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Abstract

Alterations in the organization of the cytoskeleton precede the escape of adherent

cells from the framework of cell–cell and cell-matrix interactions into suspension.

With cytoskeletal dynamics being linked to cell mechanical properties, many studies

elucidated this relationship under either native adherent or suspended conditions. In

contrast, tethered cells that mimic the transition between both states have not been

the focus of recent research. Using human embryonic kidney 293 T cells we investi-

gated all three conditions in the light of alterations in cellular shape, volume, as well

as mechanical properties and relate these findings to the level, structure, and intracel-

lular localization of filamentous actin (F-actin). For cells adhered to a substrate, our

data shows that seeding density affects cell size but does not alter their elastic prop-

erties. Removing surface contacts leads to cell stiffening that is accompanied by

changes in cell shape, and a reduction in cellular volume but no alterations in F-actin

density. Instead, we observe changes in the organization of F-actin indicated by the

appearance of blebs in the semi-adherent state. In summary, our work reveals an

interplay between molecular and mechanical alterations when cells detach from a

surface that is mainly dominated by cell morphology.
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1 | INTRODUCTION

The mechanical properties of cells reflect both the physiological

development of cellular processes as well as signal the emergence of

pathological states. Changes in mechanical properties have been

noticed in differentiating cells (Maloney et al., 2010; Steward &

Kelly, 2015), cell migration (Lautenschläger et al., 2009), throughout

the cell cycle (Otto et al., 2015), as well as in cells undergoing onco-

logical processes (Frank Sauer et al., 2021; Lekka & Pabijan, 2019), or

responding to inflammatory conditions (Ekpenyong et al., 2015).

These and other studies have established the importance of mechani-

cal properties as a sensitive biomarker of cellular response to a

dynamic microenvironment.

The cytoskeleton is a pivotal element in defining the mechanical

properties of the cell, is responsible for maintaining the integrity of

cell shape, and drives morphological changes in response to internal

triggers (Fletcher & Mullins, 2010). But the cytoskeleton is also

responsive to external cues, such as the chemical composition and the

physical properties, for example, stiffness, or topography of the sur-

face on which cells grow. A combination of these factors ultimately
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contributes to the definition of the physiological state of cells

(Denning et al., 2016). The interplay between cell physiology and

physical signals is particularly accentuated for adherent cells which

communicate with their microenvironment via a myriad of cell-surface

receptors, including attachment complexes. Availability of cryptic sites

in such complexes to the extracellular matrix (ECM) is regulated by

the conformational changes, thus enabling the adherent cells to tran-

siently or altogether detach from their surface and loose interactions

with the ECM (Wolfenson et al., 2009). Cytoskeletal modifications

during such transitions indeed facilitate cell migration, for instance,

during the onset of metastasis (Fife et al., 2014). These cytoskeletal

alterations are often largely governed by the F-actin network, which is

a major component of the cytoskeleton that responds to external

physical and chemical cues, mediating a variety of cellular events

beyond cell adhesion and migration (Stricker et al., 2010). Earlier

reports have already indicated that F-actin levels and its organization

have also been linked to changes in the mechanical properties of cells.

For example, higher levels of F-actin were shown to increase the elas-

ticity of Vero cells grown in a monolayer (Efremov et al., 2013).

Another study associated the increased thickness of stress fibers in

mesenchymal stem cells with increased cell stiffness (Maloney

et al., 2010). Similarly, it has been shown that the F-actin organization

as a perinuclear actin cap is essential for defining the elastic properties

of mesenchymal stem cells (Kihara et al., 2011).

Over the years a variety of studies have examined and dem-

onstrated the association between the cytoskeletal organization

and mechanical properties of cells in suspension or in the context

of a surface to which they are adhered to. However, fewer studies

have addressed the consequences associated with cell-surface

detachment (Buonsanti et al., 2009; Maloney et al., 2010). Given

that most methods typically require cells to either be in the sus-

pended or in the adherent state, the challenge is found in effi-

ciently tracking and mechanically probing cells as they transit

between both states.

To address this problem, we made use of two distinct methods to

assess cell elasticity. We employed atomic force microscopy (AFM) to

probe human embryonic kidney 293 T (HEK293T) cells in their adher-

ent and tethered states while using real-time deformability cytometry

(RT-DC) to characterize them in suspension. First, we analyzed the

dependence of seeding density on the size and elasticity of individual

cells. To mimic a transition between the adherent and suspended

states, we promoted surface-immobilization of cells via unspecific

linker molecules, which passively tethered them to the substrate.

