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1 Abstract 

Background 
Previous work has focused on speckle-tracking echocardiography (STE)-derived global 
longitudinal and circumferential peak strain as potential superior prognostic metric markers 
compared with left ventricular ejection fraction (LVEF). However, the value of regional 
distribution and the respective orientation of left ventricular wall motion (quantified as strain 
and derived from STE) for survival prediction have not been investigated yet. Moreover, most 
of the recent studies on risk stratification in primary and secondary prevention do not use 
neural networks for outcome prediction. 

Purpose 
To evaluate the performance of neural networks for predicting all cause-mortality with 
different model inputs in a moderate-sized general population cohort.  

Methods 
All participants of the second cohort of the population-based Study of Health in Pomerania 
(SHIP-TREND-0) without prior cardiovascular disease (CVD; acute myocardial infarction, 
cardiac surgery/intervention, heart failure and stroke) and with transthoracic 
echocardiography exams were followed for all-cause mortality from baseline examination 
(2008-2012) until 2019. 
A novel deep neural network architecture ‘nnet-Surv-rcsplines’, that extends the Royston-
Parmar- cubic splines survival model to neural networks was proposed and applied to predict 
all-cause mortality from STE-derived global and/or regional myocardial longitudinal, 
circumferential, transverse, and radial strain in addition to the components of the ESC SCORE 
model. The models were evaluated by 8.5-year area-under-the-receiver-operating-
characteristic (AUROC) and (scaled) Brier score [(S)BS]and compared to the SCORE model 
adjusted for mortality rates in Germany in 2010. 

Results 
In total, 3858 participants (53 % female, median age 51 years) were followed for a median 
time of 8.4 (95 % CI 8.3 – 8.5) years. Application of ‘nnet-Surv-rcsplines’ to the components of 
the ESC SCORE model alone resulted in the best discriminatory performance (AUROC 0.9 
[0.86-0.91]) and lowest prediction error (SBS 21[18-23] %). The latter was significantly lower 
(p <0.001) than the original SCORE model (SBS 11 [9.5 - 13] %), while discrimination did not 
differ significantly. There was no difference in (S)BS (p= 0.66) when global circumferential and 
longitudinal strain were added to the model. Solely including STE-data resulted in an 
informative (AUROC 0.71 [0.69, 0.74]; SBS 3.6 [2.8-4.6] %) but worse (p<0.001) model 
performance than when considering the sociodemographic and instrumental biomarkers, too. 

Conclusion 
Regional myocardial strain distribution contains prognostic information for predicting all-
cause mortality in a primary prevention sample of subjects without CVD. Still, the incremental 
prognostic value of STE parameters was not demonstrated. Application of neural networks on 
available traditional risk factors in primary prevention may improve outcome prediction 
compared to standard statistical approaches and lead to better treatment decisions. 
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2 Introduction 

Previous work has focused on speckle-tracking echocardiography (STE)-derived global 

longitudinal and circumferential peak strain as potential superior prognostic metric markers 

compared with left ventricular ejection fraction (LVEF)1-3. The association of those parameters 

with outcomes (incl. adverse cardiovascular events, cardiovascular- and all-cause mortality) 

was investigated in different settings, cohorts and for other disease entities1-10. Despite the 

potentially misleading term ‘predictor variable’, most of the available literature claiming to 

show ‘incremental predictive capabilities’ only focuses on ‘independent association’ in 

multivariable survival regression, which is subject to causal inference frameworks11-13. 

The development and evaluation of models incorporating STE-derived cardiac motion 

parameters for predicting survival outcomes have not been subject to research as yet1,8,9. 

Especially information on the regional distribution of peak strain and strain rate parameters 

with varying orientation (transversal, longitudinal, circumferential, and radial), available due 

to modern speckle tracking software and ultrasound hardware, has not been integrated into 

prediction models so far1,5,7,9. In this work, the regional distribution and the respective 

orientation of left ventricular wall motion (quantified as strain and derived from STE) have 

been treated in the same way as other multi-dimensional data (e.g., radiomics, genomics, 

metabolomics etc.).  

Multi-dimensional data requires specific statistical methods dealing with this high 

dimensionality to exploit the available information effectively 12-16. Recently, machine learning 

methods, specifically deep neural networks, have successfully been applied to different tasks 

in cardiovascular medicine 17-20. However, literature on using deep neural networks for risk 

prediction in primary prevention in the general population is sparse21-24. Even the update of 

the widely used ‘Systematic COronary Risk Evaluation’(SCORE) risk charts, namely SCORE225 

and SCORE2-OP26, derived from the data of 677,684 individuals, relies on traditional 

survival/competing risk regression25. The used methods do not address potential non-linear 

effects of covariables and only explicit first-level interaction terms. A major drawback 

preventing a widespread application of deep learning models for risk prediction lies in the 

complexity of time-to-event data with potential right- or left-censoring and competing 
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risks27,28. Different approaches have been proposed for applying deep learning models on 

survival and competing risk datarv29, Coxnnet30, nnet-survival27, DeepHit31). While the former 

two extend Cox’s proportional hazard model to neural networks, the latter two are multi-task 

networks that model the survival distribution at discrete time intervals.  

In the present work, a novel deep neural network for survival data (including competing risk 

data), extending Royston and Parmar’s flexible parameterization of the survival function by 

restricted cubic splines to model the cause-specific cumulative incidence function (CIF) in a 

neural network, has been proposed32,33. This ‘nnet-Surv-rcsplines’ model has been applied to 

predict all-cause mortality in a general population cohort. This study has aimed to assess the 

performance of neural networks for predicting all cause-mortality with different model inputs 

in a moderate-sized general population cohort. Inputs ranged from components of the SCORE 

risk chart models to high dimensional STE-data. 
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3 Methods 

For the development and reporting of prediction models, we applied the structure proposed 

in the TRIPOD and CONSORT-AI statement, taking the study population at risk, the time 

horizon, the outcome of interest, and the choice of predictors into consideration12,13,34,35.  

3.1 Study Population, population-at-risk, and time horizon 

The Study of Health in Pomerania (SHIP) is a population-based, epidemiological project 

conducted in northeastern Germany36. For this work, data from the baseline examinations of 

the second cohort (SHIP-TREND-0), collected between September 2008 and September 2012, 

was used. For SHIP-TREND-0, a random, stratified sample of 8,016 adults aged 20 - 79 years 

was drawn using local population registries in the Federal State of Mecklenburg/West 

Pomerania36. Stratification variables were age, sex, and city/county of residence36. In total, 

4,420 individuals took part in the examinations (response 50.1 %) and gave informed written 

consent36. The Ethics Committee of the University of Greifswald has approved this study. This 

study was conducted in accordance with the Declaration of Helsinki, following all relevant 

guidelines and regulations. 

All participants of SHIP-TREND-0 with a complete mortality follow-up and STE data of sufficient 

quality for the apical four-chamber and the apical 2-chamber view at least have been included 

in our investigation. As the baseline, we have defined the date of examination at the study 

site. We have considered 10 years as a relevant time horizon for developing and assessing 

survival prediction models13. In total, data of 3,858 individuals out of 4,420 participants of 

SHIP-TREND-0 have been analyzed in the present work (cf. Figure 2). 

3.2 Outcome 

Minimization of mortality is a primary target in cardiovascular prevention. Hence, all-cause 

mortality was chosen as the primary outcome. Patients were followed from baseline until 

death, emigration or July 2019, whichever came first. Information on the vital status of 

patients was obtained from official resident data files36. Subjects were either classified as 

censored at the date of record in the population registry or as dead.  
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3.3 Speckle Tracking Echocardiography 

All participants underwent routine M-Mode, B-Mode, continuous-wave Doppler, pulse-wave 

Doppler and tissue doppler imaging echocardiography. Left ventricular dimensions were 

measured using the leading-edge convention37,38. Moreover, left ventricular mass (LVM) and 

left ventricular diastolic function markers were evaluated. Echocardiography was conducted 

using vivid-I cardiovascular ultrasound devices (GE Medical Systems, Waukesha, Wisconsin, 

WI, USA). 

According to a standardized protocol, two-dimensional speckle-tracking-based image analyses 

of the left ventricle were performed using an offline vendor-independent software (2D Cardiac 

Performance Analysis v1.2.3.6 b.141117, TomTec Imaging Systems, Unterschleissheim, 

Germany) by two readers. LVEF was calculated in the standard fashion from end-diastolic and 

end-systolic volumes derived from a modified Simson biplane approach38, using the 

aforementioned software tool. Peak global circumferential strain (GCS) was determined from 

the parasternal short axis in the papillary muscle plane. Peak global longitudinal strain (GLS) 

was calculated as the mean of global longitudinal strain values measured in apical two-

chamber and apical four-chamber view. In addition, the STE software calculated peak 

segmental endocardial strain, strain rates (i.e., the first derivative of strain) and the respective 

time-to-peak. 

3.4 Statistical analysis, machine learning and performance evaluation 

Baseline characteristics of the study population were compared by inclusion/exclusion using 

Pearson’s χ2-test for categorical and Wilcoxon rank sum test for continuous variables, 

respectively. Prior to model training, a two-stage Random Forest single imputation 

(“MissForest”39) method was used to impute missing values in the dataset. In the first stage, 

the missing values of the clinical covariables (age, sex, serum cholesterol, systolic blood 

pressure and current smoking status) were imputed using this information only. In the second 

stage, missing values in the speckle tracking data (e.g., missing segmental strain) were 

imputed. Among representative deep learning methods for survival data, a discrete-time 

survival model called ‘nnet-survival’27 served as a backend for a dense neural network with 
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modern deep learning techniques (Relu-Activation40, batch normalization41, dropout 

regularization, training with ADAM-optimizer42). 

Furthermore, the continuous-time Royston-Parmar cubic spline regression (RPCS)32 was 

extended as a backend for a deep, dense neural network called ‘nnet-Surv-rcsplines’, detailed 

in the next paragraph and Appendix 8.1 p. 1 to 6. The ‘nnet-survival’ model27 serves as a 

benchmark for the proposed ‘nnet-Surv-rcsplines’ model in terms of a sensitivity analysis. The 

widely used Cox proportional hazard model was not included in the final analyses since 

convergence failed for several combinations of input variables, which was also part of the 

motivation to use more appropriate high-dimensional methods. 

The regularization of the neural networks (dropout/ L1/L2-penalty) serves as an embedded 

data-driven variable selection/weighting process43. 

3.5 Restricted cubic splines neural network ‘nnet-Surv-rcsplines’ 

Royston and Parmar introduced a flexible parametric survival model that models the survival 

function on the logistic or log hazard scale using restricted cubic splines32,33. In this work, this 

approach is generalized to an implementation of a neural network (cf.  Figure 1). In brief, the 

neural network is interposed between the input variables and the input vector of the 

traditional Royston and Parmar model. Changes in the input variables lead to vertical 

translation of the spline on the respective modelling scale (e.g., log hazard). In contrast to the 

original (generalized) linear model, also the vertical position of the control points (‘knots’) 

could depend on the (potentially a different set of) input variables if specified. In addition, this 

model was also extended to competing risks, where the cause-specific cumulative incidence 

function is modelled similar to Fine and Gray’s popular competing risk regression model 44,45. 

If no hidden neural network layers are chosen, the model simplifies to the original restricted 

cubic spline model of Royston and Parmar32. The complete mathematical derivation of the 

‘nnet-Surv-rcsplines’ model was detailed in Appendix 8.1, p. 1 to 6. 

The Tensorflow Layers and Submodels of the actual Python implementation (cf. Appendix 8.2, 

p. 6 to 20) may be used as modules for more complex neural networks (e.g., convolutional or 
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recurrent neural networks for image and time series data, respectively). In addition, the high-

level scikit-learn-style API can be used out-of-the-box on tabular data. 
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Figure 1. 'nnet-Surv-rcsplines' neural network architecture 
The deep layers (blue) serve as the frontend for extracting information from the input. In this case, an 
extended Multi-layer-Perceptron with modern deep learning components (dropout, ReLu Activation, 
batch normalization and residual connections) is used. The Spline Layer (Gamma, violet) models the 
shape of the spline for the cause-specific cumulative incidence function 𝐹𝑘(𝑡) on the respective scale 

due to the link function 𝑔(⋅) (for 𝑐 → 0 and c = 1, this is the cumulative hazard and cumulative odds 
scale, respectively). The Modelling Scale (Beta) models the influence of the input variables on the global 
spline position (i.e., displacement on the y-axis) on the respective scale. 
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3.6 Specification of model input and benchmark 

The Weibull survival model underlying the widely used SCORE risk charts46 was considered as 

a reference. Here, the stratified Weibull regression coefficients reported for Germany (low-

risk country) were applied to predict cardiovascular disease (CVD) mortality. The estimated 

CVD mortality (ICD-10 I10-I15, I20-I25, I44-I51 and I61-I74, R96-99) was multiplied by an age-

group- and sex-specific weighting factor derived from official German mortality registries of 

201047 to estimate the cumulative incidence function for all-cause mortality. This approach 

assumes that relative risks estimated on the SCORE derivation cohort did not change over 

time. 

For the deep learning models, information on age, sex, high-density lipoprotein, systolic blood 

pressure and current smoking status (SCORE components), underlying the SCORE risk chart 

model for predicting cardiovascular mortality46, was supplied to serve as input for the neural 

networks. In total, the compared models comprise:  

Table 1. Overview of applied models. 

i) the calibrated SCORE model for prediction of all-cause mortality 

ii) neural networks applied to SCORE components only 

iii) neural networks applied to SCORE components, GLS and GCS, 

iv) neural networks applied to predicted SCORE survival-probability and GLS and GCS, 

v) STE-data (global and segmental peak circumferential/ longitudinal/ radial/ transversal 

strain (rate)).  

vi) SCORE components and STE-data  

 

For the multidimensional STE-data models (v) and vi)), principal component analysis was 

applied prior to model training for feature reduction. The number of components was chosen 

to explain ≥ 95 % of the variance. 

3.7 Performance Evaluation 

A repeated 10-fold internal cross-validation was conducted to train and test the proposed 

models48,49. Specifically, at each cycle, a random 10 % of the training dataset was strictly held-
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out and used as the test-set for the models trained on the remaining 90 % of the data. This 

process was repeated ten times, and the mean of the calculated metrics was reported. 

Hyperparameters (i.e., additional model parameters that are not optimized during training) 

were chosen to minimize the 8.5-year Brier score28 by repeated bootstrap-bias-corrected 10-

fold cross-validation on the training cohort using a randomized search protocol. Optimized 

hyperparameters comprise learning rate, choice of regularization (dropout vs L1/L2-penalty), 

dropout rate/lambda for L1/L2, depth and width of the dense neural network and Aranda-

Ordaz-link-coefficient. 

Briefly, the pooled predictions on the relative hold-out-folds were bootstrapped. The 

performance of the respective best hyperparameter configuration was calculated on the 

samples not used in the bootstrap (“out-of-bag”) to correct for the optimistic bias induced by 

hyperparameter tuning49. 

