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Abstract

In the rf-plasma of the linear magnetized Vineta experiment, di�erent types of
low-frequency waves are observed. The emphasis in this work is on the interaction
mechanism between drift waves on the one and kinetic Alfvén waves on the other
hand. In the peaked density pro�le of the plasma column generated by a helicon
source with the typical parameters n0 = 5 · 1018m−3 and Te = 2 eV, drift waves occur
as modulation of the plasma density up to 10%. As gradient driven instability, they
draw their energy from the radial density gradients. Alfvén waves as magnetic
�eld �uctuations are stable in the present con�guration. They are launched by
a magnetic excitation antenna generating a perturbation of the ambient magnetic
�eld of b̃/B0 ≈ 1%. Parallel conduction currents in the plasma � which are carried
by electrons � are common to both wave phenoma. They generate a �uctuating
magnetic �eld which is used to detect both wave types. A Ḃ-detector as standard
diagnostic tool is used for this purpose. The challenge are the small induced voltages
due to the low wave frequency range of f = 1 . . . 50 kHz in the environment of a
�uctuating plasma potential that is several orders of magnitude higher. To record
these signals without signi�cant electrostatic pickup, a fully shielded detector design
is developed with an integrated ampli�er close to the probe head.

Mounted on di�erent positioning systems, such Ḃ-probes are used to characterize
both wave phenomena. For Alfvén waves, the dispersion relation is recorded exper-
imentally. It is found to be in good agreement with the prediction of the Hall-MHD
theory with included resistive term, accounting for the cold collisional plasma of
Vineta. The �uctuating magnetic �eld pattern � which is subsequently inverted
with Ampère's law � is recorded with azimuthal scans. The resulting current
density is concentrated in current �laments, which are helically twisted. For the
unstable drift waves, similar investigations are done with simultaneously recorded
density �uctuations. In the azimuthal plane, the locations of the parallel current
�laments and the �uctuating density are found to be in phase, which supports the
predicted drive of parallel currents by pressure gradients. A mutual in�uence of the
two wave types is observed in an interaction experiment. Assuming parallel currents
as coupling quantity, an interpretation of the experimental �ndings is given based
on the linear theory of drift waves.
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Zusammenfassung

Im rf-Plasma des linear magnetisierten Vineta-Experiments werden verschiedene
Arten von Wellen beobachtet. Der Schwerpunkt dieser Arbeit liegt auf der Wech-
selwirkung zwischen unstabilen Driftwellen auf der einen und stabilen Alfvénwellen
auf der anderen Seite. Die Plasmadichte der Helikonentladung ist axialsymmetrisch
konzentriert mit typischen Werten von n0 = 5 · 1018m−3 and Te = 2 eV. Unter diesen
Bedingungen treten Driftwellen als Modulation der Plasmadichte bis zu 10% auf.
Als gradientgetriebene Instabilität beziehen Driftwellen im Vineta-Plasma ihre En-
ergie aus dem radialen Dichtegradienten. Alfvénwellen werden als Fluktuationen des
Magnetfeldes beobachtet und sind in der vorliegenden Entladung stabil. Sie werden
angeregt durch eine magnetische Antenne, welche Störungen von bis zu b̃/B0 ≈ 1%
erzeugt. Als gemeinsame Eigenschaft sind beide Wellenphänomene mit parallelen
Plasmaströmen verbunden, die durch Elektronen getragen werden. Diese Ströme
erzeugen ein �uktuierendes Magnetfeld, das verwendet wird, um beide Wellenarten
zu diagnostizieren. Dafür wird eine Ḃ-Sonde verwendet. Eine Herausforderung sind
die kleinen induzierten Spannungen aufgrund des niedrigen Frequenzbereiches der
Wellen von f = 1 . . . 50 kHz in der Umgebung eines um mehrere Gröÿenordnungen
stärker �uktuierenden Plasmapotenzials. Um diese Signale ohne nennenswerte elek-
trostatische Störungen aufzunehmen, wurde ein vollständig geschirmter Ḃ-Sensor
entwickelt mit einem integrierten Verstärker nahe am Sondenkopf.

Mit einer solchen Sonde, die mit verschiedenen Positionierungssystemen verfahren
werden kann, wurden beide Wellenphänomene untersucht. Für Alfvénwellen ist die
Dispersionsrelation experimentell bestimmt worden. Es wurde eine gute Überein-
stimmung mit der resistiven Hall-MHD-Theorie gefunden. Der Widerstandsterm ist
essentiell für die Beschreibung des kalten stoÿbehafteten Plasmas in Vineta. Das
Wellenmagnetfeld wurde mit azimuthalen Scans vermessen und anschlieÿend mittels
Ampèreschen Gesetzes der parallele Strom berechnet. Es resultieren zwei Strom�l-
amente, die helikal miteinander verdrillt sind. Für die selbsterregt auftretenden
Driftwellen wurden ähnliche Untersuchungen durchgeführt mit zusätzlich aufgeze-
ichneten Dichte�uktuationen. Die Phase zwischen den parallelen Strom�lamenten
und den Dichtemaxima konnte in der azimuthalen Ebene nahe Null bestimmt wer-
den, was den durch die Theorie vorhergesagten Stromtrieb durch parallele Dichte-
gradienten stützt. In einem Wechselwirkungsexperiment konnte die gegenseitige
Beein�ussung beider Wellentypen beobachtet werden. Als Kopplungsgröÿe werden
die parallelen Ströme vorgeschlagen, die mit beiden Wellentypen einhergehen. Die
präsentierte Interpretation der experimentellen Resultate basiert auf der linearen
Driftwellentheorie.
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Chapter 1

Introduction

Plasmas support a whole wealth of waves and instabilities. In many situations it
is possible to treat the plasma components � electrons and ions � as intersecting
�uids [1, p.3]. Each of those individual �uid components support wave phenomena,
similar to neutral �uids or gases [2]. In a plasma additionally the condition of
quasi neutrality has to be sati�ed [3]. This condition states that there can be
no accumulation of net charge at any location in the plasma. Hence, there can be
electric currents in the plasma with the condition that the current density divergence
of di�erent currents balance each other at any point∑

n∇jn = 0 n - plasma components (1.1)

Currents generate magnetic �elds which in turn in�uence the plasma as a conducting
�uid. This is the main di�erence of plasma dynamics compared to neutral �uid
dynamics. In the latter case, energy is transferred between adjacent �uid cells by
viscosity only. Plasma dynamics are characterized by a long range interaction via a
collective response to electromagnetic �elds.

Large-scale interactions in plasmas are observed e.g. in space plasmas. An example
is the ejection of matter from the sun, known as prominences or solar �ares [4].
A solar �are occurs, if the dipole magnetic �eld of a pair of sunspots links with
the interstellar magnetic �eld. The energy release in this process is giveen by the
magnetic �eld energy, in particular the plasma volume is accelerated away from the
sun [5] and magnetic energy is transferred to kinetic energy. Another example of
such energy transfer is the scenario for heating the sun's corona [6]. It involves
Alfvén waves in the magnetized plasma near the sun [7], which are generated from
below the sun's surface and dissipate their energy in the corona by resonant wave
damping.
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Chapter 1: Introduction

Figure 1.1: Shear Alfvén
wave in earth magnetosphere
taken from Ref. [8]. Data
were recorded by energy an-
alyzators for electrons and
ions aboard the geostation-
ary satellite ATS 6. Details
are given in Ref. [9]. Simul-
taneous aquisition in North-
South (NS) and East-West
(EW) direction for the two
species with analyzators gated
to 30 eV yield the time re-
solved counting rates shown in
the 4 diagrams.

Two frequency ranges are distinguished in magnetized plasmas. If alternating elec-
tromagnetic �elds are applied to charged particles with periods much shorter than
the gyration time, there will be no net displacement after one gyration period. Only
if the periods of �uctuating �elds are comparable or longer than the gyration period
there will be a collective e�ect in terms of a resulting current. For the ions, this
transition is quantitatively set by the ion-cyclotron frequency

ωci =
eB0

mi

, (1.2)

where B0 denotes the ambient magnetic �eld and mi the ion mass. Plasma waves
with frequencies up to the ion-cyclotron frequency involve both electron currents
and ion currents. This class of plasma waves was predicted by Hannes Alfvén in
1942 [10]. Their ubiquitous role in space plasmas is addressed by Gekelman [11].
A nice measurement of shear Alfvén waves in a space plasma is shown in Fig. 1,
taken from Ref. [8]. In this in-situ measurement, the time varying electron and ion
�uxes were directly measured with particle detectors along (North-South) and across
(East-West) the ambient magnetic �eld. The output signal was proportional to the
electric current carried by the corresponding species. In the example shown above,
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a coherent wave is observed at f = 0.75Hz, corresponding to 2πf = 0.33ωci. The
�uctuation amplitude for ions is signi�cantly larger in the perpendicular direction
when compared to the parallel direction, opposite to the electron count. These
�ndings directly correspond to the theoretically expected properties of shear Alfvén
waves: The wave can exist up to ω = ωci and a parallel electron �ux (mainly NS) is
balanced by a perpendicular ion �ux (mainly EW). The time series of the two �uxes
are in phase owing to quasi-neutrality. The wavelength in the example is derived
from the linear dispersion relation of shear Alfvén waves to λ = 2600 km. Such
long wave lengths would be di�cult to handle in laboratory experiments, where the
geometrical dimension is typically limited to just a few meters. In toroidal plasma
experiments, however, Alfvén eigenmodes are observed due to the periodicity of the
magnetic �eld topology with very long connection lengths [12].

Another wave phenomenon in the frequency range below the ion-cyclotron frequency
are drift waves with some similarities in the processes involved. The main distinc-
tion between drift waves and Alfvén waves is the stability aspect. Drift waves are
instabilities drawing energy from a density gradient, whereas Alfvén waves occur
as damped waves in a homogeneously magnetized plasma. A recent example for
drift waves in space plasmas is given by Sundkvist and Bale [13]. At the boundary
between the low density plasma of the magnetosphere and the high density plasma
of the solar wind, a density gradient forms in the so-called magnetosheath. The
electrons escape from regions of increased plasma density parallel to the ambient
magnetic �eld. The ions react to the resulting potential perturbation with currents
perpendicular to the ambient magnetic �eld. As an instability the drift wave can
enter a turbulent state [14]. By convecting plasma in regions with density gradi-
ents this leads to cross-�eld transport [15, 16]. It is crucial in fusion experiments,
where turbulent drift-Alfvén waves are a possible source for the strong anomalous
transport, which limits the heat isolation [17].

It is a challenge to complement measurements of naturally occurring low-frequency
waves in space plasmas by experimental investigations in laboratory plasmas. Labo-
ratory experiments allow for highly resolved spatio-temporal observation of all �uc-
tuating wave quantities, in contrast to satellite or rocket measurements, which can
probe the wave �elds only along their trajectory. Additionally, in a laboratory en-
vironment it is possible to actively in�uence the wave under investigation. But how
can a laboratory experiment be suitable for the large spatial scales of waves in space
plasma? Cramer writes in his book:

One of the greatest di�culties one encounters in trying to relate

Alfvén waves in space to laboratory observations is the shocking

di�erence in time and length scales. It is hard to believe that physics

of wave propagation could be the same, but it is. [18, p.9]
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Figure 1.2: Four examples for plasmas from table 1.1 where Alfvén waves are observed.
In (a) the di�erent plasmas are shown in the parameter room spanned by the background
magnetic �eld strength and the plasma density. Typical wave lengths of observed Alfvén
waves are shown in (b).

The two important parameters making low-frequency wave phenomena accessible
in laboratory-scale experiments are the ambient magnetic �eld B0 and the plasma
density n. As seen in Fig. 1.2 (a) the two parameters span several orders of magni-
tudes in di�erent plasmas where Alfvén waves are observed. The corresponding scale
length in Fig. 1.2 (b) of Alfvén waves is decreased for increased ambient magnetic
�eld B0 and increased plasma density n. Both parameters are chosen relatively high
in the laboratory experiment Vineta, where the experiments of the present work
are conducted. In this way, a spatial scale for low-frequency waves in the order of
the machine length is achieved. The resulting time scales are still well accessible
with standard data-aquisition techniques.

Alfvén waves must be excited with an appropriate setup. In Alfvén physics, magnetic
�eld �uctuations and �uctuating currents are of major importance. Both quantities
have been used in laboratory experiments to launch Alfvén waves [19, 20]. The �uc-
tuating magnetic �eld associated with Alf�ven waves can be measured with magnetic
�eld sensors, in particular Ḃ-probes [21]. If the wave �eld is recorded spatially re-
solved, the �uctuating currents can be reconstructed from the �uctuating magnetic
�eld with Ampère's law. Since for laboratory plasmas the Alfvén wave frequencies
are in the kHz-range, the Ḃ-probe has to be optimized to high sensitivity and good
signal-to-noise ratio.

Low-frequency magnetic perturbations propagate inVineta along the ambient mag-
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Table 1.1: Typical spatial and temporal scales for Alfvén waves in di�erent near-earth,
space and laboratory plasmas. The plasma parameters density n, gas sort and ambient
magnetic �eld B0 set the property of an Alfén wave in terms of their velocity vA, their
period duration T and their wave length λ. For the three space plasma cases the density
and the magnetic �eld are taken from [18, 22�24], the values for the laboratory plasma
represent the situation in Vineta (see below).

region n [m−3] gas B0 [T] vA [m/s] T [s] λ [m]

ionosphere 1 · 1010 H 30 · 10−6 6.6 · 106 2.2 · 10−3 1.4 · 103

magnetosphere 1 · 105 H 200 · 10−9 1.4 · 107 320 · 10−3 4.5 · 106

solar wind 1 · 106 H 10 · 10−9 2.2 · 105 6.7 1.5 · 106

laboratory 1 · 1019 Ar 100 · 10−3 1.1 · 105 26 · 10−6 2.9

netic �eld [25]. An issue addressed in this thesis is their proper identi�cation as shear
Alfvén waves. Evidence is found by comparing experimentally obtained dispersion
relations with theory. Another issue is the precise characterization of the spatial
structure of Alfvén waves in terms of the underlying current pattern. In conjunction
with the corresponding current pattern of drift waves the interaction of both wave
types will be discussed.

The present thesis is organized as follows: Chapter 2 gives an overview of theVineta
experiment and the used diagnostic systems. In particular, the wave excitation sys-
tem for driving Alfvén waves and the development of a highly sensitive detector
for the �uctuating magnetic �eld are presented. In chapter 3, the theoretical back-
ground for drift and Alfvén waves is given, with emphasis on the �uctuating currents
of the two wave types. For Alfvén waves, a spatio-temporal description is presented
based on a resistive Hall-magnetohydrodynamic model (MHD). The derived disper-
sion relation has two branches, one for shear and one for fast Alfvén waves. The
experimental �ndings are compiled in chapter 4 for Alfvén waves and in chapter 5 for
drift waves. The excited waves are characterized in terms of their dispersion relation
and identi�ed as Alfvén waves. For both drift and Alfvén waves, spatio-temporally
resolved magnetic �eld �uctuations are recorded. From those the parallel compo-
nent of the current density is derived. It is found to be located at similar spatial
locations with comparable absolute values for both wave tpyes. This �nding moti-
vates a coupling experiment for drift and Alfvén waves, discussed in the last section
of chapter 5.
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Chapter 2

Diagnostics and signal processing

2.1 The Vineta experiment

The experiments presented in this thesis are performed in the linear magnetized
plasma of Vineta with a vessel length of 4.5m and a diameter of 0.4m. A schematic
drawing is given in Fig. 2.1. The plasma is generated by a rf-helicon source [26�28].
This discharge type is based on the non-resonant absorption of helicon waves [29],
where the absorption layer is predicted to be detached from the source region [30].
Helicon sources are extremely e�cient: A few kilowatt are su�cient to sustain plas-
mas with densities n ' 1019m−3. Therefore, this type of plasma source is widely
used in low-temperature plasma physics [31, 32], in plasma processing [33], and in
advanced plasma propulsion [34, 35]. However, the speci�c mechanism of plasma
heating using helicon waves is still subject of intense discussion [36, 37]. At Vineta,
a m = 1-antenna [38] is used for helicon wave excitation. The antenna, located at
one end of the vacuum chamber, is placed on a pyrex extension with a length of
0.5m and a diameter of 0.1m. The input power is generated by a rf-ampli�er, ca-
pable of delivering up to 6 kW at the used frequency of 13.56MHz. The ampli�er is
connected to the antenna via a π-matching network. The helicon discharge mode is
typically reached at power levels above 1.8 kW. At lower power levels, the discharge
is in the capacitive and in the inductive mode respectively [39].

The ambient magnetic �eld B0 of Vineta is generated by 33 magnetic coils, pow-
ered by 4 DC-power supplies. They allow operation at any level in the range
B0 = 0 . . . 103mT. Three additional coils in the antenna region allow switching be-
tween fringed magnetic �eld lines and homogeneous �eld lines at the helicon source.
If turned o�, the magnetic �eld has a gradient in the source region. Due to mag-
netic mapping, the plasma is then concentrated in the center of the vessel [40].

6



2.2 Magnetic probes

Figure 2.1: Schematic view of the Vineta experiment including the positions of the used
systems for wave excitation and detection.

The con�guration with homogenous source magnetic �eld is used for all presented
experiments.

Three types of positioning systems for the Vineta experiment provide access to
the plasma at di�erent spatial positions. Each of those systems is equipped with a
standard mount for the used probes with a couple of integrated feedthrough lines.
The simplest positioning system is an r-system, capable of moving horizontally
corresponding to the radial direction. Two independent xy-systems allow to access
azimuthual planes of the cylindrical plasma. The labeling as `xy'- instead of `rφ'-
system corresponds to the cartesian directions of horizontal and vertical movement
of these systems. Finally, an rz-system which is mounted inside the vessel gives
access to the radial-axial plane in Vineta.

Complementary to recording data by repositioning one probe, arrays of probes can
be used. For Vineta an azimuthal 1D-array consisting of 64 Langmuir probes is
available. It spans the azimuthal direction θ = 0 . . . 2π at a prede�ned radius r
and is capable of detecting the �uctuating plasma density [41]. All channels are
simultaneously recorded with a 64-channel data aquisition system with a digitizing
rate of up to 1.25MHz.

2.2 Magnetic probes

For the detection of magnetic �uctuations in Vineta, a probe was developed and
optimized to investigate coherent drift waves and drift wave turbulence on the one
hand and Alfvén waves on the other hand. A salient issue was the possibillity to
record the three magnetic �eld components independently from each other with
reasonable crosstalk attenuation.

7



Chapter 2: Diagnostics and signal processing

2.2.1 Requirements for magnetic probes

There are two main design criteria for a magnetic probe: the frequency range of
operation and the sensitivity in terms of minimum detectable �eld strength |~b|. The
physical entity under investigation de�nes the two parameters as target-setting of
the probe design. Drift waves in Vineta occur as coherent �uctuations of plasma
parameters in the frequency range f = 1 . . . 10 kHz, depending on their azimuthal
mode number [42]. In the case of drift turbulence [43], the upper frequency limit is
about 50 kHz. Alfvén waves (AW) occur as shear and fast AW. They exist in the
frequency range up to the ion-cyclotron frequency

ωci = qB0/mi , (2.1)

which scales linearly with the ambient magnetic �eld B0 and inversely with the ion
mass mi. For the used gases argon, helium, and hydrogen, the maximum frequencies
are fci ≤ 40 kHz, 400 kHz and 1.6MHz, respectively. Thus, the probe needs to have
a frequency response of f = 1 kHz . . . 2MHz. Fluctuating magnetic �elds will be
labeled with small letter b in the following. For drift waves, the expected �uctua-
tion amplitde b⊥, de�ning the needed probe sensitivity, can be estimated as follows.
Since the plasma is quasineutral, the divergence of perpendicular and parallel cur-
rent vector components balance: ∇⊥j⊥ = ∇‖j‖. For drift waves, the perpendicular
currents are ion polarization currents

j⊥ = jpol = nmi
Ė⊥
B2

0

, (2.2)

where E⊥ is the wave electric �eld. The parallel current component j‖ is the response
current to a density perturbation carried by electrons. The derivatives in the balance
can be approximated using the characteristic spatial and temporal scales, as

∂tE ≈ ωE ∂⊥j⊥ ≈
j⊥
ρs

∂‖j‖ ≈
j‖
λ‖

, (2.3)

where ω is the drift wave frequency, ρs the drift scale, de�ned below in (3.37), and
λ‖ is a typical parallel scale. Thus, the current divergence balance reads to be

j‖
λ‖

=
nmi

ρsB0

ω
φ̃

ρs
, (2.4)

φ̃ denotes the �uctuating plasma potential. Using Ampère's law µ0
~j = ~∇×~b ≈ ~b/ρs

and the linearized Boltzmann relation ñ = n0eφ̃/kBTe, (2.4) can be rearranged to

b

B0

≈
ωλ‖
ωciρs

β
ñ

n0

. (2.5)
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2.2 Magnetic probes

Here, β = n0kBTe/(B
2
0/2µ0) is introduced as ratio of kinetic to magnetic pressure.

(2.5) �nally allows to estimate the relative magnetic �uctuation amplitude b̃/B0.
The plasma-β in Vineta has a typical value of 5 · 10−4 and the relative �uctuation
amplitude of drift waves is typically ñ/n0 ≤ 10%. The �rst factor in (2.5) is of
order unity according to drift ordering (cf. Eq. 3.39). Thus, the relative magnetic
�uctuation amplitude is estimated to be 5 · 10−5, which corresponds to an absolute
value of b = 5µT for an ambient magnetic �eld of 100mT. Recent investigations
in the torsatron TJ-K with similar plasma parameters as in Vineta have shown
similar magnetic �uctuation amplitudes of b/B0 ≈ 10−6 [44].

For Alfvén waves, the magnetic �uctuation amplitude is given by the wave exci-
tation amplitude. The setup used for the experiments can generate perpendicular
perturbations up to b = 1mT. Alfvén waves are damped in the collision-dominated
plasma of Vineta with typical damping lengths in the range of 0.6m [25]. This
results in an attenuation of the launched wave to b = 1.3µT over a length of 4m.

To measure the �uctuations in the range of a few microtesla with reasonable signal-
to-noise ratio, the probe sensitivity needs to be such that magnetic �uctuations of
b ≥ 10nT in the above mentioned frequency range can be detected. Additionally,
some technical constraints have to be considered in the probe design. First of all
it must be insensitive to electrostatic pickup, since drift waves are associated with
�uctuations of the plasma potential in the same frequency range as the magnetic
�uctuations [42]. Furthermore the probe has to withstand thermal load from the
plasma and its dimensions have to be small compared to plasma dimensions in order
to avoid strong perturbations.

2.2.2 Available sensor types

A recent review of available sensor types can be found in [45, 46]. It is used to make
a preselection of the types to be tested. The sensors are in the following compared
based on the range of magnetic �eld amplitudes they can detect. A summary of 11
sensor types is given in Fig. 2.2. Most of them can be excluded due to the discussed
limitations in Vineta. The most obvious criterion is the range of detectable mag-
netic amplitudes needed for our experiments, four sensor technologies are ruled out
accordingly. A second issue is the limitation for the probe head dimension. Hence,
sensor types with a need for a large dimensional setup are not suitable. This con-
cerns the optically pumped magnetometer, the nuclear-precession magnetometer,
the Squid magnetometer and the �ber-optic magnetometer. The �ux gate magne-
tometer cannot be used either, since its frequency response is limited to very low
frequencies. The remaining two types search coil magnetometer, better known as
Ḃ-detector, and magneto-resistive magnetometer are seen as possible candidates.
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2. Flux-Gate Magnetometer
3. Optically Pumped Magnetometer
4. Nuclear-Precession Magnetometer
5. SQUID Magnetometer

8. Magnetodiode
9. Magnetotransistor

10. Fiber-Optic Magnetometer
11. Magneto-Optical Sensor

1. B Magnetometer

6. Hall-Effekt Sensor
7. Magnetoresistive Magnetometer

Magnetic Sensor Technology
Detectable Field

1µT 1mT1 Tn 1T1 Tp

J.E.Lenz, IEEE SENSORS JOURNAL, Vol 6, NO. 3, JUNE 2006

Figure 2.2: Applicability of di�erent sensor types for magnetic �elds in terms of detectable
amplitudes. The range of interest for waves in Vineta is marked red. Three types were
picked out for testing (magenta). To give an intuitive idea about the shown magnitudes,
the magnetic �eld of the Earth is included (blue line). Adapted from [46].

Additionally, the Hall sensor is considered and tested even though its sensitivity is
insu�ciant. However, in previous work it was successfully used as low-frequency
magnetic detector in fusion plasmas [47, 48]. The preselection made so far gives
only a rough orientation as the available devices are optimized for di�erent purposes
by the manufacturer. Tab. 2.1 compiles the three chosen devices.

