

Aus der Klinik und Poliklinik für Innere Medizin B: Kardiologie, Angiologie,
Pulmologie/Infektiologie und Internistische Intensivmedizin

(Direktor: Univ.- Prof. Dr. Stephan B. Felix)
der Universitätsmedizin der Universität Greifswald

Deep learning prediction of all-cause-mortality in a general population cohort by
myocardial strain derived from speckle-tracking-echocardiography.

Inaugural - Dissertation

zur

Erlangung des akademischen

Grades

Doktor der Medizin
(Dr. med.)

der

Universitätsmedizin

der

Universität Greifswald

2022

vorgelegt von:
Fabian Christopher Laqua
geb. am: 17.09.1992
in: Karlsruhe

2

Dekan: Univ. - Prof. Dr. med. Karlhans Endlich

1. Gutachter: Univ. - Prof. Dr. med. Marcus Dörr

2. Gutachter: Univ.-Prof. Dr. med. Bettina Baeßler

(3. Gutachter:)

Ort, Raum: Greifswald, Seminarraum Innere Medizin B

Tag der Disputation: 21.03.2023

3

Table of contents

1 Abstract .. 5

Background ... 5

Purpose ... 5

Methods ... 5

Results .. 5

Conclusion .. 5

2 Introduction .. 6

3 Methods ... 8

3.1 Study Population, population-at-risk, and time horizon ... 8

3.2 Outcome .. 8

3.3 Speckle Tracking Echocardiography .. 9

3.4 Statistical analysis, machine learning and performance evaluation 9

3.5 Restricted cubic splines neural network ‘nnet-Surv-rcsplines’ 10

3.6 Specification of model input and benchmark ... 13

3.7 Performance Evaluation .. 13

4 Results .. 16

4.1 Study population ... 16

4.2 Performance of ‘nnet-Surv-rcsplines’ models ... 19

4.3 Sensitivity analysis: performance of ‘nnet-survival’ .. 29

5 Discussion ... 36

5.1 Global peak strain from Speckle-tracking-echocardiography 36

5.2 Speckle-tracking-echocardiography-derived multidimensional data 37

5.3 ‘nnet-Surv-rcsplines’ neural network for survival data with and without presence of

competing risks .. 39

4

5.4 Study limitations .. 40

6 Conclusion .. 42

7 References .. 43

8 Appendix A ... 1

8.1 Restricted cubic splines neural network ‘nnet-Surv-rcsplines’ 1

Cause-specific cumulative incidence function and subdistribution hazard 1

Regression modelling ... 1

Negative Log-Likelihood-Loss for competing risk data .. 3

Special case Survival data without competing risks ... 5

8.2 Source code of the Tensorflow 2 Implementation of ‘nnet-Surv-rcsplines’ 6

8.3 Source code of the Tensorflow 2 Implementation of ‘nnet-survival’ 21

8.4 Source code of lowess-smoothed calibration plot for survival data 27

9 Appendix B ... 34

5

1 Abstract

Background
Previous work has focused on speckle-tracking echocardiography (STE)-derived global
longitudinal and circumferential peak strain as potential superior prognostic metric markers
compared with left ventricular ejection fraction (LVEF). However, the value of regional
distribution and the respective orientation of left ventricular wall motion (quantified as strain
and derived from STE) for survival prediction have not been investigated yet. Moreover, most
of the recent studies on risk stratification in primary and secondary prevention do not use
neural networks for outcome prediction.

Purpose
To evaluate the performance of neural networks for predicting all cause-mortality with
different model inputs in a moderate-sized general population cohort.

Methods
All participants of the second cohort of the population-based Study of Health in Pomerania
(SHIP-TREND-0) without prior cardiovascular disease (CVD; acute myocardial infarction,
cardiac surgery/intervention, heart failure and stroke) and with transthoracic
echocardiography exams were followed for all-cause mortality from baseline examination
(2008-2012) until 2019.
A novel deep neural network architecture ‘nnet-Surv-rcsplines’, that extends the Royston-
Parmar- cubic splines survival model to neural networks was proposed and applied to predict
all-cause mortality from STE-derived global and/or regional myocardial longitudinal,
circumferential, transverse, and radial strain in addition to the components of the ESC SCORE
model. The models were evaluated by 8.5-year area-under-the-receiver-operating-
characteristic (AUROC) and (scaled) Brier score [(S)BS]and compared to the SCORE model
adjusted for mortality rates in Germany in 2010.

Results
In total, 3858 participants (53 % female, median age 51 years) were followed for a median
time of 8.4 (95 % CI 8.3 – 8.5) years. Application of ‘nnet-Surv-rcsplines’ to the components of
the ESC SCORE model alone resulted in the best discriminatory performance (AUROC 0.9
[0.86-0.91]) and lowest prediction error (SBS 21[18-23] %). The latter was significantly lower
(p <0.001) than the original SCORE model (SBS 11 [9.5 - 13] %), while discrimination did not
differ significantly. There was no difference in (S)BS (p= 0.66) when global circumferential and
longitudinal strain were added to the model. Solely including STE-data resulted in an
informative (AUROC 0.71 [0.69, 0.74]; SBS 3.6 [2.8-4.6] %) but worse (p<0.001) model
performance than when considering the sociodemographic and instrumental biomarkers, too.

Conclusion
Regional myocardial strain distribution contains prognostic information for predicting all-
cause mortality in a primary prevention sample of subjects without CVD. Still, the incremental
prognostic value of STE parameters was not demonstrated. Application of neural networks on
available traditional risk factors in primary prevention may improve outcome prediction
compared to standard statistical approaches and lead to better treatment decisions.

6

2 Introduction

Previous work has focused on speckle-tracking echocardiography (STE)-derived global

longitudinal and circumferential peak strain as potential superior prognostic metric markers

compared with left ventricular ejection fraction (LVEF)1-3. The association of those parameters

with outcomes (incl. adverse cardiovascular events, cardiovascular- and all-cause mortality)

was investigated in different settings, cohorts and for other disease entities1-10. Despite the

potentially misleading term ‘predictor variable’, most of the available literature claiming to

show ‘incremental predictive capabilities’ only focuses on ‘independent association’ in

multivariable survival regression, which is subject to causal inference frameworks11-13.

The development and evaluation of models incorporating STE-derived cardiac motion

parameters for predicting survival outcomes have not been subject to research as yet1,8,9.

Especially information on the regional distribution of peak strain and strain rate parameters

with varying orientation (transversal, longitudinal, circumferential, and radial), available due

to modern speckle tracking software and ultrasound hardware, has not been integrated into

prediction models so far1,5,7,9. In this work, the regional distribution and the respective

orientation of left ventricular wall motion (quantified as strain and derived from STE) have

been treated in the same way as other multi-dimensional data (e.g., radiomics, genomics,

metabolomics etc.).

Multi-dimensional data requires specific statistical methods dealing with this high

dimensionality to exploit the available information effectively 12-16. Recently, machine learning

methods, specifically deep neural networks, have successfully been applied to different tasks

in cardiovascular medicine 17-20. However, literature on using deep neural networks for risk

prediction in primary prevention in the general population is sparse21-24. Even the update of

the widely used ‘Systematic COronary Risk Evaluation’(SCORE) risk charts, namely SCORE225

and SCORE2-OP26, derived from the data of 677,684 individuals, relies on traditional

survival/competing risk regression25. The used methods do not address potential non-linear

effects of covariables and only explicit first-level interaction terms. A major drawback

preventing a widespread application of deep learning models for risk prediction lies in the

complexity of time-to-event data with potential right- or left-censoring and competing

7

risks27,28. Different approaches have been proposed for applying deep learning models on

survival and competing risk datarv29, Coxnnet30, nnet-survival27, DeepHit31). While the former

two extend Cox’s proportional hazard model to neural networks, the latter two are multi-task

networks that model the survival distribution at discrete time intervals.

In the present work, a novel deep neural network for survival data (including competing risk

data), extending Royston and Parmar’s flexible parameterization of the survival function by

restricted cubic splines to model the cause-specific cumulative incidence function (CIF) in a

neural network, has been proposed32,33. This ‘nnet-Surv-rcsplines’ model has been applied to

predict all-cause mortality in a general population cohort. This study has aimed to assess the

performance of neural networks for predicting all cause-mortality with different model inputs

in a moderate-sized general population cohort. Inputs ranged from components of the SCORE

risk chart models to high dimensional STE-data.

8

3 Methods

For the development and reporting of prediction models, we applied the structure proposed

in the TRIPOD and CONSORT-AI statement, taking the study population at risk, the time

horizon, the outcome of interest, and the choice of predictors into consideration12,13,34,35.

3.1 Study Population, population-at-risk, and time horizon

The Study of Health in Pomerania (SHIP) is a population-based, epidemiological project

conducted in northeastern Germany36. For this work, data from the baseline examinations of

the second cohort (SHIP-TREND-0), collected between September 2008 and September 2012,

was used. For SHIP-TREND-0, a random, stratified sample of 8,016 adults aged 20 - 79 years

was drawn using local population registries in the Federal State of Mecklenburg/West

Pomerania36. Stratification variables were age, sex, and city/county of residence36. In total,

4,420 individuals took part in the examinations (response 50.1 %) and gave informed written

consent36. The Ethics Committee of the University of Greifswald has approved this study. This

study was conducted in accordance with the Declaration of Helsinki, following all relevant

guidelines and regulations.

All participants of SHIP-TREND-0 with a complete mortality follow-up and STE data of sufficient

quality for the apical four-chamber and the apical 2-chamber view at least have been included

in our investigation. As the baseline, we have defined the date of examination at the study

site. We have considered 10 years as a relevant time horizon for developing and assessing

survival prediction models13. In total, data of 3,858 individuals out of 4,420 participants of

SHIP-TREND-0 have been analyzed in the present work (cf. Figure 2).

3.2 Outcome

Minimization of mortality is a primary target in cardiovascular prevention. Hence, all-cause

mortality was chosen as the primary outcome. Patients were followed from baseline until

death, emigration or July 2019, whichever came first. Information on the vital status of

patients was obtained from official resident data files36. Subjects were either classified as

censored at the date of record in the population registry or as dead.

9

3.3 Speckle Tracking Echocardiography

All participants underwent routine M-Mode, B-Mode, continuous-wave Doppler, pulse-wave

Doppler and tissue doppler imaging echocardiography. Left ventricular dimensions were

measured using the leading-edge convention37,38. Moreover, left ventricular mass (LVM) and

left ventricular diastolic function markers were evaluated. Echocardiography was conducted

using vivid-I cardiovascular ultrasound devices (GE Medical Systems, Waukesha, Wisconsin,

WI, USA).

According to a standardized protocol, two-dimensional speckle-tracking-based image analyses

of the left ventricle were performed using an offline vendor-independent software (2D Cardiac

Performance Analysis v1.2.3.6 b.141117, TomTec Imaging Systems, Unterschleissheim,

Germany) by two readers. LVEF was calculated in the standard fashion from end-diastolic and

end-systolic volumes derived from a modified Simson biplane approach38, using the

aforementioned software tool. Peak global circumferential strain (GCS) was determined from

the parasternal short axis in the papillary muscle plane. Peak global longitudinal strain (GLS)

was calculated as the mean of global longitudinal strain values measured in apical two-

chamber and apical four-chamber view. In addition, the STE software calculated peak

segmental endocardial strain, strain rates (i.e., the first derivative of strain) and the respective

time-to-peak.

3.4 Statistical analysis, machine learning and performance evaluation

Baseline characteristics of the study population were compared by inclusion/exclusion using

Pearson’s χ2-test for categorical and Wilcoxon rank sum test for continuous variables,

respectively. Prior to model training, a two-stage Random Forest single imputation

(“MissForest”39) method was used to impute missing values in the dataset. In the first stage,

the missing values of the clinical covariables (age, sex, serum cholesterol, systolic blood

pressure and current smoking status) were imputed using this information only. In the second

stage, missing values in the speckle tracking data (e.g., missing segmental strain) were

imputed. Among representative deep learning methods for survival data, a discrete-time

survival model called ‘nnet-survival’27 served as a backend for a dense neural network with

10

modern deep learning techniques (Relu-Activation40, batch normalization41, dropout

regularization, training with ADAM-optimizer42).

Furthermore, the continuous-time Royston-Parmar cubic spline regression (RPCS)32 was

extended as a backend for a deep, dense neural network called ‘nnet-Surv-rcsplines’, detailed

in the next paragraph and Appendix 8.1 p. 1 to 6. The ‘nnet-survival’ model27 serves as a

benchmark for the proposed ‘nnet-Surv-rcsplines’ model in terms of a sensitivity analysis. The

widely used Cox proportional hazard model was not included in the final analyses since

convergence failed for several combinations of input variables, which was also part of the

motivation to use more appropriate high-dimensional methods.

The regularization of the neural networks (dropout/ L1/L2-penalty) serves as an embedded

data-driven variable selection/weighting process43.

3.5 Restricted cubic splines neural network ‘nnet-Surv-rcsplines’

Royston and Parmar introduced a flexible parametric survival model that models the survival

function on the logistic or log hazard scale using restricted cubic splines32,33. In this work, this

approach is generalized to an implementation of a neural network (cf. Figure 1). In brief, the

neural network is interposed between the input variables and the input vector of the

traditional Royston and Parmar model. Changes in the input variables lead to vertical

translation of the spline on the respective modelling scale (e.g., log hazard). In contrast to the

original (generalized) linear model, also the vertical position of the control points (‘knots’)

could depend on the (potentially a different set of) input variables if specified. In addition, this

model was also extended to competing risks, where the cause-specific cumulative incidence

function is modelled similar to Fine and Gray’s popular competing risk regression model 44,45.

If no hidden neural network layers are chosen, the model simplifies to the original restricted

cubic spline model of Royston and Parmar32. The complete mathematical derivation of the

‘nnet-Surv-rcsplines’ model was detailed in Appendix 8.1, p. 1 to 6.

The Tensorflow Layers and Submodels of the actual Python implementation (cf. Appendix 8.2,

p. 6 to 20) may be used as modules for more complex neural networks (e.g., convolutional or

11

recurrent neural networks for image and time series data, respectively). In addition, the high-

level scikit-learn-style API can be used out-of-the-box on tabular data.

12

Figure 1. 'nnet-Surv-rcsplines' neural network architecture
The deep layers (blue) serve as the frontend for extracting information from the input. In this case, an
extended Multi-layer-Perceptron with modern deep learning components (dropout, ReLu Activation,
batch normalization and residual connections) is used. The Spline Layer (Gamma, violet) models the
shape of the spline for the cause-specific cumulative incidence function 𝐹𝑘(𝑡) on the respective scale

due to the link function 𝑔(⋅) (for 𝑐 → 0 and c = 1, this is the cumulative hazard and cumulative odds
scale, respectively). The Modelling Scale (Beta) models the influence of the input variables on the global
spline position (i.e., displacement on the y-axis) on the respective scale.

13

3.6 Specification of model input and benchmark

The Weibull survival model underlying the widely used SCORE risk charts46 was considered as

a reference. Here, the stratified Weibull regression coefficients reported for Germany (low-

risk country) were applied to predict cardiovascular disease (CVD) mortality. The estimated

CVD mortality (ICD-10 I10-I15, I20-I25, I44-I51 and I61-I74, R96-99) was multiplied by an age-

group- and sex-specific weighting factor derived from official German mortality registries of

201047 to estimate the cumulative incidence function for all-cause mortality. This approach

assumes that relative risks estimated on the SCORE derivation cohort did not change over

time.

For the deep learning models, information on age, sex, high-density lipoprotein, systolic blood

pressure and current smoking status (SCORE components), underlying the SCORE risk chart

model for predicting cardiovascular mortality46, was supplied to serve as input for the neural

networks. In total, the compared models comprise:

Table 1. Overview of applied models.

i) the calibrated SCORE model for prediction of all-cause mortality

ii) neural networks applied to SCORE components only

iii) neural networks applied to SCORE components, GLS and GCS,

iv) neural networks applied to predicted SCORE survival-probability and GLS and GCS,

v) STE-data (global and segmental peak circumferential/ longitudinal/ radial/ transversal

strain (rate)).

vi) SCORE components and STE-data

For the multidimensional STE-data models (v) and vi)), principal component analysis was

applied prior to model training for feature reduction. The number of components was chosen

to explain ≥ 95 % of the variance.

3.7 Performance Evaluation

A repeated 10-fold internal cross-validation was conducted to train and test the proposed

models48,49. Specifically, at each cycle, a random 10 % of the training dataset was strictly held-

14

out and used as the test-set for the models trained on the remaining 90 % of the data. This

process was repeated ten times, and the mean of the calculated metrics was reported.

Hyperparameters (i.e., additional model parameters that are not optimized during training)

were chosen to minimize the 8.5-year Brier score28 by repeated bootstrap-bias-corrected 10-

fold cross-validation on the training cohort using a randomized search protocol. Optimized

hyperparameters comprise learning rate, choice of regularization (dropout vs L1/L2-penalty),

dropout rate/lambda for L1/L2, depth and width of the dense neural network and Aranda-

Ordaz-link-coefficient.

Briefly, the pooled predictions on the relative hold-out-folds were bootstrapped. The

performance of the respective best hyperparameter configuration was calculated on the

samples not used in the bootstrap (“out-of-bag”) to correct for the optimistic bias induced by

hyperparameter tuning49.

Discrimination ability was assessed by time-varying receiver-operating-characteristics (ROC)

in the cumulative incidence, dynamic controls formulation 50, and corresponding area-under-

the-curve (AUROC) over the time range of 7 to 10 years after baseline.

Calibration was visually assessed using loess-smoothed calibration plots calculated on

jackknife-pseudo-values51,52.

The predictive accuracy was estimated by inverse probability of censoring weighted mean

square error (Brier score, BS) for right-censored data and by a derived scaled R2-like measure,

calculated by 𝑅𝐺
2 = 1 −

𝐵𝑆

𝐵𝑆𝑚𝑎𝑥
, respectively28,53.

Five hundred bootstrap samples from the pooled out-of-fold predictions were used to

calculate 2.5 %- and 97.5 %-percentile confidence intervals. Bootstrap z-tests were calculated

on the metrics’ differences across models. An alpha level of 0.01 was chosen as the threshold

for statistical significance. No correction for multiple testing was applied in concordance with

arguments for this approach in observational studies published earlier54. However, results

should be interpreted as hypothesis generating.

15

Data preparation and model implementation were performed in Stata 15.1 and Python 3.7.3,

respectively, with the following extra modules: Tensorflow 2.4.255 lifelines 0.24.1256, scikit-

survival 0.1157, scikit-learn 1.0.158, and ELI5 0·10·1. The used source code includes the

proposed ‘nnet-Surv-rcsplines’ survival model, the Tensorflow 2 implementation of ‘nnet-

survival’27 and the python implementation of the SCORE risk chart model accessible via

github.com/laqua-stack/SHIP_Survival_ECHO. In addition, the source code for the ‘nnet-Surv-

rcsplines’, ‘nnet-survival’, and the lowess-smoothed calibration plot is given in Appendix p. 6

to 20, 21 to 26 and 27 to 33, respectively.

