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Introduction: Proteasome inhibition is first line therapy in multiple myeloma

(MM). The immunological potential of cell death triggered by defects of the

ubiquitin-proteasome system (UPS) and subsequent perturbations of protein

homeostasis is, however, less well defined.

Methods: In this paper, we applied the protein homeostasis disruptors

bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and

primary patient samples to investigate their ability to induce immunogenic cell

death (ICD).

Results: Our data show that while BTZ treatment triggers sterile type I interferon

(IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly

immunologically silent. Interestingly, inhibition of protein de-ubiquitination by

PR619 was associated with the acquisition of a strong type I IFN gene signature

which relied on key components of the unfolded protein and integrated stress

responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)

and general control nonderepressible 2 (GCN2). The immunological relevance of

blocking de-ubiquitination in MM was further reflected by the ability of PR619-

induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-

dependent mechanisms.

Conclusion: Altogether, our findings identify de-ubiquitination inhibition as a

promising strategy for inducing ICD of MM to expand current available

treatments.

KEYWORDS

ubiquitin, proteasome, interferon, unfolded protein response, integrated
stress response
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1 Introduction

One major peculiarity of cancer is its inherent ability to escape

immune surveillance. The mechanisms by which tumor cells hijack the

immune system are diverse but mostly rely on the cumulative

acquisition of genomic changes that lead to a progressive decline of

their immunogenicity (1, 2). Typical and prominent features of poorly

immunogenic tumor cells include (i) low expression of HLA class I

molecules and/or co-stimulatorymolecules (3, 4), (ii) inefficient antigen

processing (5–7), (iii) tryptophan depletion (8, 9), (iv) upregulation of

checkpoint inhibitors (10), (v) increased production of anti-

inflammatory mediators (11, 12) and (vi) resistance to killing by

cytotoxic T cells (CTL) (13, 14) among others.

Strategies aimed at increasing tumor immunogenicity have long

been investigated in the context of dendritic cells (DC)-based cancer

vaccine development (15–17). Indeed, due to their unique ability to

stimulate T cells (18, 19), DC represent attractive vectors used in active

antitumor immunotherapy (20, 21). One route to supply DC with a

broad spectrum of tumor-associated antigens is to feed them with

killed autologous tumor cells (22–25). In this process, a wide array of

tumor antigens is taken up by DC and gains access to the HLA class I

and II presentation pathways for subsequent priming of naïve CD8+

and CD4+ T cells (26, 27). The process of DC maturation, an

important requirement for the initiation of primary immune

responses, is characterized by the upregulation of CD86, CD80,

CD83, and CD40 costimulatory molecules as well as the secretion of

IL-12 and IL-10 (28–31). DCmaturation is typically achieved following

exposure to so-called “danger signals” including pathogen-associated

molecular patterns (PAMP) such as lipopolysaccharide (LPS) and

foreign nucleic acids (32, 33). Depending on the immunogenicity of

the cells used for DC loading, DC maturation may be positively or

negatively affected. Early studies have shown that the uptake of necrotic

cells and/or cell lysates by DC favor their maturation via uncontrolled

release of damage-associated molecular patterns (DAMP) (34–36). By

contrast, the removal of physiologically occurring apoptotic bodies by

DC (a process called efferocytosis) seems to exert detrimental effects on

the DC maturation process even in the presence of PAMP (37–39),

thereby contributing to peripheral tolerance (40–42). Nonetheless,

depending on the stimulus and/or the conditions under which cell

death is induced, apoptosis may become an immunogenic process

supporting DC maturation. Herein, viral-infected and heat shock-

stressed apoptotic cells have been shown to promote potent primary

immune responses (43–47). These studies have brought the concept of

immunogenic cell death (ICD) which itself is defined by the ability of

dying cells to deliver immunostimulatory signals promoting DC

maturation (48). Over the last two decades, an increasing number of

ICD-inducing agents have been identified including anthracyclines, big

potassium (BK) channel agonists as well as endoplasmic reticulum

(ER) stress-inducing agents (49–52).

In multiple myeloma (MM), the second most frequent

hematological cancer, proteasome inhibitors were recently shown

to induce ICD (53, 54). Proteasomes are key components of the

ubiquitin-proteasome system (UPS), a complex biochemical

process which ensures the breakdown of ubiquitin-marked

proteins into peptides (55–57). Given its fundamental role in the
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regulation of protein homeostasis, the UPS represents a particularly

vulnerable pathway whose dysfunction may rapidly compromise

cell viability (58). The causal relationship between proteasome

inhibition and ICD supports the growing consensus that

proteasome defects lead to autoinflammation (59–61). It remains

however unclear whether the acquisition of immunogenicity under

these conditions is an immediate and specific effect of proteasome

inhibition or a more distant consequence of overall proteostatic

perturbation. A better understanding of these processes is of highly

clinical relevance, as MM is still an incurable disease, and resistance

to proteasome inhibition invariably occurs. To address this point,

we have investigated various protein homeostasis disruptors for

their ability to induce ICD in MM cell lines. We show that

inhibition of de-ubiquitination by PR619 induces ICD and

facilitates DC maturation by activation of type I IFN signaling via

signal transducers of the integrated stress response (ISR) and the

unfolded protein response (UPR). Altogether, these findings

support the notion that proteome perturbations confer

immunogenicity to MM by delivering danger signals which are

integrated by the UPR and ISR.
2 Materials and methods

2.1 Cell lines and culture conditions

The monocytic cell line THP-1 and the MM cell lines RPMI-

8226, RPMI-R5, MM1S, U266 and OPM-2 were cultivated in

standard RPMI1640 with 2 mM stable glutamine and

supplemented with 10% FBS and 1% penicillin/streptomycin. The

MM cell line KMS12BM was cultivated in standard RPMI1640 with

2 mM stable glutamine and supplemented with 20% FBS and 1%

penicillin/streptomycin. The MM cell line NCI-H929 was cultivated

in standard RPMI1640 with 2 mM stable glutamine and

supplemented with 20% FBS, 1% penicillin/streptomycin and 1

mM sodium pyruvate. The HS5 stromal and SH-SY5Y

neuroblastoma cell lines were cultivated in DMEM supplemented

with 10% FBS and 1% penicillin/streptomycin. T lymphocytes were

expanded from Ficoll-enriched PBMC isolated from a healthy

donor using PHA-L, IL-2 and feeder cells, as previously described

(62). Dendritic cells (DC) were generated from monocytes isolated

from heathy donors and were kept in culture for 5 days using

RPMI1640 in the presence of 500 U/mL GM-CSF and 50 U/mL IL-

4 (both purchased from Miltenyi Biotec), as previously described

(63). At day 5, suspension DC were collected together with adherent

DC which were detached from the flask by incubating them with

PBS/EDTA (2 mM) for 20 min at 37°C. Day 5-immature DC were

plated on 24-well plates (1×106 cells/well) and co-cultured with

apoptotic NCI-H929 cells (at a ratio 1:2) in a final volume of 2 mL.