These semi-adherent cells were mechanically probed by AFM. To

identify possible cytoskeletal and morphological changes associated

with the three different states we resorted to fluorescent imaging of

the F-actin network. We found that the transition from adherent to

suspension state is accompanied by a decrease in cellular volume and

correlates with an increase in cell elasticity. Interestingly, these

changes are not accompanied by variations in the amount of filamen-

tous actin but seem to be linked to the organization of F-actin and the

overall cell morphology.

2 | RESULTS

2.1 | Seeding density does not affect cell elasticity

We first studied how the seeding density affects the mechanical prop-

erties of HEK293T cells grown at 16 � 103, 40 � 103, 100 � 103, and

160 � 103 cells/cm2, respectively (Figure S1). To assess the depen-

dency of the cellular elasticity on the seeding density in a statistically

robust manner, we employed RT-DC for which we collected

thousands of single-cell measurements per condition (see Methods).

Analyzing the deformation vs. cell size over a range between

16 � 103 cells/cm2 (Figure 1a, upper left panel) and 160 � 103

cells/cm2 (Figure 1a, upper right panel) revealed no apparent differ-

ence in deformation but a qualitative reduction in size when cells

were cultured at high seeding density (Figure S2). Calculating Young's

modulus using an analytical and numerical model (see Methods)

reveals an elasticity that seems to be independent of the seeding den-

sity (Figure 1a, lower panel and Figure S3).

A statistical analysis using linear mixed models (see Methods) on

three or more independent experimental replicates per condition sum-

marizing 44,058 cells (16 � 103 cells/cm2), 17,381 cells (40 � 103

cells/cm2), 16,944 cells (100 � 103 cells/cm2) and 9,457 cells

(160 � 103 cells/cm2) respectively, confirms the observed trend.

While cell deformation remains constant (Table S1), we find a consis-

tent and statistically significant decrease in cell size from 212 ± 2 μm2

(mean ± SEM) to 193 ± 3 μm2 with increasing seeding density

(Figure 1b). In contrast, within the experimental error of the measure-

ments, Young's modulus is constant for all conditions analyzed

(Figure 1c) confirming that cell elasticity appears to be independent of

the seeding density. Subsequently, we chose to continue our work by

probing cells at a density of approximately 30,000 cells/cm2.

2.2 | Detachment induces cell stiffening

Having verified that seeding density does not impact cell elasticity, we

next investigated the role of surfaces and surface contacts for cell

mechanical properties. We examined HEK293T cells under three con-

ditions. After having grown cells on tissue culture-treated surfaces

(see Methods), they were either studied directly on those surfaces

(Figure 2a) or proteolytically detached and allowed to re-settle on a

surface coated with bio-anchor molecules (BAM, Figure 2b). BAM

molecules contain a terminal oleic acid moiety that allows for the non-

specific interaction of the BAM layer with the cell membrane. This

configuration enables passive cellular immobilization via tethering

without any requirement to form surface adhesion complexes. Under

adherent and tethered conditions, cells were probed by atomic force

microscopy (AFM). In addition, the mechanical properties of HEK293T

cells in suspension were also studied by RT-DC immediately following

detachment (Figure 2c).

In the current study, AFM indentation measurements were car-

ried out with a colloidal probe attached to a calibrated flexible
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cantilever (Cappella, 2016; Haase & Pelling, 2015). Each individual

experiment results in a force-distance curve that follows a parabolic

profile upon contact with the cells, and where the steepness of the

force gradient informs on Young's modulus. These force gradients can

be visualized as isoelasticity lines (blue lines in Figure 3a), along which

the increasing force is associated with a specific Young's modulus.

Several such measurements were recorded on different cells, encom-

passing a minimum of 25 different locations per cell. Evaluating force-

distance curves of adherent HEK293T cells (black lines in Figure 3a,

top panel) yielded a median Young's modulus E≈200Pa (green line in

Figure 3a, top panel). Limiting the capability of cells to actively adhere

to a surface and allowing only passive attachment by BAM resulted in
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F IGURE 2 Schematics of sample
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an increase to E≈600Pa (green line in Figure 3a, bottom panel), which

suggests that even in the context of passive immobilization, a reduc-

tion in the number and formation of focal adhesion sites induces cell

stiffening. Finally, removing all surface constraints and analyzing cells

in suspension by RT-DC (see Methods), we found a single population

with characteristic cell size and deformation values (Figure 3b, top

panel) corresponding to an elastic modulus of approximately 900Pa

(Figure 3b, bottom panel).

