro.prot.xml file based on the peptide
sequences.

e Count the number of spectra per protein.

3. Based on the requirements of Prophane, create a protein report using the result file of the
spectral counting.

4. Start the webtool Prophane and import the protein report. Prophane calculates normalized
spectral abundance factor values (NSAF-values) and performs taxonomic and functional
assignment of proteins.

5. Use the prophane report for further data analysis.
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289 4.NOTES

290 1. During the preparation process, extended exposure to light should avoided. For this, the
291 vessel should be wrapped in aluminum foil. The solution should then be stored on ice.
292 2. For proteome analysis we have established in our laboratory the sequencing grade modified
293 porcine trypsin (# V5111) from Promega (37). A high purity of the trypsin is guaranteed
294 by the manufacturer using affinity chromatography. The trypsin is provided by the
295 company in 5x20 pg ampules in lyophilized (37) or liquid frozen form in 50mM acetic acid
296 (38), whereby we use the lyophilized form. High stability and activity as well as the
297 prevention of autolytic digestion of the native trypsin is ensured by modified lysins through
298 reductive methylation (39). The specificity of trypsin is further increased by treatment with
299 tosyl phenylalanyl chloromethyl ketone (TPCK) (40). Another advantage is its improved
300 resistance to denaturation by chemicals such as SDS, urea, acetonitrile or guanidine HCL,
301 which are commonly used in proteomics (39). For further details regarding the handling of
302 the trypsin, storage conditions and other applications, please refer to the manufacturer's
303 protocols (37,38).

304 3. We have always started by collecting tongue swabs and then saliva samples to keep the
305 contamination of the tongue samples with saliva as small as possible.

306 4. Care should be taken not to insert the spatula too far into the oral cavity to avoid triggering
307 the gag reflex of the subjects.

308 5. We used commercially available paraffin chewing gums (1.5 g) from the company Ivoclar
309 Vivadent GmbH (Ellwangen, Germany), which were delivered individually packed in
310 blister packages. We also recommend using commercially available chewing gums, as
311 these are available in standardized packages. The taste of the paraffin gum and the
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312 sensation during the chewing process is described by some subjects as unpleasant. It is
313 possible that a little paraffin gets stuck in the teeth. But everything is completely harmless
314 for the subjects.

315 6. We recommend using a vessel with an opening large enough for the subjects to spit into.
316 7. We could observe that the pellets can vary greatly regarding their stability and size. Pellets
317 can be of low density and will loosen even with small movements. On the other hand, it
318 can happen that the pellet is exceptionally large, and more than 500 pL are necessary to
319 bring it completely in solution.

320 8. We recommend testing beforehand at which strength the ultrasound treatment must be
321 performed, as there are differences between the manufacturers' devices. We suggest
322 determining the optimal settings of the ultrasound device directly for the sample material.
323 The material of different test persons should be pooled to eliminate individual differences
324 of the samples. Several combinations of ultrasonic intensities and durations should be
325 compared by protein determination to determine the optimal combination.

326 9. The vacuum dried protein pellets can be dissolved very easily in 1x UT by pipetting up and
327 down several times. After this step, the sample may be stored at -80 °C and further
328 processed later.

329 10. The alkylation step must be performed in the dark.

330 11. During the entire purification process, ensure that no air is drawn into the ZipTip®-tip, as
331 this will reduce the quality of the purification. This is best accomplished by pipetting at a
332 steady and gentle speed.

333 12. According to the manufacturer's instructions, the equilibrated column should be loaded
334 with peptides using 15-20 aspiration-dispense cycles. Usually, we transfer the sample
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volume from the original reaction vessel to a new vessel to ensure that the entire sample
volume has passed the column. The digested sample can be purified with ZipTip® for a
second time for mass spectrometry, but we do not recommend it. The initial protein sample

should preferably be reduced, alkylated, and digested again.

. Subsequently, peptides can be measured by mass spectrometry directly or stored at -80 °C.

Depending on the used measuring method, mass spectrometer, precolumn and other
conditions, the sample volume could be sufficient for several measurements, but here we
also recommend to prepare the sample again by protein digestion and purification to ensure

a high quality of the sample measurement.

. The Decoy database was created using an R-script. All target proteins were inverted and

read from right to left. Furthermore, each inverted protein was tagged with DECOY and
incremented by one (DECOY1 <protein sequence>, DECOY2 <protein sequence>, ...).
The application of a decoy database of nonsense proteins of reversed sequences is
necessary to estimate the number of incorrect and correct peptide and protein

identifications, which enables us to conclude on the quality of the data set (41).

. In general, in proteomics experiments the quality of peptide-spectrum matches (PSMs) is

determined based on a false-discovery rate. A cut-off is defined, which is usually PSMs
FDR < 0.05. With Mayu (31) we aim to raise the qualitative assignment to the level of
protein identification (protFDR). The reason for this is that the protFDR is a more
informative quality dimension than the PSMs FDR since further analyses are performed at
the protein level and not at the spectra level. Another positive side effect is that the use of
protFDR as a cut-off, leads to a reduction in the PSMs FDR as multiple PSMs contribute

to a single protein identification and reinforce or do not reinforce each other. This therefore
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contributes to an increase in the quality of the filtered data set, which is of great relevance
in metaproteomics, since exceptionally large protein databases with a wide variety of

species and different domains are used (42,43).
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404  FIGURE CAPTIONS

405  Figure 1: Workflow for metaproteome analyses of human saliva and tongue swabs. In a first step,
406  atongue swab was taken with a sterile wooden spatula and transferred into 2 ml sterile PBS. The
407  participants then chewed on a paraffin gum for one minute to stimulate the natural flow of saliva.
408  During the chewing process, the subjects spit saliva into a Falcon Tube® multiple times. The
409  collected saliva was centrifuged, and the resulting pellet dissolved in TE buffer, followed by
410  ultrasound treatment. The proteins precipitated by TCA were digested with trypsin. Measurement
411 of the peptides was performed on Q Exactive™ Plus (LC-MS/MS). The figure is adapted from our
412 publication of the healthy human saliva and tongue microbiome (20).

413

414  Figure 2: The UML activity diagram summarizes the different process steps for the evaluation of
415  the metaproteomic data. The raw data was converted into the mzML data format using msconvert.
416  Peptide identification was performed by Comet based on a reverse decoy database containing
417  human and bacterial protein sequences. The validation of the identified peptides was performed
418 by the modules PeptideProphet and iProphet. With a complimentary evaluation by Mayu and the
419  setting of the ProtFDR to 5.0 %, stricter filter criteria were set in the context of protein assignment
420 by the module ProteinProphet. Prophane were used for the taxonomic and functional assignment
421 of the identified proteins. The activity diagram was created with the program UMLet in version
422 142

423

424

425

426
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Figure 2
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427 TABLE CAPTIONS

428  Table 1: Listing of the required materials for reversed phase liquid chromatography (RPLC) and
429  the parameters to be set for mass spectrometric measurements,
430

431  Table 2: Comet was used with release 2016.01 rev. 2. Parameters, different from the default
432 settings, are listed in the table.

