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1. Introduction
In this study, the tryptophan (TRP) metabolism and its dynamics, without interference,
in the face of infection and drug intervention are in focus. To decipher the mechanisms
of the altered dynamics of TRP metabolites, mathematical modeling with systems of
ordinary differential equations (ODE) was applied. To emphasize the relevance of TRP
metabolism, a detailed explanation of its reactions and its relation to disease, is given
in the following introductory part. The reactions were translated into mathematical
models. To understand the simulations based on these models, mathematical modeling
with ODEs is introduced. Both sections are connected by the aim of the thesis, which
completes this chapter.

1.1. Tryptophan Metabolism
Biological processes are the basis of mathematical modeling. In this study, the dynamics
of the TRP metabolism are in focus. Its detailed explanation helps to understand the
composition of a model, which represents the dynamics of the TRP metabolism with
the help of data measured in pig’s blood. Since the blood vessels are the railway of the
body, connecting the organs, the turnover rates of enzymes are mixed. Thus, it is cru-
cial look closely at different enzyme variants in different organs. Alterations of the TRP
metabolism due to infection, drug application, and food intake must be considered for
model extension. These topics are introduced in more detail in this section, beginning
with the TRP metabolism in general and alterations of the metabolism during infection.
Moreover, the effects of drug application on TRP metabolites and associated enzymes
with different variants are explained in more detail. Lastly, the impact of TRP increase
after food intake and the properties of drug administration are presented.
The TRP metabolism can be divided into two branches: the serotonin (SER) path-
way and the kynurenine pathway (KP). Via the SER pathway, TRP is degraded to
5-hydroxytryptophan (HT) by tryptophan hydroxylase (TPH, see Figure 1.1) [1]. HT
is further degraded to SER by aromatic L-amino acid decarboxylase (AAD) [2, 3].
SER acts as a hormone and neurotransmitter in the central nervous system and the
periphery [4]. The modulation of SER levels can lead e.g., to mood disorders, pul-
monary and system hypertension [4]. SER is also further degraded to melatonin by
N-acetyltransferase (AANAT) and hydroxy-O-methyltransferase (HIOMT) [1]. Mela-
tonin regulates the sleep/wake cycle, and other circadian and seasonal rhythms and acts
as an immunostimulator [5]. The enzyme indoleamine 2,3-dioxygenase (IDO) degrades
melatonin further to N-acetyl-5-methoxy-kynuramine, which affects the cardiovascular
system [6]. A dis-regulation of the SER pathway due to infection [7] is one reason for

1



1. Introduction

sickness behavior [8, 9, 10]. Sickness behavior is characterized by general malaise, de-
creased activity, loss of energy or fatigue, decreased social investigation, loss of interest
in usual activities and reduced appetite [11].

2



Figure 1.1.: TRP metabolism: The TRP pathway is divided into two branches: the serotonin pathway (in green font),
including 5-hydroxytryptophan, serotonin, melatonin, N-acetyl-5-methoxy-kynuramine and the kynurenine path-
way (in blue font) including tryptophan, N-formyl-kynurenine, formyl anthranilic acid, anthranilic acid, kynure-
nine, kynurenic acid, 3-hydroxykynurenine, 3-hydroxy-anthranilic acid, 2-amino-3-carboxymuconate semialde-
hyde, 2-aminomuconate-semialdehyde, picolinic acid and quinolinic acid. Bent arrows show enzymatic re-
actions with the enzyme names next to the arrow. AAD - aromatic L-amino acid decarboxylase, AANAT
- N-acetyltransferase, ACD - 2-amino-3-carboxymuconate semialdehyde-decarboxylase, AFD - Arylformami-
dase, HAO - 3-hydroxynalic acid oxygenase, HIOMT - hydroxy-O-methyltransferase, IDO - indoleamine 2,3-
dioxygenase, KAT - kynurenine aminotransferase, KMO - kynurenine 3-monooxygenase, KYNU - kynureninase,
TDO - tryptophan 2,3- dioxygenase, TPH - Tryptophan hydroxylase
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Along the KP, TRP is degraded via two different enzymes. The first one is IDO, which
is activated during infection. The activation of IDO is presented in more detail in sec-
tion 1.2. The second degradation process is mediated via the hepatic enzyme tryptophan
2,3-dioxygenase (TDO) [12, 13]. It is responsible for the homeostasis of TRP and cat-
alyzes the degradation of TRP to N-formyl-kynurenine [14]. N-formyl-kynurenine can be
degraded to formyl-anthranilic acid by the enzyme kynureninase (KYNU), which is fur-
ther degraded to anthranilic acid by aryl formamidase (AFD) [15]. AFD also catalyzes
N-formyl-kynurenine degradation to KYN (see Figure 1.1) [14]. KYN has immunomod-
ulatory properties affecting T-cells, which mediate the adaptive immune response [16].
KYN can also be degraded to anthranilic acid by KYNU [17]. KYN is further degraded
to quinolinic acid (QUIN) via three different enzymes (see Figure 1.1): Kynurenine
3-monooxygenase (KMO) degrades KYN to 3-hydroxykynurenine, which KYNU fur-
ther degrades to 3-hydroxyanthranilic acid [14]. 3-Hydroxyanthranilic acid is degraded
to QUIN via 2-amino-3-carboxymuconate semialdehyde by 3-hydroxyanthranilic acid
oxidase (HAO) [18, 19] and spontaneously to QUIN [15, 20]. QUIN and 3-hydroxy-
kynurenine lead to excessive glutamatergic activity, leading, together with a decreased
SER production, to cytokine-induced depression [8]. QUIN is an N-methyl-d-aspartate
(NMDA) receptor agonist [21]. The NMDA receptor belongs to glutamate receptors [22].
In the brain, the NMDA receptor affects synaptic plasticity and synapse formation [22].
It is also a neurotoxin, gliotoxin, proinflammatory mediator and pro-oxidant molecule
and can alter the integrity and cohesion of the blood–brain barrier [21]. 3-Hydroxy-
kynurenine can also be degraded to xanthurenic acid by kynurenine aminotransferases
(KAT). Xanthurenic acid activates NMDA receptors [23]. Lowered levels of xanthurenic
acid are associated with schizophrenia [23]. 2-amino-3-carboxymuconate semialdehyde
is degraded via 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACD) to 2-
aminomuconate semialdehyde, which is further degraded non-enzymeatical to picolinic
acid (PICO). PICO has neuroprotective, immunological, and antiproliferative effects
[24]. Besides QUIN, KYNA is also a product of KYN, which is degraded by a group
of enzymes called kynurenine aminotransferases (KAT, see Figure 1.1) [1]. This group
consists of four different variants. All differ in the locations where they are expressed.
KATI and KATIII are expressed in kidney, liver, heart, lung, and neuroendocrine organs
[25]. In mitochondria, KATII, III and IV are located [26]. KATII is also located in the
brain [27, 28, 29]. The production of KYNA in the brain is necessary since KYNA only
poorly crosses the blood-brain barrier [30]. In contrast, KYN can pass the blood-brain
barrier [31]. Thus, KAT catalyzes the degradation of KYN to KYNA in the brain. All
in all, 60% to 80% of brain KYN originate from non-brain compartments of the body
[30, 31]. The presence of some KATs in the brain leads to mental disorders like psy-
chosis and schizophrenia [28, 32, 33] because KYNA is an NMDA receptor antagonist.
An inhibition of KAT is discussed as a potential therapeutic application to treat mental
disorders [34] and influence hypermotility and inflammatory processes in the intestine
[35].
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1.2. Tryptophan Metabolism in Inflammatory Diseases
In the face of infection, e.g., by gram-negative bacteria, which secrete lipopolysaccha-
rides (LPS), IDO transcription is initiated (see Figure 1.2, arrow 1) [2]. The detection of
LPS is one of the most sensitive processes of animals during infection of those bacteria
[36, 37, 38, 39, 40] and leads to the activation of the innate immune system [41]. After
secretion, LPS binds to the lipopolysaccharide binding protein (LBP) (see Figure 1.2,
arrow 2). Afterward, the LPS/LBP complex binds to toll-like receptor 4 (TLR-4, see
Figure 1.2, 3)[42, 43, 44]. The activation of TLR-4 via the aryl hydrocarbon receptor
(AhR) pathway leads to IDO-transcription of either the IDO variant IDO1 or the variant
IDO2 [45, 46, 47]. Depending on the activated cells. Many different cells produce IDO.
For example, it can be translated into immune cells like macrophages [48] or monocytes
[1], dendritic cells [49, 50], but also in tissue like intestinal epithelial [51] or brain tissue
[52]. Independent of the activation via LPS/LBP complexes, IDO transcription is also
activated by TNF-α and IFN-γ secretion [53, 54] (see Figure 1.2, 4). While the IFN-γ
receptor activates STAT1 [55], the TNF-α receptor and TLR-4 activate NF-κB (see Fig-
ure 1.2, 5) [43, 56]. This activation also leads to IDO transcription (see Figure 1.2, arrow
6), which occurs in the lung, small and large intestine, colon, spleen, kidney, stomach
and brain [57]. Afterward, IDO mRNA is translated to the IDO protein (see Figure 1.2,
arrow 7), which catalyzes the degradation of TRP to KYN in the cell (see Figure 1.2,
arrow 8) [1, 2]. To enter the cell, TRP uses the L-amino acid transporter (LAT), while
KYN exits the cell through LAT [58]. KYN is further degraded to QUIN via several
other metabolites (see Figure 1.2, arrow 12) or to KYNA (see Figure 1.2, arrow 13). But
TRP is not only degraded to KYN, it is also degraded to SER. Whereat, the proportion
of TRP degraded to SER is reduced during infection [7].
IDO production is increased during severe sepsis and septic shock. High IDO levels
are also associated with increased mortality [59]. In the early phase of sepsis, patients
with enhanced IDO levels have poor outcome [60]. The increased IDO levels accom-
panied by increased levels of KYN and KYNA and cytokine production [61, 62]. This
increase, in turn, leads to an increased generation of regulatory T cells (Treg) ending
up in immunoparalysis [1]. Immunoparalysis is the persistence of a marked compen-
satory anti-inflammatory innate immune response after an insult such as sepsis. Anti-
inflammatory cytokines are TGF-β and interleukin (IL)-10 [60], whereas TNF-α and
IFN-γ are proinflammatory cytokines. TNF-α is involved in pathological processes such
as chronic inflammation [63], like inflammatory bowel diseases. Patients with inflamma-
tory bowel diseases like ulcerative colitis and Crohn’s disease have increased KYN and
KYNA levels [64] due to increased production of TNF-α, which activates IDO. How-
ever, KYNA has neuroprotective properties that counter QUIN’s effects [65]. On the
one hand, KYNA attenuates inflammation by activating G protein-coupled receptor 35
(GPR35) in the intestinal wall [66, 67, 68, 69]. On the other hand, KYNA reduces the
production of inflammatory factors [70, 71], such as TNF-α [68], and activates Treg cells
[72].
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Figure 1.2.: Activation of IDO: gram-negative bacteria secrete lipopolysaccharides
(LPS, 1). LPS is bound to lipopolysaccharide-binding protein (LBP, 2).
The complex binds to toll-like receptor-4 (TLR-4, 3) and cluster of differ-
entiation (CD) 40. This induces interferon-γ (IFN-γ) and tumor necro-
sis factor α (TNF-α, 4) production in immune cells. TNF-α binds to
its receptor (TNFR, 4) and induces signal transducer and activator of
transcription 1 (STAT1, 5), leading to transcription of indoleamine 2,3-
dioxygenase (IDO) mRNA (6). The binding of LPS/LBP complexes to
TLR4/CD14 to its receptors leads to the activation of nuclear factor (NF)-
κB (5) and also to IDO mRNA transcription in the nucleus (6). Further,
IDO mRNA is translated to the active enzyme leading to the degradation
of tryptophan (TRP) to kynurenine (KYN, 8). TRP gets into and KYN
out of the cell by crossing the amino acid transporter (LAT, 9). After-
ward KYN can be degraded by kynurenine aminotransferases (KATs) to
kynurenic acid (KYNA, 13) or by kynurenine 3-monooxygenase (KMO),
kynureninase (KYNU) and 3-hydroxyanthranilic acid oxidase (HAO) via 3-
hydroxyanthranilic acid to quinolinic acid (QUIN, 12). In addition, TRP
can be degraded by tryptophan-2,3-dioxygenase to KYN in the liver and
by tryptophan hydroxylase to serotonin (SER, 10). CD - cluster of differ-
entiation, IDO - indoleamine 2,3-dioxygenase, KYN - kynurenine, KYNA -
kynurenic acid, LAT - L-amino acid transporter, LBP - lipopolysaccharide-
binding protein, LPS - lipopolysaccharide, NF-κB - nuclear factor kappa-
light-chain-enhancer of activated B cells, QUIN - quinolinic acid, SER -
serotonin, STAT1 - signal transducer and activator of transcription 1, TLR-
4 - toll-like receptor 4, TNF-α - tumor necrosis factor α, TRP - tryptophan
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Treg cells secrete TGF-β [73], which is an immunoinhibitory cytokine [73] preventing
organ damage by the immune system during infection [74]. Thus, KYNA acts as a
counter-regulator to prevent overshooting inflammation leading to tissue damage [75].
It also mediates immune tolerance by activating the aryl hydrocarbon receptor (AhR).
In breast cancer cells, activation of the AhR by KYNA leads to IL-6 secretion. IL-6
initiates processes allowing cancer cells to bypass crucial checkpoints in cell cycle pro-
gression and evade apoptotic signals [76]. Thus, an increased IL-6 secretion is associated
with poor prognosis in cancer patients [77, 78].
In sepsis, inflammatory bowel disease, and cancer, the TRP metabolism is associated
with disease outcomes. Thus, the TRP metabolism could be a target of therapeutic
intervention, especially manipulation of KYNA levels [62]. This regulation can be dis-
turbed via 1-methyltryptophan (1-MT). It was discovered to inhibit IDO since it is
structurally very similar to TRP. The only difference is a methyl group (CH3) [79],
which does not prohibit the ability of 1-MT to bind IDO. However, with its binding,
1-MT inhibits the degradation of TRP to KYN by IDO1 and IDO2 [80], leading to
a competitive inhibition [81]. By administering 1-MT, lowered levels of downstream
metabolites such as KYN and KYNA are expected. It was reported that the survival of
1-MT-treated mice suffering from sepsis increased compared to mice, not treated with
1-MT [82, 83, 84]. Surprisingly, in healthy mice and in pigs, an increase in KYNA after
1-MT administration was reported [85, 86]. Nevertheless only weak inhibition of 1-MT
was recognizable concerning the proportion of TRP to KYN [86, 87, 88]. This lack of
IDO inhibition may be due to the low affinity of 1-MT to IDO in vivo or due to the
limited accumulation of 1-MT to serum levels compared to those of TRP [89]. Those
unexpected metabolite alterations after 1-MT administration and the mode of action,
were not the focus of recent research.