To compare the sensors, their sensitivity S(ω) in units V/T is measured as function
of frequency. For this purpose, a test �eld consisting of two coils with a diameter
of 78mm, four windings each, and 35mm separated from each other, is used. The
scaling of the generated �eld strength inside this coil arrangement with coil current
is numerically and experimentally determined to be 97.8µT/A. The coil current
is typically 20mA, measured with a shunt of 50 Ω, resulting in a �uctuating �eld
of b = 1.96µT. The sensor calibration is performed by automatically sweeping the
frequency as illustrated in Fig. 2.3.

Table 2.1: Chosen sensor devices for detection of magnetic �eld

manufacturer device sensor type dimension [mm3]

In�neon KSY14 Hall 6
Honeywell HMC1001 magneto-resistive 80
home-made coil N=1000 Ḃ-detector 38
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2.2 Magnetic probes

Figure 2.3: Setup for calibrating magnetic �eld probes. The sinusoidally �uctuating �eld
in-between the two coils is sensed by the probe and recorded with an oscilloscope. A broad
frequency range of typically 100Hz . . . 2MHz is covered by automatically setting horizontal
and vertical de�ections as well as the driving frequency.

The obtained sensitivity S(ω) alone is not meaningful for comparing di�erent sen-
sors. Using external or internal ampli�ers, S can take any value for the same device
and is not connected to the smallest detectable �eld strength. The smallest de-
tectable amplitude is actually limited by the noise �gure of a certain device. It is
measured by recording the sensor signal of 100ms duration with a high sampling
rate of fsmpl= 10MHz. The power spectral density of this signal, obtained by Fourier
transformation and subsequent averaging, is a frequency-resolved measure for the
noise density

unoise(ω) =
1

2π

∫
Unoise(t)e

−iωt dt . (2.6)

If a certain bin width of ∆f is assumed, the spectral density can be expressed as

Unoise(ω) = unoise ·∆f . (2.7)

In this way, it is possible to de�ne the signal-to-noise ratio for a given magnetic �eld
amplitude b0 as

SNR = 20 log

(
S(ω)b0
Unoise(ω)

)
. (2.8)

In the following a bin width of ∆f = 100Hz is assumed. This is equal to an integra-
tion time of 10ms and limits the observable �uctuations to frequencies above 100Hz
in agreement with the speci�cations given in Sec. 2.2.1. The frequency-resolved re-
sult for the three devices is presented in Fig. 2.4 in terms of (a) S(ω) and (b) SNR(ω).
It will be discussed for each device in the following paragraphs.
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Figure 2.4: Frequency response of the tested Hall sensor, the magneto-resistive sensor
and the Ḃ-detector with low noise ampli�er. The frequency-resolved sensitivity of the
devices is given in (a). The signal-to-noise ratio SNR in (b) is a measure for the lowest
detectable magnetic �eld. The SNR is calculated for an assumed �uctuating �eld amplitude
of b = 1µT and the noise spectral density generated by the sensors.

Ḃ-detector

The simplest approach to detect �uctuating magnetic �elds is the induction coil,
also known as Ḃ-detector. For use in plasmas, they are kind of a standard [21]. The
principle is based on Faraday's induction law. The output voltage Uind of a coil is
given by ∮

C

~E · d~l = − d
dt

∫
A

~b · d ~A′ (2.9)

Uind = −NAḃ . (2.10)

Uind depends linearly on the number of windings N , the coil area A and the time
derivative of the �uctuating magnetic �eld b. If the time dependency of b is harmonic,
the induced voltage is

Uind(ω) = −NAb0ω cos(ωt) (2.11)

which scales linearly with the frequency. For gaining high sensitivity, the number of
windings N and the area A can be adapted, although this might be in contradiction
with the constraint of small sensor dimension.

For a Ḃ-detector withN = 1000, the sensitivity S is recorded as shown in Fig. 2.4 (a).
It has a linear dependency for low frequencies up to 10 kHz, a maximum around
200 kHz, and decreases for higher frequencies. At 1 kHz, the sensitivity has a value
of S = 100mV/µT. For the low frequency range, the measured dependency is as
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2.2 Magnetic probes

expected from (2.10) with S = −NAω. At higher frequencies, the coil shows reso-
nance and the simple description given in (2.10) is not valid any more. The resonance
circuit consisting of the parasitic capacity and the coil inductance is damped with
an external termination resistor of R = 2 kΩ. The result is a broadening of the
resonance peak to the observed sensitivity maximum around 200 kHz.

Magneto-resistive sensor

A magneto-resistive sensor [49] is based on the change of the resistance of a material
in a magnetic �eld

R = R(b) , (2.12)

which is usually very small. Therefore, most of the available devices are equipped
with an internal ampli�er. The output voltage is directly proportional to the mag-
netic �eld. An important issue is magnetical saturation of the material, which can
lead to a changed sensitivity, e.g. in the ambient magnetic �eld of plasma devices.

The most promising device based on the magneto-resistive e�ect in terms of sensi-
tivity was found to be the HMC1001, produced by the company Honeywell. The
result of the frequency response measurement in Fig. 2.4 (a) is an almost perfect
characteristic with constant sensitivity of S = 0.2mV/µT over the entire frequency
range.

Hall sensor

A current transverse to the magnetic �eld is de�ected due to the Lorentz force and
generates in the direction of de�ection a potential di�erence of

UHall = AH
Ib

d
. (2.13)

This e�ect is named Hall e�ect. AH is the Hall constant of the material, I the trans-
verse current, b the magnetic �eld and d the dimension of the current channel. The
generated voltage �uctuations are directly proportional to the �uctuating magnetic
�eld.

For the chosen device KSY14 (In�neon), the measured frequency response is shown
in Fig. 2.4 (a). For f ≤ 1 kHz, the sensitivity is constant with S = 0.07mV/µT.
After a transition range from f = 1 . . . 10 kHz, the sensitivity rises with frequency
linearly up to f = 700 kHz. The slope of S(f) is similar to the Ḃ-detector with the
same value of 3 dB per octave. This is an indicator for the dominance of induced
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voltages, possibly in the internal wiring of the Hall sensor. Hence, the sensor does
not give reliable results for frequencies f > 10 kHz.

Comparison of the three sensor types

The limitation of the sensors is mainly determined by the frequency-dependent noise.
For a given integration time ∆t, a signal b(ω0) is detectable only if the correspond-
ing sensor output voltage is larger than the noise amplitude at the same frequency
ω0. Hence, a good measure for the sensor performance is the signal-to-noise ra-
tio (cf. Eq. 2.8), taking into account sensitivity and noise amplitude as shown in
Fig. 2.4 (b). An amplitude of the �uctuating magnetic �eld of 1µT is assumed for
the calculation of the signal-to-noise ratio from the recorded noise spectrum. This
was found to be a realistic wave amplitude in Vineta (cf. Sec. 4.1.1).

For the magneto-resistive sensor, the signal-to-noise ratio ranges from 79 dB at 1 kHz
to 94 dB at 1MHz. The frequency dependence is attributed mainly to the measured
noise spectrum, since the sensitivity was determined to be constant. In the case of
the Ḃ-detector, the signal-to-noise ratio is de�ned by both the sensitivity and the
noise spectrum with 76 dB at 1 kHz and 108 dB at 1MHz. For the Hall sensor, the
frequency dependence of the signal-to-noise ratio is also determined by the sensitivity
and noise spectrum with values of 0 dB at 1 kHz and 48 dB at 1MHz. That means,
the frequency response of the Ḃ-detector and magnetoresistive detectors is better
than that of the Hall sensor. The Ḃ-detector is chosen for the measurements of
magnetic �uctuations in Vineta because it has the best signal-to-noise ratio.

2.2.3 Design of the Ḃ-detector

The wave magnetic �eld under investigation ~b = (bx, by, bz)
′ requires the usage of a

3-axis Ḃ-detector. Its design can be inferred from Fig. 2.5. Te�on, which is heat
proof and can be used in vacuum, has been chosen as base material. Two small
coils with a diameter of 3mm and a length of 8mm are perpendicularly arranged
in a te�on body. They record the �uctuating magnetic �elds bx and by. The third
component bz is detected by two coils which are located close to the bx and by coil
on both sides. This avoids asymmetry in the determination of bz. Each of the
four coils is wound with approximately 1000 windings with enamelled copper wire
of 50µm diameter. The leads are twisted and connected to a di�erential ampli�er
located in the probe shaft, 20 cm apart from the probe head inside the vacuum vessel.
The whole Ḃ-probe, from the probe head to the ampli�ers, is fully shielded against
electric pickup. While the head is surrounded by a brass cylinder, the 4 twisted
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2.2 Magnetic probes

Figure 2.5: Design of a three-axis Ḃ-detector. The probe body, made of te�on, is shown
in a). It has two perpendicular oritented bore-holes with a diameter of d = 3mm, housing
the two small coils for the magnetic directions bx and by. The third coil for bz is split
up into two parts, which are integrated into the te�on body. A ready wound probe head
(b, middle), connected to the ampli�ers via 4 twisted pair lines, is electrically shielded
with a brass cylinder (b, right). The probe is isolated from the plasma by a ceramic tube
(b, left). A temperature sensor (PT100) for heat monitoring is located in the brass cylinder
(not visible).

coil leads run in a stainless steel tube which is connected to an aluminium box
housing the four ampli�ers. To prevent perturbation of the plasma by introducing
an electric conductor, all parts facing the plasma are covered with ceramic. The
cylindrical probe head including the ceramic has a diameter of d = 10mm and a
length of l = 18mm. In addition to the already mentioned parts it also contains
a temperature sensor to monitor the heat load and prevent the coils from thermal
damage. The leads of the four coils are connected to low-noise di�erential ampli�ers
of type THAT1512 via an input circuit, as shown in Fig. 2.6. Due to its parasitic
capacity, the coil is actually a parallel resonance circuit. Its resonance frequency is
smaller than 1MHz and must be damped to avoid a sharp resonance peak in the
sensitivity. One task of the input circuit is the damping of this resonance with the
two 1 kΩ resistors. Another task is the rejection of signal components at the plasma
generation frequency 13.56MHz. This is achieved with an LC low-pass �lter with
a cut-o� frequency of 1MHz, followed by two LC-absorption circuits at 13.56MHz
and 27.12MHz for the �rst and second harmonic. The �lter has a fully symmetric
design to be appropriate for the symmetric signal from the coil and the symmetric
input of the ampli�er.

The measured transfer function of the �lter is shown in Fig. 2.7. For frequencies up
to 1MHz, the ampli�cation is close to 1 and only a small phase shift ∆φ� π/2 is
introduced. At the absorption frequency f = 13.56MHz the attenuation is -95 dB
and at the second harmonic it is -69 dB.
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Figure 2.6: Electronic connection of one detection coil to the low-noise ampli�er. The
self-resonance of the coil is damped by two resistors with 1 kΩ. Additionally, a �lter is
integrated to reject the helicon source rf-frequency of 13.56MHz and its second harmonic.
The ampli�cation of the signal is set to 60 dB, allowing the direct connection of the output
to a data acquisition system without any additional external ampli�cation.
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Figure 2.7: Complex transfer function of the �lters used in-between the Ḃ-probe head and
the low-noise ampli�ers, one for each channel. A �lter consists of an LRC-lowpass with a
transit frequency of f = 1MHz, followed by two notch �lters at 13.56MHz and 27.12MHz.
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2.2.4 Calibration of the Ḃ-probe

The Ḃ-probe delivers four output voltages containing the information of the three-
dimensional magnetic �eld at the probe position. The frequency response of all
four coils is to be absolutely calibrated. To correct for any misalignment of the
coils inside the probe head, a directional calibration is done in a second step. The
sensitivity as frequency dependent function of a single magnetic sensor is given by

Sω = Uω/bω (2.14)

Assuming a time varying magnetic �eld in the direction of the coil surface normal
with a single Fourier component, b(t) = b0 exp(iωt) yields for the output voltage

U(t) = N dΦ/ dt = NAḃ(t) (2.15)

= NAiωb(t) ≡ Sωb(t) (2.16)

with the number of windings N and the e�ective area A as coil parameters. To
include deviations from the ideal case, the function Sω is recorded experimentally.
A typical calibration curve for the Ḃ-probe is shown in Fig. 2.8. The measured
sensitivity has a linear characteristic for frequencies in the range below 10 kHz, just
as in the ideal case. At higher frequencies, the self-resonance of the coil caused
by the inductivity in parallel to the parasitic inter-winding capacity determines
the sensitivity maximum at around 200 kHz. For even higher frequencies, Sω is
determined by the ampli�er characteristic since its bandwidth is limited to 1MHz.
This causes an attenuation in the amplitude and a phase deviation from the ideal
φ = π/2.

The above procedure of calibration via Sω is not convenient if incoherent signals
of the �uctuating magnetic �eld are considered. Instead, an integration over time
of the signal U(t) ∼ ḃ(t) prior to the frequency calibration can be done. From a
measured signal U(t), an integrated version U int is numerically obtained as

U int(t) =

t∫
0

U(t′) dt′ ↔ dU int

dt
= U(t) . (2.17)

To calibrate this signal, a sensitivity S int

ω can be de�ned in the same way as it was
done for U(t) in (2.14). The relation between the two sensitivities is found by Fourier
transformation of (2.17)

Uω =
1

2π

T∫
0

dU int

dt
e−iωt dt = iωU int

ω → S int

ω =
Sω
iω

. (2.18)
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Figure 2.8: Calibration of a used Ḃ-detector in terms of sensitivity and phase run in the
range from 100Hz. . .2MHz (blue). Integrating the timeseries prior to further processing
leads to a di�erent calibration (green) with almost no frequency dependency below 10 kHz.

The linear slope ∼ ω and the phase shift by π/2 of Sω do not occur for S int

ω . In the
ideal case, it is a constant. By integration of the signal from a Ḃ-probe, a signal
directly proportional to the magnetic �eld �uctuations is obtained. The conversion
to units of magnetic �eld is done by multiplication with a constant. For the Ḃ-probe,
the frequency characteristic of the complex S int

ω is included in Fig. 2.8. In the low-
frequency range f ≤ 10 kHz, the amplitude characteristic is almost constant with a
phase close to 0. The absolute value of the sensitivity here is S int

ω = 17V/T. This is
several orders of magnitude higher than Sω, which compensates the attenuation of
the signal by the integration.

The output voltage of an individual coil is in�uenced by the speci�c orientation of the
coil and the coil geometry. Hence, the direct use of the calibrated signals from the Ḃ-
probe is not accurate. The two mentioned e�ects are compensated by a directional
calibration tensor. The only requirement for this approach is the orientation of
the coil surface normals in such a way that they span a non-degenerated three-
dimensional space. The resulting magnetic �eld can be expressed as

bx = Sx1U1 + Sx2U2 + . . . SxnUn (2.19)

by = Sy1U1 + Sy2U2 + . . . SynUn (2.20)

bz = Sz1U1 + Sz2U2 + . . . SznUn , (2.21)

or in short
~b = Acal

~U . (2.22)

The number n of coils is four in the case of our Ḃ-probe. Each component of Acal

converts a voltage to a magnetic �eld and is thus a sensitivity. The tensor can be
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split into two parts

Acal = AdcalAfcal , (2.23)

where Adcal is a 3× 3 matrix for directional calibration and Afcal a 3× n matrix for
frequency calibration. The latter one has n nonzero elements which are derived
from the frequency calibration described above, one for each coil. Experimentally,
the matrix Adcal is obtained by comparing the measured magnetic �eld ~bmeas = Afcal

~U
with the theoretically derived �eld ~b of a well de�ned cylindrical test �eld. Since
this vector equation has three components and Adcal has 9 elements, three spatial
points of the test �eld have to be determined. They have to be chosen in such a way
that the involved magnetic �eld vectors span a non-degenerated three-dimensional
space to form 3 linearly independent equations. This can be written as b1x b2x b2x

b1y b2y b2y
b1z b2z b2z

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 b1mx b2mx b2mx
b1my b2my b2my
b1mz b2mz b2mz

 . (2.24)

The unknown directional calibration matrix is obtained by multiplying the inverse
of the matrix of the measured magnetic �eld bm from the right

Adcal = b̂ · b̂−1m . (2.25)

For this calibration, an azimuthal plane in front of the cylindrical coil is scanned
with the magnetic sensor with a spatial resolution of 1 cm. To ensure the linear
independence of the equations, three magnetic �eld vectors are chosen out of the
scanned plane, spanning a parallelepiped (~b1,~b2,~b3) with a volume above a certain
threshold. Adcal is calculated several times in this way to extract the error of this
procedure for every component.

An example of a calibration scan is given in Fig. 2.9. The diagrams in the middle
column show the calculated �eld. It has a maximum in the z-component along the
axis of the coil and �ips from positive to negative values for the perpendicular com-
ponents bx and by. The three components of the measured �eld in the �rst column
are shifted and tilted in comparison with the theoretical �eld and the perpendicular
components are exchanged. All these artifacts are automatically removed by the
robust directional calibration procedure including the correct order of the channels:
As shown in the right column the calibrated �eld well reproduces the theoretical one.
Since the calibration matrix Adcal is calculated from only three magnetic vectors out
of the plane, this procedure is not a �t from the measured to the theoretical derived
magnetic �eld.
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Figure 2.9: Directional calibration of three-axis Ḃ detector based on a comparison of
the measured and the calculated �eld of a cylindrical coil. In the left column, the three
measured magnetic components bx, by, bz are shown in an azimuthal plane in front of the
test �eld coil. The components of the magnetic �eld, calculated by the Biot-Savart law,
in the same plane are shown in the middle column. The components of the magnetic �eld
after the application of the calibration are shown in the right column.

2.2.5 Test of the Ḃ-detector

In addition to the sensitivity, the capacitive pickup rejection is crucial for measuring
small magnetic �elds in the plasma. The probe is therefore fully shielded as described
above. To measure the remaining e�ect of the pickup, the probe is placed in a
plate capacitor with an inter-plate distance of 15mm. Using an ampli�er, electric
�elds with 5V/cm are generated inside the capacitor in a frequency range up to
2MHz. The output voltage of the Ḃ-probe is shown in Fig. 2.10. It has a linear
slope up to f = 100Hz, saturates, and then decreases. The output voltage for a
magnetic �uctuation of 1µT of the respective frequency range is included to allow
for comparison. It represents a typical wave amplitude and is 20. . .40 dB larger than
the pickup. Although this is already a reasonable value for the signal-to-noise ratio,
the origin of measured pickup amplitude is most likely the magnetic �eld of the
electric wires connecting the capacitor. An estimation is included in Fig. 2.10. It
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considers the frequency response of the Ḃ-detector and the current into the capacitor
I = ωU/C. The measured signal agrees quite well with this estimate. Hence, the
real capacitive pickup is signi�cantly smaller than the measured values and can
therefore be neglected.
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Figure 2.10: Frequency resolved electrostatic pickup measurement (blue) of a Ḃ-probe in
an electric �eld of 5V/cm. For comparison, the expected output voltage for a magnetic
�eld of 1µT at the respective frequency is shown (green). Also included is the estimated
voltage output from the magnetic �eld generated by the currents into the test �eld capacitor
(gray).

A �rst test of the calibrated Ḃ-detector is shown in Fig. 2.11 . In Vineta, an
operation regime with coherent drift waves is found by variation of the ambient
magnetic �eld B0 and the neutral gas pressure p. Magnetic �uctuations are recorded
with Ḃ-detectors simultaneously at two separate spatial positions in the density
gradient. In the amplitude spectrum in Fig. 2.11 (a) the peak of the coherent drift
wave at a frequency f0 = 2.2 kHz is clearly separated from other signal components.
The cross phase in Fig. 2.11 (b) at that frequency is well de�ned. A second harmonic
at f1 = 4.4 kHz is observed with a smaller power spectral density. For comparison a
second time series with the same plasma conditions is recorded with one of the Ḃ-
detectors rotated by 180◦. The resulting power spectral density is slightly changed
only. The crossphase in the two measurements di�ers signi�cantly, i.e. a clear phase
shift about π is observed for f0 and f1. The observed phase shift after rotating the
probe demonstrates that electrostatic pickup can be neglected.
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Figure 2.11: Test of Ḃ-probe in the plasma. The detector is placed in the density gradient,
where a coherent drift wave at 2.3 kHz is observed with its higher harmonics. A second
measurement is recorded with the probe rotated by 180◦ (red line). (a) shows the power
spectral density for the two cases, (b) shows the phase of the magnetic signal relative to
the signal from a reference probe.

2.3 Langmuir probes

The low temperature plasma in Vineta is well accessible with Langmuir probes.
This diagnostic was proposed by Mott-Smith and Langmuir in 1926 [50] and is now
a standard method to measure di�erent plasma parameters [51], i.e. the plasma
density n, the electron temperature Te, and the plasma potential Φp. The principle
of Langmuir probes is based on a small electrode, introduced into the plasma. From
the measurement of the current-voltage characteristic the above plasma parameters
are obtained as follows. Quasineutrality ni ≈ ne is assumed with a thermalized
ion and electron population. The energy distribution function of the electrons is a
Maxwellian

f(v) = n

(
me

2πTe

)3/2

exp

(
mev

2

2kBTe

)
, (2.26)

Ions have a similar energy distribution function, but often with much smaller tem-
peratures Ti � Te [25]. In Vineta ion temperatures are in the range of 0.1 eV [52]
and electron temperatures are in the range 3-5 eV [53].

Ion saturation range

If the probe is biased negatively with respect to the plasma potential Φ, it repels
electrons and attracts ions. A sheath with an extend of the order of several Debye
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Figure 2.12: Measurement and evaluation of a Langmuir probe characteristic. The probe
is biased in the range Up = −100 . . . 100V. (b) the current �ow in the plasma is picked
up with a shunt resistor and recorded with a high impedance isolation ampli�er. The
obtained current-voltage characteristic (a) can be devided into 3 parts: the ion saturation
range (A), the electron current range (B) and the electron saturation range (C). For thermal
electrons the characteristic in the transition range is exponential. The inset of (b) shows
a semilogarithmic plot after subtraction of the ion saturation current.

length λD is formed. Inside the sheath, the probe potential is not shielded out and
almost all electrons are expelled. The ions are attracted by the negative potential
of the probe tip. The probe current, carried by the ions only, is given by the Bohm-
criterion for a stable sheath [54]

ji = 0.61nee

√
kBTe
mi

. (2.27)

The ion saturation current density ji is proportional to the electron density and the
square root of the electron temperature.

Electron current range

If the probe is negatively biased with respect to the plasma potential but in the
range of the potential equivalent of the electron temperature, electrons partly reach
the probe tip surface depending on their kinetic energy. The electron density is then
given by the Boltzmann equation
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ne = ne0 exp

(
U − Φp

kBTe

)
. (2.28)

Here ne0 is the electron density at the sheath edge. For a Maxwellian velocity
distribution function f(v), the electron current to a probe with surface S is

I(U) = −Sne(U)ev = −Sne(U)e

∞∫
0

vf(v) dv = −Sne0e
√

Te
2πme

exp

(
U − Φp

kBTe

)
,

(2.29)
The resulting exponential probe current characteristic I(U) is shown in Fig. 2.12 (a,
inset) for a typical plasma in Vineta. From I(U) the electron temperature Te
can be determined. According to [55] (2.29) can be rewritten for arbitrary energy
distribution functions as

I(U) = −2πe

m2
e

∞∫
eU

(W − eV )f(W ) dW , (2.30)

where W denotes the kinetic energy of the electrons W = mev
2/2. An anisotropy

is introduced in a magnetized plasma via a magnetic �eld B0. Here the sheath
has di�erent spatial extents parallel and perpendicular to B0. This is taken into
account in a kinetic probe theory by introducing di�erent energy dissipation lengths
for electrons parallel and perpendicular to B0 [56]. The probe current is expressed
as

I(U) = C

∞∫
eU

RLeWf(W ) dW , (2.31)

where RLe is the energy-dependent lamor radius of the electrons and C is a geomet-
rical factor depending on whether the probe is oriented parallel or perpendicular
to the magnetic �eld. This kinetic theory has been used to determine the electron
temperature for the magnetized plasma in Vineta with an assumed Maxwellian
energy distribution function.

Electron saturation range

If the probe is positively biased with respect to the plasma potential Φp, the probe
current is given by all electrons in the energy distribution function. In particular
for U = Φp (2.29) yields the electron saturation current

Ie,sat = −Sne0e
√

Te
2πme

. (2.32)
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Figure 2.13: Radial pro�les of (a) plasma density n, (b) electron temperature Te and (c)
plasma potential Φ for a helicon plasma with an ambient magnetic �eld of 48mT.

This of course an idealized description and is not observed in experiment. For
U > Φp, the current rises almost linearly with increasing voltage, as seen in Fig. 2.12
(range C). This is due to the growing sheath with increased voltage, which is not
considered in (2.32).

Probe measurements of plasma pro�les in Vineta

A Langmuir probe is placed on a positioning system to move the probe along the
radial coordinate of the plasma cylinder. At a chosen number of positions, current-
voltage characteristics are recorded and the plasma density, the electron temper-
ature, and the plasma potential are determined as described above. The density
pro�le n(r) in Fig. 2.13 (a) has a maximum n0 = 8.6 · 1018m−3 in the center and de-
creases at a distance of r = 70mm to 4.2 · 1017m−3. The temperature pro�le Te(r) in
Fig. 2.13 (b) is also peaked with a value of 3 eV in the center and 2 eV at r = 70mm.
The plasma potential in Fig. 2.13 (c) has only a weak radial dependence with values
between +10V and +12V. Such pro�les are typical for helicon discharges [40].