433

434

435

436

437

438

439

440

441
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447

448

449
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reversed phase liquid chromatography (RPLC)

instrument

' Ultimate 3000 RSLC (Thermo Scientific)

trap column

75 um inner diameter, packed with 3 pm C18 particles
(Acclaim PepMap100, Thermo Scientific)

analytical column

| Accucore 150-C18 (Thermo Fisher Scientific)
125 em x 75 um, 2,6 um C18 particles, 150 A pore size

buffer system

binary buffer system consisting of 0.1% acetic acid water
| (buffer A) and 100% ACN in 0.1% acetic acid (buffer B)

flow rate

300 nl/min

gradient duration

linear gradient of buffer B from 2% up to 25%

120 min

column oven temperature

40°C

mass spectrometry (MS)

instrument

| Q Exactive plus mass spectrometer (Thermo Scientific)

operation mode

data-dependent

Full MS

MS scan resolution 1 70,000

AGC target | 366

maximum ion injection oms

time for the MS scan

scan range

300 to 1650 m/z

spectra data type profile
dd-MS2
resolution 17,500
MS/MS AGC target 2e5
L mammum iol;l.....inje;;lon ....... 120 ms .......................................................................
time for the MS/MS scans
spectra data type centroid

selection for MS/MS

isolation window

| 10 most abundant isotope patterns with charge >2 from the
survey sca

-127 -



Bottom-up community proteome analysis of saliva samples and tongue swabs by data-dependent

acquisition nano LC-MS/MS mass spectrometry

fixed first mass | 100 m/z

dissociation mode - higher energy collisional dissociation (HCD)

normalized collision energy | 27.5%

dynamic exclusion 1305

charge exclusion | 1.>6

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

474
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General

decoy search 0 (=no)
num threads 8

Masses

peptide mass tolerance 10
peptide mass units 2 (= ppm)

mass type parent
mass type fragment

precursor tolerance type

1 (= monoisotopic masses)
I (= monoisotopic masses)
0 (= MH+)

isotope error 1 (=on -1/0/1/2/3 (standard C13 error))

Variable Modifications

variable mod01 15.9949 M 0 3 -1 0 0 (= Methionine)

max variable mods in peptide | 5

require variable mod 0
Fragment ions
fragment bin tol 0.01
fragment bin offset 0.0
| theoretical fragment ions 1 (=M peak only)
| use B ions 1 (= yes)
| use Y ions 1 (= yes)
| use NL ions 1 (= yes)
Misc parameters
digest mass range 600.0 - 5000.0
| num results 50
| skip researching 1
| max fragment charge 3
| max precursor charge 6
| nucleotide reading frame 0
clip nterm methionine 0
| spectrum batch size 10000
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Spectral processing
minimum peaks 5
minimum intensity 0
remove precursor peak ‘ 0 (=nor)
| remove precursor tolerance | 1.5
clear mz range 0.00.0
Additional modifications
add C cysteine 57.021464
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ABSTRACT

Background: Antiseptics are used to inhibit oral biofilm growth. However, they affect not only
pathogenic but also commensal bacteria, which are a natural barrier against oral diseases.
Objective: Using a metaproteome approach combined with a standard plaque-regrowth
study, this pilot study examined the impact of different concentrations of lactoperoxidase
(LPO)-system containing lozenges on early plaque formation, and active biological processes.
Design: Sixteen orally healthy subjects received four local treatments as a randomized single-
blind study based on a cross-over design. Two lozenges containing components of the LPO-
system in different concentrations were compared to a placebo and Listerine®. The newly
formed dental plague was analyzed by mass spectrometry (nLC-MS/MS).

Results: On average 1,916 metaproteins per sample were identified, which could be assigned
to 116 genera and 1,316 protein functions. Listerine® reduced the number of metaprotein
groups and their relative abundance, confirming the plaque inhibiting effect. The LPO-
lozenges triggered mainly higher metaprotein abundances of early and secondary colonizers
as well as bacteria associated with dental health but also periodontitis. Functional information
indicated plaque biofilm growth.

Conclusion: The effects of Listerine® and LPO-system containing lozenges used for plaque
inhibition are different, In contrast to Listerine®, the lozenges allowed maintenance of a
higher bacterial diversity.
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INTRODUCTION o - .
In principle, supragingival plaque is assumed to

Starting from birth, bacteria colonize the human
supra-organism and have an enormous influence
on the development of the immune system and
thus on human health status [1]. Next to the gut,
the second most complex bacterial ecosystem is the
oral microbiome [2,3]. Besides the planktonically
living bacteria in saliva, the bacteria in oral biofilms
are of special interest [4,5]. Biofilms are defined as
a community structure of microorganisms living in
a matrix of synthesized exopolysaccharides [6,7].
The mechanical stability of the matrix and its high
bacterial diversity lead to synergistic interactions,
e.g. the extension of the genetic repertoire by hor-
izontal gene transfer within the biofilm [4,8]. This
organizational structure enables the biofilm to show
a special resistance to external environmental influ-
ences such as nutrient limitation, the human
immune system and antibiotics [6].

have a positive role, since it serves as a barrier against
the colonization of pathogens [9]. However, a diet
with a high carbohydrate content [10] combined with
poor oral hygiene can lead to a bacterial shift [11,12]
and cause diseases such as dental caries [13] or per-
iodontitis [14]. Saliva is part of the 1st line defense
against a dysbiotic biofilm, because it mechanically
removes bacteria [12] but it also contains compo-
nents of the innate immune system such as lactoper-
oxidase (LPO) [15,16].

The salivary glands produce among others the
enzyme lactoperoxidase, which catalyzes an ionic sub-
strate such as thiocyanate (SCN") in the presence of H,
O, to form a highly reactive anti-microbial oxidation
product, hypothiocyanite (OSCN") [10,16,17]. Since the
1980s, an increased knowledge of the LPO system has
been leading to toothpastes or mouthwashes, which con-
tain components of the LPO system to support the
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natural antimicrobial defense process [16,18]. The
applicability of LPO products poses a challenge, as they
cannot be used during the day between meals due to their
volumes (mouth rinse) or additional materials like tooth-
brushes [18]. Furthermore, most of the antimicrobial
substances used in oral health care products affect the
whole microbiome. This means that all bacteria includ-
ing the oral commensal flora will be reduced. However, it
would be better if the commensal flora would not be
reduced or even better, supported. Therefore, human
own defense systems, such as the LPO system in saliva,
are of interest.