1.3. Mathematical Modeling with Ordinary Differential
Equations

This work focuses on the dynamics of the TRP metabolism and its interference by LPS
and 1-MT. Mathematical modeling helps to understand processes’ internal nature and
dynamics [90, 91]. Different ODE models have already been invented to answer partic-
ular questions about metabolisms [92] or drug treatment [93, 94].
This thesis used mathematical models based on ODEs, because many biological laws
and reactions appear mathematically in the form of differential equations [95]. A short
introduction to several mathematical modeling methods using ODEs is given below.
Firstly, the development of systems of ODEs according to chemical respective biological
processes is described since it is the fundamental method used in this study. In the fol-
lowing this method is called modeling, ODE modeling, or mathematical modeling. The
law of mass action is the basis of modeling biochemical kinetics by ODEs [96, 97]. In this
study, Michaelis-Menten (MM) kinetics extended equations of biochemical kinetics [98]
because enzymes catalyze reactions of the TRP metabolism. The resulting ODE models
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were adjusted to data (for example, on data shown in Figure A.5), especially the param-
eters were chosen so that the data and the trajectories of the models agree with each
other. A visualization of such an adjustment of parameters is called simulation. This
adjustment is performed by fitting them to the data by approximation of the underlying
solution of the ODEs. lsqnonlin [99] and CVODES [100, 101] are used for parameter
fitting in this study. To solve a system of ODEs, an initial value has to be determined.
But only for some mathematical models initial values are available. Therefore, suitable
initial values have to be chosen, e.g. with LHS fit [102]. The certainty of the fitted
parameters is determined by a profile likelihood estimation [98]. In addition, the evalua-
tion of different ODE models determined a degradation process of 1-MT explaining the
increased levels of TRP and KYNA. Those models were compared by methods based
on the maximum likelihood approach [103, 104, 105]. This approach calculates a value
describing how likely the parameters describe experimental data. Finally, a sensitivity
analysis [106] was performed to determine further drug targets.
Predictions about future development and the effects of interactions with the environ-
ment can be made by mathematical modeling [90]. Only certain aspects of a system
are included. Some are neglected or simplified [90] because biological processes, e.g. of
metabolism [92], infection [107, 108, 109], immune response [110, 111, 112, 113], or drug
treatment [93, 94] can be very extensive and complex. Thus, models are only approx-
imations to full reality [114]. During model development, it is essential to remember
what a specific model’s goal is. In general, the goals of modeling can be

1. explaining the phenomenon, they are modeling [99]

2. answer particular questions [90]

3. making predictions from the model [99]

In this study, the first goal corresponds to the ODE model of IDO activation due to
LPS administration and its effects on TRP metabolism. The second goal corresponds
to answering the questions of section 1.5, where the aim of the thesis is stated.
Mathematical models in the form of ODEs describe alterations of a concentration x (here
called species) depending on the time t, with x(t), x, t ∈ R as derivative of x to t

dx

dt
= F (x(t, θ), θ)

Thus, the only independent variable is the time t, while the dependent variable is the
rate of change of the function [99]. The dynamical behavior also depends on the model
parameters θ = (θ1, . . . , θn), such as rate constants and initial concentrations [115]. In
biology, species are often dependent on the presence of other species, e.g., KYN can
only be produced if there is enough TRP. Thereby, a system of ODEs is necessary,
whose species interact with each other. Those models are kept as simple as possible
[90]. Therefore, degradation steps of the TRP metabolism have to be aggregated. The
time-dependent variables x are mapped to m model outputs y. These are the quantities
measured in experiments at time points t [115].
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1.3.1. The Law of Mass Action and Michaelis-Menten Kinetics
Biochemical kinetics, as they are translated in this study, are based on the law of mass
action [96, 97]. This law assumes that the reaction rate is proportional to the proba-
bility of a collision of species (in this case, reactants) [90]. The probability is, in turn,
proportional to the concentration of a species. With this, a prediction can be made for a
quantity C by measuring quantities A and B. This prediction is in the form of a formula
[116]. For example, the chemical reaction

A+B
k1⇐⇒
k2

C (1.1)

yields the system of ODEs:

dA(t)
dt

= dB(t)
dt

= −k1 · A(t) ·B(t) + k2 · C(t)

dC(t)
dt

= +k1 · A(t) ·B(t)− k2 · C(t)

with A,B, and C as reactants, and k as reaction rate. The reaction rate can also be
written as v = 2 · (k1 ·A(t) ·B(t)−k2 ·C(t)2). The units of the reactants depend on their
measurements (concentration, amount) and on time (seconds, minutes, hours, days).
Ten years after the fundamental equation regarding enzyme kinetics was set up by Vic-
tor Henri in 1903, Leonor Michaelis and Maud Leonora Menten invented the well-known
MM kinetics. They postulated that enzymatic reactions are initiated by binding enzyme
and substrate [117].
Michaelis and Menten investigated the sucrase’s kinetics, also called invertase. It accel-
erates the hydrolysis of sucrose into glucose and fructose [117].

Saccharose+H2O
enzyme−−−−→ glucose+ fructose

They confirmed the findings of Henri and developed a mathematical description of this
reaction. With this, enzymatic reactions became quantifiable. The chemical reaction is
modeled as follows:

E + S
k1⇐⇒
k2

ES
k3−−→ E + P

with E as the enzyme, S as substrate, P as product, ES as enzyme-substrate-complex
[117] and k1 as the formation of enzyme-substrate-complex formation, k2 as the decay
of ES, and k3 as dissociation of enzyme and product. The interconnected system of
ordinary differential equations (ODE) can be used to calculate concentrations of the
different components or masses. It is given as follows:
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dS(t)
dt

= −k1 · E(t) · S(t) + k2 · ES(t) (1.2)

dE(t)
dt

= −k1 · E(t) · S(t) + k2 · ES(t) + k3 · ES(t)

dE(t)
dt

= −k1 · E(t) · S(t) + (k2 + k3) · ES(t) (1.3)

dES(t)
dt

= k1 · E(t) · S(t)− (k2 + k3) · ES(t) (1.4)

dP (t)
dt

= +k3 · ES(t) (1.5)

Since the reactions start at time point t = 0, no enzyme-substrate complex or product
is present. The initial concentration of the substrate and enzyme are named S0 and E0
(S(0) = S0, E(0) = E0) [117]. To solve this system of ODEs, two different approaches
can be used, which differ in their assumptions:

• Michaelis/Menten (1913) [117]: k3 is very small compared to k2. KS was
introduced as a constant for complex formation or substrate constant with

Km = KS = k2

k1

• Briggs/Haldane (1925) [118]: k3 is manageable for some enzymes, leading to
the following substrate constant,

Km = k2 + k3

k1
= k2

k1
+ k3

k1

with k2
k1

as equilibrium constants and k3
k1
. The last kinetic constant describes a

subsequent reaction of the form

A→ B → C

According to the different assumptions of Michaelis, Menten and, Briggs, Haldane, the
system of ODEs can be solved as follows:

• Michaelis/Menten [117]: If equation 1.2 and equation 1.4 are summed up,

dS(t)
dt

+ dES(t)
dt

= 0
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results. Thus

S(t) + ES(t) =constant = E0

E(t) =E0 − ES(t) (1.6)

It is assumed that the first reaction enters equilibrium, this means that

dS(t)
dt

=0

dES(t)
dt

=0.

In equilibrium, it is also valid for equation 1.2

0 = dS(t)
dt

= −k1 · E(t) · S(t) + k2 · ES(t)

with equation 1.6

0 =− k1(E0 − ES(t)) · S(t) + k2 · ES(t)

⇒ ES(t) = k1 · E0 · S(t)
k1 · S(t) + k2

= E0 · S(t)
S(t) + k2

k1

(1.7)

ES(t) is not measurable and has to be replaced. The velocity of the reactions
depends on the overall reaction of the decomposition of ES to P.

dP (t)
dt

=k3 · ES(t) = k3 · S(t)
S(t) + k2

k1

dP (t)
dt
· 1
k3 · E0

= S(t)
S(t) +Km

≤ 1

For

dP (t)
dt

≤k3 · E0 := Vmax

⇒ dP (t)
dt

=Vmax · S(t)
S(t) +Km
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Set

dP (t)
dt

=1
2 · Vmax

1
2 · Vmax =Vmax · S(t)

S(t) +Km

⇐⇒ Km = S(t)

Thus, Km is the substrate concentration S = S(tx) at a certain time point tx,
so that the velocity of the generation of P is half of Vmax. For the substrate
concentration, we know that

dS(t)
dt

+ dS(t)
dt

= −k3 · ES(t)

An equilibrium is assumed, thus

dES(t)
dt

=0 (1.8)

⇒ dES(t)
dt

=− k3 · ES(t)

with equation 1.7 it is valid that

dS(t)
dt

=− k3 · E0 · S(t)
S(t) +Km

dS(t)
dt

=− dP (t)
dt

For S(t)� Km leading to

dS(t)
dt

= −k3 · E0 = Vmax

and for Km � S(t) leading to

dS(t)
dt

= −k3 · E0

Km

· S(t)

leading to a steep decrease in S in the early phase and a moderate decrease in the
later phase. For P , it is yielded that

dP (t)
dt

= k3 · E0

Km

· P (t).
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in the early phase. In the later phase

dP (t)
dt

= k3 · E0

is valid.

• Briggs/Haldane [118]: The generation of ES is a reaction of the second order,
and it is valid that

dES(t)
dt

= k1 · ES(t).

The degradation of ES is a reaction of first order and

−dES(t)
dt

= k2 ·+k3 · ES(t) = (k2 + k3) · ES(t)

is yielded. In the steady state, both reaction velocities are equal. Thus

k1 · E(t) · S(t) =(k2 + k3) · ES(t)

E(t) · S(t) =k2 + k3

k1
· ES(t) = Km · ES(t)

This leads to the km value in terms of Briggs and Haldane:

Km =k2 + k3

k1

=k2

k1
+ k3

k1

k2/k3 is the equilibrium constant, according to Michaelis and Menten, and is called
the „substrate constant“ (Ks). k2/k3 is the kinetic constant of product formation.
For k2 � k1,

Ks = Km

With equation 1.6 and 1.3.1
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(E0 − ES(t)) · S(t) = Km · ES(t)

leads to

ES(t) = E0 · S(t)
Km + S(t) .

This is the exact solution of the system of ODEs with the approach of Michaelis
and Menten.

In conclusion, for MM, it is valid that

dES(t)
dt

=0

Km =k2

k1

For Briggs and Haldane, the generation velocity of ES is the same as the degradation
velocity of ES with

Km = k2 + k3

k1
(1.3)

1.3.2. Parameter Fitting
A mathematical model consists of equations which correspond to the concentration or
amount of different compounds in the model. Those compounds are also called species.
The equations consist of parameters and species. For the species, often measurements
from different time points are available. On the theoretical face of parameter fitting, the
parameter has to be determined in a way that the predicted model output agrees with
the underlying experimental data for parameters θ [115]. To check whether a system of
ODEs represents the dynamics of a process, parameters are fitted to the corresponding
data. Therefore, initial values problems (IVP) have to be solved. They have the form:

dx(t)
dt

= F (x(t))

x(t0) = x0

To measure the agreement between data points y(ti) ( with i = 1, . . . , dk and dk the
amount of data points) and the model output an objective function provides such a
measure. Commonly the weighted sum of squared residuals
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χ2(θ) =
m∑
k=1

dk∑
i=1

1
σ2
ki

(y(ti)− F (x(ti, θ), θ)) (1.4)

where dk denotes the number of data points for each observable k = 1, . . . ,m, measured
at time points ti with i = 1, . . . , dk is used. The variances σ2

ki of the measurement noise
are assumed to be known. The parameters can be estimated by finding the parame-
ter values θ̂ that minimize χ2(θ), for normally distributed measurement noise χ2(θ) is
proportional to the log-likelihood (LL) and minimizing equation 1.4 corresponds to the
maximum likelihood estimation (MLE) [98, 115].

Calculating an ODE model’s parameters with respect to data is problematic, because
most models include stiff differential equations. With this, the solution depends on the
selection of the initial values. Moreover, when an optimal parameter set is found, the
uniqueness of the solution is uncertain [119].
On the practical face of parameter fitting, the process, which is executed to fit the pa-
rameters to the data, consists of four steps. The first step is to make a first guess about
the parameters. Secondly, the model equations have to be solved. Afterward, it has to
be checked whether optimal conditions are achieved. If this is the case, the algorithm can
stop. If not, another value for the parameters has to be chosen, and the process has to
restart. The starting point x0 of an optimization method [120] can be chosen so that the
algorithm is stuck in a local optimum. Therefore, latin hypercube sampling (LHS) was
invented. This algorithm prohibits randomly selected starting points lying too close to
each other [102]. It ensures that the entire parameter space is covered optimally. There-
fore, the parameter space is divided in regions in a way, that a single sample represents
each region. This procedure generates a fixed number of starting points [120, 121]. Now
initial guesses for parameters are chosen. The next step is to solve the system of ODEs,
e.g., by CVODES [100]. This algorithm solves the system of ODEs numerically with
multi-step methods. A detailed explanation of the algorithm can be found in [101].
This thesis performs a simulation by fixing calculated parameters in a model with cor-
responding parameters. The values (e.g., concentration) for each species are calculated
for a specific time interval and visualized by plotting data points and trajectories of the
different species in the selected time interval.