Discrimination ability was assessed by time-varying receiver-operating-characteristics (ROC) 

in the cumulative incidence, dynamic controls formulation 50, and corresponding area-under-

the-curve (AUROC) over the time range of 7 to 10 years after baseline. 

Calibration was visually assessed using loess-smoothed calibration plots calculated on 

jackknife-pseudo-values51,52. 

The predictive accuracy was estimated by inverse probability of censoring weighted mean 

square error (Brier score, BS) for right-censored data and by a derived scaled R2-like measure, 

calculated by 𝑅𝐺
2 = 1 −

𝐵𝑆

𝐵𝑆𝑚𝑎𝑥
, respectively28,53. 

Five hundred bootstrap samples from the pooled out-of-fold predictions were used to 

calculate 2.5 %- and 97.5 %-percentile confidence intervals. Bootstrap z-tests were calculated 

on the metrics’ differences across models. An alpha level of 0.01 was chosen as the threshold 

for statistical significance. No correction for multiple testing was applied in concordance with 

arguments for this approach in observational studies published earlier54. However, results 

should be interpreted as hypothesis generating. 
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Data preparation and model implementation were performed in Stata 15.1 and Python 3.7.3, 

respectively, with the following extra modules: Tensorflow 2.4.255 lifelines 0.24.1256, scikit-

survival 0.1157, scikit-learn 1.0.158, and ELI5 0·10·1. The used source code includes the 

proposed ‘nnet-Surv-rcsplines’ survival model, the Tensorflow 2 implementation of ‘nnet-

survival’27 and the python implementation of the SCORE risk chart model accessible via 

github.com/laqua-stack/SHIP_Survival_ECHO. In addition, the source code for the ‘nnet-Surv-

rcsplines’, ‘nnet-survival’, and the lowess-smoothed calibration plot is given in Appendix p. 6 

to 20, 21 to 26 and 27 to 33, respectively. 

All experiments were carried out on the high-performance computation cluster of the data 

centre of the University of Greifswald. 
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4 Results 

4.1 Study population 

In total, 3858 participants of SHIP-TREND-0 with valid echocardiography and mortality data 

(cf. Figure 2) and without a history of cardiovascular disease events were followed for a 

median follow-up time of 8.4 (95 % CI 8.3 – 8.5) years. Baseline characteristics of the study 

population separated by study inclusion are given in Table 2. Excluded participants were 

predominantly older (p<0.001), were more frequently male (p<0.001), had more 

comorbidities (history of hypertension, heart failure, diabetes mellitus, atrial fibrillation, 

cardiovascular diseases, renal diseases, cancer; all p<0.001), and more frequent medication 

(cf. Table 2; p≤0.01). Average myocardial strains (except for peak transversal strain) and left 

ventricular ejection fraction were also significantly lower in the excluded study population 

(p≤0.001). 
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Figure 2. Flowchart of the study population 
SHIP = Study of Health in Pomerania, CVD = cardiovascular disease (here defined as history of acute 
myocardial infarction, stroke, heart failure and cardiac surgery/intervention), AMI = acute myocardial 
infarction,  SCORE = ‘Systematic COronary Risk Evaluation’, STE = speckle tracking echocardiography 

SHIP-TREND-0 Population 

(n=4420) 

Population without history of 

CVD* (n=3858) 

Missing echocardiography/ insufficient 

quality for STE-analysis (n=239) 

Missing covariates dataset (missing 

segmental strain + missing SCORE 

components imputed) 

Imputed dataset (n=3858) 

Complete STE-data (n=4181) 

History of CVD (n=323): 
AMI (n=129) 
Stroke (n=94) 
Cardiac surgery (n=75) 
Heart failure (n=114) 

2-Stage 

Random 

Forest single 

imputation 
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Table 2. Baseline characteristics of the study population 
Median (interquartile range) and absolute count (relative percentage) are given for continuous and 
binary variables, respectively. Excluded patients were those without sufficient echocardiography and a 
history of cardiovascular disease (acute myocardial infarction, stroke, cardiac surgery/intervention, heart 
failure). P-values for Pearson’s χ2-test for categorical and Wilcoxon rank sum test for continuous 
variables, respectively. eGFR = estimated glomerular filtration rate, LVEF = Left ventricular ejection 
fraction, PAI = Platelet aggregation inhibitors, OAD = obstructive airway diseases, 
P(L/T/C/R)S = peak circumferential/longitudinal/radial/transversal strain, 4ch = apical four chamber 
view, 2ch = apical two chamber view, sax_pm = short axis view at papillary muscle plane 

    Excluded * 
(N=562) 

Study population 
(N=3,858) 

p-
value 

Age (years) 62 (52-72) 51 (39-63) <0.001 

Male sex 351 (62%) 1,794 (47%) <0.001 

Height (cm) 170 (163-176) 170 (163-177)  0.85 

Weight (kg) 84 (75-95) 79 (68-91) <0.001 

Current smoker 99 (18%) 1,084 (28%) <0.001 

Ever smoker 354 (64%) 2,439 (63%)  0.93 

History of 
  

 

Atrial fibrillation 97 (18%) 138 (4%) <0.001 

Acute myocardial infarction 133 (24%) 0 (0%) <0.001 

Stroke 100 (18%) 0 (0%) <0.001 

Cardiac surgery/intervention 80 (14%) 0 (0%) <0.001 

Heart failure 122 (22%) 0 (0%) <0.001 

Diabetes mellitus 121 (22%) 343 (9%) <0.001 

Renal disease 35 (6%) 108 (3%) <0.001 

Cancer 56 (11%) 232 (6%) <0.001 

Vital parameters 
  

 

Systolic blood pressure (mmHg) 129.5 (117.5-141.5) 126.5 (114.0-139.0) <0.001 

Diastolic blood pressure (mmHg) 76.0 (69.5-83.5) 76.5 (70.0-83.5)  0.12 

Laboratory parameters 
  

 

Serum cholesterol (mmol/l) 5.1 (4.4-5.9) 5.4 (4.7-6.2) <0.001 

High-density lipoprotein (mmol/l) 1.3 (1.1-1.6) 1.4 (1.2-1.7) <0.001 

Low-density lipoprotein (mmol/l) 3.0 (2.5-3.8) 3.3 (2.7-4.0) <0.001 

eGFR (ml/min/1.73 m² BSA) 90.2 (76.4-100.2) 97.6 (86.2-108.3) <0.001 

Medication 
  

 

Anti-diabetic drugs incl. insulin 99 (18%) 248 (6%) <0.001 

Antihypertensive medication 366 (65%) 1,319 (34%) <0.001 

Lipid-lowering drugs 219 (39%) 400 (10%) <0.001 

Anticoagulation / PAI 265 (47%) 357 (9%) <0.001 

Drugs for OAD 33 (6%) 140 (4%)  0.010 

Anti-neoplastic drugs 3 (1%) 2 (0%)  0.001 

Speckle tracking echocardiography    

Average PLS 4ch in %  -15 (-19--12) -17 (-20--14) <0.001 

Average PTS 4ch in % 15 (9-22) 15 (9-22)  0.64 

Average PLS 2ch in % -15 (-19--11) -18 (-21--14) <0.001 

Average PTS 2ch in % 13 (7-20) 16 (9-23) <0.001 

Average PCS sax_pm in % -26 (-32--20) -28 (-32--23)  0.001 

Average PRS sax_pm in % 23 (16-33) 27 (19-35) <0.001 

LVEF in % 53 (45-60) 56 (49-62) <0.001 
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4.2 Performance of ‘nnet-Surv-rcsplines’ models 
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The results of the performance evaluation for the different models are given in Table 3 and 

Figures 3-7.  

The AUROC at the respective year (cf. Figure 3) describes the discrimination performance, 

meaning it measures whether a person who was dead by this time had a higher predicted 

probability of dying than a person who survived beyond this time. A value of 1.0 means perfect 

discrimination. If the model had no discriminative ability (i.e., toss of a coin) on the 

investigated population, this would result in an AUROC of 0.5. AUROC values below 0.5 occur 

if the model predicts an informative but wrong ordering. Discrimination (ROC and the 

corresponding AUROC) varied slightly over time from baseline, with a maximum at 8.5 years, 

where the highest density of outcomes lies as well (cf. Figure 3, Table 3). 
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Figure 3. Illustration of time-dependent Area under the Receiver-operating-characteristic (AUROC) for 
the different ‘nnet-Surv-rcsplines’- models. 
The inverse-probability-of-censoring weighted cumulative-dynamic AUROC (higher values are better) is 
plotted from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic 
blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak 
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal 
strain (rate) 
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The scaled Brier score (cf. Figure 4) gives the fraction by which the mean square error 

corrected for right-censoring is reduced compared to an uninformative model (i.e., predicting 

the same average survival probability for every subject without considering any specific 

information). A perfect SBS equals 100 %. An SBS of 0 % means that the model provides no 

information benefit. SBS below 0 means that the prediction error is even higher (e.g., because 

the model is miscalibrated) than that of a naïve calibrated model.  
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Figure 4. Illustration of time-dependent scaled Brier score for different ‘nnet-Surv-rcsplines’- models. 
The inverse-probability-of-censoring weighted scaled brier score (higher values are better) is plotted 
from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic blood 
pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak longitudinal 
strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal strain (rate) 
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Overall, the ‘nnet-Surv-rcsplines’ models with SCORE components as input (models ii) and iii)) 

had the best performance, both in terms of discrimination (AUROC up to 0.9 (0.88-0.91) at 8.5 

years from baseline for model iii)) and calibration (SBS up to 28 % (95 % CI 25-32) at 9.5 years 

from baseline for model iii), cf. also Figure 3 and Figure 4). However, the confidence intervals 

of models ii) and iii) were highly overlapping. Visually, the ROC curves of model iii) were closest 

to the top left, while the v) STE-data model showed the poorest discrimination (Figure 4). 

Despite comparative discrimination (AUROC 0.89 (0.87-0.90) at 8.5 years from baseline), the 

reference model i) showed the worst calibration (cf. departure from diagonal in the calibration 

plot in Figure 3.) with SBS ranging from 1.4 % to 13 %. At 8.5 years from baseline, the 

benchmark model i) was significantly (p<0.001, z ranging from 4.8 to 7.7) worse than models 

ii)-iv) in terms of (S)BS. Addition of GCS and GLS to the SCORE components (model iii) vs. model 

ii)) did not significantly change model performance (p=0.66, z = 0.44). 
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Figure 5. Calibration capabilities for the different machine learning models compared to SCORE risk chart 
reference model calculated for different points in time.  
In the lowess-smoothed calibration plot the observed mortality frequency is plotted against the predicted 
mortality probability. The closer the curve is to the diagonal, the better the calibration. SCORE 
components = age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS = global peak 
circumferential strain, GLS = global peak longitudinal strain, STE-data = global and segmental peak 
circumferential/longitudinal/radial/transversal strain (rate) 
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Figure 6. Receiver-operating-characteristics for the different ‘nnet-Surv-rcsplines’-models compared to 
SCORE risk chart reference model calculated for different points in time. 
The receiver-operating-characteristic plots true positive rate against false positive rate by varying 
thresholds (not shown). Discrimination is best for the curve, that is closest to the left upper corner. 
SCORE components = age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS = 
global peak circumferential strain, GLS = global peak longitudinal strain, STE-data = global and 
segmental peak circumferential/longitudinal/radial/transversal strain (rate) 
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In addition, the discrimination of the different models is illustrated in Kaplan-Meier plots 

(Figure 7), where the study population is divided into terciles by the predicted survival 

probability. Overall, separation of the lines concomitant with the models’ discriminatory 

performance is similar across the models, with visually best separation for the models ii) 

comprising SCORE components only and worst for the model v) with STE-data as input only. 
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Figure 7. Kaplan-Meier survival curves by tercile of the predicted survival probability for the different 
‘nnet-Surv-rcsplines’- models compared to SCORE risk chart reference model. 
Kaplan-Meier curves for the respective subpopulation, divided by tercile (green upper, yellow middle, 
blue lower tercile) of the predicted survival probability, are plotted from 6 to 10 years after baseline (Time 
before 6 years not shown, since no events occurred). SCORE components = age, sex, current smoking, 
systolic blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak 
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal 
strain (rate) 
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4.3 Sensitivity analysis: performance of ‘nnet-survival’ 

The results of discrete-time-survival neural network ‘nnet-survival’ serve as a sensitivity 

analysis, and the respective model inputs are presented in Table 4 and Figures 8-11. 

Compared to the ‘nnet-Surv-rcsplines’, very similar results occurred for the respective model 

inputs. While minor differences in the absolute model performance metrics for the best set of 

input variables exist (e.g., 8.5-year SBS of ii) was 22 (19-24) % and 21 (18-23) % for ‘nnet-

survival’ and ‘nnet-Surv-rcsplines’, respectively), the results for ‘nnet-Surv-rcsplines’ and 

‘nnet-survival’ differed relevantly for the largest model vi). Differences were most pronounced 

at 10 years from baseline. There were also no significant differences between the models ii) 

and iii) (p=0.19, z=1.3).  

Figure 12 presents the Kaplan-Meier survival curves for the respective subpopulation 

separated by terciles of the predicted survival probability. Like for the ‘nnet-Surv-rcsplines’, 

the separation of the lines concomitant with the models’ discriminatory performance is similar 

across the models, with visually best separation for the models ii) comprising SCORE 

components only and worst for the model v) with only STE-data as input. 
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Figure 8. Illustration of time-dependent Area under the Receiver-operating-characteristic (AUROC) for 
the different ‘nnet-survival’- models. 
The inverse-probability-of-censoring weighted cumulative-dynamic AUROC (higher values are better) is 
plotted from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic 
blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak 
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal 
strain (rate) 
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Figure 9. Illustration of time-dependent scaled Brier score for different ‘nnet-survival’- models. 
The inverse-probability-of-censoring weighted scaled brier score (higher values are better) is plotted 
from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic blood 
pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak longitudinal 
strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal strain (rate) 
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Figure 10. Calibration capabilities for the different ‘nnet-survival’-models compared to SCORE risk chart 
reference model calculated for different points in time.  
In the lowess-smoothed calibration plot the observed mortality frequency is plotted against the predicted 
mortality probability. The closer the curve is to the diagonal, the better the calibration. SCORE components = 
age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS = global peak circumferential 
strain, GLS = global peak longitudinal strain, STE-data = global and segmental peak 
circumferential/longitudinal/radial/transversal strain (rate) 
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Figure 11 Receiver-operating-characteristics for the different ‘nnet-survival’-models compared to 
SCORE risk chart reference model calculated for different points in time. 
The receiver-operating-characteristic plots true positive rate against false positive rate by varying 
thresholds (not shown). Discrimination is best for the curve, that is closest to the left upper corner. 
SCORE components = age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS = 
global peak circumferential strain, GLS = global peak longitudinal strain, STE-data = global and 
segmental peak circumferential/longitudinal/radial/transversal strain (rate) 
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Figure 12. Kaplan-Meier survival curves by tercile of the predicted survival probability for the different 
‘nnet-survival’- models compared to SCORE risk chart reference model. 
Kaplan-Meier curves for the respective subpopulation, separated by tercile (green upper, yellow middle, 
blue lower tercile) of the predicted survival probability, are plotted from 6 to 10 years after baseline (Time 
before 6 years not shown, since no events occurred). SCORE components = age, sex, current smoking, 
systolic blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak 
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal 
strain (rate)  
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5 Discussion 

In the present work, the performance of machine-learning models for predicting all-cause 

mortality (including a new continuous-time neural network for survival data) based on 

cardiovascular risk factors and data from speckle-tracking-echocardiography in a general 

population cohort was evaluated. 