Clinical studies provide insight into the effectiveness
of the products, e.g. by performing plaque regrowth
studies using traditional microbiological techniques
[19]. Such a standard cross-over plaque-regrowth
study [20] demonstrated that mouth rinse Listerine’
Total Care™ (A - positive control) was statistically sig-
nificantly more effective than the LPO-system-lozenges
(B- 0.083% H,0, accordingly a 1:2 H,0,/SCN- relation),
(C- 0.04% H,0, accordingly a 1:4 H,0,/SCN- relation),
and the placebo lozenge (D) in inhibiting plaque.
Listerine® rinse (A) as well as Lozenges (B) and (C)
were statistically significantly more effective than the
placebo lozenge (D), but no statistically significant dif-
ferences could be observed between them.

However, studies based on traditional microbiolo-
gical evaluation techniques cannot address the effects
of these treatments on the composition of the biofilm.
Proteomics in combination with habitat-specific
taxonomic and genomic databases allows studies of
biofilms without the cultivation of bacteria and allows
in-depth investigation of the behavior and composi-
tion of a biofilm directly in its natural habitat [21-
25]. Thus, metaproteomic approaches that monitor
changes at the protein level and their impact onto
metabolic pathways within the bacterial community
should be used in a complementary manner to
improve the understanding of the microbiome by
monitoring changes of gene expression [26] and to
develop more personalized ways to positively support
existing natural mechanisms of plaque control [27].

In this pilot study, we used an established meta-
proteomic approach [28,29] to evaluate the effect of
the lozenges used in Welk et al. [19] on the micro-
biome composition and the changes at the protein
level with respect to their functions in metabolic
pathways in the bacterial community. To the best of
our knowledge, this is the first study combining
a well-recognized and established clinical model in
dentistry [20] with a metaproteomic study [30].

The results of both studies are expected to support
our long-term goal to develop a lozenge, which can be
used as an easily applicable addition to daily oral
hygiene, to positively influence the microbiome com-
position to ensure that commensal, non-pathogenic
bacteria are the dominant species in the plaque biofilm.

Material and methods

This complementary study received a positive vote by
the ethics committee of the University Medicine
Greifswald and was conducted in accordance with
the recommendations of the Declaration of Helsinki
from 1996. The clinical trial was registered in the
German Database for clinical trials (DRKS00022810,
date of registry: 02.09.2020).

Clinical study design

The design of the 4-days standard randomized pla-
que-regrowth study [19,20] is displayed in Figure 1.
All 16 study participants (six male and ten female)
were oral healthy dental students of the Greifswald
dental school, who gave their written informed
consent for this study. The participants were
between 20 and 30 years old with a mean age of
23.4 years.

Both test lozenges were based on sugar alcohols
(xylitol, sorbitol, mannitol) and contained all compo-
nents of the LPO system (10mg LPO 350 U/mg
(Sternenzym, Germany), 7.5mg KSCN) and H,0,
either in high concentrations (Drug B: 0.083% H,0,
accordingly a 1:2 H,0,/SCN" relation) or low con-
centrations (Drug C: 0.04% H;0, accordingly a 1:4 H,
0,/SCN™ relation). For Drug B and Drug C, carba-
mide peroxide (CPO) was used as the H,O, donor,
because it is very stable and releases H,O, in
a graduated way [31]. Drug D (placebo) was also
a lozenge and had the same composition as Drug
B and Drug C without the components of the LPO
system. Drug A was Listerine® Total Care™ (Johnson
& Johnson GmbH, Neuss, Germany) and is
a commercially available mouth rinse containing
essential oils. Using Drug A and Drug D as positive
and negative control, allowed the results of Drug
B and C to be attributed to the effect of two different
hygiene measures and the LPO system.

In addition, each cycle started with a preparation
phase followed by the treatment and a final recovery
phase of at least 10 days. First, in the preparation
phase, the participants suspended any kind of perso-
nal oral hygiene (timepoint: DO) for 3 days to support
the recovery of the oral microbiome. On the
fourth day (timepoint: D3) supragingival plaque was
collected and served as the control sample. To ensure
that plaque was totally removed, a professional dental
cleaning was performed by the study dentist followed
by the treatment phase (timepoints: D3 - D7), where
the volunteers received one of the four drugs.

The mouth rinse solution (Drug A) had to be used
twice daily in the morning and evening according to the
manufacturer’s instructions. The Drugs B-D were sucked
five times daily every 3 hours between every 8 o’clock am
and 8 o’clock pm for a period of 10-15 minutes.
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Figure 1. Study design of a 4-day plaque regrowth clinical model. In this randomized single-blinded study two sugar-alcohol
based drugs containing high (Drug B - 0.083% H,0, accordingly a 1:2 H,0,/SCN™ relation) and low (Drug C — 0.04% H,0,
accordingly a 1:4 H0,/SCN™ relation) concentrations of components of the LPO system were evaluated regarding their influence
on the plague microbiome. Drug A, an essential oil containing mouth rinse, served as the positive control and Drug D based
only on sugar-alcohols, as the placebo. Each cycle started with a preparation phase (D0-D3) without any kind of oral hygiene,
followed by one treatment (D3-D7) and a recovery phase (D7-D18) of at least ten days. The study was also designed as a four-
replicate cross-over study, where each subject was his or her own control.

On the last day of the treatment phase (D7), pla-
que that had built up during treatment was collected
and the teeth were professionally cleaned. The recov-
ery period of at least 10 days began and the partici-
pants resumed their personal oral hygiene (Figure 1).

Dental plaque collection procedure

Using a sterile curette (Universal Curette, Hu-Friedy
Mfg. Co. LLC, Frankfurt am Main, Germany), supra-
gingival plaque was collected from at least 24 tooth
surfaces of all four quadrants (Figure 2A). The curette
with the collected plaque was transferred several times
during sample collection to a sterile tube (SafeSeal
tubes, Sarstedt AG & Co. Niimbrecht,
Germany) containing 3 ml sterile 1x PBS (Life
Technologies GmbH, Darmstadt, Germany) and sha-
ken until the plaque was detached from the curette.
Finally, the sample material was vortexed for 30 s to
create a suspension. In the next step, 20 ul of a protease
inhibitor (Sigma Aldrich, St. Louis, MO, USA; v/v
1:20) per 1 ml sample volume was added and samples
were centrifuged for 3 min at 6,200 g and 4 C". The
remaining pellets were immediately frozen in liquid
nitrogen and finally stored at —80°C.

micro

Dental Plaque sample preparation and nLC MS/
MS Measurement

The pellets were resuspended with 300 pul TE buffer
(10 mM Tris; 1 mM EDTA; pH 8.0). Subsequently, the
biofilm and its cells were disrupted by an ultrasound
treatment (Labsonic U - B. Braun Melsungen AG,