1.3.3. Model Selection
To answer a particular question, often several answers are possible. These answers are
translated into different mathematical models. A model is good as long it explains the
corresponding data [98]. However, it is often difficult to decide whether a model fits the
data. Therefore, models are compared. Model selection is a broad field [122, 123], but
not much work was done in the context of ODEs [99]. A criterion must be consulted,
which is estimable from the data for each fitted model [114]. This implies that one of
the models is the actual model [114]. Primarily, model selection has been performed
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by using the Akaike information criterion (AIC) [103, 104], which is the most popular
selection criterion [124] and is based on the likelihood (L). The AIC is calculated by
2 · k − 2 · ln(L), with k as the number of parameters. To compare models fitted to data
sets with different amounts of data, the Bayesian information criterion (BIC) is used.
The BIC is calculated by k · ln(n)−2 · ln(L), with n as the amount of the measurements,
which are used to calculate the parameters [105].

1.3.4. Profile Likelihood
The profile likelihood enables to calculation of likelihood-based confidence intervals. This
approach detects the flatness of the likelihood and a high dimensional space by exploring
each parameter in the direction of the least increase in χ2(θ) with

χ2
PL(θ) = min

θj 6=i
(χ2(θ))

For each parameter θi, a section is computed along the minimum of the objective function
concerning all the other parameters θj 6=i. A certain threshold ∆α defines a confidence
region given the following equation 1.5

{θ|χ2(θ)− χ2(θ̂) < ∆α)} (1.5)

Its borders represent confidence intervals. the threshold ∆α is the α quantile of the χ2

distribution [115].
For the calculation of the confidence intervals, an optimization method is used, which
calculates the minimum of constrained nonlinear multi-variable functions (fmincon) of
the form:

min
x
f(x) such that



c(x) ≤ 0
seq(x) = 0

Aẋ = 0
Aeqẋ = beq

lb ≤ x ≤ ub

e.g. with b, beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions
that return vectors. f(x) is a function that returns a scalar. f(x), c(x) and ceq(x) can
be nonlinear functions, and x, lb, and ub can be passed as vectors or matrices [125].
This approach is also used for the profile likelihood estimation. It determines whether
parameters are definitely calculated based on derived measurements [98]. A model is
called structurally identifiable, whose solution x(t), t ∈ [0, T ] of an initial value problem
determines the initial values ψ and the parameter vector θ [125].
A perfectly flat profile characterizes a structural non-identifiability. indicating that the
parameter cannot be determined. A practical non-identifiability is characterized by
a profile that flattens out and stays below the threshold ∆α for confidences intervals
[115, 126].
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1.3.5. Sensitivity Analysis
If the actual ODE model is detected, it is also of interest which inputs substantially
influence different species. The influence can be determined by sensitivity analysis (SA)
[106]. It identifies relations between the inputs and outputs of a system of ODEs [127].
Different approaches were developed to perform a SA [128]: derivative-based sensitivity
measure [129, 130, 131, 132], regression-based sensitivity measure [133, 134], variance-
based sensitivity measure [135, 136], moment-independent sensitivity measures [137, 138]
and qualitative (or screening) sensitivity measure [106, 139, 140, 141, 142].
This study used the morris elementary effects screening method (morris screening), which
belongs to the last group. The morris screening identifies important factors and is a reli-
able and efficient SA technique [135]. f is denoted as a model with k independent inputs
X(X1, · · · , Xk), Y is denoted as the model output Y = f(X). x = x1, . . . , xk are values,
which were assigned to X. Only xi is varied by a given ∆. All other input values re-
main unchanged. The corresponding model output is f(x1, . . . , xi−1, xi+∆, xi+1, . . . , xk).
Elementary effects (EE) for xi are given by

EEi = f(x1, . . . , xi−1, xi+∆, xi+1, . . . , xk)− f(x)
∆

This corresponds to the one-at-a-time (OAT) design, repeated N times. Thus, N EEs
are obtained for Xi. Measures for the influence of a species are given with

µi = 1
N

N∑
r=1

EEi,r (1.6)

σi =

√√√√ 1
N − 1

N∑
r=1

(EEi,r − µ1)2

The EEir corresponds to the r-th EE of Xi.

1.4. Previous Mathematical Models of the TRP
Metabolism

To develop a model based on ODEs, already published models of the TRP metabolism
were reviewed to configure them according to the natural setting, which is relevant to
this work. Four different ODE models with relation to the TRP metabolism or the effects
of 1-MT were found and are presented in the following. None of the models explains
the effects of LPS or 1-MT. They describe alterations of the TRP metabolism due to
digestion [14] or pathological changes like cancer [15, 143, 144]. Two of the four models
are presented in more detail. Both consider almost all of the degradation pathways of
the TRP metabolism. Therefore, the models developed in this thesis are simplifications
of both models.
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1.4.1. Effects of Vitamin B6

The mathematical model of Rios-Avila published in 2013 [14] was developed to inves-
tigate the dynamics of the TRP metabolism influenced by the amount of pyridoxal
5’-phosphate (PLP) in the liver. PLP is the active form of vitamin B6 [14]. However,
TRP transport from the gut, brain and muscle was also involved. PLP serves as a coen-
zyme for KYNU and KAT [14].
The ODE model presented in the paper of Rios-Avila et al. is presented as a schematic
in Figure 1.3. It is based on the following biological degradation processes: In the liver,
TRP is oxidized to NFK by TDO. AFD further degraded NFK to KYN. KYNU cat-
alyzes the hydrolysis of KYN to AA. Moreover, KYN is converted by KAT to KYNA.
KMO degrades KYN to HK, which is further converted by KAT to XA and by KYNU
to HAA. HAA is further degraded to QUIN by HAO. The activity of KYNU and KAT
depend on PLP, to which KYNU is more susceptible than KAT to the effects of PLP.
The ODE model includes TRP input in the intestinal lumen, transport of tryptophan
from the intestinal lumen to circulation by the L-transporter, delivery of TRP to the
liver, and exchange of circulating tryptophan with muscle and brain [14]. The effects
of IDO were omitted since IDO is not synthesized by liver cells [57]. SER was omitted
too, but it occurs in the liver [145]. Probably, it was omitted since it is not related
to vitamin B6 and the focus of the paper was on the KP and not on the whole TRP
metabolism. The schematic of the model given in Figure 1.3 was transferred into a
system of ODEs consisting of 15 equations. The system includes the TRP metabolites
TRP, KYN, QUIN, KYNA and the intermediate metabolites. The degradation of one
species to the other was modeled as an enzymatic reaction by using MM kinetics. Km

values were fixed to literature values. For the Km and Vmax values of KYNU I and II and
KATI and II, different enzyme activities were assumed. Both enzymes were included
with two different variants, catalyzing the degradation of two different substrates. This
model was applied to data found in the literature [14].
With this whole-body model, the TRP metabolism via the KP in the liver is simulated
to gain insight into the effects of vitamin B6 deficiency, TRP loading and induction of
TDO on TRP metabolites. The results of those validation studies showed good agree-
ment between the model with published data [14]. Rios-Avila et al. report the results of
in silico experiments with the model to investigate the effects of various levels of vitamin
B6 deficiency, the effects of TDO induction, and the interaction of vitamin B6 deficiency
[14]. Moderate deficiency yielded increased HK levels and decreased KYNA and AA lev-
els. More severe deficiency also increased KYN and XA levels and had more pronounced
effects on the other metabolites[14]. TRP load simulations with and without vitamin
B6 deficiency showed altered metabolite concentrations consistent with published data.
Induction of TDO caused an increase in all metabolites, and TDO induction, together
with a simulated vitamin B6 deficiency, yielded increases in KYN, HK, and XA and
decreases in KYNA and AA levels [14].
Rios-Avila et al. give a detailed model of the KP and also provide an overview of lit-
erature values, which are used to create simulations of human B6 deficiency based on
data. Therefore, detailed descriptions of the calculations of the volumes of the different
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compartments are given. Unfortunately, the references to the data should be mentioned
and also figures showing data and simulations in comparison should be included. The
model only includes the TRP levels of different compartments, but it does not account
for other compartments’ metabolite levels. The reproducibility is lowered by missing in-
formation about the used software. It should be noted that assumptions on the volumes
of the different compartments (liver, gut, brain, and muscle) were made for conditions
valid for humans, but the fixed parameter values were determined in rodents. [14]

Figure 1.3.: Schematic of the TRP metabolism in different compartments
published by Rios-Avila et al.: The interaction network of the TRP
metabolism published by Rios-Avlia et al. in 2013 [14] includes the degra-
dation of TRP to NFK by TDO. NFK is degraded to KYN by AFD, and
KYN is degraded to the downstream metabolites KYNA (by KAT depend-
ing on PLP), AA (by KYNU dependent on PLP) and HK (by KMO). HK is
further degraded to XA by KAT (dependent on PLP) and to HAA by KYNU
(dependent on PLP). HAO further degrades HAA to QUIN. Metabolites are
shown in circles, arrows show reactions with the enzyme names next to an
additional bent arrow. Bent arrows with µmetabolite specify degradation path-
ways of the corresponding metabolite. The bi-directional arrow crossing the
plasma membrane shows the transport of TRP from the different compart-
ments gut, brain and muscle to the liver. AA - anthranilic acid, AFD -
aryl formamidase, HAA - 3-hydroxyanthranilic acid, HAO - 3-hydroxynalic
acid oxygenase, HK - 3-hydroxykynurenine, KAT - kynurenine aminotrans-
ferase, KMO - kynurenine 3-monooxygenase, KYN - kynurenine, KYNA -
kynurenic acid, KYNU - kynureninase, NFK - N-formyl-kynurenine, QUIN -
quinolinic acid, PLP - pyridoxal 5’-phosphate, TDO - tryptophan 2,3- dioxy-
genase, TRP - tryptophan, XA - xanthurenic acid, µ degradation parameter
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1.4.2. Parameter fitting Based on Tissue-Specific Gene Expression
Data

Stavrum et al. developed an ODE model of the TRP metabolism [15] intending to the
aim to estimate enzyme concentrations of neuroactive TRP metabolites like KYNA and
QUIN [146] which are based on gene expression data in the brain and liver. A consid-
erable impact of the KP in the liver on the concentrations of neuroactive derivatives in
the brain were made. A simplified schematic of the model is shown in Figure 1.4. The
model was adapted to cancer and tuberculosis meningitis. A multiplicity of metabolites
are included in the model developed by Stavrum et al. [15]. They included the branch
of the SER pathway consisting of HT and SER as well as downstream metabolites like
melatonin. Also, the KP with TRP, KYN, KYNA, and QUIN is included as well as inter-
mediate metabolites like NFK or downstream metabolites like cinnabarinic acid. More
precisely, TRP is degraded to SER via HT by TPH and DDC. TRP is also degraded
to tryptamine by DDC and further downstream metabolites. Along the KP, TRP is
degraded to NFK by IDO or TDO. NFK is further degraded to FAA by KYNU and by
AFD to KYN. Both FAA and AA are degraded to AA by KYNU or AFD. The model
includes an exchange of TRP and KYN with other compartments, like brain and blood
via the blood stream. KYN is further degraded to KYNA by KAT or to HK by KMO.
HK can be degraded to XA by KAT or to HAA by KYNU. HAA is further degraded to
cinnabarinic acid and ACMS by HAO, which is further degraded to QUIN by KYNU
and to AMSA by ACD. AMSA is further degraded to PICO [15].
The schematic presented in Figure 1.4 of the TRP metabolism was transferred into a
system of ODEs. Mass action kinetics were used to model non enzymatic reactions,
whereas enzymatic reactions were modeled as MM kinetics. The turnover number kcat
and the enzyme concentration calculate Km and Vmax. Km and kcat were fixed to lit-
erature values, while the enzyme concentration had to be measured. If there was more
than one literature value, minimal and maximal values were set as the lower and up-
per boundaries of the parameter search space [15]. Each optimization was repeated 20
times to get an estimate of the variability of optimized expression values [15] because the
parameter search space for expression values was huge, there could be several optimal
parameter combinations that would result in similar results [15]. This approach is also
called a „parameter scan“.
Simulations based on gene expression data were performed, and prediction of metabolic
changes in cancer and tuberculosis meningitis were made. Those predictions were in line
with data measured in patients. The model developed by Stavrum et al. provides a
diagnostic tool to predict pathological changes in TRP metabolism based on a limited
number of clinical measurements [15].
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Figure 1.4.: Schematic of the TRP metabolism in different compartments
published by Stavrum et al.: The interaction network of the TRP
metabolism published by Stavrum et al. in 2013 [15] includes the SER
and KP as well as other degradation pathways and their metabolites. TRP
is degraded via HT to SER by TPH and AAD along the SER pathway. TRP
is degraded via the KYN-pathway to NFK by TDO or IDO. NFK is further
degraded to FAA and then to AA by KYNU and AFD. NFK is degraded
to KYN by AFD. KYN is also degraded to AA by KYNU or by KAT to
KYNA. Moreover, it is degraded to HK by KMO. KAT degrades HK to XA
and KYNU degrades HK to HAA. HAO degrades HAA to ACMS. KYNU
degrades ACMS to QUIN. ACMS is also degraded to AMSA by ACD, which
is further degraded to PICO. Metabolites are shown in circles, arrows show
reactions with the enzyme names next to an additional bent arrow. Arrows
without enzyme names sum up several enzymatic reactions. Bent arrows
with µ replace reactions not included in the SER and KP. The bi-directional
arrow crossing the plasma membrane shows the transport of TRP and KYN.
AA - anthranilic acid, ACD - 2-amino-3-carboxymuconate semialdehyde-
decarboxylase, ACMS - 2-amino-3-carboxymuconate semialdehyde, AFD -
aryl formamidase, AMSA - 2-aminomuconate semialdehyde, DDC - aromatic
L-amino acid decarboxylase, FAA - formyl-AA, HAA - 3-hydroxyanthranilic
acid, HAO - 3-hydroxynalic acid oxygenase, HK - 3-hydroxykynurenine,
HT - 5-hydroxy-tryptophan, IDO - indoleamine 2,3-dioxygenase, KAT -
kynurenine aminotransferase, KMO - kynurenine 3-monooxygenase, KYN
- kynurenine, KYNA - kynurenic acid, KYNU - kynureninase, NFK - N-
formyl-kynurenine, PICO - picolinic acid, QUIN - quinolinic acid, PLP -
pyridoxal 5’-phosphate, SER - serotonin, TDO - tryptophan 2,3- dioxyge-
nase, TRP - tryptophan, XA - xanthurenic acid, µ degradation parameter
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An overview of all literature values is given in the supplementary tables. They only
used data on mammals, but they did not specify the species in which the values were
measured. But there were simulations made for human liver and brain and rat liver and
its cortex. To improve the clarity, the schematic of reduced models is shown. Unfor-
tunately, no explicit written system of ODEs is given. Thus, the developed models are
not reproducible. Moreover, no figure was included displaying the changes in metabolite
levels over the time.
Although IDO was considered in the model, the calculations revealed that no reaction
was catalyzed based on the used data [15]. The lack of infection can explain this. Un-
fortunately, the results of predicting TRP metabolites during tuberculosis meningitis
infection are not shown.