All experiments were carried out on the high-performance computation cluster of the data

centre of the University of Greifswald.

16

4 Results

4.1 Study population

In total, 3858 participants of SHIP-TREND-0 with valid echocardiography and mortality data

(cf. Figure 2) and without a history of cardiovascular disease events were followed for a

median follow-up time of 8.4 (95 % CI 8.3 – 8.5) years. Baseline characteristics of the study

population separated by study inclusion are given in Table 2. Excluded participants were

predominantly older (p<0.001), were more frequently male (p<0.001), had more

comorbidities (history of hypertension, heart failure, diabetes mellitus, atrial fibrillation,

cardiovascular diseases, renal diseases, cancer; all p<0.001), and more frequent medication

(cf. Table 2; p≤0.01). Average myocardial strains (except for peak transversal strain) and left

ventricular ejection fraction were also significantly lower in the excluded study population

(p≤0.001).

17

Figure 2. Flowchart of the study population
SHIP = Study of Health in Pomerania, CVD = cardiovascular disease (here defined as history of acute
myocardial infarction, stroke, heart failure and cardiac surgery/intervention), AMI = acute myocardial
infarction, SCORE = ‘Systematic COronary Risk Evaluation’, STE = speckle tracking echocardiography

SHIP-TREND-0 Population

(n=4420)

Population without history of

CVD* (n=3858)

Missing echocardiography/ insufficient

quality for STE-analysis (n=239)

Missing covariates dataset (missing

segmental strain + missing SCORE

components imputed)

Imputed dataset (n=3858)

Complete STE-data (n=4181)

History of CVD (n=323):
AMI (n=129)
Stroke (n=94)
Cardiac surgery (n=75)
Heart failure (n=114)

2-Stage

Random

Forest single

imputation

18

Table 2. Baseline characteristics of the study population
Median (interquartile range) and absolute count (relative percentage) are given for continuous and
binary variables, respectively. Excluded patients were those without sufficient echocardiography and a
history of cardiovascular disease (acute myocardial infarction, stroke, cardiac surgery/intervention, heart
failure). P-values for Pearson’s χ2-test for categorical and Wilcoxon rank sum test for continuous
variables, respectively. eGFR = estimated glomerular filtration rate, LVEF = Left ventricular ejection
fraction, PAI = Platelet aggregation inhibitors, OAD = obstructive airway diseases,
P(L/T/C/R)S = peak circumferential/longitudinal/radial/transversal strain, 4ch = apical four chamber
view, 2ch = apical two chamber view, sax_pm = short axis view at papillary muscle plane

 Excluded *
(N=562)

Study population
(N=3,858)

p-
value

Age (years) 62 (52-72) 51 (39-63) <0.001

Male sex 351 (62%) 1,794 (47%) <0.001

Height (cm) 170 (163-176) 170 (163-177) 0.85

Weight (kg) 84 (75-95) 79 (68-91) <0.001

Current smoker 99 (18%) 1,084 (28%) <0.001

Ever smoker 354 (64%) 2,439 (63%) 0.93

History of

Atrial fibrillation 97 (18%) 138 (4%) <0.001

Acute myocardial infarction 133 (24%) 0 (0%) <0.001

Stroke 100 (18%) 0 (0%) <0.001

Cardiac surgery/intervention 80 (14%) 0 (0%) <0.001

Heart failure 122 (22%) 0 (0%) <0.001

Diabetes mellitus 121 (22%) 343 (9%) <0.001

Renal disease 35 (6%) 108 (3%) <0.001

Cancer 56 (11%) 232 (6%) <0.001

Vital parameters

Systolic blood pressure (mmHg) 129.5 (117.5-141.5) 126.5 (114.0-139.0) <0.001

Diastolic blood pressure (mmHg) 76.0 (69.5-83.5) 76.5 (70.0-83.5) 0.12

Laboratory parameters

Serum cholesterol (mmol/l) 5.1 (4.4-5.9) 5.4 (4.7-6.2) <0.001

High-density lipoprotein (mmol/l) 1.3 (1.1-1.6) 1.4 (1.2-1.7) <0.001

Low-density lipoprotein (mmol/l) 3.0 (2.5-3.8) 3.3 (2.7-4.0) <0.001

eGFR (ml/min/1.73 m² BSA) 90.2 (76.4-100.2) 97.6 (86.2-108.3) <0.001

Medication

Anti-diabetic drugs incl. insulin 99 (18%) 248 (6%) <0.001

Antihypertensive medication 366 (65%) 1,319 (34%) <0.001

Lipid-lowering drugs 219 (39%) 400 (10%) <0.001

Anticoagulation / PAI 265 (47%) 357 (9%) <0.001

Drugs for OAD 33 (6%) 140 (4%) 0.010

Anti-neoplastic drugs 3 (1%) 2 (0%) 0.001

Speckle tracking echocardiography

Average PLS 4ch in % -15 (-19--12) -17 (-20--14) <0.001

Average PTS 4ch in % 15 (9-22) 15 (9-22) 0.64

Average PLS 2ch in % -15 (-19--11) -18 (-21--14) <0.001

Average PTS 2ch in % 13 (7-20) 16 (9-23) <0.001

Average PCS sax_pm in % -26 (-32--20) -28 (-32--23) 0.001

Average PRS sax_pm in % 23 (16-33) 27 (19-35) <0.001

LVEF in % 53 (45-60) 56 (49-62) <0.001

19

4.2 Performance of ‘nnet-Surv-rcsplines’ models

T
a
b

le
 3

.
M

o
d
e

l
p
e
rf

o
rm

a
n
c
e
 o

f
th

e
 r

e
s
p

e
c
ti
v
e
 '

n
n
e
t-

S
u
rv

-r
c
s
p
lin

e
s
'
m

o
d
e
ls

.
S

C
O

R
E

 c
o
m

p
o
n

e
n
ts

 =
 a

g
e
,

s
e
x
,

c
u
rr

e
n
t

s
m

o
k
in

g
,

s
y
s
to

lic
 b

lo
o
d
 p

re
s
s
u
re

,
s
e
ru

m

c
h
o

le
s
te

ro
l;

G
C

S

=

g
lo

b
a
l

p
e

a
k

c
ir
c
u
m

fe
re

n
ti
a

l
s
tr

a
in

,
G

L
S

=

g
lo

b
a

l
p
e
a
k

lo
n

g
it
u
d

in
a

l
s
tr

a
in

,
S

T
E

-d
a
ta

=

g
lo

b
a

l
a
n
d

s
e
g
m

e
n

ta
l

p
e

a
k

c
ir
c
u
m

fe
re

n
ti
a

l/
lo

n
g
it
u
d
in

a
l/
ra

d
ia

l/
tr

a
n
s
v
e
rs

a
l
s
tr

a
in

 (
ra

te
)

Y

e
ar

8

8

.5

9

9
.5

1

0

M

o
d

e
l

AUROC

i)
 S

C
O

R
E

p
re

d
ic

te
d

 p
ro

b
ab

ili
ty

0

.8
8

 (
0

.8
7

-0
.9

0
)

0
.8

9
 (

0
.8

8
-0

.9
0

)
0

.8
8

 (
0

.8
6

-0
.8

9
)

0
.8

6
 (

0
.8

4
-0

.8
8

)
0

.8
2

 (
0

.7
9

-0
.8

4
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
i)

 S
C

O
R

E
co

m
p

o
n

e
n

ts

0
.8

9
 (

0
.8

8
-0

.9
0

)
0

.9
0

 (
0

.8
8

-0
.9

1
)

0
.8

9
 (

0
.8

7
-0

.9
0

)
0

.8
6

 (
0

.8
4

-0
.8

8
)

0
.8

3
 (

0
.8

1
-0

.8
6

)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
ii)

 S
C

O
R

E
co

m
p

o
n

e
n

ts
 +

 G
LS

 +
 G

C
S

0
.8

8
 (

0
.8

7
-0

.9
0

)
0

.8
9

 (
0

.8
8

-0
.9

1
)

0
.8

8
 (

0
.8

6
-0

.9
0

)
0

.8
4

 (
0

.8
2

-0
.8

7
)

0
.8

1
 (

0
.7

8
-0

.8
4

)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
v)

 S
C

O
R

E
p

re
d

. p
ro

b
.

+
G

LS
 +

 G
C

S
0

.8
7

 (
0

.8
6

-0
.8

9
)

0
.8

8
 (

0
.8

6
-0

.8
9

)
0

.8
6

 (
0

.8
4

-0
.8

8
)

0
.8

3
 (

0
.8

1
-0

.8
6

)
0

.7
9

 (
0

.7
5

-0
.8

2
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 v
)

ST
E-

d
at

a
0

.7
0

 (
0

.6
8

-0
.7

3
)

0
.7

1
 (

0
.6

9
-0

.7
4

)
0

.7
1

 (
0

.6
8

-0
.7

3
)

0
.6

9
 (

0
.6

7
-0

.7
2

)
0

.6
6

 (
0

.6
2

-0
.6

9
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 v
i)

 S
C

O
R

E
co

m
p

o
n

e
n

ts
 +

 S
TE

-d
at

a

0
.8

4
 (

0
.8

2
-0

.8
6

)
0

.8
4

 (
0

.8
3

-0
.8

6
)

0
.8

4
 (

0
.8

2
-0

.8
5

)
0

.8
3

 (
0

.8
1

-0
.8

5
)

0
.7

8
 (

0
.7

5
-0

.8
2

)

Brier score (BS)

i)
 S

C
O

R
E

p
re

d
ic

te
d

 p
ro

b
ab

ili
ty

0

.0
3

3
 (

0
.0

3
0

-0
.0

3
6

)
0

.0
4

2
 (

0
.0

3
8

-0
.0

4
6

)
0

.0
5

3
 (

0
.0

4
9

-0
.0

5
8

)
0

.0
7

4
 (

0
.0

6
9

-0
.0

8
0

)
0

.0
8

6
 (

0
.0

8
0

-0
.0

9
3

)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
i)

 S
C

O
R

E
co

m
p

o
n

e
n

ts

0
.0

3
2

 (
0

.0
2

9
-0

.0
3

5
)

0
.0

3
8

 (
0

.0
3

5
-0

.0
4

1
)

0
.0

4
7

 (
0

.0
4

4
-0

.0
5

1
)

0
.0

5
4

 (
0

.0
4

9
-0

.0
5

9
)

0
.0

7
7

 (
0

.0
6

8
-0

.0
8

6
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
ii)

 S
C

O
R

E
co

m
p

o
n

e
n

ts
 +

 G
LS

 +
 G

C
S

0
.0

3
2

 (
0

.0
3

0
-0

.0
3

5
)

0
.0

3
8

 (
0

.0
3

5
-0

.0
4

1
)

0
.0

4
8

 (
0

.0
4

4
-0

.0
5

1
)

0
.0

5
5

 (
0

.0
5

0
-0

.0
6

0
)

0
.0

8
0

 (
0

.0
6

9
-0

.0
9

0
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
v)

 S
C

O
R

E
p

re
d

. p
ro

b
.

+
G

LS
 +

 G
C

S
0

.0
3

3
 (

0
.0

3
1

-0
.0

3
6

)
0

.0
4

0
 (

0
.0

3
7

-0
.0

4
4

)
0

.0
5

0
 (

0
.0

4
6

-0
.0

5
3

)
0

.0
5

6
 (

0
.0

5
1

-0
.0

6
1

)
0

.0
8

4
 (

0
.0

7
6

-0
.0

9
3

)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 v
)

ST
E-

d
at

a
0

.0
3

6
 (

0
.0

3
3

-0
.0

3
9

)
0

.0
4

6
 (

0
.0

4
2

-0
.0

5
0

)
0

.0
5

9
 (

0
.0

5
5

-0
.0

6
3

)
0

.0
7

0
 (

0
.0

6
5

-0
.0

7
5

)
0

.0
9

5
 (

0
.0

8
9

-0
.1

0
0

)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 v
i)

 S
C

O
R

E
co

m
p

o
n

e
n

ts
 +

 S
TE

-d
at

a

0
.0

3
4

 (
0

.0
3

1
-0

.0
3

7
)

0
.0

4
1

 (
0

.0
3

8
-0

.0
4

5
)

0
.0

5
3

 (
0

.0
4

9
-0

.0
5

6
)

0
.0

5
7

 (
0

.0
5

2
-0

.0
6

1
)

0
.0

9
4

 (
0

.0
8

3
-0

.1
0

0
)

R² (scaled BS) in %

i)
 S

C
O

R
E

p
re

d
ic

te
d

 p
ro

b
ab

ili
ty

1

0
 (

8
.5

-1
2

)
1

1
 (

9
.6

-1
3

)
1

3
 (

1
1

-1
4

)
1

.4
 (

-0
.9

8
-3

.9
)

9
.7

 (
8

.0
-1

2
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
i)

 S
C

O
R

E
co

m
p

o
n

e
n

ts

1
3

 (
1

1
-1

5
)

2
1

 (
1

8
-2

3
)

2
3

 (
1

9
-2

6
)

2
8

 (
2

5
-3

2
)

1
9

 (
9

.7
-2

8
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
ii)

 S
C

O
R

E
co

m
p

o
n

e
n

ts
 +

 G
LS

 +
 G

C
S

1
1

 (
8

.3
-1

4
)

2
0

 (
1

7
-2

3
)

2
2

 (
1

8
-2

6
)

2
7

 (
2

3
-3

1
)

1
6

 (
4

.9
-2

7
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 i
v)

 S
C

O
R

E
p

re
d

. p
ro

b
.

+
G

LS
 +

 G
C

S
9

.3
 (

7
.6

-1
1

)
1

5
 (

1
3

-1
7

)
1

9
 (

1
5

-2
2

)
2

6
 (

2
2

-2
9

)
1

1
 (

2
.4

-2
1

)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 v
)

ST
E-

d
at

a
2

.4
 (

1
.6

-3
.3

)
3

.6
 (

2
.8

-4
.6

)
3

.6
 (

2
.3

-4
.8

)
7

.4
 (

5
.7

-9
.1

)
0

.2
5

 (
-5

.3
-5

.1
)

N
n

e
t-

Su
rv

-r
cs

p
lin

e
s:

 v
i)

 S
C

O
R

E
co

m
p

o
n

e
n

ts
 +

 S
TE

-d
at

a

7
.7

 (
5

.6
-9

.6
)

1
3

 (
1

1
-1

5
)

1
4

 (
1

1
-1

7
)

2
4

 (
2

1
-2

8
)

1
.3

 (
-1

0
-1

3
)

20

The results of the performance evaluation for the different models are given in Table 3 and

Figures 3-7.

The AUROC at the respective year (cf. Figure 3) describes the discrimination performance,

meaning it measures whether a person who was dead by this time had a higher predicted

probability of dying than a person who survived beyond this time. A value of 1.0 means perfect

discrimination. If the model had no discriminative ability (i.e., toss of a coin) on the

investigated population, this would result in an AUROC of 0.5. AUROC values below 0.5 occur

if the model predicts an informative but wrong ordering. Discrimination (ROC and the

corresponding AUROC) varied slightly over time from baseline, with a maximum at 8.5 years,

where the highest density of outcomes lies as well (cf. Figure 3, Table 3).

21

Figure 3. Illustration of time-dependent Area under the Receiver-operating-characteristic (AUROC) for
the different ‘nnet-Surv-rcsplines’- models.
The inverse-probability-of-censoring weighted cumulative-dynamic AUROC (higher values are better) is
plotted from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic
blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal
strain (rate)

22

The scaled Brier score (cf. Figure 4) gives the fraction by which the mean square error

corrected for right-censoring is reduced compared to an uninformative model (i.e., predicting

the same average survival probability for every subject without considering any specific

information). A perfect SBS equals 100 %. An SBS of 0 % means that the model provides no

information benefit. SBS below 0 means that the prediction error is even higher (e.g., because

the model is miscalibrated) than that of a naïve calibrated model.

23

Figure 4. Illustration of time-dependent scaled Brier score for different ‘nnet-Surv-rcsplines’- models.
The inverse-probability-of-censoring weighted scaled brier score (higher values are better) is plotted
from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic blood
pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak longitudinal
strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal strain (rate)

24

Overall, the ‘nnet-Surv-rcsplines’ models with SCORE components as input (models ii) and iii))

had the best performance, both in terms of discrimination (AUROC up to 0.9 (0.88-0.91) at 8.5

years from baseline for model iii)) and calibration (SBS up to 28 % (95 % CI 25-32) at 9.5 years

from baseline for model iii), cf. also Figure 3 and Figure 4). However, the confidence intervals

of models ii) and iii) were highly overlapping. Visually, the ROC curves of model iii) were closest

to the top left, while the v) STE-data model showed the poorest discrimination (Figure 4).

Despite comparative discrimination (AUROC 0.89 (0.87-0.90) at 8.5 years from baseline), the

reference model i) showed the worst calibration (cf. departure from diagonal in the calibration

plot in Figure 3.) with SBS ranging from 1.4 % to 13 %. At 8.5 years from baseline, the

benchmark model i) was significantly (p<0.001, z ranging from 4.8 to 7.7) worse than models

ii)-iv) in terms of (S)BS. Addition of GCS and GLS to the SCORE components (model iii) vs. model

ii)) did not significantly change model performance (p=0.66, z = 0.44).

25

Figure 5. Calibration capabilities for the different machine learning models compared to SCORE risk chart
reference model calculated for different points in time.
In the lowess-smoothed calibration plot the observed mortality frequency is plotted against the predicted
mortality probability. The closer the curve is to the diagonal, the better the calibration. SCORE
components = age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS = global peak
circumferential strain, GLS = global peak longitudinal strain, STE-data = global and segmental peak
circumferential/longitudinal/radial/transversal strain (rate)

26

Figure 6. Receiver-operating-characteristics for the different ‘nnet-Surv-rcsplines’-models compared to
SCORE risk chart reference model calculated for different points in time.
The receiver-operating-characteristic plots true positive rate against false positive rate by varying
thresholds (not shown). Discrimination is best for the curve, that is closest to the left upper corner.
SCORE components = age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS =
global peak circumferential strain, GLS = global peak longitudinal strain, STE-data = global and
segmental peak circumferential/longitudinal/radial/transversal strain (rate)

27

In addition, the discrimination of the different models is illustrated in Kaplan-Meier plots

(Figure 7), where the study population is divided into terciles by the predicted survival

probability. Overall, separation of the lines concomitant with the models’ discriminatory

performance is similar across the models, with visually best separation for the models ii)

comprising SCORE components only and worst for the model v) with STE-data as input only.