Melsungen Germany) on ice for 3 x 30 s and 50%
power of the device to release the proteins. Cell debris
and the cytosolic proteins were separated by centrifuga-
tion (30 min, 4 C°, 16,200 g). The supernatant contain-
ing proteins was transferred to a new tube and stored on
ice. The preparation of the protein mixture for the nLC-
MS/MS measurement and the method for the mass
spectrometric measurement were already described in
detail [28,29]. Briefly, proteins were precipitated by
TCA and washed several times with acetone. The
vacuum dried pellet consisting of precipitated proteins
was dissolved in 30 pl 8 M/2 M urea/thiourea solution.
The protein concentration was determined with
a Bradford Assay (Bio-Rad Laboratories GmbH,
Munich, Germany). Cysteines were reduced with dithio-
threitol (DTT) and alkylated with iodoacetamide IAA)
with subsequent digestion of 4 pg of the protein mixture
using trypsin. The resulting peptide mixture was pur-
ified after a digestion period of 17 h by ZipTipCl8
material (Merck KGaA, Darmstadt, Germany). Finally,
2 pg of peptides were separated with a reverse phase
nano HPLC Ultimate® 3000 Nano HPLC (Thermo
Scientific) and analyzed on a Q Exactive™ Plus
(Thermo Scientific) in data-dependent mode.

Metaproteome assembly, mapping, and
annotation

We designed a workflow based on open-source
software applications to analyze our metaproteomic
datasets, described in detail in one of our earlier
metaproteome studies [28,29]. Figure 2B provides
an overview of the most important steps and is
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Figure 2. Workflow for supragingival plaque collection and preparation for nLC MS/MS Measurements (A). Collection of dental
plaque in sterile 1x PBS from all four quadrants of the human mouth from at least 24 teeth using a sterile curette. After
centrifugation, the pellet was resuspended in the TE buffer and treated with ultrasound. The protein mixture was precipitated
with TCA and digested using trypsin to measure the peptide mixtures on a Q Exactive™ Plus in DDA mode.

Spectral processing and metaproteome annotation (B). The open-source software Trans-Proteomic Pipeline processed raw spectra of nano LC-
MS/MS measurement. Peptides were identified based on the Comet algorithm and filtered regarding their FDR to increase the validity of
peptides. A combined database consisting of human protein sequences from UniProt and bacterial protein sequences of the human oral
microbial database provided the basis for protein identification Taxonomic classification, functional prediction and relative quantification was

performed by Prophane. Figure 2 is adapted from Rabe et al. [35,36].

briefly described subsequently. To evaluate our
128 MS/MS measurements, we used the Trans-
Proteomic Pipeline (http://tools.proteomecenter.
org/software.php) [32,33] and have chosen the
Comet MS/MS search algorithm (http://comet-ms.
sourceforge.net/) [34,35] for peptide and protein
identification, based on a combined database with
1,079,744 bacterial sequences of the human oral
microbial database (HOMD, www.homd.org)
[36,37] and 20,154 human sequences from
UniProt (UniProtKB/Swissprot, www.uniprot.org)
[38]. Peptides and proteins were filtered according
to their iProphet probability at 0.05 Protein FDR
(iProphet iProb = 0.9015). Using an R script (ver-
sion: 4.1.1) [39], only proteins identified with at
least one unique peptide were used for further
analysis. Finally, proteins were classified taxonomi-
cally using the Lowest-Common-Ancestor algo-
rithm (LCA) [40] and regarding their functional
TIGRFAM assignment (TIGRFAM library version
15.0; e-value: < 0.01) [41] by the bioinformatic
pipeline Prophane (www.prophane.de) [42,43]. All
proteins were relatively quantified using normalized
spectral abundance factor (NSAF) values [44].

The measured MS/MS data of our study were
uploaded to the publicly accessible MassIVE database
(dataset name: MSV000089755;  doi:10.25345/
C57D2QB93).

Statistical analyses

The statistical calculations as well as the image creations
were performed with R (version: 4.1.1) supported by the
R Foundation for statistical computing [39].

The NSAF values for each treatment sample have
been median normalized to their corresponding con-
trol. Values of treatments were divided by control
values for each of the ratio calculations, whereby
missing or infinite values were not considered.

We selected at minimum 50% valid values per
sample for a paired two-sided Wilcoxon signed rank
test, which was performed with a set confidence
interval of 0.95. To detect significant changes, the
cutoff was set to the fold-change = 1.5 and for the
p-value = 0.05. Significant results are presented in
Volcano and Violin plots created using different

R packages (Supplemental Table 4).
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The influence of treatments on the taxonomic
composition of the plaque microbiome was visualized
using the metacoder package (Supplemental Table 4)
[45]. The natural logarithm of the ratios between
treatments and controls before treatment (color
scale) was plotted against the summed spectral counts
(thickness of taxonomic clades).

Results
Spectral processing results

For our complementing 4-day plaque regrowth study,
4 pg protein of total plaque of 0.88-2.6 (median QHI;
Oral hygiene index according to Quigley-Hein) was
prepared from each of the 128 samples and analyzed
by mass spectrometry using a Q Exactive Plus
(Thermo Scientific). The MS/MS analyses of the
whole sample set resulted in 5.4 million spectra, of
which 2.5 million spectra (identification rate: 46.3%)
could be assigned based on our database consisting of
human and bacterial protein sequences. Across all
samples, a total of 124,101 distinct peptides could
be identified with a pepFDR <1.56%, thereof
106,980 were of bacterial and 17,121 of human origin.

At the protein level, we only considered proteins that
had a protFDR <5.0% and contained at least one unique
peptide to minimize the possibility of misclassification.
Based on these quality criteria, an average of 1,916 (+
465) metaproteins of bacterial origin as well as 442 (+
171) human proteins were covered per sample.

Analyzing the same protein amount (4 pg) of
plaque sample for the metaproteomic analysis, on
average 23.5% less metaproteins, were observed after
treatment (@ 1057 metaproteins) with Listerine®
compared to the negative control before the treat-
ment (@ 1382 metaproteins) at the genus level
(Supplementary Figure 1). Accordingly, these pro-
teins also covered a lower number of bacterial genera.
This contrasts with slightly increased metaprotein
numbers in treatment groups B (before treatment:
@ 1304 metaproteins; after treatment @ 1425 meta-
proteins) and C (before treatment: @ 1387 metapro-
teins; after treatment @ 1486 metaproteins).