2.4 Interferometer

The heterodyne microwave interferometer used on Vineta measures the change in
optical path length for a microwaves beam directed perpendicular to the ambient
magnetic �eld. The probing wave propagates in the plasma as O-mode [57] with
the wave electric �eld directed parallel to B0. Thus, the probing wave has the same
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Figure 2.14: Principle of the microwave interferometer. The probing 160.02GHz beam is
mixed with the 159.90GHz reference twice, before and after passing the plasma. The phase
di�erence caused by the change in optical path length occurs in the 120MHz intermediate
frequency.

dispersion relation as a wave in an unmagnetized plasma [58]

k(ω) =
1

c

√
ω2 − ω2

p with ωp =

√
e2n

meε0
(2.33)

the plasma frequency. An O-mode with frequency ω propagates below the critical
density nc

nc =
ω2meε0

e
. (2.34)

The peak density Vineta is n = 2 · 1019m−3, which is equivalent to a plasma fre-
quency fp = 39.8GHz. The interferometer was chosen to operate at a signi�cantly
higher frequency f = 160GHz to avoid di�raction of the probing wave. The basic
setup of the interferometer is shown in Fig. 2.14. Two phase-locked harmonic signals
are generated with a small frequency di�erence. The �rst one with f = 159.90GHz
is used as reference with a phase at the input mixer M1 of

φ = k∆l1 − ω1t =
ω1∆l1
c
− ω1t . (2.35)

It is mixed with the second signal at f = 160.02GHz, which results in a harmonic
signal at f = 120MHz with the phase

∆φ1(t) =
ω1l1 − ω2l2

c
− (ω1 − ω2)t . (2.36)

The quantities l1 and l2 are the path lengths from the signal generators to the mixer
M1. The second signal at f = 160.02GHz is passed through the plasma as dispersive
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medium. The phase at the input of mixer M2 is the sum of phase shifts along the
distances ∆x, as illustrated in Fig. 2.14. This can be written in integral form as

φ2 =

x1∫
x0

k(x) dx− ω2t =

x1∫
x0

1

c

√
ω2
2 − ω2

p(x) dx− ω2t . (2.37)

Replacing the frequencies with the associated densities and expanding the square
root for small n/nc yields

φ2 =
ω2

2cnc

x1∫
x0

n(x) dx− ω2t . (2.38)

Thus, the phase di�erence in the measurement leg of the interferometer is

∆φ2(t) =
ω1l3 − ω2l4

c
− ω2

2cnc

x1∫
x0

n(x) dx+ (ω1 − ω2)t , (2.39)

with the path length l3 from signal generator S1 to the plasma and then further to
mixer M2, and l4 from S2 to M2. The two time-dependent phase di�erences ∆φ1

and ∆φ2 which are in fact harmonic signals at 120MHz are �nally passed to the
phase detector. It measures the time lag between zeros of the two signals, which is
proportional to the overall phase shift

∆φ = φ0 −
ω2

2cnc

x1∫
x0

n(x) dx . (2.40)

Despite an o�set φ0 due to di�erent signal path lengths, ∆φ is a measure for the
line-integrated plasma density. A typical time series of the interferometer signal is
shown in Fig. 2.15 (a). It shows the interferometer signal during the plasma pulse
spanning t = 100 . . . 500ms. For the times when plasma is turned on and o� the
interferometer signal is a step function with the line-integrated density as step hight
of
∫
n dl = 3.0 · 1017m−2. In Fig. 2.15 (b) this value is used to calibrate a radial

density pro�le measured with a probe measurement.

2.5 Alfvén wave excitation and detection

The investigation of Alfvén waves in the Vineta- plasma requires the generation
and detection of perpendicular magnetic �eld perturbations. The excitation system
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Figure 2.15: Plasma density measured with the interferometer and with a Langmuir probe.
The plasma is turned on and o� at 0ms and 1000ms, respectively, causing an 1 s-impuls in
the interferometer signal (a). The impuls height (green bars) is the line-integrated plasma
density, which is used to calibrate the plasma density pro�le measued with a Langmuir
probe (b) to absolute density values.

must be able to generate waves with amplitudes large enough to be detected after
propagation and damping with a reasonable signal-to-noise ratio. The detector used
for this purpose was discussed in Sec. 2.2. Subsequently the wave excitation system
is described.

2.5.1 Excitation antenna

The wave is excited by a magnetic �eld which is generated by an antenna located
in the plasma. To avoid large disturbances, it consists of two coils placed around
the plasma center, where the wave is to be launched. A three-dimensional sketch
of the two coils is shown in Fig. 2.16 (a).The antenna is made of d = 1.5mm copper
wire. The windings are insulated against each other and against the plasma with
ceramics. The distance between both loops is chosen to be 35mm to surround
the plasma column with a diameter about 30mm (cf. Sec. 2.3). Both loops have a
diameter of d = 34mm and are wound with the same orientation to act in the same
direction. The magnetic �eld of the excitation antenna in the plane indicated in the
sketch is numerically calculated using Biot-Savart's law for a nominal current of 1A.
The resulting magnetic �eld is shown in Fig. 2.16 (b) and (c). The main component
in the plasma center is in the y-direction with an absolute value of 104.7µT/A.
This value changes only slightly inside the antenna volume but strongly decreases
outside within a few centimeters. As shown below, wave lengths parallel to the
ambient magnetic �eld are in the range of meters, so the excitation antenna can
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Figure 2.16: (a) sketch of exciter antenna, consisting of two conductor loops and supply
lines. In the depicted plane, the magnetic �eld is calculated for I = 1A, shown in vector
�eld representation (b) and as absolute value (c).

be considered as a point source for those waves. The frequency range of wave
generation depends on the ion-cyclotron frequency and is chosen to be in the range
f = 0.1 . . . 1.3ωci to cover low-frequency e�ects ω � ωci as well as wave properties
around the resonance at ω ∼ ωci. For the three ion species considered, argon, helium
and hydrogen, the overall frequency range is 4 kHz . . . 2MHz, assuming an ambient
magnetic �eld up to B0 = 102mT. The broad frequency range, spanning almost
three decades, makes it necessary to use two di�erent ampli�ers and three di�erent
matching networks to operate the excitation antenna.

2.5.2 Low-frequency drive

In the low-frequency range up to 50 kHz, a stereo audio ampli�er (Omnitronic P3000)
with an output power of P = 3 kW at a frequency of f = 1 kHz in bridged mode is
used as drive. Its 4 Ω output impedance must be matched to the low impedance
of the exciter antenna with RDC = 4.48mΩ to ensure e�cient power coupling. It is
assumed that the dynamic resistance RAC is equal to the direct current resistance
RDC. The di�erence is the irradiated power, which was found to be neglegible. The
impedance matching is done with the network shown in Fig. 2.17 (a). Its main ele-
ment is an iron-core transformer with 158 windings on the primary and 12 windings
on the secondary side. The usage of a ferrite core transformer was considered but
not successful since all tested materials were driven into magnetical saturation at
the needed power levels. Besides matching the di�erent impedances, the purpose of
the network is to make a galvanic separation between the ampli�er and the exciter.
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Chapter 2: Diagnostics and signal processing

Figure 2.17: (a) Setup of excitation antenna and impedance matching network in the
frequency range up to 50 kHz. (b) The photography shows the switchable capacitor bank
with the row of di�erent oil paper capacitors (1) and the relays used as switches (2) with
an inter-contact distance of 2mm (inset) to prevent electrical breakdown in open state.

This turned out to be important since the exciter antenna is not perfectly insulated
against the plasma by the ceramic. If operated at a certain potential, the plasma
was found to be strongly perturbed. Thus, an electrically �oating exciter with its
potential determined by the plasma itself is an important requirement in the design
of the matching unit.

The transformer converts the peak output current of the ampli�er
Imax =

√
3 kW/4 Ω = 27.4Ae� by the transformation factor N1/N2 = 13.2, a

maximum current amplitude of 414A is measured in the antenna. This it is
somewhat smaller than the theoretically expected value of 511A due to ohmic
losses. The high current in the antenna can be achieved only by compensating
the inductive reactants of the transformer with the connected excitation antenna.
Otherwise the operation is limited by the highest ampli�er output voltage of 150V.
The inductivity of the antenna is L = 1.43mH, resulting in a voltage at the primary
transformer winding of U = ImaxωL = 3.5 kV for f = 10 kHz. By introducing a serial
capacity as shown in Fig. 2.17 (a), a resonance circuit is formed for matching. The
value of this capacitance depends on the frequency as C = 1/(4π2f 2L), resulting in
required capacitances in the range 2 nF . . . 8µF. This is achieved with 13 switchable
capacitors in a dual cascade spanning log10(2

13) = 3.9 decades. A photo of this
capacitator box is shown in Fig. 2.17 (b).

To allow automatic frequency tuning, computer controlled operation of the capaci-
tor bank is implemented by using high-power high-voltage relays as switches. The
resulting maximum current in the secondary winding of the transformer, which is
proportional to the generated magnetic �eld strength, is in fact frequency depen-
dent, as shown in Fig. 2.19. Up to 20 kHz, a magnitude of ≥ 10mT can be generated,
decreasing by approximately 2 orders of magnitude from 20 to 50 kHz. Reasons are
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2.5 Alfvén wave excitation and detection

Figure 2.18: Matching circuit used for the high frequency range 500 kHz . . . 2MHz (a).
The photography of the unit (b) shows the selenoid (3) and the tunable vacuum caps (1)
which are operated by stepper motors (2).

the frequency limitation of the audio ampli�er and the rising losses in the iron-core
transformer, which is actually optimized for 50Hz.

2.5.3 High frequency drive

An rf-ampli�er (ENI, 200W, 50Ω) is used to drive the exciter antenna at higher
frequencies up to 2MHz. The main element of the matching network is here a
ring-core transformer with acceptable losses for the present frequencies. The trans-
former again galvanically separates the antenna from the ampli�er and transforms
the impedance by a moderate ratio of N1/N2 = 60/10. The needed transfer ratio
of 50 Ω/4.48mΩ ≈ 10000 can not be accomplished by the transformer alone. In-
stead, the transfer ratio is achieved with a resonance circuit consisting of two vari-
able vacuum capacitators with C=1nF each and the primary winding of the trans-
former as inductivity. A sketch of the circuit is given in Fig. 2.18. The frequency
range of matching is f = 500 kHz . . . 2MHz. By using an additional inductance with
L = 4.7mH, a lowering of the frequency range to f = 70 kHz . . . 350 kHz is achieved.

The performance of the matching circuits for middle and high frequencies in terms
of the highest magnetic �eld in the exciter antenna is less good when compared to
the low-frequency circuit (cf. Fig. 2.19). For the high-frequency range one obtains a
magnitude of about 1mT. For the intermediate frequency range, the value is even
smaller. The main reasons are high losses the transformer and in the additional
inductivity.
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Figure 2.19: Maxiumum perturbation amplitude of AW excitation setup. To cover the
whole frequency range f = 4 kHz . . . 2MHz, three setups are used.

2.6 Wave �eld reconstruction and signal processing

Two wave phenomena are studied in the present thesis. Firstly drift waves
(cf. Sec. 3.2) are observed as density �uctuations ñ. They propagate in cylindri-
cal geometry in azimuthal direction. Secondly Alfvén waves propagate parallel to
B0 as perpendicular magnetic �eld perturbations (cf. Sec. 3.1).

Simultaneous sampling with probe array

One possibility to sample a wave �eld is the recording of the �uctuating quantity
simultaneously at di�erent spatial positions. In the case of drift waves, this is done
with an azimuthal probe array [41]. It allows one to record the wave dynamics in
space and time at a prede�ned radial position r. In the present work the probe array
covers 64 positions in the azimuthal direction. A typical coherent mode recorded
with this array is shown in Fig. 2.20 (a).

For t = 0ms, seven density maxima are observed in azimuthal direction. This yields
a mode numberm = 7, where the connection to the azimuthal wave vector is given by
m = kφr. The mode propagation results in a stripe pattern typical for a propagating
wave. The phase velocity is de�ned as vph = ω/k = rω/m. A convenient way to
extract the frequency as well as the mode number is a two-dimensional Fourier
transform of the wave data n(t, φ), de�ned as

n̂(ω,m) =
1

2πT

2π∫
0

T∫
0

n(t, φ)ei(mφ−ωt) dφ dt , (2.41)
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Figure 2.20: Azimuthally propagating drift mode with m = 7. The associated density
�uctuations presented in (a) are recorded with the azimuthal 64 probe array at a radial
position of r = 30mm. The discharge parameters are p = 0.23Pa and B0 = 48mT. Fourier
transformation of the recorded density n(t, θ) yields the frequency mode number spectrum
in (b).

where T is the duration of the transformed sample. The power spectrum is abtained
in the usual way from the Fourier transfor after suitable ensemble averaging [59].
The resulting frequency-wave number spectrum in Fig. 2.20 (b) has a dominating
peak at m = 7 and at f = 2.8 kHz, as expected. All other spectral components
are small. In more complex cases as just one coherent mode, the frequency-mode
number spectrum reveals the individual amplitudes of all spectral components.

Two-probe technique

For coherent waves it is unnecessary to employ a large number of probes. In this
case, the wave �eld can be probed point-by-point with one of two probes, where the
other one is �xed and serves as phase reference. This technique is applied to both
wave types. For drift waves, the reference signal is obtained from a �xed Langmuir
probe in the density gradient region and a movable Langmuir probe is scanned in
the azimuthal plane with a positioning system. For Alfvén waves, the Ḃ-probes
described in Sec. 2.2 are applied. Since the wave is externally excited, the reference
signal is derived from the periodically driven antenna current. The positioning of
the movable probe is done in the radial-axial plane, to record the axial propagation
direction.

An example for the observation of propagating Alfvén waves is given in Fig. 2.21.
The excitation antenna is placed on the axis of the cylindrical vessel at the one end
of the device, as shown in Fig. 2.21 (a). Alfvén waves generated at the antenna prop-
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Figure 2.21: (a) setup for spatially resolved measurement of Alfvén waves. The driven
wave is detected by a sensor mounted on a positioning system. Wave generation and data
recording are started via a trigger system during the discharge. (b) magnetic �uctuations
of the wave �eld, separated from other �uctuations by conditional averaging, have spatially
dependent amplitudes and phases.

agate mainly parallel to the ambient magnetic �eld. The associated magnetic �eld
�uctuations are recorded with a magnetic �eld sensor mounted on the rz-positioning
system. Repositioning of the sensor is done during the o�-times of the plasma, which
is generated with a duty cycle ≈ 2 s. Fig. 2.21 (b) shows three time series of by(t)
after preprocessing as described in Sec. 2.6. They are recorded at di�erent distances
to the launching antenna. The amplitude of by(t) decreases for increasing distances
z and the phase di�erence to the reference signal increases. Hence, the magnetic
�eld perturbation propagates from the antenna position as damped wave.

Signal processing of wave �eld data

The �rst step in the signal processing is the probe speci�c calibration (cf. Sec. 2.2.4).
After that, the signal from a probe contains besides the actual wave �eld �uctuations
other signal components. These may include broad-band noise and signals from
other simultaneously occuring events. Fourier decomposition provides a possible way
to separate those from the desired signal. Assuming a coherent wave, components of
the wave �eld are concentrated in a narrow frequency band with higher harmonics.
The amplitudes are usually higher than any present broad band �uctuations. One
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Figure 2.22: E�ect of conditional averaging. Within the original time series (a) of signal
(blue) and reference (red), trigger points are detected at a certain level of the reference.
They de�ne time segments of the signal which are to be averaged, shown in (b), with a
shorter time base. In (c), the spectra of the original time series (blue) and the conditional
averaged one (green) are compared.

method to separate the wave �eld from other �uctuations is to consider only the
spectral peak at the excitation frequency ω0

bω0
j =

1

T

T/2∫
−T/2

bj(t)e
−iω0t dt jεx, y, z . (2.42)

The recorded time series bj(t) is reduced to a single complex number bω0
j with ampli-

tude and phase relative to the reference signal. T is the time length of the recorded
time series and de�nes the band width of this narrow band pass �lter as bin width
of the Fourier transform ∆f = 1/T .

Another possibility to distinguish between wave �eld and other signal components
is conditional averaging, that is applied in the time domain [60]. It is not restricted
to harmonic signals, the only requirement is a repeatitive wave form in time. A
trigger condition in terms of an amplitude window around integer multiples of the
standard deviation σ is applied to the reference time series Uref(t). It de�nes a series
of discrete trigger times t0 . . . tN . Segments around them ti −∆t/2 . . . ti + ∆t/2 are
expected to contain the repeated wave form in the reference as well as in the signal
Usig(t), the latter possibly attenuated and time shifted. Averaging yields

U(t) =
N∑
i=1

Usig

(
ti −

∆t

2
. . . ti +

∆t

2

)
,
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a new time series of length ∆t containing only signal parts coherent with the initial
wave form. This process is visualized for the Alfvén wave experiment with excita-
tion antenna and detector positioned �eld-aligned at x = 0, y = 0 and ∆z = 190 cm
in Fig. 2.22 (a) and (b). The trigger level is set to 1.0σ with a segment length of
∆t = 200µs. The spectra of the original signal and the conditional averaged signal
are compared in Fig. 2.22 (c). Although the component of the original time series
at the wave excitation frequency fexc = 30 kHz is dominant, a broad spectral back-
ground is present, mainly in the range below 10 kHz. This corresponds to the jumpy
run of the sinusoidal time series in Fig. 2.22 (b). Conditional averaging leads to a
strong suppression of these low frequency parts, as can be inferred from the spec-
trum. The absolute value of the main component, on the other hand, is unchanged.
Hence, conditional averaging is equivalent to narrow bandpass �ltering.
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Chapter 3

Theoretic background

3.1 Alfvén waves

Alfvén waves are observed in magnetized plasmas as magnetic �eld perturbations
that propagate along the ambient magnetic �eld B0. The wave frequency ω is
restricted to be smaller than the ion-cyclotron frequency ωci = eB0/mi, at which
Alfvén waves experience a resonance. This wave type was theoretically predicted by
Hannes Alfvén in 1942 [10] using a plasma �uid description. Alfvén waves are not
only observed in plasmas but may also occur in conducting �uids. In fact the �rst
experimental observations were made in liquid mercury [61, 62] and liquid sodium
[63]. Alfvén waves are observed in magnetized plasma experiments [32, 64, 65] and
in space plasmas [66�68].

3.1.1 Ideal MHD

Alfvén waves (AWs) can be described within the framework of the ideal MHD model
[1, p.95]. The plasma is treated as a conducting �uid with zero resistivity. The
basic equations are the linearized �uid equation of motion with neglected convective
derivative and the generalized Ohm's law

ρ
∂~v

∂t
= ~j × ~B0 ; ~E + ~v × ~B0 = 0 . (3.1)

The �uctuating quantities are the velocity of the plasma ~v, the current density ~j,
and the electric �eld ~E. The mass density ρ and the ambient magnetic �eld ~B0 are
constant quantities. The gyration of ions is not included in the ideal MHD picture
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but signi�cantly in�uences the properties of AW especially close to the resonance
at ωci [69]. Hence, the ideal MHD-description is valid only in the limit ω � ωci.
The system in (3.1) is closed by Faraday's law and Ampère's law (with neglected
displacement current 1/c2∂ ~E/∂t).

~∇×~b = µ0
~j (3.2)

~∇× ~E = − ∂~b

∂t
. (3.3)

~b denotes the �uctuating part of the magnetic �eld ~B = ~B0+~b. The resulting system
of four coupled �rst-order linear di�erential equations with constant coe�cients can
be solved with a plane wave ansatz

~A(~r, t) = ~A0 e
i(~k·~x−ωt) , (3.4)

where ~A is any of the �uctuating quantities magnetic �eld ~b, electric �eld ~E, or
current density ~j. Choosing the ambient magnetic �eld B0 in z-direction, without
loss of generality Eqs. (3.1) read to be

−iωρvx = jyB0

iωρvy = jxB0

vz = 0
;

Ex = −vyB0

Ey = vxB0

Ez = 0
. (3.5)

Eleminating the velocity components leads to

−iωEy/v2A = µ0jy (3.6)

−iωEx/v2A = µ0jx . (3.7)

Here, the Alfvén velocity is introduced as

vA =
B0√
µ0ρ

. (3.8)

To express jx and jy in terms of the electric �eld, Ampère's and Faraday's law in
Eqs. (3.2, 3.3) yield

µ0jx = i(kybz − kzby)
µ0jy = i(kzbx − kxbz)
µ0jz = i(kxby − kybx)

;
−kzEy = ωbx
kzEx = ωby

kxEy − kyEx = ωbz

. (3.9)

(3.6) and (3.7) read

(k2y + k2z − ω2/v2A)Ex = kxkyEy
(k2x + k2z − ω2/v2A)Ey = kxkyEx

. (3.10)
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At this point, it is convenient to introduce the normalized frequency f and the
normalized wave number α as

f = ω/ωci and ~α = ~kvA/ωci . (3.11)

With these normalized quantities (3.10) can be written as

Ex
Ey

=
αxαy

α2
y + α2

z − f 2

Ey
Ex

=
αxαy

α2
x + α2

z − f 2
. (3.12)

Eliminating Ex/Ey leads, after some straightforward manipulations, to an implicit
relation for f and α with two solutions

(f 2 − α2
z)(f

2 − α2) = 0 → α2
z = f 2 ∨ α2 = f 2 . (3.13)

In physical quantities, the solutions read to be

ω/k = vA cos θ
ω/k = vA

with vA =
B
√
µ0ρ

. (3.14)

Here, the angle θ between the wave vector ~k and the ambient magnetic �eld ~B0 is
introduced, which allows one to express the parallel component of the wave vector as
kz = k cos θ. Eqs. (3.14) represent the dispersion relation for low frequency waves in
a homogeneous plasma. There are two branches: the �rst one is the so-called shear
AW, and the second one is the compressional or fast AW [18]. The phase velocity
vph = ω/k is always larger for the fast AW than for the shear AW unless the wave
vector ~k is parallel to B0 where the two velocities become equal. The group velocity
of a propagating wave is de�ned as

~vg =
∂ω

∂~k
= ~ex

∂ω

∂kx
+ ~ey

∂ω

∂ky
+ ~ez

∂ω

∂kz
, (3.15)

yielding for shear AWs
~vg = ~ezvA . (3.16)

Hence, wave packets propagate at the Alfvén velocity vA along the ambient magnetic
�eld. Since Eqs. (3.13) are quadratic in ω, there exist two solutions ~k = ±vA~k. The
physical meaning is that there is no di�erence between wave propagation along or
opposite to the magnetic �eld direction. The non-vanishing phase velocity perpen-
dicular to the ambient magnetic �eld B0 describes shear AWs on di�erent magnetic
�eld lines with phase di�erences. A wave �eld of this form is equivalent to a wave
propagating under an angle θ, although there is no �ow of information across the
magnetic �eld. In the case of fast AWs, the group velocity is ~vg = (v2A/ω)~k. An
initial perturbation will propagate isotropically along and across the magnetic �eld
with an absolute value vg = |vA|.
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Figure 3.1: (a) Real part of dispersion relation kr(ω) for shear Alfvén waves (blue), fast
Alfvén waves (green), and for both waves in the low-frequency limit ω � ωci (dashed). (b)
Imaginary part of dispersion relation ki(ω) expressed as damping length d = 1/(ki). For
fast waves ki ≡ 0→ d =∞.

3.1.2 MHD with Hall term

To describe AW in a frequency range close to the ion-cyclotron frequency, the ideal
MHD model must be extended by considering the Hall term in the generalized Ohm's
law [18]

~E + ~v × ~B =
1

ne
~j × ~B . (3.17)

With this extension, the model is the simplest non-dissipative two-�uid description
of a plasma [70]. The Hall term describes electric �elds arising from the de�ection of
ions and electrons to opposite directions when they are located in a current �lament
immersed in a magnetic �eld. This e�ect is mainly attributed to the ions, since they
are much heavier than the electrons and have a larger larmor radius. In this way
the ion gyro motion enters the model. The Hall-MHD description was successfully
applied to fusion [71] and space plasmas [72], where processes at frequencies close
to the ion-cyclotron resonance are considered.