A statistical analysis of experimental replicates with a total of

n = 29 cells encompassing 688 data points (adherent), n = 38 cells

with 911 data points (tethered), and n = 10,163 cells (suspension)

confirmed the trend, where the loss of surface contacts induces a sig-

nificant stiffening of the cells (Figure 3c and Figure S4). We deter-

mined a mean Young's modulus of E¼0:27�0:02kPa for adherent

cells, E¼0:63�0:06kPa for the tethered state and

E¼0:90�0:08kPa for cells measured in suspension. The large stan-

dard error of the mean in elasticity obtained for cells that were pas-

sively attached to a surface suggests a non-homogeneous distribution

of cells with contributions from adherent and suspension properties.

2.3 | Cell elasticity is directed by cell morphology
but not by F-Actin density

Having identified cell elasticity as a mechanical property being depen-

dent on the extent of cell-surface attachment, we attempted to estab-

lish possible links to the cytoskeleton. In our experiments, adherent,

tethered, and suspended cells were labeled for F-actin and imaged via

confocal laser scanning microscopy at magnifications of 20�
(Figure 4a, upper panel) and 63� (Figure 4a, lower panel, see

Methods). Imaging revealed that adherent HEK293T cells are spread

out, while suspended and tethered cells possess a globular shape, with

the latter evidencing signs of blebbing (Figure 4a, center and right col-

umns). Formation of blebs was already described as the response of

the suspended cells to deal with excess membrane after loss of sur-

face contacts (Maloney et al., 2010), especially during the reattach-

ment efforts of the cells to the surface. In line with previous reports

(Guo, Wang, et al., 2014; Haghparast et al., 2015) confocal imaging

did not reveal any stress fibers in HEK293T cells (Figure 4a). There-

fore, these structures were not considered in our analysis.

Following reports suggesting that alterations in cell mechanical

properties occurring during a surface detachment are mediated by the

F-actin network (Chan et al., 2015; Maloney et al., 2010), we were

interested in understanding if the increase in cell elasticity could be

linked to alterations in the density of F-actin in the entire cell or if it

would be localized to the cortical region. F-actin density was calcu-

lated by integrating the fluorescence intensity of the TRITC-phalloidin

signal for a given focal plane (with highest signal strength) and dividing

it by the respective cell area. In total, we analyzed n = 229 cells in

experimental triplicates under these conditions (see Methods).

We assessed the average F-actin density of the whole cell to be

1.03 ± 0.20 μm�2 for the adherent state, 1.12 ± 0.22 μm�2 for the

tethered state, and 0.84 ± 0.17 μm�2 in the suspended state

(Figure 4b, left panel). Given that no statistically significant difference
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was detected between these conditions, we selectively looked at the

cortical region, which we defined as a shell of 1 μm width from the cell

periphery (see Methods). As with the case of the entire cell, the

amount of F-actin localized in the cortical region seems to be unaf-

fected by the presence of a surface and our analysis yields mean

intensities of 1.40 ± 0.24 μm�2 when cells are kept adhered to a sur-

face, 1.56 ± 0.26 μm�2 in tethered state and 1.20 ± 0.21 μm�2 in sus-

pension (Figure 4b, right panel). However, our data indicated that

irrespective of the adhesion state, cells typically show a significantly

higher density of F-actin in the cortex relative to the rest of the cell

body (p < 0.0001).

Next, we speculated if the pronounced variation in Young's mod-

ulus for tethered cells (Figure 3c) can be understood from alterations

in the F-actin density. Determining the standard deviation in filamen-

tous actin density between individual cells, we found a maximum of

0.51 ± 0.18 μm�2 for the tethered state compared to 0.35
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± 0.03 μm�2 and 0.26 ± 0.06 μm�2 when cells are adhered to a sur-

face or in suspension, respectively (Figure 4b, inset left panel). An

analysis of the cortical actin data revealed similar non-significant

results of standard deviations of 0.66 ± 0.21 μm�2 (tethered state),

0.48 ± 0.04 μm�2 (adherent cells), and 0.38 ± 0.05 μm�2 (suspension

cells, Figure 4b, inset right panel).