Relative quantification of the metaproteome data
was performed using spectral counts, which were
used to calculate the NSAF values for each protein.
For Drug A (Listerine®, positive control), the relative
metaprotein abundance of bacterial proteins per sam-
ple decreased from an average of 74.1% before the
treatment to an average of 59.1% after the treatment,
because Listerine” reduced the bacterial biofilm in
general. Correspondingly, the relative abundance of
human proteins increased. For both LPO compo-
nent-based (10mg LPO 350 U/mg (Sternenzym,
Germany), 7,5 mg KSCN) lozenges Drug B (0.083%
H,0,; 1:2 H,0,/SCN™ relation) and Drug C (0.04% H,
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0,; 1:4 H>0,/SCN™ relation) as well as for D (placebo),
the relative abundance of bacterial metaproteins
remained constant with values averaging between
69.0% and 78.7% before and after treatment, indicat-
ing that the LPO-based lozenges had no decreasing
effect on the bacterial biofilm in general.

Taxonomic profile and changes at genus level

To provide a general overview of the impact of treat-
ments on the diversity of the plaque microbiome, we
calculated the ratio of metaprotein abundances
between the control and treatment time points by
dividing the median normalized NSAF values for
each treatment (D7) by its corresponding control
(D3) and plotted them against the summed spectral
counts in heat map trees (Figure 3).

Across all 128 samples, the metaproteins could be
taxonomically assigned to a total of eight phyla, with
the phyla Actinobacteria, Firmicutes, Fusobacteria,
Proteobacteria, and Bacteriodetes dominating the com-
position of the plaque microbiome. Spirochaetes,
Synergistetes, and Saccharibacteria played a minor
role. At the genus level, the study covered metapro-
teins assigned to 116 genera across all samples and the
high diversity remained constant after the different
treatments in comparison to the control time points.

To evaluate whether the treatments caused changes
in metaprotein abundances and thus altered plaque
microbiome composition, we performed a paired two-
sided Wilcoxon signed rank test with a confidence
interval of 0.95 (cut-offs: fold-change = 1.5
p-value = 0.05) for genera that occurred in at least
50% of all samples. The Volcano (Figure 4) and violin
plot (Supplemental Figure 2) show these significant
metaprotein changes at the genus level. Figure 4
shows that Drug A (Listerine®, positive control) primar-
ily led to a significant reduction of the relative abun-
dance for metaproteins of the nine genera, such as
Haemophilus, Leptotrichia or Tannerella, whereas
higher metaprotein abundances could be identified for
Rothia and Peptoniphilus. In contrast, the relative meta-
protein abundances for the five genera Fusobacterium,
Lachnospiraceae  bacterium, Capnocytophaga and
Johnsonella increased under Drug B (0.083% H,0,; 1:2
H,0,/SCN™ relation). However, lower metaprotein
abundances could be identified for the genera
Corynebacterium and Mobiluncus.

Treating the subjects with Drug C (0.04% H,0,; 1:4
H,0,/SCN" relation) had a similar influence on the
plaque metaproteome in comparison to the treatment
with Drug D (placebo). Both treatments resulted in
a significant decrease of metaprotein abundances for
Granulicatella, as well as a higher abundance of
Capnocytophaga. Additionally, an increased metapro-
tein abundance for the genus Neisseria occurred for
Drug C.
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Figure 3. lllustration of the taxonomic diversity as well as the changed bacterial composition for each treatment. The log,
median of pairwise NSAF ratios is the basis for the coloring and thus the rate of change. Branch thickness indicates the number

of identified spectral counts.

Taxonomic changes at species level

To learn more about the effects of the four treatments
on the plaque microbiome and its metaproteome, we
performed further analyses at the species level, as
these are of particular interest from the clinical per-
spective of dentists. In total, 9,729 metaproteins could
be assigned to 351 species and were analyzed for
changes in relative abundance. We performed
a paired two-sided Wilcoxon signed rank test (con-
fidence interval = 0.95; cut-offs: fold-change = 1.5;
p-value = 0.05) for species that occurred in at least
50% of all samples, i.e. the same parameters as for the
genus level analyses. Based on the results of the
statistical test, metaprotein abundances of 65 species
showed significant changes (Figure 5).

Under the treatment of Drug A (Listerine®, posi-
tive control) metaprotein abundances for 28 and 7
species were lower and higher, respectively, than in
the controls (Supplemental Table 1). Metaproteins of
Rothia dentocariosa showed the greatest increase in
abundance and Aggregatibacter aphrophilus the great-
est decrease. Leptotrichia was the most represented
genus with seven species, all of them displaying
a reduction in abundance.

For Drug B (0.083% H,0,; 1:2 H,0,/SCN™ relation),
metaprotein abundances for 21 and 8 species were pre-
sent in higher and lower abundance, respectively, in
comparison to the control before treatment (Table 1).

The metaprotein abundances with the greatest decrease
were identified for Cronobacter sakazakii and with the
greatest increase for Lachnospiraceae bacterium ACC2.
All five different Fusobacteria showed an increase in
metaprotein abundances.

For Drug C (0.04% H,0,; 1:4 H,0,/SCN™ relation)
and Drug D (placebo), metaprotein abundance
changes were identified for 16 and 15 species, with
metaproteins of 14 species showing higher abundance
for Drug C (Table 1) and metaproteins of 11 species
for Drug D (placebo) (Supplemental Table 2). Both
treatments had the greatest similarities among the
treatments by species  with
a significant change of metaprotein abundances.

four sharing  six
Four of the six species originate from the genus
Capnocytophaga and showed an increased metapro-
tein abundance, as well as Neisseria flava and
Leptotrichia sp. oral taxon 215.

We observed significant metaprotein changes for
Capnocytophaga sp. oral taxon 329 F0087 and
Leptotrichia sp. oral taxon 215 during all four treatments.

In summary, our findings for the four treatments
at the species level were consistent with the analysis
results at the genus level. Drug A (Listerine’, positive
control) showed a tendency to reduce the metapro-
tein abundances for most of the species, whereas drug
B (0.083% H,05 1:2 H,0,/SCN™ relation) tended to
increase it. Drug C (0.04% H,05 1:4 H,0,/SCN™
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relation) as well as Drug D (placebo) also showed less
pronounced effects on the metaprotein abundances
on the species level.

Bacterial functional profile of the plaque biofilm

Metaproteomics enables the measurement and
analysis of bacterial proteins, also allowing conclu-
sions regarding interactions between microbes,
functional properties of the community as well as
to responses to changing environmental conditions
[46]. Using a paired two-sided Wilcoxon signed
rank test (confidence interval = 0.95; cut-offs: fold-
change = 1.5; p-value = 0.05), we evaluated
whether significant changes of abundance for
metaprotein functions were detectable. Therefore,
we analyzed all bacterial metaproteins with respect
to their functional classification, which was based
on the TIGRFAM system including three levels of
classification, which differ in their granularity. One
thousand three hundred and sixteen TIGRFAMs
could be assigned to the bacterial metaproteins,
which were distributed among 60 biological

processes (Supplemental Table 3). At the lowest
level of the TIGRFAM classification, no significant
changes observed. However,
changes occurred in 19 biological processes,
the second level of the TIGRFAM classification
(Figure 6 and Table 2). Supplemental Figure 3
summarizes the treatment-related changes for
those biological processes.