The results consistently show an excellent discrimination performance (8.5-year time-

dependent AUROC ≈ 0.9), both for the established SCORE risk chart model i) and the neural 

network models ii) – iv). Discrimination of people surviving beyond or dying before a specified 

time reached reasonable results using STE-data only. Still, the performance was worse than 

for traditional cardiovascular risk factors. In terms of absolute prediction errors (i.e., 

discrimination and calibration), the neural network models outperformed the SCORE model. 

The larger the temporal distance from baseline, the more pronounced the differences were.  

5.1 Global peak strain from Speckle-tracking-echocardiography 

Several studies analyzed the potential diagnostic and prognostic value of global peak strain 

values in longitudinal, radial/transverse, and circumferential orientation. They proved 

independent association with (cardiovascular) outcomes in several disease entities and 

populations at risk1,5,7-9. Those studies aimed to replace LVEF, which is currently used to 

characterize global cardiac function for treatment recommendations according to most 

guidelines59-61, with global peak strain values. LVEF is highly correlated to the peak strain 

parameters since the surface of an object without a large shape deformation (like the LV) is 

mathematically linked to its volume62. GLS is hence not likely to provide incremental 

information in terms of prediction. The differences observed in those studies may be 

explained by using inappropriate statistical models that do not account for non-linear relations 

to the investigated outcome. I.e., despite containing the same information, the relation of GLS 

(and GCS) to the probability of adverse events may be better modelled by a linear model on 

the respective scale (e.g. hazard scale). This may even be favourable if the goal was to find a 

replacement for LVEF. But there is still no proof of an incremental prognostic value of GLS and 

GCS, at least not in the general population. However, with emerging deep learning 

applications for automatic postprocessing of echocardiography images63, the costs of 
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extracting all of those function parameters become neglectable, and the intelligent 

integration of the available information becomes the primary concern. 

Therefore, the present study focuses on the predictive capabilities of the parameters of 

interest, including discrimination and calibration, and not on (independent) association11,12,64. 

Instead of merely confusing the terms “association” and “prediction”11, both discrimination 

and calibration were evaluated in strictly separated training and test sets (avoiding data 

leakage). Also, the results’ uncertainty due to single train-test-splits (instead, repeated 10-fold 

cross-validation was applied) and optimistic bias (by bootstrap-bias-correction) due to testing 

of multiple hyperparameter configurations were minimized in this study 13,49. Moreover, the 

application of the neural network approach, instead of (generalized) linear survival models, 

accounts for non-linear relations and interactions of all investigated variables to the survival 

outcome. 

In this prediction framework, the results of our analysis provide no evidence for the 

incremental prognostic value of peak global longitudinal and circumferential strain over 

traditional biomarkers (SCORE components) for predicting mortality in the general population. 

5.2 Speckle-tracking-echocardiography-derived multidimensional data 

Quantification of regional wall motion is the main theoretical advantage of speckle tracking 

echocardiography over traditional volume-based (in 2D echocardiography typically estimated 

from end-diastolic and systolic areas in two planes according to Simpson’s biplane approach) 

characterization of cardiac motion. These regional abnormalities may be related to 

hibernating myocardium, focal fibrosis, or scars. 

The novelty of this work is to consider the multiple parameters (e.g., regional peak 

longitudinal, transversal, radial and circumferential strain (-rate) for 16/17 myocardial 

segments65) as a multidimensional set of imaging biomarkers as it is done for grayscale and 

shape feature in ‘Radiomics’, gene expression in ‘Genomics’ and the protein expression in 

‘Proteomics’.  Potential collinearities preventing model convergence and the ‘curse of 

dimensionality’ in general make the analysis of multi-dimensional data challenging 66. 

Therefore, special treatment in statistical analyzes is needed15,16. 
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This work aimed to predict survival outcomes by comprehensively integrating the STE-data. 

This process includes potential interactions between predictor variables, non-linear relations 

to the outcome, and the shape of the predicted survival curve. Failing convergence of 

traditional (generalized linear) statistical models motivated the development of the 

supervised ‘nnet-Surv-rcsplines’ neural network for competing risk survival data. In the 

investigated general population cohort, it was possible to discriminate whether a person is 

more likely to survive beyond a specified point in time than another by using only information 

from STE-data (i.e., parameters describing the whole left ventricular cardiac motion). 

However, the SCORE benchmark model i) and the models including at least the same 

information as SCORE ii)-iv) showed significantly better discrimination (larger AUROC) and 

lower prediction error (higher SBS). Likely, the traditional non-imaging biomarkers (age, sex, 

smoking status, systolic blood pressure and serum cholesterol) contain complementary 

information or information necessary to model the relation to the outcome (i.e., interaction 

in statistical terms). Furthermore, the limited sample size may have precluded the model from 

learning the complex relationships of the high-dimensional input variables to the mortality 

outcome.  

Also, for the nested model vi), including SCORE components and STE-data, no incremental 

prognostic value could be observed compared to the models relying on non-imaging 

information only (models i) and ii)). 

The information on cardiac motion related to the survival probability may already implicitly 

be contained in sociodemographic risk factors (e.g., age and sex). In general, it is often 

observed that if the benchmark model itself already shows excellent performance, adding new 

information may yield only minor improvements67,68. 

As expected, the calibration of the SCORE risk model yielded poor results since it was the only 

model that was not trained (and hence not calibrated) on the training data. The actual survival 

up to 7 years after baseline was underestimated, and from 8 years after baseline and beyond 

grossly overestimated. 

Whether integrating multidimensional cardiac motion parameters with other 

multidimensional datasets (genomics, metabolomics etc.) can improve the outcome 
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prediction needs to be addressed in larger cohorts with specific disease entities (e.g., 

myocardial infarction, heart failure), where survival outcome is more closely linked to cardiac 

motion 68. 

5.3 ‘nnet-Surv-rcsplines’ neural network for survival data with and without presence 

of competing risks 

Unlike prior efforts (‘DeepSurv’29, ‘Cox-nnet’30), which extend the semi-parametric Cox 

Proportional Hazard model to a neural network, the present work proposes a flexible 

parameterization of the transformed cumulative incidence function (CIF) using restricted 

cubic splines. This allows a direct estimation of the survival function of every individual. 

Choosing the linking coefficient of the Aranda-Ordaz link function decides on the scale at 

which the CIF is modelled. For example, the extreme values of c = 0 and c = 1 correspond to 

the hazard function and the log odds scale, respectively. 

Moreover, a flexible variant also allows direct dependency of the spline parameters on the 

input variables or neural network weights. Hence, violations of proportionality of the data on 

the respective scale (e.g., proportional hazard assumption of Cox proportional hazard model) 

could be modelled without impaired prediction results69. However, due to the small sample 

size and resulting convergence issues, this extension was not applied to the data of this study. 

As a sensitivity analysis, the implementation of the multi-task network ‘nnet-survival’ 

proposed by Gensheimer et al.27 was updated for the usage of Tensorflow 2 and applied to 

the same model inputs as in the primary analysis. In fact, there were only minor differences 

in the model performances, given the respective model inputs. The differences were most 

pronounced at 10 years from baseline, which may be caused by limited training sample size 

and inadequate hyperparameter search space. 

Furthermore, a generalization to competing risks with the same Aranda-Ordaz link was 

proposed. This neural network models the cause-specific CIF on the subdistribution hazard 

(for c=0, like the Fine-Gray competing risk model) and on the subdistribution odds scale (for c 

= 1). In the present work’s empirical analysis, the complexity of competing risks was avoided 

by choosing all-cause mortality as the outcome. 
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The evaluation of the proposed ‘nnet-Surv-rcsplines’ model in the context of competing risks 

in a simulation study and on real biomedical datasets goes beyond the scope of this work. It 

remains the subject of future research. Unfortunately, publicly available large-scale 

biomedical datasets with time-to-event data (especially with competing risk data) are 

currently sparse31. In the methodology underlying the recently published update of the SCORE 

prediction models, SCORE225 and SCORE2-OP26 the Fine-Gray regression44 is applied to model 

the competing risk effects of non-cv-mortality. Even though first-order interactions and non-

linear effects were explicitly considered, the authors reported only minor improvements in 

predicting cardiovascular mortality compared to the original SCORE risk chart model. 

Application of modern machine learning methods like gradient-boosted trees70, random 

survival forests71, neural networks suitable for competing risk data like ‘DeepHit’31 and the 

proposed ‘nnet-Surv-rcsplines’-model on the large-scale model derivation cohort of the 

SCORE project may improve the prediction of CV (and non-CV) outcomes and may help to 

provide better individual treatment and life-style recommendations. 

Besides curative and preventive medicine, accurate prediction of competing risk outcomes is 

highly relevant for finance and insurance companies (especially life insurances, disability 

insurances, mortgage defaults etc.)72. Using the proposed ‘nnet-Surv-rcsplines’ and other 

deep learning methods for competing risk survival data may provide better estimates of 

certain risks. This could allow the insurance of so far ‘uninsurable risks’ and could lead to 

cheaper policies for costumers73. 

 

5.4 Study limitations 

Several limitations of this study merit consideration. 

Firstly, since the highest observation density occurred at 8.5 years from baseline examination, 

this point in time (8.5 years from baseline) was chosen to select hyperparameters. 

Consequently, the inferred estimates of model performance have lower variation than e.g. at 

10 years. Nevertheless, this choice is arbitrary, as was the established 10-year horizon from 

earlier works25,26,46. 
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Second, it is generally known that complex statistical models (especially neural networks) 

need large datasets to learn the non-linear relations of model input and output. In our study 

population, only 350 events occurred in 3858 participants over a median follow-up time of 8.4 

years, while no fatal events occurred in the first 6 years of follow-up. Although the cohort was 

drawn as a stratified sample from local population registries, the number of mortality events 

was lower, and their distribution does not resemble the expected mortality rates in the 

general population based on official German mortality statistics47. This might be caused by 

healthy-volunteer bias and result in underestimated event rates if the models were deployed 

in the general population.  

Thirdly, the tested hyperparameter configurations (including the defined search space) could 

have been unsuitable for solving the problem and might have led to poor optimization 

results74. 

Further, too high computational expenses related to repeated training in the complex model 

training and evaluation framework precluded using the rather robust random survival forest71, 

which is not a deep learning but a conventional machine learning algorithm using ensemble 

learning75. 
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6 Conclusion 

Regional myocardial strain distribution contains prognostic information for predicting all-

cause mortality in primary prevention. Still, no prognostic value in addition to readily available 

traditional clinical and laboratory biomarkers was demonstrated. Moreover, in contrast to 

prior studies, no incremental predictive value was found for global circumferential and 

longitudinal strain. This may be explained by the effective integration of the available 

traditional biomarkers and the strict evaluation in a prediction framework that eliminates 

several sources of optimistic bias. 

The application of neural networks for survival (and competing risks) data, like the flexible 

parametric ‘nnet-Surv-rcsplines’ neural network proposed in this work, may improve outcome 

prediction in primary prevention by exhaustively integrating the available information, 

including complex non-linear and interactive relations of the outcome to the respective input 

data. With the emerging availability of large-scale datasets (‘BigData’) from observational 

studies and linked electronic health records, this approach might improve treatment decisions 

compared to standard statistical methods and should be further investigated.  
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8 Appendix A 

8.1 Restricted cubic splines neural network ‘nnet-Surv-rcsplines’ 

Cause-specific cumulative incidence function and subdistribution hazard 

Let T be the time to event for any of K competing causes k = 1, ⋯ , K and D denote the type of 

event, where D = 1, ⋯ , K.  Then the cumulative incidence function (CIF) 𝐹𝑘(𝑡) is the 

cumulative probability of dying before or at time t from cause k. 

𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑘) 

Gray44 introduces the subdistribution hazard (SDH) for cause k, ℎ𝑘
𝑠𝑑(𝑡), which gives a direct 

relationship with the cause-specific CIF and has the following mathematical formulation76: 

ℎ𝑘
𝑠𝑑(𝑡) = lim

𝛥𝑡→∞

𝑃(𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡 ∩ 𝐷 = 𝑘|𝑇 > 𝑡 ∪ (𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡 ∩ 𝐷 ≠ 𝑘))

𝛥𝑡
 

=
𝑑

𝑑𝑡
− ln(1 − 𝐹𝑘(𝑡)) 

1 − 𝐹𝑘(𝑡) = exp(−𝐻𝑘
𝑠𝑑(𝑡)) = exp [∫ ℎ𝑘

𝑠𝑑(𝑢)𝑑𝑢
𝑡

0

] 

where 𝐻𝑘
𝑠𝑑(𝑡) is the cumulative subdistribution hazard. In the present work, this approach is 

generalized to a neural network implementation. 

Regression modelling 

Similar to the original implementation proposed by Royston and Parmar32,33 the cause-specific 

CIF is modelled by a restricted cubic spline (𝑠(ln(𝑡), 𝛄𝐤,𝐦𝑘)) on the logarithmic time scale 

connected by a link function 𝑔(⋅), where 𝛄𝐤 is the vector of the spline coefficients and 𝐦𝐤 is 

the vector of the knot positions of the spline. Restricted cubic splines are piecewise cubic 

polynomials with 𝑙 ≥ 0 internal knots defined to have continuous first and second derivatives 

at the internal knots and constrained to be linear beyond boundary knots 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥  32: 

𝑠(ln 𝑡 , 𝛄𝐤,𝐦𝑘)γ𝑘,0 + γ𝑘,1 𝑙𝑛 𝑡 + γ2𝑣𝑘,1(𝑙𝑛 𝑡) + ⋯+ γ𝑘,𝑙+1𝑣𝑘,𝑙(𝑙𝑛 𝑡), 
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where 𝑣𝑘,𝑗(𝑥) = (𝑥 − 𝑚𝑘,𝑗)+
3
− λ𝑘,𝑗(𝑥 − 𝑚𝑘,𝑚𝑎𝑥)+

3
− (1 − λ𝑘,𝑗)(𝑥 − 𝑚𝑘,𝑚𝑎𝑥)+

3
, 

λ𝑘,𝑗 =
𝑚𝑘,𝑚𝑎𝑥−𝑚𝑘,𝑗

𝑚𝑘,𝑚𝑎𝑥−𝑚𝑘,𝑚𝑖𝑛
 and (𝑥 −  𝑎)+ =  max(0, 𝑥 −  𝑎). 

Like Royston and Parmar propose32, the  Aranda-Ordaz-link77 is used.  