Since alterations in F-actin density could not explain the observed

variations in cell elasticity, we next examined the circularity of cells,
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which, according to earlier reports was found to be an important mor-

phological feature associated with cell mechanical properties

(Tachibana et al., 2015). A statistical analysis on almost 200 cells

revealed the mean circularity for adherent cells to be 0.63 ± 0.01 and

significantly smaller (p < 0.001) than cells in tethered (0.80 ± 0.01)

and suspended states (0.81 ± 0.01, Figure 4c).

2.4 | Loss of cell-surface contacts correlates with
changes in cellular volume

Alterations in cell mechanical properties with respect to surface

attachment appeared to be more correlated with morphological dif-

ferences than with changes in the levels of F-actin. Therefore, we

investigated possible differences in cell height and volume using z-

stack images obtained at 20� magnification of TRITC-phalloidin

labeled cells (see Methods). As HEK293T cells detach from a surface,

they engage in a considerable increase in cell height (Figure 5a).

When being fully adhered to a surface, cells are spread out, while the

tethered cells showed cell rounding as reported before (Tachibana

et al., 2015), which accentuates to suspension state. We quantify this

observation by calculating a representative cell height utilizing the

full width at half maximum (FWHM) of the F-actin fluorescence

intensity distribution along the z-stack (see Methods, Figure 5b). Ana-

lyzing experimental triplicates of a total of n = 60 adherent, n = 70

tethered and n = 47 suspended cells confirmed the above observa-

tion. Mean FWHM values showed a significant increase in cell height

from 7.46 ± 0.25 μm for adherent cells, to 8.76 ± 0.24 μm for teth-

ered cells to 9.09 ± 0.27 μm for suspension cells (Figure 5b). Statisti-

cal differences were not observed between tethered and suspension

states.

The fluorescence information from the z-stacks can also be used

to estimate the cell volume under all three conditions (see Methods

and Figure S5). Here, our data from experimental triplicates showed a

significant decrease from 3,035 ± 148 μm3 for adherent cells (n = 66)

to 2,959 ± 134 μm3 and 2,309 ± 109 μm3 for tethered (n = 81) and

suspension cells (n = 73), respectively (Figure 5c). Importantly, an

alternative approach to calculate the volume of n = 6,582 suspended

cells from RT-DC reservoir data utilizing their rotational symmetry

inside the microfluidic channel yields a very similar result of 1964

± 53 μm3 and confirmed our approach. Interestingly, we observe an

inverse relationship between volume and Young's modulus across

adherent, tethered and suspended cells, where suspended cells have

the smallest volume and the largest Young's modulus (Figure 5d).

3 | DISCUSSION

Adherent cells actively communicate with their microenvironment,

and in the course of physiological events, cells demonstrate dynamics

in the focal adhesion complexes (Wolfenson et al., 2009). The intense

cytoskeletal changes together with adhesion dynamics result in the

loss of interactions with the surface, enabling cells to enter a

suspended state. While this largely depends on the cell type, it is not

infrequent and has been reported in a variety of contexts such as cell

migration (Trepat et al., 2012), cell homing, and tissue regeneration

(Liesveld et al., 2020), wound healing (ter Horst et al., 2018), and dur-

ing cancer development (Fares et al., 2020).

In our work, we first focused on the role of seeding density in

defining cell elastic and morphological properties. This question is

important, given that earlier studies reported a link between cellular

crowding and physiological events such as cell spreading, the extent

of focal adhesion formation, cytoskeletal tension (Nelson et al., 2004)

and cellular differentiation (Hsiao et al., 2016). Within the range used

in our study, we observed a significant decrease in cell size with

increasing cell density while Young's modulus remained statistically

unaltered. Force spectroscopy experiments on a number of cell types

using atomic force microscopy demonstrated a cell stiffness

vs. seeding density relationship that is either in line (Lee et al., 2021)

or in contrast (Efremov et al., 2013; Guo, Bonin, et al., 2014) with our

results. Guo and others probed human mammary epithelial cells above

the nucleus and reported that cells cultured at higher seeding densi-

ties are stiffer than those maintained at lower densities (Guo, Bonin,

et al., 2014). However, their measurements consistently made above

the nucleus introduce a bias towards changes in nuclear mechanics. It

was previously shown that the position at which the cell is probed

affects the outcome of Young's modulus determined by AFM (Wu

et al., 2018). In particular, when mechanical properties are analyzed in

the nuclear region, a higher Young's modulus relative to cytoplasmic

regions is typically detected (Mathur et al., 2000; Wu et al., 2018;