The most significant changes were observed for Drug
A (Listerine®, positive control) under whose treatment
metaproteins involved in 12 biological processes
(Table 2) showed a reduced metaprotein abundance.
Metaproteins involved in small-molecule interactions
(PAS domain S-box protein [47]) mainly of the category
‘amino sugars’ [48,49] like glucosamine-6-phosphate
deaminase, phospho-glucosamine mutase or N-acetyl-
glucosamine-6-phosphate deacetylase showed the most
significant differences between control and treatment.

For Drug B (0.083% H,0,; 1:2 H,0,/SCN" relation),
a significant increase in abundance was observed for

were significant

metaproteins of the aromatic amino acid family, small-
molecule interactions, iron metabolism, and for meta-
bolism of unknown substrates (Table 2). Drug C (0.04%
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species level
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Figure 5. Volcano plots showing significant changes of a paired two-sided Wilcoxon signed rank test (confidence interval = 0.95)
for the metaprotein abundances assigned on the species level for all four treatments. Blue indicates a significant reduction in
relative metaprotein abundance after treatment, red indicates a significant increase, and gray indicates no significant changes in
relative metaprotein abundance after treatment.

H,0,; 1:4 Hy0,/SCN™ relation) and Drug D (placebo) abundance with two exceptions for Drug C. The
both showed an increase in abundance for proteins of ~ small-molecule interactions were common to all
the small-molecule interactions (PAS domain S-box  treatments and were present in reduced abundance
protein [47]) and cations and iron carrying compounds  for Drug A (positive control) and with an increased
like bacterioferritin, ubiquinone oxidoreductase or abundance for Drugs B, C, and D (placebo).
TonB-dependent  siderophore  receptor  [50,51]
(Table 2), with an additional increase in chemotaxis
and motility, e.g, flagellar M-ring protein (FLF) or fla-
gellar motor switch protein (FliM) [52] for Drug  In this pilot study, metaproteomic techniques are
C (0.04% H,0,; 1:4 H,0,/SCN" relation). Furthermore, used for the first time to evaluate the influence of
for Drug C, we observed a reduced abundance for  a conventional antiseptic in comparison to an anti-
proteins of the histidine family (histidinol dehydrogen- ~ microbial human defense system on supragingival
ase, phosphoribosyl-ATP diphosphatase) and protein ~ plaque formation based on a standardized and
modification and repair (methionine aminopeptidase ~ widely accepted study model in dentistry [20]. For
[53], L-isoaspartate O-methyltransferase [54]). our study, we used Drug A (Listerine®, positive

Overall, it can be concluded that for Drug  control) and Drug D (placebo) as positive and
A (Listerine®, positive control) most significant  negative controls, to directly attribute the changes
changes were observed for biological processes  of the plaque-microbiome to the components of the
accompanied by a reduction in abundance. For LPO system, which was included in Drug
Drugs B (0,083% H,0,; 1:2 H,0,/SCN™ relation), B (0.083% H,0,; 1:2 H,0,/SCN™ relation) and
C (0,04% H,0, 1:4 H,0,/SCN™ relation), and Drug C (0.04% H,0,; 1:4 H,0,/SCN” relation)
D (placebo), the number of significant changes  with different concentrations of hydrogen peroxide
was lower, but always showed an increase in  and in H,0,/SCN™ relation.

Discussion
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Table 1. Summary of significant changed metaprotein abundances and their taxonomic assignment on the species level under
Drug B (0.083% H,0, accordingly a 1:2 H,0,/SCN™ relation) and Drug C (0.04% H,0, accordingly a 1:4 H,0,/SCN™ relation). For
each species, their association with healthy and/or diseased oral conditions is given and is color-coded for visual support.

Drug B Drug €
. Health/Di:
Species Fold Fold Fold Fold eal /‘ isease
p-values Change Change p-values Change Change Association
g Direction g Direction
Actinomyces johnsonii 0.011 2418 Down - - - Commensal 102
Actinomyces oris 0.009 1.593 Down - - - Commensal 192
Mobiluncus mulieris 0.008 1.605 Down - - - Disease 1%
Rothia aeria 0.018 1514 Down - - - Disease (14
Rothia dentocariosa 0.038 2.191 Down - - - Ic)'i’::s‘:[‘jf_'j{; d
Corynebacterium durum 0.045 2.661 Down - - - Commensal (%)
Kingella oralis 0.044 1.580 Down - - - Unknown
Cronobacter sakazakii 0.025 8.890 Down = = = Unknown
Prevotelia intermedia 0.012 2.092 Up - - - Disease 2
Prevotella nigrescens 0.021 2.164 Up 0.029 1.548 Down Disease °¥
(« land
Capnocytophaga sp. oral taxon 326 0.021 1.963 Up 0.000 2.066 Up D?::s]z?lsﬂ:) &
Capnocytophaga sp. oral taxon 329 Commensal and
Fo087 0.002 2.048 Up 0.000 2.447 Up Disease 199
Capnocytophaga sp. oral taxon 332 0.002 2.266 Up 0.000 3.490 Up g’?::s‘:'?j;l 2nd
Gemella haemolysans 0.045 2.295 Up 0.034 2.227 Up Commensal and
Disease "1
. . . C land
Abiotrophia defectiva 0024 | 4377 Up 0.0180 5.435 Up H:g{pjﬂfilg”
C land
Streptococcus gordonii 0.029 1518 Up = = = D?sr:arz:gslili?
Streptococcus mutans 0.000 1.989 Up 0.009 1.849 Up g‘:;:;::ﬂfﬂ;',"d
Lachnospiraceae bacterium ACC2 0.016 4.538 Up - - - Unknown
Johnsonella ignava 0.011 3.642 Up - - - Unknown
Lachnospiraceae bacterium oral taxon
107 F0167 0.008 1.826 Up - - - Unknown
Lachnospiraceae bacterium sp. oral taxon
082 FO431 0.025 1.893 Up Unknown
q Commensal and
Fusobacterium necrophorum 0.012 1.978 Up 5 g - Disease 1118
Fusobacterium nucleatum subsp. animalis | 0.002 1520 Up - - - g%?z:ﬂi:!izi,
Fusobacterium nucleatum subsp. Commensal and
.004 1.64 - = -
nucleatum st ek o Disease 115117.118)
Fusobacterium nucleatum subsp. Commensal and
polymorphum e A p j ] ] Disease (115117118)
Fusobacterium periodonticum 0.002 1.550 Up - - - gzr:;::zs:llg?d
P - Commensal and
Leptotrichia goodfellowii 0.044 2.950 Up 0.021 2.715 Up Disease 120121
P Commensal and
Leptotrichia sp. oral taxon 215 0.001 2.390 Up 0.011 1.979 Up Disease 120121)
Agrobacterium tumefaciens 0.021 3.379 Up - - - Unknown
Capnocytophaga granulosa - - - o lsisaland
PRocyioRadag 0.018 1614 Up Disease (109122
Capnocytophaga sputigena = = = e =2 land
pRocytophaga sputig 0.001 2.656 Up Disease 19123
Granulicatella adiacens s = = 0.039 1.619 Down Commensal and
Disease (111-113)
Neisseria elongat B B ) Commensal and
GRS Gl 0.002 3.387 Up Health (124125)
Neisseria flava - - - Commensaliand
0.013 2.569 Up Health (124-120)
Neisseria sicca = = = Commensaland
0.006 2.328 Up Disease (124125127)
Propionibacterium propionicum - - - 0.050 2.475 Up Unknown