1.4.3. Further Models
The following ODE models are mentioned for the sake of completeness. For the model
development in this study, the models were not used. One model concerns the TRP
metabolism in patients with pancreatic adenocarcinoma. It was developed to find treat-
ment targets [143]. Therefore, the expression of mRNA of TRP, KYN and IDO and
of several markers of the immune system were measured. Remaining TRP metabolites
were omitted. 12 equations with 35 parameters built the ODE system. All parameters
were estimated and MM kinetics were not used [143]. The second model includes im-
munotherapy with 1-MT concerning cancer therapy of glioblastoma [144]. This model
focuses on tumor cells, radiotherapy, and immune cells and immunotherapy with 1-MT.
The model aimed to predict the survival time of cancer patients. 1-MT, IDO, radiother-
apy, and tumor-associated antigens were included. Inhibition of the effects of IDO by
1-MT was included in the model. All other TRP metabolites were not included in the
model [144].

1.5. Aim of the Thesis
As mentioned in section 1.2 there is no explanation for the 1-MT induced increase of
TRP and KYNA, while the intermediate metabolite KYN does not change. In this
study, mathematical modeling with systems of ordinary differential equations (ODEs)
was applied to clarify two questions using data measured in pigs [147, 148]:

1. How do TRP and KYNA increase while the intermediate metabolite KYN does
not change?

2. In the face of infection, does TRP only degrade to KYN via TDO or IDO during
1-MT administration?

Therefore, the thesis aims to:

1. develop a mathematical model of the TRP metabolism (standard model)
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2. extend this model by an LPS administration and the effects of LPS (LPS model)

3. extend the standard model by an 1-MT administration (1-MT model)

4. develop different possible degradation processes of 1-MT along the TRPmetabolism

5. extend the 1-MT model by different pathways explaining the increase of TRP and
KYNA (hypotheses)

6. combine the LPS model with the most likely hypothesis of TRP and KYNA in-
crease (1-MT/LPS model)

7. compare a 1-MT/LPS model including inhibitory effects of 1-MT with one 1-
MT/LPS model excluding those effects

8. fit the parameters of all models and hypotheses to appropriate data and test their
reliability

To process the different aims, this thesis will proceed as follows. After the introduc-
tion, the thesis is further divided into the commonly used structure with a „Materials
and Methods“, „Results“as well as „Discussion“section. The models, data and methods
are introduced in sections 2.1, 2.2 and 2.3 of the „Materials and Methods“ part. The
presented models are a result of this work. They are not presented in the „Results“,
because, in most publications of mathematical modeling with ODEs, the models are
introduced in the „Materials and Methods“part. It was decided to hold this convention.
The „Results“section is divided into two parts: In section 3.1, the results of ODE mod-
eling different degradation processes of 1-MT along the TRP pathway are presented.
In the second section 3.2 two ODE models are compared. One model includes the in-
hibitory effects of 1-MT, and one does not. In the section 4, the results of this work
are compared to results from the literature. Moreover, limitations of the work are dis-
cussed in section 4.8, as well as future research directions 4.9. The thesis closes with a
conclusion in section 4.10. In the appendix a detailed description of the experimental
design (see appendix section A) and additional information on literature, fitted param-
eters (see appendix section C) as well as more detailed information of the results of the
identifiability analysis (see appendix section B) are shown.
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2. Materials and Methods
Data were gained from experiments conducted in pigs to investigate the degradation
processes of 1-MT and reproduce its inhibitory effects on IDO. Those pigs received
LPS to activate IDO [149]. This study was performed to establish a pig model of
IDO activation by LPS for further research [149]. LPS and 1-MT were administered
in another study to investigate the protective and immunomodulatory effects of 1-MT
against endotoxin-induced shock in a porcine in vivo model [86]. The purpose of both
studies was not to conduct analysis using systems of ODEs. Nevertheless, data can be
used to test different degradation processes of 1-MT and reproduce 1-MT’s inhibitory
effects in a mathematical model using ODEs. The different degradation processes of
1-MT were tested in three ways:

• parameters were fixed to parameter values, which were fitted to data measured in
LPS-treated pigs (approach 1)

• parameters were fixed to parameter values, which were fitted to a subset of the
data measured in 1-MT and LPS-treated pigs (approach 2)

• parameters were fitted to the data measured in 1-MT and LPS-treated pigs (ap-
proach 3)

The developed models are introduced in section 2.1. The parameters of those models are
adapted to data, which are described in section 2.2 and in more detail in the appendix A.
The methods used for the adaptation of parameters to the data and consequent analysis
are described in section 2.3.

2.1. Ordinary Differential Equation Models of
Tryptophan Metabolism

Three different models were developed to investigate the alterations on the dynamics of
TRP metabolites during infection (LPS administration), during 1-MT administration
and during a combination of 1-MT and LPS administration. The models are based on
a standard model of the TRP metabolism (including TRP, KYN, KYNA, QUIN, and
SER), which is based on the existing models presented in section 1.4 [14, 15]. The stan-
dard model is extended by LPS, 1-MT, or 1-MT and LPS administration. The first ODE
model includes the activation of IDO by LPS administration (LPS model). The admin-
istration of 1-MT extends the second ODE model to decipher degradation mechanisms
of 1-MT belonging to the TRP metabolism (1-MT model). Therefore, this model was
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extended by possible degradation pathways, which were subsequently compared by LL,
AIC, and BIC values (see section 1.3.3). The ODE model of the degradation pathway
describing the data the best was extended by the LPS administration. Thus, a model
combining the LPS and 1-MT model resulted (1-MT/LPS model). To decipher the in-
hibitory effects of 1-MT on LPS induced IDO in pigs, models were developed. The first
ODE model considers the inhibitory effects of 1-MT on IDO, the second does not. Both
models were compared by LL, AIC, and BIC values. In the following, all models are
introduced.

2.1.1. Standard Model
The model presented in this section is called the „standard model“. It is developed based
on the models of the TRP metabolism published by Rios-Avila et al. [14] and Stavrum et
al. [15] in section 1.4. Based on both models, the standard model was simplified. Several
reactions were summarized, resulting in an ODE model only containing species for which
measurements are available to increase the identifiability of the model parameters.
According to Rios-Avila et al., degradation parameters of both models were maintained
in the standard model [14]. Several reactions of the model of Stavrum et al. [15] were
summed up as degradation reactions µ. MM-kinetics were applied, and Km values
were set to literature values, while Vmax-values were calculated [14, 15]. As opposed
to Stavrum et al., parameters of kcat-values and enzyme concentrations were calculated
using Vmax [15].
The levels of all metabolites were calculated for the whole body, as it was performed
by Rios-Avila et al. disregarding TRP. Although it is a disadvantage fixing parameters
to literature values from different species, it proceeded similarly due to the lag of pig-
specific literature values.
The standard model was used to simulate the dynamics of the TRP metabolism without
any interference. Its parameters were fitted to the data of control pigs, which were
not treated with LPS or 1-MT (see section 2.2). This model was extended for further
investigations concerning LPS and 1-MT administration. A schematic of the reactions
of the standard model is shown in Figure 2.1.
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Figure 2.1.: Schematic of the standard model of the TRP metabolism: The
schematic of the TRP metabolism includes the degradation of TRP to SER
by TPH. TRP is degraded to KYN by TDO, and KYN is degraded to the
downstream metabolites KYNA (by KAT) and QUIN (by KQE). Bent ar-
rows show enzymatic reactions bent arrows next to a straight arrow. KAT -
kynurenine aminotransferase, KQE - kynurenine to quinolinic acid degrad-
ing enzyme, KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic
acid, SER - serotonin, TDO - tryptophan-2,3-dioxygenase, TPH - trypto-
phan hydroxylase, TRP - tryptophan, µ - degradation parameter

The schematic of the reactions of the standard model is based on biological processes,
which are described in more detail in the following: TRP is degraded to KYN by hepatic
TDO (V TDO

max , KTDO, 2.2) [150] (see Table 2.1 reaction 1). This degradation of TRP is an
enzymatic reaction, and therefore, the MM equation was used. Since TRP is degraded
via TDO, it is modeled as a decrease in eq. 2.2 and as an increase in eq. 2.3 The product
of the TRP degradation via TDO is KYN, which is degraded to KYNA by kynurenine
aminotransferase (KAT, see Table 2.1 reaction 3). KAT leads to an increase in eq. 2.4
and a decrease in eq. 2.3. KYN is also degraded to QUIN by several consecutive reactions
(kynurenine 3-monooxygenase, kynureninase, 3-hydroxyanthranilic acid oxidase). These
reactions were summed up in one enzymatic reaction by a fictitious enzyme named KQE
(KYN to QUIN degrading enzyme, see Table 2.1 reaction 4). The increase of QUIN was
accounted in eq. 2.5, and the decrease of KYN was modeled in eq. 2.3. Moreover, KYN
is degraded to anthranilic acid [15], leading to a degradation term of KYN (µKYN in
eq. 2.3, see Table 2.1 reaction 7). KYNA (in eq. 2.4) and QUIN (in eq.(2.5)) are further
degraded (see Table 2.1 reaction 6 and 8), resulting in loss terms [147]. TRP is not
only degraded by TDO. The enzyme tryptophan hydroxylase (TPH) and aromatic L-
amino acid decarboxylase degrade TRP via 5 Hydroxytryptophan to SER [151]. These
degradation steps were summed up to one reaction by TPH (see Table 2.1 reaction 2),
resulting in a gaining term in eq. 2.6 and a loss term in eq. 2.2. Also, SER is degraded
(see Table 2.1 reaction 5), like QUIN and KYNA, leading to a decrease in eq. 2.6.
Those reactions are summed up in Figure 2.1. The reactions are concordant with the
chemical reactions of the TRP metabolism shown in Table 2.1. The following reactions
are included in the standard model: TRP is degraded via TPH to SER (see Table 2.1,
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Table 2.1.: Chemical reactions and signaling pathways of the TRP metabolism
reaction source product reaction type
1 TRP TDO−−−→ KYN enzymatic
2 TRP TPH−−→ SER enzymatic
3 KYN KAT−−→ KYNA enzymatic
4 KYN KQE−−−→ QUIN enzymatic
5 SER µ−→ degradative
6 KYNA µ−→ degradative
7 KYN µ−→ degradative
8 QUIN µ−→ degradative
9 FoodSupply−−−−−−→ TRP receiving

Concordant with the interaction network in Figure 2.1, TRP is degraded to SER by
TPH (reaction 2). TRP is degraded to KYN by TDO (reaction 1), and KYN is
degraded to the downstream metabolites KYNA (by KAT, reaction 3) and QUIN (by
KQE, reaction 4), SER, KYN, KYNA and QUIN are further degraded with
degradation rates µ (reactions 5, 6, 7, 8). The TRP levels increase after food intake
(reaction 9, FoodSupply). KAT - kynurenine aminotransferase, KQE - kynurenine to
quinolinic acid degrading enzyme, KYN - kynurenine, KYNA - kynurenic acid, QUIN -
quinolinic acid, SER - serotonin, TDO - tryptophan-2,3-dioxygenase, TPH -
tryptophan hydroxylase, TRP - tryptophan, µ - degradation parameter

reaction 2) and to KYN via TDO (see Table 2.1, reaction 1). KYN is degraded by KAT
to KYNA and KQE to QUIN (see Table 2.1, reaction 3 and 4). Each species is degraded
separately with degradation parameter µ (see Table 2.1, reactions 5 to 8). Since the
pigs had access to food and TRP is a ubiquitous amino acid, contained in food (see
section 2.2), an increase of TRP was modeled by FoodSupply (see Table 2.1 reaction 9).

The system of ODEs corresponds to the standard model of Table 2.1 and Figure 2.1.
Since several degradation steps of the TRP metabolism are catalyzed by enzymes,
Michaelis-Menten(MM) kinetics were used [152] corresponding to eq. 2.1.

dS(t)
dt

= V enzyme
max · S(t)

S(t) +Kenzyme

, (2.1)

with V enzyme
max as the maximal turnover rate, and Kenzyme = Km as the MM-constant

of the corresponding enzyme. This constant represents the substrate concentration, at
which the velocity of the enzymatic reaction is half of the maximal turnover rate V enzyme

max .
All enzymatic reactions were assumed to be irreversible for two reasons:

1. Reactions involving oxygenation, acetylation, ring forming, and ring breaking are
unlikely to be reversed [15]
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2. Potentially reversible reactions in the network follow fast non-enzymatic reactions,
which drive preceding enzymatic reactions in a forward direction [15]

The system of ODEs corresponding to the standard model is given as follows:

dTRP (t)
dt

= + FoodSupply − TRP (t) · V TPH
max

KTPH + TRP (t) −
TRP (t) · V TDO

max

KTDO + TRP (t) (2.2)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.3)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t) − µKYNA ·KYNA(t) (2.4)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.5)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.6)
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2.1.2. Model Considering Infection
The ODE model described in this section includes the activation of IDO by LPS. It
was invented to describe the altered dynamics of the TRP metabolism during infection.
The model is based on the standard model (see Figure 2.2, blue) and extended by an
LPS administration with consequent TNF-alpha production induced IDO activation (see
Figure 2.2, pink).