Yousafzai et al., 2016). In contrast to that study (Guo, Bonin,

et al., 2014), when the mammary epithelial cells were indented up to

1 μm in depth to mitigate the nuclear contribution on cellular elastic-

ity, Young's modulus in the range of 1 kPa was reported independent

of seeding density (Lee et al., 2021). Although being carried out on

HEK293T cells, our results are in good agreement with this latter

study, which can be explained by the fact that RT-DC probes predom-

inantly cytoplasmic contributions to cell mechanics with limited

impact from the nucleus (Urbanska et al., 2020). Taken together our

data demonstrates that seeding density impacts cell size in agreement

with previous reports (Venugopal et al., 2018) but not on the cyto-

plasmic contributions to cell elasticity.

In the next step, we compared the mechanical properties of

HEK293T cells in adherent, tethered and suspended states. Force

spectroscopy measurements on a substrate were carried out using

AFM, while cells in suspension were characterized by RT-DC. Com-

parisons between cell mechanical assays using varying techniques

should always be evaluated with care, however, earlier studies have

demonstrated that RT-DC and AFM measurements can arrive at simi-

lar results despite methodological differences and discrepancies in

sample preparation (Pires et al., 2019; Pires et al., 2022). Having

established a negligible impact on Young's modulus, we chose to work

at seeding densities of approximately 30,000 cells/cm2 corresponding

to approximately 50–60% confluence. Our results indicate that

Young's modulus of HEK293T cells decreases with increasing levels of

cell-surface adherence. Although softening of HEK293T cells under
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these conditions has been reported before (Haghparast et al., 2015) it

has to be emphasized that this observation is not universal and

depends on the cell type being investigated (Haghparast et al., 2013).

Interestingly, our study shows a pronounced standard deviation for

Young's modulus of tethered cells, which suggest that they possess

mechanical features of both adherent and suspended cells.

To gain better insight into the biology associated with our

mechanical observations, we looked into morphological and cytoskel-

etal cell features. Here, we focused on the role of filamentous actin

(F-actin), since the interplay between this structural protein, cell

mechanics (Golfier et al., 2017; Kita et al., 2021; Kräter et al., 2018;

Liu et al., 2020; Pires et al., 2019) as well as cell morphology is well

established (Clark & Paluch, 2011; Park et al., 2010). Our results reveal

that adherent cells are spread out and present possible focal adhesion

points to the surface in accordance with earlier observations

(Haghparast et al., 2015). Following detachment, tethered HEK293T

cells become globular yet retained some of their surface attachment

foci that are dissipated in suspended cells which appear to display a

much more globular shape. Thus, within the timescale of our experi-

ments, the presence of a surface seems to have little impact on the

average density of F-actin within the cell as well as inside the cell

cortex.

With tethered cells displaying mechanical and cytoskeletal fea-

tures of adherent as well as suspended cells, we looked into the role

of cell morphology and its relation to cell stiffening upon loss of sur-

face contacts. In our study, we observed an increase in circularity from

adherent to tethered and to suspended cells. This is in agreement with

the findings by Tachibana et al., who reported on cell stiffening associ-

ated with increased cell circularity, possibly by phosphorylation of

Ezrin/Radixin/Moesin (ERM) proteins (Tachibana et al., 2015). Once

phosphorylated, these proteins acquire an active conformational state

and establish a link between the plasma membrane and F-actin

thereby strengthening the cell cortex. This mechanism has also been

reported in rounding of cells during mitosis (Fehon et al., 2010) and in

tumor cells associated with a reduced invasion capability (Tsujita

et al., 2021), where cell rounding correlates with increased cell stiffen-

ing. Taken together, these reports strengthen our observation that the

configuration of F-actin, but not its levels play a crucial role in deter-

mining the cell elasticity.

In addition to alterations in circularity, we observed occasional

blebbing of the cells in tethered state, which were undetected in sus-

pended and adherent cells. Blebbing of detached cells has been

reported earlier and attributed to its reattachment efforts (Erickson &

Trinkaus, 1976; Norman et al., 2010). Studies by Chan et al. (2015),

and Maloney et al. (2010), showed the dependency of blebbing on

Young's modulus where cell stiffening is correlated with the reduction

of the blebs in suspended cells. This is in direct agreement with the

stiffening of suspended cells without blebs compared to the cells in

tethered state with blebs. It has been reported that bleb retraction is

accompanied by the recruitment of Ezrin protein to the plasma mem-

brane thereby stabilizing the actin cortex in the cell (Charras

et al., 2006). Conceivably, this could explain the possible role of ERM

proteins in stiffening the suspended cells from tethered cells as the

proportion of blebs decreases respectively.