In some experiments, DC fed with apoptotic NCI-H929 cells were

cultivated with 10 µg/ml of anti-IFNAR2 neutralizing antibody

(clone MMHAR-2) purchased from R&D Systems. Primary

CD138+ MM cells were isolated from bone marrow aspirates of

two patients (MM14 and MM90) with relapsed MM using Ficoll

density gradient centrifugation and manual magnetic cell sorting
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(CD138 MicroBeads, Miltenyi Biotech GmbH), as previously

described (64). Multiple myeloma sample collection was approved

by the Review Board and both patients provided written informed

consent (Ethic number 2018-1157-Material).
2.2 Chemical reagents

Bortezomib (BTZ) was kindly provided by Prof. Christian

Andreas Schmidt (Internal Medicine C, University Medicine

Greifswald). The ONX0914 (PR-957), PR619 and ISRIB organic

compounds were purchased from Absource Diagnostics GmbH

(Munich, Germany). The small-molecule inhibitors RA190, H-151,

4µ8C, C16 and Guanabenz targeting ADRM1/Rpn13, STING,

IRE1a, PKR and GADD34, respectively were purchased from

Merck Millipore. The TLR3/double strand RNA antagonist was a

product from Merck Millipore as well. The BX795 and A-92

compound inhibiting TBK1 and GCN2 were products from Axon

Medchem. The JAK1/2 small-molecule inhibitor Baricitinib was

from MedChemExpress. Tunicamycin (T7765) was purchased

from Merck.
2.3 MTT assay

MM cell lines were seeded on flat bottom 96-well plates at 5.106

cells/mL with increasing concentrations of BTZ, ONX0914, RA190

and PR619. At 24-hour post-treatment, 0.85 mg/mL of (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT,

thiazolyl blue, Carl Roth) solution was added to the cells for 3 h

at 37°C. Dissolution of formed crystalline was achieved by adding

100 µL 10% SDS to the cell suspension. After incubation overnight,

absorbance was measured at 562 nm on a plate reader.
2.4 RNA extraction and qPCR

Total RNA was isolated from snap-frozen cell pellets using the

innue prep RNA minikit from Analytic Jena AG following the

manufacturer’s recommendations. Five hundred nanograms of total

RNA were then used for cDNA synthesis using the M-MLV reverse

transcriptase (Promega). Quantitative real-time PCR was

conducted in duplicates using the TB Green Premix Ex Taq from

Takara Bio together with primers specific for IFI27, IFI44L, IFIT1,

ISG15, RSAD2, IFI44, MX1, SIGLEC1, TNFA, IL1B, IL6, IL24 and

RPLP0 and/or GAPDH. relative changes in gene expression was

analyzed using 2(-Delta Delta C(T)) method and RPLP0 and/or

GAPDH as housekeeping genes.
2.5 SDS-PAGE and western-blotting

Snap-frozen cell pellets were lysed in standard RIPA buffer (50

mM Tris pH 7.5, 150 mM NaCl, 2 mM EDTA, 1 mM N-

ethylmaleimide, 10 µM MG-132, 1% NP40, 0.1% SDS) and

protein lysates were quantified by BCA (Thermofisher) following
Frontiers in Immunology 03
the manufacturer’s instructions. Ten to forty micrograms of total

protein were separated by 10 or 12.5% SDS-PAGE and subsequently

blotted onto PVDF membranes using a standard wet blot transfer

procedure (200V for 1h). After a 20-min incubation with 1X Roti®-

Block (Carl Roth®) at room temperature, membranes were

incubated overnight at 4°C with primary antibodies specific for

b1 (clone MCP421), b2 (clone MCP165), a6 (clone MCP20),

ubiquitin (clone FK2) all purchased from Enzo Life Sciences, Inc.

Other primary antibodies include anti-TCF11 (clone D5B10), anti-

PERK (clone C33E10), anti-(p)PERK (#3179), anti-IRE1a (#3294),

anti-ATF6 (clone D4Z8V), anti-PKR (1297), anti-GCN2 (65981),

anti-eIF2a (9722), anti-(p)eiF2a (9721), anti-4E-BP1 (clone

53H11), anti-(p)4E-BP1 (2855s), anti-GAPDH (clone 14C10),

anti-caspase-3 (9662S), anti-cleaved caspase-3 (9661L), anti-TBK1

(3013), anti-(p)TBK1 (clone D52C2), anti-IRF3 (4302), anti-STAT1

(clone 2x) and anti-(p)STAT1 (clone 58D6) all products from Cell

Signaling Technology. Antibodies directed against (p)PKR

(ab226852), a-tubulin (clone DM1A) and b5 (ab3330) were

obtained from Abcam. Antibodies specific for (p)IRE1 (PA1-

16927), b2i/MECL1 (PA5-19146) and (p)IRF3 (PA5-38285) were

from Thermofisher. The monoclonal antibody directed against b5i
(clone A-12), was a product from Santa Cruz Biotechnology, Inc.