Figure 2.2.: Schematic of the LPS model: The standard model is extended (dotted
lines) by an application of LPS, which leads to an increase in TNF (TNF-
α) concentration, TNF leads to the activation of IDO, which increases the
degradation rate of TRP to KYN. Bent arrows show enzymatic reactions
next to a straight arrow. k - activating reaction, KAT - kynurenine amino-
transferase, KQE - kynurenine to quinolinic acid degrading enzyme, KYN
- kynurenine, KYNA - kynurenic acid, LPS - lipopolysaccharide, QUIN -
quinolinic acid, SER - serotonin, IDO - indolamin-2,3-dioxygenase, TDO -
tryptophan-2,3-dioxygenase, TNF - tumor necrosis factor -α, TPH - tryp-
tophan hydroxylase, TRP - tryptophan, µ - degradation parameter

This ODE model is called the „LPS model“ and is based on the chemical reactions and
signaling pathways shown in Table 2.2, which reactions 1 to 9 equal the reactions of the
standard model shown in Table 2.1.
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Table 2.2.: Chemical reactions and signaling pathways of the TRP metabolism
including the IDO activation by LPS administration

reaction source product reaction type
1 TRP TDO−−−→ KYN enzymatic
2 TRP TPH−−→ SER enzymatic
3 KYN KAT−−→ KYNA enzymatic
4 KYN KQE−−−→ QUIN enzymatic
5 SER µ−→ degradative
6 KYNA µ−→ degradative
7 KYN µ−→ degradative
8 QUIN µ−→ degradative
9 FoodSupply−−−−−−→ TRP receiving
10 LPS k−→ TNF-α activating
11 TNF-α + TRP IDO−−→ TNF-α + KYN producing
12 LPS µ−→ degradative
13 TNF-α µ−→ degradative

The standard model, which is represented in Table 2.1, is extended by the following
reactions: LPS is degraded (12), TNF−α is produced by LPS (10), TNF−α is
degraded (13), TNF-α is associated with IDO levels. Thus the degradation of TRP to
KYN (11) depends on TNF-α and on IDO-parameters. KAT - kynurenine
aminotransferase, KQE - kynurenine to quinolinic acid degrading enzyme, KYN -
kynurenine, KYNA - kynurenic acid, LPS - lipopolysaccharide, QUIN - quinolinic acid,
SER - serotonin, IDO - indolamin-2,3-dioxygenase, TDO - tryptophan-2,3-dioxygenase,
TNF - tumor necrosis factor -α, TPH - tryptophan hydroxylase, TRP - tryptophan, µ
- degradation parameter

The model is based on the following assumptions: LPS is administered, and this activates
TNF-α with rate k. TNF-α leads to IDO production, which catalyzes the degradation
of TRP to KYN. Those reactions were added to the system of ODEs corresponding to
the standard model (eq. 2.2 to eq. 2.6). The added terms are shown in pink in the
associated system of ODEs, which is given by the following equations (eq. 2.7 to 2.14):
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dLPS(t)
dt

=+Application− µLPS · LPS(t) (2.7)

dTRP (t)
dt

= + FoodSupply − TRP (t) · V TPH
max

KTPH + TRP (t)−
TNF (t) · TRP (t) · V IDO

max

KIDO + TRP (t) (2.8)

− TRP (t) · V TDO
max

KTDO + TRP (t)
dKY N(t)

dt
= + TRP (t) · V TDO

max

KTDO + TRP (t)+TNF (t) · TRP (t) · V IDO
max

KIDO + TRP (t) (2.9)

− KYN(t) · V KQE
max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t) − µKYN ·KYN(t) (2.10)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t) − µKYNA ·KYNA(t) (2.11)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.12)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.13)

dTNF (t)
dt

=+k · LPS(t)− µTNF · TNF (t) (2.14)

This system of ODEs is based on the following biological processes: With the LPS
administration, IDO transcription is activated in two ways:

1. IDO production is initiated by LPS administration in a direct way [153] by binding
LPS to TLR4 of IDO-expressing cells. This binding activates NF − κB and leads
to the transcription of IDO mRNA and, subsequently to the translation of its
mRNA [147].

2. TNF-α production is initiated by LPS, which binds to TLR4 of immune cells and
thus activates IDO production via STAT1 [154, 155]. TNF-α binds to TLR4 and
leads to the production of IDO.

Only the IDO activation by TNF-α was included since IFN-γ levels were not measured
(see section 2.2.1). TNF-α increases due to LPS (see Table 2.2, reaction 10, see eq. 2.14,
k). Also, IDO levels were not measured. Hence the degradation of TRP to KYN by
IDO was simplified. IDO levels depend on TNF-α levels. Therefore, the degradation
of TRP to KYN is mediated by TNF-α (see Table 2.2, reaction 11) [156]. By binding
to TLR-4, TNF-α is degraded with rate µTNF−α (see Table 2.2 reaction 13, eq. 2.14).
The IDO activation leads to an increase in eq. 2.10 and to a decrease in eq. 2.9. The
degradation of TLR-4 is not responsible for LPS internalization [157], and the uptake of
LPS is probably mediated by scavenger receptor-dependent pathways [158]. Thus LPS
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is not reduced by IDO activation. It was shown, that hepatocytes degrade LPS. This
degradation leads to a decrease of LPS with a rate of µLPS in eq. 2.7 [159] (see Table 2.2,
reaction 12).

2.1.3. Model Considering 1-Methyltryptophan Administration
To investigate the 1-MT induced increase of TRP and KYNA, while the intermediate
metabolite KYN stays unchanged, the standard model was extended by a 1-MT ad-
ministration. The resulting ODE model is called the „1-MT model“ and is shown in
Figure 2.1. The extension of the standard model is indicated in orange.

Figure 2.3.: Schematic of the 1-MT Model: standard model is extended (dotted
lines) by a drug application, which leads to an increase in 1-MT (1-MT)
and TRP due to contamination of the drug 1-MT with TRP, 1-MT is fur-
ther degraded with a rate of µOMT . Bent arrows show enzymatic reactions
next to a straight arrow. 1-MT - 1-methyltryptophan, IDO - indolamin-
2,3-dioxygenase, KQE - kynurenine to quinolinic acid degrading enzyme,
KAT - kynurenine aminotransferase, KYN - kynurenine, KYNA - kynurenic
acid, QUIN - quinolinic acid, SER - serotonin, TDO - tryptophan-2,3-
dioxygenase, TPH - tryptophan hydroxylase, TRP - tryptophan, µ - degra-
dation parameter

This model corresponds to the state of the art concerning the knowledge of the adminis-
tration of 1-MT. Therefore, this model is called the „classical pathway “ or just „classic“.
All chemical reactions and signaling pathways included in the 1-MT model are shown
in Table 2.3, at which reactions 1 to 9 are equal to the reactions of the standard model
shown in table 2.1.
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Table 2.3.: Chemical reactions and signaling pathways of the TRP metabolism,
including the administration of 1-MT
reaction source product reaction type
1 TRP TDO−−−→ KYN enzymatic
2 TRP TPH−−→ SER enzymatic
3 KYN KAT−−→ KYNA enzymatic
4 KYN KQE−−−→ QUIN enzymatic
5 SER µ−→ degradative
6 KYNA µ−→ degradative
7 KYN µ−→ degradative
8 QUIN µ−→ degradative
9 FoodSupply−−−−−−→ TRP receiving
10 ApplicationMT−−−−−−−−→ 1-MT receiving
11 ApplicationMT−−−−−−−−→ TRP receiving
12 1MT µ−→ degradative

1-MT increases during its application (reaction 10). It is also degraded
(ApplicationMT, reaction 12). The drug 1-MT is contaminated with TRP according to
manufacturer information. Thus TRP increases during 1-MT application
(ApplicationMT, reaction 11). 1-MT - 1-methyltryptophan, IDO -
indolamin-2,3-dioxygenase, KQE - kynurenine to quinolinic acid degrading enzyme,
KAT - kynurenine aminotransferase, KYN - kynurenine, KYNA - kynurenic acid,
QUIN - quinolinic acid, SER - serotonin, TDO - tryptophan-2,3-dioxygenase, TPH -
tryptophan hydroxylase, TRP - tryptophan,

Reactions 10 and 11 of Table 2.3 increase 1-MT respective TRP by 1-MT administration
(see Table 2.3, reaction 12, ApplicationMT ). 1-MT is degraded (see Table 2.3, reaction
12, µ). The reaction of FoodSupply is only included when food is supplied. Those
reactions were added to the system of ODEs corresponding to the standard model (see
eq. 2.2 to eq. 2.6). The reactions are shown in orange in the system of ODEs, which is
given by the following equations (eq. 2.15 to 2.20):
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d1MT (t)
dt

=+ApplicationMT − µ1MT · 1MT (t) (2.15)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t) (2.16)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.17)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t) − µKYNA ·KYNA(t) (2.18)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.19)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.20)

The producer claimed a purity of 95%, while the remaining 5% consisted of TRP
(ApplicationMT , see Table 2.3, reaction 10, eq. 2.16) [86]. 1-MT is degraded (see
Table 2.3, reaction 12) with a loss term µ1MT .
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2.1.4. Hypotheses of 1-Methyltryptophan Degradation
1-MT leads to increased TRP and KYNA concentrations, while the levels of the inter-
mediate metabolite KYN does not change [86]. To determine the degradation process of
1-MT, the 1-MT model (see section 2.1.3 and eq. 2.15 to eq. 2.20) was extended. Seven
different degradation processes were included in the 1-MT model. Their corresponding
ODE models were enumerated and are below called „hypothesis“. A summary of all
hypotheses is shown in Figure 2.4.

Figure 2.4.: Summary of hypotheses of 1-MT degradation processes: Direct
degradation of TRP to KYNA (1 ), direct degradation of 1-MT to KYNA
(2 ), direct degradation of 1-MT to TRP to KYN, and KYNA (3 ), direct
degradation of 1-MT to TRP and directly to KYNA (4 ), direct degradation
of 1-MT to TRP and of 1-MT to KYNA (5 ), direct degradation of 1-MT to
KYNA and of 1-MT to TRP and further to KYNA (6 ), direct degradation
of 1-MT to KYNA and of TRP to KYNA (7 ), 1-MT - 1-methyltryptophan,
KYNA - kynurenic acid, TRP - tryptophan

The first hypothesis is developed by adding a direct degradation of TRP to KYNA to the
1-MT model. This degradation was already reported by Han et al. in 2008 ([201]). The
second hypothesis adds a direct degradation of 1-MT to KYNA. The third hypothesis
is also based on the 1-MT model, including a direct degradation of 1-MT to TRP. The
four remaining hypotheses are combinations of hypotheses 1 to 3. Hypothesis 4 combines
hypothesis 1 and 3, hypothesis 5 combines hypotheses 2 and 3. Hypothesis 6 combines
hypotheses 1, 2 and 3 and hypothesis 7 combines hypotheses 1 and 2. In the following,
the hypotheses are explained separately.
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Hypothesis 1 The first hypothesis („Hyp 1“) is based on the findings of Han et al.
[160]. The enzyme KAT catalyzes the degradation of KYN to KYNA and exists in
four variants (KATI -IV). The variant KATII was shown to degrade TRP to KYNA.
This reaction was included in the 1-MT model. The degradation of this hypothesis is
assumed to be enzymatic. Because it is not known, which enzyme catalyzes this reaction,
a fictitious enzyme here named „tryptophan to kynurenic acid degrading enzyme“(TKE)
is introduced (see Figure 2.5).

Figure 2.5.: Schematic of hypothesis 1 of 1-MT degradation processes: The
interaction network of the TRP metabolism includes the degradation of TRP
to SER by TPH. TRP is degraded to KYN by TDO, and KYN is degraded
to the downstream metabolites KYNA (by KAT) and QUIN (by KQE).
The direct degradation of TRP to KYNA by TKE is included due to 1-MT
administration. Bent arrows show enzymatic reactions next to a straight
arrow. 1-MT - 1-methyltryptophan, KAT - kynurenine aminotransferase,
KQE - kynurenine to quinolinic acid degrading enzyme, KYN - kynurenine,
KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TDO -
tryptophan-2,3-dioxygenase, TKE - tryptophan to kynurenic acid degrading
enzyme, TPH - tryptophan hydroxylase, TRP - tryptophan, µ - degradation
parameter

The chemical reaction added to the Table 2.3 is as follows:

TRP
TKE−−→ KYNA

This reaction leads to the system of ordinary differential equations given in eq. 2.21 to
2.26. It is based on the ODE system of the standard model (eq.2.2 to 2.6). Its extension
by 1-MT administration (eq. 2.15 to 2.20) is marked in orange. The added degradation
of TRP to KYNA is marked in blue:
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d1MT (t)
dt

=+ApplicationMT − µ1MT · 1MT (t) (2.21)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t) −
TRP (t) · V TKE

max

KTKE + TRP (t) (2.22)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.23)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t) + TRP (t) · V TKE
max

KTKE + TRP (t) − µKYNA ·KYNA(t) (2.24)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.25)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.26)
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Hypothesis 2 KATII degrades TRP to KYNA [160]. 1-MT and TRP are structurally
similar, disregarding the methylation group. Therefore, it was assumed that an enzyme
exists that degrades 1-MT to KYNA. Hence, hypothesis 2 („Hyp 2“), includes the enzy-
matic degradation of 1-MT to KYNA by a fictitious enzyme called „1-methyltryptophan
to kynurenic acid degrading enzyme“(MTKE). This reaction was included in the 1-MT
model and is shown in Figure 2.6 as the blue dashed line.

Figure 2.6.: Schematic of hypothesis 2 of 1-MT degradation processes: The in-
teraction network of the TRP metabolism includes the degradation of TRP
to SER by TPH. TRP is degraded to KYN by TDO, and KYN is degraded
to the downstream metabolites KYNA (by KAT) and QUIN (by KQE). The
direct degradation of 1-MT to KYNA by MTKE is included due to 1-MT
administration. Bent arrows show enzymatic reactions next to a straight
arrow. 1-MT - 1-methyltryptophan, KAT - kynurenine aminotransferase,
KQE - kynurenine to quinolinic acid degrading enzyme, KYN - kynure-
nine, KYNA - kynurenic acid, MTKE - 1-methyltryptophan to kynurenic
acid degrading enzyme, QUIN - quinolinic acid, SER - serotonin, TDO -
tryptophan-2,3-dioxygenase, TPH - tryptophan hydroxylase, TRP - trypto-
phan, µ - degradation parameter

The chemical reaction added to the Table 2.3 is as follows:

1MT
MTKE−−−−→ KYNA

This leads to the following system of differential equations given in equations 2.27 to
2.32, where the added degradation of 1-MT to KYNA by MTKE is marked in blue:
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d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTKE
max

KMTKE + 1MT (t)−µ1MT · 1MT (t) (2.27)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t) (2.28)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.29)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ 1MT (t) · V MTKE
max

KMTKE + 1MT (t) − µKYNA ·KYNA(t) (2.30)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.31)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.32)
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Hypothesis 3 As already mentioned, 1-MT and TRP are structurally similar except
for the methylation group. Demethylases can remove the methyl group from proteins
[161]. Thus, in hypothesis 3 („Hyp 3“) it is assumed demethylation degrades 1-MT
by the fictitious enzyme called „1-methyltryptophan to tryptophan degrading enzyme“
MTTE. The reactions are shown in Figure 2.7.