28

Figure 7. Kaplan-Meier survival curves by tercile of the predicted survival probability for the different
‘nnet-Surv-rcsplines’- models compared to SCORE risk chart reference model.
Kaplan-Meier curves for the respective subpopulation, divided by tercile (green upper, yellow middle,
blue lower tercile) of the predicted survival probability, are plotted from 6 to 10 years after baseline (Time
before 6 years not shown, since no events occurred). SCORE components = age, sex, current smoking,
systolic blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal
strain (rate)

29

4.3 Sensitivity analysis: performance of ‘nnet-survival’

The results of discrete-time-survival neural network ‘nnet-survival’ serve as a sensitivity

analysis, and the respective model inputs are presented in Table 4 and Figures 8-11.

Compared to the ‘nnet-Surv-rcsplines’, very similar results occurred for the respective model

inputs. While minor differences in the absolute model performance metrics for the best set of

input variables exist (e.g., 8.5-year SBS of ii) was 22 (19-24) % and 21 (18-23) % for ‘nnet-

survival’ and ‘nnet-Surv-rcsplines’, respectively), the results for ‘nnet-Surv-rcsplines’ and

‘nnet-survival’ differed relevantly for the largest model vi). Differences were most pronounced

at 10 years from baseline. There were also no significant differences between the models ii)

and iii) (p=0.19, z=1.3).

Figure 12 presents the Kaplan-Meier survival curves for the respective subpopulation

separated by terciles of the predicted survival probability. Like for the ‘nnet-Surv-rcsplines’,

the separation of the lines concomitant with the models’ discriminatory performance is similar

across the models, with visually best separation for the models ii) comprising SCORE

components only and worst for the model v) with only STE-data as input.

30

 T
a
b

le
 4

.
M

o
d
e
l
p
e
rf

o
rm

a
n
c
e
 o

f
th

e
 r

e
s
p

e
c
ti
v
e
 'n

n
e
t-

s
u

rv
iv

a
l'

m
o

d
e

ls
.

S
C

O
R

E
 c

o
m

p
o

n
e
n
ts

 =
 a

g
e
,

s
e
x
,

c
u
rr

e
n
t

s
m

o
k
in

g
,

s
y
s
to

lic
 b

lo
o

d
 p

re
s
s
u
re

,
s
e
ru

m
 c

h
o
le

s
te

ro
l;
 G

C
S

 =
 g

lo
b

a
l

p
e

a
k
 c

ir
c
u
m

fe
re

n
ti
a

l
s
tr

a
in

,
G

L
S

 =
 g

lo
b

a
l

p
e
a
k

lo
n

g
it
u
d
in

a
l
s
tr

a
in

,
S

T
E

-d
a

ta
 =

 g
lo

b
a

l
a

n
d
 s

e
g

m
e

n
ta

l
p

e
a
k
 c

ir
c
u
m

fe
re

n
ti
a
l/
lo

n
g

it
u
d

in
a

l/
ra

d
ia

l/
tr

a
n
s
v
e
rs

a
l
s
tr

a
in

 (
ra

te
)

M
e

tr
ic

Y

e
a

r
8

8

.5

9

9
.5

1

0

M

o
d

e
l

AUROC

i)
 S

C
O

R
E

p
re

d
ic

te
d

 p
ro

b
ab

ili
ty

0

.8
8

 (
0

.8
7

-0
.9

0
)

0
.8

9
 (

0
.8

8
-0

.9
0

)
0

.8
8

 (
0

.8
6

-0
.8

9
)

0
.8

6
 (

0
.8

4
-0

.8
8

)
0

.8
2

 (
0

.7
9

-0
.8

4
)

N
n

e
t-

su
rv

iv
al

:
 ii

)
SC

O
R

E
co

m
p

o
n

e
n

ts

0
.8

9
 (

0
.8

7
-0

.9
0

)
0

.9
0

 (
0

.8
8

-0
.9

1
)

0
.8

8
 (

0
.8

7
-0

.9
0

)
0

.8
6

 (
0

.8
4

-0
.8

8
)

0
.8

4
 (

0
.8

1
-0

.8
6

)

N
n

e
t-

su
rv

iv
al

:
 ii

i)
 S

C
O

R
E

co
m

p
o

n
e

n
ts

 +
 G

LS
 +

 G
C

S
0

.8
8

 (
0

.8
7

-0
.8

9
)

0
.8

9
 (

0
.8

8
-0

.9
0

)
0

.8
8

 (
0

.8
6

-0
.8

9
)

0
.8

6
 (

0
.8

4
-0

.8
8

)
0

.8
3

 (
0

.8
1

-0
.8

6
)

N
n

e
t-

su
rv

iv
al

:
 iv

)
SC

O
R

E
p

re
d

. p
ro

b
.

+
G

LS
 +

 G
C

S
0

.8
7

 (
0

.8
4

-0
.8

9
)

0
.8

8
 (

0
.8

5
-0

.8
9

)
0

.8
6

 (
0

.8
4

-0
.8

8
)

0
.8

2
 (

0
.7

9
-0

.8
5

)
0

.7
8

 (
0

.7
3

-0
.8

1
)

N
n

e
t-

su
rv

iv
al

:
 v

)
ST

E-
d

at
a

0
.7

1
 (

0
.6

8
-0

.7
3

)
0

.7
2

 (
0

.6
9

-0
.7

4
)

0
.7

1
 (

0
.6

8
-0

.7
3

)
0

.7
0

 (
0

.6
7

-0
.7

2
)

0
.6

6
 (

0
.6

2
-0

.6
9

)

N
n

e
t-

su
rv

iv
al

:
 v

i)
 S

C
O

R
E

co
m

p
o

n
e

n
ts

 +
 S

TE
-d

at
a

0

.8
3

 (
0

.8
0

-0
.8

6
)

0
.8

4
 (

0
.8

0
-0

.8
6

)
0

.8
3

 (
0

.7
9

-0
.8

6
)

0
.8

2
 (

0
.7

8
-0

.8
4

)
0

.7
5

 (
0

.7
1

-0
.7

9
)

Brier score (BS)

i)
 S

C
O

R
E

p
re

d
ic

te
d

 p
ro

b
ab

ili
ty

0

.0
3

3
 (

0
.0

3
0

-0
.0

3
6

)
0

.0
4

2
 (

0
.0

3
8

-0
.0

4
6

)
0

.0
5

3
 (

0
.0

4
9

-0
.0

5
8

)
0

.0
7

4
 (

0
.0

6
9

-0
.0

8
0

)
0

.0
8

6
 (

0
.0

8
0

-0
.0

9
3

)

N
n

e
t-

su
rv

iv
al

:
 ii

)
SC

O
R

E
co

m
p

o
n

e
n

ts

0
.0

3
2

 (
0

.0
2

9
-0

.0
3

4
)

0
.0

3
7

 (
0

.0
3

4
-0

.0
4

0
)

0
.0

4
8

 (
0

.0
4

5
-0

.0
5

2
)

0
.0

5
2

 (
0

.0
4

8
-0

.0
5

7
)

0
.0

8
2

 (
0

.0
7

1
-0

.0
9

3
)

N
n

e
t-

su
rv

iv
al

:
 ii

i)
 S

C
O

R
E

co
m

p
o

n
e

n
ts

 +
 G

LS
 +

 G
C

S
0

.0
3

2
 (

0
.0

3
0

-0
.0

3
5

)
0

.0
3

8
 (

0
.0

3
5

-0
.0

4
1

)
0

.0
4

9
 (

0
.0

4
5

-0
.0

5
2

)
0

.0
5

4
 (

0
.0

4
9

-0
.0

5
8

)
0

.0
8

2
 (

0
.0

7
0

-0
.0

9
8

)

N
n

e
t-

su
rv

iv
al

:
 iv

)
SC

O
R

E
p

re
d

. p
ro

b
.

+
G

LS
 +

 G
C

S
0

.0
3

4
 (

0
.0

3
1

-0
.0

3
6

)
0

.0
4

0
 (

0
.0

3
7

-0
.0

4
3

)
0

.0
5

0
 (

0
.0

4
7

-0
.0

5
4

)
0

.0
5

7
 (

0
.0

5
3

-0
.0

6
2

)
0

.0
8

6
 (

0
.0

7
7

-0
.0

9
4

)

N
n

e
t-

su
rv

iv
al

:
 v

)
ST

E-
d

at
a

0
.0

3
6

 (
0

.0
3

3
-0

.0
3

9
)

0
.0

4
6

 (
0

.0
4

2
-0

.0
4

9
)

0
.0

5
9

 (
0

.0
5

5
-0

.0
6

3
)

0
.0

6
9

 (
0

.0
6

5
-0

.0
7

4
)

0
.0

9
6

 (
0

.0
8

9
-0

.1
0

0
)

N
n

e
t-

su
rv

iv
al

:
 v

i)
 S

C
O

R
E

co
m

p
o

n
e

n
ts

 +
 S

TE
-d

at
a

0

.0
3

5
 (

0
.0

3
2

-0
.0

3
8

)
0

.0
4

2
 (

0
.0

3
9

-0
.0

4
6

)
0

.0
5

6
 (

0
.0

5
2

-0
.0

6
0

)
0

.0
5

8
 (

0
.0

5
3

-0
.0

6
6

)
0

.1
2

0
 (

0
.0

8
2

-0
.1

4
0

)

R² (scaled BS) in %

i)
 S

C
O

R
E

p
re

d
ic

te
d

 p
ro

b
ab

ili
ty

1

0
 (

8
.5

-1
2

)
1

1
 (

9
.6

-1
3

)
1

3
 (

1
1

-1
4

)
1

.4
 (

-0
.9

8
-3

.9
)

9
.7

 (
8

.0
-1

2
)

N
n

e
t-

su
rv

iv
al

:
 ii

)
SC

O
R

E
co

m
p

o
n

e
n

ts

1
3

 (
9

.6
-1

6
)

2
2

 (
1

9
-2

4
)

2
1

 (
1

8
-2

5
)

3
1

 (
2

6
-3

5
)

1
3

 (
1

.1
-2

5
)

N
n

e
t-

su
rv

iv
al

:
 ii

i)
 S

C
O

R
E

co
m

p
o

n
e

n
ts

 +
 G

LS
 +

 G
C

S
1

1
 (

8
.1

-1
4

)
2

0
 (

1
7

-2
3

)
2

0
 (

1
7

-2
4

)
2

9
 (

2
5

-3
3

)
1

4
 (

-3
.1

-2
6

)

N
n

e
t-

su
rv

iv
al

:
 iv

)
SC

O
R

E
p

re
d

. p
ro

b
.

+
G

LS
 +

 G
C

S
8

.3
 (

5
.1

-1
1

)
1

6
 (

1
3

-1
9

)
1

8
 (

1
3

-2
1

)
2

4
 (

2
0

-2
8

)
1

0
 (

0
.9

4
-1

9
)

N
n

e
t-

su
rv

iv
al

:
 v

)
ST

E-
d

at
a

2
.5

 (
1

.5
-3

.6
)

3
.9

 (
2

.9
-5

.1
)

3
.6

 (
2

.0
-5

.2
)

8
.0

 (
6

.0
-1

0
)

-0
.5

8
 (

-7
.3

-5
.1

)

N
n

e
t-

su
rv

iv
al

:
 v

i)
 S

C
O

R
E

co
m

p
o

n
e

n
ts

 +
 S

TE
-d

at
a

3

.4
 (

-0
.6

-6
.9

)
1

0
 (

7
.6

-1
3

)
8

.7
 (

4
.8

-1
3

)
2

3
 (

1
4

-2
8

)
-2

7
 (

-5
4

-1
3

)

31

Figure 8. Illustration of time-dependent Area under the Receiver-operating-characteristic (AUROC) for
the different ‘nnet-survival’- models.
The inverse-probability-of-censoring weighted cumulative-dynamic AUROC (higher values are better) is
plotted from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic
blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal
strain (rate)

32

Figure 9. Illustration of time-dependent scaled Brier score for different ‘nnet-survival’- models.
The inverse-probability-of-censoring weighted scaled brier score (higher values are better) is plotted
from 6 to 10 years after baseline. SCORE components = age, sex, current smoking, systolic blood
pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak longitudinal
strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal strain (rate)

33

Figure 10. Calibration capabilities for the different ‘nnet-survival’-models compared to SCORE risk chart
reference model calculated for different points in time.
In the lowess-smoothed calibration plot the observed mortality frequency is plotted against the predicted
mortality probability. The closer the curve is to the diagonal, the better the calibration. SCORE components =
age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS = global peak circumferential
strain, GLS = global peak longitudinal strain, STE-data = global and segmental peak
circumferential/longitudinal/radial/transversal strain (rate)

34

Figure 11 Receiver-operating-characteristics for the different ‘nnet-survival’-models compared to
SCORE risk chart reference model calculated for different points in time.
The receiver-operating-characteristic plots true positive rate against false positive rate by varying
thresholds (not shown). Discrimination is best for the curve, that is closest to the left upper corner.
SCORE components = age, sex, current smoking, systolic blood pressure, serum cholesterol; GCS =
global peak circumferential strain, GLS = global peak longitudinal strain, STE-data = global and
segmental peak circumferential/longitudinal/radial/transversal strain (rate)

35

Figure 12. Kaplan-Meier survival curves by tercile of the predicted survival probability for the different
‘nnet-survival’- models compared to SCORE risk chart reference model.
Kaplan-Meier curves for the respective subpopulation, separated by tercile (green upper, yellow middle,
blue lower tercile) of the predicted survival probability, are plotted from 6 to 10 years after baseline (Time
before 6 years not shown, since no events occurred). SCORE components = age, sex, current smoking,
systolic blood pressure, serum cholesterol; GCS = global peak circumferential strain, GLS = global peak
longitudinal strain, STE-data = global and segmental peak circumferential/longitudinal/radial/transversal
strain (rate)

36

5 Discussion

In the present work, the performance of machine-learning models for predicting all-cause

mortality (including a new continuous-time neural network for survival data) based on

cardiovascular risk factors and data from speckle-tracking-echocardiography in a general

population cohort was evaluated.

The results consistently show an excellent discrimination performance (8.5-year time-

dependent AUROC ≈ 0.9), both for the established SCORE risk chart model i) and the neural

network models ii) – iv). Discrimination of people surviving beyond or dying before a specified

time reached reasonable results using STE-data only. Still, the performance was worse than

for traditional cardiovascular risk factors. In terms of absolute prediction errors (i.e.,

discrimination and calibration), the neural network models outperformed the SCORE model.

The larger the temporal distance from baseline, the more pronounced the differences were.

5.1 Global peak strain from Speckle-tracking-echocardiography

Several studies analyzed the potential diagnostic and prognostic value of global peak strain

values in longitudinal, radial/transverse, and circumferential orientation. They proved

independent association with (cardiovascular) outcomes in several disease entities and

populations at risk1,5,7-9. Those studies aimed to replace LVEF, which is currently used to

characterize global cardiac function for treatment recommendations according to most

guidelines59-61, with global peak strain values. LVEF is highly correlated to the peak strain

parameters since the surface of an object without a large shape deformation (like the LV) is

mathematically linked to its volume62. GLS is hence not likely to provide incremental

information in terms of prediction. The differences observed in those studies may be

explained by using inappropriate statistical models that do not account for non-linear relations

to the investigated outcome. I.e., despite containing the same information, the relation of GLS

(and GCS) to the probability of adverse events may be better modelled by a linear model on

the respective scale (e.g. hazard scale). This may even be favourable if the goal was to find a

replacement for LVEF. But there is still no proof of an incremental prognostic value of GLS and

GCS, at least not in the general population. However, with emerging deep learning

applications for automatic postprocessing of echocardiography images63, the costs of

37

extracting all of those function parameters become neglectable, and the intelligent

integration of the available information becomes the primary concern.

Therefore, the present study focuses on the predictive capabilities of the parameters of

interest, including discrimination and calibration, and not on (independent) association11,12,64.

Instead of merely confusing the terms “association” and “prediction”11, both discrimination

and calibration were evaluated in strictly separated training and test sets (avoiding data

leakage). Also, the results’ uncertainty due to single train-test-splits (instead, repeated 10-fold

cross-validation was applied) and optimistic bias (by bootstrap-bias-correction) due to testing

of multiple hyperparameter configurations were minimized in this study 13,49. Moreover, the

application of the neural network approach, instead of (generalized) linear survival models,

accounts for non-linear relations and interactions of all investigated variables to the survival

outcome.

In this prediction framework, the results of our analysis provide no evidence for the

incremental prognostic value of peak global longitudinal and circumferential strain over

traditional biomarkers (SCORE components) for predicting mortality in the general population.

5.2 Speckle-tracking-echocardiography-derived multidimensional data

Quantification of regional wall motion is the main theoretical advantage of speckle tracking

echocardiography over traditional volume-based (in 2D echocardiography typically estimated

from end-diastolic and systolic areas in two planes according to Simpson’s biplane approach)

characterization of cardiac motion. These regional abnormalities may be related to

hibernating myocardium, focal fibrosis, or scars.

The novelty of this work is to consider the multiple parameters (e.g., regional peak

longitudinal, transversal, radial and circumferential strain (-rate) for 16/17 myocardial

segments65) as a multidimensional set of imaging biomarkers as it is done for grayscale and

shape feature in ‘Radiomics’, gene expression in ‘Genomics’ and the protein expression in

‘Proteomics’. Potential collinearities preventing model convergence and the ‘curse of

dimensionality’ in general make the analysis of multi-dimensional data challenging 66.

Therefore, special treatment in statistical analyzes is needed15,16.

38

This work aimed to predict survival outcomes by comprehensively integrating the STE-data.

This process includes potential interactions between predictor variables, non-linear relations

to the outcome, and the shape of the predicted survival curve. Failing convergence of

traditional (generalized linear) statistical models motivated the development of the

supervised ‘nnet-Surv-rcsplines’ neural network for competing risk survival data. In the

investigated general population cohort, it was possible to discriminate whether a person is

more likely to survive beyond a specified point in time than another by using only information

from STE-data (i.e., parameters describing the whole left ventricular cardiac motion).

However, the SCORE benchmark model i) and the models including at least the same

information as SCORE ii)-iv) showed significantly better discrimination (larger AUROC) and

lower prediction error (higher SBS). Likely, the traditional non-imaging biomarkers (age, sex,

smoking status, systolic blood pressure and serum cholesterol) contain complementary

information or information necessary to model the relation to the outcome (i.e., interaction

in statistical terms). Furthermore, the limited sample size may have precluded the model from

learning the complex relationships of the high-dimensional input variables to the mortality

outcome.

Also, for the nested model vi), including SCORE components and STE-data, no incremental

prognostic value could be observed compared to the models relying on non-imaging

information only (models i) and ii)).

The information on cardiac motion related to the survival probability may already implicitly

be contained in sociodemographic risk factors (e.g., age and sex). In general, it is often

observed that if the benchmark model itself already shows excellent performance, adding new

information may yield only minor improvements67,68.

As expected, the calibration of the SCORE risk model yielded poor results since it was the only

model that was not trained (and hence not calibrated) on the training data. The actual survival

up to 7 years after baseline was underestimated, and from 8 years after baseline and beyond

grossly overestimated.