The b1i/LMP2 antiserum (K221) was a laboratory stock already

described elsewhere (65). The antibody specific for (p)GCN2

(AF7605-SP) was from R&D systems. After incubation,

membranes were washed three times with PBS/0.2% Tween and

incubated for 1 h at RT with anti-mouse or –rabbit HRP conjugated

secondary antibodies (1/5.000). Proteins were visualized using an

enhanced chemiluminescence detection kit (ECL) (Biorad). The

ImageJ 1.48v software was used for densitometry analysis of the

ECL signals.
2.6 Flow cytometry

Dendritic cells were washed twice with PBS and resuspended in

PBS/1% BSA with primary antibodies at 4°C for 20 min and

resuspended in PBS for phenotypical analyses. Flow cytometry

was performed with a MACSQuant10 flow cytometer (Miltenyi

Biotec) and data were analyzed with MACSQuantify™ software.

APC- or PE-conjugated monoclonal antibodies (all from Miltenyi

Biotec) against CD80 (clone 2D10), CD83 (clone HB15) and CD86

(clone FM95) were used for phenotypic analysis. Flow cytometry

was also used to measure calreticulin (CRL) cell surface expression

on NCI-H929 cells exposed to DMSO, BTZ, ONX0914, RA-190 or

PR-619 for 24 and 48h using a PE-conjugated anti-CRL primary

antibody (clone FMC-75) from Enzo Life Sciences.
2.7 Measurement of ATP release

Supernatants from NCI-H929 cells exposed to DMSO, BTZ,

ONX0914, RA-190 or PR-619 were collected after 6 or 24h of

treatment and assessed for their ATP content using the RealTime-

Glo™ Extracellular ATP Assay from Promega following the

manufacturer’s recommendations.
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2.8 Data representation and
statistical analyses

Data are typically median or mean ± SEM from at least three

independent experiments and analyzed by paired t-test between two

groups. All charts and statistical analyses were generated using

GraphPad Prism version 8. A p-value <0.05 was considered

significant. All raw data are available on request from authors.
3 Results

3.1 The protein homeostasis disruptors
BTZ, ONX014, RA190, and PR619 differ in
their antitumor activities against MM

To deepen the relevance of disrupting protein homeostasis as a

targeted strategy for MM treatment, we first examined the anti-

proliferative effects of four pharmacological agents interfering with

the protein homeostasis network at different levels. Compounds

used in this study included small-molecule proteasome and

immunoproteasome inhibitors, namely bortezomib (BTZ) and

ONX-0914 targeting the b5/b5i and b5i catalytic proteasome

subunits, respectively (66, 67); RA190 which blocks ubiquitin

recognition by the proteasomal ubiquitin receptor RPN13/

ADRM1 (68) as well as PR619, a permeable pan-inhibitor of

deubiquitinating enzymes (DUB) (69). Among these compounds,

only BTZ is currently in clinical use for the treatment of MM,

although ONX0914 and RA190 already showed activity in

preclinical models (70). As shown in Figure S1, BTZ treatment

successfully compromised cell growth in RPMI-8226, RPMI-R5,

MM1S, NCI-H929 and KMS12BM cell lines. In line with previous

studies (71, 72), OPM-2 and U266 cells were resistant to BTZ with

approximately only half of the cells dying at 50 µM (Figure S1).

Immunoproteasome inhibition by ONX0914 showed a toxicity

profile which was quite similar to that of BTZ, although higher

concentrations were required to compromise cell viability and had

only marginal effects on the viability of the OPM-2 and U266 cell

lines (Figure S1). By contrast, RA190 efficiently induced cell death

in all seven investigated MM cells within 24 h of treatment albeit to

a lesser extent in the OPM-2 and U266 MM cell lines which became

only sensitive from concentrations >10 µM (Figure S1). Likewise,

exposing MM cells to PR619 resulted in impaired cell growth in all

seven tested cell lines at concentrations down to 6 µM except for the

OPM-2 and U266 cell lines which were less sensitive and required a

minimal concentration of 10 µM (Figure S1).
3.2 MM cells are equipped mostly with
standard proteasomes and/or b5i/b1/b2
mixed type proteasomes

In view of the heterogeneous sensitivity of MM cells to BTZ

and/or ONX0914 treatments, we next sought to determine

proteasome composition in the seven investigated MM cell lines.
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As shown in Figures S2, S3, all MM cell lines expressed standard

proteasomes, as evidenced by constitutive expression of the b1, b2
and b5 standard subunits. From the three immunoproteasome

subunits, only b5i was found to be consistently expressed across

nearly all MM samples with the exception of the OPM-2 cell line,

which exclusively contained standard proteasomes (Figures S2, S3).

These data thus indicate that most MM cells were endowed with

standard proteasomes and/or mixed-type proteasomes carrying the

b5i inducible subunit together with b1 and b2 standard subunits.

Besides, these findings further suggest that resistance to proteasome

inhibition observed in the OPM-2 and U266 cells may be caused by

reduced b5i expression and proteasome amounts, respectively. This

assumption is supported by previous studies indicating that b5i can
restore BTZ sensitivity (73).
3.3 The protein homeostasis disruptors
BTZ, ONX0914, RA190, and PR619 vary in
their ability to initiate sterile type I IFN
responses in MM

Because rare proteasome loss-of-function mutations typically

cause type I interferonopathies (59, 60, 74), we next aimed to

determine whether protein homeostasis disruption triggered by

BTZ, ONX0914, RA190 or PR619 was associated with the

acquisition of a type I IFN gene signature in MM. To this end,

the transcription rate of eight typical IFN-stimulated genes (ISG)

(i.e. IFIT1, IFI27, IFI44, IFI44L, ISG15,MX1, RSAD2 and SIGLEC1)

was evaluated in MM cells at 12-h post-treatment by qPCR. As

shown in Figures 1, S4, BTZ treatment resulted in the initiation of a

type I IFN response in all cell lines except OPM-2. By contrast, all

seven investigated MM cells failed to generate a type I IFN signature

in response to RA190, as evidenced by unchanged ISG scores after

treatment (Figures 1, S4). Likewise, immunoproteasome inhibition

by ONX0914 was immunologically silent across all MM cell lines

(Figures 1, S4). Interestingly, blocking DUB activity by PR619 was

immunostimulant in only one cell line, namely NCI-H929 in which

the ISG fold change median was >100-fold higher relative to

untreated cells. To further explore the responsiveness of MM to

DUB inhibition, two additional primary samples (MM14 and

MM90) from myeloma patients as first relapse were tested for

their capacity of inducing ISG upon PR619 treatment. As shown in

Figure S5, while MM90 cells generated a type I IFN signature in

response to PR619, MM14 cells failed to do so –in spite of a

moderate upregulation of the IFIT1 and RSAD2 genes. Taken

together, these data demonstrate that the ability of MM to mount

a type I IFN response upon protein homeostasis disruption is

largely dependent on both stimulus and cell characteristics.
3.4 Both UPR and ISR are constitutively
activated in NCI-H929 MM cells

The observation that PR619 treatment results in the generation

of a type I IFN gene signature in NCI-H929 cells is interesting and
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raises the question as to how the loss of DUB activity is sensed as a

“danger signal” in these cells. As shown in Figures 2A, S6, PR619

treatment led to an increased accumulation of ubiquitin-modified

proteins in NCI-H929 cells, thereby confirming that impairment of

the protein de-ubiquitination process was associated with

perturbations of the whole-cell proteome under these conditions.