Figure 2.7.: Schematic of hypothesis 3 of 1-MT degradation processes: The
interaction network of the TRP metabolism includes the degradation of
TRP to SER by TPH. TRP is degraded to KYN by TDO, and KYN is
degraded to the downstream metabolites KYNA (by KAT) and QUIN (by
KQE). The direct degradation of 1-MT to TRP by MTTKE is included
due to 1-MT administration. Bent arrows show enzymatic reactions next
to a straight arrow. 1-MT - 1-methyltryptophan, KAT - kynurenine amino-
transferase, KQE - kynurenine to quinolinic acid degrading enzyme, KYN -
kynurenine, KYNA - kynurenic acid, MTTE - 1-methyltryptophan to tryp-
tophan degrading enzyme, QUIN - quinolinic acid, SER - serotonin, TDO
- tryptophan-2,3-dioxygenase, TPH - tryptophan hydroxylase, TRP - tryp-
tophan, µ - degradation parameter

The chemical reaction added to the Table 2.3 is as follows:

1MT
MTTE−−−−→ TRP

This leads to the following system of differential equations given in equation 2.33 to 2.38.
The degradation of 1-MT to TRP by MTTE is added to the standard model (eq.2.2 to
2.6). Its extension by 1-MT administration (eq. 2.15 to 2.20) is marked in orange. The
added degradation of TRP to KYNA is marked in blue:
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d1MT (t)
dt

=+ApplicationMT − 1MT (t) · V MTTE
max

KMTTE + 1MT (t)−µ1MT · 1MT (t) (2.33)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t)+ 1MT (t) · V MTTE
max

KMTTE + 1MT (t) (2.34)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
dKY N(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.35)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t) − µKYNA ·KYNA(t) (2.36)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.37)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.38)
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Hypothesis 4 Hypothesis 4 („Hyp 4“) combines Hyp 1 and Hyp 3, including a direct
degradation of TRP to KYNA via the fictitious enzyme TKE and the demethylation of
1-MT to TRP by MTTE are included. In Figure 2.8, both reactions are shown as blue
dashed lines.

Figure 2.8.: Schematic of hypothesis 4 of 1-MT degradation processes: The
interaction network of the TRP metabolism includes the degradation of
TRP to SER by TPH. TRP is degraded to KYN by TDO, and KYN is
degraded to the downstream metabolites KYNA (by KAT) and QUIN (by
KQE). The direct degradation of TRP to KYNA by TKE and of 1-MT to
TRP by MTTE are included due to 1-MT administration. Bent arrows show
enzymatic reactions next to a straight arrow. 1-MT - 1-methyltryptophan,
KAT - kynurenine aminotransferase, KQE - kynurenine to quinolinic acid
degrading enzyme, KYN - kynurenine, KYNA - kynurenic acid, MTTE - 1-
methyltryptophan to tryptophan degrading enzyme, fictional enzyme, QUIN
- quinolinic acid, SER - serotonin, TDO - tryptophan-2,3-dioxygenase, TKE
- tryptophan to kynurenic acid degrading enzyme, TRP - tryptophan, TPH
- tryptophan hydroxylase, µ - degradation parameter

The chemical reactions added to the Table 2.3 are as follows:

1MT
MTTE−−−−→ TRP

TRP
TKE−−→ KYNA

These reactions lead to the following system of differential equations given in eq. 2.39 to
2.44, where the added degradation of 1-MT to TRP by MTTE and of TRP to KYNA
by TKE are marked in blue:
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d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTTE
max

KMTTE + 1MT (t) − µ1MT · 1MT (t) (2.39)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t)+ 1MT (t) · V MTTE
max

KMTTE + 1MT (t) −
TRP (t) · V TKE

max

KTKE + TRP (t) (2.40)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.41)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ TRP (t) · V TKE
max

KTKE + TRP (t)
− µKYNA ·KYNA(t) (2.42)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.43)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.44)
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Hypothesis 5 Hypothesis 5 („Hyp 5“) combines the degradation processes of Hyp 1 to
Hyp 3. This hypothesis combines the degradation of 1-MT to KYNA by MTKE (Hyp
2), and the demethylation of 1-MT to TRP by MTTE (Hyp 3). In Figure 2.9, both
reactions are shown as blue dashed lines.

Figure 2.9.: Schematic of hypothesis 5 of 1-MT degradation processes: The in-
teraction network of the TRP metabolism includes the degradation of TRP
to SER by TPH. TRP is degraded to KYN by TDO, and KYN is degraded
to the downstream metabolites KYNA (by KAT) and QUIN (by KQE).
The direct degradation of 1-MT to TRP by MTTE and 1-MT to KYNA by
MTKE are included due to 1-MT administration. Bent arrows show enzy-
matic reactions next to a straight arrow. 1-MT - 1-methyltryptophan, KYN
- kynurenine, KQE - kynurenine to quinolinic acid degrading enzyme, KYNA
- kynurenic acid, QUIN - quinolinic acid, MTKE- 1-methyltryptophan to
kynurenic acid degrading enzyme, MTTE - methyltryptophan to tryptophan
degrading enzyme, SER - serotonin, TDO - tryptophan-2,3-dioxygenase,
KAT - kynurenine aminotransferase, TPH - tryptophan hydroxylase, TRP
- tryptophan, µ - degradation parameter

The chemical reactions added to Table 2.3 are as follows:

1MT
MTTE−−−−→ TRP

1MT
MTKE−−−−→ KYNA

These reactions lead to the system of differential equations given in equations 2.45 to
2.50. The added degradation of 1-MT to TRP by MTTE and 1-MT to KYNA by MTKE
are marked in blue:
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d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTKE
max

KMTKE + 1MT (t)

− 1MT (t) · V MTTE
max

KMTTE + 1MT (t)−µ1MT · 1MT (t) (2.45)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t)+ 1MT (t) · V MTTE
max

KMTTE + 1MT (t) (2.46)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.47)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ 1MT (t) · V MTKE
max

KMTKE + 1MT (t) − µKYNA ·KYNA(t) (2.48)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.49)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.50)

46



2.1. Ordinary Differential Equation Models of Tryptophan Metabolism

Hypothesis 6 Hypothesis 6 („Hyp 6“) combines the degradation of 1-MT to KYNA by
MTKE (Hyp 2), the degradation of TRP to KYNA by TKE (Hyp 1), and the degradation
of 1-MT to TRP by MTTE (Hyp 3). In Figure 2.10, all reactions are shown as blue
dashed lines.

Figure 2.10.: Schematic of hypothesis 6 of 1-MT degradation processes: The
interaction network of the TRP metabolism includes the degradation of
TRP to SER by TPH. TRP is degraded to KYN by TDO, and KYN
is degraded to the downstream metabolites KYNA (by KAT) and QUIN
(by KQE). The direct degradation of TRP to KYNA by TKE, of 1-
MT to TRP by MTTE and 1-MT to KYNA by MTKE are included
due to 1-MT administration. Bent arrows show enzymatic reactions
next to a straight arrow. 1-MT - 1-methyltryptophan, KAT - kynure-
nine aminotransferase, KQE - kynurenine to quinolinic acid degrading en-
zyme, KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid,
MTTE- 1-methyltryptophan to tryptophan degrading enzyme, MTKE -
1-methyltryptophan to kynurenic acid degrading enzyme, SER - serotonin,
TDO - tryptophan-2,3-dioxygenase, TKE - tryptophan to kynurenic acid
degrading enzyme, TPH - tryptophan hydroxylase, TRP - tryptophan, µ -
degradation parameter

The chemical reactions added to the Table 2.3 are as follows:

TRP
TKE−−→ KYNA

1MT
MTTE−−−−→ TRP

1MT
MTKE−−−−→ KYNA

These reactions lead to the following system of differential equations given in eq. 2.51
to 2.56. This system of ODEs is based on the standard model (eq.2.2 to 2.6). Its
extension by the 1-MT administration (eq. 2.15 to 2.20), is marked in orange. The
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added degradation of 1-MT to KYNA by TKE and 1-MT to KYNA by MTKE are
marked in blue:

d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTKE
max

KMTKE + 1MT (t)

− 1MT (t) · V MTTE
max

KMTTE + 1MT (t) − µ1MT · 1MT (t) (2.51)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t)+ 1MT (t) · V MTTE
max

KMTTE + 1MT (t) −
TRP (t) · V TKE

max

KTKE + TRP (t) (2.52)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.53)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ 1MT (t) · V MTKE
max

KMTKE + 1MT (t) + TRP (t) · V TKE
max

KTKE + TRP (t)
− µKYNA ·KYNA(t) (2.54)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.55)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.56)
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Hypothesis 7 Hypothesis 7 („Hyp 7“) is a combination of Hyp 2 (degradation of 1-
MT to KYNA by MTKE) and Hyp 1 (degradation of TRP to KYNA by TKE). Both
reactions are shown as blue dashed lines in Figure 2.11.

Figure 2.11.: Schematic of hypothesis 7 of 1-MT degradation processes: The in-
teraction network of the TRP metabolism includes the degradation of TRP
to SER by TPH. TRP is degraded to KYN by TDO, and KYN is degraded
to the downstream metabolites KYNA (by KAT) and QUIN (by KQE).
The direct degradation of TRP to KYNA by TKE and of 1-MT to KYNA
by MTKE are included due to 1-MT administration. Bent arrows show
enzymatic reactions next to a straight arrow. 1-MT - 1-methyltryptophan,
KAT - kynurenine aminotransferase, KQE - kynurenine to quinolinic acid
degrading enzyme, KYN - kynurenine, KYNA - kynurenic acid, MTKE - 1-
methyltryptophan to kynurenic acid degrading enzyme, QUIN - quinolinic
acid, SER - serotonin, TKE - tryptophan to kynurenic acid degrading en-
zyme, TDO - tryptophan-2,3-dioxygenase, TPH - tryptophan hydroxylase,
TRP - tryptophan, µ - degradation parameter,

The chemical reactions added to the Table 2.3 are as follows:

TRP
TKE−−→ KYNA

1MT
MTKE−−−−→ KYNA

These reactions lead to the system of ODEs given in equations 2.57 to 2.62. The added
degradation of 1-MT to KYNA by TKE and 1-MT to KYNA by MTKE are marked in
blue:
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d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTKE
max

KMTKE + 1MT (t)
− µ1MT · 1MT (t) (2.57)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− TRP (t) · V TDO
max

KTDO + TRP (t)−
TRP (t) · V TKE

max

KTKE + TRP (t) (2.58)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t) −
KYN(t) · V KQE

max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t)
− µKYN ·KYN(t) (2.59)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ 1MT (t) · V MTKE
max

KMTKE + 1MT (t) + TRP (t) · V TKE
max

KTKE + TRP (t)
− µKYNA ·KYNA(t) (2.60)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.61)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.62)
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2.1.5. Model of 1-Methyltryptophan Effects Facing Infection
It was already shown that 1-MT inhibits IDO [86], but a sufficient 1-MT level for an
entire IDO inhibition was not achieved in vivo. To investigate the ability of the 1-MT
model to represent the inhibitory effects of 1-MT on IDO in vivo, the model of the most
likely hypothesis of section 2.1.4 has to be anticipated. The most likely degradation
pathway of 1-MT is hypothesis 2. The ODE model of hypothesis 2 is merged with the
LPS model.

Table 2.4.: Chemical reactions and signaling pathways of the TRP metabolism,
including the IDO activation by LPS administration and 1-MT’s
inhibitory effects on IDO

reaction source product reaction type
1 TRP TDO−−−→ KYN enzymatic
2 TRP TPH−−→ SER enzymatic
3 KYN KAT−−→ KYNA enzymatic
4 KYN KQE−−−→ QUIN enzymatic
5 SER µ−→ degradative
6 KYNA µ−→ degradative
7 KYN µ−→ degradative
8 QUIN µ−→ degradative
9 ApplicationMT−−−−−−−−→ TRP receiving
10 ApplicationMT−−−−−−−−→ 1MT receiving
11 LPS k−→ TNF-α activating
12 TNF-α + TRP IDO−−→ KYN enzymatic
13 LPS µ−→ degradative
14 TNF-α µ−→ degradative
15 1MT µ−→ degradative
16 1MT MTKE−−−−→ KYNA producing

The 1-MT model, which is represented in Table 2.3, is merged with the LPS model
(see Table-2.2) extended by the degradation process of 1-MT to KYNA, which is
catalyzed by the fictitious enzyme MTKE (16), 1-MT - 1-methyltryptophan, KAT -
kynurenine aminotransferase, KYN - kynurenine, KYNA - kynurenic acid, LPS -
lipopolysaccharide, QUIN - quinolinic acid, SER - serotonin, IDO -
indolamin-2,3-dioxygenase, TDO - tryptophan-2,3-dioxygenase, TNF - tumor necrosis
factor -α, TPH - tryptophan hydroxylase, TRP - tryptophan

The model’s chemical reactions and signaling pathways are shown in Table 2.4. The
merged model was duplicated so two models result. One model was extended by the
inhibitory effects of 1-MT on IDO, and the other model does not include the inhibitory
effects of 1-MT on IDO. Both models are presented in more detail in the following.
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Model of 1-Methyltryptophan Induced Indoleamine 2,3-Dioxygenase Inhibition The
inhibitory properties of 1-MT are represented in the system of ODEs corresponding to
the model of 1-MT induced IDO inhibition by a term deduced from the following equa-
tion:

Ki = IC1MT
50

1 + TNF ·TRP
KIDO

, (2.63)

with IC1MT
50 as half maximal inhibitory concentration and KIDO as MM constant. Ki is

the binding affinity of the inhibitor. In Figure 2.12, the composition of the ODE model
of 1-MT inhibition facing infection is shown.