Whether integrating multidimensional cardiac motion parameters with other

multidimensional datasets (genomics, metabolomics etc.) can improve the outcome

39

prediction needs to be addressed in larger cohorts with specific disease entities (e.g.,

myocardial infarction, heart failure), where survival outcome is more closely linked to cardiac

motion 68.

5.3 ‘nnet-Surv-rcsplines’ neural network for survival data with and without presence

of competing risks

Unlike prior efforts (‘DeepSurv’29, ‘Cox-nnet’30), which extend the semi-parametric Cox

Proportional Hazard model to a neural network, the present work proposes a flexible

parameterization of the transformed cumulative incidence function (CIF) using restricted

cubic splines. This allows a direct estimation of the survival function of every individual.

Choosing the linking coefficient of the Aranda-Ordaz link function decides on the scale at

which the CIF is modelled. For example, the extreme values of c = 0 and c = 1 correspond to

the hazard function and the log odds scale, respectively.

Moreover, a flexible variant also allows direct dependency of the spline parameters on the

input variables or neural network weights. Hence, violations of proportionality of the data on

the respective scale (e.g., proportional hazard assumption of Cox proportional hazard model)

could be modelled without impaired prediction results69. However, due to the small sample

size and resulting convergence issues, this extension was not applied to the data of this study.

As a sensitivity analysis, the implementation of the multi-task network ‘nnet-survival’

proposed by Gensheimer et al.27 was updated for the usage of Tensorflow 2 and applied to

the same model inputs as in the primary analysis. In fact, there were only minor differences

in the model performances, given the respective model inputs. The differences were most

pronounced at 10 years from baseline, which may be caused by limited training sample size

and inadequate hyperparameter search space.

Furthermore, a generalization to competing risks with the same Aranda-Ordaz link was

proposed. This neural network models the cause-specific CIF on the subdistribution hazard

(for c=0, like the Fine-Gray competing risk model) and on the subdistribution odds scale (for c

= 1). In the present work’s empirical analysis, the complexity of competing risks was avoided

by choosing all-cause mortality as the outcome.

40

The evaluation of the proposed ‘nnet-Surv-rcsplines’ model in the context of competing risks

in a simulation study and on real biomedical datasets goes beyond the scope of this work. It

remains the subject of future research. Unfortunately, publicly available large-scale

biomedical datasets with time-to-event data (especially with competing risk data) are

currently sparse31. In the methodology underlying the recently published update of the SCORE

prediction models, SCORE225 and SCORE2-OP26 the Fine-Gray regression44 is applied to model

the competing risk effects of non-cv-mortality. Even though first-order interactions and non-

linear effects were explicitly considered, the authors reported only minor improvements in

predicting cardiovascular mortality compared to the original SCORE risk chart model.

Application of modern machine learning methods like gradient-boosted trees70, random

survival forests71, neural networks suitable for competing risk data like ‘DeepHit’31 and the

proposed ‘nnet-Surv-rcsplines’-model on the large-scale model derivation cohort of the

SCORE project may improve the prediction of CV (and non-CV) outcomes and may help to

provide better individual treatment and life-style recommendations.

Besides curative and preventive medicine, accurate prediction of competing risk outcomes is

highly relevant for finance and insurance companies (especially life insurances, disability

insurances, mortgage defaults etc.)72. Using the proposed ‘nnet-Surv-rcsplines’ and other

deep learning methods for competing risk survival data may provide better estimates of

certain risks. This could allow the insurance of so far ‘uninsurable risks’ and could lead to

cheaper policies for costumers73.

5.4 Study limitations

Several limitations of this study merit consideration.

Firstly, since the highest observation density occurred at 8.5 years from baseline examination,

this point in time (8.5 years from baseline) was chosen to select hyperparameters.

Consequently, the inferred estimates of model performance have lower variation than e.g. at

10 years. Nevertheless, this choice is arbitrary, as was the established 10-year horizon from

earlier works25,26,46.

41

Second, it is generally known that complex statistical models (especially neural networks)

need large datasets to learn the non-linear relations of model input and output. In our study

population, only 350 events occurred in 3858 participants over a median follow-up time of 8.4

years, while no fatal events occurred in the first 6 years of follow-up. Although the cohort was

drawn as a stratified sample from local population registries, the number of mortality events

was lower, and their distribution does not resemble the expected mortality rates in the

general population based on official German mortality statistics47. This might be caused by

healthy-volunteer bias and result in underestimated event rates if the models were deployed

in the general population.

Thirdly, the tested hyperparameter configurations (including the defined search space) could

have been unsuitable for solving the problem and might have led to poor optimization

results74.

Further, too high computational expenses related to repeated training in the complex model

training and evaluation framework precluded using the rather robust random survival forest71,

which is not a deep learning but a conventional machine learning algorithm using ensemble

learning75.

42

6 Conclusion

Regional myocardial strain distribution contains prognostic information for predicting all-

cause mortality in primary prevention. Still, no prognostic value in addition to readily available

traditional clinical and laboratory biomarkers was demonstrated. Moreover, in contrast to

prior studies, no incremental predictive value was found for global circumferential and

longitudinal strain. This may be explained by the effective integration of the available

traditional biomarkers and the strict evaluation in a prediction framework that eliminates

several sources of optimistic bias.

The application of neural networks for survival (and competing risks) data, like the flexible

parametric ‘nnet-Surv-rcsplines’ neural network proposed in this work, may improve outcome

prediction in primary prevention by exhaustively integrating the available information,

including complex non-linear and interactive relations of the outcome to the respective input

data. With the emerging availability of large-scale datasets (‘BigData’) from observational

studies and linked electronic health records, this approach might improve treatment decisions

compared to standard statistical methods and should be further investigated.

43

7 References

1. Biering-Sorensen T, Biering-Sorensen SR, Olsen FJ, et al. Global Longitudinal Strain by

Echocardiography Predicts Long-Term Risk of Cardiovascular Morbidity and Mortality in a

Low-Risk General Population: The Copenhagen City Heart Study. Circ Cardiovasc Imaging.

2017;10(3). doi:10.1161/CIRCIMAGING.116.005521.

2. Chang W-T, Lee W-H, Lee W-T, et al. Left ventricular global longitudinal strain is

independently associated with mortality in septic shock patients. Intensive Care Med.

2015;41(10):1791-1799. doi:10.1007/s00134-015-3970-3.

3. Kuznetsova T, Cauwenberghs N, Knez J, et al. Additive Prognostic Value of Left

Ventricular Systolic Dysfunction in a Population-Based Cohort. Circ Cardiovasc Imaging.

2016;9(7). doi:10.1161/CIRCIMAGING.116.004661.

4. Kosmala W, Rojek A, Przewlocka-Kosmala M, Mysiak A, Karolko B, Marwick TH.

Contributions of Nondiastolic Factors to Exercise Intolerance in Heart Failure With

Preserved Ejection Fraction. J Am Coll Cardiol. 2016;67(6):659-670.

doi:10.1016/j.jacc.2015.10.096.

5. Bertini M, Ng ACT, Antoni ML, et al. Global longitudinal strain predicts long-term survival

in patients with chronic ischemic cardiomyopathy. Circ Cardiovasc Imaging.

2012;5(3):383-391. doi:10.1161/CIRCIMAGING.111.970434.

6. Buggey J, Alenezi F, Yoon HJ, et al. Left ventricular global longitudinal strain in patients

with heart failure with preserved ejection fraction: outcomes following an acute heart

failure hospitalization. ESC Heart Fail. 2017;4(4):432-439. doi:10.1002/ehf2.12159.

7. Ersboll M, Valeur N, Mogensen UM, et al. Prediction of all-cause mortality and heart

failure admissions from global left ventricular longitudinal strain in patients with acute

myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol.

2013;61(23):2365-2373. doi:10.1016/j.jacc.2013.02.061.

8. Ng ACT, Prihadi EA, Antoni ML, et al. Left ventricular global longitudinal strain is

predictive of all-cause mortality independent of aortic stenosis severity and ejection

fraction. Eur Heart J Cardiovasc Imaging. 2018;19(8):859-867. doi:10.1093/ehjci/jex189.

44

9. Modin D, Sengelov M, Jorgensen PG, et al. Global longitudinal strain corrected by RR

interval is a superior predictor of all-cause mortality in patients with systolic heart failure

and atrial fibrillation. ESC Heart Fail. 2018;5(2):311-318. doi:10.1002/ehf2.12220.

10. Kramann R, Erpenbeck J, Schneider RK, et al. Speckle tracking echocardiography detects

uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. J Am Soc

Nephrol. 2014;25(10):2351-2365. doi:10.1681/ASN.2013070734.

11. Varga TV, Niss K, Estampador AC, Collin CB, Moseley PL. Association is not prediction: A

landscape of confused reporting in diabetes - A systematic review. Diabetes Res Clin

Pract. 2020;170:108497. doi:10.1016/j.diabres.2020.108497.

12. Steyerberg EW. CLINICAL PREDICTION MODELS: A practical approach to development,

validation, and updating. [Place of publication not identified]: SPRINGER NATURE; 2019.

13. Pencina MJ, Goldstein BA, D'Agostino RB. Prediction Models - Development, Evaluation,

and Clinical Application. N Engl J Med. 2020;382(17):1583-1586.

doi:10.1056/NEJMp2000589.

14. Euler A, Laqua FC, Cester D, et al. Virtual Monoenergetic Images of Dual-Energy CT-

Impact on Repeatability, Reproducibility, and Classification in Radiomics. Cancers (Basel).

2021;13(18). doi:10.3390/cancers13184710.

15. Mühlbauer J, Egen L, Kowalewski K-F, et al. Radiomics in Renal Cell Carcinoma-A

Systematic Review and Meta-Analysis. Cancers (Basel). 2021;13(6).

doi:10.3390/cancers13061348.

16. Mühlbauer J, Kriegmair MC, Schöning L, et al. Value of Radiomics of Perinephric Fat for

Prediction of Intraoperative Complexity in Renal Tumor Surgery. Urol Int. 2021:1-12.

doi:10.1159/000520445.

17. Tokodi M, Schwertner WR, Kovács A, et al. Machine learning-based mortality prediction

of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score.

Eur Heart J. 2020;41(18):1747-1756. doi:10.1093/eurheartj/ehz902.

18. van Assen M, Martin SS, Varga-Szemes A, et al. Automatic coronary calcium scoring in

chest CT using a deep neural network in direct comparison with non-contrast cardiac CT:

A validation study. Eur J Radiol. 2021;134:109428. doi:10.1016/j.ejrad.2020.109428.

45

19. Sandino CM, Lai P, Vasanawala SS, Cheng JY. Accelerating cardiac cine MRI using a deep

learning-based ESPIRiT reconstruction. Magn Reson Med. 2021;85(1):152-167.

doi:10.1002/mrm.28420.

20. Hann E, Popescu IA, Zhang Q, et al. Deep neural network ensemble for on-the-fly quality

control-driven segmentation of cardiac MRI T1 mapping. Med Image Anal.

2021;71:102029. doi:10.1016/j.media.2021.102029.

21. Tedesco S, Andrulli M, Larsson MÅ, et al. Comparison of Machine Learning Techniques

for Mortality Prediction in a Prospective Cohort of Older Adults. Int J Environ Res Public

Health. 2021;18(23). doi:10.3390/ijerph182312806.

22. Thorsteinsdottir B, Hickson LJ, Giblon R, et al. Validation of prognostic indices for short

term mortality in an incident dialysis population of older adults 75. PLoS One.

2021;16(1):e0244081. doi:10.1371/journal.pone.0244081.

23. Weng SF, Vaz L, Qureshi N, Kai J. Prediction of premature all-cause mortality: A

prospective general population cohort study comparing machine-learning and standard

epidemiological approaches. PLoS One. 2019;14(3):e0214365.

doi:10.1371/journal.pone.0214365.

24. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of

all-cause mortality and cardiovascular events in healthy men and women: a meta-

analysis. JAMA. 2009;301(19):2024-2035. doi:10.1001/jama.2009.681.

25. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular

disease in Europe. Eur Heart J. 2021;42(25):2439-2454. doi:10.1093/eurheartj/ehab309.

26. SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in

older persons in four geographical risk regions. Eur Heart J. 2021;42(25):2455-2467.

doi:10.1093/eurheartj/ehab312.

27. Gensheimer MF, Narasimhan B. A scalable discrete-time survival model for neural

networks. PeerJ. 2019;7:e6257. doi:10.7717/peerj.6257.

28. Gerds TA, Schumacher M. Consistent estimation of the expected Brier score in general

survival models with right-censored event times. Biom J. 2006;48(6):1029-1040.

doi:10.1002/bimj.200610301.

46

29. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized

treatment recommender system using a Cox proportional hazards deep neural network.

BMC Med Res Methodol. 2018;18(1):24. doi:10.1186/s12874-018-0482-1.

30. Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for prognosis

prediction of high-throughput omics data. PLoS Comput Biol. 2018;14(4):e1006076.

doi:10.1371/journal.pcbi.1006076.

31. Ryu JY, Lee MY, Lee JH, Lee BH, Oh K-S. DeepHIT: a deep learning framework for

prediction of hERG-induced cardiotoxicity. Bioinformatics. 2020;36(10):3049-3055.

doi:10.1093/bioinformatics/btaa075.

32. Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds

models for censored survival data, with application to prognostic modelling and

estimation of treatment effects. Statist Med. 2002;21(15):2175-2197.

doi:10.1002/sim.1203.

33. Ng R, Kornas K, Sutradhar R, Wodchis WP, Rosella LC. The current application of the

Royston-Parmar model for prognostic modeling in health research: a scoping review.

Diagn Progn Res. 2018;2:4. doi:10.1186/s41512-018-0026-5.

34. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable

prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and

elaboration. Ann Intern Med. 2015;162(1):W1-73. doi:10.7326/M14-0698.

35. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK. Reporting guidelines for clinical

trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.

Nat Med. 2020;26(9):1364-1374. doi:10.1038/s41591-020-1034-x.

36. Volzke H, Alte D, Schmidt CO, et al. Cohort profile: the study of health in Pomerania. Int J

Epidemiol. 2011;40(2):294-307. doi:10.1093/ije/dyp394.

37. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A

report from the American Society of Echocardiography's Guidelines and Standards

Committee and the Chamber Quantification Writing Group, developed in conjunction

with the European Association of Echocardiography, a branch of the European Society of

Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440-1463.

doi:10.1016/j.echo.2005.10.005.

47

38. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber

quantification by echocardiography in adults: an update from the American Society of

Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc

Echocardiogr. 2015;28(1):1-39.e14. doi:10.1016/j.echo.2014.10.003.

39. Stekhoven DJ, Bühlmann P. MissForest--non-parametric missing value imputation for

mixed-type data. Bioinformatics. 2012;28(1):112-118.

doi:10.1093/bioinformatics/btr597.

40. Nair V, Hinton GE. Rectified Linear Units Improve Restricted Boltzmann Machines. In:

Fürnkranz J, Joachims T, eds. Proceedings of the 27th International Conference on

Machine Learning (ICML-10); 2010:807-814.

41. Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. In: Bach F, Blei D, eds. Proceedings of the 32nd International

Conference on Machine Learning. Vol. 37. Lille, France: PMLR; 2015:448-456.

Proceedings of Machine Learning Research.

42. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization; 2014.

https://arxiv.org/pdf/1412.6980.

43. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York, NY:

Springer New York; 2009.

44. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing

Risk. Journal of the American Statistical Association. 1999;94(446):496.

doi:10.2307/2670170.

45. Jeong J-H, Fine JP. Parametric regression on cumulative incidence function. Biostatistics.

2007;8(2):184-196. doi:10.1093/biostatistics/kxj040.

46. Conroy R. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE

project. Eur Heart J. 2003;24(11):987-1003. doi:10.1016/s0195-668x(03)00114-3.

47. Deutsches Statistisches Bundesamt. Todesursachenstatistik 2010; 23211-0004:

Gestorbene: Deutschland, Jahre, Todesursachen, Geschlecht, Altersgruppen. Fachserie

Statistisches Bundesamt / 12 / 4 / Jährlich. 2012;(2120400107005).

https://www.statistischebibliothek.de/mir/receive/DEHeft_mods_00018825.

48

48. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction

models: a framework for some traditional and novel measures. Epidemiology.

2010;21(1):128-138. doi:10.1097/EDE.0b013e3181c30fb2.

49. Tsamardinos I, Greasidou E, Borboudakis G. Bootstrapping the out-of-sample predictions

for efficient and accurate cross-validation. Mach Learn. 2018;107(12):1895-1922.

doi:10.1007/s10994-018-5714-4.

50. Lambert J, Chevret S. Summary measure of discrimination in survival models based on

cumulative/dynamic time-dependent ROC curves. Stat Methods Med Res.

2016;25(5):2088-2102. doi:10.1177/0962280213515571.

51. Gerds TA, Andersen PK, Kattan MW. Calibration plots for risk prediction models in the

presence of competing risks. Stat Med. 2014;33(18):3191-3203. doi:10.1002/sim.6152.

52. Austin PC, Steyerberg EW. Graphical assessment of internal and external calibration of

logistic regression models by using loess smoothers. Stat Med. 2014;33(3):517-535.

doi:10.1002/sim.5941.

53. Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of

prognostic classification schemes for survival data. Stat Med. 1999;18(17-18):2529-2545.

doi:10.1002/(sici)1097-0258(19990915/30)18:17/18<2529:aid-sim274>3.0.co;2-5.

54. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology.

1990;1(1):43-46.

55. TensorFlow. Zenodo; 2021.

56. Davidson-Pilon C. lifelines: survival analysis in Python. Journal of Open Source Software.

2019;4(40):1317.

57. scikit-survival. Zenodo; 2020.

58. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python.

Journal of Machine Learning Research. 2011;12:2825-2830.

59. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and

treatment of acute and chronic heart failure: The Task Force for the diagnosis and

treatment of acute and chronic heart failure of the European Society of Cardiology

(ESC)Developed with the special contribution of the Heart Failure Association (HFA) of

the ESC. Eur Heart J. 2016;37(27):2129-2200. doi:10.1093/eurheartj/ehw128.

49

60. Maddox TM, Januzzi JL, Allen LA, et al. 2021 Update to the 2017 ACC Expert Consensus

Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal

Issues About Heart Failure With Reduced Ejection Fraction: A Report of the American

College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol.

2021;77(6):772-810. doi:10.1016/j.jacc.2020.11.022.

61. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013

ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American

College of Cardiology/American Heart Association Task Force on Clinical Practice

Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137-e161.

doi:10.1161/CIR.0000000000000509.

62. Delgado V, Mollema SA, Ypenburg C, et al. Relation between global left ventricular

longitudinal strain assessed with novel automated function imaging and biplane left

ventricular ejection fraction in patients with coronary artery disease. J Am Soc

Echocardiogr. 2008;21(11):1244-1250. doi:10.1016/j.echo.2008.08.010.