We also looked into the possible effect of cell-surface attachment

on cell volume and the correlation between volume and Young's mod-

ulus. Changes in cell volume are manifested as a result of alterations

in cell physiology (Glykys et al., 2017; Hoffmann et al., 2009; Sun &

Kahle, 2014) also associated with changes in cellular elasticity

(Danahe et al., 2021; Guo et al., 2017). Our results indicate that teth-

ered and adherent cells have a similar volume while bringing cells into

suspension leads to a decrease in volume by 30%. Interestingly, there

appears to be a correlation between cell volume and cellular elasticity,

wherein suspended cells with lowest volume have the largest Young's

modulus. In fact, such an inverse trend has been reported earlier in

different cell types (Guo et al., 2017; Sunnerberg et al., 2019; Zhou

et al., 2009). Earlier reports suggest that due to the efflux of water

from cells, cellular volume decreases along with an increase in the

macromolecular density thereby stiffening the cells (Guo et al., 2017).

Extrapolating such an inverse correlation between Young's modulus

and cellular volume to the current study, it would be expected for

adherent and tethered cells to have similar volumes and Young's mod-

uli. While our results confirm the hypothesis of similar volumes, we

report an increase in stiffness from adherent to tethered state, which

could be linked to cellular circularity and the onset of blebbing. These

findings highlight the crucial role of morphological features of cells

and their association with cell elasticity. Proteins regulating cell vol-

ume as well as the cytoskeleton might be of importance to link these

phenomena. Here, transport protein Na-H exporter protein 1 would

be a candidate given its contribution in controlling volume (Vallés

et al., 2015) and its association with F-actin organization (Denker &

Barber, 2002). Further studies on this class of transport proteins might

unveil these co-dependencies.

In summary, we investigated the impact of seeding density and

cell-surface interactions on the molecular, morphological, and

mechanical properties of HEK293T cells. While Young's modulus is

independent of seeding density, we observed increased cell stiffening

in response to the loss of surface contacts. These changes in mechani-

cal properties are not driven by dynamic alterations in F-actin density

but correlate with cell circularity and volume.

4 | MATERIALS AND METHODS

4.1 | Cell culture

Human embryonic kidney 293 T (HEK293T) cells were cultured and

maintained in DMEM high glucose medium (Biowest, Germany) sup-

plemented with 10% FCS (Gibco, Germany) and 2 mM L-glutamine

(Biowest, Germany) at 37�C and 5% CO2. Cultures were passaged at

70–80% confluency using Trypsin–EDTA (Biowest, Germany) and

routinely checked for the presence of mycoplasma contamination by

the respective genomic detection by polymerase chain reaction (PCR)

(NEB, Germany).
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4.2 | Sample preparation

Cell seeding experiments were carried out at densities of 16 � 103,

40 � 103, 100 � 103, and 160 � 103 cells/cm2 corresponding to a

confluence of approximately 30%, 50%, 90%, and 98% respectively.