Figure 2.12.: Schematic of 1-MT/LPS model including 1-MT’s inhibitory ef-
fects: The standard model is extended (dotted lines) by an application of
LPS, which increases TNF-α concentration. TNF-α leads to the activa-
tion of IDO, which increases the degradation rate of TRP to KYN. The
standard model is further extended (dotted lines) by the drug application
of 1-MT (MT), increases 1-MT and TRP. Due to the contamination of
the drug 1-MT with TRP, 1-MT is degraded with a rate of µOMT . A di-
rect degradation of 1-MT to KYNA is assumed based on the results of
the simulations of the different hypotheses of 1-MT degradation (dashed
line), 1-MT’s ability of IDO inhibition is here included and presented as
dashed line. Bent arrows show enzymatic reactions next to a straight ar-
row. 1-MT - 1-methyltryptophan, IDO - indolamin-2,3-dioxygenase, KAT -
kynurenine aminotransferase, KYN - kynurenine, KYNA - kynurenic acid,
MTKE - 1-methyltryptophan to kynurenic acid degrading enzyme, QUIN -
quinolinic acid, SER - serotonin, TDO - tryptophan-2,3-dioxygenase, TPH
- tryptophan hydroxylase, TRP - tryptophan, µ - degradation parameter
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The interconnected system of ODEs is also colored according to its composition as it is
given in Figure 2.12. The system of ordinary differential equations dedicated to Table 2.4
and Figure 2.12 is given by the equation 2.64 to 2.71 of the following system of ODEs:

d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTKE
max

KMTKE + 1MT (t)−µ1MT · 1MT (t) (2.64)

dLPS(t)
dt

=+Application− µLPS · LPS(t) (2.65)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

− IC1MT
50

1 + TNF (t)·TRP (t)
KIDO

· TNF (t) · TRP (t) · V IDO
max

KIDO + TRP (t) − TRP (t) · V TDO
max

KTDO + TRP (t)
(2.66)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t)+ IC1MT
50

1 + TNF (t)·TRP (t)
KIDO

· TNF (t) · TRP (t) · V IDO
max

KIDO + TRP (t)

− KYN(t) · V KQE
max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t) − µKYN ·KYN(t) (2.67)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ 1MT (t) · V MTKE
max

KMTKE + 1MT (t) − µKYNA ·KYNA(t) (2.68)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.69)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.70)

dTNF (t)
dt

=+k · LPS(t)− µTNF · TNF (t) (2.71)
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Model of 1-Methyltryptophan Without Indoleamine 2,3-Dioxygenase Inhibition
The second model does not include the inhibitory properties of 1-MT on IDO, as it
is shown in Figure 2.13.

Figure 2.13.: Schematic of 1-MT/LPS model not including 1-MT’s inhibitory
effects: The standard model is extended (dotted lines) by an application
of LPS, which leads to an increase in TNF-α concentration, TNF-α leads
to the activation of IDO, which increases the degradation rate of TRP to
KYN. The standard model is further extended (dotted lines) by the drug
application of 1-MT (MT), which leads to an increase in 1-MT and TRP.
Due to the contamination of the drug 1-MT with TRP, 1-MT is degraded
with a rate of µOMT . A direct degradation of 1-MT to KYNA is assumed
based on the results of the simulations of the different hypotheses of 1-
MT degradation (dashed line), 1-MT’s ability of IDO inhibition is here ex-
cluded. Enzymatic reactions are shown by bent arrows next to a straight ar-
row. 1-MT - 1-methyltryptophan, IDO - indolamin-2,3-dioxygenase, KAT -
kynurenine aminotransferase, KYN - kynurenine, KYNA - kynurenic acid,
MTKE - 1-methyltryptophan to kynurenic acid degrading enzyme, QUIN -
quinolinic acid, SER - serotonin, TDO - tryptophan-2,3-dioxygenase, TPH
- tryptophan hydroxylase, TRP - tryptophan, µ - degradation parameter

The interconnected system of ODEs is also colored according to its composition, as in
Figure 2.13. The parts of the standard model are shown in black. The parts of the LPS
model are shown in pink and the parts of the 1-MT model are presented in orange. The
degradation of 1-MT to KYNA according to hypothesis 2 is depicted as a dashed line.
The system of ODEs is given in equations 2.72 to 2.79:
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d1MT (t)
dt

=+ApplicationMT− 1MT (t) · V MTKE
max

KMTKE + 1MT (t) − µ1MT · 1MT (t) (2.72)

dLPS(t)
dt

=+Application− µLPS · LPS(t) (2.73)

dTRP (t)
dt

= + FoodSupply+ApplicationMT − TRP (t) · V TPH
max

KTPH + TRP (t)

−TNF (t) · TRP (t) · V IDO
max

KIDO + TRP (t) − TRP (t) · V TDO
max

KTDO + TRP (t) (2.74)

dKY N(t)
dt

= + TRP (t) · V TDO
max

KTDO + TRP (t)+TNF (t) · TRP (t) · V IDO
max

KIDO + TRP (t)

− KYN(t) · V KQE
max

KKQE +KYN(t) −
KYN(t) · V KAT

max

KKAT +KYN(t) − µKYN ·KYN(t) (2.75)

dKY NA(t)
dt

= + KYN(t) · V KAT
max

KKAT +KYN(t)+ 1MT (t) · V MTKE
max

KMTKE + 1MT (t) − µKYNA ·KYNA(t) (2.76)

dQUIN(t)
dt

= + KYN(t) · V KQE
max

KKQE +KYN(t) − µQUIN ·QUIN(t) (2.77)

dSER(t)
dt

= + TRP (t) · V TPH
max

KTPH + TRP (t) − µSER · SER(t) (2.78)

dTNF (t)
dt

=+k · LPS(t)− µTNF · TNF (t) (2.79)
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2.2. Data used for validation of the mathematical
models

Already published data and also unpublished data were used with the permission of the
author’s respective experimentalists to calculate the parameters of the mathematical
models describing the TRP metabolism under different conditions (see section 2.1). In
the following, a short explanation of the experimental models, and their connection to
the ODE models of the TRP metabolism, is given. Detailed explanations and figures of
the data are given in the appendix A or can be found in the publications [86, 149, ?].
Those experiments were conducted to establish a pig model of IDO activation by LPS
and to investigate the effects of 1-MT and 1-MT on IDO activation. The TRP metabo-
lites TRP, SER, KYN, KYNA, and QUIN, as well as 1-MT and TNF-α, were measured.
All blood samples were taken from the anterior vena cava of male pigs.

2.2.1. A Pig Model of Indoleamine 2,3-Dioxygenase Activation by
Lipopolysaccharides

A reliable model of the TRP metabolism is necessary to investigate the effects of 1-
MT administration on the TRP metabolites. Therefore, the parameters of the standard
model and the LPS model were fitted to data representing the dynamics of the TRP
metabolism in LPS-treated pigs. The calculated parameters were fixed in the models of
the different hypotheses according to approach 1. The data were published by Wirth-
gen et al. [147]. In the following, the here presented experiment is called the „LPS
experiment I“. The yielded parameters were verified on the measurements of an iden-
tical experiment („LPS experiment II“), which were not published. Both experiments
were conducted during the summer season (August and September). In Figure 2.14, a
schematic presentation of the experimental set-up is shown.
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Figure 2.14.: Experimental Setup of LPS Experiment I and II: In LPS experi-
ment I, 24 pigs, and in LPS experiment II 16 pigs were treated at 0 h with
either LPS or NaCl as control (Control). At the indicated time points,
blood samples were taken, and metabolites of the TRP metabolism (TRP,
SER, KYN, KYNA, QUIN), as well as TNF-α were measured (see Fig-
ure A.2 and Figure A.3 in the appendix A). Before time point 0 h, food
was subducted, 6 h later, food was supplied. At time point 6 h, twelve pigs
of LPS experiment I and eight pigs of LPS experiment II were sacrificed.
LPS - lipopolysaccharides

In LPS experiment I, 12 pigs received LPS and 12 NaCl and therefore served as the
control group. In LPS experiment II, eight pigs received LPS and eight NaCl. 1 h before
LPS or NaCl administration, food was removed in both experiments and restarted 6 h
after LPS/NaCl administration. After 6 h, twelve respective eight pigs were slaughtered.
Hence, the group size of twelve pigs was reduced to six pigs (respective four pigs) for
LPS and six pigs for NaCl-treated pigs. Blood samples were taken shortly before LPS
administration (0 h), 1 h, 3 h, 6 h, and 24 h after LPS/NaCl administration [149].

2.2.2. A Pig Model of the Interactions of 1-Methyltryptophan and
IDO

Data from samples of 1-MT-treated pigs were needed to test the different hypotheses.
Those data were published by Wirthgen et al. [86, 162]. In the following, this experiment
is called the „1-MT/LPS experiment“. 16 pigs were included in the experiment, which
was conducted in the winter season (January). Eight pigs received five times every 24 h
1 g 1-MT, as it is shown in Figure 2.15.
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Figure 2.15.: Experimental Set-up of 1-MT/LPS Experiment: At time points
indicated with arrows with a rectangualar head, 16 pigs were treated with
1-MT or Myritol as control (Control). At the time point indicated with
an arrow with a circular arrowhead, pigs received either LPS or NaCl as
control. At 90 h half of the pigs were sacrificed (eight of 16 remained, each
treatment group was of equal group size). Pigs were starved from time
point 72 h on till the end of the experiment. At each indicated time point
samples from blood were taken. Measurements of TRP metabolites and 1-
MT are shown in Figure A.5 in the appendix A, LPS - lipopolysaccharides,
1-MT - 1-methyltryptophan

The control group consisted of eight pigs and received Myritol (carrier solution for 1-
MT). Blood samples were taken at 0 h, 24 h, 48 h, 72 h, and 96 h after each 1-MT/Myritol
administration. 12 h after the fourth application (at 84 h) of 1-MT, eight pigs received
LPS. Four of them were treated with 1-MT, and four pigs were treated with Myritol.
The control group received NaCl consisting of four 1-MT-treated pigs and four Myritol-
treated pigs. Thus, this leads to four treatment groups (each with four pigs):

• 1-MT & LPS - pigs that were treated with 1-MT and LPS

• 1-MT, Control - pigs that were treated with 1-MT and NaCl

• Control, LPS - pigs that were treated with NaCl and LPS

• Control & Control- pigs that were treated with 1-MT and NaCl

At time point 85 h, 87 h, 90 h, 96 h (before fifth 1-MT application), and 108 h after
LPS/NaCl administration, blood samples were taken, too. Half of the treated animals
were sacrificed equally distributed in the four treatment groups after 90 h (see Fig-
ure 2.14). Thus in each group, two pigs remain. The pigs were starved after the 1-MT
administration at 72 h. Feeding did not restart. For parameter fitting, the data set was
split up into different subsets according to their purposes, which are explained below.
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Selection of Lipopolysaccharide-Treated Pigs Data of control animals of the 1-
MT/LPS experiment (Myritol-treated) were used to model the dynamics of the LPS
induced enzyme IDO with regard to the TRP metabolism. A summary of the experi-
ment with a subset of the pigs is shown in Figure 2.16.

Figure 2.16.: Experimental Setup of 1-MT/LPS experiment, subset LPS-
treated: Only a subset of pigs of 1-MT/LPS experiment (see Figure 2.15)
is considered, Myritol-treated pigs received LPS or NaCl (Control) at the
time point indicated with a circular arrowhead. At time point 90 h, half
of the pigs were sacrificed (four of eight pigs remained). At each indicated
time point, samples from blood were taken. The pigs had no access to food
during the whole experiment. The measurements of TRP metabolites and
1-MT are shown in Figure A.7 in the appendix A, LPS - lipopolysaccharides

Measurements, including time point 84 h and later, were used for parameter fitting (see
Figure A.7 in the appendix A). This subset is named „1-MT/LPS experiment, subset
LPS-treated pigs“. Pigs were starved for the whole period and only eight pigs were
included. For taking tissue samples, four pigs were slaughtered, two in each treatment
group, at time point 90 h. With this subset, results based on the data measured in LPS
experiments I and II were validated and parameters only based on 1-MT/LPS exper-
iment, subset LPS-treated pigs, were estimated. Those parameters were also applied
to data to explain the degradation process of 1-MT and its inhibitory effects on IDO
(approach 2).

Selection of 1-Methyltryptophan-Treated Pigs To estimate parameters of the mod-
els including 1-MT degradation pathways leading to an increase of TRP and KYNA
increase, only the subset of 1-MT-treated pigs is needed. This subset consists of eight
pigs treated with 1-MT and Myritol, but not with LPS (see Figure 2.17).
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Figure 2.17.: Experimental Setup of 1-MT/LPS experiment, subset 1-MT-
treated: At time points with arrows with rectangular arrowheads pigs
were treated with 1-MT or Myritol as control (Control). At time point
90 h, half of the pigs were sacrificed (four of eight pigs remained, equally
distributed in the treatment groups), pigs had access to food during time
points 0 h and 72 h, from time point 72 h till the end of the experiment
pigs were starved, at each indicated time point samples from blood were
taken. The data set was divided into pigs, that received food (first data
set), and pigs that did not receive food (second data set). Measurements
of the TRP metabolites and 1-MT with FoodSupply (first data set) are
shown in Figure A.9 and without FoodSupply (second data set) are shown
in Figure A.10 in the appendix A, 1-MT - 1-methyltryptophan

This subset is named „1-MT/LPS experiment, subset 1-MT-treated pigs“. This exper-
iment was further split up into two periods depending on the food supply. Since food
contains TRP, the increase of TRP due to food intake has to be considered in the mod-
els. To investigate the impact of additional TRP increase, one data set includes food
uptake, the other does not. In the first period, pigs were fed (see Figure 2.17, first data
set). In the second period (including time point 84 h and later), pigs were starved. For
further studies, pigs were slaughtered at time point 90 h so 2 pigs in every treatment
group remained (see Figure 2.17, second data set). With this subset, parameters esti-
mated on data measured in LPS experiment I and II, and 1-MT/LPS experiment, subset
LPS-treated pigs, were applied on different models, which describe possible degradation
processes of 1-MT.

Selection of Lipopolysaccharide and 1-Methyltryptophan-Treated Pigs To investi-
gate 1-MT’s inhibitory effects on IDO, two models of 1-MT effects facing infection were
developed. One 1-MT/LPS model includes the inhibitory effects of 1-MT. The other
does not. The Parameters of both models were fitted on a subset of measurements of
the 1-MT/LPS experiment. Data of pigs treated with 1-MT or Myritol and LPS or
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NaCl, including time point 84 h, and later were used. This subset is called „1-MT/LPS
experiment, second data set “.