The steps to derive the dispersion relation are the same as for the ideal MHD. The
details of the calculation are compiled in AppendixA. The result is an implicit
relation in the form of a polynomial of 4th degree for f and α

f 4 − f 2(α2 + α2α2
z + α2

z) + α2α2
z = 0 . (3.18)

It is possible to solve the equation analytically. Only the special case of propaga-
tion parallel to the magnetic �eld α = αz will be further discussed. The dispersion
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relation can be speparated into two solutions

f 4 − f 2(2α2
z + α4

z) + α4
z = 0 (3.19)

→ α2
z1 = f 2/(1− f) (3.20)

∨ α2
z2 = f 2/(1 + f) . (3.21)

The result is similar to the ideal MHD dispersion (3.13), but with correction terms
of the type 1/(1± f). A diagram of the two solutions for shear and fast AW is shown
in Fig. 3.1 (a). For shear AW, the additional factor 1/(1− f) has a pole for f = 1 or
ω = ωci. At this frequency, the wave vector diverges k →∞ and the wave length is
in�nitely short λ = 0, i.e. the shear AW experiences a resonance at the ion-cyclotron
frequency. In contrast, the 1/(1 + f) correction in the dispersion relation of fast
AWs changes the ideal MHD dispersion only slightly. Instead of a linear dependence
k(ω) = ω/vA, the wave number k is now quadratic in ω with reduced k-values for
a given frequency. (3.19) �nds the dispersion relation implicitely. Solutions for ω
or for k have di�erent physical picutures: Prede�ning a real-valued k results in
a possibly complex frequency ω = ωr + iωi, which represents a temporally damped
wave with a damping time 1/ωi. Conversely, a complex wave vector k = kr + iki is
obtained assuming a real-valued frequency ω. The wave is then spatially damped
with a damping length of d = 1/ki. For fast or shear AWs in the low-frequency
limit the frequency and wave number are both real-valued. Only for frequencies
ω ≥ ωci the AW-dispersion relation for shear AWs (3.20) yields either an imaginary
k or ω. Considering a real-valued frequency, the wave is then evanescent with a
damping length d = 1/ki, as shown in Fig. 3.1 (b). The asymptotic behavior of d for
large frequencies f � 1 is determined by neglecting the unity in the denominator of
(3.20)

α2
z = f 2/(1− f)

f�1−→ −f ↔ αz = i
√
f . (3.22)

By using the normalization introduced in (3.11), the damping length reads

d =
1

ki
=

vA
ωciIm(αz)

f�1−→ vA√
ωciω

. (3.23)

This expression resembles the skin depth, de�ned as δ = c/ωpe, with c being the
speed of light in vacuum and ωpe the electron plasma frequency. In fact, one would
expect a damping length δ for waves at high frequencies ωci � ω � ωce. The plasma
shields the electric �eld of a wave with the mobile electrons. In the framework of
the Hall-MHD model, the electron-inertia term is neglected, so the skin depth here
is attributed only to the ion motion resulting in (3.23).

An important property of electromagnetic waves in general is their polarization,
which is often used to identify an observed wave type [8, 24]. The polarization
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Figure 3.2: (a) Schematic rotation direction of electrons and ions in a magnetic �eld. (b)
Perpendicular components of the electric �eld for clockwise and counter-clockwise rotation.

is de�ned as direction of the E-�eld vector of the wave, expressed as ratio of the
perpendicular vector components. Given by the corresponding dispersion relation
(3.19), the ratio of the wave electric �eld components in (A.15) for AWs propagating
along the ambient magnetic �elds reads to be

Ex
Ey

= i
α2
zf

α2
z − f 2

= i
f

1− f 2/α2
z

=

{
+i shear AW
−i fast AW

. (3.24)

A purely imaginary ratio Ex/Ey refers to a circularly polarized wave with a rotating
wave �eld vector. A value of Ex/Ey = +i means left-hand polarization (direction of
ion gyration), and Ex/Ey = −i means right-hand polarization (direction of electron
gyration, cf. Fig. 3.2). We conclude, shear AWs are left-hand polarized and fast AW
are right-hand polarized.

3.1.3 MHD with Hall term and resistivity

No dissipation mechanism is included in either the ideal MHD or the Hall-MHD
model. This is not an appropriate description of low-frequency waves in Vineta,
since its plasma is typically characterized by a high collision frequency (cf. Sec. 3.2).
At least perpendicular to B0, the resistivity must be considered in the model since
the ion-cyclotron frequency is three orders of mangitude smaller than the Coulomb
collision frequency between electrons and ions. The resistivity is included in the
generalized Ohm's law as a non-isotropic quantity

~E + ~v × ~B =

 η 0
η

0 0

~j +
1

ne
~j × ~B . (3.25)
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Figure 3.3: Dispersion relation k(ω) for shear Alfvén waves (blue) and fast Alfvén waves
(green) in the extended MHD theory for di�erent resistivities. Shown are (a) the real part
of the dispersion kr and (b) the imaginary part expressed as damping length d = 1/(iki).

Finding a solution of the four coupled di�erential equations is similar to ideal MHD
(cf. AppendixA). The result is the dispersion relation

f 4 +f 3iR(α2 +α2
z)−f 2(α2α2

z +α2 +α2
z +R2α2α2

z)−2fiRα2α2
z +α2α2

z = 0 , (3.26)

with R denoting the normalized resistivity

R =
ηωci
µ0v2A

. (3.27)

In comparison to the collisionless Hall-MHD decription, three new terms are present.
As polynom of fourth degree, four solutions are expected. Since analytically cum-
bersome to obtain, the branches for shear and fast AWs are numerically calculated.
Fig. 3.3 shows the dependency of the dispersion relation on the resistivity R for
propagation along the magnetic �eld (θ = 0). At low frequencies both shear and
fast AW experience shorter damping lengths for increased resistivity. At ω = ωci
moderately damped shear AWs with R = 0.03 have a clear minimum of the damp-
ing length [branch 1 in Fig. 3.3 (b)], which vanishes for increased plasma resistivity
(branch 2 and 3). The shear AW dispersion relation ω(k) in Fig. 3.3 (a) remains al-
most unchanged at low frequencies ω < ωci by a relatively small resistivity R = 0.03
(branch 1). The maximum wave number k is �nite, associated to a frequency slightly
below the ion-cyclotron resonance ωci. The wave number k is not anymore purely
imaginary for ω > ωci. Resistive shear AW propagate at higher frequencies than ωci,
although they are then strongly damped. These e�ects get more pronounced for in-
creased resistivity. Especially the shift of the highest possible k to lower frequencies
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(green) in extended MHD theory for variation of the resistivity. k as input parameter is
real, ω as result complex. The �gure shows the real parts of the dispersion ωr(k) as solid
lines and the imaginary parts ωi(k) as dashed lines.

becomes more obvious with increased R and may be interpreted as lowering of the
resonance frequency. In the paper of Müller [64] this e�ect is discussed in detail and
attributed to the additional mass loading of ions by ion-neutral collisions. In con-
trast to shear AWs, resistivity alters the dispersion of the fast AW only slightly. Note
that fast AWs have a higher wave length and are less damped for all frequencies, if
compared to shear AWs.

In Fig. 3.4 the dispersion relation for shear and fast AW is shown as function ωr(k)
with a real-valued wave number k. The values for R as parameter are the same as in
Fig. 3.3. The imaginary part of the dispersion relation is now expressed as ωi, which
can be physically interpreted as an inverse damping time. The phase velocity in the
low wave number limit is vA, which is concurrent with the ideal MHD description.
For higher wave numbers, the frequency stays relatively constant ω ≈ ωmax close to
the ion-cyclotron resonance frequency. The value for ωmax decreases for increasing
resistivity. This can be interpreted again as lowering of the wave resonance frequency
for increased plasma resistivity. The damping time, on the other hand, decreases
with increasing resistivity, as expected.

The propagation angle θ of the wave with respect to the ambient magnetic �eld B0

has signi�cant in�uence on the dispersion relation of AWs. The cases θ = 0◦, 50◦,
and 65◦ are shown for a R = 0.1 in Fig. 3.5. In the limit of small frequencies ω � ωci,
the result of the ideal MHD description (cf. Eq. 3.14) is reproduced: For fast AWs,
the slope of ω(k) and thereby the phase velocity does not change for di�erent angles
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Figure 3.5: Dispersion relation k(ω) for shear Alfvén waves (blue) and fast Alfvén waves
(green) in extended MHD theory for variation of the angle θ between propagation normal
and the ambient magnetic �eld. The �gure shows a) the real part of dispersion kr and b)
the imaginary part expressed as damping length d = 1/ki for a small resistivity of R = 0.1.

(isotropic propagation). In the case of shear AWs the phase velocity decreases for
increasing propagation angles, reaching vph = 0 for θ = 90◦. Hence, shear AWs do
not propagate across the ambient magnetic �eld. For higher frequencies ω ≈ ωci, the
propagation properties of the two wave types change signi�cantly. In Fig. 3.5 (a),
a small θ-dependency of vph is observed for fast AW, breaking the isotropy of non-
resistive fast AWs. Shear AWs have a non-zero phase velocity even in the limit
θ → 90◦ (not shown) and can propagate across the ambient magnetic �eld. However,
the damping is increased for larger angles θ ( Fig. 3.5 (b).

3.1.4 Spatial structure of Alfvén waves

The discussed dispersion relations de�ne a solution of the initial system of equa-
tions (3.1), (3.2), (3.3). In the following it is numerically solved on a grid in a
plane perpendicular to B0 at a distance ∆z = 2m from the excitation point. The
dimensions of the plane are chosen to be 4m x 6m. This is much larger than any
available laboratory plasma experiment. In the Hall-MHD model an in�nite plasma
extent is assumed and the extended spatial range is used to include some typical fea-
tures of the waves. However in a realistic laboratory environment AWs are spatially
limited by the plasma boundaries not considered in the model. The space-time evo-
lution of any �uctuating quantity of an AW is described by the plane wave ansatz in
(3.4). A vertically �uctuating magnetic �eld by is considered at the coordinate origin
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x = y = z = 0mm. The amplitude was chosen to be by = 200µT, which is about
the experimental excitation amplitude (cf. Sec. 2.5.2). For a point ~r = (x, y, z)′ the
y-component of the �uctuating magnetic �eld is calculated with the plane wave
ansatz. The wave vector ~k depends on the excitation frequency ω and on the prop-
agation angle θ. For each point under consideration, it has to be derived separately
as

~k(θ) = |k(ω)| · ~r
r

with θ = arctan
(√

x2 + y2/z
)

. (3.28)

The magnitude of the wave vector |k(ω)| is given by the dispersion relation. For
the calculation, the shear AW branch of (3.26) is used. It is obtained from the Hall-
MHD model including resistivity. The resulting magnetic �uctuation component
by(x, y, t) is shown in Fig. 3.6 (b) for three di�erent time instants. The maximum
amplitude is 8.7µT. For 0µs, by has the largest value of by = 5.5µT in the center
of the plane; it is circular symmetric. In x-direction at y = 0, the maximum in the
center is followed by a minimum of by = −3.8µT at x = 1.18m and by a second
local maximum with by = 1.02µT at x = 1.92m. The component by decreases in
amplitude and wave trains follow each other with decreasing distance.

Both e�ects can be attributed to the dependence of the wave vector k(θ) on the
propagation angle. It is found to have a value of k = 2π/1.71m + i/0.65m in
the center of the plane, which means that the wave is damped to a fraction of
exp(2/0.65) = 0.045 of its original value. For the next maximum at x = 1.92m,
the wave vector has a larger value of k = 2π/1.47m + i/0.35m. Due to the
propagation angle of arctan(1.92/2) = 44◦, the wave length gets smaller and the
damping larger (cf. Fig. 3.5). Together with the larger propagation distance of√

22 + 1.922m = 2.77m, the wave is strongly damped to a fraction of 0.003 of the
excitation amplitude while the phase is changed by 2π in comparison with the prop-
agation in the center. Since k increases with increasing angle θ, the lengths of wave
trains in perpendicular direction are consequently decreasing.

From by, the electric �eld in x-direction can be estimated with (3.9) as

Ex = by · ω/kz(ω) . (3.29)

For a given frequency, the parallel wave number is independent of the propagation
direction. The electric �eld Ex(x, y) in Fig. 3.6 (d) has consequently the same spatial
structure as by. The maximum value in the center of the plane for t = 0µs is
0.43V/m.

The other perpendicular component of the electric �eld Ey is calculated with (A.14).
In the simplest case of ideal MHD with no resistivity, it can be simpli�ed to

Ey/Ex = ky/kx . (3.30)
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Figure 3.6: Dynamic �elds and currents of an AW obtained with the Hall-MHD descrip-
tion including resistivity. The parameters of the model are the frequency f = 35 kHz
with f/fci = 0.91, the plasma density n = 5 · 1018m−3, the ambient magnetic �eld
B0 = 100mT, and the normalized resistivity R = 0.1. The calculated plane has a distance
of ∆z = 2m from the excitation in the form of a prede�ned by-perturbation of 200µT.
From top to bottom, the quantities are the magnetic �eld components (a, b, c), the per-
pendicular electric �eld components (d, e), and the perpendicular and parallel currents (f,
g). The time evolution is shown for the three time instants with ∆t = f−1 = 5.0µs.
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This simple expression already depends on the speci�c point in the plane since
kx = kx(x) and ky = ky(y). The resulting �eld Ey(x, y) is shown in Fig. 3.6 (e). It
has no longer the symmetry features of Ex, instead it displays an elongated structure.
Hence, the perpendicular wave lengths depend on the chosen direction within the
plane although the distances between maxima and minima are comparable to those
of Ex and by. The maximum value of Ey is 0.43V/m as for Ex. The relation between
Ey and bx is (cf. Eq. 3.9)

bx = −Ey · kz(ω)/ω . (3.31)

It is again a complex factor that is independent of the position in the plane and
results in the same structure for bx(x, y) in Fig. 3.6 (a) as for Ey(x, y) in Fig. 3.6 (e).
The maximum value of bx is 8.1µT, which is in the same range of the corresponding
component by.

The third component of the magnetic �eld bz(x, y) in Fig. 3.6 (c) is obtained from
the perpendicular components of the electric �eld (cf. Eq. 3.9)

bz =
kx
ω
Ey −

ky
ω
Ex . (3.32)

The resulting �eld has a complex spatial structure. The maximum value is
bz = 2.5µT and is, thus, signi�cantly smaller than that for the perpendicular mag-
netic �eld components. For each time instant, regions of positive and negative bz
with a shape of two intersecting spirals can be distinguished. The amplitudes of the
spirals decrease for increasing distance from the center of the plane.

The �uctuating magnetic �eld components are associated with currents given by
Ampéres law (3.2). The parallel current amplitudes jz(x, y) and the perpendic-
ular current amplitude j⊥ =

√
j2x + j2y are shown in Fig. 3.6 (f) and (g). For the

parallel component jz(x, y) in Fig. 3.6 (g) a similar spiral-like shape as for bz is ob-
tained. The parallel current is bipolar and has a maximum of jz = ±0.96mA/cm2.
The current density decreases signi�cantly for larger distances from the center of
the plane. At x = 1.53m, it is jz = 0.50mA/cm2 and decreases at x = 2.64m
to jz = 0.06mA/cm2. This decrease re�ects the increased damping of the shear
AW at large propagation angles θ. The same holds for the perpendicular current
j⊥ =

√
j2x + j2y (Fig. 3.6 (f). It is found to have a maximum in the center with a peak

value of j⊥ = 2.83mA/cm2, decreasing with a similar slope as the parallel current
for increased distance from the propagation-axis. The peak value on-axis is signi�-
cantly larger than that of the parallel current. This underlines the important role of
j⊥ when approaching ωci. A more comprehensive discussion of the current structure
of AWs follows in the subsequent Sec. 3.1.5. The Ez component of the electric �eld
is not shown since it vanishes due to zero parallel resistivity in (3.25).
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Figure 3.7: The dynamic of parallel and perpendicular currents of shear AWs as obtained
from the Hall-MHD description. The parameters of the model are the same as in Fig. 3.6.
(a) The parallel currents have the form of a rotating spiral. (b) Vector �eld representation of
j⊥ with isolines of j‖ (threshold j‖ = ±0.23mA/cm2). (c) The amplitude of perpendicular
currents j⊥ peaks in the center.

3.1.5 Shear AW as solution of Hall-MDH model

The solutions of the MHD-equations reveal details of the AW propagation. For
a given frequency, all electric and magnetic wave �elds can be derived from one
�uctuating wave quantity as shown in the last Sec. 3.1.4. In this way an AW is fully
determined by the current �ows, i.e. electron current parallel and ion polarization
current perpendicular to the ambient magnetic �eld.

The parallel current pattern shown in Fig. 3.6 (f) has a spiral structure with two
distinct regions: one with �ow in the direction of B0, the other with �ow in the
opposite direction. The spiral current structure rotates in the xy-plane clockwise,
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like the ion gyro direction, characterizing the wave as L-wave. The time depen-
dence of j‖(t) that yields E⊥(t) is mainly due to the rotation of the structure. Its
shape does not signi�cantly change during one period. The decrease of the parallel
currents in the outer regions is due to increased damping of the shear AW at large
propagation angles θ. The damping length for θ = 0 is d = 2.46m, decreasing for
increasing θ. Due to the point source at z = 0, the pattern forms a cone along the
ambient magnetic �eld in which the shear AW propagates. These so-called Alfvén-
cones are a well-known property [73]. The perpendicular currents j⊥ have a peak
value of 2.83mA/cm2. This is approximately three times larger than that of the
parallel current for the chosen excitation frequency of ω/ωci = 0.91. The pattern of
perpendicular current amplitude |j⊥| in the azimuthal plane at z = 2m is almost
rotationally symmetric, without any time dependence. For the time instant t = 0µs,
the direction of the perpendicular currents can be inferred from Fig. 3.7 (b). The
spiral-shaped parallel current structure are superimposed on the vector representa-
tion of j⊥ as equicontours. For t = 0ms the local velocity is directed upwards at
position A and downwards at position B. The parallel current �ow at these points
is out of the plane in A and into the plane in B. In contrast, the local perpendicular
currents �ow into the same direction (from left to right) at the two points, as can
clearly be inferred from Fig. 3.7 (b).

3.1.6 Shear and fast AW as solution of Hall-MHD model

Similar to the previous section the Hall-MHD model with resistivity gives insight
into the structure of fast AWs. The only di�erence is the use of the fast AW branch
of the dispersion relation (3.26) to obtain k(ω) in (3.28). All other steps are the
same. The result is shown in Fig. 3.8 (b). For comparison the parallel current of
shear AWs is shown in Fig. 3.8 (a). All model parameters are the same as so far
discussed, the only di�erence to Fig. 3.6 is the enlarged spatial area with x = ±12m
and y = ±7m to cover signi�cant features of the two wave types.

For the fast AW, the current pattern has a similar shape, but di�erent properties.
First of all, the spatial dimensions are larger as expected from the smaller wave
vectors in the dispersion. The �rst two maxima along the x-axis at y = 0m have a
distance of 1.14m for shear AWs and 4.39m for fast AW. The spatial orientation of
the spirals is reversed for fast AWs and the whole structure rotates counterclockwise
as expected (cf. Eq. 3.24). The absolute parallel current density for fast AWs has
a maximum of 15.5mA/cm2, located close to the boundary. Fast AWs are much
less damped compared with shear AWs (Sec. 3.1.3), which explains the di�erence in
the absolute amplitude of both wave types by one order of magnitude. In contrast
to shear AWs fast AWs propagate isotropically along and across the ambient mag-
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Figure 3.8: Time evolution of parallel currents of shear AW (a) and fast AW (b), calculated
with the Hall-MHD model including resistivity. The parameters of the model are the same
as in Fig. 3.6.

netic �eld (cf. Eq. 3.14). Therefore the MHD-solution does not show vanishing wave
amplitudes as for shear AWs at larger distances > 1m from the axis.

3.2 Drift instability

Bounded plasmas have gradients in plasma parameters like density or temperature.
Those gradients are sources of free energy, able to drive a variety of plasma instabil-
ities [74, 75]. Examples in magnetized plasmas are Kelvin-Helmholtz and Rayleigh-
Taylor type instabilities [76, 77] as well as the drift instability [78�80]. Drift waves
are of special importance since they occure in the edge regions of thermonuclear fu-
sion plasmas [81, 82]. They are candidates for explaining the anomalous cross-�eld
transport [83]. Plasma �uctuations due to drift instability were observed �rst in lin-
early magnetized plasmas [84�86]. In a comprehensive analysis of the �uctuations
observed in the plasma of the Vineta experiment [53] drift waves were identi�ed
as the instability mechanism [87]. In the following sections, the physical mechanism
and a simple model of the drift instability are introduced.
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Chapter 3: Theoretic background

Figure 3.9: Schematic of the drift wave mechanism. The parallel electron current is
associated with an ion polarization current in perpendicular direction (a). The resulting
potential perturbation +φ causes an ~E × ~B drift (b).

3.2.1 Drift wave instability mechanism

The basic mechanism of the drift instability can be explained in local slab geometry.
The starting point is a positive density perturbation ñ > 0 located in the gradient
region of the background density n0(r), as illustrated in Fig. 3.9 (a). The gradient
of the plasma density parallel to the magnetic �eld is a driving force for di�usion
of plasma into the regions with lower density. Due to their high mobility, this
process is much faster for electrons than for ions resulting a �uctuating positive
space charge φ̃ > 0. This limits the free electrons motion and drives at the same
time a perpendicular ion polarization current, which is proportional to the time
derivative of the plasma potential

jpol =
mi

eB2
~̇E⊥ =

mi

−eB2
∇⊥φ̇ . (3.33)

This current also exists for electrons but is negligible due to their small mass. The
space charge is associated with a perpendicular electric �eld ~E = −∇⊥φ, as illus-
trated in Fig. 3.9 (b). The resulting E ×B drift convects dense plasma in the density
gradient radially outwards. Due to the convection, the initial density perturbation
propagates perpendicular to the density gradient in electron diamagnetic drift di-
rection. The phase lag between density and potential perturbation is crucial for the
evolution of the instability as discussed below.
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3.2 Drift instability

3.2.2 Basic equations of two-�uid theory

In the two-�uid plasma description [88], drift waves can be described using the
continuity equation for ions and electrons

∂nα
∂t

+∇ · (nα~v) = dtnα + nα∇ · ~v = 0 (3.34)

and the momentum transport equations for ions and electrons

nmα dt~vα = qn( ~E + ~vα × ~B)−∇p− nναnmα~vα (3.35)

with αε{e, i}. (3.35) balances for each species the acceleration on the left hand side
with the acting forces (Lorentz force, pressure gradient, friction with neutrals) on
the right hand side. The charge q is ±e, assuming singly ionized ions.

Scale parameter of drift waves and drift ordering

Drift waves are driven by the density gradient, which is characterized by the length
scale

Ln ≡ −
n0

∇n0

. (3.36)

In some cases, it is more convenient to use the inverse gradient length κn ≡ L−1n .
The typical scale length of drift waves is given by the ion Larmor radius taken at
the electron temperature

ρs ≡
√
kBTemi

eB
=

cs
ωci

with cs =

√
kBTe
mi

and ωci =
eB0

mi

. (3.37)

Based on the drift scale length ρs a normalization can be de�ned as

l̂ =
l

ρs
→ ∂l̂ =

1

ρs
∂l or ∇̂ = ρs∇ . (3.38)

An general estimate of drift wave related quantities is given in [89, p.20], the so-called
drift ordering

ω

ωci
∼
k‖
k⊥
∼ ñ

n0

∼ ρs
L⊥
∼ eφ̃

kBTe
∼ δ � 1 (3.39)

with δ as smallness parameter. For example, drift wave �uctutations of the plasma
density ñ are small compared to the equilibrium plasma density n0.
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Perpendicular force balance

Crossing the momentum transport equation (3.35) for ions with ~B0 from the right
and asusming ~vi = ~v⊥ yields

v⊥i =
~E × ~B

B2︸ ︷︷ ︸
vE

− kBTi
enB2

∇n× ~B︸ ︷︷ ︸
vdia

+
mi

eB2
dE×Bt E⊥︸ ︷︷ ︸
vpol

− νinmi

eB2
E⊥︸ ︷︷ ︸

vPed

. (3.40)

The total perpendicular ion velocity is a superposition of the ~E × ~B drift vE, the
diamagnetic drift vdia, the polarization drift vpol, and the Pederson current vPed [90].
A well-accepted practise is the replacement of the overall perpendicular velocity v⊥
in the nonlinear term of the convective derivative by the E ×B velocity [91]

dE×Bt = ∂t + ~vE · ∇ . (3.41)

An estimation for v⊥ can be found in [83, p.9], yielding vE as the dominant compo-
nent of v⊥ for ω < ωci. This condition is full�lled due to the drift ordering (3.39)
and the approximation (3.41) can be used in (3.40) for the polarization drift term,
allowing an iterative solution of this di�erential equation in v⊥. A similar relation
like (3.40) can be derived for the perpendicular electrons velocity. Due to their
smaller mass the polarization term and the collision term are neglected.

v⊥e =
~E × ~B

B2︸ ︷︷ ︸
vE

+
kBTe
enB2

∇n× ~B︸ ︷︷ ︸
vdia

(3.42)

Although the dominant perpendicular velocity v⊥ is the E × B velocity also for
electrons, it does not result in a current since it is exactly the same for electrons
and ions. The main perpendicular current is the ion polarization current [92].