Color legend: green — commensal or health associated; yellow — commensal and disease associated; red: disease associated; grey: no information
available if the species is commensal, health or disease associated
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Metaprotein function
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cutoffs: fold-change=1.5 / p-value=0.05

Figure 6. Volcano plot showing significant changes of a paired two-sided Wilcoxon signed rank test (confidence interval = 0.95)
for the bacterial metaprotein functions for all four treatments based on the subrole level of the TIGRFAM classification. Blue
indicates a significant reduction in relative metaprotein abundance after treatment, red indicates a significant increase, and gray
indicates no significant changes in relative metaprotein abundance after treatment.

We benchmarked our results with the number
of protein identifications and identified genera
with the current literature. Compared to previous
studies [55-58], we achieved higher protein iden-
tifications with 1,916 (+ 465) bacterial metapro-
teins and 442 (+ 171) human proteins per sample.
One aspect to consider is that, with 16 subjects
and 128 measured samples, we included more
subjects and analyzed substantially more samples
than comparable metaproteomic studies [55-58].
Further more, there are combined effects of a
different sample preparation protocol as well as
up-to-date mass spectrometers and data analysis
strategies [59-61].

Bacterial metaproteins accounted for the largest
proportion with on average three-quarters of the
sample in comparison to human proteins. Since we
scraped a biofilm from the supragingival area, the
high level of bacterial proteins was to be expected,
as a biofilm mainly consists of bacteria, extracellular
polymeric substance (EPS) as well as other organic
and inorganic components like Ca, Mg, SOy, lipids or
nucleic acids [4,62-64].

Upon exposure to Drug A (Listerine®, positive
control) the relative abundance of bacterial metapro-
teins in total decreased, whereas the relative abun-
dance of human proteins increased accordingly.
Probably this is due to the inhibitory effect of Drug
A (Listerine®, positive control) on plaque formation
in general [65-67]. Drug A (Listerine®, positive con-
trol) was a commercially available antiseptic mouth
rinse, whose bactericidal effect is based on essential
oils and ethanol [68]. In our clinical part of the study,
a reduced biofilm was also demonstrated by the
observed median QHI value of 0.88 after treatment
[19]. This was reflected in fewer identified bacterial
metaproteins and their relative abundance, which was
paralleled in changes in taxonomic and functional
assignment. We identified the most significant reduc-
tions in small-molecule interactions, such as the PAS
domain S-box protein [47], which plays a role in
various signaling processes, such as histidine kinases
or chemotaxis. Amino sugars, also with one of the
highest reductions, are an important component of
the peptidoglycan of the cell wall of bacteria and at
the same time a source of energy, nitrogen, and
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Table 2. Summary of significant changed metaprotein functions under treatment of Drug A (Listerine®, positive control), Drug
B (0.083% H202 accordingly a 1:2 H202/SCN- relation), Drug C (0.04% H202 according to a 1:2 H202/SCN- relation) and Drug
D (placebo) based on the subrole level of the TIGRFAM classification.

Fold Fold Change

Metaprotein Function (TIGRFAM subrole) p-values Change Direction

Drug A (Listerine®, positive control)

Drug B (0.083% H202 acco

Glutamate family 0.001 1.658 Down
Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides 0.003 1.683 Down
Amino sugars 0.0105 2.104 Down
Biosynthesis and degradation of polysaccharides 0.0027 1.511 Down
Pentose phosphate pathway 0.030 1.602 Down
Pyruvate dehydrogenase 0.001 1.555 Down
Biosynthesis 0.013 1.561 Down
Protein and peptide secretion and trafficking 0.043 1.610 Down
Pyrimidine ribonucleotide biosynthesis 0.039 1.595 Down
Small molecule interactions 0.016 3.703 Down
Carbohydrates, organic alcohols, and acids 0.002 1.542 Down
General (specific role is unknown) 0.000 1.657 Down

Aromatic amino acid family 0.017 1.770 Up
Heme, porphyrin, and cobalamin 0.018 1.927 Up
Small molecule interactions 0.003 1.615 Up
Unknown substrate 0.007 2.144 Up
Drug C (0.04% H202 according to a 1:2 H202/SCN- relation)
Histidine family 0.047 1.632 Down
Protein modification and repair 0.032 2.118 Down
Chemotaxis and motility 0.007 2.253 Up
Small molecule interactions 0.014 2.819 Up
Cations and iron carrying compounds 0.044 2.687 Up
Drug D (placebo)
Small molecule interactions 0.002 2.071 Up
Cations and iron carrying compounds 0.005 1.674 Up

carbon via their degradation [48,49]. In summary,
a significant reduction in several metabolic processes
mostly affecting key metabolic pathways for growth
and proliferation of bacterial cells occurred, which
suggests a reduced growth of the bacterial popula-
tions after Listerine® treatment.

In contrast, we observed a slight increase in meta-
protein abundance and identification with the other
three treatments. The results indicate that there may
be increased bacterial activity in the biofilm. The
increased abundances of flagellar proteins (FIiF, FliM)
indicating the movement of, for example, still present
planktonic initial colonizers moving chemotactically
down the nutrient gradient (PAS domain S-box protein
[47]) [52]. Another example is the TonB-dependent
siderophore receptor relevant for iron supply to bacteria
[51], which transports iron from the environment into
the cell for deoxyribonucleotide synthesis or oxidative
phosphorylation [50]. Another indication is the
increased metaprotein abundances of proteins involved
in the repair or degradation of damaged proteins
(methionine aminopeptidase [53], L-isoaspartate
O-methyltransferase [54]). Additionally, based on the
median QHI for Drug B (QHI 1.6), Drug C (QHI 1.8),
and Drug D (QHI 2.6) a less inhibitory effect on plaque
formation could be determined [19].