𝑔(1 − 𝐹𝑘(𝑡)) = 𝜂𝑘(𝑡|𝐱) = 𝑠(ln(𝑡), 𝛄𝐤, 𝐦𝐤) + 𝐱𝐤𝛃𝐤 

𝑔(⋅) = ln {
(⋅)−𝑐 − 1

𝑐
} ;  𝑐 ∈ (0,  1] 

 

Note that the notation 𝐱𝑘𝛃𝑘 is similar to standard generalized linear model regression models, 

where it would describe a linear effect of the model covariables on the respective linked scale. 

In our work, this term is replaced by the output of a neural network, or more specifically, the 

output of a Dense Layer with linear activation.   

With the Aranda-Ordaz-Link, the cause-specific CIF and consequently the subdistribution 

hazard or odds (naming and interpretation are dependent on the hyperparameter in the link 

function, cf. below)  of the respective cause k is parameterized as: 

𝐹𝑘(𝑡) = 1 − (1 + 𝑐𝑒
𝜂𝑘(𝑡))

−1
𝑐  

ℎ𝑘
𝑠𝑑(𝑡) =

𝑑

𝑑𝑡
− ln(1 − 𝐹𝑘(𝑡)) = (1 + 𝑐𝑒

𝜂𝑘(𝑡))−1𝑒𝜂𝑘(𝑡)
𝑑𝜂𝑘(𝑡)

𝑑𝑡
 

The Aranda-Ordaz-link family comprises of two special cases: If c = 1 this simplifies to logit-

link: 

𝜂𝑘(𝑡) = ln (
𝐹𝑘(𝑡)

1−𝐹𝑘(𝑡)
) and (1 + 𝑐𝑒𝜂𝑘(𝑡))

−1

𝑐 =
𝑐:=1

(1 + 𝑒𝜂𝑘(𝑡))−1 

If the shape of 𝑠(ln(𝑡), 𝛄𝑘, 𝐦𝑘) is independent from model covariates (i.e., in this neural 

network there is no direct or indirect connection between Input Layer and the ‘Gamma-

Layer’), the model formulation can be interpreted as a proportional odds model given the 

output of the dense ‘Beta-Layer’   𝐱𝐤𝛃𝐤 . 
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And for  𝑐 → 0 this converges towards the complimentary log-log-link and simplifies to a 

proportional hazard interpretation: 

lim
𝑐→0
𝜂𝑘(𝑡) = lim 

𝑐→0
ln {
(1 − 𝐹𝑘(𝑡))

−𝑐 − 1

𝑐
} = ln lim

𝑐→0

−ln(1 − 𝐹𝑘(𝑡))(1 − 𝐹𝑘(𝑡))
−𝑐

1
 

= ln{−ln(1 − 𝐹𝑘(𝑡))} and 1 − 𝐹𝑘(𝑡) = 𝑒
−𝑒𝜂𝑘(𝑡)  

In the original work of Royston and Parmar32, the models were restricted to logit- and 

complimentary log-log links for easy interpretation. However, since in prediction modeling 

(especially with high dimensional inputs) the purpose is not the interpretability of the model, 

but to provide accurate estimations of the outcome, the coefficient 𝑐 is treated as 

hyperparameter, that may vary in (0, 1]. The log-log-link can be specified by setting 𝑐 = 0 in 

the implementation. 

Negative Log-Likelihood-Loss for competing risk data 

The proposed model is optimized using maximum-likelihood-estimation78,79. Hence, the 

model parameters are selected in a way, that the observed data is most probable (i.e., 

maximization of a likelihood function) under the statistical model. The authors of 45 give the 

likelihood for the CIF: 

𝐿 =∏

[
 
 
 
 

[∏[ℎ𝑗
𝑠𝑑(𝑡𝑖)(1 − 𝐹𝑗(𝑡𝑖|𝐱𝑖))]

𝛿𝑖𝑗

𝐾

𝑗=1

] [1 −∑𝐹𝑗

𝐾

𝑗=1

(𝑡𝑖|𝐱𝑖)]

1−∑ 𝛿𝑖𝑗
𝐾
𝑗=1

]
 
 
 
 𝑁

𝑖=1

 

Since the natural logarithm is a strictly monotonically increasing function, the maximum of the 

natural logarithm of a function occurs at the same values as for its argument. However, this 

offers numerical advantages for practical computation.  

In machine learning (incl. deep learning), a loss is minimized instead of maximized by 

convention. Negative Log-likelihood for an individual i is hence 
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−ln(𝐿𝑖) = − ∑[ln(ℎ𝑗
𝑠𝑑(𝑡𝑖|𝐱𝑖)) + ln(1 − 𝐹𝑗(𝑡𝑖|𝐱𝑖))]

𝛿𝑖𝑗
⏟                        

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑐𝑎𝑢𝑠𝑒 𝑗

𝐾

𝑗=1

− ln([1 −∑𝐹𝑗

𝐾

𝑗=1

(𝑡𝑖|𝐱𝑖)]

1−∑ 𝛿𝑖𝑗
𝐾
𝑗=1

)

⏟                    
𝑟𝑖𝑔ℎ𝑡−𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

 

With the parameterization, this results in the case of failure by cause j for subject i: 

ln(𝐿𝑖,𝑗;𝛿𝑖𝑗=1(𝑡𝑖|𝐱𝑖)) = [(−1 −
1

𝑐
) ln(1 + 𝑐𝑒𝜂𝑗(𝑡𝑖|𝐱𝑖)) + 𝜂𝑗(𝑡𝑖|𝐱𝑖) + ln (

𝑑𝜂𝑗(𝑡𝑖|𝐱𝑖)

𝑑𝑡𝑖
)] 

and in the case of a right-censored subject i: 

ln (𝐿𝑖,𝛿𝑖𝑗=0 ∀𝑗=1, … ,𝐾(𝑡𝑖|𝐱𝑖)) = ln([1 +∑(1 + 𝑐𝑒𝜂𝑗(𝑡𝑖|𝐱𝑖))
−1
𝑐 − 1

𝐾

𝑗=1

]) 

The argument of the rightmost logarithm in the uncensored log-likelihood needs to be greater 

than 0 to be well-defined. This corresponds to a strictly monotonically increasing spline 

function given the data and is addressed by adding a high L2 penalty for negative arguments: 

𝑝𝑑𝜂
𝑑𝑡
= 𝜆 ⋅ √∑𝑅

𝑁

𝑖=1

𝐸𝐿𝑈(−
𝑑𝑠(𝑡𝑖|𝐱𝑖)

𝑑𝑙𝑛(𝑡)
)2 

with 𝑅𝐸𝐿𝑈(𝑎) = 𝑚𝑎𝑥(0, 𝑎). 

In addition, the global survival function (the argument term for the log-likelihood in the case 

of right-censoring) was penalized in the same way. Note that this restriction is automatically 

fulfilled for K=1 (’usual’ survival modeling without competing risks).  

𝑝1−∑ 𝐹𝑗
𝐾
𝑗=1 (𝑡) = 𝜆 ⋅ √∑𝑅

𝑁

𝑖=1

𝐸𝐿𝑈(−1 +∑𝐹𝑗

𝐾

𝑗=1

(𝑡𝑖|𝐱𝑖))

2

 



5 

 

The total negative-log-likelihood-loss function that is to be minimized during training is given 

by: 

𝑛𝑙𝑙 =∑[− [∑ln

𝐾

𝑗=1

(𝐿𝑖,𝑗(𝑡𝑖|𝐱𝑖))] − ln (𝐿𝑖,𝛿𝑖𝑗=0 ∀𝑗=1, … ,𝐾(𝑡𝑖|𝐱𝑖))]

𝑁

𝑖=1

+ 𝑝𝑑𝜂
𝑑𝑡
+ 𝑝1−∑ 𝐹𝑗

𝐾
𝑗=1 (𝑡) 

This loss function can be optimized with the favourable mini-batch stochastic gradient decent 

by replacing N with the respective batch size. In the present implementation, the adaptive 

momentum42 flavour of the stochastic gradient decent optimization procedure is used. 

Special case Survival data without competing risks 

If there is only one cause of failure and competing risks are not to be taken into account (e.g., 

when only all-cause-mortality or a nested composite endpoint like major adverse cardiac 

events including all-cause-mortality is of interest), the above model simplifies substantially 

due to the simple relation of the CIF and the survival function: 

𝑆(𝑡) = 1 − 𝐹(𝑡) = exp(−𝐻(𝑡)) = exp [∫ ℎ(𝑢)𝑑𝑢
𝑡

0

] 

where 𝐻 is the cumulative hazard in the case of complimentary log-log-link. 

The CIF and hence also the survival function is then parameterized as: 

𝑔(𝑆(𝑡)) = 𝑔(1 − 𝐹(𝑡)) = 𝜂(𝑡|𝐱) = 𝑠(ln(𝑡), 𝛄,𝐦) + 𝐱𝛃 

𝑛𝑙𝑙 =∑[−[ln(𝐿𝑖,𝛿𝑖=1(𝑡𝑖|𝐱𝑖))] − ln(𝐿𝑖,𝛿𝑖=0(𝑡𝑖|𝐱𝑖))]

𝑁

𝑖=1

+ 𝑝𝑑𝜂
𝑑𝑡

 

with the terms for an uncensored and a right-censored subject, respectively. 

ln(𝐿𝑖,𝛿𝑖=1(𝑡𝑖|𝐱𝑖)) = [(−1 −
1

𝑐
) ln(1 + 𝑐𝑒𝜂(𝑡𝑖|𝐱𝑖)) + 𝜂(𝑡𝑖|𝐱𝑖) + ln (

𝑑𝜂(𝑡𝑖|𝐱𝑖)

𝑑𝑡𝑖
)] 

ln(𝐿𝑖,𝛿𝑖=0(𝑡𝑖|𝐱𝑖)) = ln ([(1 + 𝑐𝑒
𝜂(𝑡𝑖|𝐱𝑖))

−1
𝑐 ]) 
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8.2 Source code of the Tensorflow 2 Implementation of ‘nnet-Surv-rcsplines’  

# -*- coding: utf-8 -*- 

""" 

 

@author: Fabian Laqua 

github.com/laqua-stack 

""" 

 

from sklearn.base import BaseEstimator 

from sklearn.model_selection import train_test_split 

from sksurv.util import check_y_survival 

import numpy as np 

from numpy.lib import recfunctions as rfn 

import math 

from scipy.stats.mstats import mquantiles 

from itertools import compress, chain 

 

# Model 

import tensorflow as tf 

import tensorflow.keras.backend as K 

from tensorflow.keras.models import Sequential, Model 

from tensorflow.keras.layers import Add, Layer, Concatenate, Input, Dense, Dropout, 

Activation, BatchNormalization 

from tensorflow.keras.regularizers import l1_l2 

from tensorflow.keras.initializers import he_normal 

from tensorflow.python.keras import regularizers 

# training 

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, 

LearningRateScheduler 

 

from tensorflow.keras.optimizers import Adam 

 

 

class BiasLayer(tf.keras.layers.Layer): 

    def __init__(self, units=1, *args, **kwargs): 

        self.units = units 

        super(BiasLayer, self).__init__(*args, **kwargs) 

 

    def build(self, input_shape): 

        self.bias = self.add_weight('bias', 

                                    shape=self.units, 

                                    initializer='zeros', 

                                    trainable=True) 

 

    def call(self, x, **kwargs): 

        return self.bias 

 

 

class FinalLayer(Layer): 

    def __init__(self, 

                 initializer=he_normal(), 

                 **kwargs 

                 ): 

        self.initializer = initializer 

        super(FinalLayer, self).__init__(**kwargs) 

 

    def build(self, input_shape): 

        self.inputshape = input_shape 

        self.beta = self.add_weight('beta', shape=input_shape[1:], 

                                    initializer=self.initializer, 

                                    trainable=True) 

        self.zerobeta = tf.zeros(shape=input_shape[1:], ) 

        super(FinalLayer, self).build(input_shape) 

 

    def compute_output_shape(self, inputShape): 
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        return None, 1 

 

    def call(self, inputs, training=None): 

        betax = tf.cond(training, 

                        lambda: tf.matmul(inputs, self.beta), 

                        lambda: tf.matmul(inputs, self.zerobeta)) 

 

        return betax 

 

 

class FinalLayerGamma(Layer): 

    def __init__(self, int_knots_number=1, flexgamma=False, 

                 kernel_regularizer=None, 

                 **kwargs): 

        self.flexgamma = flexgamma 

        self.int_knots_number = int_knots_number 

        self.kernel_regularizer = regularizers.get(kernel_regularizer) 

        super(FinalLayerGamma, self).__init__( 

            **kwargs) 

 

    def build(self, input_shape): 

        #        weight_shape = (input_shape[1:], ) if not 

isinstance(input_shape[1:], tuple) else input_shape[1:] 

        self.inputshape = input_shape 

        if not self.flexgamma: 

            self.gammaweight = tf.zeros(input_shape[1:] + (1 + 

self.int_knots_number,), dtype=tf.dtypes.float32, 

                                        name=None) 

            self.gammabias = self.add_weight('gamma', 

                                             shape=(1 + self.int_knots_number,), 

                                             initializer=he_normal(), 

                                             trainable=True) 

        else: 

            self.gammaweight = self.add_weight('gamma_weight', 

                                               shape=input_shape[1:] + (1 + 

self.int_knots_number,), 

                                               initializer='glorot_normal', 

                                               regularizer=self.kernel_regularizer, 

                                               trainable=True) 

            self.gammabias = self.add_weight('gamma_bias', 

                                             shape=(1 + self.int_knots_number,), 

                                             initializer='glorot_normal', 

                                             trainable=True) 

 

        super(FinalLayerGamma, self).build(input_shape) 

 

    def compute_output_shape(self, inputShape): 

        return (None, 1 + self.int_knots_number) 

 

    def call(self, inputs, **kwargs): 

        ret = tf.matmul(inputs, self.gammaweight) + self.gammabias 

        return ret 

 

 

def get_knots(m, 

              y_train=None, 

              kint=None, 

              kmin=None, 

              kmax=None 

              ): 

    """ 

    m number of interior knots, 

    if kint kmin and kmax are given, y_train is not needed 

    otherwise default quantile log scale knot placment is used according 

    to uncensored failure times in y_train 

    """ 
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    if kint is None or kmin is None or kmax is None: 

        #        print('assuming default knot placment') 

        if y_train is None: 

            print('y_train must not be None for default knot placement') 

            raise TypeError 

        y_n = y_train 

        y_uncensored = y_n[:, 1][y_n[:, 0] == 1.] 