63. Salte IM, Østvik A, Smistad E, et al. Artificial Intelligence for Automatic Measurement of

Left Ventricular Strain in Echocardiography. JACC Cardiovasc Imaging. 2021;14(10):1918-

1928. doi:10.1016/j.jcmg.2021.04.018.

64. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and

Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51-58.

doi:10.7326/M18-1376.

65. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation

and nomenclature for tomographic imaging of the heart. A statement for healthcare

professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology

of the American Heart Association. Circulation. 2002;105(4):539-542.

doi:10.1161/hc0402.102975.

66. Chandrasekaran B, Jain AK. Quantization Complexity and Independent Measurements.

IEEE Trans Comput. 1974;C-23(1):102-106. doi:10.1109/T-C.1974.223789.

67. Engelhard MM, Navar AM, Pencina MJ. Incremental Benefits of Machine Learning-When

Do We Need a Better Mousetrap? JAMA Cardiol. 2021;6(6):621-623.

doi:10.1001/jamacardio.2021.0139.

50

68. Khera R, Haimovich J, Hurley NC, et al. Use of Machine Learning Models to Predict Death

After Acute Myocardial Infarction. JAMA Cardiol. 2021;6(6):633-641.

doi:10.1001/jamacardio.2021.0122.

69. Stensrud MJ, Hernán MA. Why Test for Proportional Hazards? JAMA. 2020.

doi:10.1001/jama.2020.1267.

70. Friedman JH. Stochastic gradient boosting. Computational Statistics & Data Analysis.

2002;38(4):367-378. doi:10.1016/S0167-9473(01)00065-2.

71. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann Appl

Stat. 2008;2(3):841-860. doi:10.1214/08-AOAS169.

72. Blumenstock G, Lessmann S, Seow H-V. Deep learning for survival and competing risk

modelling. Journal of the Operational Research Society. 2022;73(1):26-38.

doi:10.1080/01605682.2020.1838960.

73. Gerds TA, Andersen PK, Kattan MW. Calibration plots for risk prediction models in the

presence of competing risks. Stat Med. 2014;33(18):3191-3203. doi:10.1002/sim.6152.

74. Bischl B, Binder M, Lang M, et al. Hyperparameter Optimization: Foundations, Algorithms,

Best Practices and Open Challenges; 2021. https://arxiv.org/pdf/2107.05847.

75. Herrera VM, Khoshgoftaar TM, Villanustre F, Furht B. Random forest implementation and

optimization for Big Data analytics on LexisNexis’s high performance computing cluster

platform. J Big Data. 2019;6(1). doi:10.1186/s40537-019-0232-1.

76. Mozumder SI, Rutherford M, Lambert P. Direct likelihood inference on the cause-specific

cumulative incidence function: A flexible parametric regression modelling approach. Stat

Med. 2018;37(1):82-97. doi:10.1002/sim.7498.

77. ARANDA-ORDAZ FJ. ‘On two families of transformations to additivity for binary response

data’. Biometrika. 1983;70(1):303. doi:10.1093/biomet/70.1.303-a.

78. Chambers RL, Steel DG, Wang S, Welsh A. Maximum Likelihood Estimation for Sample

Surveys. Boca Raton, London, New York: Chapman and Hall/CRC; 2012. Monographs on

statistics and applied probability; 125.

https://www.taylorfrancis.com/books/9780429144721.

79. Rossi RJ. Mathematical Statistics: An introduction to likelihood based inference. 1st

edition. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2018.

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118771075.

1

8 Appendix A

8.1 Restricted cubic splines neural network ‘nnet-Surv-rcsplines’

Cause-specific cumulative incidence function and subdistribution hazard

Let T be the time to event for any of K competing causes k = 1, ⋯ , K and D denote the type of

event, where D = 1, ⋯ , K. Then the cumulative incidence function (CIF) 𝐹𝑘(𝑡) is the

cumulative probability of dying before or at time t from cause k.

𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑘)

Gray44 introduces the subdistribution hazard (SDH) for cause k, ℎ𝑘
𝑠𝑑(𝑡), which gives a direct

relationship with the cause-specific CIF and has the following mathematical formulation76:

ℎ𝑘
𝑠𝑑(𝑡) = lim

𝛥𝑡→∞

𝑃(𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡 ∩ 𝐷 = 𝑘|𝑇 > 𝑡 ∪ (𝑡 < 𝑇 ≤ 𝑡 + 𝛥𝑡 ∩ 𝐷 ≠ 𝑘))

𝛥𝑡

=
𝑑

𝑑𝑡
− ln(1 − 𝐹𝑘(𝑡))

1 − 𝐹𝑘(𝑡) = exp(−𝐻𝑘
𝑠𝑑(𝑡)) = exp [∫ ℎ𝑘

𝑠𝑑(𝑢)𝑑𝑢
𝑡

0

]

where 𝐻𝑘
𝑠𝑑(𝑡) is the cumulative subdistribution hazard. In the present work, this approach is

generalized to a neural network implementation.

Regression modelling

Similar to the original implementation proposed by Royston and Parmar32,33 the cause-specific

CIF is modelled by a restricted cubic spline (𝑠(ln(𝑡), 𝛄𝐤,𝐦𝑘)) on the logarithmic time scale

connected by a link function 𝑔(⋅), where 𝛄𝐤 is the vector of the spline coefficients and 𝐦𝐤 is

the vector of the knot positions of the spline. Restricted cubic splines are piecewise cubic

polynomials with 𝑙 ≥ 0 internal knots defined to have continuous first and second derivatives

at the internal knots and constrained to be linear beyond boundary knots 𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥 32:

𝑠(ln 𝑡 , 𝛄𝐤,𝐦𝑘)γ𝑘,0 + γ𝑘,1 𝑙𝑛 𝑡 + γ2𝑣𝑘,1(𝑙𝑛 𝑡) + ⋯+ γ𝑘,𝑙+1𝑣𝑘,𝑙(𝑙𝑛 𝑡),

2

where 𝑣𝑘,𝑗(𝑥) = (𝑥 − 𝑚𝑘,𝑗)+
3
− λ𝑘,𝑗(𝑥 − 𝑚𝑘,𝑚𝑎𝑥)+

3
− (1 − λ𝑘,𝑗)(𝑥 − 𝑚𝑘,𝑚𝑎𝑥)+

3
,

λ𝑘,𝑗 =
𝑚𝑘,𝑚𝑎𝑥−𝑚𝑘,𝑗

𝑚𝑘,𝑚𝑎𝑥−𝑚𝑘,𝑚𝑖𝑛
 and (𝑥 − 𝑎)+ = max(0, 𝑥 − 𝑎).

Like Royston and Parmar propose32, the Aranda-Ordaz-link77 is used.

𝑔(1 − 𝐹𝑘(𝑡)) = 𝜂𝑘(𝑡|𝐱) = 𝑠(ln(𝑡), 𝛄𝐤, 𝐦𝐤) + 𝐱𝐤𝛃𝐤

𝑔(⋅) = ln {
(⋅)−𝑐 − 1

𝑐
} ; 𝑐 ∈ (0, 1]

Note that the notation 𝐱𝑘𝛃𝑘 is similar to standard generalized linear model regression models,

where it would describe a linear effect of the model covariables on the respective linked scale.

In our work, this term is replaced by the output of a neural network, or more specifically, the

output of a Dense Layer with linear activation.

With the Aranda-Ordaz-Link, the cause-specific CIF and consequently the subdistribution

hazard or odds (naming and interpretation are dependent on the hyperparameter in the link

function, cf. below) of the respective cause k is parameterized as:

𝐹𝑘(𝑡) = 1 − (1 + 𝑐𝑒
𝜂𝑘(𝑡))

−1
𝑐

ℎ𝑘
𝑠𝑑(𝑡) =

𝑑

𝑑𝑡
− ln(1 − 𝐹𝑘(𝑡)) = (1 + 𝑐𝑒

𝜂𝑘(𝑡))−1𝑒𝜂𝑘(𝑡)
𝑑𝜂𝑘(𝑡)

𝑑𝑡

The Aranda-Ordaz-link family comprises of two special cases: If c = 1 this simplifies to logit-

link:

𝜂𝑘(𝑡) = ln (
𝐹𝑘(𝑡)

1−𝐹𝑘(𝑡)
) and (1 + 𝑐𝑒𝜂𝑘(𝑡))

−1

𝑐 =
𝑐:=1

(1 + 𝑒𝜂𝑘(𝑡))−1

If the shape of 𝑠(ln(𝑡), 𝛄𝑘, 𝐦𝑘) is independent from model covariates (i.e., in this neural

network there is no direct or indirect connection between Input Layer and the ‘Gamma-

Layer’), the model formulation can be interpreted as a proportional odds model given the

output of the dense ‘Beta-Layer’ 𝐱𝐤𝛃𝐤 .

3

And for 𝑐 → 0 this converges towards the complimentary log-log-link and simplifies to a

proportional hazard interpretation:

lim
𝑐→0
𝜂𝑘(𝑡) = lim

𝑐→0
ln {
(1 − 𝐹𝑘(𝑡))

−𝑐 − 1

𝑐
} = ln lim

𝑐→0

−ln(1 − 𝐹𝑘(𝑡))(1 − 𝐹𝑘(𝑡))
−𝑐

1

= ln{−ln(1 − 𝐹𝑘(𝑡))} and 1 − 𝐹𝑘(𝑡) = 𝑒
−𝑒𝜂𝑘(𝑡)

In the original work of Royston and Parmar32, the models were restricted to logit- and

complimentary log-log links for easy interpretation. However, since in prediction modeling

(especially with high dimensional inputs) the purpose is not the interpretability of the model,

but to provide accurate estimations of the outcome, the coefficient 𝑐 is treated as

hyperparameter, that may vary in (0, 1]. The log-log-link can be specified by setting 𝑐 = 0 in

the implementation.

Negative Log-Likelihood-Loss for competing risk data

The proposed model is optimized using maximum-likelihood-estimation78,79. Hence, the

model parameters are selected in a way, that the observed data is most probable (i.e.,

maximization of a likelihood function) under the statistical model. The authors of 45 give the

likelihood for the CIF:

𝐿 =∏

[

[∏[ℎ𝑗
𝑠𝑑(𝑡𝑖)(1 − 𝐹𝑗(𝑡𝑖|𝐱𝑖))]

𝛿𝑖𝑗

𝐾

𝑗=1

] [1 −∑𝐹𝑗

𝐾

𝑗=1

(𝑡𝑖|𝐱𝑖)]

1−∑ 𝛿𝑖𝑗
𝐾
𝑗=1

]

 𝑁

𝑖=1

Since the natural logarithm is a strictly monotonically increasing function, the maximum of the

natural logarithm of a function occurs at the same values as for its argument. However, this

offers numerical advantages for practical computation.

In machine learning (incl. deep learning), a loss is minimized instead of maximized by

convention. Negative Log-likelihood for an individual i is hence

4

−ln(𝐿𝑖) = − ∑[ln(ℎ𝑗
𝑠𝑑(𝑡𝑖|𝐱𝑖)) + ln(1 − 𝐹𝑗(𝑡𝑖|𝐱𝑖))]

𝛿𝑖𝑗
⏟

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑐𝑎𝑢𝑠𝑒 𝑗

𝐾

𝑗=1

− ln([1 −∑𝐹𝑗

𝐾

𝑗=1

(𝑡𝑖|𝐱𝑖)]

1−∑ 𝛿𝑖𝑗
𝐾
𝑗=1

)

⏟
𝑟𝑖𝑔ℎ𝑡−𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

With the parameterization, this results in the case of failure by cause j for subject i:

ln(𝐿𝑖,𝑗;𝛿𝑖𝑗=1(𝑡𝑖|𝐱𝑖)) = [(−1 −
1

𝑐
) ln(1 + 𝑐𝑒𝜂𝑗(𝑡𝑖|𝐱𝑖)) + 𝜂𝑗(𝑡𝑖|𝐱𝑖) + ln (

𝑑𝜂𝑗(𝑡𝑖|𝐱𝑖)

𝑑𝑡𝑖
)]

and in the case of a right-censored subject i:

ln (𝐿𝑖,𝛿𝑖𝑗=0 ∀𝑗=1, … ,𝐾(𝑡𝑖|𝐱𝑖)) = ln([1 +∑(1 + 𝑐𝑒𝜂𝑗(𝑡𝑖|𝐱𝑖))
−1
𝑐 − 1

𝐾

𝑗=1

])

The argument of the rightmost logarithm in the uncensored log-likelihood needs to be greater

than 0 to be well-defined. This corresponds to a strictly monotonically increasing spline

function given the data and is addressed by adding a high L2 penalty for negative arguments:

𝑝𝑑𝜂
𝑑𝑡
= 𝜆 ⋅ √∑𝑅

𝑁

𝑖=1

𝐸𝐿𝑈(−
𝑑𝑠(𝑡𝑖|𝐱𝑖)

𝑑𝑙𝑛(𝑡)
)2

with 𝑅𝐸𝐿𝑈(𝑎) = 𝑚𝑎𝑥(0, 𝑎).

In addition, the global survival function (the argument term for the log-likelihood in the case

of right-censoring) was penalized in the same way. Note that this restriction is automatically

fulfilled for K=1 (’usual’ survival modeling without competing risks).

𝑝1−∑ 𝐹𝑗
𝐾
𝑗=1 (𝑡) = 𝜆 ⋅ √∑𝑅

𝑁

𝑖=1

𝐸𝐿𝑈(−1 +∑𝐹𝑗

𝐾

𝑗=1

(𝑡𝑖|𝐱𝑖))

2

5

The total negative-log-likelihood-loss function that is to be minimized during training is given

by:

𝑛𝑙𝑙 =∑[− [∑ln

𝐾

𝑗=1

(𝐿𝑖,𝑗(𝑡𝑖|𝐱𝑖))] − ln (𝐿𝑖,𝛿𝑖𝑗=0 ∀𝑗=1, … ,𝐾(𝑡𝑖|𝐱𝑖))]

𝑁

𝑖=1

+ 𝑝𝑑𝜂
𝑑𝑡
+ 𝑝1−∑ 𝐹𝑗

𝐾
𝑗=1 (𝑡)

This loss function can be optimized with the favourable mini-batch stochastic gradient decent

by replacing N with the respective batch size. In the present implementation, the adaptive

momentum42 flavour of the stochastic gradient decent optimization procedure is used.

Special case Survival data without competing risks

If there is only one cause of failure and competing risks are not to be taken into account (e.g.,

when only all-cause-mortality or a nested composite endpoint like major adverse cardiac

events including all-cause-mortality is of interest), the above model simplifies substantially

due to the simple relation of the CIF and the survival function:

𝑆(𝑡) = 1 − 𝐹(𝑡) = exp(−𝐻(𝑡)) = exp [∫ ℎ(𝑢)𝑑𝑢
𝑡

0

]

where 𝐻 is the cumulative hazard in the case of complimentary log-log-link.

The CIF and hence also the survival function is then parameterized as:

𝑔(𝑆(𝑡)) = 𝑔(1 − 𝐹(𝑡)) = 𝜂(𝑡|𝐱) = 𝑠(ln(𝑡), 𝛄,𝐦) + 𝐱𝛃

𝑛𝑙𝑙 =∑[−[ln(𝐿𝑖,𝛿𝑖=1(𝑡𝑖|𝐱𝑖))] − ln(𝐿𝑖,𝛿𝑖=0(𝑡𝑖|𝐱𝑖))]

𝑁

𝑖=1

+ 𝑝𝑑𝜂
𝑑𝑡

with the terms for an uncensored and a right-censored subject, respectively.

ln(𝐿𝑖,𝛿𝑖=1(𝑡𝑖|𝐱𝑖)) = [(−1 −
1

𝑐
) ln(1 + 𝑐𝑒𝜂(𝑡𝑖|𝐱𝑖)) + 𝜂(𝑡𝑖|𝐱𝑖) + ln (

𝑑𝜂(𝑡𝑖|𝐱𝑖)

𝑑𝑡𝑖
)]

ln(𝐿𝑖,𝛿𝑖=0(𝑡𝑖|𝐱𝑖)) = ln ([(1 + 𝑐𝑒
𝜂(𝑡𝑖|𝐱𝑖))

−1
𝑐])

6

8.2 Source code of the Tensorflow 2 Implementation of ‘nnet-Surv-rcsplines’

-*- coding: utf-8 -*-

"""

@author: Fabian Laqua

github.com/laqua-stack

"""

from sklearn.base import BaseEstimator

from sklearn.model_selection import train_test_split

from sksurv.util import check_y_survival

import numpy as np

from numpy.lib import recfunctions as rfn

import math

from scipy.stats.mstats import mquantiles

from itertools import compress, chain

Model

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.models import Sequential, Model

from tensorflow.keras.layers import Add, Layer, Concatenate, Input, Dense, Dropout,

Activation, BatchNormalization

from tensorflow.keras.regularizers import l1_l2

from tensorflow.keras.initializers import he_normal

from tensorflow.python.keras import regularizers

training

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback,

LearningRateScheduler

from tensorflow.keras.optimizers import Adam

class BiasLayer(tf.keras.layers.Layer):

 def __init__(self, units=1, *args, **kwargs):

 self.units = units

 super(BiasLayer, self).__init__(*args, **kwargs)

 def build(self, input_shape):

 self.bias = self.add_weight('bias',

 shape=self.units,

 initializer='zeros',

 trainable=True)

 def call(self, x, **kwargs):

 return self.bias

class FinalLayer(Layer):

 def __init__(self,

 initializer=he_normal(),

 **kwargs

):

 self.initializer = initializer

 super(FinalLayer, self).__init__(**kwargs)

 def build(self, input_shape):

 self.inputshape = input_shape

 self.beta = self.add_weight('beta', shape=input_shape[1:],

 initializer=self.initializer,

 trainable=True)

 self.zerobeta = tf.zeros(shape=input_shape[1:],)

 super(FinalLayer, self).build(input_shape)

 def compute_output_shape(self, inputShape):

7

 return None, 1

 def call(self, inputs, training=None):

 betax = tf.cond(training,

 lambda: tf.matmul(inputs, self.beta),

 lambda: tf.matmul(inputs, self.zerobeta))

 return betax

class FinalLayerGamma(Layer):

 def __init__(self, int_knots_number=1, flexgamma=False,

 kernel_regularizer=None,

 **kwargs):

 self.flexgamma = flexgamma

 self.int_knots_number = int_knots_number

 self.kernel_regularizer = regularizers.get(kernel_regularizer)

 super(FinalLayerGamma, self).__init__(

 **kwargs)

 def build(self, input_shape):

 # weight_shape = (input_shape[1:],) if not

isinstance(input_shape[1:], tuple) else input_shape[1:]

 self.inputshape = input_shape

 if not self.flexgamma:

 self.gammaweight = tf.zeros(input_shape[1:] + (1 +

self.int_knots_number,), dtype=tf.dtypes.float32,

 name=None)

 self.gammabias = self.add_weight('gamma',

 shape=(1 + self.int_knots_number,),

 initializer=he_normal(),

 trainable=True)

 else:

 self.gammaweight = self.add_weight('gamma_weight',

 shape=input_shape[1:] + (1 +

self.int_knots_number,),

 initializer='glorot_normal',

 regularizer=self.kernel_regularizer,

 trainable=True)

 self.gammabias = self.add_weight('gamma_bias',

 shape=(1 + self.int_knots_number,),

 initializer='glorot_normal',

 trainable=True)

 super(FinalLayerGamma, self).build(input_shape)

 def compute_output_shape(self, inputShape):

 return (None, 1 + self.int_knots_number)

 def call(self, inputs, **kwargs):

 ret = tf.matmul(inputs, self.gammaweight) + self.gammabias

 return ret

def get_knots(m,

 y_train=None,

 kint=None,

 kmin=None,

 kmax=None

):

 """

 m number of interior knots,

 if kint kmin and kmax are given, y_train is not needed

 otherwise default quantile log scale knot placment is used according

 to uncensored failure times in y_train

 """

8

 if kint is None or kmin is None or kmax is None:

 # print('assuming default knot placment')

 if y_train is None:

 print('y_train must not be None for default knot placement')

 raise TypeError

 y_n = y_train

 y_uncensored = y_n[:, 1][y_n[:, 0] == 1.]