Intracellular protein homeostasis is typically surveilled by the

signaling arms of the UPR IRE1a, ATF6 and PERK within the ER

membrane (75). The activation/phosphorylation status of IRE1a
and PERK was therefore next assessed in NCI-H929 cells subjected

to a 12-hour treatment of BTZ, ONX0914, RA190 or PR619.

Consistent with the notion that the UPR is constitutively active in

MM (76), the phosphorylated (p) forms of IRE1a and PERK were

already highly expressed in untreated NCI-H929 cells and remained

unchanged following exposure to ONX0914, RA190 or PR619

(Figures 2B, S6). Strikingly, treating the cells with BTZ resulted in

a drop of the unmodified forms of IRE1a and PERK (Figures 2B,

S6). Likewise, the expression levels of (p)IRE1a, ATF6 and, to a

lesser extent, (p)PERK were reduced in BTZ-treated cells

(Figures 2B, S6). Our densitometry analysis of the signals revealed

that the relation of the phosphorylated fractions of PERK and

IRE1a to the total ones did not vary in BTZ-treated cells

(Figure 2D), thereby indicating that UPR activity remained

constant during the course of BTZ treatment.

Other pathways in charge of monitoring intracellular protein

homeostasis include ISR which is typically initiated by the GCN2

and/or PKR kinases upon amino acid depletion and proteotoxic

stress, respectively (77, 78). Interestingly, NCI-H929 cells treated

with BTZ, ONX0914, RA190 or PR619 exhibited reduced mTORC1

signaling, as evidenced by decreased phosphorylation of mTOR

downstream target (p)4E-BP1 (Figures 2C, S6) Since mTORC1

senses free amino acids (79), these data suggest that these cells may

suffer from amino acid deficiency. However, no discernable

differences could be observed in the expression level of (p)GCN2

following treatment (Figures 2C, S6). In a similar fashion to IRE1a
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and PERK, GCN2 was downregulated upon BTZ exposure

(Figures 2C, S6). Like GCN2 and PERK, PKR was constitutively

phosphorylated in NCI-H929 cells and the (p)PKR/total PKR ratio

was increased only following BTZ treatment (Figures 2C, D, S6).

Nevertheless, BTZ failed to promote eIF2a phosphorylation whose

expression levels even declined when compared to those from

control cells (Figures 2C, S6). This observation is likely related to

the fact that BTZ-treated NCI-H929 cells may undergo apoptosis, as

evidenced by increased breakdown of unmodified eIF2a
(Figures 2C, S6). Exposing the cells to ER stress inducer

tunicamycin did not result in increased phosphorylation of the

IRE1a, PERK and GCN2 proteins (Figure S7), confirming that UPR

and ISR activities in these cells already reached their maximal levels

even under basal conditions.
3.5 The type I IFN gene signature mediated
by the loss of DUB activity in PR619-
treated NCI-H929 cells relies on both the
UPR and ISR

We next sought to determine the molecular mechanisms by

which pharmacological inhibition of protein de-ubiquitination by

PR619 promotes the acquisition of a type I IFN gene signature by

NCI-H929 cells. Typically, type I IFN responses are initiated during

viral infections in response to foreign nucleic acids such as double-

stranded (ds)RNA or cytosine-phosphate-guanosine (CpG) motifs

which are sensed by specialized endosomal and/or cytosolic

receptors (80). Engagement of such DNA/RNA sensors triggers a

signaling cascade ultimately resulting in the TBK1-mediated

phosphorylation of the transcription factor IRF3 which

subsequently translocates into the nucleus to induce the synthesis

of IFN-a/b (81). Once released and bound to its receptor, IFN-a/b
triggers a JAK/STAT signaling pathway resulting in the

transcription of ISG. Other potent inducers of type I IFN include
A B

FIGURE 1

Analysis of the IFN-stimulated gene (ISG) expression profile in NCI-H929 MM cells exposed to protein homeostasis disruptors. (A) Gene expression
of eight typical IFN-stimulated genes (IFIT1, IFI27, IFI44, IFI44L, ISG15, MX1, RSAD2 and SIGLEC1) was assayed by RT-qPCR on NCI-H929 MM cell
lines after a 12-h exposure to BTZ, ONX0914, RA190, PR619 or DMSO (control), as indicated. Expression levels were normalized to housekeeping
genes (RPLP0) and relative quantifications (RQ) are presented as fold change over cells exposed to DMSO. Shown is one representative experiment
out of three. (B) Shown are fold change median values of the eight ISG over DMSO measured in three independent experiments. Statistical
significance was assessed by paired t test (*p<0.05, *** p<0.001).
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sterile danger signals such as mitochondrial and nuclear nucleic

acid leakage as well as cytosolic IL-24 (58, 82, 83).