        # compute quantiles of uncensored follow-up times 

        quant = [q / (m + 1) for q in range(1, m + 1)] 

        kint = mquantiles(np.log(y_uncensored), quant).astype('float32') 

        kmin = math.log(y_uncensored.min()) 

        kmax = math.log(y_uncensored.max()) 

 

    else: 

        print('custom knot placment') 

    return kint, kmin, kmax 

 

 

# custom negative likelihood loss 

def nll(m, 

        y_train=None, 

        kint=None, 

        kmin=None, 

        kmax=None, 

        loss='cumhaz', 

        arandaordaz_c=1., 

        negative_dsdx_penalizer=1e4, 

        scale_loss=1, 

        ): 

    """ 

    m number of interior knots, 

    if kint kmin and kmax are given, y_train is not needed 

    otherwise default quantile log scale knot placment is used according 

    to uncensored failure times in y_train 

    """ 

    arandaordaz_c = np.float32(arandaordaz_c) if not isinstance(arandaordaz_c, 

np.float32) else arandaordaz_c 

    arandaordaz_c = tf.convert_to_tensor(arandaordaz_c, dtype=tf.float32) 

    negative_dsdx_penalizer = tf.convert_to_tensor(negative_dsdx_penalizer, 

dtype=tf.float32) 

    scale_loss = tf.convert_to_tensor(float(scale_loss), dtype=tf.float32) 

    k2m = tf.expand_dims(kint, axis=0) 

    lambda_j = (kmax - k2m) / (kmax - kmin) 

    mlambda_j = tf.constant(1.0) - lambda_j 

 

    def sxgamma(x, gamma): 

        theta2m = tf.math.accumulate_n( 

            [tf.math.pow(K.relu(tf.subtract(x, k2m)), 3), 

             -tf.multiply(lambda_j, tf.math.pow(K.relu(tf.subtract(x, kmin)), 3)), 

             -tf.multiply(mlambda_j, tf.math.pow(K.relu(tf.subtract(x, kmax)), 3)), 

] 

        ) 

        ret = tf.math.multiply(gamma[:, 0:1], x) + tf.reduce_sum(tf.multiply( 

            gamma[:, 1:], theta2m), axis=1, keepdims=True, name='dot') 

        return ret 

 

    def dsdx(x, gamma): 

        dsdx = gamma[:, 0:1] + (tf.constant(3.0) * tf.reduce_sum( 

            tf.multiply( 

                gamma[:, 1:], 

                tf.math.accumulate_n([K.square(K.relu(tf.subtract(x, k2m))), 

                                      - tf.multiply(lambda_j, 

K.square(K.relu(tf.subtract(x, kmin)))), 

                                      - tf.multiply(mlambda_j, 

K.square(K.relu(tf.subtract(x, kmax))))], 
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                                     shape=[None, m]), ), 

            axis=1, keepdims=True)) 

        #        log_dsdx = tf.where(dsdx < tf.constant(0.), - 50 * tf.abs(dsdx), 

K.log(dsdx_clipped)) 

 

        return dsdx 

 

    @tf.custom_gradient 

    def p1csoftplusc(eta): 

        cp1c = 1. + (1. / arandaordaz_c) 

 

        def grad(upstream): 

            return upstream * (arandaordaz_c + 1) * (1 / (arandaordaz_c + 

tf.math.exp(-eta))) 

            # return tf.cond(tf.equal(arandaordaz_c, 1.), 

            #         lambda: upstream * 2 * (1 / (1 + tf.math.exp(-eta))), 

            #         # since cp1c is always positive, no special treatment of zero 

is necessary 

            #         lambda: upstream * (arandaordaz_c + 1) * (1 / (arandaordaz_c 

+ tf.math.exp(-eta))), 

            #         ) 

 

        return tf.cond(tf.equal(arandaordaz_c, 1.), 

                       lambda: 2 * tf.math.softplus(eta), 

                       lambda: tf.math.xlog1py(cp1c, arandaordaz_c * 

tf.math.exp(eta))), grad 

 

    # @tf.custom_gradient 

    def negative_dsdx_penalty(dsdx_tens): 

        return tf.clip_by_value( 

            (negative_dsdx_penalizer / scale_loss) * tf.math.sqrt( 

                tf.nn.l2_loss(tf.nn.softplus(tf.negative(dsdx_tens)))), 

            0, 1e20) 

 

    def negative_dsdx_penalty_relu(dsdx_tens): 

        return tf.clip_by_value( 

            (negative_dsdx_penalizer / scale_loss) * 

tf.math.sqrt(tf.nn.l2_loss(tf.nn.relu(tf.negative(dsdx_tens)))), 

            0, 1e20) 

 

    # @tf.function 

    def loss_cumhaz(y_true, y_pred): 

        """ 

            y_true , shaped  event, time 

            y_pred , shaped (b + gamma1 + gammax ...) 

            kint interior knots 

        """ 

        beta = tf.expand_dims(y_pred[:, 0], 1) 

        gamma = y_pred[:, 1:] 

        #        beta = tf.expand_dims(beta, 1) 

 

        t = y_true[:, 1] 

        x = tf.expand_dims(K.log(t), 1) 

 

        eta = beta + sxgamma(x, gamma) 

 

        b_censored = tf.equal(y_true[:, 0], 0.) 

        dsdx_uncens = dsdx(tf.boolean_mask(x, ~b_censored), tf.boolean_mask(gamma, 

~b_censored)) 

        dsdx_clipped = tf.clip_by_value(dsdx_uncens, 1e-20, 1e30)  # clip to avoid 

neg. cumhazards 

 

        uncensored = tf.math.accumulate_n( 

            [- tf.boolean_mask(x, ~b_censored), 

             K.log(dsdx_clipped), 

             tf.boolean_mask(eta, ~b_censored), 
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             -K.exp(tf.boolean_mask(eta, ~b_censored))] 

        ) 

        # return uncensored 

 

        censored = -K.exp(tf.boolean_mask(eta, b_censored)) 

        nonpen_loglik = (1 / scale_loss) * (tf.reduce_sum(uncensored) + 

tf.reduce_sum(censored)) 

        # neg_ds_dx_penalty = negative_dsdx_penalty(dsdx_uncens) 

        # loglik = nonpen_loglik - neg_ds_dx_penalty 

        return -nonpen_loglik 

 

    def loss_arandaordaz(y_true, y_pred): 

        """ 

            y_true , shaped  event, time 

            y_pred , shaped (b + gamma1 + gammax ...) 

            kint interior knots 

        """ 

        beta = tf.expand_dims(y_pred[:, 0], 1) 

        gamma = y_pred[:, 1:] 

        #        beta = tf.expand_dims(beta, 1) 

 

        t = y_true[:, 1] 

        x = tf.expand_dims(K.log(t), 1) 

 

        eta = beta + sxgamma(x, gamma) 

 

        b_censored = tf.equal(y_true[:, 0], 0.) 

        #        return tf.boolean_mask(x,~b_censored) 

        dsdx_uncens = dsdx(tf.boolean_mask(x, ~b_censored), tf.boolean_mask(gamma, 

~b_censored)) 

        dsdx_clipped = tf.clip_by_value(dsdx_uncens, 1e-20, 1e30)  # clip to avoid 

neg. cumhazards 

        soft_eta = -p1csoftplusc(tf.boolean_mask(eta, ~b_censored)) 

        uncensored = tf.math.accumulate_n( 

            [- tf.boolean_mask(x, ~b_censored), 

             K.log(dsdx_clipped), 

             tf.boolean_mask(eta, ~b_censored), 

             soft_eta] 

        ) 

 

        censored = -p1csoftplusc(tf.boolean_mask(eta, b_censored)) 

        nonpen_loglik = (1 / scale_loss) * (tf.reduce_sum(uncensored) + 

tf.reduce_sum(censored)) 

        neg_ds_dx_penalty = negative_dsdx_penalty(dsdx_uncens) 

        # penalty = tf.cond(tf.greater(neg_ds_dx_penalty, 0.), lambda: 

neg_ds_dx_penalty, lambda: 0. ) 

        loglik = nonpen_loglik - neg_ds_dx_penalty 

        return - loglik 

 

    def dsdx_penality(y_true, y_pred): 

        """ 

            y_true , shaped  event, time 

            y_pred , shaped (b + gamma1 + gammax ...) 

            kint interior knots 

        """ 

        beta = tf.expand_dims(y_pred[:, 0], 1) 

        gamma = y_pred[:, 1:] 

        #        beta = tf.expand_dims(beta, 1) 

 

        t = y_true[:, 1] 

        x = tf.expand_dims(K.log(t), 1) 

 

        b_censored = tf.equal(y_true[:, 0], 0.) 

        dsdx_uncens = dsdx(tf.boolean_mask(x, ~b_censored), tf.boolean_mask(gamma, 

~b_censored)) 
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        return negative_dsdx_penalty_relu(dsdx_uncens) 

 

    if loss == 'cumhaz': 

        return loss_cumhaz 

    if loss == 'aranda_ordaz': 

        if tf.equal(arandaordaz_c, 0.).numpy(): 

            return loss_cumhaz 

        else: 

            return loss_arandaordaz 

 

    if loss == 'dsdx_penalty': 

        return dsdx_penality 

 

 

class DeepBnReluDrop(Layer): 

    def __init__(self, 

                 hidden_layers_sizes, 

                 bias_initializer=he_normal(), 

                 kernel_initializer=he_normal(), 

                 kernel_regularizer=None, 

                 dropout_rate=None, 

                 **kwargs, 

                 ): 

        self.hidden_layers_sizes = hidden_layers_sizes 

        self.kernel_regularizer = kernel_regularizer 

        self.kernel_initializer = kernel_initializer 

        self.bias_initializer = bias_initializer 

        self.dropout_rate = dropout_rate 

        super(DeepBnReluDrop, self).__init__(**kwargs) 

 

        # Layers 

 

    def call(self, inputs, **kwargs): 

        x = inputs 

        x = self.dense(inputs) 

        if self.dropout_rate is not None: 

            x = self.dropout(x) 

        x = self.relu(x) 

        x = self.bn(x) 

        return x 

 

    def build(self, input_shape): 

        self.dense = Dense(self.hidden_layers_sizes, 

                           kernel_initializer=self.kernel_initializer, 

                           bias_initializer=self.bias_initializer, 

                           kernel_regularizer=self.kernel_regularizer, 

                           name='Dense') 

        self.bn = BatchNormalization() 

        self.relu = Activation('relu') 

        if self.dropout_rate is not None: 

            self.dropout = Dropout(rate=self.dropout_rate) 

 

        super(DeepBnReluDrop, self).build(input_shape) 

 

 

class ResBlock(Layer): 

    def __init__(self, 

                 hidden_layers_sizes, 

                 bias_initializer=he_normal(), 

                 kernel_initializer=he_normal(), 

                 kernel_regularizer=None, 

                 dropout_rate=None, 

                 **kwargs, 

                 ): 

        self.version = 'v0' 

        self.hidden_layers_sizes = hidden_layers_sizes 
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        self.kernel_regularizer = kernel_regularizer 

        self.kernel_initializer = kernel_initializer 

        self.bias_initializer = bias_initializer 

        self.dropout_rate = dropout_rate 

        super(ResBlock, self).__init__(**kwargs) 

 

        # Layers 

 

    def call(self, inputs, **kwargs): 

 

        x = inputs 

        if self.version == 'v0': 

            # # pre-activation 

            # bn1 = self.bn(x) 

            # relu = self.relu(bn1) 

            dense1 = self.dense(x) 

            relu2 = self.relu(dense1) 

            bn2 = self.bn(relu2) 

        else: 

            raise NotImplementedError('%s is currently not supported' % 

self.version) 

        # x = self.dense(x) 

        # if self.dropout_rate is not None: 

        #     x = self.dropout(x) 

        # skip connections 

        skip = Add()([bn2, inputs]) 

 

        return skip 

 

    def build(self, input_shape): 

        self.dense = Dense(self.hidden_layers_sizes, 

                           kernel_initializer=self.kernel_initializer, 

                           bias_initializer=self.bias_initializer, 

                           kernel_regularizer=self.kernel_regularizer, 

                           name='Dense') 

        self.bn = BatchNormalization() 

        self.relu = Activation('relu') 

        if self.dropout_rate is not None: 

            self.dropout = Dropout(rate=self.dropout_rate) 

 

        super(ResBlock, self).build(input_shape) 

 

 

class nnet_rpsplinesEstimator(BaseEstimator): 

    class RPSplineModel(Model): 

        def __init__(self, 

                     inputshape=None, 

                     anc_inputshape=None, 

                     Estimator=None, 

                     **kwargs): 

            super(nnet_rpsplinesEstimator.RPSplineModel, self).__init__(**kwargs) 

            self.est = Estimator 

            self.inputshape = inputshape 

            self.anc_inputshape = anc_inputshape 

 

            # Layers: 

            self.HiddenLayer = ResBlock(self.est.hidden_layers_sizes, 

                                        kernel_initializer=he_normal(), 

                                        bias_initializer=he_normal(), 

                                        dropout_rate=self.est.dropout_rate, 

                                        

kernel_regularizer=self.est.kernel_regularizer, 

                                        name='DeepBeta') 

            self.InputLayer = DeepBnReluDrop(self.est.hidden_layers_sizes, 

                                             kernel_initializer=he_normal(), 

                                             bias_initializer=he_normal(), 
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                                             dropout_rate=self.est.dropout_rate, 

                                             

kernel_regularizer=self.est.kernel_regularizer, 

                                             name='InputDense') 

            self.AncHiddenLayers = ResBlock( 

                self.est.anc_hidden_layers_sizes, 

                dropout_rate=self.est.dropout_rate, 

                bias_initializer=he_normal(), 

                kernel_regularizer=self.est.kernel_regularizer, 

                name='DeepGamma') 

            self.Betax = Dense(1, 

                               kernel_initializer=he_normal(), 

                               bias_initializer=he_normal(), 

                               use_bias=True, 

                               kernel_regularizer=self.est.kernel_regularizer, 

                               name='Betax', 

                               trainable=True) 

            # self.Beta0 = BiasLayer(units=1, name='Beta0') 

            self.GammaLayer = FinalLayerGamma( 

                self.est.int_knots_number, 

                self.est.flexgamma, 

                kernel_regularizer=self.est.kernel_regularizer, 

                name='Gamma') 

 

            self.OutputLayer = Concatenate(name='Output') 

 

        #        def build(self, input_shape): 

        #            self.inputshape = input_shape 

        #            

super(nnet_rpsplinesEstimator.RPSplineModel,self).build(input_shape) 

 

        def call(self, inputs, **kwargs): 

            inp = inputs 

            if isinstance(inputs, list): 

                inp, anc_inp = inputs 

            else: 

                if self.est.anc_input: 

                    raise AssertionError('If anc_input version is run, anc input 

needs to be given along inp.') 