Parallel force balance

For electrons and ions at rest, the force balance parallel to ~B0 is derived from (3.35)

mα dt~vα = q ~E − 1

n
∇p . (3.43)

Due to their much smaller mass, the parallel dynamics are fully governed by elec-
trons. Ion motion is of importance only perpendicular to the magnetic �eld. The
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3.2 Drift instability

nonlinear term in the convective derivative in (3.35) can be neglected [93, p.75], the
parallel component for electrons reads then

me

e
∂tj‖︸ ︷︷ ︸
f1

= − en∇‖φ︸ ︷︷ ︸
f2

+ − en∂tψ︸ ︷︷ ︸
f3

− kBTe∇‖n︸ ︷︷ ︸
f4

− − enηj‖︸ ︷︷ ︸
f5

. (3.44)

In this parallel force density balance the electric �eld is expressed as E‖ = −∇φ−∂tψ,
where ψ is the parallel component of the vector potential ~A of the magnetic �eld

~b = −∇× ~A ψ ≡ A‖ . (3.45)

Further, the plasma resistivity η ≡ meνen/e
2n is introduced. The force density act-

ing on the electrons (f1) consists of four terms: The driving force is the parallel
density gradient f4. The friction force (f5) damps currents. The �uctuating mag-
netic �eld and the corresponding vector potential ψ in the induction term (f3) are
generated by the parallel currents, given by Ampère's law µ0j‖ = ∇2

⊥ψ. In this way
f3 is determined by j‖, an increased parallel current causes a larger induction force.
The term f2 is the restoring force of the potential φ. In the following the magni-
tude of all terms f1�5 is estimated, partly on the base of drift ordering (3.39). For
example the density gradient force is approximately

|f4| = kBTe∇‖n ≈ kBTeκn‖n =
nkBTeµ0

B2

κn‖B
2

µ0

= β
κn‖B

µ0

B . (3.46)

The plasma-β is given by β = nkBTe/(µ0B
2), the ratio between kinetic and mag-

netic pressure. Since the typical spatial scale of the parallel drift dynamics is
determined by the machine length [42], κn‖ is estimated based on the assump-
tion, that one wave length λ‖ = 2π/k‖ �ts into the discharge chamber. Mea-
sured density perturbations are typically small with ñ/n0 = 10%, so the paral-
lel density is n(z) = n0 + 0.1n0 sin(k‖z), resulting in an inverse gradient length of
κn‖ ≈ 0.1k‖ = 0.16m−1. The terms f1 . . . f5 in (3.44) can be estimated as above:

f1 ≈ ω/ωce j‖ B
f2 ≈ β κn‖B/µ0 B
f3 ≈ β ω/ωci j‖ B
f4 ≈ β κn‖B/µ0 B
f5 ≈ νe/ωce j‖ B .

(3.47)

For typical plasma parameters in Vineta, the terms are compiled in Tab. 3.1. f1 has
the smallest amplitude of 7.1 · 10−5N/m−3, two orders of magnitude smaller than
the other ones: Electrons are not signi�cantly accelerated in parallel direction. This
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Table 3.1: Parameters and estimation of force densities acting in the parallel momentum
transfer equation for electrons (3.44)

input parameters estimated force densities

B0 = 0.07 T f1 ≈ 7.1 · 10−5 N/m−3

κn‖ = 0.15 m−1 f2 ≈ 2.1 · 10−1 N/m−3

κn⊥ = 30 m−1 f3 ≈ 1.7 · 10−3 N/m−3

ω = 1.26 · 104 s−1 f4 ≈ 2.1 · 10−1 N/m−3

ωci = 1.69 · 105 s−1 f5 ≈ 2.9 · 10−2 N/m−3

ωce = 1.23 · 1010 s−1

νen = 5 · 106 s−1

β = 3.3 · 10−4

j‖ = 100 mA/m2

justi�es approximating of the total time derivative dt by the partial time derivative
∂t in (3.44). The driving and the restoring force f4 and f2 are strongest for the
given parameters. A more detailed analysis reveals a small di�erence between the
two terms: The friction force f5 = 2.9 · 10−2N/m−3 is about one order of magni-
tude smaller than the driving force and dissipates the perturbation energy. The
transfer of wave energy into magnetic �eld �uctuations is given by the induction
force f3 = 1.7 · 10−3N/m−3 one order of magnitude smaller than the friction force.
It can be neglected in the collision-dominated Vineta plasma. This is di�erent in
collisionless plasmas, in which a signi�cant amount of energy is transferred to and
from the magnetic �eld. In this case the drift waves are so-called drift-Alfvén waves
[14].

3.2.3 The Hasegawa-Wakatani model

The general two-�uid plasma description in (3.34) and (3.35) can be strongly sim-
pli�ed. The full dynamics of drift waves is de�ned by (i) the drift waves currents
under the condition of quasi-neutrality and (ii) the density equation based on one
of the continuity equations (3.34).
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3.2 Drift instability

drift wave currents

Electron and the ion currents are coupled by the quasineutrality condition ne ≈ ni,
which can be expressed by combining the two continuity equations (3.34)

∇ ·~j = ∇⊥ ·~j⊥ +∇‖~·j‖ = 0 . (3.48)

This current-balance with perpendicular currents balancing parallel currents re�ects
the drift wave mechanism [cf. Fig. 3.9 (a)]. As stated in sec. 3.2.2 the perpendicular
current is mostly due to the ion polarization drift j⊥ = nevpol. In terms of the electric
potential φ (cf. Eq. 3.40) the current-balance then reads to be

∇⊥
nmi

B2
0

dE×Bt ∇⊥φ = ∇‖j‖ (3.49)

↔ nmi

B2
0

dE×Bt Ω = ∇‖j‖ . (3.50)

The vorticity Ω = −∇× ~v⊥ is introduced as follows. Convectism by E ×B drift
yields a vorticity

Ω = −∇× ~vE = −∇× [ ~E × ( ~B/B2)] = −∇⊥ · ~E⊥/B = ∇2
⊥φ/B . (3.51)

The perpendicular gradient and the total time derivative in (3.49) can be exchanged
in drift-ordering [94, p.17]. The parallel electron current divergence on the right-
hand side is determined by (3.44). Neglecting the coupling to magnetic perturbations
(f3) and the acceleration of electrons (f1), the parallel electron current reads to be

j‖ =
kBTe
eη
∇‖
(

eφ

kBTe
− lnn

)
. (3.52)

Substituting the parallel current in (3.50) leads to

min

B2
0

dE×Bt Ω = ∇‖
kBTe
η
∇‖
(

eφ

kBTe
− lnn

)
. (3.53)

This equation is known as vorticity equation of the Hasegawa-Wakatani model [95].

drift wave density equation

The second equation of the Hasegawa-Wakatani system describes the evolution of
the density and can be derived from the electron contiuity equation

dE×Bt n = −n∇~v = −n(∇‖v‖ +∇⊥~v⊥︸ ︷︷ ︸
=0

) ≈ 1

e
∇‖j‖ . (3.54)
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As stated in sec. 3.2.2 the main perpendicular drift is the E × B drift, causing the
second term in (3.54) to vanish in a constant magnetic �eld

∇⊥~vE×B = ∇( ~E × ~B/B2) = − ~E(∇× ~B/B2) + ~B(∇× ~E) = 0 . (3.55)

Substituting the parallel current in (3.54) by (3.52) yields

dE×Bt n = ∇‖
kBTe
eη
∇‖
(

eφ

kBTe
− lnn

)
. (3.56)

normalization

The vorticity equation (3.53) and the density equation (3.56) describe the full three
dimensional dynamics of drift waves. They are coupled via the term ∇‖ lnn. By
introducing the dimensionless variables

t̂ = ωcit
ˆdE×Bt =

ρs
cs

dE×Bt ν̂ =
ν

ωce
Ω̂ = ∇̂2

⊥φ̂

φ̂ =
eφ̃

kBTe
n̂ =

ñ

nc
∇̂ = ρs∇

with nc as typical constant density the system can be transformed into

ˆdE×Bt n̂ = ∇̂2
‖(n̂− φ̂)/ν̂ (3.57)

ˆdE×Bt Ω̂ = ∇̂2
‖(n̂− φ̂)/ν̂ . (3.58)

This is known as the Hasegawa-Wakatani model [95]. It is often reduced to two
spatial dimensions by prede�ning a �xed parallel wave number k̂‖. Approximating
the parallel gradient as

∇̂2
‖ ≈ (ρsk‖)

2 = k̂2‖ (3.59)

and expanding the nonlinearity in the advective derivative to �rst order in δ results
in the system

∂̂tn̂+ {n̂, φ̂}+ ∂̂yφ̂κ̂n = C(n̂− φ̂) (3.60)

∂̂tΩ̂ + {Ω̂, φ̂} = C(n̂− φ̂) . (3.61)

C is the collisionality with C = k̂2‖/ν̂. The Poisson bracket, de�ned as {f, g} =

∂xf∂yg− ∂yf∂xg, includes the nonlinearities of order δ. After linearization of (3.60)
and (3.61), the dispersion relation of drift waves reads in physical units

ω(k) =
ω∗ky

1 + ρ2sk
2
⊥
− i ρ

3
sν

k2‖L

k2⊥k
2
y

1 + ρ2sk
2
⊥

= ωr − iγ . (3.62)

Drift waves in the Hasegawa-Wakatani model are dispersive (the real part ωr) and
have a linear growth rate (the imaginary part γ).
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3.2.4 Nonlinear model: Hasegawa-Mima

In the limit of vanishing collisionality C →∞ the normalized density and potential
�uctuations must be equal n̂ = φ̂ to keep the right hand side of (3.57,3.58) �nite. In
physical quantities this condition is equivalent to the linearized Boltzmann relation

eφ̃

Te
=

ñ

nc
. (3.63)

That means the response of electrons is adiabatic and there is no phase shift between
density and potential �uctuations. Substracting (3.57) and (3.58) yields

∂̂t(∇̂2
⊥φ̂− φ̂)− κ̂n∂̂yn̂0 + {φ̂, ∇̂⊥φ̂} = 0. . (3.64)

This is the Hasegawa-Mima equation for adiabatic electrons [92, 96]. A plane wave
ansatz

φ(~r, t) = φ0e
i(~k·~r−ωt) (3.65)

and linearization of (3.64) yields the dispersion relation for drift waves

ω =
ω∗

1 + ρ2sk
2
⊥

with ω∗ =
c2s
ωci

κnky . (3.66)

This solution is identical to the linearized dispersion relation of the Hasegawa-
Wakatani model (3.62) with zero growth rate γ = 0. Assuming wave propagation in
y-direction with kx = 0, the group and phase velocities of the drift wave are

vgr =
∂ω

∂ky
=

c2sκn
ωci

1− ρ2sk2y
1 + ρ2sk

2
y

(3.67)

vph =
ω

ky
=

c2sκn
ωci

1

1 + ρ2sk
2
y

. (3.68)

Both velocities are the same in the vanishing kφ-limit and are equal to the electron
diamagnetic drift velocity assuming ∇p ⊥ B0

k → 0 : vgr = vph =
c2sκn
ωci

= −kBTe
mi

mi

eB

∇n0

n0

= −∇p×
~B0

en0B2
= ~vdia,e . (3.69)

A plasma potential pro�le is not considered in the dispersion relation (3.66), a
radial potential pro�le leads to ~E × ~B drift. A plasma column, for example, rotates
like a rigid body if E(r) = ∂φ/∂r is a linear function. This results in a Doppler
shift that must be taken into account when drift wave frequencies are compared
with experiments [42]. Additionally small centrifugal forces occur. These forces are
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Figure 3.10: Dispersion relation of drift waves obtained with the linearized Hasegawa-
Mima model as ω(k) in a) and v(k) in b) with the ~E × ~B drift velocity as parameter. Both
representations have additional axes, with the wave vector k expressed as mode number
m and frequency f . The assumed discharge parameters are B0 = 70mT, Te= 2 eV, and
κn = 30m−1, resulting in a diamagnetic drift velocity of vdia = 857m/s.

taken into account in a numerical simulation of drift waves in Vineta on the basis
of an extended Hasegawa-Wakatani model [97](cf. Sec 3.2.3).

In Fig. 3.10, the dispersion relation (3.66) is plotted for a set of typical discharge
parameters in Vineta. Doppler shifts due to ~E × ~B rotation in the range of
vE×B = 0 . . . 400m/s are assumed as a parameter. The slope of the dispersion ω(k)
in Fig. 3.10 (a) in the low k limit corresponds to a phase velocity of v = 0.4 cs for
vE×B = 0, which is close to the diamagnetic drift velocity vdia as expected. The
wave frequency starts at zero and reaches its maximum f = 0.2ωci at ρsky = 1. The
phase velocity is here v = 0.2 cs. For increasing wave number, the phase velocity de-
creases to v = 0.08 cs at ρsky = 2 and to v = 0.01 cs at ρsky = 6. If a superimposed
~E × ~B drift is considered, the velocity axis is vertically shifted, which corresponds
at large k-values to a more negative slope in the dispersion relation in Fig. 3.10 (a).
Hence, in laboratory frame an E × B rotation �ips the drift wave velocity against
the direction of the electron diamagnetic drift velocity for higher mode numbers.

As already described in Sec. 3.2.1, drift waves as instability have a positive growth
rate. The dispersion relation (3.66) based on the Hasegawa-Mima model is real
valued and does not describe any growth of initially small perturbations. The reason
is that adiabatic electrons are assumed in (3.63), which is equivalent to a zero
phase shift between potential and density. However, the Hasegawa-Mima model can
already be used to study drift wave turbulence, which also develops in this relatively
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simple model due to the nonlinearity in the convective derivative. For this purpose,
the inital amplitudes must be chosen rather high to be in the nonlinear regime right
from the start [98, 99].

61



Chapter 4

Experimental Alfvén wave

investigations

4.1 Basic properties of Alfvén waves in Vineta

Perturbations of the magnetic �eld at a certain point in space propagate. Based
on wave �eld measurements the dispersion relation is experimentally recorded and
compared with linear Alfvén wave dispersion theory.

4.1.1 Spatial �eld pattern of Alfvén waves

A �uctuating magnetic �eld by(~r0, t), generated in the plasma centre ~r0 = 0, induces
currents �owing along and across the ambient magnetic �eld B0. The magnetic
�uctuation propagates and forms a wave �eld with a complex spatial structure.
Depending on the induced currents, all magnetic �eld components bx(~r, t), by(~r, t),
and bz(~r, t) are in�uenced. The investigations of the wave �eld pattern are done in an
argon discharge with a magnetic �eld of B0 = 102mT, which yields an ion-cyclotron
frequency of fci = 39.2 kHz. The excitation antenna is operated at f = 30 kHz with
an amplitude of |by| = 78µT. The Ḃ-detector (cf. Sec. 2.2) is used to measure the
three orthogonal magnetic �uctuation components in the radial-axial plane covering
x = −70 . . . 70mm in radial and z = 0 . . . 2000mm in axial direction. The excitation
antenna is located outside the recording range at z = −100mm to avoid near �eld
e�ects from the antenna.

The measurements are done by scanning the spatial plane in consecutive discharges.
The exciter antenna is operated for several hundred wave periods and time series of
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Figure 4.1: Fluctuating magnetic �eld of an AW in the radial-axial (x, z)-plane, excited
at z = −100mm with ω/ωci = 0.77 in an argon plasma. The three magnetic components
are shown for a �xed time t0; the absolute value |~b| is time-averaged.

bx(t), by(t) and bz(t) are recorded. As described in Sec. 2.6, only the complex Fourier
components at the excitation frequency ω0 are considered in the data evaluation
to separate the wave �eld from noise-like �uctuations. The absolutely calibrated
data is shown in Fig. 4.1 for a single time instant t0. The three components bx, by
and bz and the time-averaged modulus of the magnetic �uctuation amplitude |~b|
are shown. |~b| is localized over the full observed axial range to a radial extent of
r = ±10mm. It decreases from 13.7µT at z = 0mm to 1.36µT at z = 2000mm,
which is equivalent to a damping length d = ∆z/ ln(b1/b2) ≈ 1m. At small distance
from the exciter antenna, signi�cant amplitudes of up to 9µT are observed that
extend radially up to r = ±60mm. They are attributed to a superposition of the
wave �eld with the near �eld of the exciter antenna, which has an extent of a few
centimeters. This near �eld region of the antenna will not further considered. Far
away from the antenna, the wave propagates along B0 in a tube with a diameter
similar to the size of the excitation antenna, assuming rotational symmetry. The
magnetic �uctuation of the wave is mainly perpendicular to B0, owing to strong
parallel currents. Currents perpendicular to B0 would cause parallel magnetic �eld
�uctuations which are found to be much weaker than the perpendicular ones. All
currents, parallel as well as perpendicular, are resistively damped by collisions. This
leads to a decay of the wave �elds with increased propagation distance, as observed
e.g. for |~b| in Fig. 4.1.

The snapshot of the three magnetic �eld components in Fig. 4.1 reveals useful infor-
mation about the spatial dynamics of the wave. In parallel direction, the components
bx and by show a wave type behavior. by has a maximum of 2.8µT at z = 920mm
and decays to 1.1µT at z = 2000mm. bx is 90◦ out of phase, starts with a positive
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value at small z-values, has a zero passage around z = 870mm, and reaches a neg-
ative value of −0.7µT at z = 2000mm. So the measurement distance of 1200mm
corresponds to a phase shift somewhat smaller than λ/4, corresponding to a wave
length of λ > 5m. Besides this distinct structure in z-direction, both components
decrease in radial x-direction towards the plasma boundary. This is simply due
to the peaked density pro�le (cf. Fig. 2.13), i.e. the wave is supported only in the
plasma center.

4.1.2 Propagation parallel to the magnetic �eld

Since the magnetic wave �eld is localized to the plasma center, the investigation
of wave propagation can be limited to the z-axis at x = 0. The axial coordinate z
is chosen to be greater than 200mm to avoid exciter near-�eld e�ects. The lowest
possible spatial resolution is ∆z = λ/2 = 2.5m due to the Nyquist-limit. To detect
smaller wave lengths, a grid distance of ∆z = 0.3m is chosen. This ensures correct
wave detection without aliasing down to λ = 0.6m. Six time series are recorded at
six di�erent z-positions in an argon discharge with the same parameters as for the
previous radial-axial scan experiment. The obtained wave �eld by(t, z) is shown in
Fig. 4.2 (a) with the time on the abscissa and the z-coordinate on the ordinate. The
color-coded amplitude of the magnetic �eld component by shows the typical tilted
stripe pattern of a propagating wave. The slope of these stripes is a measure for
the phase velocity of the wave. The decrease of the amplitude in z-direction is due
to damping. In Fig. 4.2 (a), the amplitude decreases from 7µT to 1µT over the
covered z-range, which is nearly the same damping length as in the previous result
(Fig. 4.1).

A plane wave can be written in the form

by(t, z) = by0 e
−z/d ei(kz−ω0t) , (4.1)

with the two parameters damping length d and the parallel wave number k. They
are extracted from the measurement by(t, z) via Fourier transform [100, p.35]

by(ω0, z) =

∞∫
−∞

by0 e
−z/d ei(kz−ω0t) e−iωt dt = by0 e

−z/d eikz
{

0 ω 6= −ω0

1 ω = −ω0
. (4.2)

Fourier coe�cients are complex-conjugated for negative and positive frequencies and
the z-dependence of by is

|by(ω, z)| = by0 e
−z/d(ω) φby(ω, z) = −k(ω)z , (4.3)
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Figure 4.2: Magnetic component by (interpolated) of an AW excited at z = −100mm
in an argon discharge with fci = 39.2 kHz for f = 30 kHz (a) and f = 40 kHz (b). Axial
development of the phase φ (c, linear) and of the amplitude by (d, semilogarithmic).

with |by| and φby as amplitude and phase of the complex-valued by. The extracted
amplitudes and phases are shown in Fig. 4.2 (c) and Fig. 4.2 (d), respectively. These
diagrams show that both the linear dependence for φ(z) = −kz and the exponen-
tial decay for |by| are well satis�ed. The two parameters d and k can be ex-
tracted from a best �t. Their values for the frequency f = 30 kHz = 0.77fci are
λ = 2π/k = 7.44m ± 0.13m and d = 0.82m ± 0.02m, which is in good agreement
with the estimates made from the radial-axial scan (Fig. 4.1 ).

In the same discharge and at the same z-positions, time series were recorded for a
higher excitation frequency of f = 40 kHz = 1.02fci, very close to the ion-cyclotron
frequency. The amplitude of the initial by-perturbation at the excitation antenna is
here 24.8µT. The color-coded amplitude of the magnetic �eld component by(t, z)
is shown in Fig. 4.2 (b). The pattern indicates a propagating wave, too, although
the initial amplitude is smaller due to smaller excitation amplitudes. The main
di�erence to the f = 30 kHz case is the reduced velocity, characterized by smaller
slope in the propagation pattern. Increased damping is also observed. Both �ndings
can be veri�ed in the Fourier representation Fig. 4.2 (c) and (d). Note that in the
f = 40 kHz case the phase fronts are not perfectly straight as assumed for the plane
wave ansatz (4.3)

4.1.3 Alfvén wave dispersion relation

In the argon discharge described above the wave number k and the damping length d
are measured for the frequency range 5 kHz . . . 60 kHz. All three components bx(ω),
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Figure 4.3: Dispersion relation ω(k) of the wave measured in argon plasma for bx (blue),
by (red) and bz (green). The real part ω(k) is shown in (a) and the imaginary part is
expressed as damping length d(ω) = 1/ki(ω) in (b). For the real part, the dispersion of
AWs is included in low-frequency approximation ω � ωci (black), as Hall-MHD description
for shear AW (dash-dotted) and as Hall-MHD description for fast AW (dashed).

by(ω), and bz(ω) are measured. The dispersion relation k(ω) is the �nger print of
the wave type excited. It is complex k(ω) = kr(ω) + iki(ω), where the imaginary
part relates to the damping length as

d = 1/ki . (4.4)

Both real and imaginary part are shown in Fig. 4.3 (a) and (b), respectively. All three
magnetic �eld components have an almost linear dispersion for frequencies around
ωci/2, a nonlinear characteristic around ωci, and a random behavior at low frequen-
cies. For by and bz the phase and the group velocity match with v = 2.35 · 105m/s.
The measured phase velocity decreases for increasing frequencies. At ω > ωci the
wave number has a roll-over point. The negative k-values correspond to backward
propagation. The damping of by and bz increases with increasing frequency up to
the roll-over point where the trend changes and damping becomes smaller. The dis-
persion behavior of bx(ω) di�ers signi�cantly. Well below ωci the dispersion is linear
as well but phase and group velocities di�er. The roll-over point is located exactly
at ωci. The damping of the bx component decreases slightly up to approximately
0.75ωci, di�erent from by and bz.

Some features of the measured dispersion relation indicate the excitation of AWs.
The low-frequency range with the randomly distributed k values is most likely due
to the presence of drift waves [42] and is therefore excluded from discussion. For low
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frequencies AWs involve only perpendicular magnetic �elds [64]. This is consistent
with the measured bz amplitudes, which are one order of magnitude smaller than
the amplitudes of bx and by (cf. Fig. 4.1). However, the dispersions of bx and by di�er
signi�cantly from each other. Since there is no preferential direction for AW �elds
this di�erence must be caused by the excitation scheme which exites mainly the by
component. The basic AW dispersion properties are therefore evaluated taking the
by data.

In the low-frequency range, below ωci/2, the phase- and group velocity is v =
2.35 · 105m/s. Taking this as the Alfvén velocity we obtain with the used ambi-
ent magnetic �eld B0 = 102mT a mean plasma density n̄ = 3.5 · 1018m−3. This is
averaged over the extent of the wave propagation and agrees quite well with the
peak plasma density of ne = 4.1 · 1018m−3 measured with the interferometer and
Langmuir probes. In the higher frequency range > ωci/2, no satisfactory agreement
with theoretically expected dispersion relations is found, neither with shear AWs
nor with fast AWs. Measured k values are somewhat in-between both dispersion
relations and above ωci the values for the di�erent magnetic �eld components di�er
signi�cantly from each other. A sharp resonance at ωci, as expected for shear AWs
is never observed.

All measured dispersion relations have a pronounced roll-over point. They have an
ambiguous relation to the resonance point at ωci since they vary slightly in their
frequencies. The roll-over points are always larger in frequency than ωci, which is
contrary to the trend to shift the resonance to lower frequencies when collisions with
neutral atoms are taken into account [101]. The wave excited in the frequency range
around ωci is subject of a more detailed analysis in Sec. 4.3.

4.1.4 In�ucence of B0 on phase velocity

To investigate the in�uence of B0 on the phase velocity of the wave, two dispersion
relations are recorded: one at the maximum �eld strength B0 = 102mT and one at
B0 = 77mT. Without any doubt it would have been desirable to vary B0 at more
than these two levels. However the immense experimental e�ort of recording one
single dispersion relation lead to this very limited number of parameter levels. The
two dispersion relations are shown in Fig. 4.4. As already discussed in Sec. 4.1.3
they have similar features, which correspond to the linear scaling of vA with B0.
The expected and the measured phase velocities are compiled in Tab. 4.1.