 # compute quantiles of uncensored follow-up times

 quant = [q / (m + 1) for q in range(1, m + 1)]

 kint = mquantiles(np.log(y_uncensored), quant).astype('float32')

 kmin = math.log(y_uncensored.min())

 kmax = math.log(y_uncensored.max())

 else:

 print('custom knot placment')

 return kint, kmin, kmax

custom negative likelihood loss

def nll(m,

 y_train=None,

 kint=None,

 kmin=None,

 kmax=None,

 loss='cumhaz',

 arandaordaz_c=1.,

 negative_dsdx_penalizer=1e4,

 scale_loss=1,

):

 """

 m number of interior knots,

 if kint kmin and kmax are given, y_train is not needed

 otherwise default quantile log scale knot placment is used according

 to uncensored failure times in y_train

 """

 arandaordaz_c = np.float32(arandaordaz_c) if not isinstance(arandaordaz_c,

np.float32) else arandaordaz_c

 arandaordaz_c = tf.convert_to_tensor(arandaordaz_c, dtype=tf.float32)

 negative_dsdx_penalizer = tf.convert_to_tensor(negative_dsdx_penalizer,

dtype=tf.float32)

 scale_loss = tf.convert_to_tensor(float(scale_loss), dtype=tf.float32)

 k2m = tf.expand_dims(kint, axis=0)

 lambda_j = (kmax - k2m) / (kmax - kmin)

 mlambda_j = tf.constant(1.0) - lambda_j

 def sxgamma(x, gamma):

 theta2m = tf.math.accumulate_n(

 [tf.math.pow(K.relu(tf.subtract(x, k2m)), 3),

 -tf.multiply(lambda_j, tf.math.pow(K.relu(tf.subtract(x, kmin)), 3)),

 -tf.multiply(mlambda_j, tf.math.pow(K.relu(tf.subtract(x, kmax)), 3)),

]

)

 ret = tf.math.multiply(gamma[:, 0:1], x) + tf.reduce_sum(tf.multiply(

 gamma[:, 1:], theta2m), axis=1, keepdims=True, name='dot')

 return ret

 def dsdx(x, gamma):

 dsdx = gamma[:, 0:1] + (tf.constant(3.0) * tf.reduce_sum(

 tf.multiply(

 gamma[:, 1:],

 tf.math.accumulate_n([K.square(K.relu(tf.subtract(x, k2m))),

 - tf.multiply(lambda_j,

K.square(K.relu(tf.subtract(x, kmin)))),

 - tf.multiply(mlambda_j,

K.square(K.relu(tf.subtract(x, kmax))))],

9

 shape=[None, m]),),

 axis=1, keepdims=True))

 # log_dsdx = tf.where(dsdx < tf.constant(0.), - 50 * tf.abs(dsdx),

K.log(dsdx_clipped))

 return dsdx

 @tf.custom_gradient

 def p1csoftplusc(eta):

 cp1c = 1. + (1. / arandaordaz_c)

 def grad(upstream):

 return upstream * (arandaordaz_c + 1) * (1 / (arandaordaz_c +

tf.math.exp(-eta)))

 # return tf.cond(tf.equal(arandaordaz_c, 1.),

 # lambda: upstream * 2 * (1 / (1 + tf.math.exp(-eta))),

 # # since cp1c is always positive, no special treatment of zero

is necessary

 # lambda: upstream * (arandaordaz_c + 1) * (1 / (arandaordaz_c

+ tf.math.exp(-eta))),

 #)

 return tf.cond(tf.equal(arandaordaz_c, 1.),

 lambda: 2 * tf.math.softplus(eta),

 lambda: tf.math.xlog1py(cp1c, arandaordaz_c *

tf.math.exp(eta))), grad

 # @tf.custom_gradient

 def negative_dsdx_penalty(dsdx_tens):

 return tf.clip_by_value(

 (negative_dsdx_penalizer / scale_loss) * tf.math.sqrt(

 tf.nn.l2_loss(tf.nn.softplus(tf.negative(dsdx_tens)))),

 0, 1e20)

 def negative_dsdx_penalty_relu(dsdx_tens):

 return tf.clip_by_value(

 (negative_dsdx_penalizer / scale_loss) *

tf.math.sqrt(tf.nn.l2_loss(tf.nn.relu(tf.negative(dsdx_tens)))),

 0, 1e20)

 # @tf.function

 def loss_cumhaz(y_true, y_pred):

 """

 y_true , shaped event, time

 y_pred , shaped (b + gamma1 + gammax ...)

 kint interior knots

 """

 beta = tf.expand_dims(y_pred[:, 0], 1)

 gamma = y_pred[:, 1:]

 # beta = tf.expand_dims(beta, 1)

 t = y_true[:, 1]

 x = tf.expand_dims(K.log(t), 1)

 eta = beta + sxgamma(x, gamma)

 b_censored = tf.equal(y_true[:, 0], 0.)

 dsdx_uncens = dsdx(tf.boolean_mask(x, ~b_censored), tf.boolean_mask(gamma,

~b_censored))

 dsdx_clipped = tf.clip_by_value(dsdx_uncens, 1e-20, 1e30) # clip to avoid

neg. cumhazards

 uncensored = tf.math.accumulate_n(

 [- tf.boolean_mask(x, ~b_censored),

 K.log(dsdx_clipped),

 tf.boolean_mask(eta, ~b_censored),

10

 -K.exp(tf.boolean_mask(eta, ~b_censored))]

)

 # return uncensored

 censored = -K.exp(tf.boolean_mask(eta, b_censored))

 nonpen_loglik = (1 / scale_loss) * (tf.reduce_sum(uncensored) +

tf.reduce_sum(censored))

 # neg_ds_dx_penalty = negative_dsdx_penalty(dsdx_uncens)

 # loglik = nonpen_loglik - neg_ds_dx_penalty

 return -nonpen_loglik

 def loss_arandaordaz(y_true, y_pred):

 """

 y_true , shaped event, time

 y_pred , shaped (b + gamma1 + gammax ...)

 kint interior knots

 """

 beta = tf.expand_dims(y_pred[:, 0], 1)

 gamma = y_pred[:, 1:]

 # beta = tf.expand_dims(beta, 1)

 t = y_true[:, 1]

 x = tf.expand_dims(K.log(t), 1)

 eta = beta + sxgamma(x, gamma)

 b_censored = tf.equal(y_true[:, 0], 0.)

 # return tf.boolean_mask(x,~b_censored)

 dsdx_uncens = dsdx(tf.boolean_mask(x, ~b_censored), tf.boolean_mask(gamma,

~b_censored))

 dsdx_clipped = tf.clip_by_value(dsdx_uncens, 1e-20, 1e30) # clip to avoid

neg. cumhazards

 soft_eta = -p1csoftplusc(tf.boolean_mask(eta, ~b_censored))

 uncensored = tf.math.accumulate_n(

 [- tf.boolean_mask(x, ~b_censored),

 K.log(dsdx_clipped),

 tf.boolean_mask(eta, ~b_censored),

 soft_eta]

)

 censored = -p1csoftplusc(tf.boolean_mask(eta, b_censored))

 nonpen_loglik = (1 / scale_loss) * (tf.reduce_sum(uncensored) +

tf.reduce_sum(censored))

 neg_ds_dx_penalty = negative_dsdx_penalty(dsdx_uncens)

 # penalty = tf.cond(tf.greater(neg_ds_dx_penalty, 0.), lambda:

neg_ds_dx_penalty, lambda: 0.)

 loglik = nonpen_loglik - neg_ds_dx_penalty

 return - loglik

 def dsdx_penality(y_true, y_pred):

 """

 y_true , shaped event, time

 y_pred , shaped (b + gamma1 + gammax ...)

 kint interior knots

 """

 beta = tf.expand_dims(y_pred[:, 0], 1)

 gamma = y_pred[:, 1:]

 # beta = tf.expand_dims(beta, 1)

 t = y_true[:, 1]

 x = tf.expand_dims(K.log(t), 1)

 b_censored = tf.equal(y_true[:, 0], 0.)

 dsdx_uncens = dsdx(tf.boolean_mask(x, ~b_censored), tf.boolean_mask(gamma,

~b_censored))

11

 return negative_dsdx_penalty_relu(dsdx_uncens)

 if loss == 'cumhaz':

 return loss_cumhaz

 if loss == 'aranda_ordaz':

 if tf.equal(arandaordaz_c, 0.).numpy():

 return loss_cumhaz

 else:

 return loss_arandaordaz

 if loss == 'dsdx_penalty':

 return dsdx_penality

class DeepBnReluDrop(Layer):

 def __init__(self,

 hidden_layers_sizes,

 bias_initializer=he_normal(),

 kernel_initializer=he_normal(),

 kernel_regularizer=None,

 dropout_rate=None,

 **kwargs,

):

 self.hidden_layers_sizes = hidden_layers_sizes

 self.kernel_regularizer = kernel_regularizer

 self.kernel_initializer = kernel_initializer

 self.bias_initializer = bias_initializer

 self.dropout_rate = dropout_rate

 super(DeepBnReluDrop, self).__init__(**kwargs)

 # Layers

 def call(self, inputs, **kwargs):

 x = inputs

 x = self.dense(inputs)

 if self.dropout_rate is not None:

 x = self.dropout(x)

 x = self.relu(x)

 x = self.bn(x)

 return x

 def build(self, input_shape):

 self.dense = Dense(self.hidden_layers_sizes,

 kernel_initializer=self.kernel_initializer,

 bias_initializer=self.bias_initializer,

 kernel_regularizer=self.kernel_regularizer,

 name='Dense')

 self.bn = BatchNormalization()

 self.relu = Activation('relu')

 if self.dropout_rate is not None:

 self.dropout = Dropout(rate=self.dropout_rate)

 super(DeepBnReluDrop, self).build(input_shape)

class ResBlock(Layer):

 def __init__(self,

 hidden_layers_sizes,

 bias_initializer=he_normal(),

 kernel_initializer=he_normal(),

 kernel_regularizer=None,

 dropout_rate=None,

 **kwargs,

):

 self.version = 'v0'

 self.hidden_layers_sizes = hidden_layers_sizes

12

 self.kernel_regularizer = kernel_regularizer

 self.kernel_initializer = kernel_initializer

 self.bias_initializer = bias_initializer

 self.dropout_rate = dropout_rate

 super(ResBlock, self).__init__(**kwargs)

 # Layers

 def call(self, inputs, **kwargs):

 x = inputs

 if self.version == 'v0':

 # # pre-activation

 # bn1 = self.bn(x)

 # relu = self.relu(bn1)

 dense1 = self.dense(x)

 relu2 = self.relu(dense1)

 bn2 = self.bn(relu2)

 else:

 raise NotImplementedError('%s is currently not supported' %

self.version)

 # x = self.dense(x)

 # if self.dropout_rate is not None:

 # x = self.dropout(x)

 # skip connections

 skip = Add()([bn2, inputs])

 return skip

 def build(self, input_shape):

 self.dense = Dense(self.hidden_layers_sizes,

 kernel_initializer=self.kernel_initializer,

 bias_initializer=self.bias_initializer,

 kernel_regularizer=self.kernel_regularizer,

 name='Dense')

 self.bn = BatchNormalization()

 self.relu = Activation('relu')

 if self.dropout_rate is not None:

 self.dropout = Dropout(rate=self.dropout_rate)

 super(ResBlock, self).build(input_shape)

class nnet_rpsplinesEstimator(BaseEstimator):

 class RPSplineModel(Model):

 def __init__(self,

 inputshape=None,

 anc_inputshape=None,

 Estimator=None,

 **kwargs):

 super(nnet_rpsplinesEstimator.RPSplineModel, self).__init__(**kwargs)

 self.est = Estimator

 self.inputshape = inputshape

 self.anc_inputshape = anc_inputshape

 # Layers:

 self.HiddenLayer = ResBlock(self.est.hidden_layers_sizes,

 kernel_initializer=he_normal(),

 bias_initializer=he_normal(),

 dropout_rate=self.est.dropout_rate,

kernel_regularizer=self.est.kernel_regularizer,

 name='DeepBeta')

 self.InputLayer = DeepBnReluDrop(self.est.hidden_layers_sizes,

 kernel_initializer=he_normal(),

 bias_initializer=he_normal(),

13

 dropout_rate=self.est.dropout_rate,

kernel_regularizer=self.est.kernel_regularizer,

 name='InputDense')

 self.AncHiddenLayers = ResBlock(

 self.est.anc_hidden_layers_sizes,

 dropout_rate=self.est.dropout_rate,

 bias_initializer=he_normal(),

 kernel_regularizer=self.est.kernel_regularizer,

 name='DeepGamma')

 self.Betax = Dense(1,

 kernel_initializer=he_normal(),

 bias_initializer=he_normal(),

 use_bias=True,

 kernel_regularizer=self.est.kernel_regularizer,

 name='Betax',

 trainable=True)

 # self.Beta0 = BiasLayer(units=1, name='Beta0')

 self.GammaLayer = FinalLayerGamma(

 self.est.int_knots_number,

 self.est.flexgamma,

 kernel_regularizer=self.est.kernel_regularizer,

 name='Gamma')

 self.OutputLayer = Concatenate(name='Output')

 # def build(self, input_shape):

 # self.inputshape = input_shape

 #

super(nnet_rpsplinesEstimator.RPSplineModel,self).build(input_shape)

 def call(self, inputs, **kwargs):

 inp = inputs

 if isinstance(inputs, list):

 inp, anc_inp = inputs

 else:

 if self.est.anc_input:

 raise AssertionError('If anc_input version is run, anc input

needs to be given along inp.')

 current_layer = inp

 deep_layers = []

 # input layer

 if self.est.hiddenlayers > 0:

 deep_layers.append(self.InputLayer(current_layer))

 # hidden layers

 for j in range(1, self.est.hiddenlayers):

 deep_layers.append(self.HiddenLayer(deep_layers[-1]))

 # Final Beta layer

 betax_layer = self.Betax(deep_layers[-1])

 final_beta_layer = betax_layer # Add()([betax_layer,

self.Beta0(current_layer)])

 if self.est.flexgamma:

 # model shape of spline explicitely

 gamma_layer = self.GammaLayer(deep_layers[-1])

 else:

 gamma_layer = self.GammaLayer(current_layer)

 concat = self.OutputLayer([final_beta_layer, gamma_layer])

 return concat

 def __init__(self,

 conf,

14

 loss='aranda_ordaz',

 arandaordaz_c=0,

 l1_ratio=1,

 penalizer=0,

 learning_rate=1e-3,

 batch_size=1024,

 dropout=False,

 epochs=10000,

 earlystopping=True,

 train_ratio=0.8,

 int_knots_number=1,

 flexgamma=False,

 hidden_layers_sizes=10,

 hiddenlayers=1,

 anc_hidden_layers_sizes=2,

 anc_hiddenlayers=1,

 scale=12,

 random_state=None,

 neg_dsdx_penalizer=1e4,

 verbose=0,

 debug=True,

):

 # config general

 self.verbose = verbose

 self.debug = debug

 self.event_times_ = conf.eval_times

 self.conf = conf

 # training

 self.learning_rate = learning_rate

 self.batchsize = int(batch_size)

 self.epochs = epochs

 # early stopping

 self.earlystopping = earlystopping

 self.train_ratio = train_ratio # ratio of used train/(train + val)

 # model specific

 self.loss = loss

 # model specific

 self.loss = loss

 self.arandaordaz_c = np.float32(arandaordaz_c) if not

isinstance(arandaordaz_c, np.float32) else arandaordaz_c

 # 0 = hazard scale, 1 = logit scale

 self.scale = scale # scale factor for time

 self.int_knots_number = int_knots_number # internal knots -> k + 2 total

 self.hidden_layers_sizes = hidden_layers_sizes # size of hidden layer

 self.hiddenlayers = hiddenlayers # depth of hidden layer

 self.flexgamma = flexgamma # model gamma params also?

 self.anc_input = False

 self.anc_hidden_layers_sizes = anc_hidden_layers_sizes

 self.anc_hiddenlayers = anc_hiddenlayers

 self.univariate_prefitting = False

 # penalization

 self.penalizer = penalizer

 self.l1_ratio = l1_ratio

 if dropout:

 self.kernel_regularizer = None

 self.dropout_rate = penalizer

 else:

 self.dropout_rate = None

 self.l1_ratio = l1_ratio

15

 self.kernel_regularizer = l1_l2(l1=self.penalizer * self.l1_ratio,

l2=self.penalizer * (1 - self.l1_ratio))

 self.neg_dsdx_penalizer = neg_dsdx_penalizer

 # init model, train set,

 self.model = None

 self.y_train = None

 self.y_train_uncensored = None

 def __enter__(self,):

 return self

 def __exit__(self, *err):

 # self.sess.close()

 return False

 def GetRPSplineModel(self, X_train=None, y_train=None, Ancillary_X=None,

 training_X=None,

):

 """

 y_train needed for knot placement

 y_train should be numpy array shaped (n_samples, 2)

 with first field binary event indicator, second field time of

censoring/event

 float type needed

 """

 inp = Input((X_train.shape[-1],), name='Input')

 if self.anc_input:

 anc_inp = Input((Ancillary_X.shape[-1],), name='AncillaryInput')

 inp_list = [inp, anc_inp]

 else:

 inp_list = inp

 out = self.RPSplineModel(Estimator=self,)(inp_list)

 model = Model(inputs=inp_list, outputs=out)

 # get knot placement

 kint, kmin, kmax = get_knots(self.int_knots_number, y_train,)

 self.kint, self.kmin, self.kmax = kint, kmin, kmax

 # get negative likelihood loss

 nll_loss = nll(self.int_knots_number, y_train, kint, kmin, kmax,

 loss=self.loss, arandaordaz_c=self.arandaordaz_c,

 negative_dsdx_penalizer=self.neg_dsdx_penalizer,

 scale_loss=1.)