As shown in Figures 3A, B, S8, S9, blocking TBK1 by BX795 in

PR619-treated cells resulted in a strong ISG downregulation as a

consequence of reduced levels of (p)IRF3 and (p)STAT1. Similarly,

baricitinib completely abolished STAT1 phosphorylation and ISG

transcription in response to PR619 (Figures 3A, B, S8, S9). These

data indicate that the ISG signature induced by PR619 follows a

two-step process in which IFN-a/b is first synthetized and then

secreted to act in an autocrine/paracrine fashion. Our data further

suggest that type I IFN under these conditions is not driven by host

nucleic acids cells, since inhibition of the nucleic acid receptors

TLR3 and STING by dsRNA/TLR3 antagonist and H-151,

r e spec t i ve l y had no d i s ce rnab l e impac t on STAT1

phosphorylation and/or ISG expression profile (Figures 3B, S8,

S9). Given the described ability of the UPR/ISR to induce sterile

inflammation (82), we next asked whether it participated in the

PR619-mediated type I IFN response in NCI-H929 cells. To address

this point, we took advantage of commercially available inhibitors

targeting the UPR/ISR at different levels including 4µ8C, C16, A92

and guanabenz which inhibit IRE1a, PKR, GCN2 and eIF2a
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dephosphorylation, respectively (84–86). As illustrated in

Figures 3B, S8, S9, while C16, 4m8C and A92 substantially

suppressed ISG upregulation in PR619-treated cells, guanabenz

slightly exacerbated it. These data indicate that PKR, IRE1a, and
GCN2 were involved in the PR619-mediated type I IFN gene

signature. Interestingly, although both C16 and A92 exerted a

suppressive activity, only A92 resulted in decreased expression of

(p)STAT1, suggesting that the type I IFN response induced by PKR

was at least partially STAT1-independent. Exposing the cells to the

organic compound ISRIB which antagonizes the (p)eIF2a-induced
translation arrest by increasing eIF2B levels (87–89) showed less

pronounced inhibitory effects on ISG induction in response to

PR619 (Figures 3B, S8, S9), indicating that the shutdown of

protein synthesis is only partially involved in this process.
3.6 Protein homeostasis disruption caused
by PR619 induces ICD

Given that pharmacological inhibition of protein de-

ubiquitination by PR619 results in the generation of a type I IFN
A B

DC

FIGURE 2

Western-blot analysis of the ubiquitin, ISR and UPR expression profiles in NCI-H929 cells exposed to BTZ, ONX-0914, RA190 or PR619. (A) NCI-
H929 exposed to PR619 (1,5 µM) or left untreated were subjected to protein extraction and subsequent SDS-PAGE/western blotting using antibodies
specific for ubiquitin and actin (loading control), as indicated. Shown is one representative experiment out of three. (B) Equal amounts of protein
lysates derived from NCI-H929 exposed to a 12-h treatment with DMSO, BTZ (50 nM), ONX-0914 (50 nM), RA190 (50 nM) or PR619 (1,5 µM) were
analyzed by SDS-PAGE/western-blotting using antibodies directed against PKR, (p)PKR, GCN2, (p)GCN2, eIF2a, (p)eIF2a, 4E-BP1, (p)4E-BP1 and
tubulin (loading control), as indicated. Shown is one representative experiment out of three. (C) NCI-H929 whole cell-lysates described in (B) were
further assessed for their contents in PERK, (p)PERK, IRE1, (p)IRE1, ATF6 by SDS-PAGE/western-blotting, as indicated. Equal protein loading was
ensured by probing the membranes with an actin antibody. Shown is one representative experiment out of three. (D) Densitometric analysis of
phosphorylated of PERK, IRE1, PKR and GCN2 normalized to total proteins and reported as foldchange relative to DMSO.
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signature in NCI-H929 cells, we hypothesized that such gene

expression profile would confer immunogenic properties to these

cells. Having shown that high concentration of PR619 cause

cytotoxic effects (Figure S1), we next sought to determine the

impact of PR619-induced apoptotic NCI-H929 cells on dendritic

cells (DC). To this end, NCI-H929 cells were first treated with 6 µM

PR619 and compared to cells exposed to UV-B, BTZ and

doxorubicin for their ability to cleave caspase-3 over a 24h period

of time. As shown in Figures 4A , S10, exposing NCI-H929 cells to 6

µM PR619 resulted in caspase-3 cleavage within 24 h to a similar

extent as seen with UV-B radiation, indicating that it efficiently

triggered apoptotic cell death. Of note, apoptosis induced by PR619

or UV-B was much slower than that triggered by BTZ, as evidenced

by lower amounts of cleaved caspase-3 at 8 h post-treatment

(Figures 4A, S10). Strikingly, doxorubicin failed to promote

caspase-3 cleavage at all investigated time points, suggesting the

existence of drug-resistance mechanism preventing the cells to

undergo apoptosis. Importantly, cells exposed to UV-B were

unable to upregulate ISG except SIGLEC1 (Figure 4B), thereby

confirming that, as opposed to PR619 and BTZ-induced apoptosis,

cell death mediated by UV-B exposure was devoid of type I IFN.

Importantly, day 5-immature DC exposed to apoptotic NCI-H929

cells produced by BTZ or PR619 treatments expressed higher levels

of the surface maturation markers CD80, CD83 and CD86 than

those cultivated with dead NCI-H929 cells resulting from UV-B

exposure (Figures 4C, D). Similarly, DC fed with BTZ- and PR619-

treated NCI-H929 cells expressed larger amounts of IL1b and IL6

transcripts than DC cultivated alone or exposed to UV-treated NCI-

H929 cells (Figure 4E). These data demonstrate that, in contrast to
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UV-B-induced DNA-damage, disruption of protein homeostasis by

BTZ or PR619 triggers immunogenic cell death in NCI-H929 cells.
3.7 DC maturation induced by PR619-
induced NCI-H929 apoptotic cells partially
requires type I IFN signaling

The fact that apoptotic NCI-H929 cells induced by UV-B fail to

trigger DC maturation (Figure 4) strongly suggests that ICD in

these cells is mediated by type I IFN. This assumption is

strengthened by the observation that IFN-free apoptotic NCI-

H929 cells induced by either ONX0914 or RA190 are unable to

fully activate DC (Figure 5A). Indeed, the failure of ONX0914- and

RA190-induced apoptotic NCI-H929 cells to induce DCmaturation

was particularly evident when assessing cell surface expression of

CD83 and CD86, whose levels remained statistically unchanged

when compared to unloaded DC (Figure 5B). To further address the

role of type I IFN in this process, DC were fed with apoptotic NCI-

H929 cells induced by BTZ or PR619 in the presence of anti-

IFNAR2 antibodies which neutralize type I IFN receptors. As

shown in Figures 6A, B, blocking type I IFN signaling by anti-

IFNAR2 antibodies resulted in reduced cell surface expression of

CD83 and CD86 on DC loaded with BTZ- or PR619-induced

apoptotic NCI-H929 cells, as determined by flow cytometry.