 

            current_layer = inp 

 

            deep_layers = [] 

            # input layer 

            if self.est.hiddenlayers > 0: 

                deep_layers.append(self.InputLayer(current_layer)) 

 

            # hidden layers 

            for j in range(1, self.est.hiddenlayers): 

                deep_layers.append(self.HiddenLayer(deep_layers[-1])) 

 

            # Final Beta layer 

            betax_layer = self.Betax(deep_layers[-1]) 

            final_beta_layer = betax_layer  # Add()([betax_layer, 

self.Beta0(current_layer)]) 

            if self.est.flexgamma: 

                # model shape of spline explicitely 

                gamma_layer = self.GammaLayer(deep_layers[-1]) 

            else: 

                gamma_layer = self.GammaLayer(current_layer) 

 

            concat = self.OutputLayer([final_beta_layer, gamma_layer]) 

            return concat 

 

    def __init__(self, 

                 conf, 
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                 loss='aranda_ordaz', 

                 arandaordaz_c=0, 

                 l1_ratio=1, 

                 penalizer=0, 

                 learning_rate=1e-3, 

                 batch_size=1024, 

                 dropout=False, 

                 epochs=10000, 

                 earlystopping=True, 

                 train_ratio=0.8, 

                 int_knots_number=1, 

                 flexgamma=False, 

                 hidden_layers_sizes=10, 

                 hiddenlayers=1, 

                 anc_hidden_layers_sizes=2, 

                 anc_hiddenlayers=1, 

                 scale=12, 

                 random_state=None, 

                 neg_dsdx_penalizer=1e4, 

                 verbose=0, 

                 debug=True, 

                 ): 

        # config general 

        self.verbose = verbose 

        self.debug = debug 

        self.event_times_ = conf.eval_times 

        self.conf = conf 

 

        # training 

        self.learning_rate = learning_rate 

        self.batchsize = int(batch_size) 

        self.epochs = epochs 

 

        # early stopping 

        self.earlystopping = earlystopping 

        self.train_ratio = train_ratio  # ratio of used train/(train + val) 

 

        # model specific 

        self.loss = loss 

 

        # model specific 

        self.loss = loss 

        self.arandaordaz_c = np.float32(arandaordaz_c) if not 

isinstance(arandaordaz_c, np.float32) else arandaordaz_c 

        # 0 = hazard scale, 1 = logit scale 

        self.scale = scale  # scale factor for time 

        self.int_knots_number = int_knots_number  # internal knots -> k + 2 total 

 

        self.hidden_layers_sizes = hidden_layers_sizes  # size of hidden layer 

        self.hiddenlayers = hiddenlayers  # depth of hidden layer 

 

        self.flexgamma = flexgamma  # model gamma params also? 

        self.anc_input = False 

        self.anc_hidden_layers_sizes = anc_hidden_layers_sizes 

        self.anc_hiddenlayers = anc_hiddenlayers 

        self.univariate_prefitting = False 

 

        # penalization 

        self.penalizer = penalizer 

        self.l1_ratio = l1_ratio 

        if dropout: 

            self.kernel_regularizer = None 

            self.dropout_rate = penalizer 

        else: 

            self.dropout_rate = None 

            self.l1_ratio = l1_ratio 
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            self.kernel_regularizer = l1_l2(l1=self.penalizer * self.l1_ratio, 

l2=self.penalizer * (1 - self.l1_ratio)) 

 

        self.neg_dsdx_penalizer = neg_dsdx_penalizer 

 

        # init model, train set, 

        self.model = None 

        self.y_train = None 

        self.y_train_uncensored = None 

 

    def __enter__(self, ): 

        return self 

 

    def __exit__(self, *err): 

        #        self.sess.close() 

        return False 

 

    def GetRPSplineModel(self, X_train=None, y_train=None, Ancillary_X=None, 

                         training_X=None, 

                         ): 

        """ 

        y_train needed for knot placement 

        y_train should be numpy array shaped (n_samples, 2) 

        with first field binary event indicator, second field time of 

censoring/event 

        float type needed 

        """ 

 

        inp = Input((X_train.shape[-1],), name='Input') 

 

        if self.anc_input: 

            anc_inp = Input((Ancillary_X.shape[-1],), name='AncillaryInput') 

            inp_list = [inp, anc_inp] 

        else: 

            inp_list = inp 

        out = self.RPSplineModel(Estimator=self, )(inp_list) 

        model = Model(inputs=inp_list, outputs=out) 

 

        # get knot placement 

        kint, kmin, kmax = get_knots(self.int_knots_number, y_train, ) 

        self.kint, self.kmin, self.kmax = kint, kmin, kmax 

 

        # get negative likelihood loss 

        nll_loss = nll(self.int_knots_number, y_train, kint, kmin, kmax, 

                       loss=self.loss, arandaordaz_c=self.arandaordaz_c, 

                       negative_dsdx_penalizer=self.neg_dsdx_penalizer, 

                       scale_loss=1.) 

 

        # get additional metric to monitor monotonicity penalty 

        penalty_metric = nll(self.int_knots_number, y_train, kint, kmin, kmax, 

                             loss='dsdx_penalty', 

negative_dsdx_penalizer=self.neg_dsdx_penalizer * 100, 

                             scale_loss=1.) 

        # compile model and init splines to be monotonically 

        # increasing high lr is wanted for a quick overshoot across zero 

        model.compile(loss=penalty_metric, 

                      metrics=[penalty_metric], 

                      optimizer=Adam(lr=0.3)) 

        #        model.build((None, X_train.shape[-1], )) 

        # callbacks = [EarlyStopping(monitor='loss', patience=5), 

        #              ] 

 

        # init spline to be monotonically increasing given the data 

        if not np.array(penalty_metric(tf.convert_to_tensor(y_train), 

model(training_X)) == 0.0).item(): 

            lowest_loss = np.inf 
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            thresh = 1e-6 

            patience = 1 

            patience_step = 0 

            for step in range(self.epochs): 

                with tf.GradientTape() as tape: 

                    y_pred = model(training_X) 

                    loss = model.compiled_loss(tf.convert_to_tensor(y_train), 

y_pred) 

                if self.verbose > 0: 

                    print('Epoch:', step, 'loss:', loss) 

 

                # stop when monotonical spline is there 

                if loss < thresh: 

                    break 

                # # early stopping 

                # if (lowest_loss - loss) < thresh: 

                #     patience_step += 1 

                #     if patience_step >= patience: 

                #         break 

                # else: 

                #     lowest_loss = loss 

                #     patience_step = 0 

                gradients = tape.gradient(loss, model.trainable_variables) 

                model.optimizer.apply_gradients(zip(gradients, 

model.trainable_variables)) 

 

        # get layers for later processing 

        b_spline_model = [str(var.name).find("spline_model") >= 0 for var in 

model.layers] 

        spline_model = list(compress(model.layers, b_spline_model))[0] 

 

        #        search beta_layers 

        b_beta = [str(var.name).find("Betax") >= 0 for var in spline_model.layers] 

        betax = list(compress(spline_model.layers, b_beta))[0] 

        # b_beta0 = [str(var.name).find("Beta0") >= 0 for var in 

spline_model.layers] 

        # beta0 = list(compress(spline_model.layers, b_beta0))[0] 

        b_deepbeta = [str(var.name).find("DeepBeta") >= 0 for var in 

spline_model.layers] 

        deepbeta = list(compress(spline_model.layers, b_deepbeta)) 

        #        search gamma layers 

        b_gamma = [str(var.name) == "Gamma" for var in spline_model.layers] 

        gamma = list(compress(spline_model.layers, b_gamma))[0] 

        b_deepgamma = [str(var.name).find("DeepGamma") >= 0 for var in 

spline_model.layers] 

        deepgamma = list(compress(spline_model.layers, b_deepgamma)) 

        layers_dict = {'betax': betax, 

                       # 'beta0': beta0, 

                       'deepbeta': deepbeta, 

                       'deepgamma': deepgamma, 

                       'gamma': gamma} 

 

        model.compile(loss=nll_loss, 

                      metrics=[penalty_metric], 

                      optimizer=Adam(lr=self.learning_rate)) 

        if self.verbose > 0: 

            model.summary() 

        loss_metric = dict(nll_loss=nll_loss, penalty_metric=penalty_metric) 

        return model, layers_dict, loss_metric 

 

    @tf.autograph.experimental.do_not_convert 

    def fit(self, X, y, anc_X=None): 

        # prepare y data 

        event = y['dead'].copy().astype(np.float32) 

        time = y['time'].copy().astype(np.float32) * self.scale 

        y_train = np.stack([event, time], axis=-1) 



17 

 

 

        # ancillary df 

        if anc_X is None: 

            anc_X = X 

 

        # init model 

 

        # if earlystopping == early stopping with val_loss, else 'loss' 

        if self.earlystopping: 

            self.epochs = 10000 

            X_train, X_val, y_train, y_val, anc_X_train, anc_X_val = 

train_test_split( 

                X, y_train, anc_X, 

                shuffle=True, train_size=self.train_ratio, ) 

            callbacks = [EarlyStopping(monitor='val_loss', patience=10, 

restore_best_weights=True), 

                         # LossHistory(logpath=self.conf.job_dir + "logs/"), 

                         ] 

            if self.anc_input: 

                training_X = {'Input': X_train, 'AncillaryInput': anc_X_train} 

                val_X = {'Input': X_val, 'AncillaryInput': anc_X_val} 

 

            else: 

                training_X = {'Input': X_train} 

                val_X = {'Input': X_val} 

            self.model, self.layers_dict, self.loss_metric = 

self.GetRPSplineModel(X_train, 

                                                                                   

y_train, 

                                                                                   

anc_X_train, 

                                                                                   

training_X) 

 

            if self.univariate_prefitting: 

                # init spline by univariate regression before real training 

 

                if self.verbose > 0: 

                    print("Prefitting") 

                    print("weights:", len(self.layers_dict['gamma'].weights)) 

                    print("trainable_weights:", 

len(self.layers_dict['gamma'].trainable_weights)) 

                    print("non_trainable_weights:", 

len(self.layers_dict['gamma'].non_trainable_weights)) 

                for layer in chain([self.layers_dict['betax']], 

self.layers_dict['deepbeta'], 

                                   self.layers_dict['deepgamma']): 

                    layer.trainable = False 

                self.model.compile(loss=self.loss_metric['nll_loss'], 

                                   metrics=[self.loss_metric['penalty_metric']], 

                                   optimizer=Adam(lr=self.learning_rate), 

                                   ) 

                self.model.fit(training_X, 

                               y_train, 

                               callbacks=callbacks, 

                               epochs=self.epochs, 

                               verbose=self.verbose, 

                               validation_data=(val_X, y_val), 

                               ) 

                for layer in chain([self.layers_dict['betax']], 

self.layers_dict['deepbeta'], 

                                   self.layers_dict['deepgamma']): 

                    layer.trainable = True 

                self.layers_dict['gamma'].trainable = True 

            else: 

                self.layers_dict['gamma'].trainable = True 
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            self.debug = False 

            if self.debug: 

                # custom fit loop 

                model = self.model 

                y_train_tf = tf.convert_to_tensor(y_train) 

                old_loss = np.inf 

                step = 0 

 

                for step in range(self.epochs): 

                    with tf.GradientTape() as tape: 

                        # tape.watch(model.trainable_variables[-1]) 

                        y_pred = model(training_X) 

                        loss = model.compiled_loss(y_train_tf, y_pred) 

                    print('Epoch:', step, 'loss:', loss) 

 

                    # early stopping 

                    # if old_loss - loss < 0.001: 

                    #     break 

 

                    old_loss = loss 

                    gradients = tape.gradient(loss, model.trainable_variables) 

                    model.optimizer.apply_gradients(zip(gradients, 

model.trainable_variables)) 

 

            self.model.fit(training_X, 

                           tf.convert_to_tensor(y_train), 

                           callbacks=callbacks, 

                           epochs=self.epochs, 

                           validation_data=(val_X, tf.convert_to_tensor(y_val)), 

                           verbose=self.verbose, 

                           batch_size=int(self.batchsize) 

                           ) 

 

        else: 

            if self.anc_input: 

                training_X = {'Input': X, 'AncillaryInput': anc_X} 

            else: 

                training_X = {'Input': X} 

            callbacks = [EarlyStopping(monitor='loss', patience=10, 

restore_best_weights=True), 

                         # LossHistory(logpath=self.conf.job_dir + "logs/"), 

                         ] 

            self.model, self.layers_dict, self.loss_metric = 

self.GetRPSplineModel(X, 

                                                                                   

y_train, 

                                                                                   

anc_X, 

                                                                                   

training_X) 

 

            self.model.fit(training_X, 

                           y_train, 

                           callbacks=callbacks, 

                           epochs=self.epochs, 

                           verbose=self.verbose) 

        #        print(self.model.summary()) 

        self.y_train = y_train 

        self.y_train_uncensored = y_train[y_train[:, 0] == 1.] 

        self.event_times_ = np.sort(y_train[:, 1][y_train[:, 0] == 1.]) 

 

    def predict(self, X): 

        """Predict risk score. 
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        Parameters 

        ---------- 

        X : array-like, shape = (n_samples, n_features) 

            Data matrix. 

 

        Returns 

        ------- 

        risk_scores : ndarray, shape = (n_samples,) 

            Predicted risk scores. 

        """ 

        estimate = self.predict_survival_function(X) 

        #        estimate_t=estimate['y'][estimate['x']<=self.conf.brier_t] 

        ind = np.argmin(estimate['x'][estimate['x'] >= self.conf.brier_t], axis=0) 

        return -estimate['y'][:, ind] 

 

    def _predict(self, X): 

        try: 

            beta_X, anc_X = X 

            return self.model.predict([beta_X, anc_X], batch_size=self.batchsize, 

verbose=0) 

        except ValueError as e: 

            # print(e) 

            return self.model.predict(X, batch_size=self.batchsize, verbose=0) 

        except Exception as er: 

            print(er) 

            raise er 

 

    @tf.function 

    def _eta(self, y_pred): 

        kint, kmin, kmax = self.kint, self.kmin, self.kmax 

 

        k2m = tf.expand_dims(kint, axis=0) 

        lambda_j = (kmax - k2m) / (kmax - kmin) 

        mlambda_j = tf.constant(1.0) - lambda_j 

 

        def sxgamma(x, gamma): 

            theta2m = tf.math.accumulate_n( 

                [tf.math.pow(K.relu(tf.subtract(x, k2m)), 3), 

                 -tf.multiply(lambda_j, tf.math.pow(K.relu(tf.subtract(x, kmin)), 

3)), 

                 -tf.multiply(mlambda_j, tf.math.pow(K.relu(tf.subtract(x, kmax)), 

3)), ] 

            ) 

            ret = tf.math.multiply(gamma[:, 0:1], tf.transpose(x)) + tf.matmul( 

                gamma[:, 1:], tf.transpose(theta2m), name='dot') 

            return ret 

 

        beta = tf.expand_dims(y_pred[:, 0], 1) 

        gamma = y_pred[:, 1:] 

 

        t = tf.convert_to_tensor(self.event_times_, dtype=tf.float32) 

        #        self.event_times_ = t 

        x = tf.expand_dims(K.log(t), 1) 

        eta = beta + sxgamma(x, gamma) 

        return eta 

 

    # @tf.function 

    def _aranda_ordaz_link(self, X): 

        eta = self._eta(self._predict(X)) 

        c = self.arandaordaz_c 

 

        def inv_logit_link(): 

            return tf.math.sigmoid(-eta) 

 

        def inv_log_log_link(): 

            return tf.math.exp(-tf.math.exp(eta)) 
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        def inv_aranda_ordaz_link(): 

            return tf.math.pow(1 + (c * tf.math.exp(eta)), -1 / c) 

 

        return tf.cond(tf.constant(c == 1, dtype=tf.bool), 

                       inv_logit_link,  # logit link 

                       lambda: tf.cond(tf.constant(c == 0, dtype=tf.bool), 

                                       inv_log_log_link,  # log log 

                                       inv_aranda_ordaz_link,  # aranda-ordaz 

                                       )) 

 

    def _predict_survival_function_y(self, X): 

 

        return self._aranda_ordaz_link(X) 

 

    #        cumhaz = self._cumhaz(self._predict(X))# tf 2. 

    #        return np.exp(-np.array(cumhaz)) 

 

    def predict_survival_function(self, X): 

        """Predict survival function. 

        predicts survival function at breaks timepoints. 