 # get additional metric to monitor monotonicity penalty

 penalty_metric = nll(self.int_knots_number, y_train, kint, kmin, kmax,

 loss='dsdx_penalty',

negative_dsdx_penalizer=self.neg_dsdx_penalizer * 100,

 scale_loss=1.)

 # compile model and init splines to be monotonically

 # increasing high lr is wanted for a quick overshoot across zero

 model.compile(loss=penalty_metric,

 metrics=[penalty_metric],

 optimizer=Adam(lr=0.3))

 # model.build((None, X_train.shape[-1],))

 # callbacks = [EarlyStopping(monitor='loss', patience=5),

 #]

 # init spline to be monotonically increasing given the data

 if not np.array(penalty_metric(tf.convert_to_tensor(y_train),

model(training_X)) == 0.0).item():

 lowest_loss = np.inf

16

 thresh = 1e-6

 patience = 1

 patience_step = 0

 for step in range(self.epochs):

 with tf.GradientTape() as tape:

 y_pred = model(training_X)

 loss = model.compiled_loss(tf.convert_to_tensor(y_train),

y_pred)

 if self.verbose > 0:

 print('Epoch:', step, 'loss:', loss)

 # stop when monotonical spline is there

 if loss < thresh:

 break

 # # early stopping

 # if (lowest_loss - loss) < thresh:

 # patience_step += 1

 # if patience_step >= patience:

 # break

 # else:

 # lowest_loss = loss

 # patience_step = 0

 gradients = tape.gradient(loss, model.trainable_variables)

 model.optimizer.apply_gradients(zip(gradients,

model.trainable_variables))

 # get layers for later processing

 b_spline_model = [str(var.name).find("spline_model") >= 0 for var in

model.layers]

 spline_model = list(compress(model.layers, b_spline_model))[0]

 # search beta_layers

 b_beta = [str(var.name).find("Betax") >= 0 for var in spline_model.layers]

 betax = list(compress(spline_model.layers, b_beta))[0]

 # b_beta0 = [str(var.name).find("Beta0") >= 0 for var in

spline_model.layers]

 # beta0 = list(compress(spline_model.layers, b_beta0))[0]

 b_deepbeta = [str(var.name).find("DeepBeta") >= 0 for var in

spline_model.layers]

 deepbeta = list(compress(spline_model.layers, b_deepbeta))

 # search gamma layers

 b_gamma = [str(var.name) == "Gamma" for var in spline_model.layers]

 gamma = list(compress(spline_model.layers, b_gamma))[0]

 b_deepgamma = [str(var.name).find("DeepGamma") >= 0 for var in

spline_model.layers]

 deepgamma = list(compress(spline_model.layers, b_deepgamma))

 layers_dict = {'betax': betax,

 # 'beta0': beta0,

 'deepbeta': deepbeta,

 'deepgamma': deepgamma,

 'gamma': gamma}

 model.compile(loss=nll_loss,

 metrics=[penalty_metric],

 optimizer=Adam(lr=self.learning_rate))

 if self.verbose > 0:

 model.summary()

 loss_metric = dict(nll_loss=nll_loss, penalty_metric=penalty_metric)

 return model, layers_dict, loss_metric

 @tf.autograph.experimental.do_not_convert

 def fit(self, X, y, anc_X=None):

 # prepare y data

 event = y['dead'].copy().astype(np.float32)

 time = y['time'].copy().astype(np.float32) * self.scale

 y_train = np.stack([event, time], axis=-1)

17

 # ancillary df

 if anc_X is None:

 anc_X = X

 # init model

 # if earlystopping == early stopping with val_loss, else 'loss'

 if self.earlystopping:

 self.epochs = 10000

 X_train, X_val, y_train, y_val, anc_X_train, anc_X_val =

train_test_split(

 X, y_train, anc_X,

 shuffle=True, train_size=self.train_ratio,)

 callbacks = [EarlyStopping(monitor='val_loss', patience=10,

restore_best_weights=True),

 # LossHistory(logpath=self.conf.job_dir + "logs/"),

]

 if self.anc_input:

 training_X = {'Input': X_train, 'AncillaryInput': anc_X_train}

 val_X = {'Input': X_val, 'AncillaryInput': anc_X_val}

 else:

 training_X = {'Input': X_train}

 val_X = {'Input': X_val}

 self.model, self.layers_dict, self.loss_metric =

self.GetRPSplineModel(X_train,

y_train,

anc_X_train,

training_X)

 if self.univariate_prefitting:

 # init spline by univariate regression before real training

 if self.verbose > 0:

 print("Prefitting")

 print("weights:", len(self.layers_dict['gamma'].weights))

 print("trainable_weights:",

len(self.layers_dict['gamma'].trainable_weights))

 print("non_trainable_weights:",

len(self.layers_dict['gamma'].non_trainable_weights))

 for layer in chain([self.layers_dict['betax']],

self.layers_dict['deepbeta'],

 self.layers_dict['deepgamma']):

 layer.trainable = False

 self.model.compile(loss=self.loss_metric['nll_loss'],

 metrics=[self.loss_metric['penalty_metric']],

 optimizer=Adam(lr=self.learning_rate),

)

 self.model.fit(training_X,

 y_train,

 callbacks=callbacks,

 epochs=self.epochs,

 verbose=self.verbose,

 validation_data=(val_X, y_val),

)

 for layer in chain([self.layers_dict['betax']],

self.layers_dict['deepbeta'],

 self.layers_dict['deepgamma']):

 layer.trainable = True

 self.layers_dict['gamma'].trainable = True

 else:

 self.layers_dict['gamma'].trainable = True

18

 self.debug = False

 if self.debug:

 # custom fit loop

 model = self.model

 y_train_tf = tf.convert_to_tensor(y_train)

 old_loss = np.inf

 step = 0

 for step in range(self.epochs):

 with tf.GradientTape() as tape:

 # tape.watch(model.trainable_variables[-1])

 y_pred = model(training_X)

 loss = model.compiled_loss(y_train_tf, y_pred)

 print('Epoch:', step, 'loss:', loss)

 # early stopping

 # if old_loss - loss < 0.001:

 # break

 old_loss = loss

 gradients = tape.gradient(loss, model.trainable_variables)

 model.optimizer.apply_gradients(zip(gradients,

model.trainable_variables))

 self.model.fit(training_X,

 tf.convert_to_tensor(y_train),

 callbacks=callbacks,

 epochs=self.epochs,

 validation_data=(val_X, tf.convert_to_tensor(y_val)),

 verbose=self.verbose,

 batch_size=int(self.batchsize)

)

 else:

 if self.anc_input:

 training_X = {'Input': X, 'AncillaryInput': anc_X}

 else:

 training_X = {'Input': X}

 callbacks = [EarlyStopping(monitor='loss', patience=10,

restore_best_weights=True),

 # LossHistory(logpath=self.conf.job_dir + "logs/"),

]

 self.model, self.layers_dict, self.loss_metric =

self.GetRPSplineModel(X,

y_train,

anc_X,

training_X)

 self.model.fit(training_X,

 y_train,

 callbacks=callbacks,

 epochs=self.epochs,

 verbose=self.verbose)

 # print(self.model.summary())

 self.y_train = y_train

 self.y_train_uncensored = y_train[y_train[:, 0] == 1.]

 self.event_times_ = np.sort(y_train[:, 1][y_train[:, 0] == 1.])

 def predict(self, X):

 """Predict risk score.

19

 Parameters

 X : array-like, shape = (n_samples, n_features)

 Data matrix.

 Returns

 risk_scores : ndarray, shape = (n_samples,)

 Predicted risk scores.

 """

 estimate = self.predict_survival_function(X)

 # estimate_t=estimate['y'][estimate['x']<=self.conf.brier_t]

 ind = np.argmin(estimate['x'][estimate['x'] >= self.conf.brier_t], axis=0)

 return -estimate['y'][:, ind]

 def _predict(self, X):

 try:

 beta_X, anc_X = X

 return self.model.predict([beta_X, anc_X], batch_size=self.batchsize,

verbose=0)

 except ValueError as e:

 # print(e)

 return self.model.predict(X, batch_size=self.batchsize, verbose=0)

 except Exception as er:

 print(er)

 raise er

 @tf.function

 def _eta(self, y_pred):

 kint, kmin, kmax = self.kint, self.kmin, self.kmax

 k2m = tf.expand_dims(kint, axis=0)

 lambda_j = (kmax - k2m) / (kmax - kmin)

 mlambda_j = tf.constant(1.0) - lambda_j

 def sxgamma(x, gamma):

 theta2m = tf.math.accumulate_n(

 [tf.math.pow(K.relu(tf.subtract(x, k2m)), 3),

 -tf.multiply(lambda_j, tf.math.pow(K.relu(tf.subtract(x, kmin)),

3)),

 -tf.multiply(mlambda_j, tf.math.pow(K.relu(tf.subtract(x, kmax)),

3)),]

)

 ret = tf.math.multiply(gamma[:, 0:1], tf.transpose(x)) + tf.matmul(

 gamma[:, 1:], tf.transpose(theta2m), name='dot')

 return ret

 beta = tf.expand_dims(y_pred[:, 0], 1)

 gamma = y_pred[:, 1:]

 t = tf.convert_to_tensor(self.event_times_, dtype=tf.float32)

 # self.event_times_ = t

 x = tf.expand_dims(K.log(t), 1)

 eta = beta + sxgamma(x, gamma)

 return eta

 # @tf.function

 def _aranda_ordaz_link(self, X):

 eta = self._eta(self._predict(X))

 c = self.arandaordaz_c

 def inv_logit_link():

 return tf.math.sigmoid(-eta)

 def inv_log_log_link():

 return tf.math.exp(-tf.math.exp(eta))

20

 def inv_aranda_ordaz_link():

 return tf.math.pow(1 + (c * tf.math.exp(eta)), -1 / c)

 return tf.cond(tf.constant(c == 1, dtype=tf.bool),

 inv_logit_link, # logit link

 lambda: tf.cond(tf.constant(c == 0, dtype=tf.bool),

 inv_log_log_link, # log log

 inv_aranda_ordaz_link, # aranda-ordaz

))

 def _predict_survival_function_y(self, X):

 return self._aranda_ordaz_link(X)

 # cumhaz = self._cumhaz(self._predict(X))# tf 2.

 # return np.exp(-np.array(cumhaz))

 def predict_survival_function(self, X):

 """Predict survival function.

 predicts survival function at breaks timepoints.

 Parameters

 X : array-like, shape = (n_samples, n_features)

 Data matrix.

 Returns

 survival : ndarray, shape = (n_samples, n_event_times)

 Predicted survival functions.

 """

 try:

 beta_X, anc_X = X

 survival_fcn = np.zeros((beta_X.shape[0],

 self.event_times_.shape[0]),

 dtype=[('x', 'float64'), ('y', 'float64')])

 shape = X.shape[0]

 except ValueError as e:

 repr(e)

 survival_fcn = np.zeros((X.shape[0],

 self.event_times_.shape[0]),

 dtype=[('x', 'float64'), ('y', 'float64')])

 shape = X.shape[0]

 if self.anc_input:

 X = (X, X)

 survival_fcn['x'] = np.tile(self.event_times_, (shape, 1)) / self.scale

 survival_fcn['y'] = self._predict_survival_function_y(X)

 return survival_fcn.copy()

21

8.3 Source code of the Tensorflow 2 Implementation of ‘nnet-survival’

-*- coding: utf-8 -*-

"""

Created on Wed Apr 8 16:05:23 2020

@author: Fabian

Based on

"""

from sklearn.base import BaseEstimator

from sklearn.model_selection import train_test_split

from sksurv.util import check_y_survival

import numpy as np

Model

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Layer

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Input, Dense, Dropout, Activation,

BatchNormalization

from tensorflow.keras.regularizers import l1_l2

training

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback,

LearningRateScheduler

from tensorflow.keras.optimizers import Adam

Utilities from M Gensheimer's nnet-survival

def surv_likelihood(n_intervals):

 """Create custom Keras loss function for neural network survival model.

 Arguments

 n_intervals: the number of survival time intervals

 Returns

 Custom loss function that can be used with Keras

 """

 def loss(y_true, y_pred):

 """

 Required to have only 2 arguments by Keras.

 Arguments

 y_true: Tensor.

 First half of the values is 1 if individual survived that interval, 0 if

not.

 Second half of the values is for individuals who failed, and is 1 for

time interval during which failure

 occured, 0 for other intervals.

 See make_surv_array function.

 y_pred: Tensor, predicted survival probability (1-hazard probability) for

each time interval.

 Returns

 Vector of losses for this minibatch.

 """

 cens_uncens = 1. + y_true[:, 0:n_intervals] * (y_pred - 1.) # component

for all individuals

 uncens = 1. - y_true[:, n_intervals:2 * n_intervals] * y_pred # component

for only uncensored individuals

 return K.sum(-K.log(K.clip(K.concatenate((cens_uncens, uncens)),

K.epsilon(), None)),

22

 axis=-1) # return -log likelihood

 return loss

def surv_likelihood_rnn(n_intervals):

 """

 Create custom Keras loss function for neural network survival model. Used for

recurrent neural networks with

 time-distributed output.

 This function is very similar to surv_likelihood but deals with the extra

dimension of y_true and y_pred that

 exists because of the time-distributed output.

 """

 def loss(y_true, y_pred):

 cens_uncens = 1. + y_true[0, :, 0:n_intervals] * (y_pred - 1.) # component

for all patients

 uncens = 1. - y_true[0, :, n_intervals:2 * n_intervals] * y_pred #

component for only uncensored patients

 return K.sum(-K.log(K.clip(K.concatenate((cens_uncens, uncens)),

K.epsilon(), None)),

 axis=-1) # return -log likelihood

 return loss

def make_surv_array(t, f, breaks):

 """Transforms censored survival data into vector format that can be used in

Keras.

 Arguments

 t: Array of failure/censoring times.

 f: Censoring indicator. 1 if failed, 0 if censored.

 breaks: Locations of breaks between time intervals for discrete-time

survival model (always includes 0)

 Returns

 Two-dimensional array of survival data, dimensions are number of

individuals X number of time intervals*2

 """

 n_samples = t.shape[0]

 n_intervals = len(breaks) - 1

 timegap = breaks[1:] - breaks[:-1]

 breaks_midpoint = breaks[:-1] + 0.5 * timegap

 y_train = np.zeros((n_samples, n_intervals * 2))

 for i in range(n_samples):

 if f[i]: # if failed (not censored)

 y_train[i, 0:n_intervals] = 1.0 * (t[i] >= breaks[1:])

 # give credit for surviving each time interval where failure time >=

upper limit

 if t[i] < breaks[-1]:

 # if failure time is greater than end of last time interval, no

time interval will have failure marked

 y_train[i, n_intervals + np.where(t[i] < breaks[1:])[0][

 0]] = 1 # mark failure at first bin where survival time <

upper break-point

 else: # if censored

 y_train[i, 0:n_intervals] = 1.0 * (t[i] >= breaks_midpoint)

 # if censored and lived more than half-way through interval, give

credit for surviving the interval.

 return y_train

def nnet_pred_surv(y_pred, breaks, fu_time):

 # Predicted survival probability from Nnet-survival model

 # Inputs are Numpy arrays.

 # y_pred: Rectangular array, each individual's conditional probability of

23

surviving each time interval

 # breaks: Break-points for time intervals used for Nnet-survival model,

starting with 0

 # fu_time: Follow-up time point at which predictions are needed

 #

 # Returns: predicted survival probability for each individual at specified

follow-up time

 y_pred = np.cumprod(y_pred, axis=1)

 pred_surv = []

 for i in range(y_pred.shape[0]):

 pred_surv.append(np.interp(fu_time, breaks[1:], y_pred[i, :]))

 return np.array(pred_surv)

class PropHazards(Layer):

 def __init__(self, output_dim, **kwargs):

 self.output_dim = output_dim

 super(PropHazards, self).__init__(**kwargs)

 def build(self, input_shape):

 # Create a trainable weight variable for this layer.

 self.kernel = self.add_weight(name='kernel',

 shape=(1, self.output_dim),

 # initializer='uniform',

 initializer='zeros',

 trainable=True)

 super(PropHazards, self).build(input_shape) # Be sure to call this

somewhere!

 def call(self, x):

 # The conditional probability of surviving each time interval (given that

has survived to beginning of interval)

 # is affected by the input data according to eq. 18.13 in Harrell F.,

 # Regression Modeling Strategies 2nd ed. (available free online)

 return K.pow(K.sigmoid(self.kernel), K.exp(x))

 def compute_output_shape(self, input_shape):

 return (input_shape[0], self.output_dim)

class SurvivalFcn:

 def __init__(self,

 x,

 y,

):

 self.x = x

 self.y = y

class NnetSurvivalEstimator(BaseEstimator):

 """

 scikit learn style wrapper for the Gensheimer's nnet-survival Neural network

for survival data

 """

 def __init__(self,

 conf,

 l1_ratio=1,

 penalizer=0,

 learning_rate=1e-3,

 dropout=False,

 prophazard=False,

 epochs=10000,

 earlystopping=True,

 train_ratio=0.8,

24

 hidden_layers_sizes=10,

 hiddenlayers=1,

 batch_size=256,

 breaks=None,

 random_state=None,

):

 # config general

 if breaks is None:

 if hasattr(conf, 'breaks'):

 self.event_times_ = conf.breaks[1:]

 else:

 self.default_breaks_per_event_ = 10

 self.event_times_ = None

 else:

 self.event_times_ = breaks

 self.conf = conf

 self.learning_rate = learning_rate

 self.batchsize = batch_size

 self.epochs = epochs

 # early stopping

 self.earlystopping = True

 self.train_ratio = train_ratio

 # model specific

 self.hidden_layers_sizes = hidden_layers_sizes

 self.prophazard = prophazard

 self.hiddenlayers = hiddenlayers

 self.penalizer = penalizer

 self.l1_ratio = l1_ratio

 if dropout:

 self.kernel_regularizer = None

 self.dropout_rate = penalizer

 else:

 self.dropout_rate = None

 self.l1_ratio = l1_ratio

 self.kernel_regularizer = l1_l2(l1=self.penalizer * self.l1_ratio,

l2=self.penalizer * (1 - self.l1_ratio))

 self.model = None # Keras Model

 def GetDenseModel(self,):

 n_intervals = len(self.event_times_) - 1

 model = Sequential()

 # hidden layers:

 for j in range(self.hiddenlayers):

 model.add(Dense(self.hidden_layers_sizes,

 bias_initializer='zeros',

 kernel_regularizer=self.kernel_regularizer,

)

)

 model.add(BatchNormalization())

 model.add(Activation('relu'))

 # dropout layer

 if self.dropout_rate is not None:

 model.add(Dropout(rate=self.dropout_rate))

 # discrete time interval odds and probability:

 if self.prophazard:

 model.add(Dense(1, use_bias=0, kernel_initializer='zeros'))

 model.add(PropHazards(n_intervals))

 # flexible non-propotional hazard model.

 else:

 model.add(Dense(n_intervals))

 model.add(Activation('sigmoid'))

 model.compile(loss=surv_likelihood(n_intervals),

 optimizer=Adam(lr=self.learning_rate))

25

 return model

 def fit(self, X, y,):

 # prepare y data

 event, time = check_y_survival(y)

 # get event_times_ from train dataset

 if self.event_times_ is None:

 no_breaks = int(round(np.count_nonzero(event) /

self.default_breaks_per_event_))

 self.event_times_ = np.linspace(time[event].min(), time[event].max(),

no_breaks)

 y_train = make_surv_array(time, event, self.event_times_)

 # get Keras model

 self.model = self.GetDenseModel()

 # prepare callbacks

 if self.earlystopping:

 self.epochs = 10000

 X_train, X_val, y_train, y_val = train_test_split(X, y_train,

shuffle=True, train_size=self.train_ratio,)

 callbacks = [EarlyStopping(monitor='val_loss', patience=10),

]

 self.model.fit(X_train, y_train, callbacks=callbacks,

epochs=self.epochs, validation_data=(X_val, y_val),

 verbose=0)

 else:

 callbacks = [# EarlyStopping(monitor='val_loss', patience=10),

]

 self.model.fit(X, y_train, callbacks=callbacks, epochs=self.epochs,

verbose=0)

 def predict(self, X, t=None):

 """

 Predict Survival Probability at time t

 Parameters

 X : array-like, shape = (n_samples, n_features)

 Data matrix.

 t: time to predict the survival probability at

 Returns

 risk_scores : ndarray, shape = (n_samples,)

 Predicted risk scores.