Reducing B0 to 75% of the initial value and taking into account the density decrease
results in a decrease of vA to 79%. The measured velocity is reduced to 72%
of the initial value. This is a reasonable agreement between vA and vmeas, where
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Figure 4.4: Dispersion (a) and damping (b) of AWs in an Argon plasma for two values
of ambient magnetic �eld (B0 = 102mT, red curve and B0 = 77mT, blue curve). The
corresponding ion-cyclotron frequencies fci = 39.2 kHz and fci = 29.6 kHz are included as
dashed lines.

B0 [mT] n [m−3] vA [m/s] vmeas [m/s]

102 4.07 · 1018 1.75 · 105 2.35 · 105

77 3.71 · 1018 1.38 · 105 1.70 · 105

Table 4.1: Phase velocities of the excited waves for di�erent ambient magnetic �elds in
an Argon plasma.

the uncertainty is mainly in the density measurement (about 10%). The absolute
di�erence of the velocities is accounted to the density pro�l, which is not considered
in the de�nition of vA in (3.8).

4.1.5 In�ucence of ne on phase velocity

To study the in�uence of the density on the phase velocity of the wave, two dispersion
relations were recorded in Argon plasmas at di�erent rf-input power. The resulting
plasma densities di�er by a factor 24. The dispersion and damping curves are shown
in Fig. 4.5. They show the same qualitative properties as discussed in the sace of B0

variation. The derived measurement results are compiled in Tab. 4.2.

The Alfvén velocity scales with the inverse square root of the plasma density, so the
phase velocity is expected to change by a factor

√
24 = 4.9. The observed change

by 4.5 is in good agreement with the expectation.
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Figure 4.5: Dispersion (a) and damping (b) of AWs in an Argon plasma for two di�erent
plasma peak densities n = 4.1 · 1019m−3 and n = 3.7 · 1018m−3.

B0 [mT] n [m−3] vA [m/s] vmeas [m/s]

77 3.71 · 1018 1.38 · 105 1.70 · 105

77 1.55 · 1017 6.77 · 105 7.60 · 105

Table 4.2: Phase velocities of the excited waves for di�erent plasma densities in an Argon
plasma.

4.1.6 In�ucence of ion mass on phase velocity

The working gas has an in�uence on vA via the ion mass density. Three di�erent
gases, Argon, Helium, and Hydrogen are used. Since the helicon discharge is sensitive
to the working gas, a density variation is unavoidable. For Hydrogen, a discharge
could only be operated for a gas mixture with 55% helium, but a helicon discharge
mode could not be established. The radial plasma density pro�le is hollow and not
any more peaked. As for the other cases with helicon discharge, the peak plasma
density is used to determine the Alfvén velocity. The result of the measurement is
shown in Fig. 4.6.

The dispersion relation for Argon plasma is already discussed above. The dispersion
relation in Helium plasma is similar to that in Argon plasma with a di�erent fre-
quency scale. A frequency range of constant phase velocity and a roll-over point at
about 200 kHz are found, which is below the ion-cyclotron frequency ωci/2π. This
was previously observed in the same device [25]. From the linear range, the low-
frequency phase velocity of the wave is determined. The situation is more di�cult
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Figure 4.6: Dispersion (a) and damping (b) of AWs in plasmas of di�erent gases: blue �
argon discharge, red � helium discharge, green � discharge in mixture of 45% hydrogen
and 55% helium. The ion-cyclotron resonance frequencies for each gas (39.2 kHz, 392 kHz,
1.18MHz) are included as dashed lines.

B0 [mT] gas n [m−3] vA [m/s] vmeas [m/s]

102 argon 4.07 · 1018 1.75 · 105 2.35 · 105

102 helium 4.12 · 1018 5.50 · 105 8.00 · 105

77 45% H / 55% He 4.35 · 1017 2.60 · 106 4.70 · 106

Table 4.3: Wave velocities for di�erent working gases

to interprete for Hydrogen plasma because waves are excited in a gas mixture [102].
At low frequencies, there is no range of equal phase and group velocity. A linear run
of the dispersion relation is observed for frequencies exceeding 500 kHz. A signi�-
cant in�uence of Helium in the dispersion relation up to fHeci = 392 kHz is expected
and above this frequency, the presence of Helium ions will also in�uence the wave
propagation. The measured plasma density and the phase velocity for di�erent ion
species and di�erent B0 are compiled in Tab. 4.3.

The expected ratio of phase velocities in Argon and Helium is 1 : 3.14, which agrees
well with the measured ratio of 1 : 3.40. A wave with 14.6 times higher phase
velocity is expected for Hydrogen. The measured velocity ratio is 20.0. The error
of 25% is consistent with the large error bars of the wave number determination in
the Hydrogen/Helium plasma. One reason is the increased signal-to-noise ratio of
the excitation-detection system at the high frequencies around 1MHz as discussed
in Sec. 2.5.
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4.2 Currents of Alfvén waves

The experimentally obtained dispersion relations reasonably agree with the expected
dispersion behavior of AWs in the low frequency limit. For frequencies close to the
ion-cyclotron resonance ωci, the run of the measured dispersion curves is in-between
the branches for shear AWs and fast AWs. A resonance ωci is not observed. A
possible explanation is a superposition of shear AWs and fast AWs. It is possible
to distinguish both by the di�erent rotation directions of their �eld and current
patterns.

4.2.1 Currents parallel and perpendicular to B0

Far away from the excitation antenna the �uctuating magnetic �elds are solely
generated by the wave currents. Fig. 4.7 shows the �uctuation amplitude of the three
magnetic components bx, by and bz at a distance ∆z = 1900mm from the antenna.
To exclude any e�ects from the excitation system the shown amplitudes are corrected
for the frequency response of the excitation system, a nominal excitation amplitude
of bexc = 100µT is assumed. As already found for low frequencies ω ≤ 0.75ωci, the
perpendicular components (bx, by) have similar magnitudes and the parallel one (bz)
is one order of magnitude smaller. The amplitudes of all three components increase
with frequency in the low frequency range. If ωci is approached, the three magnetic
�eld components behave di�erently: While by and bz are decreasing until a minimum
is reached at 43 kHz and 46 kHz, respectively, the component bx has no pronounced
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Figure 4.7: Fluctuating magnetic �eld of AW in an Argon plasma, ∆z = 1900mm away
from the antenna. Absolute amplitudes for bx (blue), by (red) and bz (green) are corrected
for the frequency response of the excitation system with a nominal excitation amplitude
of 100µT. Included as dashed line is the ion-cyclotron frequency of fci = 39.2 kHz.
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minimum. Such a di�erent behavior of the magnetic �eld components was already
found in the discussion of the measured dispersion curves.

Currents and magnetic �eld, possibly �uctuating in time and space, are connected
via Ampére's law

µ0
~j = ~∇×~b . (4.5)

~∇×~b are spatial derivatives of the magnetic �eld components that are not directly
available from the measurement. If outside the plasma vanishing b-�uctuations are
assumed, the measured magnetic �eld components must have spatial gradients. In
this way, the existence of currents can be concluded. ~b(ω) increases about equally
with frequency for ω ≤ 0.75ωci in all components. This makes it possible to separate
the magnetic �eld as ~b(ω) = f(ω)~b0 with a �xed ~b0 and a unique function f(ω).
Inserting this into (4.5) yields a monotonically increasing current density of the
form j = f(ω)j0. The reason for that is the increasing plasma current induced by
the exciter antenna with increasing frequency. Due to Farraday's law (cf. Eq.A.4)
the induced electric potential for an excitation at ω is

Uind = −bexcω cosωt . (4.6)

If the resistivity of the plasma is assumed to be constant, the magnitude of the
induced currents is proportional to ω. This dependence is fully attributed to the
excitation and is not a wave property. The frequency dependence of ~b around ωci,
however, actualy re�ects the dynamics of the wave.

In Sec. 3.1 the dispersion relation for shear AWs was derived [cf. Eq. (3.20)]. It can
be written in the form

k2zv
2
A =

ω2

1− ω/ωci
=

1

1/ω2 − 1/ωωci
. (4.7)

The parallel wave number is a function of the frequency kz = kz(ω), the perpen-
dicular ones are not kx 6= kx(ω), ky 6= ky(ω). The partial derivatives of the rotation
in (4.5) can be explicitly obtained from the plane wave ansatz (3.4), the frequency
dependence enters via the dispersion relation (4.7)

∂bx/∂y = ky ibx0ei(
~k~r−ωt)

∂by/∂x = kx iby0ei(
~k~r−ωt)

∂bx/∂z = kz(ω) ibx0ei(
~k~r−ωt)

∂by/∂z = kz(ω) iby0ei(
~k~r−ωt)

. (4.8)

Here a wave excitation in the coordinate origin with only perpendicular �uctuating
�eld components bz0 = 0 is assumed. For small propagtion angles ∠(~k, ~B0)� 1 the
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perpendicular wave numbers kx and ky are small, resulting in small perpendicular
derivatives in (4.8). The parallel wave number is large for frequencies approaching
the ion-cyclotron frequency, since limω→ωci

kz =∞ in (4.8). This results in large
parallel derivatives in (4.8). The parallel current density jz is obtained in Ampére's
law (4.5) from the di�erence of perpendicular derivatives, so it has a �nite value
around ωci. In contrast the perpendicular components jx and jy diverge around ωci
due to the diverging parallel derivatives ∂bx/∂z and ∂by/∂z. Hence, close to the
ion cyclotron resonance smaller parallel currents combine with large perpendicular
currents to a 3-dimensional current pattern. The perpendicular current components
are derived in explice form with (3.6)

jx = −iωEx
µ0v2A

≡ nmi

B2
0

Ėx(t) jy = −iωEy
µ0v2A

≡ nmi

B2
0

Ėy(t) . (4.9)

The perpendicular currents are proportional to the time derivatives of the respective
components of the electric �eld and to the mass density. They are inversely propor-
tional to the square of the ambient magnetic �eld. This is exactly the de�nition of
the ion polarization current.

4.2.2 Idealization: parallel current �laments

In the experiment, the parallel currents are found to be localized in distinct regions
of the azimuthal plane (cf. Sec. 4.3), as already reported in previous studies [19]. To
develop a physical picture of the self-consistent current system of shear AWs, the
parallel currents are described in this section as current �laments with small extent
perpendicular to B0. The perpendicular currents will be considered as result of the
parallel currents in a second step.

The exciter used in the experiment draws a parallel current of I�l ≈ 10mA at a
frequency of f = fci/2 = 20 kHz ≈ ωci/2 in an argon discharge (cf. Sec. 4.3). The
displacement current in Ampère's law (cf. Eq.A.3) can be neglected at those low
frequencies. In this case the Biot-Savart law holds, it is used to calculate the mag-
netic �eld of the current �lament. A �lament with in�nite extent in z-directoin is
assumed instead of the �nite parallel wave length λz. This approximation holds well
for small perpendicular distances ~r⊥ � λz.

~b(~r) = I�l
µ0

2π

1

x2 + y2

(
y
−x

)
with ~r =

(
x
y

)
. (4.10)

The AW's dynamic electric �eld is derived analytically using (3.9)

~E⊥(~r) = vA
√

1− f
(

by
−bx

)
(4.11)
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= −I�l vA
√

1− f µ0

2π

1

x2 + y2

(
x
y

)
. (4.12)

The ratio ω/kz in (3.9) has been replaced by the dispersion relation of shear AWs
from (3.20) considering the normalization f = ω/ωci introduced in (3.11). ~E⊥ and ~b
are plotted in Fig. 4.8. As expected for electromagnetic waves, ~E⊥ and~b are oriented
perpendicular to each other at all positions. Both �elds decrease with distance to
the �lament as ∼ 1/r. The only source for the shown �elds is the initially assumed
parallel current �lament. Contributions from perpendicular currents are neglected.
The ion polarization current in response to temporal changes of ~E⊥ is obtained

jpol =
nmi

B2
0

d ~E⊥(t)

dt
=
nmi

B2
0

(
~v ~∇+

∂

∂t

)
~E . (4.13)

A change in ~E⊥ is either due to an explicit time dependence of ~E⊥(t) or to a moving
�uid element, accounted for by the convective derivative in (4.13) (v is the perpen-
dicular �lament velocity). Both the explicit and the convective part will be discussed
in the following two sections.
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Figure 4.8: Electric and magnetic �eld of an AW current �lament for a current of
I�l = 10mA at ω = ωci/2. The direction of the current is out of the plane. The vec-
tor �eld representation (a) includes the magnetic �eld (blue) and the dynamic electric �eld
(red). Their absolute values shown in (b) di�er only by a factor.

4.2.3 Explicit time dependence of the current

The current �lament is �rst assumed to be �xed in space at the position (x0, y0)
in the azimuthal plane and its amplitude varies sinusoidally I�l = I�l(t). The time
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Figure 4.9: Ion polarization current ∼ ∂E⊥/∂t of a parallel current �lament, located at the
�xed position x = 0mm, y = 0mm. The vector �eld representation (a) is complemented
by the absolute value of |jpol| in (b).

dependence of the electrical �eld is then explicit and the polarization current reads

~jpol = −∂I�l
∂t

√
1− Ω

2πvA

1

x2 + y2

(
x
y

)
. (4.14)

A graphical representation is given in Fig. 4.9. The spatial structure of the currents
is obviously the same as for the electric �eld (cf. Eq. 4.12). The absolute value of the
current at a radial distance of 1 cm from the �lament is 8.77µA/cm2. Due to the
derivative in (4.14), a temporal phase shift of π/2 is introduced between the perpen-
dicular currents and the parallel ones. With a plane wave ansatz j‖ ∼ exp(kz − ωt),
the polarization current is phase shifted by λ/4 in z-direction.

A schematic 3-dimensional picture of the currents of a certain time instant is shown
in Fig. 4.10. The parallel currents change their amplitude and sign within the wave
length λ. The perpendicular polarization currents lead to quasineutrality. For the
AW considered here, the total polarization current summed over a half wave length
is

Ipol =
λ/2∫
0

Aojpol sin(kz) dz = 2πr0 (λ/2) jpol (2/π) = 10.0mA , (4.15)

using (4.14) with f = 1/2 and λ = 5.70m
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Figure 4.10: Schematic view of an AW with one parallel current �lament j‖(z, t) (red)
at �xed coordinates (x0, y0) in the azimuthal plane. Perpendicular polarization currents
(blue) are central symmetric as shown in the depicted plane, cf. also Fig. 4.9.

4.2.4 Convective derivative for a moving current �lament

If the current �lament is not �xed in space but moves perpendicular to B0, the con-
vective derivative must be taken into account. In the numerically evaluated MHD-
solution for AWs the involved �eld rotate like a rigid body (cf. Fig. 3.6). The parallel
currents are concentrated in distinct regions in planes perpendicular to the propaga-
tion direction, which allows one to idealize them as current �laments. Without loss
of generality, the velocity v of the current �lament is chosen to be in y-direction.
For an electric �eld pattern of the form ~E⊥ = (E0/r

2)~r, the convective derivative
yields

(~v · ~∇) ~E⊥ = vy E0

(
∂Ex/∂y
∂Ey/∂y

)
=

vy E0

(x2 + y2)2

(
−2xy
x2 − y2

)
. (4.16)

Replacing E⊥ with (4.12) results in a polarization current of

~jpol = −I�l
√

1− f
vA

µ0

2π

vy
(x2 + y2)2

(
−2xy
x2 − y2

)
. (4.17)

For an estimate of the amplitude of the polarization current, a velocity value has to
be assumed. In experiment rotating �eld patterns are measured with an o�-axis dis-
placement of the maxiumum current of approximately 2 cm (cf. Sec. 4.3). Assuming
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Figure 4.11: Convective part ∼ (~v · ~∇) ~E⊥ of the polarization current for a displacement
of the parallel current path with v⊥ = 2500m/s in negative y-direction. (a) shows jpol as
vector �eld (blue arrows) and as current paths (red), (b) shows the current amplitude |jpol|
in color-coded representation.

an AW-frequency fci/2 = 20 kHz a velocity |~v| = ωr ≈ 2500m/s is obtained. The
graphical representation of the idealized ion polarization currents for this value is
shown in Fig. 4.11. The radial dependence of the polarization current amplitude is

|jpol| ∼
1

x2 + y2
. (4.18)

Similar the case of the explicit time dependence in Sec. 4.2.3 the distribution is
symmetric around the parallel current �lament. A di�erence it that the convec-
tive polarization currents decrease as 1/r2. Nevertheless, the absolute value for
x = 1 cm and y = 0 cm is of the same order of magnitude jpol = 18.2µA/cm2. As
seen in Fig. 4.11, the vector �eld of the currents has a fairly complex eddy structure.
Tracing the vector �eld of ~jpol allows one to reconstruct the current streamlines. As
shown in Fig. 4.11 (a) polarization currents �ow along circles as expected for an eddy
structure. Relative to the movement of the parallel current, the front region of the
�lament (A) is connected to the rear (B). In this way, a net current �ows upwards in
opposite direction to the �lament displacement ~v⊥. Together with the initial parallel
component a three-dimensional current pattern is constituted as shown in Fig. 4.12.
The perpendicular polarization current is purely carried by ions, the parallel current
mostly by electrons due to their higher mobility. The interaction of the two current
types is given by the condition of quasineutrality.

To estimate the net polarization current, the current can be integrated along the
x-axis at y = 0. Since currents �ow along circles from the rear to the front of the
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Figure 4.12: Schematic view of a downward moving current �lament (red cones) of an
AW. The spatial change in the electric �eld causes a polarization current (blue cones). The
detailed view in the depicted plane corresponds to Fig. 4.11. The vertical net current vec-
torally adds to the initial parallel one, leading to a de�ection across the ambient magnetic
�eld. The green line indicates this.

�lament, they have to pass this line at some point. At these positions, jpol is directed
purely in vertical direction and the total current sums up to

Ipol =

+∞∫
−∞

jpol,y dx = −I�lvy
√

1− f
vA

µ0

2π

+∞∫
−∞

1

x2
dx −→ ∞ . (4.19)

This result of an in�nite perpendicular current is surprising. It shows that the
polarization current estimated in this way is not physical. The reason is the initial
assumption that the electric �eld ~E⊥ as source for jpol is only generated by the
parallel current �lament. In fact, the electric �eld of the polarization current itself
has to be considered as well. Only a self-consistent treatment of the problem will
lead to quantitative correct result. It is done in the context of the MHD-description
in Sec. 3.1.4. For shear AW, the main outcome in terms of the involved currents is
summarized in Fig. 3.7. The parallel current component has a complex structure and
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Figure 4.13: Schematic current pattern of an AW for a single time instant. It consists
of parallel conduction currents carried by the electrons (red and blue arrows) and perpen-
dicular polarization currents (green arrows) carried by the ions. The superposition (black
arrows) yields two twisted current �laments in the form of a helix.

rotates in a plane perpendicular to B0. In the regions where the parallel currents are
concentrated, the local rotation velocity is opposed to the perpendicular currents.
This �nding is consistent with the qualitative outcome of idealizing the parallel
currents as �lament.

4.2.5 3D-current system of a shear Alfvén wave

A description of the current pattern of shear AWs (Fig. 3.7) by two antiparallel cur-
rent �laments seems to be rather crude, but in fact it is a reasonable approximation,
at least for the experimental case. In Vineta the plasma density decreases radially
and at r = 3 cm it is only half the centre value. The plasma is able to carry AWs
only in a narrow plasma tube di�erent from the MHD-model above, where an in�-
nite plasma extent is assumed. This case can be approximated by a convolution of
the parallel AW currents from the MHD-description with the radial density pro�le.
The consequence is a dipol-like current pattern with a current �lament �owing into
the plane and a current �lament �owing out of the plane.

The parallel and perpendicular AW currents result in a three-dimensional current
pattern with two parallel current �laments and the related perpendicular currents.
It rotates in time around the z-axis. Recall that the �uctuating quantities including
the currents are described as plane waves. A change in the distance to the wave
excitation point at z0 along the z-axis will have the same e�ect on the plane wave
phase as the time. In this way a twisting of the current pattern along z can be
deduced, for the discussed curent system of shear AWs this is shown in Fig. 4.13.
The two current �laments with opposite signs are twisted to form a helix. They
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occur as a result of the superimposed parallel and perpendicular currents.

4.3 Rotating current patterns

The AW current pattern described by the MHD-model in Sec. 3.1.4 is based on an
unbounded plasma. AWs in Vineta will signi�cantly di�er from that due to the
�nite size of the plasma. In experiments the �uctuating magnetic �eld is recorded
in azimuthal planes to reconstruct the parallel current pattern.

4.3.1 Measurement of parallel currents

The �uctuating magnetic �eld of a wave in an azimuthal plane is recorded in a
similar way as in the radial-axial plane (Sec. 4.1.1). The only di�erence is the use of
a positioning system capable of moving the Ḃ-probe along the x and y coordinates.
The plane is located at a distance of ∆z = 1551mm from the excitation antenna.
A range of x = −85 . . . 90mm and y = −86 . . . 89mm, with a stepsize of 7mm was
chosen. For each point on the grid, a discharge in argon was started for about 1 s.
After a transient phase, the plasma is stationary and AWs are excited for 100ms
with an amplitude by = 1.8mT. The wave excitation frequency was f = 29.50 kHz,
close to the ion-cyclotron frequency fci = 29.56 kHz. The ambient magnetic �eld
was set to B0 = 77mT. The four probe signals were recorded together with a signal
proportional current in the antenna as reference. Conditional averaging (cf. Sec. 2.6)
and absolute calibration of the signals of the Ḃ-probe (cf. Sec. 2.2.4) result in the
three time series bx(t), by(t), and bz(t). The perpendicular components (bx, by) are
shown in Fig. 4.14 (a) and (b) for three time instants, spanning half a wave period.
In this representation, the resolution is increased for the color-coded amplitude of
b⊥ and decreased for the vector �eld plot.

At t = 0µs, the wave magnetic �eld has a peak amplitude in the center of the plane
of b⊥ = 1.41µT. It has a dipole-like structure tilted by approximately 45◦. In the
curls of the dipole, the �eld drops o� to 0.10µT. The structure is counterclockwise
rotated at t = T/4 = 8.5µs by approximately 90◦, as illustrated in Fig. 4.14 (b). The
absolute values of b⊥ in Fig. 4.14 (b) for t = 8.5µs are not a rotated version of the
pattern at t = 0µs. In fact, the �eld has a more complicated structure and is not
similar to the one found for t = 0µs. The amplitudes are reduced in the entire
plane, the value in the center is b⊥ = 0.58µT. After another T/4 at t = 17µs, the
initial situation recovers and b⊥ has the same dipole-like structure as for t = 0µs,
but with reversed �eld direction in Fig. 4.14 (b). Based on this measurement, the
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Figure 4.14: Azimuthally resolved measurement of �uctuating magnetic �eld of a wave
excited at f = 29.50 kHz. The plane is located at ∆z = 1551mm downstream from the
exciter antenna. The ambient magnetic �eld points into the plane, the ion gyration direc-
tion is counterclockwise. The absolute value of b⊥ in (a) is complemented by a vector �eld
representation in (b) and the parallel current density jz in (c). The time evolution of the
�elds and currents is given column-wise as time step of ∆t = f−1/4.

parallel current density jz was calculated using Ampère's law (3.2). It reads for the
parallel component

jz =
∂bx
∂y
− ∂by
∂x

. (4.20)

The result is shown in Fig. 4.14 (c). The maximum current density is located at the
curls of the magnetic �eld dipole with changing signs for di�erent curl directions.
The location coincides with the minimum of the magnetic �eld. The parallel current
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density vanishes at the maximum of the magnetic �eld in the center of the plane.
The largest value of the parallel current density is jz = 7.8mA/cm2 for t = 0µs.
There is no decrease in amplitude with time di�erent from the magnetic �eld. In
fact, the maximum value is jz = 9.0mA/cm2 for t = T/4. At t = T/2 the parallel
current density reoccurs with changed sign compared to t = 0µs, which is consistent
with the time evolution of the magnetic �eld structure.

4.3.2 Rotational decomposition

A main outcome of the MHD-model described in Sec. 3.1.6 is that the current dis-
tribution of AWs can be treated as rotating rigid body. The time dependence of
~j(t) is fully described by the spatial rotation. There is no explicit time dependence,
neither for shear nor for fast AW. In contrast, the measured parallel current pattern
cannot be described by a simple rotation in time.

The MHD model has two solutions with rotation in opposite directions. Both solu-
tions can exist simultaneously. A possible explantion of the experimental �ndings is
that more than one wave type is excited and the superimposed currents create the
observed current pattern. The hypothesis is supported by the run of the measured
dispersion relation (Sec. 4.1.3), which is in-between the two branches for shear and
fast AWs.

In linear treatment the simultaneous wave occurrence is described as superposition
of all �elds and currents. It can be unfolded by a 2D-Fourier decomposition of the
time evolution of the current pattern. Clock- and counterclockwise rotating parts
can be distinguished as mode numbers with positive and negative signs. With the
coordinates of the measured jz(x, y, t) transformed to polar coordinates jz(r, θ, t)
the Fourier decomposition reads

jz(r,m, ωn) =
1

2πT

2π∫
0

T∫
0

jz(r, θ, t) e
−iωnt e−imθ dt dθ (4.21)

ωn =
2π

T
· n , m = 0,±1,±2, . . . .