For cell-surface interaction experiments, cells were seeded initially at

a density of 4 � 103 cells/cm2 and cultured for 72 h to attain an

approximate density of 30 � 103 cells/cm2 with confluency between

50% and 60%. Cultured cells were either probed attached to the sur-

face (adherent state), probed after detachment from the surface (sus-

pended state), or probed after detachment followed by non-specific

anchoring to the surface via a linker molecule (tethered state). To pre-

pare cells in suspended and tethered states, cells were first detached

by incubation with 1� TrypLE (ThermoFisher Scientific, Germany) for

5 min and the procedure was stopped with the addition of DMEM

high glucose medium supplemented with 10% FCS. Detached cells

were harvested by centrifugation at 200� RCF for 5 min and the cell

pellet was either resuspended for analysis (suspended state) or further

anchored to a polymer-coated surface (tethered state). Tethering of

suspended cells to the surface was accomplished using a non-specific

biocompatible anchor for cell membrane molecule (BAM / SUNB-

RIGHT OE-020CS, NOF Corporation, Japan) consisting of a copoly-

mer of polyethylene glycol (PEG) with oleic acid and further modified

with an N-hydroxysuccinimide moiety. BAM-coated surfaces were

prepared with modifications according to an earlier report

(Haghparast et al., 2013). Briefly, the cell-culture surfaces were coated

with 5% BSA (Sigma-Aldrich, Germany) in PBS for 1 h. After washing

with PBS, the surface was treated with 1 mM BAM (in PBS) for

30 min at room temperature. Subsequently, the supernatant was aspi-

rated, and the surfaces were further incubated in PBS for 30 min at

37�C, washed again with PBS and left to dry at room temperature for

10 min. Freshly harvested cells were deposited onto BAM-coated sur-

faces and maintained in DMEM high glucose medium with 10% FCS

and 2 mM L-glutamine for 30 min at 37�C and 5% CO2. Unanchored

cells were removed prior to measurements by an additional

washing step.

4.3 | Real-time deformability cytometry

Cultures at seeding densities of 16 � 103, 40 � 103, 60 � 103,

100 � 103, and 160 � 103 cells/cm2, were detached as described

above and the cell pellet was resuspended in 100 μl of Cell Carrier A

buffer (CCA, PBS without Ca2+ and Mg2+, Zellmechanik Dresden,

Germany) at a density of approximately 1 � 106 cells/ml. Cell size and

deformation were measured using an AcCellerator system

(Zellmechanik Dresden GmbH, Germany) by flushing the cell suspen-

sion through a squared channel of 300 μm length and a cross-section

of 30 � 30 μm2. In all our experiments we used a flow rate of 0.24 μl/s.

Images of the cells were acquired by a CMOS camera and analyzed in

real-time using the software ShapeIn (version 2.0.5, Zellmechanik Dres-

den, Germany) from which cell deformation D was calculated (Mietke

et al., 2015; Otto et al., 2015) by:

D¼1�2
ffiffiffiffiffiffi
πA

p

P
, ð1Þ

where P is the perimeter and A is the projected area of the cell.

Using an analytical and numerical model (Mietke et al., 2015;

Mokbel et al., 2017), Young's modulus of all cells was calculated by

the software ShapeOut (version 0.9.0., Zellmechanik Dresden,

Germany). During the analysis, a gating range of cell sizes between

50 μm2 and 800 μm2 was applied to eliminate any debris from the

events acquired. In addition, an area-ratio filter of 1.05 was employed

to exclude incorrectly tracked cells by allowing a deviation of 5%

between the convex hull area and the contour area.

4.4 | Force spectroscopy

Cell indentation experiments were carried out at room temperature

on an atomic force microscope (Nanowizard 3, JPK instruments,

Germany) using tipless cantilevers with a nominal spring constant of

0.03 N/m (HQ:CSC38/Al BS, Micromasch, Germany), which were

experimentally calibrated by thermal method (Hutter &

Bechhoefer, 1998). A single SiO2 bead was attached to the cantilever

by an adhesive film (Norland Products, USA) cured by exposure to

365 nm light for 20 min.

Adherent and tethered cells were probed on glass bottom

WillCo-dishes (Willco wells, The Netherlands). For assessing the

mechanical properties of tethered samples, freshly detached cells

were anchored onto a BAM-coated surface at a density of 10 � 103

cells/cm2. Samples were indented at an extended speed of 2 μm/s to

a depth of typically 1 μm over multiple scanning areas with

20 � 20 μm2 in size comprising 5 � 5 probing sites.

The Hertz model of a spherical indenter was applied to analyze

force-indentation curves following the equation:

F¼ 4ER1=2

3 1�ν2ð Þδ
3=2, ð2Þ

where F is the indentation force, E is the cellular elasticity, R is the

radius of the SiO2 bead (2.40 ± 0.10 μm), ν is the Poisson's ratio (here

corresponds to 0.5) and δ is the depth of indentation. For cells in teth-

ered and adherent states, 100 of measurements were carried out per

condition and the study involved three experimental replicates per

condition.

4.5 | Confocal laser scanning fluorescence
microscopy

Fluorescence microscopy was used to evaluate the cytoskeleton

between different conditions. Samples of adherent cells were pre-

pared by seeding them in imaging chambers (Ibidi, Germany) at

25 � 103 cells/cm2 followed by a 24 h culture period before imaging.