Interestingly, the anti-IFNAR2 antibody had no substantial

impact on CD80 expression, suggesting that the immunogenicity

properties of BTZ and PR619 did not entirely rely on their capacity

of inducing type I IFN.
A B

FIGURE 3

Effects of various signaling pathway small-molecule inhibitors on the type I IFN gene signature triggered by PR619 in NCI-H929 cells. (A) NCI-H929
cells were exposed to DMSO, TLR3/ds RNA antagonist (100 µM), guanabenz (50 µM), H-151 (2 µM), C16 (1 µM), 4µ8C (100 µM), ISRIB (200 nM),
BX795 (1 µM), baricitinib (1 µM) or A92 (10 µM) for 2 hours prior to an overnight treatment with DMSO or PR619 (1,5 µM), as indicated. Samples were
collected and assessed for their contents in STAT1, (p)STAT1, TBK1, (p)TBK1, IRF3 and (p)IRF3 by SDS-PAGE/western-blotting, as indicated. Equal
protein loading was verified by probing the membrane with monoclonal antibodies specific for b-actin or GAPDH. Shown is one representative
experiment out of three. (B) NCI-H929 samples described in (A) were subjected to RNA extraction and subsequent RT-qPCR analysis for the eight
IFI27, IFIT1, IFI44, IFI44L, ISG15, RSAD2, MX1 and SIGLEC1 genes. Shown are fold change median values of the eight ISG over DMSO measured in
three independent experiments. Statistical significance was assessed by ratio paired t test (*p<0.05, *** p<0.001, ****p<0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.982720
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Waad Sadiq et al. 10.3389/fimmu.2023.982720
3.8 Apoptosis induced by BTZ, ONX0914,
or PR619 is associated with the supply of
ICD-specific biomarkers

To further characterize the immunogenic potential of cell death

triggered by protein homeostasis disruption, NCI-H929 cells were

finally tested for their ability to deliver well-established ICD

markers in response to BTZ, ONX0914, RA190 or PR619. Herein,

NCI-H929 cells induced to apoptosis were monitored for

translocation of the ER chaperone protein calreticulin (CRL) to

the cell surface, a typical feature of ICD promoting efferocytosis (51,

90). As shown in Figures 7A, B, besides RA190, all regimens used in

this study led to CRL cell surface expression with different

magnitudes and kinetics. Indeed, while BTZ and PR619

treatments allowed 30% of the cells to translocate CRL at 24 and

48h respectively, exposure to ONX0914 resulted in less than 20%
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CRL-positive cells. Consistently, cell death triggered by RA190 was

not accompanied by ATP release (Figure 7C), another ICD marker

(91–93). This is in sharp contrast to BTZ-, ONX0914- and PR619-

treatments of NCI-H929 cells whose supernatants contained large

and comparable amounts of extracellular ATP (Figure 7C).

Altogether, these data indicate that the four protein homeostasis

disruptors investigated in this study differed in their ability to

deliver danger signals with BTZ, ONX0914 and PR619 triggering

ICD, while RA190 remaining immunologically inert.
4 Discussion

To date, most strategies aiming at interfering with intracellular

protein homeostasis are based on the use of pharmacological agents

affecting proteasome function. These include small-molecule
A

B

D

E

C

FIGURE 4

Apoptotic NCI-H929 cells induced by PR619 promote spontaneous DC maturation. (A) NCI-H929 cells were treated with PR619, BTZ, doxorubicin
or exposed to UV-B irradiation prior to protein extraction and SDS-PAGE/western-blot analysis using antibodies specific for caspase-3 and cleaved
caspase-3, as indicated. Shown is one representative experiment out of three (B) NCI-H929 cells subjected to UV-B exposure were compared to
untreated (control) cells and assessed for expression of ISG transcripts (IFI27, IFIT1, IFI44, ISG15, RSAD2, MX1 and SIGLEC1) by RT-qPCR, as indicated.
Expression levels were normalized to housekeeping genes and relative quantifications (RQ) are presented as fold change (left) and fold change
median values (right) over untreated cells, as indicated. (C) Representative histogram overlays of flow cytometry analysis of DC for cell surface
expression of DC maturation markers CD80, CD83 and CD86 following a 24-h co-culture with UV-, BTZ- or PR619-induced NCI-H929, as
indicated. The results obtained with DC w/o co-culture and with co-culture are indicated by the blue and red lines, respectively. (D) Variations of the
percentage or the mean fluorescence intensity of the DC maturation markers following co-culture with UV-, BTZ- or PR619-treated NCI-H929
cells, as indicated. Shown are the means and SEM calculated from four independent experiments. Statistical significance was assessed by ratio paired
t test where *indicates p<0.05 and ** indicates p<0.01. (E) DC alone or cultured with UV-, BTZ- or PR619-treated NCI-H929 cells were subjected to
RNA extraction and assessed for their content in TNFa, IL1b and IL6 transcripts by RT-qPCR, as indicated. Shown are the means and SEM obtained
from four independent experiments. Statistical significance was assessed by ratio paired t test (*p<0.05, **p<0.01, ****p<0.0001) , ns, not significant.
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inhibitors of the proteasome catalytic subunits such as BTZ,

ixazomib or carfilzomib targeting the chymotrypsin-like activity

of the b5/b5i subunits and used to treat MM (66, 94). Recently, it

was shown that exposure of MM cells to BTZ triggers ICD through

the upregulation of type I IFN signaling (53, 54). The observation

that proteasome inhibition is associated with type I IFN responses is

in line with earlier studies showing that subjects carrying

proteasome loss-of-function mutations suffer from type I IFN-

driven systemic autoinflammation (95–105). In the present study,

we confirm that most MM cell lines acquire a specific type I IFN

gene expression profile in response to BTZ (Figures 1, S4).