The transform maps the angle θ and the time t to the wave number m and the
frequency ω in Fourier space, the radius r is kept as a parameter.

Fig. 4.15 shows a result for r = 25mm, based on the data shown in Fig. 4.14. The am-
plitude of the current density at r represents a dominant m = 1 mode [Fig. 4.15 (a)].
Interpolating for subsequent time steps along the circle yields the time evolution
of jz(r, θ, t) in Fig. 4.15 (b). For t = 0µs, the structure of the current density in
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Figure 4.15: Decomposition of jz into rotating modes. (a) Current density measured in an
azimuthal plane ∆z = 1551mm downstream of the excitation antenna, shown for t = 0µs.
(b) Space-time evolution of the current density along the dashed circle (r = 25mm) in
(a) for t = 0 . . . 500µs. (c) The frequency mode-number spectrum of (b), it is dominated
by two modes with m = ±1 at 29.5 kHz. (d) The reconstructed spatio-temporal current
density shows main featurs of the original jz(t, φ) in (b). The phase fronts of the two
superposed modes are indicated with gray lines.

Fig. 4.15 (a) in azimuthal direction has a minimum and a maximum around θ = 1.8π
and θ = 0.7π, respectively. The absolute values at these points are −10.7mA/cm2

and +7.2mA/cm2. The time evolution of the stripe pattern has a vertical orien-
tation around these extrema. The extrema of the parallel current do not propa-
gate azimuthally, but �ip sign after T/2. The frequency mode-number spectrum is
shown in Fig. 4.15 (c). There are two dominating modes of jz(m,ω) with m = +1
and m = −1 at the excitation frequency f = 29.5 kHz. This proves that the space-
time evolution in Fig. 4.15 (b) is a superposition of clockwise and counterclockwise
rotating (|m| = 1) modes. The inverse Fourier transformation taking into account
only these two modes reads

jz(r, θ, t) = jz(r0,m = 1, ω0)e
iθ + jz(r0,m = −1, ω0)e

−iθ , (4.22)

and yields the space-time pattern in Fig. 4.15 (d). The phase fronts of the two modes
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Figure 4.16: Discrete mode spectrum of parallel current jz as a function of r. Posi-
tive mode numbers correspond to clockwise rotation, negative ones to counterclockwise
rotation. All spectral components are taken at the excitation frequency ω0.

are indicated. Major qualitative and quantitative features of the measured space-
time pattern in Fig. 4.15 (b) are reproduced. The amplitudes are slightly reduced to
±7.1mA/cm2 due to the neglected components at larger mode numbers |m| > 1.

The mode number frequency spectrum in Fig. 4.15 (c) has only one signi�cant fre-
quency peak at the excitation frequency ω0. Considering only components at ω0

leads to the radially resolved mode spectrum in Fig. 4.16. It is clearly dominated by
the two mode numbers m = ±1 for all radii. There is a radial localization of these
two modes. The m = −1 mode is dominant with a peak at r = 35mm. The peak
of the m = +1 mode is slightly less in amplitude. It is inward shifted to r = 26mm
and the radial extent is signi�cant smaller.

A reconstruction of the m = ±1 modes in the azimuthal cross-section is shown in
Fig. 4.17 (b) and (c). The calculation was performed with (4.22) using the com-
plex valued j̃z(r,±1, ω0). The current density structure is sheared with character-
istic spiral-like tails, mostly pronounced for the clockwise rotating m = +1 mode
in Fig. 4.17 (c). As expected from the distribution of the radial mode spectrum,
the m = −1 mode is located at larger radii than the m = +1 mode [Fig. 4.17 (b)].
The latter also has a larger amplitude. The time dependency of the two modes
is fully attributed to the rotation of the individual patterns, there is no explicit
time dependency (cf. Eq. 4.22). The superposition of the two rotating modes leads
to the current density pattern shown in Fig. 4.17 (d). The maximum amplitude is
reduced by 35% compared with the measured pattern due to the neglected Fourier
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Figure 4.17: Rotational decomposition of current pattern. The measured current density
jz(x, y, t) ≡ jz(r, θ, t) � shown in a) for t = 0µs � is 2D-Fourier decomposed with the
distance r to the coordinate origin as parameter. Two modes are dominant, the clockwise
rotating m = +1-mode in (c) and the counterclockwise rotating m = −1-mode in (b). Su-
perimposing both modes results in the current density in (d) with similar qualitative and
quantitative properties as the measured current density in (a).

components. Despite this di�erence, general features of the current density pattern
are well reconstructed. Both patterns have one maximum and one minimum for the
�rst and last time step at t = 0µs and t = 17µs. These are located roughly at the
same locations. For the time instant t = 8.5µs, the more complex structure in the
measured current density patternis reproduced to a certain degree as well.

In conclusion, the measured current distribution and is attributed to two simulta-
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neously excited waves: one with clockwise rotating wave �eld and one with coun-
terclockwise rotating �eld. The dominant m = −1 wave rotates in the direction of
ion gyration. It is assumed to be the desired left-hand polarized shear AW that is
excited with the above described excitation scheme. It has to be distinguished from
the simultaneously excited clockwise rotating wave, e.g. by Fourier decomposition.

4.3.3 Polarization decomposition

A rotating wave of the above discussed type is connected to o�-axis parallel currents
that generate on the axis a magnetic �eld. If the polarization of the wave is purely
circular, the wave magnetic �eld has a constant amplitude and rotates with angular
velocity ω. The wave is left-hand polarized if it rotates counterclockwise and ~k
points into the plane. This can be described by a complex �eld amplitude L. The
time evolution of the �eld components is

bLx (t) = Re
(
L · e−iωt

)
bLy (t) = Im

(
L · e−iωt

)
. (4.23)

Correspondingly, the clockwise rotating �eld corresponds to right-hand polarization.
With a complex amplitude R, the time evolution of the �eld components is:

bRx (t) = Re
(
R · e+iωt

)
bRy (t) = Im

(
R · e+iωt

)
. (4.24)

If the two wave types coexist, the two components of the magnetic �eld bx and by
can be written as harmonic functions in terms of complex wave amplitudes C and
D:

bx(t) = Re
(
C · e−iωt

)
by(t) = Re

(
D · e−iωt

)
. (4.25)

This de�nition di�ers slightly from (4.23) and (4.24) since only real parts are con-
sidered. It is the general de�nition of an elliptically polarized wave �eld. There is
a one-to-one mapping between {C,D} and {L,R}. The magnetic �eld �uctuations
read as

bx(t) = bLx (t) + bRx (t) = Re
(
L · e−iωt

)
+ Re

(
R · e+iωt

)
(4.26)

by(t) = bLy (t) + bRy (t) = Im
(
L · e−iωt

)
+ Im

(
R · e+iωt

)
. (4.27)

These equations can be expressed as

Re
(
C · e−iωt

)
= Re

(
L · e−iωt

)
+ Re

(
R∗ · e−iωt

)
(4.28)

Re
(
D · e−iωt

)
= Re

(
L · e−i(ωt+π/2)

)
−Re

(
R∗ · e−i(ωt+π/2)

)
. (4.29)

This real-valued equation system is a particular solution of the complex-valued sys-
tem. Dividing by the phase factor yields

C = L+R∗ D = (L−R∗) e−iπ/2 . (4.30)
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Figure 4.18: Polarization decomposition of dynamic magnetic �eld on axis at
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tically polarized. A decomposition into left and right rotating �elds is performed (red,
blue), with all shown amplitudes normalized to the amplitude of the left rotating �eld.
The �gure shows measurements at di�erent z-positions with an excitation frequency of
f = 35 kHz (a) and f = 45 kHz (b). The lines to the coordinate origin indicate the phase
for t = 0µs.

If the complex amplitudes of the elliptically polarized wave are measured, the am-
plitudes of the circular polarized waves are

L =
C +D eiπ/2

2
R =

C∗ +D∗ eiπ/2

2
. (4.31)

This mapping is applied to the wave �elds bx and by obtained in the AW-dispersion
experiments presented in Sec. 4.1.3. Fig. 4.18 shows the result for two frequencies
one below and one above fci. In the representation the magnetic �eld is normalized
to the amplitude of the L-wave. For z = 30 cm and an excitation frequency of 35 kHz
the measured time evolution of the magnetic �eld ~b(t) has an ellipse shape and is
elongated along the diagonal [Fig. 4.18 (a)]. The described polarization decomposi-
tion results in an R-wave with an amplitude 80% larger than the amplitude of the
L-wave. Superimposing the two waves results in the measured magnetic �eld with
elliptical polarization for every instant in time. Following the wave axially along
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�eld.

the four shown positions, a smooth evolution of the direction of the magnetic �eld
vector of the two circular waves is observed. For the L-waves the phase change with
distance is with slightly smaller than for the R-waves. The amplitude of the R-wave
is higher than for the L-wave for all positions. Although there is a decrease of the
amplitude ratio for the �rst 3 positions, this trend does not apply to the entire z-
range. The frequency in Fig. 4.18 (b) is f = 45 kHz > fci = 39.2 kHz. The measured
polarization ellipses are closer to linear polarization. At z = 60 cm the orientation of
the ellipse changes, indicated with a di�erent color. The rotation direction is equal
to the rotation of the maximum component of the corresponding two circularly po-
larized waves. Again there is a smooth evolution of the direction of the magnetic
�eld vectors for the two wave types. Compared with f = 35 kHz the phase change
with distance is increased for R-waves and decreased for L-waves. The phase slope
dφ / dz is equal to |~k|, see (4.3). The di�erent slopes for L- and R-waves corre-
spond to di�erent wave lengths λ = 2π/k. This allows one to distinguish between
the dispersion of L- and R-waves.

For a quantitative analysis the complex amplitudes of the L- and R-waves are shown
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Figure 4.20: Dispersion relation of excited waves after polarization decomposition. Di-
agram (a) shows the real part of the dispersion k(ω) and (b) the damping length
d(ω) = 1/ki(ω). The theoretical dispersion curves from Hall-MHD description for shear
and fast AWs (dashed and solid grey line) as well as the dispersion curve and damping
from the resisitive Hall-MHD theory for shear AWs with a normalized resistivity R = 0.93
as �t parameter (solid red line) are included.

in Fig. 4.19 in another representation with the axial runs of the phases and ampli-
tudes. For f = 35 kHz the R-wave is the dominant one. The damping length d is
calculated from the slope in the semilogarithmic plot. The �rst position at z = 0 cm
is omitted because of antenna near-�eld e�ects (cf.Sec. 4.1.1). For the driver fre-
quency f = 35 kHz damping length is dL = 69 cm for the L-wave and dR = 73 cm for
the R-wave. For f = 45 kHz, the absolute amplitudes of the two circularly polar-
ized waves are almost equal. The determined damping lengths are dL = 63 cm and
dR = 57 cm. The phase as function of z [Fig. 4.19 (a) and (b)] yields slopes of 45 ◦/m
(35 kHz) and 69◦/m (45 kHz) for L-waves and 69 ◦/m (35 kHz) and 94◦/m (45 kHz)
for R-waves.

Dispersion relation of L- and R-waves

A polarization decomposition into L- and R-wave is done for all frequencies in the
range of f = 5 . . . 60 kHz of the experimental data in Sec. 4.1.3. From the slope of
φ(z) the modulus of the wave vector k(ω) is calculated. The decrease of the am-
plitudes during propagation bL/R(z) yields the damping length d(ω). The resulting
dispersion relations for the two wave types are shown in Fig. 4.20 (a) and (b). The
dispersion of the L-wave starts for the lowest frequency 5 kHz with kz ≈ 0m−1. For
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frequencies up to 19 kHz, the wave vectors show a spread and are scattered in the
range k = 0 . . . 1.25m−1. For frequencies higher than 19 kHz the dispersion relation
has a smooth run. The maximum wave vector k = 0.79m−1 is found at 34 kHz, fol-
lowed by a minimum k = 0.16m−1 at 50 kHz. The dispersions of R-wave and L-wave
di�er signi�cantly. The dispersion curve of the R-wave is mostly linear. It starts
with a negative k = −0.36m−1 at 5 kHz and increases up to k = 2.53m−1 at 60 kHz.
There are small deviations from linear dispersion, the measured k values are shifted
towards higher values at f = 38 kHz and towards lower values at f = 48 kHz. The
damping length of the L-wave is dominated by a clearly de�ned minimum d = 0.58m
at 41 kHz, very close to the ion-cyclotron frequency. The damping length increases
up to 90 cm at 60 kHz and 103 cm at 16 kHz. For lower frequencies ≤ 16 kHz, the
damping lengths of both L- and R-waves have a broader spread. The spread in the
dispersion relation and the damping length below f = 19 kHz is most likely caused
by drift waves. Drift waves have a similar frequency range and can directly in-
teract with the excited Alfvén waves, as described in Sec. 5.3. The parallel wave
length of the drift waves is typically close to the machine length of l = 4.5m [42].
The experimentally observed wave length in the frequency range of the spread is
λ = 5m.

To compare the measured dispersion relations with theory three calculated disper-
sion relations are included in Fig. 4.20. These are the dispersion curves for shear and
fast AWs as obtained from Hall MHD (3.19) and the dispersion curve for left-hand
polarized shear AWs as obtained from resistive Hall MHD. The resistivity R (3.27)
is used as �t parameter and one obtains R = 0.93. The resulting damping curve is
included in Fig. 4.20 (b). Fig. 4.20 (a) demonstrates that the measured dispersion re-
lations of the circular polarized waves di�er signi�cantly from the Hall-MHD model.
The resistive Hall-MHD model �ts the L-wave dispersion below ωci quite well. No
good agreement is observed for the damping as the predicted damping lengths are
systematically higher than the observed ones.

All MHD-models used here assume an unbounded plasma, however, boundary e�ects
play a role in experiment. Since the observed damping lengths are in the range
d = 1m, locally lauched waves will hardly reach the end plates of the device. The
amplitude of the re�ected wave is therefore low and has negligible in�uence on the
launched wave. Furthermore, in the low-frequency limit the group velocity vg is
well aligned to the ambient magnetic �eld. We can conclude that the low-frequency
shear AW is not signi�cantly in�uenced by the radial or axial plasma boundaries.

Close to the ion-cyclotron resonance ωci this reasoning is not correct any more. As
shown in Fig. 3.5 in the low-frequency limit phase and group velocity are equal and
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vanish for perpendicular propagation:

vph =
ω

k
= vgr =

∂ω

∂k

θ→90◦−→ 0 . (4.32)

This means that shear AWs propagate only parallel to the ambient magnetic �eld.
On the other hand, for frequencies close to ωci the group velocity has a pole vgr →∞.
Shear AWs with frequencys close to ωci propagate also perpendicular to the ambi-
ent magnetic �eld and cannot be described by simple theory. The same applies to
fast AWs at any frequency. They propagate both parallel and perpendicular to the
ambient magnetic �eld (cf. Sec. 4.1.3). The discrepancy between theory and meas-
urement of the damping length can be attributed to a neglected parallel resistivity
η‖ = 0 in (3.25). As shown in Sec. 4.2.1, the main currents of AWs in the low fre-
quency range ω � ωci are parallel currents. Hence, the calculated damping lengths
in the low frequency range are systemtically overestimated.
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Experimental drift wave

investigations

In the magnetized plasmas of Vineta plasma density �uctuations of up to 15%
are observed. They are localized in the radial gradient region. These �uctuations
are either coherent drift wave modes [53] with mode numbers m = 1 . . . 9 or weakly
developed drift wave turbulence [94]. In both cases drift waves are associated with
propagating density structures [43, 103]. For coherent drift modes, linear theory
and experiment agree quite well [42, 104].

5.1 Basic properties of drift waves in Vineta

The main features of the observed density �uctuations are compiled in Fig. 5.1.
The radial density pro�le n(r) has a peak in the center, as it is typical for heli-
con discharges. In the center it is 5.3 · 1018m−3 and decreases radially by about
one order of magnitude to 4.7 · 1017m−3. The radial density gradient extends over
± 20 . . . 50mm. At the maximum gradient at r = ±40mm the density �uctuation
amplitude peaks at ñ/n ≈ 16% [cf. Fig. 5.1 (a)]. In the center of the plasma one has
only ñ/n ≈ 0.8%. The localisation of the density �uctuations indicate a gradient-
driven instability, e.g. drift waves.

Fig. 5.1 (b) shows the power spectral density for two sets of slightly di�erent dis-
charge parameters. In the �rst case, a broad spectrum is found. Towards high
frequencies there is a power law decay of 4.4 dB per octave. At 1.1 kHz, a coherent
signal is superimposed on the broad band with four higher harmonics. This is a typ-
ical example for weakly developed drift wave turbulence. A change of pressure p and
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Figure 5.1: Radial pro�le of plasma density �uctuations in an argon discharge at a neu-
tral gas pressure of pAr = 0.17Pa and an ambient magnetic �eld of B0 = 92mT. The
time-averaged radial plasma density pro�le n0 in (a) (blue line) is superimposed over the
normalized amplitude of density �uctuations as n+ σ(n(t)). It is illustrated as light blue
range (n− ñ) . . . (n+ ñ) and as relative �uctuation amplitude ñ/n0 (dashed line). For the
radial position marked with A at the maximum �uctuation amplitude, the power spectral
density of n(t) is presented in (b) (blue). Changing the discharge parameters slightly to
pAr = 0.28Pa and B0 = 77mT has only little in�uence on the time-averaged pro�le, but
signi�cantly alters the �uctuation spectrum (green).

magnetic �eld B0 acts on the drift wave dynamics via the drift scale ρs ∼ 1/B0 and
the collisionality ν. A spectrum for slightly changed discharge parameters is shown
in Fig. 5.1 (b). Here, a coherent drift mode is destabilized. The mode frequency is
800Hz, with a large number of higher harmonics. For frequencies f ≥ 15 kHz, again
a power law decay is observed. It has the same slope and the same magnitude as
in the weakly developed drift wave turbulence. The regime of weakly developed
drift wave turbulence is determined by the motion of ions, mainly perpendicular to
the ambient magnetic �eld. Therefore an inverse energy cascade between modes is
expected, similar to 2D-�uids [105], tranfering energy from small to high scale struc-
tures. Given by the DW dispersion relation (cf. Fig. 3.10) this is equivalent to an
energy transfer from high to low frequencies. Experimenal evidence for the inverse
energy transfer is found by a bicoherence analysis for experimental DW �uctuation
data from Vineta [106].
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5.2 Parallel currents of drift waves

As outlined in Sec. 3.2, the dynamics of drift waves are intrinsically 3-dimensional.
The associated currents of the parallel electron response are measured as for Alfvén
waves in Sec. 4.2. The azimuthal (x, y)-plane is scanned on a grid with 27× 19
points using a Ḃ-probe and a Langmuir probe. The spatial distance between the
Ḃ-probe and the Langmuir pin is considered as o�set in the coordinates. A second
Langmuir probe is used as a phase reference, it is located in the density gradient
region of the plasma. At each grid point, the ion saturation current of the two
probes and the magnetic signals are recorded during a discharge. The calibrated
probes (cf. Sec. 2.2) yield time series of the �uctuating magnetic components bx(t),
by(t), and bz(t). By conditional averaging �uctuating structures in the azimuthal
plane are reconstructed. The spatio-temporal �elds ñ(x, y, t), bx(x, y, t), by(x, y, t),
and bz(x, y, t) of an m = 3 drift mode are shown in Fig. 5.2 for three time instants.

The density �uctuation structure Fig. 5.2 (a) has three maxima and minima. The
mode pattern rotates at a frequency of f = 2.8 kHz in the electron diamagnetic drift
direction, the frequency recorded at a �xed position is 3f = 8.3 kHz. The �uctuat-
ing magnetic �eld distribution Fig. 5.2 (b) is dominated by six vortices in the vector
�eld with consecutive left- and right-hand orientation. The parallel current j‖ is
calculated with Ampère's law (4.20) from the perpendicular magnetic �eld b⊥(x, y).
The resulting current density is depicted in Fig. 5.2 (c). The pattern of the parallel
current correlates well with the one of the density �uctuations. For a quantitative
analysis the local minima and maxima of the current and density structures are de-
tected. Absolute values are compiled in Tab. 5.1. Although the measurement error
is rather high, a small spatial displacement was observed between the extrema of
current and density. The same measurement was done for a m = 2 drift mode,
the spatio-temporally resolved density and currents are shown in Fig. 5.3, absolute
values are compiled in Tab. 5.1 as well. The maximum �uctuation amplitudes are
smaller compared with the m = 3 mode. Although less signi�cant, a small spa-
tial displacement between the extremas of current and density was also found for
the m = 2 mode. The parallel currents are spatially displaced relative to the den-
sity �uctuations towards the plasma edge and slightly ahead of them into the drift
direction.

The density �uctations are located in the region of steepest radial density gradient.
The current patterns show a displacement relative to the density, most signi�cant
in the radial direction. In the drift wave model, the currents respond to plasma
potential �uctuations. Unstable drift waves require a small phase shift between
potential and density, with the density developing ahead of the potential while
propagating in drift direction [107, 108]. As mentioned above the measured phase
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Figure 5.2: m = 3 drift wave mode in azimuthal plane. The discharge parameters are
pAr = 0.21Pa and B0 = 81mT. The ambient magnetic �eld points into the plane with a
clockwise electron diamagnetic drift direction. Fields and currents are shown for three time
instants with ∆t = T/4. The density �uctuation density (a) is superposed on the isolines
of the parallel current density j‖ (c) at the levels −30,−20, . . . ,+20mA/cm2. The current
density j‖ is calculated via the rotation of the measured magnetic �eld components bx and
by, shown in (b).

shift between j‖(~r) and n(~r) shows that j‖ �ows ahead of the density. Both density
and current pattern are located at larger radii for higher mode numbers, which is
in qualitative agreement with dispersion calculations of drift waves in cylindrical
coordinates [87].
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Figure 5.3: Drift wave mode m = 2 in the azimuthal plane in the same representation as
in Fig. 5.2. The discharge parameters are pAr = 0.21Pa and B0 = 75mT.

5.3 Interaction of drift waves and Alfvén waves

Of major interest in electromagnetic drift waves investigations is the associated
transport. Holt et al. [109] have done a detailed experimental analysis including
temperature �uctuations. For the collisional drift wave regime and the Alfvén wave
regime both a wave-induced plasma transport in the range of the Bohm di�usion
[110] was observed. Hence, the investigation of electromagnetic drift waves is of
special interest with regard to turbulent transport in fusion experiments [111].

A criterion for the onset of electromagnetic e�ects in drift dynamics in terms of the
plasma-β is obtained by comparing the two terms impeding the parallel electron
motion in (3.44). For collisionless plasmas, such e�ects are dominant if β > me/mi
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Table 5.1: m = 2 and m = 3 drift mode: spatial positions of current and density

mode m j‖[mA/cm]2 rj [mm] rn [mm] ∆r [mm] ∆φ [deg]

2 64.8 35.6± 2.8 29.7± 3.5 7.7± 4.9 7.6± 7.9
3 44.0 38.3± 3.0 30.5± 3.1 6.9± 4.2 7.8± 6.4

[112]. In collisional plasmas, the condition is altered as [53]

β >
me

mi

νe
ω

(5.1)

with the electron collision frequency νe and the drift wave frequency ω. Experimental
investigations of electromagnetic drift dynamics with this criterion ful�lled have been
presented recently [65]. In Vineta, the right-hand side of (5.1) is typically 10−3,
compared to a peak plasma-β of 5 · 10−4. Thus, drift waves develop as collisional
electrostatic drift waves.

With respect to the involved currents, DWs and AWs are quite similar. The only per-
pendicular current for both wave types is the ion polarization current (cf. Sec. 3.2.3
and 3.1.2). It is the response to parallel currents and ensures quasineutrality∇j = 0.
The two wave types have been discussed using di�erent pictures. While AWs can be
described in the MHD picture, DWs exist only in the two-�uid description. Taking
the induction term in the parallel force balance (3.44) into account, AWs also exist
in the two-�uid description. A general dispersion relation for electromagnetic waves
was derived by Mikhailovskii [113, p.141]. In addition to the conventional drift wave
branch, it also has an Alfvén branch at higher frequencies. Di�erent from DWs, the
growth rate of AWs is found to be negative. However, resistivity gradients may lead
to destabilization of the Alfvén branch [114]. A further source of destabilization is a
stationary parallel plasma current [115]. Here, a parallel electric �eld builds up due
to the �nite resistivity of the plasma. This enters the electron parallel force balance
and impedes electron motion in parallel direction. It is therefore equivalent to a
friction force, which leads to a phase shift between potential and density and, conse-
quently, to an ampli�cation of the wave. An experimental observation of this e�ect
has been reported in a cylindrical arcjet discharge [116, 117]. The excited waves
were identi�ed as Alfvén wave by dispersion measurements. The mode structure
of the observed unstable AWs was a m = 1 mode, rotating in electron diamagnetic
drift direction [118]. The destabilization of AWs in response to a parallel plasma
current has also been reported in other experiments [119].
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5.3.1 Observation of drift-Alfvén wave interaction

Self-consistent electromagnetic DWs or drift-Alfvén waves (DAWs) are observed only
if the β-criterion (5.1) is satis�ed. This is the case in the experiments reported by
Morales et al. [120]. Destabilization of the wave has been accomplished by steep
density and temperature gradients in elongated �laments of a density depletion in an
elsewhere homogeneous plasma. Electromagnetic DWs occured as coherent modes
in the low-frequency range ω < ωci and show a broad spectrum of higher frequencies,
the latter being intepreted as Alfvénic turbulence. In the work of Sun et al. [65, 121],
the β-criterion is met as well. Here the electromagnetic DWs are destabilized with
an axial electric �eld in the intermediate region of a two-chamber helicon-discharge
[122]. The wave properties are found to be in good agreement with a two-�uid
model.