Equally, samples of suspension cells were produced by first seeding
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them at 25 � 103cells/cm2 followed by a 24 h culture period and sub-

sequent proteolytic detachment. Afterwards, cells were fixed, washed,

labeled for F-actin and imaged as detailed below. Preparation of sam-

ples containing tethered cells involved seeding them at 50 � 103

cells/cm2, followed by a 24 h culture period. Afterwards, they were

proteolytically detached and left to anchor onto the surface of BAM-

coated imaging chambers at a density of 25 � 103 cells/cm2 as

described above.

Cells in adherent, tethered or suspension states were fixed in a

fixing solution consisting of PBS and 4% paraformaldehyde (Sigma-

Aldrich, Germany) for 15 min and washed with PBS containing 1%

BSA (wash buffer). Washing of suspension cells was performed by

centrifugation at 1000� RCF. Subsequently, cells were permeabilized

in PBS with 0.5% Triton X (Sigma-Aldrich, Germany) for 15 min fol-

lowed by washing, and then incubated for 15 min at room tempera-

ture in the presence of a fluorescent label before being washed and

subsequently imaged. Labelling of F-actin was achieved using phalloi-

din conjugated with tetramethylrhodamine (TRITC) (ThermoFisher Sci-

entific, Germany). Suspension cells were immobilized by

cytocentrifugation at 113� RCF for 5 min prior to imaging.

Cells were imaged on a Zeiss confocal laser scanning microscope

(LSM 980 with Airyscan 2, Carl Zeiss Inc, Germany) using a 20�
objective with a numerical aperture (NA) of 0.8 corresponding to a

pixel size of the optical system of 0.11 μm/pixel. In addition, imaging

was performed using a 63� oil-immersion objective with NA = 1.4

corresponding to a pixel size of the optical system of 0.03 μm/pixel.

TRITC was excited by a 561 nm HeNe laser, and the fluorescence was

recorded at the respective emission wavelength. To calculate the cell

volume, image stacks were acquired over 20.5 μm along the z-axis

with the 20� objective resulting in 41 slices, each with a thickness

of 0.5 μm.

4.6 | Image analysis

Analysis of fluorescence intensity of TRITC-conjugated phalloidin in

HEK293T cells was performed using proprietary Zeiss imaging and

analysis software (Zen v. 3.3.89, Carl Zeiss Inc, Germany). The seg-

mentation workflow involved image binarization using the threshold-

ing range of 10–65,000 pixels, followed by a morphological fill-holes

operation to identify particles larger than 20 μm2. Smaller particles

were considered debris and excluded from the analysis. From a single

focal plane with highest fluorescent signal, we measured the F-actin

density in the cell and cell-cortex as well as cell circularity. The F-actin

density was assessed by integrating the fluorescence intensity of the

TRITC-phalloidin signal from a single focal plane and dividing it by the

respective cell area. To assess the levels of cortical F-actin, a ring-

shaped mask of 1 μm width was used to collect the integrated inten-

sity of the fluorescent signal in the cortical region of cells.

For cell height and volume calculations, image stacks of cells

labeled for F-actin were first cropped in Fiji/ImageJ (Schindelin

et al., 2012) to isolate individual cells and the fluorescence intensity

was integrated on each image plane along the z-axis. The cell height

was approximated to the full width at half maximum (FWHM) of the

integrated fluorescence intensity profile along the z-axis using the

data analysis software package OriginPro (version 9.8.0.200, Origi-

nLab, USA). For cell volume analysis, image segmentation was carried

out as described above to yield the area occupied by a cell in each

slice of the z-stack. Cell volume V was estimated by defining it as:

V¼
X

hAi , ð3Þ

where h is the thickness of each slice (0.5 μm) and A is the detected

area of the cell in each i slice.

Volume of suspended cells determined by confocal fluorescence

imaging data was compared to the volume obtained from brightfield

images extracted from RT-DC measurements, which was calculated

based on the area defined by the cell contour and assuming rotational

symmetry (Herbig et al., 2018).

4.7 | Statistical analysis

All statistical analyses were performed using algorithms written in R

language (R Core Team, 2020). These included: (a) the lme4 package,

for the assessment of significance by means of linear mixed models

(Bates et al., 2015) where replication was considered as a source of

random effects while seeding density and attachment condition were

assigned as fixed effects in the respective studies; for the analysis of

Young's modulus, culture-day was also considered as a random effect

(b) the emmeans package, for reporting of estimated marginal means

and variances (Searle et al., 1980) (c) as well as the ggplot2 package,

for assembly of violin plots (Wickham, 2009).
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