 """

 estimate = self.predict_survival_function(X)

 if t is None:

 raise ValueError('You need to specify a time, at which to predict the

survival probability!')

 ind = np.argmin(estimate['x'][estimate['x'] >= t], axis=0)

 return -estimate['y'][:, ind]

 def _predict(self, X):

 return self.model.predict(X, batch_size=self.batchsize, verbose=0)

 def _predict_survival_function_y(self, X):

 return np.cumprod(self._predict(X), axis=1)

 def predict_survival_function(self, X):

26

 """Predict survival function.

 predicts survival function at breaks timepoints.

 Parameters

 X : array-like, shape = (n_samples, n_features)

 Data matrix.

 Returns

 survival : ndarray, shape = (n_samples, n_event_times)

 Predicted survival functions.

 """

 survival_fcn = np.zeros(

 (X.shape[0], self.event_times_.shape[0] - 1),

 dtype=[('x', 'float64'), ('y', 'float64')])

 survival_fcn['x'] = np.tile(self.event_times_[:-1], (X.shape[0], 1))

 survival_fcn['y'] = self._predict_survival_function_y(X)

 return survival_fcn.copy()

27

8.4 Source code of lowess-smoothed calibration plot for survival data

import matplotlib.pyplot as plt

sklearn imports

from sklearn.neighbors import KNeighborsRegressor

from sklearn.model_selection import train_test_split

from sklearn.calibration import calibration_curve as sklearncb

from sklearn.utils import check_array, check_consistent_length

scikit survival imports

from sksurv.nonparametric import CensoringDistributionEstimator,

SurvivalFunctionEstimator

from sksurv.util import check_y_survival

scikit misc

from skmisc.loess import loess

First-party

from .metrics import _interpolate_survfunc

Third-party

from moepy import lowess

from joblib import Parallel, delayed

from functools import partial

import numpy

import pandas as pd

def _calib_plot(fig, ax, fu_time, n_bins, pred_surv, time, dead,

 color, label, scatter=True,

 error_bars=0, alpha=1., markersize=1., markertype='o'):

 """

 Kaplan Meier Estimates for n_bins of predicted survival pred_surv at fu_time

plotted against mean pred_surv

 typically deciles are used, despite arbitrary choice.

 Deprecated --> better use loess based/nearest neighbor estimated plot

 """

 # TODO: exchange lifelines KaplanMeierFitter with

sksurv.nonparametric.SurvivalFunctionEstimator. Confidence interval estimation

needed in advance.

 from lifelines import KaplanMeierFitter

 import matplotlib.pyplot as plt

 # cuts = numpy.concatenate((numpy.array([-1e6]),numpy.percentile(pred_surv,

numpy.arange(100/n_bins,100,100/n_bins)),numpy.array([1e6])))

 # bin = pd.cut(pred_surv,cuts,labels=False)

 bins = pd.qcut(pred_surv, q=n_bins, retbins=True, duplicates='drop')[0]._codes

 kmf = KaplanMeierFitter()

 est = []

 ci_upper = []

 ci_lower = []

 mean_pred_surv = []

 for which_bin in range(max(bins) + 1):

 kmf.fit(time[bins == which_bin], event_observed=dead[bins == which_bin])

 est.append(numpy.interp(fu_time, kmf.survival_function_.index.values,

kmf.survival_function_.KM_estimate))

 ci_upper.append(numpy.interp(fu_time, kmf.survival_function_.index.values,

 kmf.confidence_interval_.loc[:,

'KM_estimate_upper_0.95']))

 ci_lower.append(numpy.interp(fu_time, kmf.survival_function_.index.values,

 kmf.confidence_interval_.loc[:,

'KM_estimate_lower_0.95']))

 mean_pred_surv.append(numpy.mean(pred_surv[bins == which_bin]))

 est = numpy.array(est)

 ci_upper = numpy.array(ci_upper)

 ci_lower = numpy.array(ci_lower)

28

 if error_bars:

 ax.errorbar(mean_pred_surv, est,

yerr=numpy.transpose(numpy.column_stack((est - ci_lower, ci_upper - est))),

 fmt='o',

 c=color, label=label)

 else:

 ax.plot(mean_pred_surv, est, markertype, c=color, label=label, alpha=alpha,

markersize=markersize)

 if scatter:

 actual = numpy.empty(pred_surv.shape)

 for bi in bins:

 actual[bins == bi] = est[bi]

 ax.plot(pred_surv, actual, 'o', c=color, label=label, alpha=alpha,

markersize=.5 * markersize)

 return fig, ax, (numpy.array(mean_pred_surv), est, ci_upper, ci_lower)

def _calib_plot_loess(fig, ax, fu_time,

 pred_surv, time, dead,

 color, label,

 ci=False, ci_alpha=.05, trunc=(1, 99),

 alpha=1., markersize=1., linestyle='solid',

 pseudovals=True, # wether to use Jackknife pseudovals or

not.

 loess=True,

 scatter=True,

):

 """

 plot calibration curve based on pseudovalues: est_i(t) = n * (prodlim(t)) - (n-

1) * prodlim_i(t)

 see r package prodlim https://rdrr.io/cran/prodlim/man/jackknife.html

 see also Gerds et al.,Calibration plots for risk prediction models in the

presence of competing risks., https://doi.org/10.1002/sim.6152

 Graw et al., https://doi.org/10.1007/s10985-008-9107-z

 We combined the pseudovalues approach with skmisc.loess.loess smoothing

(https://dx.doi.org/10.1002%2Fsim.5941)

 span = 0.75 (default) works good according to

https://dx.doi.org/10.1002%2Fsim.5941

 Parameters:

 * fig : plt.Figure

 matplotlib's figure object, where the plot should be plotted at

 * ax : plt.Axes

 matplotlib's axes object, where the plot should be plotted at

 * fu_time : int / float

 time for which cumulative calibration should be calculated

 * pred_surv : array, shape = (n_samples,)

 array with predicted survival probability at time t

 * time: array, shape = (n_samples,)

 array with time of event or censoring time

 * dead: array, shape = (n_samples,)

 event indicator array, True = event, False = no event

 * color: str

 color for the plot

 * label: str

29

 label of the plot

 * ci: bool

 controls, whether confidence intervals should be calculated

 * ci_alpha: float

 confidence niveau, default 0.05

 * trunc: tuple, type int / float

 truncate pred_surv at `trunc[0/1]`'th percentiles.

 * alpha: float

 alpha transluicency for plot

 * markersize: float

 markersize for pyplot

 * markertype: str

 type of marker used by matplotlib.pyplot, default '-' = line

 * loess: bool

 use loess smoother, if false (not recommended, as not tested) use k nearest

neighbors.

 * scatter: bool

 plot (pseudo)values as scatter plot as well (for debugging)

 Returns:

 * s_pred_surv: array, shape = (n_samples*)

 random subsample (only if n_samples >30000) of predicted survival

probability array at fu_time

 * actual: array, shape = (n_samples*)

 loess smoothed actual survival probability for each reduced sample

 * ci_lower:array, array, shape = (n_samples*)

 lower confidence limit if ci= True, otherwise ci_lower equals actual

 * ci_upper:array, array, shape = (n_samples*)

 upper confidence limit if ci= True, otherwise ci_lower equals actual

 Example:

 """

 est = numpy.zeros(pred_surv.shape)

 # get jacknife pseudovals for whole population if internal validation

 # get jacknife pseudovals for one complete sample in case of repeated CV.

 if pseudovals:

 est = _jacknife(fu_time, time, dead)

 else:

 est = 1 - dead

 # sort predicted probability of survival

 order = numpy.argsort(pred_surv)

 est_ord = est[order]

 pred_surv_ord = pred_surv[order]

 # Truncate pred_surv_ord at trunc[0/1]

 trunc_ind = numpy.logical_and(pred_surv_ord >= numpy.percentile(pred_surv_ord,

trunc[0]),

 pred_surv_ord <=

numpy.percentile(pred_surv_ord, trunc[1]))

 pred_surv_ord = pred_surv_ord[trunc_ind]

 est_ord = est_ord[trunc_ind]

30

 # fit lowess

 fig, ax = _loess_smoothed_plot(y_plot=est_ord, x_plot=pred_surv_ord,

 fig=fig, ax=ax,

 ci_alpha=ci_alpha,

 plot_ci=ci,

 markersize=markersize,

 linestyle=linestyle,

 alpha=alpha,

 color=color,

 label=label)

 return fig, ax

def _jacknife(fu_time, time, dead, verbose=True):

 """

 calc pseudovalues according to TA Gerds

 https://rdrr.io/cran/prodlim/man/jackknife.html

 """

 # TODO: exchange lifelines KaplanMeierFitter with sksurv.nonparametric kaplan

meier estimator.

 from sklearn.model_selection import LeaveOneOut

 from lifelines import KaplanMeierFitter

 import time as t

 import sys

 # generate pseudovalues

 llo = LeaveOneOut()

 kmf = KaplanMeierFitter()

 kmf.fit(time, event_observed=dead)

 kme = numpy.interp(fu_time, kmf.survival_function_.index.values,

 kmf.survival_function_.KM_estimate) # linear interpolation

 pseudovals = []

 def get_pseudoval(train_index, test_index, kme=None):

 kmfi = KaplanMeierFitter()

 kmfi.fit(time[train_index], event_observed=dead[train_index])

 kmei = numpy.interp(fu_time, kmfi.survival_function_.index.values,

 kmfi.survival_function_.KM_estimate) # linear

interpolation

 return (time.shape[0] * kme) - ((time.shape[0] - 1) * kmei)

 print('start')

 start = t.time()

 with Parallel(n_jobs=8, backend='loky') as parallel:

 get_pseudoval_kme = partial(get_pseudoval, **{'kme': kme})

 # runs = [(train_index, test_index) for train_index, test_index in

llo.split(time)]

 res = parallel(delayed(get_pseudoval_kme)(train_index, test_index,)

 for train_index, test_index in llo.split(time))

 pseudovals.append(res)

 print('finished in %s secs' % '{:6.1f}'.format(t.time() - start))

 return numpy.array(pseudovals).squeeze()

def _loess_smoothed_plot(x_plot, y_plot,

 fig, ax,

 color='#377eb8',

 label="Loess-smoothed curve",

 alpha=0.7,

 linestyle='solid',

 markersize=2.,

 ci_alpha=.05,

 plot_ci: bool = False,

):

 lowess_fitter = lowess.Lowess()

 lowess_fitter.fit(x_plot, y_plot, frac=0.75, robust_iters=1)

31

 x_pred = numpy.linspace(x_plot.min(), x_plot.max(), 1000)

 y_pred = lowess_fitter.predict(x_pred)

 ax.plot(x_pred, y_pred, c=color, label=label, alpha=alpha,

markersize=markersize,

 linestyle=linestyle)

 if plot_ci:

 df_quantiles = lowess.quantile_model(x_plot, y_plot, frac=0., num_fits=100,

 qs=[ci_alpha / 2, 1 - (ci_alpha / 2)],

 robust_iters=1)

 ax.fill_between(df_quantiles.index, df_quantiles[ci_alpha / 2],

df_quantiles[1 - (ci_alpha / 2)],

 edgecolor=color, facecolor=color, alpha=0.5 * alpha,

 antialiased=True)

 return fig, ax

def calibration_curve(survival_train, survival_test, estimate, times,

 fu_time,

 fig=None, ax=None,

 n_bins=10,

 my_alpha=0.7,

 my_markersize=4.,

 color='#377eb8',

 label='Actual versus predicted survival probability with 95%

CI',

 ci=True,

 ci_alpha=.05,

 pseudovals=True,

 loess=True,

 internal_validation=True,

 scatter=False,

):

 """

 A calibration plot based on pseudovalues (pseudovals = True):

 A product limit estimator (Kaplan-Meier) is used to generate a jackknife

pseudo-value

 for the i'th observation, by calculating the product limit estimate for

 a n-1 subsample without the i'th observation.

 Pseudovalues are then calculated by:

 est_i(t) = n * (prodlim(t)) - (n-1) * prodlim_i(t)

 where prodlim is the KM estimate for the whole sample and prodlim_i is the

 one applied to the subsample without i'th observation.

 see r package prodlim https://rdrr.io/cran/prodlim/man/jackknife.html

 see also Gerds et al.,Calibration plots for risk prediction models in the

presence of competing risks., https://doi.org/10.1002/sim.6152

 Graw et al., https://doi.org/10.1007/s10985-008-9107-z

 We combined the pseudovalues approach with loess smoothing

(https://dx.doi.org/10.1002%2Fsim.5941)

 Note: span = 0.75 (default) works good according to

https://dx.doi.org/10.1002%2Fsim.5941

 Parameters:

 survival_train : structured array, shape = (n_train_samples,)

 Survival times for training data to estimate if training

 and testing data are drawn from same sample.

 Set internal_validation to True in this case.

 Otherwise, use surival_test again as input.

 A structured array containing the binary event indicator

 as first field, and time of event or time of censoring as

 second field.

32

 survival_test : structured array, shape = (n_samples,)

 Survival times of test data.

 A structured array containing the binary event indicator

 as first field, and time of event or time of censoring as

 second field.

 estimate : array-like, shape = (n_samples,n_times)

 Estimated risk of experiencing an event for test data at `times`.

 times : array-like, shape = (n_times,)

 The time points for which the predicted Survival function

 is calculated and interpolation for a specific follow-up-time

 is calculated. Values must be

 within the range of follow-up times of the test data

 `survival_test`.

 fu_time : float,

 The timepoint for which the calibration curve should be plotted.

 * fig : plt.Figure

 matplotlib's figure object, where the plot should be plotted at

 * ax : plt.Axes

 matplotlib's axes object, where the plot should be plotted at

 * color: str

 color for the plot

 * label: str

 label of the plot

 * trunc: int / float

 truncate pred_surv at trunc'th percentile.

 * my_alpha: float

 alpha transluicency for plot

 * my_markersize: float

 markersize for pyplot

 * ci: bool

 controls, whether confidence intervals should be calculated

 * ci_alpha: float

 confidence niveau, default 0.05

 * loess: bool

 use loess smoothing (recommended) or k nearest neighbors regression?

 * pseudovals: bool

 controls, whether pseudovals or binning approach should be used.

 * internal_validation: bool

 survival_train and survival_test are considered as beeing drawn

 from same sample and are both used for calculation of Kaplan-Meier-

estimates

 Returns:

 * fig, ax: tuple

 Figure and Axes object, where the curve is plotted at

 Example:

 @TODO: give a MWE.

 """

 # check fig, ax obj

33

 if fig is None or ax is None:

 fig, ax = plt.subplots()

 # check survival arrays for test_data

 test_event, test_time = check_y_survival(survival_test)

 train_event, train_time = check_y_survival(survival_train)

 times = check_array(numpy.atleast_1d(times), ensure_2d=False,

dtype=test_time.dtype)

 if internal_validation:

 test_time_traintest = numpy.concatenate(test_time, train_time)

 test_event_traintest = numpy.concatenate(test_event, train_event)

 else:

 test_time_traintest = train_time

 test_event_traintest = train_event

 # interpolate predicted survival at fu_time.

 # pred_surv = _interpolate_survfunc(times, fu_time, estimate,)

 pred_surv = estimate

 # sort by pred_surv in ascending order

 order = numpy.argsort(pred_surv)

 pred_surv = pred_surv[order]

 test_time = test_time[order]

 test_event = test_event[order]

 # test_time_traintest = test_time_traintest[order]

 # test_event_traintest = test_event_traintest[order]

 if numpy.greater(test_time[~test_event], fu_time).all(): # greater to allow

for day-wise (minor) interval-censoring

 print('No right-censoring at fu_time (%s) --> no jacknife pseudovalues are

used' % '{:3d}'.format(fu_time))

 pseudovals = False

 if loess: # use pseudovals approach with loess smoothing

 fig, ax = _calib_plot_loess(fig, ax, fu_time,

 pred_surv, test_time, test_event,

 test_time_traintest, test_event_traintest,

 color=color,

 label=label,

 ci=ci,

 alpha=my_alpha,

 45 markersize=my_markersize,

 markertype='-',

 loess=loess,

 pseudovals=pseudovals,

 scatter=scatter,)

 else: # use traditional binning (visual analog to Hosmer-Lemshaw-test)

 fig, ax, (pred, actual, ci_upper, ci_lower) = _calib_plot(fig, ax, fu_time,

n_bins,

 pred_surv,

test_time, test_event,

 color=color,

 label=label,

 error_bars=ci,

 alpha=my_alpha,

markersize=my_markersize,

 markertype='-')

 return fig, ax

34

9 Appendix B

35

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbständig verfasst und

keine anderen als die angegebenen Hilfsmittel benutzt habe.

Die Dissertation ist bisher keiner anderen Fakultät, keiner anderen wissenschaftlichen

Einrichtung vorgelegt worden.

Ich erkläre, dass ich bisher kein Promotionsverfahren erfolglos beendet habe und dass

eine Aberkennung eines bereits erworbenen Doktorgrades nicht vorliegt.

Datum

 Unterschrift