A di�erent situation is found in the Vineta plasma. As shown in Sec. 5.2, the
parallel electron dynamics is governed by friction and not by induction and the β-
criterion is not met. To overcome this limitation, a similar approach as proposed
by Tang et al. [118, 123] has been chosen. In that study, a constant parallel plasma
current is used to destabilize an AW. The AW interacts with coexistent electrostatic
drift waves if the condition

ω∗ = k‖vA (5.2)

is met. In Tang's work the AW was primarily in�uenced while the DWs remained al-
most una�ected. This situatin is reconsidered here with special attention to actively
in�uencing properties of the DW.

To investigate the interaction between AWs and DWs in Vineta, an AW is excited
by an external periodic drive (cf. Sec. 2.5) in a plasma where a coherent drift mode
propagates. The AW frequency is chosen to be in the vicinity of the DW frequency to
match the condition (5.2). Figs. 5.4 (a) and (b) illustrate the interaction of a m = 3
drift mode (frequency f = 11.3 kHz) with an AW. In the space-time diagram (a),
the drift mode occurs as a tilted stripe pattern with three periods in azimuthal di-
rection. The frequency-mode number spectrum [Fig. 5.4 (b)] peaks at mode number
m = 3. Further components with mode numbers m ≥ 4 are observed at frequencies
f ≥ 12 kHz. Switching the AW excitation on (fAW = 11.78 kHz) leads to the occur-
rence of an additionalm = 4 mode [Fig. 5.4 (d)]. Them = 3 mode is slightly reduced
in amplitude. In the space-time diagram [Fig. 5.4 (c)], the two modes result in a beat
wave structure with occasional phase defects (green circles). Further, an increase
of small components at larger mode numbes m > 4 is observed while the AW-drive
is switched on. After switching the AW-drive o� [Fig. 5.4 (e) and (f)], the m = 3
mode is reestablished and the component at m = 4 vanishes. This situation is even
more coherent than the initial one. The strong coherent mode is accompanied in the
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Figure 5.4: Drift-Alfvén wave coupling experiment. The spatio-temporal diagram of the
�uctuating density (a, c, e) is complemented by the 2D-frequency-modenumber spectrum
(b, d, f). The Alfvén wave excitation is switched on at 0ms and operated for 100ms. The
three shown time instants correspond to a situation before, during, and after launching
the Alfvén wave. The discharge parameters are B0 = 85mT and p = 0.39Pa, the wave
excitation frequency is f = 11.78 kHz. The red circles in (c) indicate phase defects.
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Figure 5.5: Spectrogram of drift wave - Alfvén wave coupling experiment. The power
spectral density of the density �uctuations is shown for di�erent frequencies of the excited
Alfvén wave. The indicated excitation frequencies f1 . . . f3 are analyzed in detail in Fig. 5.6,
where f1 corresponds to fAW = fDW.

spectrum by components at m 6= 3. These are numerical artifacts due to spectral
leakage. The measurement was repeated 100 times with AW excitation frequencies
in the range fAW = 10.9 . . . 11.9 kHz, close to the DW frequency of fDW = 11.3 kHz.
It is found that the initial state of the DW is indi�erent from discharge to discharge.
However, after switching on and o� the AW, a coherent m = 3 mode as shown in
Fig. 5.4 (e) and (f) is always observed.

The power spectral density of the density �uctuations for each AW frequency in the
range fAW = 10.9 . . . 11.9 kHz is shown in Fig. 5.5. If the AW and DW frequencies are
equal fDW = fAW = 11.3 kHz (indicated by the line f1), the power spectral density
essentially shows the combined frequency peak of the two waves and the �rst har-
monic at 22.6 kHz. A weak frequency component is observed at 1.41 kHz = fDW/8,
up to three higher harmonics are clearly seen. To either side of the main frequency
peak, spectral components are found with a frequency shift ∆f = ±1.41 kHz, equal
to the observed low-frequency component. These side bands also occur to either
sides of the second harmonic of the main frequency peak.

There are two separated frequency intervals:
(A) DWs and AWs coexist at large frequency mismatch.
(B) At small frequency mismatch (fAW = 11.00 . . . 11.37 kHz) frequency pulling is
observed, i e., DWs and AWs have the same frequencies and are shifted according
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by the AW driver frequency.
The frequency-mode number spectral analysis reveals a coherent m = 3 mode
at all driver frequencies, cf. Fig. 5.6 (b). The frequency pulling range ∆f =
fDW − 0.30 . . . fDW + 0.07 kHz is asymmetric as observed for DW synchronization
using a mode-selective control scheme [124]. Outside the frequency pulling range,
the situation changes. Here, AWs and DWs can be distinguished as two peaks in
the frequeny spectrum. The amplitude of the AW is stronger than the DW am-
plitude. The background noise is signi�cantly higher, which can be attributed to
weak turbulence. At a larger positive frequency mismatch, a new peak occurs in the
frequency spectrum at about 16 kHz. Its frequency depends on the driver frequeny,
the slope equals the slope the driver frequency in Fig. 5.5.

The mode numbers related to all described frequency components can be in-
ferred from Fig. 5.6. Without frequency mismatch, the frequency spectra for an
unperturbed DW and for a DW with simultaneously launched AW are identi-
cal [Fig. 5.6 (a)]. The main component at f = 11.30 kHz and the side bands at
±1.41 kHz are clearly seen. In the corresponding frequency-mode number spec-
trum in Fig. 5.6 (b) the low frequency components at fDW/8 = 1.41 kHz correspond
m = −1, a rotation into the opposite direction of the main component with m = 3.
For a frequency mismatch ∆f = +0.04 kHz the frequency spectrum shows a shift of
all components by ∆f [Fig. 5.6 (c)]. The amplitudes as well as the mode structures
remain essentially unchanged [Fig. 5.6 (d)]. Outside the pulling range at a mismatch
of ∆f = 0.48 kHz the two frequency components of the DW and the AW are clearly
separated [Fig. 5.6 (e)]. In comparison to the unperturbed case the amplitude of the
DW is reduced by -25 dB. The small change in the DW frequency is related to slight
variations in the discharge parameters. The frequency components around 16 kHz
have mode numbers m = 6 . . . 8, they are the higher harmonics in k-space of the
dominant mode numbers m = 3, 4 [Fig. 5.6 (f)].

Both DWs and AWs cause �uctuating magnetic wave �elds. Fig. 5.7 shows three
radial scans of the magnetic �uctutaion amplitude b⊥(r) for DWs (1) and AWs
(2) individually and DW-AW-coupling (3). In case (2) the AW is driven clearly
separated from the DW-frequency range at fAW = 20 kHz, in case (3) at the same
frequency as the DW. In case (2) and (3) the magnetic �uctuation amplitudes are
shown at the frequencies of the AWs, in case (1) at the frequency of the DW.
The discharge parameters were always the same as in the interaction experiment
(Fig. 5.5).

The radial �uctuation pro�le for AWs is symmetric with a maximum in the plasma
center. The amplitude decreases to both sides until a minimum is reached at
r = ±28mm. After a second maximum at r = ±41mm the �uctuating magnetic
�eld �nally vanishes outside the plasma. This shape is a radial cross-section of the
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Figure 5.6: Power spectral density of plasma density �uctuations of DWs and AWs. The
frequency spectra (a), (c), and (e) are complemented by the frequency-modenumber spectra
(b), (d), and (f). In (a, b) the frequency of the externally driven Alfvén wave matches the
drift wave frequency (f1 in Fig. 5.5), in (c, d), it is slightly shifted in the frequency pulling
range (f2 in Fig. 5.5), and in (e, f) the frequency mismatch is higher with no locking of the
waves (f3 in Fig. 5.5).
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Figure 5.7: Radial magnetic �uctuation amplitude for a drift wave (fDW = 11.7 kHz), an
Alfvén wave (fAW = 20.0 kHz), and a coupled drift-Alfvén wave (fDAW = 11.3 kHz). The
components of the two wave types have been separated by their frequency.

m = 1 mode already shown in Fig. 4.14, which is also predicted by the MHD-model
in Sec. 3.1.6. The minima of the �uctuating magnetic �eld correspond to the radial
locations of the parallel current �laments in the center of the perpendicular magnetic
�eld curls. For DWs, the radial �uctuation pro�le |b⊥(r)| is a radial cross-section
of the measurement shown in Fig. 5.2. Two maxima are found in the maximum
density gradient region at r = ±38mm. In the center, the �uctuation amplitude
decreases. The slope of the �uctuation pro�le at the edge is larger for DWs than for
AWs. The reason could be the larger mode number of the DW (m = 3) compared to
the AW (m = 1) and thus the increased spatial decay of the associated multi-pole
�elds. The magnetic �uctuation amplitude of DW is larger than that of AWs since
the associated parallel currents are larger for DWs (cf. Fig. 5.2 and Fig. 4.17). In
case of interacting DWs and AWs, the radial �uctuation pro�le has a three-hump
structure. The obvious asymmetry is a perturbation of the plasma by the Ḃ-probe.
The shape of |b⊥|(r) can be simply interpreted as a superposition of the magnetic
�uctuation pro�les of DWs and AWs. The combined pro�le is dominated by the
stronger DWs near the plasma edge and by the centrally peaked AWs in the plasma
center. In the intermediate range with similar �uctuation amplitudes, the resulting
�eld is not a sum of the individual waves |b⊥| 6= |~bAW|+ |~bDW|, which might be due
to phase mixing of the two waves.

To compare electrostatic with the magnetic measurements, an experiment simi-
lar to the interaction experiment in Fig. 5.6was done in a wider frequency range
5 . . . 30 kHz. The magnetic �eld �uctuations b(t) and the density �uctuations
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Figure 5.8: Density �uctuations associated with Alfvén waves. The �uctuating magnetic
�eld amplitude b (red curve) and the density �uctuation amplitude ñ/n0 (blue curve) are
simultaneously recorded.

ñ(t)/n were simultaneously recorded at �xed positions in the density gradient region
(Fig. 5.8), 1900mm downstream from the AW driver antenna. Since the magnetic
�uctuation amplitude is almost constant for all frequencies, the AW can be con-
sidered to have a constant amplitude. Remaining variations can be attributed to
a change in the damping length and slight variations of the excitation amplitude,
both frequency-dependent e�ects. The density �uctuations ñ/n vary on a wide range
from 1.5 % . . . 30%. Frequency ranges of large �uctuations are followed by ranges
of small �uctuations. The highest amplitudes are observed below 10 kHz, the DW
range in Vineta. The observed dependence of the density �uctuations on the driver
frequency is not correlated with the magnetic �eld �uctuation dependence.

5.3.2 Interpretation of the observations

Our experiments yield a rather complex picture of density and magnetic �eld �uc-
tuations at di�erent frequencies and wave modes. In particular, the interaction of
two wave types is observed as frequency pulling of the DW by the AW (cf. Fig. 5.5 ).
The key question is which mechanism leads to the interaction.
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5.3 Interaction of drift waves and Alfvén waves

Density �uctuations at the AW frequency are observed in the interaction exper-
iment. In the Hall-MHD model of AWs no density �uctuations occure. In the
two-�uid description of AWs the wave electric �eld causes E ×B convection which
in the presence of density gradients leads to density �uctuations [107]. A esti-
mate of the electric �eld at typical plasma parameters in Vineta (Sec. 3.1.5) yields
Ẽ⊥ ≈ 0.3V/m. For drift waves, the perpendicular electric �eld can be estimated to
be

Ẽ⊥ ≈
φ̃

L⊥
≈ φ0

ñ

n
κn = 30V/m . (5.3)

The plasma potential φ0 is assumed to be 10V, the �uctuation degree ñ/n to be
10% and κn = 30 (cf. Fig. 3.1). We �nd that the perpendicular electric �eld of
AWs is two orders of magnitude smaller than that of DWs and density �uctuations
� 1% are expected. This is clearly supported by measurement. While the AW
has an m = 1 mode structure, the density �uctuation at the AW driver frequency
correspondes to an m = 3 mode, cf. Fig. 5.6 (b) and (d). Hence, the �uctuating
density at fAW cannot be attributed directly to the externally driven AW.

Common to both wave types is the parallel current, which was experimentally ob-
served for AWs in Sec. 4.2 and for DWs in Sec. 5.2. Magnetic �eld �uctuations are
associated with these currents. The |b⊥|(r) in Fig. 5.7 indicates that the magnetic
�eld �uctuations of the unstable DWs and the driven AW are just superimposed.
This fact and the di�erent mode structures lead to the conclusion that both wave
types exist independent from each other, even in the case of frequency pulling.

The interaction of the two wave types occurs most likely via their parallel currents.
Launching an AW generates jAWz (t) at radial locations that overlap with the DW
current locations in the density gradient region. The �nite parallel resistivity results
in an additional �uctuating parallel electric �eld and must be taken into accout
in the parallel force balance for the electrons (3.44). The AW thus impedes the
electron motion, leading to a shift between the �uctuating potential and density and,
consequently, to an increased growth rate of the DW. This mechanism is similar to
the destabilization of DWs and AWs by drawing a constant axial current through the
plasma [115, 118]. The main di�erence in our experiment is the use of an alternating
plasma current driven by the AW antenna at the frequency fAW. This limits the
destabilization of DWs to the AW excitation frequency fDW = fAW. The introduced
axial currents are quite small. The measured value for DWs is j‖ ≈ 65mA/cm2, the
additional introduced current density of AWs is j‖ ≈ 9.0mA/cm2, changing the force
balance for the electrons is only slightly. The condition (5.1) for the occurrence of
electromagnetic drift waves, on the other hand, remains unchanged for interacting
DW and AW since the electromagnetic force term in (3.44) is negligible. In this
linear picture, the in�uence of an externally driven AW on DWs is limited to a small
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change in the growth rate of the existing DW.

If the linear DW dispersion relation predicts positive growth rates for more than one
DW mode, they will not exist as superposition. Rather, the modes compete for the
available free energy that stems from the density gradient. As shown in Fig. 5.4, the
drift waves there seem to be in an indi�erent state with a dominat m = 3 mode and
several smaller modes and frequency components. After switching the AW-excitation
on and o� there is only a coherent m = 3 mode. If an AW is launched at a frequency
close to that of the DW, the DW frequency might be shifted by a hysteresis in the
frequency pulling that establishes the new status. Note that the mode number of
the launched AW m = 1 does not match the mode number of the frequency locked
DW m = 3 (cf. Fig. 4.15 and Fig. 5.6). In the excitation spectrum in Fig. 1.2 the
modulation level of density �uctuation has a strong frequency dependence for an
AW with an almost equal amplitude in the observed range. These two experimental
�ndings might be considered as indicator that the observed density �uctuations are
not a directly generated by the AW. Rather, they could be associated with a DW
destabilized at the AW frequency.

To conclude, the above described experiments suggest that DWs and AWs do not
interact via the induction term in the parallel force balance for electrons, as it would
be the case for electromagnetic drift waves, but via the electric �eld associated to
the parallel currents. Since the in�uence of these additional currents on the drift
dynamics is small, linear wave interaction is most likely.
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Summary and conclusions

In Vineta, the most frequently observed waves in the low-frequency range below
the ion-cyclotron frequency are (stable) Alfvén waves and (unstable) drift waves.
Hitherto, Alfvén waves were mostly investigated by measuring the �uctuating mag-
netic �eld, drift waves by measuring the �uctuating plasma density. A more integral
approach is persued in the present work. Both wave types drive parallel conduction
currents. These currents are measured with high resolution in both space and time.
This is done with a magnetic sensor as Ḃ-probe, designed to measure low-frequency
f = 100Hz . . . 2MHz magnetic �eld �uctuations with high signal-to-noise ratio (e.g.
100 dB for b = 1µT at f = 1 kHz). The sensor simultaneously records the three mag-
netic �uctuation components bx(t), by(t), and bz(t). Any misalignment of the three
sensor coils is considered in the calibration. Via Ampére's law the current pattern
is determined from spatially resolved magnetic �eld �uctuation measurements.

To drive stable Alvén waves, a magnetic wave excitation system was developed. It
is capable of perturbating the ambient magnetic �eld B0 up to b/B0 ≈ 1 %. The
driven magnetic waves are well accessible with the magnetic probe even though they
are strongly damped. The main �ndings are:

i) Wave polarization: The externally excited magnetic �eld perturbations are
perpendicular to B0 in y-direction, which corresponds to linear polarization. The
magnetic �eld �uctuations caused by the launched waves are usually elliptically
polarized. The decomposition into one left- and one right-hand circular polarized
component reveals di�erent propagation properties of the two wave components.
The right-hand polarized (R) wave has the same phase velocity over the entire
frequency range below and above the ion cyclotron frequency ωci. The dispersion
relation of the left-hand polarized (L) wave shows a bending below ωci with smaller
phase velocities than the R-wave. However, the L-wave dispersion does not match
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the expected dispersion relation of shear Alfvén waves in the simple Hall-MHD
picture. Good agreement is obtained by taking the plasma resistivity into account.

ii) Currents: The parallel component of the current density j‖ is clearly localized
in the plane perpendicular to the wave propagation. This observation agrees well
with the experimental studies of Gekelman et al. [125], where a similar diagnos-
tic technique is used. The current system of the externally driven Alfvén waves
in Vineta consists mainly of two current �laments with opposite sign, which are
identi�ed as modes with m = ±1. This is di�erent from Ref. [125]. The reason is the
di�erent excitation system used there [73], which generates a rotational symmetric
mode with m = 0.

iii) MHD-model for Alfvén waves: In the low frequency limit ω � ωci the ex-
cited waves are Alfvén waves propagating with phase velocity vA. The wave propaga-
tion is investigated for both L- and R-waves, in particular the parameter dependency
on the ambient magnetic �eld B0 and on the mass density n0. L- and R-waves have
the same phase velocity vA only in the low-frequency limit, as expected from the
Hall-MHD model. For higher frequencies but still well below ωci, di�erent dispersion
properties are expected for the two di�erent wave components. This is seen in the
experiment, with higher phase velocity for the R-wave than for the L-wave, as also
observed in other works [64, 126, 127]. Approaching the ion-cyclotron resonance ωci,
the measurements deviate considerably from the Hall-MHD calculations. These de-
viations are most likely due to the high plasma resistivity with collision frequencies
of ν/ωci ' 30, which becomes most signi�cant in the short-wavelength limit λ → 0
close to the resonance point. The introduction of an additional term for the plasma
resistivity in the MHD-model gives very good agreement with experiment, in par-
ticular the space and time evolution of the parallel current density: The calculated
current density has a rotating pattern and is helically twisted, exactly as observed
in the experiments.

iv) Coupling of Alfvén and drift waves: Electric probes are the standard
diagnostic tool to investigate drift waves [103]. Probe arrays give access to the spatio-
temporal propagation properties of drift waves [41]. In the present work, drift waves
are additionally characterized by their parallel currents. The location of the parallel
current �laments matches the maximum of the plasma density �uctuations. This is
consistent with the drive of parallel electron currents by parallel pressure gradients.
Because of the similarities in the parallel current patterns for both drift- and Alfvén
waves, coupling experiments were conducted, similar to the approach proposed by
Tang et al. [118]. It is observed that the Alfvén wave dynamics is strongly a�ected
by drift waves, e.g. deviation from the linear dispersion relation. In addition, a
nonlinear coupling with drift waves is observed, mostly visible in frequency pulling
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of the drift wave by the (externally driven) Alfvén wave. This demonstrates the
sensitivity of the perpendicular drift wave dynamics to the parallel electrons, the
latter altered by the inductively driven currents of the Alfvén wave.
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Appendix A

Dispersion relation for resistive

Alfvén waves

The basic equations for describing Alfvén waves as resistive MHD waves for the
frequency range 0 < ω ≤ 10ωci are the �uid equation of motion and the generalized
Ohms law

ρ
∂~u

∂t
= ~j × ~B (A.1)

~E + ~u× ~B = η̂ +
1

ne
~j × ~B . (A.2)

This system is closed by the Maxwells curl equations

∇×~b = µ0
~j (A.3)

∇× ~E = − ∂~b

∂t
. (A.4)

Three terms are neglected from the complete set of equations [128]. Firstly, no
temperature e�ects are taken into account, which leads to vanishing ∇p in both
equations since p = kBT . Secondly, the electron inertia term ρ/(en)2 · ∂~j/ ∂t is ne-
glected, leading to the frequency range restriction well below the electron-cyclotron
frequency ω � ωce. Finally, quasineutrality is assumed (ni − ne)e ~E = 0.

This system of four coupled linear di�erential equations can be solved by the plane
wave ansatz

bx = bx0 e
i(~k·~x−ωt) , (A.5)

with bx being replacable by any of the components of ~E, ~u or ~j. Inserting this into
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(A.1) yields

−iωρux = jyB0

iωρuy = jxB0

uz = 0

Ex + uyB0 = ηjx + (1/ne)jyB0

Ey − uxB0 = ηjy − (1/ne)jxB0

Ez = 0
. (A.6)

The �uctuating magnetic �eld components are written in lower case. All compo-
nents of the electric �eld and the current density are �uctuating quantities. B0 is
the ambient magnetic �eld, which is aligned along the z-coordinate without loss of
generality. By combining the �rst two equations of each block, the components ux
and uy of the velocity can be eliminated. After some manipulations, this leads to

jy −
v2A
ωci

jx −
Ey
µ0

= 0

jx +
v2A
ωci

jy −
Ex
µ0

= 0 . (A.7)

Here, the Alfvén velocity is introduced as vA = B0/
√
µ0ρ. The Maxwell curl equa-

tions can be used to express jx and jy in terms of the electric �eld. Using the plane
wave ansatz yields

µ0jx = i(kybz − kzby)
µ0jy = i(kzbx − kxbz)
µ0jz = i(kxby − kybx)

−kzEy = ωbx
kzEx = ωby

kxEy − kyEx = ωbz

. (A.8)

The magnetic �eld can be eleminated from these equations, resulting in(
η

µ0

− v2A
iω

)
jx =

i

ωµ0

(kxkyEy − k2yEx − k2zEx) (A.9)(
η

µ0

− v2A
iω

)
jy =

i

ωµ0

(kxkyEx − k2xEy − k2zEy) . (A.10)

This is the relation between the current density and the electric �eld, needed for
(A.7). Replacing j yields(
η

µ0

− v2A
iω

)
(kxkyEx − (k2x + k2z)Ey)−

v2A
ωci

(kxkyEy − (k2y + k2z)Ex))−
ω

i
Ey = 0(

η

µ0

− v2A
iω

)
(kxkyEy − (ky + k2z)Ex) +

v2A
ωci

(kxkyEx − (k2x + k2z)Ey))−
ω

i
Ex = 0 .

(A.11)

At this point, a simpli�cation is achieved by introducing the normalized quantities
[18]

α =
vAk

ωci
f =

ω

ωci
R =

ηωci
µ0v2A

. (A.12)
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The normalization for the wave vector is valid for each component, in particular
αx = vAkx/ωci. Both Eqs. (A.11) can be brought into a form (Ex/Ey) = . . . They
read to be

Ex
Ey

=
αxαy +i[ f(α2

x + α2
z) − Rfαxαy ]

α2
y + α2

z − f 2 +i[ fαyαx − Rf(α2
y + α2

z) ]
(A.13)

Ey
Ex

=
αxαy +i[ −f(α2

x + α2
z) − Rfαxαy ]

α2
x + α2

z − f 2 +i[ −fαyαx − Rf(α2
x + α2

z) ]
. (A.14)

For the special case of propagation parallel to the magnetic �eld (αx = 0, αy = 0)
and no resistivity (R = 0), the ratio of the perpendicular electric �eld components
simpli�es to

Ex
Ey

= i
α2
zf

α2
z − f 2

. (A.15)

In the general case of propagation along and across the �eld, the elemination of
Ex/Ey leads to a condition for ω and ~k with no �uctuating quantities left. After
some lengthy but straightforward manipulations, the result is

f 4+f 3iR(α2+α2
z)−f 2(α2α2

z+α2+α2
z+R2α2α2

z)−f ·2iRα2α2
z+α2α2

z = 0 . (A.16)

If satis�ed, the plane wave ansatz (A.5) is a solution of the initial equation system.
Such relationship f(ω,~k) = 0 is referred to as dispersion relation.
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