Immunoproteasome inhibition by ONX0914 specifically

targeting the b5i proteasome catalytic subunit could not promote

a type I IFN gene signature in MM cells (Figures 1, S4). There is

controversy in the fie ld with respect to the role of

immunoproteasomes in inflammation. A flurry of studies has

shown that b5i inhibition by ONX0914 exerts anti-inflammatory

effects in autoimmune diseases such as colitis, rheumatoid arthritis

(RA), multiple sclerosis (MS) or myocarditis (67, 106–111).

Conversely, others have identified PSMB8 (i.e. b5i) loss-of-

function mutations as disease-causing in autoinflammatory

syndromes (95–99, 103–105) and PSMB8 knockout causing

elevated inflammation in mouse models of myocarditis (112),

Alzheimer’s disease (113) and pancreatitis (114). The reasons for

these conflicting data are so far unclear but may reflect distinct

consequences between long- and short-term blockage of

immunoproteasome function and different experimental set-ups.
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Another compound targeting proteasome function is RA190,

which in contrast to BTZ and/or ONX0914 does not affect the

proteasome chymotrypsin-like activity but the recognition of

ubiquitin-modified substrates by proteasomes via the ubiquitin

receptor ADRM1/Rpn13 (68). In agreement with previous

findings (68, 115–117), we could confirm that RA190 exhibits a

strong and broad anti-tumor activity against MM including the

BTZ-resistant cell lines OPM-2 and U266 (Figure S1). However,

unlike BTZ, RA190 failed to stimulate MM cells to generate a type I

IFN gene signature (Figures 1, S4). These results are surprising

considering that both compounds target the same multi-subunit

enzyme. They also suggest that impairment of proteasome activity

rather than ubiquitin binding to proteasomes generate sufficient

proteotoxic stress to trigger an inflammatory response.

The novelty of this study lies in the observation that blocking

protein de-ubiquitination by PR619 induces ICD. Indeed, our data

show that PR619 exhibits antiproliferative effects on all seven tested

MM cell lines (Figure S1). Like BTZ, PR619-induced apoptosis was

accompanied by a strong upregulation of ISG in NCI-H929 cells

(Figure 1). The observation that the acquisition of a type I IFN gene

signature upon PR619 treatment was restricted to the NCI-H929

cell line is intriguing. Our investigations on primary MM samples

seem to confirm the selective responsiveness of MM to PR619

(Figure S5). These results might reflect different DUB expression

and/or activity profiles across multiple myeloma(s). Unfortunately,

due to the low number of available MM samples, we were not able

to associate this selectivity to a specific genetic profile or other
A

B

FIGURE 5

Effects of ONX0914- and RA190-induced cell death on the ability of NCI-H929 cells to deliver stimulatory signals to DC. (A) Histogram overlays of
flow cytometry analysis of DC cell surface expression of CD80, CD83 and CD86 upon a 24 h-incubation with NCI-H929 dead cells obtained from
treatments with ONX0914 (red line), RA190 (brown line), BTZ (purple line) or PR619 (green line), as indicated. Negative control in this experiment
consisted of unloaded day 5-immature DC (blue line). Shown is one representative experiment out of three. (B) Measurements of the percentage of
DC positive for CD80, CD83 or CD86 following co-culture with ONX0914-, RA190-, BTZ- or PR619-induced NCI-H929 apoptotic cells, as
indicated. Shown is the median from three independent experiments. Statistical significance was assessed by paired t test where *indicates p<0.05
and *** indicates p<0.001, ns, not significant.
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disease characteristics. These findings, which need to be confirmed

using a larger number of MM samples, support the importance of

preliminary molecular profiling to determine the potential of future

therapies in precision medicine. This becomes particularly evident

in MM in which BTZ is routinely used as first-line therapy,

although its ability to confer immunogenicity seems to vary

across cell lines (Figure S4). Of note, both patients included in

the study were treated with BTZ-containing regimens as part of

first-line treatment.

Anyhow, the central question arises as to how the loss of DUB

activity in NCI-H929 cells leads to sterile type I IFN responses.
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Interestingly, our data show that the mechanism by which PR619

initiates innate immunity differ from those employed by BTZ. In

contrast to BTZ (53, 54), PR619 does not involve the cGAS/STING

pathway for the induction of type I IFN gene expression (Figure 3).

Rather, our small-molecule inhibitor-based experiments support a

role for the UPR and ISR in this process. By contrast, the breakdown

of critical receptors of the UPR and ISR (i.e. PERK, ATF6, PKR and

GCN2) associated with BTZ treatment (Figures 2, S6, S7) did not

affect its ability to trigger type I IFN responses (Figure 1).

Unfortunately, the intrinsic adjuvants effects of interfering RNA

molecules (118–120) prevented us to validate the prominent role of
A

B

FIGURE 6

Impact of type I IFN receptor neutralization on the immunogenic properties of BTZ- and PR619-treated NCI-H929 cells exerted on DC. (A)
Histogram overlays of flow cytometry analysis of CD80, CD83 and CD86 cell surface expression by DC following a 24 h-co-culture with BTZ- or
PR619-induced NCI-H929 apoptotic cells in the presence of 10 µg/ml anti-IFNAR2 blocking antibody (red line) or a mouse IgG isotype control (blue
line), as indicated. Shown is one representative experiment out of three. (B) Measurements of the mean fluorescence intensity (MFI) from DC stained
for CD80, CD83 or CD86 cultivated with BTZ- or PR619-induced NCI-H929 apoptotic cells with either mouse IgG isotype control or neutralizing
antibody specific for IFNAR2, as indicated. Shown is the median from three independent experiments. Statistical significance was assessed by paired
t test where * indicates p<0.05 and ns, not significant.
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the UPR and ISR in the induction of type I IFN by PR619 using gene

knockdown strategies. It is further noteworthy that the ISG

induction in response to PR619 in these inhibition experiments

(Figure 3) was lower than that initially observed (Figure 1), a

variation which is likely to be caused by seeding density

differences between the assays. Although the stress sensors IRE1a,
PERK, PKR and GCN2 were constitutively activated in MM cells,

PR619 treatment was associated with increased phosphorylation of

eIF2a (Figures 2, S6), indicating that the UPR and ISR were

engaged under these conditions. As discussed above, ISR activity

was required for the ability of NCI-H929 cells to upregulate ISG in

response to PR619 (Figure 3). Indeed, inhibition of the upstream

eIF2a kinases PKR and GCN2 significantly reduced ISG

transcription following PR619 treatment (Figures 3, S9).