 

        Parameters 

        ---------- 

        X : array-like, shape = (n_samples, n_features) 

            Data matrix. 

 

        Returns 

        ------- 

        survival : ndarray, shape = (n_samples, n_event_times) 

            Predicted survival functions. 

        """ 

        try: 

            beta_X, anc_X = X 

            survival_fcn = np.zeros((beta_X.shape[0], 

                                     self.event_times_.shape[0]), 

                                    dtype=[('x', 'float64'), ('y', 'float64')]) 

            shape = X.shape[0] 

        except ValueError as e: 

            repr(e) 

 

            survival_fcn = np.zeros((X.shape[0], 

                                     self.event_times_.shape[0]), 

                                    dtype=[('x', 'float64'), ('y', 'float64')]) 

            shape = X.shape[0] 

            if self.anc_input: 

                X = (X, X) 

 

        survival_fcn['x'] = np.tile(self.event_times_, (shape, 1)) / self.scale 

        survival_fcn['y'] = self._predict_survival_function_y(X) 

        return survival_fcn.copy() 
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8.3 Source code of the Tensorflow 2 Implementation of ‘nnet-survival’ 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Apr  8 16:05:23 2020 

 

@author: Fabian 

Based on  

""" 

 

from sklearn.base import BaseEstimator 

from sklearn.model_selection import train_test_split 

from sksurv.util import check_y_survival 

import numpy as np 

 

# Model 

 

import tensorflow as tf 

import tensorflow.keras.backend as K 

from tensorflow.keras.layers import Layer 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Input, Dense, Dropout, Activation, 

BatchNormalization 

from tensorflow.keras.regularizers import l1_l2 

# training 

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, 

LearningRateScheduler 

 

from tensorflow.keras.optimizers import Adam 

 

 

# Utilities from M Gensheimer's nnet-survival 

 

 

def surv_likelihood(n_intervals): 

    """Create custom Keras loss function for neural network survival model. 

  Arguments 

      n_intervals: the number of survival time intervals 

  Returns 

      Custom loss function that can be used with Keras 

  """ 

 

    def loss(y_true, y_pred): 

        """ 

    Required to have only 2 arguments by Keras. 

    Arguments 

        y_true: Tensor. 

          First half of the values is 1 if individual survived that interval, 0 if 

not. 

          Second half of the values is for individuals who failed, and is 1 for 

time interval during which failure 

          occured, 0 for other intervals. 

          See make_surv_array function. 

        y_pred: Tensor, predicted survival probability (1-hazard probability) for 

each time interval. 

    Returns 

        Vector of losses for this minibatch. 

    """ 

        cens_uncens = 1. + y_true[:, 0:n_intervals] * (y_pred - 1.)  # component 

for all individuals 

        uncens = 1. - y_true[:, n_intervals:2 * n_intervals] * y_pred  # component 

for only uncensored individuals 

        return K.sum(-K.log(K.clip(K.concatenate((cens_uncens, uncens)), 

K.epsilon(), None)), 
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                     axis=-1)  # return -log likelihood 

 

    return loss 

 

 

def surv_likelihood_rnn(n_intervals): 

    """ 

    Create custom Keras loss function for neural network survival model. Used for 

recurrent neural networks with 

    time-distributed output. 

    This function is very similar to surv_likelihood but deals with the extra 

dimension of y_true and y_pred that 

    exists because of the time-distributed output. 

  """ 

 

    def loss(y_true, y_pred): 

        cens_uncens = 1. + y_true[0, :, 0:n_intervals] * (y_pred - 1.)  # component 

for all patients 

        uncens = 1. - y_true[0, :, n_intervals:2 * n_intervals] * y_pred  # 

component for only uncensored patients 

        return K.sum(-K.log(K.clip(K.concatenate((cens_uncens, uncens)), 

K.epsilon(), None)), 

                     axis=-1)  # return -log likelihood 

 

    return loss 

 

 

def make_surv_array(t, f, breaks): 

    """Transforms censored survival data into vector format that can be used in 

Keras. 

    Arguments 

        t: Array of failure/censoring times. 

        f: Censoring indicator. 1 if failed, 0 if censored. 

        breaks: Locations of breaks between time intervals for discrete-time 

survival model (always includes 0) 

    Returns 

        Two-dimensional array of survival data, dimensions are number of 

individuals X number of time intervals*2 

  """ 

    n_samples = t.shape[0] 

    n_intervals = len(breaks) - 1 

    timegap = breaks[1:] - breaks[:-1] 

    breaks_midpoint = breaks[:-1] + 0.5 * timegap 

    y_train = np.zeros((n_samples, n_intervals * 2)) 

    for i in range(n_samples): 

        if f[i]:  # if failed (not censored) 

            y_train[i, 0:n_intervals] = 1.0 * (t[i] >= breaks[1:]) 

            # give credit for surviving each time interval where failure time >= 

upper limit 

            if t[i] < breaks[-1]: 

                # if failure time is greater than end of last time interval, no 

time interval will have failure marked 

                y_train[i, n_intervals + np.where(t[i] < breaks[1:])[0][ 

                    0]] = 1  # mark failure at first bin where survival time < 

upper break-point 

        else:  # if censored 

            y_train[i, 0:n_intervals] = 1.0 * (t[i] >= breaks_midpoint) 

            # if censored and lived more than half-way through interval, give 

credit for surviving the interval. 

    return y_train 

 

 

def nnet_pred_surv(y_pred, breaks, fu_time): 

    # Predicted survival probability from Nnet-survival model 

    # Inputs are Numpy arrays. 

    # y_pred: Rectangular array, each individual's conditional probability of 
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surviving each time interval 

    # breaks: Break-points for time intervals used for Nnet-survival model, 

starting with 0 

    # fu_time: Follow-up time point at which predictions are needed 

    # 

    # Returns: predicted survival probability for each individual at specified 

follow-up time 

    y_pred = np.cumprod(y_pred, axis=1) 

    pred_surv = [] 

    for i in range(y_pred.shape[0]): 

        pred_surv.append(np.interp(fu_time, breaks[1:], y_pred[i, :])) 

    return np.array(pred_surv) 

 

 

class PropHazards(Layer): 

 

    def __init__(self, output_dim, **kwargs): 

        self.output_dim = output_dim 

        super(PropHazards, self).__init__(**kwargs) 

 

    def build(self, input_shape): 

        # Create a trainable weight variable for this layer. 

        self.kernel = self.add_weight(name='kernel', 

                                      shape=(1, self.output_dim), 

                                      # initializer='uniform', 

                                      initializer='zeros', 

                                      trainable=True) 

        super(PropHazards, self).build(input_shape)  # Be sure to call this 

somewhere! 

 

    def call(self, x): 

        # The conditional probability of surviving each time interval (given that 

has survived to beginning of interval) 

        # is affected by the input data according to eq. 18.13 in Harrell F., 

        # Regression Modeling Strategies 2nd ed. (available free online) 

        return K.pow(K.sigmoid(self.kernel), K.exp(x)) 

 

    def compute_output_shape(self, input_shape): 

        return (input_shape[0], self.output_dim) 

 

 

class SurvivalFcn: 

 

    def __init__(self, 

                 x, 

                 y, 

                 ): 

        self.x = x 

        self.y = y 

 

 

class NnetSurvivalEstimator(BaseEstimator): 

    """ 

    scikit learn style wrapper for the Gensheimer's nnet-survival Neural network 

for survival data 

    """ 

    def __init__(self, 

                 conf, 

                 l1_ratio=1, 

                 penalizer=0, 

                 learning_rate=1e-3, 

                 dropout=False, 

                 prophazard=False, 

                 epochs=10000, 

                 earlystopping=True, 

                 train_ratio=0.8, 
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                 hidden_layers_sizes=10, 

                 hiddenlayers=1, 

                 batch_size=256, 

                 breaks=None, 

                 random_state=None, 

                 ): 

        # config general 

        if breaks is None: 

            if hasattr(conf, 'breaks'): 

                self.event_times_ = conf.breaks[1:] 

            else: 

                self.default_breaks_per_event_ = 10 

                self.event_times_ = None 

        else: 

            self.event_times_ = breaks 

        self.conf = conf 

        self.learning_rate = learning_rate 

        self.batchsize = batch_size 

        self.epochs = epochs 

        # early stopping 

        self.earlystopping = True 

        self.train_ratio = train_ratio 

 

        # model specific 

        self.hidden_layers_sizes = hidden_layers_sizes 

        self.prophazard = prophazard 

        self.hiddenlayers = hiddenlayers 

        self.penalizer = penalizer 

        self.l1_ratio = l1_ratio 

        if dropout: 

            self.kernel_regularizer = None 

            self.dropout_rate = penalizer 

        else: 

            self.dropout_rate = None 

            self.l1_ratio = l1_ratio 

            self.kernel_regularizer = l1_l2(l1=self.penalizer * self.l1_ratio, 

l2=self.penalizer * (1 - self.l1_ratio)) 

        self.model = None  # Keras Model 

 

    def GetDenseModel(self, ): 

 

        n_intervals = len(self.event_times_) - 1 

        model = Sequential() 

        # hidden layers: 

        for j in range(self.hiddenlayers): 

            model.add(Dense(self.hidden_layers_sizes, 

                            bias_initializer='zeros', 

                            kernel_regularizer=self.kernel_regularizer, 

                            ) 

                      ) 

            model.add(BatchNormalization()) 

            model.add(Activation('relu')) 

            # dropout layer 

            if self.dropout_rate is not None: 

                model.add(Dropout(rate=self.dropout_rate)) 

        # discrete time interval odds and probability: 

        if self.prophazard: 

            model.add(Dense(1, use_bias=0, kernel_initializer='zeros')) 

            model.add(PropHazards(n_intervals)) 

        # flexible non-propotional hazard model. 

        else: 

            model.add(Dense(n_intervals)) 

            model.add(Activation('sigmoid')) 

        model.compile(loss=surv_likelihood(n_intervals), 

                      optimizer=Adam(lr=self.learning_rate)) 
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        return model 

 

    def fit(self, X, y, ): 

 

        # prepare y data 

        event, time = check_y_survival(y) 

 

        # get event_times_ from train dataset 

        if self.event_times_ is None: 

            no_breaks = int(round(np.count_nonzero(event) / 

self.default_breaks_per_event_)) 

            self.event_times_ = np.linspace(time[event].min(), time[event].max(), 

no_breaks) 

 

        y_train = make_surv_array(time, event, self.event_times_) 

 

        # get Keras model 

        self.model = self.GetDenseModel() 

 

        # prepare callbacks 

        if self.earlystopping: 

            self.epochs = 10000 

            X_train, X_val, y_train, y_val = train_test_split(X, y_train, 

shuffle=True, train_size=self.train_ratio, ) 

            callbacks = [EarlyStopping(monitor='val_loss', patience=10), 

                         ] 

            self.model.fit(X_train, y_train, callbacks=callbacks, 

epochs=self.epochs, validation_data=(X_val, y_val), 

                           verbose=0) 

 

        else: 

            callbacks = [  # EarlyStopping(monitor='val_loss', patience=10), 

            ] 

            self.model.fit(X, y_train, callbacks=callbacks, epochs=self.epochs, 

verbose=0) 

 

    def predict(self, X, t=None): 

        """ 

        Predict Survival Probability at time t 

 

        Parameters 

        ---------- 

        X : array-like, shape = (n_samples, n_features) 

            Data matrix. 

 

        t: time to predict the survival probability at 

 

        Returns 

        ------- 

        risk_scores : ndarray, shape = (n_samples,) 

            Predicted risk scores. 

        """ 

        estimate = self.predict_survival_function(X) 

        if t is None: 

            raise ValueError('You need to specify a time, at which to predict the 

survival probability!') 

        ind = np.argmin(estimate['x'][estimate['x'] >= t], axis=0) 

        return -estimate['y'][:, ind] 

 

    def _predict(self, X): 

        return self.model.predict(X, batch_size=self.batchsize, verbose=0) 

 

    def _predict_survival_function_y(self, X): 

        return np.cumprod(self._predict(X), axis=1) 

 

    def predict_survival_function(self, X): 
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        """Predict survival function. 

        predicts survival function at breaks timepoints. 

 

        Parameters 

        ---------- 

        X : array-like, shape = (n_samples, n_features) 

            Data matrix. 

 

        Returns 

        ------- 

        survival : ndarray, shape = (n_samples, n_event_times) 

            Predicted survival functions. 

        """ 

        survival_fcn = np.zeros( 

            (X.shape[0], self.event_times_.shape[0] - 1), 

            dtype=[('x', 'float64'), ('y', 'float64')]) 

        survival_fcn['x'] = np.tile(self.event_times_[:-1], (X.shape[0], 1)) 

        survival_fcn['y'] = self._predict_survival_function_y(X) 

        return survival_fcn.copy() 
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8.4 Source code of lowess-smoothed calibration plot for survival data 

import matplotlib.pyplot as plt 

 

# sklearn imports 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.model_selection import train_test_split 

from sklearn.calibration import calibration_curve as sklearncb 

from sklearn.utils import check_array, check_consistent_length 

 

# scikit survival imports 

from sksurv.nonparametric import CensoringDistributionEstimator, 

SurvivalFunctionEstimator 

from sksurv.util import check_y_survival 

 

# scikit misc 

# from skmisc.loess import loess 

 

# First-party 

from .metrics import _interpolate_survfunc 

 

# Third-party 

from moepy import lowess 

from joblib import Parallel, delayed 

from functools import partial 

import numpy 

import pandas as pd 

 

 

def _calib_plot(fig, ax, fu_time, n_bins, pred_surv, time, dead, 

                color, label, scatter=True, 

                error_bars=0, alpha=1., markersize=1., markertype='o'): 

    """ 

    Kaplan Meier Estimates for n_bins of predicted survival pred_surv at fu_time 

plotted against mean pred_surv 

    typically deciles are used, despite arbitrary choice. 