Regarding the taxonomic diversity, phyla such as
Actinobacteria, Firmicutes or Fusobacteria dominated
the assignment of metaproteins and confirmed the
results of previous studies [69-74]. The same applies
to the genus level, where e.g. Actinomyces and
Streptococcus are among the most represented genera
[56,73,75,76]. However, the species level offers the
greatest information content for dental practitioners,
especially regarding the colonization of tooth surfaces
by initial and secondary colonizers [77,78].

The metaprotein abundances and their assigned
species showed only small changes after treatment
with Drug D (placebo). There were a few significant
changes, e.g. for increased metaprotein abundances of
the secondary colonizers Capnocytophaga spp
[77,79,80]. Functionally, the abundance of metapro-
teins in the categories of small-molecule interactions
as well as the cations and iron carrying compounds
increased. Drug D was designed as a placebo, and
therefore we did not expect many significant changes
in the metaproteome. We assume a slight influence
by the sugar alcohols mannitol, sorbitol and xylitol
contained in Drug D (placebo). Previous studies have
already provided initial evidence that sugar alcohols
can also have an influence on bacteria and their
growth [81-86].
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Drugs B and C contained all components of the
LPO system with an equal level of LPO concentration
whereas Drug B (0.083% H,0,; 1:2 H,0,/SCN™ rela-
tion) contained the hydrogen peroxide donor CPO at
a higher concentration than Drug C (0.04% H,0,; 1:4
H,0,/SCN" relation).

Drug C had a minor effect on the plaque micro-
biome and the data generated are comparable to the
results of Drug D (placebo). As an example, we also
found higher metaprotein abundances for similar
species, such as the secondary colonizer
Capnocytophaga spp., Neisseria flava, or Leptotrichia
sp [77-80]. Therefore, we suggest that the low con-
centration of CPO is not sufficient to make a decisive
contribution to the growth of the plaque biofilm that
goes beyond the effect of the placebo.

A decisive influence on the plaque metaproteome
could be observed for Drug B (0.083% H,0,; 1:2 H,
0,/SCN™ relation) especially for metaproteins of
beneficial species as well as first and second coloni-
zers. As one example we detected an increased
metaprotein abundance for Lachnospiraceae ssp.,
and Abiotrophia defectiva, which are associated
with dental health in caries-free children [75,87],
whereas we could not find references in the litera-
ture for each identified species of Lachnospiraceae
(see Table 1). Furthermore, metaprotein abundances
of Streptococcus gordonii were only found signifi-
cantly increased after treatment of our healthy sub-
jects with Drug B (0.083% H,0,; 1:2 H,0,/SCN™
relation). It is one of the first colonizers of the oral
cavity [88,89] and thus involved in the initial attach-
ment to tooth surfaces and co-aggregates with
a variety of bacteria. This bacterium has been
further described to compete effectively with
Streptococcus mutans due to the availability of oxy-
gen and the production of hydrogen peroxide
[90,91]. Additionally, the abundance of metapro-
teins of the secondary colonizers Capnocytophaga
spp., which are described as commensals and asso-
ciated with disease in the literature, was also ele-
vated after treatment with Drug B (0.083% H,0,; 1:2
H,0,/SCN" relation) [92-94]. The bridging species
Fusobacterium nucleatum subsp., reported to coag-
gregate with all early and late colonizer, or even the
late colonizers Prevotella intermedia and Prevotella
nigrescens showed also higher metaprotein abun-
dances after treatment with Drug B (0.083% H,0,;
1:2 H,0,/SCN" relation) [77-80] both associated
with periodontitis [95,96]. In summary, we identi-
fied positive changes regarding metaprotein abun-
dances of health-associated bacteria for caries, but
negative changes occurred in periodontitis-
associated bacteria.

During the complex process of the development of
dental caries, an increase in acidogenic bacteria like
Streptococcus mutans is associated with an ecologic

shift in the oral biofilm [88,90]. The treatment period
extended over a duration of 4 days to allow
a regrowth of the plaque biofilm but was too short
to produce a shift of the biofilm towards a diseased
status [97-100]. Therefore, no metaproteins from
pathogenic species were expected. A more detailed
analysis showed that we identified only 11 metapro-
teins for S. mutans, with only one metaprotein being
statistically relevant because it was found in more
than 50% of all samples. For this single identifier
only, we found increased metaprotein abundances
for Streptococcus mutans, not only after the treat-
ment for Drug B (0.083% H,0,; 1:2 H,0,/SCN" rela-
tion) but also for Drug C (0.04% H,05 1:4 H0,
/SCN™ relation) and Drug A (Listerine®, positive
control). The metaprotein (identifier:
smut_c_1_284) is a dehydrogenase in lipid metabo-
lism that has not yet been further characterized. In
comparison, we identified considerably more meta-
proteins for other species, such as for S. gordonii with
60 metaproteins or F. nucleatum with 235 metapro-
teins. In addition, other omics studies also identified
pathogenic species in healthy subjects [101,102] and
is consistent with the extended ecological plaque
hypothesis [103,104]. Another point to consider is
that the metaprotein abundances of the 10 days
recovery phase including 3 days of absence of any
oral hygiene procedure on day 3 (baseline oral bio-
film) are already at a relatively high level. This base-
line oral biofilm was just influenced by a test
substance for the following 4 days without other
oral hygiene procedures.

A unique challenge was to reconcile the results of
the clinical part of the study with the results of the
metaproteomic approach. A direct comparison of the
observed QHI values of the clinical study [19] and the
relative protein amounts (NSAF values) calculated in
this metaproteomic study might be misleading
because for all samples the same protein amounts
were used for MS-based profiling even if treatments
had different effects on total biofilm amount (QHI
values). Nevertheless, we consider the combination of
classical microbiological methods with metaproteo-
mic data in addition with clinical parameters as
a valuable approach. By integrating a multi-OMICs
approach in the future, we expect to gain even deeper
insights into the pathophysiology of dental disease.

Conclusion

Although the study of molecular mechanisms in
complex biofilms using metaproteomic approaches
is still in its infancy, we were able to elucidate the
impact of four treatments on the plaque metapro-
teome and associate it with clinical parameters. It
could be shown that the metaproteomic analyses
not only contribute to the elucidation of the
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taxonomic composition but also gather functional
information for the plaque biofilm during treatment.

According to the data of this metaproteomic analy-
sis, we were able to show that the treatment based on
the components of the LPO system induces a change in
the plaque metaproteome that differs from that of
a placebo and Listerine®. While the reduction of the
Quigley-Hein index shown in the clinical study [19] for
the antiseptics can be attributed to a reduction in the
overall microbiome, our results suggest that the plaque
reduction of the LPO-lozenges based more on an
increase in bacterial diversity.
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