Accordingly, preventing eIF2a dephosphorylation (84) enhanced

the type I IFN response by DUB inhibition (Figures 3, S9). The

ability of PKR, once activated, to engage type I IFN responses is well

established (121–124), although the precise signaling cascades

remain poorly understood. The signaling pathways that

constitutively activate PKR and GCN2 remain unclear but may

involve multiple stress stimuli. PKR may be activated by sustained

ER stress in a PACT-dependent manner (125, 126), a notion which

is in line with the fact that MM are characterized by persistent ER

protein homeostasis perturbations due to the high production of

immunoglobulins (127). Alternatively, PKR has been recently

shown to be stimulated by the aggregation of cytosolic IL-24 (82).

Because of persistent ER stress, it is conceivable that MM cells may

produce large amounts of IL-24 misfolded species which then
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accumulate in the cytosol following retro-translocation to activate

PKR. Accordingly, it is also tempting to speculate that the failure of

the OPM-2 cell line to upregulate ISG in response to BTZ (Figure

S4) might be caused by the lack of IL-24 expression in these cells

(Figure S11A). Conversely, IL-24 was strongly expressed in NCI-

H929 cells and even further increased following BTZ treatment

(Figure S11B). It is, however, unlikely that the induction of IL-24 by

BTZ is driven by autocrine type I IFN, as NCI-H929 cells do not

elevate their IL-24 levels in response to PR619 (Figure S11B). This

effect seems thus specific to proteasome dysfunction and one could

argue that this process also exacerbates autoinflammation by

increasing the supply of misfolded IL24 for PKR activation.

In contrast to PKR, the ability of GCN2 to engage type I IFN

responses is not well established (121–124). The GCN2 kinase is

typically activated by intracellular amino acid shortage (128) but it

is unclear whether MM cells suffer from amino acid restriction. This

assumption would be, however, consistent with the fact that protein

homeostasis is inherently perturbed in MM. Unlike PKR, GCN2 has

not been described as a pattern recognition receptor of innate

immunity and the mechanisms by which it promotes type I IFN

remain unclear. It should be noted that GCN2 substrates are not

limited to eIF2a but also include the methionyl-tRNA synthetase

(MRS) in response to UV irradiation (129). Interestingly,

phosphorylation of MRS facilitates the nuclear translocation of

AIMP3 to activate the DNA damage sensors ATM (ataxia-

telangiectasia, mutated) and ATR (ATM and Rad3-related) (130)

as well as proteasome-mediated degradation of lamin A (131). Of

note, lamin A deficiency is associated with genome instability and
A

B C

FIGURE 7

Measurements of calreticulin (CRL) cell surface expression and ATP extracellular release by NCI-H929 cells treated with BTZ, ONX0914, RA190 or
PR619. (A) Flow cytometry histogram overlays of CRL cell surface expression by NCI-H929 cells following a 24 or 48h-treatment with DMSO (red
line), BTZ (blue line), ONX0914 (brown line), RA190 (purple line) or PR619 (green line), as indicated. Shown is one representative experiment out of
three. (B) Measurements of the percentage of NCI-H929 cells positive for CRL after a 24 or 48 h-incubation with DMSO, BTZ, ONX0914, RA190 or
PR619, as indicated. Shown is the median calculated from three independent experiments. Statistical significance was assessed by paired t test
where *indicates p<0.05 and ** indicates p<0.01. (C) Bioluminescence analysis of extracellular ATP levels in supernatants from NCI-H929 cells
subjected to a 6 or 24 h-treatment with DMSO, BTZ, ONX0914, RA190 or PR619. Shown is the median of the relative light units (RLU) measured
following a 5 min-incubation with the luciferase-containing assay medium and calculated from three independent experiments. Statistical
significance was assessed by paired t test where * indicates p<0.05.
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IFN responses in patients with Hutchinson-Gilford progeria

syndrome (132). Whether this pathway is involved in GCN2-

dependent type I IFN signature generated in NCI-H929 cells in

response to PR619 remains to be determined. Our data further

show that beside the ISR, the IRE1a arm of the UPR is involved in

the upregulation of ISG induced by PR619 (Figures 3, S9). Indeed,

blocking IRE1a abolished JAK/STAT1 signaling in these cells, as a

consequence of reduced STAT1 expression levels (Figures 3A, S8).

Interestingly, IRE1 inhibition in microglia failed to affect STAT1

steady-state expression (133), suggesting that STAT1 regulation by

IRE1 is likely to be cell type-dependent.

Importantly, protein homeostasis disruption caused by PR619

was functionally immunogenic, as evidenced by the ability of

PR619-induced cell death to facilitate DC maturation in vitro

(Figures 4C–E). Strikingly, blocking type I IFN receptors on DC

reduced the ability of PR619-treated cells to activate DC (Figure 6),

indicating that the immunogenic potential of PR619 vis-à-vis DC

was strongly dictated by type I IFN. These findings also indirectly

suggest that type I IFN may be newly synthetized released from

dying NCI-H929 cells, although we were unable to detect it in their

supernatants using luminescent-based ELISA technology (data not

shown). The immunostimulatory capacities of PR619-induced

apoptotic cells were comparable to those of cells exposed to BTZ

and significantly higher than those of UV-, ONX0914- or RA190-

induced apoptotic cells which were devoid of type I IFN signature

(Figures 4, 5). Whether the immunogenic effects of BTZ and/or

PR619 is exclusively attributed to their capacity of inducing type I

IFN genes remains unclear. However, the observation that

ONX0914-induced cell death delivers canonical ICD signals

(Figure 7) but fails to promote DC maturation (Figure 5)

supports this assumption.

Altogether, our study identifies PR619 as a new member of the

growing family of apoptosis-inducing agents causing ICD (52, 134).

Whether the immunogenic potential of PR619 is due to a global

disturbance of the cellular proteome or the de-ubiquitination of

specific sets of proteins remains to be determined.
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