    Deprecated --> better use loess based/nearest neighbor estimated plot 

    """ 

    # TODO: exchange lifelines KaplanMeierFitter with 

sksurv.nonparametric.SurvivalFunctionEstimator. Confidence interval estimation 

needed in advance. 

    from lifelines import KaplanMeierFitter 

    import matplotlib.pyplot as plt 

    #    cuts = numpy.concatenate((numpy.array([-1e6]),numpy.percentile(pred_surv, 

numpy.arange(100/n_bins,100,100/n_bins)),numpy.array([1e6]))) 

    #    bin = pd.cut(pred_surv,cuts,labels=False) 

    bins = pd.qcut(pred_surv, q=n_bins, retbins=True, duplicates='drop')[0]._codes 

    kmf = KaplanMeierFitter() 

    est = [] 

    ci_upper = [] 

    ci_lower = [] 

    mean_pred_surv = [] 

    for which_bin in range(max(bins) + 1): 

        kmf.fit(time[bins == which_bin], event_observed=dead[bins == which_bin]) 

        est.append(numpy.interp(fu_time, kmf.survival_function_.index.values, 

kmf.survival_function_.KM_estimate)) 

        ci_upper.append(numpy.interp(fu_time, kmf.survival_function_.index.values, 

                                     kmf.confidence_interval_.loc[:, 

'KM_estimate_upper_0.95'])) 

        ci_lower.append(numpy.interp(fu_time, kmf.survival_function_.index.values, 

                                     kmf.confidence_interval_.loc[:, 

'KM_estimate_lower_0.95'])) 

        mean_pred_surv.append(numpy.mean(pred_surv[bins == which_bin])) 

    est = numpy.array(est) 

    ci_upper = numpy.array(ci_upper) 

    ci_lower = numpy.array(ci_lower) 
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    if error_bars: 

        ax.errorbar(mean_pred_surv, est, 

yerr=numpy.transpose(numpy.column_stack((est - ci_lower, ci_upper - est))), 

                    fmt='o', 

                    c=color, label=label) 

    else: 

        ax.plot(mean_pred_surv, est, markertype, c=color, label=label, alpha=alpha, 

markersize=markersize) 

 

    if scatter: 

        actual = numpy.empty(pred_surv.shape) 

        for bi in bins: 

            actual[bins == bi] = est[bi] 

        ax.plot(pred_surv, actual, 'o', c=color, label=label, alpha=alpha, 

markersize=.5 * markersize) 

    return fig, ax, (numpy.array(mean_pred_surv), est, ci_upper, ci_lower) 

 

 

def _calib_plot_loess(fig, ax, fu_time, 

                      pred_surv, time, dead, 

                      color, label, 

                      ci=False, ci_alpha=.05, trunc=(1, 99), 

                      alpha=1., markersize=1., linestyle='solid', 

                      pseudovals=True,  # wether to use Jackknife pseudovals or 

not. 

                      loess=True, 

                      scatter=True, 

                      ): 

    """ 

    plot calibration curve based on pseudovalues: est_i(t) = n * (prodlim(t)) - (n-

1) * prodlim_i(t) 

    see r package prodlim https://rdrr.io/cran/prodlim/man/jackknife.html 

    see also    Gerds et al.,Calibration plots for risk prediction models in the 

presence of competing risks., https://doi.org/10.1002/sim.6152 

                Graw et al., https://doi.org/10.1007/s10985-008-9107-z 

 

    We combined the pseudovalues approach with skmisc.loess.loess smoothing 

(https://dx.doi.org/10.1002%2Fsim.5941) 

    span = 0.75 (default) works good according to 

https://dx.doi.org/10.1002%2Fsim.5941 

 

    Parameters: 

    ----------- 

    * fig : plt.Figure 

        matplotlib's figure object, where the plot should be plotted at 

 

    * ax : plt.Axes 

        matplotlib's axes object, where the plot should be plotted at 

 

 

    * fu_time : int / float 

        time for which cumulative calibration should be calculated 

 

    * pred_surv : array, shape = (n_samples,) 

        array with predicted survival probability at time t 

 

    * time: array, shape = (n_samples,) 

        array with time of event or censoring time 

 

    * dead: array, shape = (n_samples,) 

        event indicator array, True = event, False = no event 

 

    * color: str 

        color for the plot 

 

    * label: str 
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        label of the plot 

 

    * ci: bool 

        controls, whether confidence intervals should be calculated 

 

    * ci_alpha: float 

        confidence niveau, default 0.05 

 

    * trunc: tuple, type int / float 

        truncate pred_surv at `trunc[0/1]`'th percentiles. 

 

    * alpha: float 

        alpha transluicency for plot 

 

    * markersize: float 

        markersize for pyplot 

 

    * markertype: str 

        type of marker used by matplotlib.pyplot, default '-' = line 

 

    * loess: bool 

        use loess smoother, if false (not recommended, as not tested) use k nearest 

neighbors. 

 

    * scatter: bool 

        plot (pseudo)values as scatter plot as well (for debugging) 

 

    Returns: 

    -------- 

 

    * s_pred_surv: array, shape = (n_samples*) 

        random subsample (only if n_samples >30000) of predicted survival 

probability array at fu_time 

    * actual: array, shape = (n_samples*) 

        loess smoothed actual survival probability for each reduced sample 

    * ci_lower:array, array, shape = (n_samples*) 

        lower confidence limit if ci= True, otherwise ci_lower equals actual 

    * ci_upper:array, array, shape = (n_samples*) 

        upper confidence limit if ci= True, otherwise ci_lower equals actual 

 

    Example: 

    -------- 

 

    """ 

    est = numpy.zeros(pred_surv.shape) 

 

    # get jacknife pseudovals for whole population if internal validation 

    # get jacknife pseudovals for one complete sample in case of repeated CV. 

    if pseudovals: 

        est = _jacknife(fu_time, time, dead) 

    else: 

        est = 1 - dead 

 

    # sort predicted probability of survival 

    order = numpy.argsort(pred_surv) 

    est_ord = est[order] 

    pred_surv_ord = pred_surv[order] 

 

    # Truncate pred_surv_ord at trunc[0/1] 

    trunc_ind = numpy.logical_and(pred_surv_ord >= numpy.percentile(pred_surv_ord, 

trunc[0]), 

                                                    pred_surv_ord <= 

numpy.percentile(pred_surv_ord, trunc[1])) 

    pred_surv_ord = pred_surv_ord[trunc_ind] 

    est_ord = est_ord[trunc_ind] 
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    # fit lowess 

    fig, ax = _loess_smoothed_plot(y_plot=est_ord, x_plot=pred_surv_ord, 

                                   fig=fig, ax=ax, 

                                   ci_alpha=ci_alpha, 

                                   plot_ci=ci, 

                                   markersize=markersize, 

                                   linestyle=linestyle, 

                                   alpha=alpha, 

                                   color=color, 

                                   label=label) 

    return fig, ax 

 

 

def _jacknife(fu_time, time, dead, verbose=True): 

    """ 

    calc pseudovalues according to TA Gerds 

    https://rdrr.io/cran/prodlim/man/jackknife.html 

    """ 

    # TODO: exchange lifelines KaplanMeierFitter with sksurv.nonparametric kaplan 

meier estimator. 

    from sklearn.model_selection import LeaveOneOut 

    from lifelines import KaplanMeierFitter 

    import time as t 

    import sys 

    # generate pseudovalues 

    llo = LeaveOneOut() 

    kmf = KaplanMeierFitter() 

    kmf.fit(time, event_observed=dead) 

    kme = numpy.interp(fu_time, kmf.survival_function_.index.values, 

                       kmf.survival_function_.KM_estimate)  # linear interpolation 

 

    pseudovals = [] 

 

    def get_pseudoval(train_index, test_index, kme=None): 

        kmfi = KaplanMeierFitter() 

        kmfi.fit(time[train_index], event_observed=dead[train_index]) 

        kmei = numpy.interp(fu_time, kmfi.survival_function_.index.values, 

                            kmfi.survival_function_.KM_estimate)  # linear 

interpolation 

        return (time.shape[0] * kme) - ((time.shape[0] - 1) * kmei) 

 

    print('start') 

    start = t.time() 

    with Parallel(n_jobs=8, backend='loky') as parallel: 

        get_pseudoval_kme = partial(get_pseudoval, **{'kme': kme}) 

        # runs = [(train_index, test_index) for train_index, test_index in 

llo.split(time)] 

        res = parallel(delayed(get_pseudoval_kme)(train_index, test_index, ) 

                       for train_index, test_index in llo.split(time)) 

        pseudovals.append(res) 

    print('finished in %s secs' % '{:6.1f}'.format(t.time() - start)) 

    return numpy.array(pseudovals).squeeze() 

 

 

def _loess_smoothed_plot(x_plot, y_plot, 

                         fig, ax, 

                         color='#377eb8', 

                         label="Loess-smoothed curve", 

                         alpha=0.7, 

                         linestyle='solid', 

                         markersize=2., 

                         ci_alpha=.05, 

                         plot_ci: bool = False, 

                         ): 

    lowess_fitter = lowess.Lowess() 

    lowess_fitter.fit(x_plot, y_plot, frac=0.75, robust_iters=1) 
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    x_pred = numpy.linspace(x_plot.min(), x_plot.max(), 1000) 

    y_pred = lowess_fitter.predict(x_pred) 

 

    ax.plot(x_pred, y_pred, c=color, label=label, alpha=alpha, 

markersize=markersize, 

            linestyle=linestyle) 

    if plot_ci: 

        df_quantiles = lowess.quantile_model(x_plot, y_plot, frac=0., num_fits=100, 

                                             qs=[ci_alpha / 2, 1 - (ci_alpha / 2)], 

                                             robust_iters=1) 

        ax.fill_between(df_quantiles.index, df_quantiles[ci_alpha / 2], 

df_quantiles[1 - (ci_alpha / 2)], 

                        edgecolor=color, facecolor=color, alpha=0.5 * alpha, 

                        antialiased=True) 

    return fig, ax 

 

 

def calibration_curve(survival_train, survival_test, estimate, times, 

                      fu_time, 

                      fig=None, ax=None, 

                      n_bins=10, 

                      my_alpha=0.7, 

                      my_markersize=4., 

                      color='#377eb8', 

                      label='Actual versus predicted survival probability with 95% 

CI', 

                      ci=True, 

                      ci_alpha=.05, 

                      pseudovals=True, 

                      loess=True, 

                      internal_validation=True, 

                      scatter=False, 

                      ): 

    """ 

    A calibration plot based on pseudovalues (pseudovals = True): 

    A product limit estimator (Kaplan-Meier) is used to generate a jackknife 

pseudo-value 

    for the i'th observation, by calculating the product limit estimate for 

    a n-1 subsample without the i'th observation. 

    Pseudovalues are then calculated by: 

 

        est_i(t) = n * (prodlim(t)) - (n-1) * prodlim_i(t) 

 

    where prodlim is the KM estimate for the whole sample and prodlim_i is the 

    one applied to the subsample without i'th observation. 

 

    see r package prodlim https://rdrr.io/cran/prodlim/man/jackknife.html 

    see also    Gerds et al.,Calibration plots for risk prediction models in the 

presence of competing risks., https://doi.org/10.1002/sim.6152 

                Graw et al., https://doi.org/10.1007/s10985-008-9107-z 

 

    We combined the pseudovalues approach with loess smoothing 

(https://dx.doi.org/10.1002%2Fsim.5941) 

    Note: span = 0.75 (default) works good according to 

https://dx.doi.org/10.1002%2Fsim.5941 

 

    Parameters: 

    ----------- 

    survival_train : structured array, shape = (n_train_samples,) 

        Survival times for training data to estimate if training 

        and testing data are drawn from same sample. 

        Set internal_validation to True in this case. 

        Otherwise, use surival_test again as input. 

        A structured array containing the binary event indicator 

        as first field, and time of event or time of censoring as 

        second field. 
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    survival_test : structured array, shape = (n_samples,) 

        Survival times of test data. 

        A structured array containing the binary event indicator 

        as first field, and time of event or time of censoring as 

        second field. 

 

    estimate : array-like, shape = (n_samples,n_times) 

        Estimated risk of experiencing an event for test data at `times`. 

 

    times : array-like, shape = (n_times,) 

        The time points for which the predicted Survival function 

        is calculated and interpolation for a specific follow-up-time 

        is calculated. Values must be 

        within the range of follow-up times of the test data 

        `survival_test`. 

 

    fu_time : float, 

        The timepoint for which the calibration curve should be plotted. 

 

    * fig : plt.Figure 

        matplotlib's figure object, where the plot should be plotted at 

 

    * ax : plt.Axes 

        matplotlib's axes object, where the plot should be plotted at 

 

 

    * color: str 

        color for the plot 

 

    * label: str 

        label of the plot 

 

    * trunc: int / float 

        truncate pred_surv at trunc'th percentile. 

 

    * my_alpha: float 

        alpha transluicency for plot 

 

    * my_markersize: float 

        markersize for pyplot 

 

    * ci: bool 

        controls, whether confidence intervals should be calculated 

 

    * ci_alpha: float 

        confidence niveau, default 0.05 

    * loess: bool 

        use loess smoothing (recommended) or k nearest neighbors regression? 

    * pseudovals: bool 

        controls, whether pseudovals or binning approach should be used. 

    * internal_validation: bool 

        survival_train and survival_test are considered as beeing drawn 

        from same sample and are both used for calculation of Kaplan-Meier-

estimates 

 

    Returns: 

    -------- 

        * fig, ax: tuple 

            Figure and Axes object, where the curve is plotted at 

 

    Example: 

    -------- 

    @TODO: give a MWE. 

    """ 

    # check fig, ax obj 
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    if fig is None or ax is None: 

        fig, ax = plt.subplots() 

    # check survival arrays for test_data 

    test_event, test_time = check_y_survival(survival_test) 

    train_event, train_time = check_y_survival(survival_train) 

    times = check_array(numpy.atleast_1d(times), ensure_2d=False, 

dtype=test_time.dtype) 

 

    if internal_validation: 

        test_time_traintest = numpy.concatenate(test_time, train_time) 

        test_event_traintest = numpy.concatenate(test_event, train_event) 

    else: 

        test_time_traintest = train_time 

        test_event_traintest = train_event 

    # interpolate predicted survival at fu_time. 

    # pred_surv = _interpolate_survfunc(times, fu_time, estimate,) 

    pred_surv = estimate 

 

    # sort by pred_surv in ascending order 

    order = numpy.argsort(pred_surv) 

    pred_surv = pred_surv[order] 

    test_time = test_time[order] 

    test_event = test_event[order] 

    #    test_time_traintest = test_time_traintest[order] 

    #    test_event_traintest = test_event_traintest[order] 

    if numpy.greater(test_time[~test_event], fu_time).all():  # greater to allow 

for day-wise (minor) interval-censoring 

        print('No right-censoring at fu_time (%s) --> no jacknife pseudovalues are 

used' % '{:3d}'.format(fu_time)) 

        pseudovals = False 

    if loess:  # use pseudovals approach with loess smoothing 

        fig, ax = _calib_plot_loess(fig, ax, fu_time, 

                                    pred_surv, test_time, test_event, 

                                    test_time_traintest, test_event_traintest, 

                                    color=color, 

                                    label=label, 

                                    ci=ci, 

                                    alpha=my_alpha, 

        45                            markersize=my_markersize, 

                                    markertype='-', 

                                    loess=loess, 

                                    pseudovals=pseudovals, 

                                    scatter=scatter, ) 

    else:  # use traditional binning (visual analog to Hosmer-Lemshaw-test) 

        fig, ax, (pred, actual, ci_upper, ci_lower) = _calib_plot(fig, ax, fu_time, 

n_bins, 

                                                                  pred_surv, 

test_time, test_event, 

                                                                  color=color, 

                                                                  label=label, 

                                                                  error_bars=ci, 

                                                                  alpha=my_alpha, 

                                                                  

markersize=my_markersize, 

                                                                  markertype='-') 

 

    return fig, ax 
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9 Appendix B 
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