2.3. Mathematical Methods used for Model Fitting and
Analysis

The parameters of the models presented in section 2.1 were fitted to the data presented
in section 2.2. The combination of the model and corresponding data set is presented
below. Moreover, several assumptions to initial values, boundaries of fitted parameters,
and fixed parameters were made before simulations started. Those frame conditions, the
methods used for parameter fitting, the three different approaches for choosing param-
eters, and methods for model analysis are explained in this section.

2.3.1. Software
To implement the models, the software Matlab [125] was used. An additional toolbox,
called „Data 2 Dynamics“ [163], was used to define the equations of the models, import
the data files and assign the data to the corresponding models. The used data CSV
files, model and data-definition files, and the setup files are available via the CD, which
is located at the back inner cover, or via the Institut of Bioinformatics of the University
Medicine Greifswald.All plots including simulations, data presenteation, sensitivity and
identifiability analysis were created with R statistics in R studio [164] with the package
ggplot2 [165]. The sensitivity analysis was performed in R [164], with the package
„ODESensitivity“ and the function „ODEmorris“ [166].

2.3.2. Approaches for Parameter Calculation
Data (see section 2.2) were used to fit the parameters of the models, which were in-
troduced in section 2.1. Data from control pigs of the LPS model, the 1-MT model,
the different hypotheses models of 1-MT degradation, and the 1-MT/LPS model (pigs
treated with Myritol and NaCl), were used to calculate parameters of the standard model
(see Figure 2.1 and eq. 2.2 to eq. 2.6). This is necessary due to two reasons:

1. TRP is degraded to KYN by TDO and by IDO. TDO is active in every pig. At
which IDO is only active in LPS treated pigs because LPS leads to IDO production.
By fitting NaCl-treated and LPS-treated pigs together, the degradation of TRP
by TDO and by IDO can be discriminated.

2. TRP is degraded to KYNA via KYN. Thus, an increase in KYNA depends on the
activity of TDO and KAT in Myritol-treated pigs. For pigs treated with 1-MT,
a substantial increase in KYNA was shown. Thus, it is possible that 1-MT is
degraded to TRP and then to KYN and KYNA, leading to a strong increase. An-
other possibility is the degradation of 1-MT via an unknown pathway to KYNA.

61



2. Materials and Methods

By fitting the parameters of both treatment groups at once, a differentiation be-
tween the degradation of TRP to KYNA via KYN or an independent pathway is
possible.

For parameter fitting, the LPS model (see Figure 2.2) was fitted to data of LPS exper-
iment I (see Figure A.2 in the appendix A). The resulting parameter set was verified
on data of LPS experiment II (see Figure A.3 in the appendix A) and 1-MT/LPS ex-
periment, subset LPS-treated pigs. Moreover, the LPS model was fitted to data of
1-MT/LPS experiment, subset LPS treated pigs (see Figure A.7 in the appendix A).
Since LPS experiment I/II differ from 1-MT/LPS experiment in the number of pigs, in
the metabolite levels of some species (e.g. TRP) and in the season in which the ex-
periments were conducted (LPS experiment I/II in summer, 1-MT/LPS experiment in
winter), parameters were fitted to both (LPS experiment I and 1-MT/LPS experiment,
subset LPS-treated pigs). The models of the seven hypotheses of 1-MT degradation (see
Figure 2.3 and Figure 2.4) were fitted to data of 1-MT/LPS experiment, subset 1-MT-
treated pigs, first data set, and second data set. Therefore, three different approaches
were used:

1. parameters were fixed to the parameters fitted to LPS experiment I (approach 1)

2. parameters were fixed to the parameters fitted to 1-MT/LPS experiment, LPS-
treated pigs (approach 2)

3. parameters of each hypothesis were fitted separately multiple times to find an op-
timal parameter combination [15]. The parameters were fitted 100 times according
to the approach of Stavrum et al. and Cornforth et al. [15, 167]. The parameters
of all models of the different hypotheses were fitted at once. (approach 3)

The 1-MT/LPS model including inhibitory effects (see Figure 2.12 and eq. 2.64 to
eq. 2.71) and the one omitting inhibitory effects (see Figure 2.13 and eq. 2.72 to eq. 2.79)
of 1-MT were fitted to data of 1-MT/LPS experiment, second data set. The three ap-
proaches described for testing the hypotheses were also used for fitting the parameters
to the 1-MT/LPS experiment, second data set.
Matlab [125] and the Data 2 Dynamics toolbox [163] were used to calculate parameters
of the different models. Parameter fitting was initialized from random parameter sets
generated by latin hypercube sampling [163] to find a global optimum. Those initial
values were then used to initialize the CVODES algorithm, which solves IVPs. Here the
numerical method lsqnonlin was used. The parameters were estimated on a log scale,
as recommended [168]. For parameter fitting, the data of each pig were imported sepa-
rately. Subsequently, the LL was calculated for each pig.

2.3.3. Conditions for Parameters and Literature Values
To obtain parameters, which are in a physiological range of pigs, some assumptions were
made. Boundaries for initial parameters TRP0, SER0, KYN0, KYNA0, QUIN0, and
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1MT0 were estimated in a range of mean±2 ·standard deviations of the measured data
of all pigs at time point 0. This assumption was made because 95% of the data are in
this range for normal distribution [169]. The initial values were calculated for each data
set and subset for the measurements at time point 0 h respective 84 h for the parameters
of the models, which were estimated on the data of the 1-MT/LPS experiment, second
data set. As already mentioned, the data are not normally distributed, and a skewed
distribution is present. Thus mean − 2 · standard deviations < 0 is possible. In these
cases, the initial value was set to 0.00001. Boundaries for V enzyme

max and k were set
broadly. In other studies, the boundaries were set to the maximal and minimal values
found in the literature [15]. Those studies were performed for organisms like a human.
However, in this study, samples were taken from the blood of pigs, but no Km, V enzyme

max

or degradation parameters µ were established for pigs. LPS0 was set to 100 000 (EU)
for models applied on LPS experiment I and II data, since pigs got administered this
amount of LPS in the beginning of the experiment (see section 2.2). For data from
1-MT/LPS experiment, subset LPS-treated pigs, and 1-MT/LPS experiment, second
data set LPS0 was set to 150 000 (EU), since the pigs got administered this amount of
LPS (see section 2.2). Initial values of LPS (LPS0) for control animals and for TNF-α
(TNF − α0) for treatment groups of LPS experiment I, II, and 1-MT/LPS experiment,
subset LPS-treated pigs, first data set and second data set were set to zero (see Figure A.9
in the appendix A). The initial value of 1-MT (1MT0) was set to zero for all pigs of the
1-MT/LPS experiment, first data set. In the second data set, 1MT0 was set to zero for
Myritol-treated pigs (Myritol and NaCl-treated). For 1-MT-treated pigs, 1MT0 was set
to mean± 2 · standard deviations.
To reduce the parameter erstimation complexity and maintain the model’s identifiability,
Km-values and degradation parameters µ were fixed to values found in literature (see
Table 2.5).
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Table 2.5.: Literature values for simulations with Michaelis-Menten Kinetics:

Parameter Value Reference organism Reference
KIDO 4 µM human T24 cells [170]
KIDO 10−5µM epididymis of mice [171]
KIDO 7 µM human [172]
KIDO 3 µM human fibroblasts [173]
V IDO
max 14.851 · 103µM/h epididymis of mice [171]
V IDO
max 50µM/h human T24 cells [170]
KTDO 222 µM human [172]
KTDO 82.5µM human [174]
KTDO 20µM rabbit intestine [175]
V TDO
max 11.424 · 103µM/h rabbit intestine [175]
V TDO
max 3934.072µM/h mice liver [153]
V TDO
max 94.112 · 106µM/h rat lung [176]
KTPH 90µM rats [177]
KTPH 108µM male albino rat [178]
V TPH
max 81, 6 · 1012µM/h rats [177]
V TPH
max 5.168 · 106µM/h male albino rat [178]
V TPH
max 195.84µM/h human brain [179]
V TPH
max 78.88µM/h rat brain [180]
V TPH
max 2.6928 · 103µM/h murine mast cells [181]
KKYNU 240µM rat liver [182]
KKYNU 28.5µM human [183]
KKYNU 3µM/h Human [184]
V KYNU
max 1.69218 · 103µM/h rat liver [182]

Continued on next page
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Table 5 - continued from previous page
Parameter Value Reference organism Reference
KKAT 4.7 · 103µM human liver cDNA [185]
KKAT 53µM KATI, rat brain [186]
KKAT 2000µM KATI, human brain [187]
V KAT
max 271.286 · 10−3µM/h rat brain [186]
V KAT
max 2820.3µM/h human brain [187]
µSER 0.01444057µM/h rabbit [188]
µQUIN 0.4892802µM/h Male Sprague-Dawley rats [189]
µQUIN 1.039731µM/h gerbil [190]
µQUIN 1.890401µM/h Adult male C57BL/6 mice [191]
µQUIN 0.165035µM/h rabbit [192]
µKYN 0.2 µM human [14]
µKYNA 0.6931472µM/h Non Human Primates [193]
µTNF−α 1.386294µM/h human Monocytes [194, 195]
µTNF−α 0.6931472µM/h not specified [196]
Application1MT 137.129 pig [162]

Values for Km, Vmax, and the degradation parameters µ were gathered from literature.
Only degradation parameters µ and Km values were fixed and Vmax values were fitted
to the data. This approach is according to Rios-Avila et al. [14]. Values for Km and
degradation rates µ, which were fixed in the LPS model, are colored in pink. The
parameters specific to the 1-MT model are colored in orange. The parameters fixed in
the standard model are colored in blue. The parameter Application1MT is the amount
of 1-MT, which was measured in blood after one 1-MT administration in [162], KKYNU

equals KKQE. TNF-α - tumor necrosis factor α, TRP - tryptophan, KYN -
kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, IDO -
indoleamine 2,3-dioxygenase, , KAT - kynurenine aminotransferase, KYNU -
kynureninase, TDO - tryptophan-2,3-dioxygenase, TPH - tryptophanhydroxylase

In the literature, no pig specific measurements were found. Moreover, parameters ob-
tained from different experiments on different experimental models were used to measure
degradation rates of KYN, KYNA, QUIN, and SER or enzyme activities of IDO, TDO,
TPH, KQE (=KYNU), or KAT. The organisms used for the experiments range from hu-
man and rodents to primates, from cells of the brain to cells of the liver. Nevertheless,
no experiment was conducted in the cells of pigs. The degradation parameters µ and Km

of the LPS model were fixed. The initial parameter values and Vmax values were fitted
to the data of LPS experiment I. This approach was adapted from Rios-Avila et al. [14].
Since more than one literature value for the Km values and degradation parameters µ
were found, different combinations of literature values were fixed. The principle of trial
and error created the combinations of parameters. The combination leading to the best
approximation given by the LPS model to the data of LPS experiment I was chosen.
The parameters, which were fixed in the LPS model, were also used in the models of
1-MT degradation as well as IDO inhibition by 1-MT.
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2.3.4. Identifiablity Analysis
Parameter identifiability and confidence bounds were determined by profile likelihood
estimation at a confidence level of 95% using functions of D2D (arPLEInit and ple(),
[126]).

2.3.5. Sensitivity Analysis
The purpose of this thesis is to investigate the 1-MT induced increase of KYNA. There-
fore it is necessary to determine the parameters with the most significant impact on
KYNA levels. A sensitivity analysis is the appropriate tool to determine those param-
eters and was performed in R [164]. The method of „Morris Screening“ of the package
„ODESensitivity“ and function „ODEmorris“ [166] was applied to the LPS model with
parameters fitted to data of LPS experiment I. The sensitivity of initial values, Vmax
values, Km values, and the degradation values µ, were determined. The sensitivity anal-
ysis was performed for all species, but only the results for KYNA were evaluated. The
corresponding plot was created with R statistics in R studio [164] with the package
ggplot2 [165].

2.3.6. Modeling the Uptake of Tryptophan and 1-Methyltryptophan
Three different processes can be regarded as drug applications. The first one is the
administration of 1-MT (Application1MT ), administered multiple times during the 1-
MT/LPS experiment. The drug 1-MT was contaminated with TRP, leading to a TRP
increase. Thus, during 1-MT administration, also TRP is administered, which represents
the second process. The third process is initiated by food intake because food was sup-
plied (FoodSupply) and removed. This food supply led to two phases of TRP increase.
D2D’s function called „Bolus Injection“ implemented these processes regarded as drug
application. In general, a bolus injection is a single dose of a drug D. For the Bolus
injection implemented in this study, it was assumed that the dynamics of D increase
according to the trajectory of the normal distribution, which is in line with the findings
of Wirthgen et al. [162]. Therefore the density function of the normal distribution

F (x) = 1√
2 · π · σ2

· exp(−(t− µ)2

2 · σ2 ) (2.80)

was adapted with wt as the injection time point, which equals the mean of the normal
distribution. wd = injection_duration equals the standard deviation. To account for
the drug increase, the bolus amount wa is multiplied by the eq. 2.80, because the area
under the curve of a probability density is always 1, but the increase of the drug differs
from 1. These assumptions lead to the following equation:

D(t)
dt

= wa√
2 · π · w2

d

· exp(−(t− wt)2

2 · w2
d

) (2.81)
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This equation depends on t with wt as time point when the peak of the drug concentra-
tion occurs. If wt is chosen as the actual injection time point, the increase of D, would
start before the drug was administered. Thus, wt has to be delayed. For models whose
parameters were fitted to data from LPS experiment I and II, the injection time point
was shifted from 6 h (start of food intake) to 20 h with an injection duration wd of 7
h. Several parameter fittings obtained those values with altering values for wd and wt.
The results of a study of 1-MT’s pharmacokinetics [162] were used. The calculation of
1-MT’s dosage is simplified. The area under the concentration curve was reported to
be 959.9µM [162]. This concentration was divided by five since 1-MT was injected five
times (at time points 0 h, 24 h, 48 h, 72 h, and 96 h). The purity of the drug 1-MT was
reported with 95% [162], leading to a TRP increase of 9.599 µM . The peak of 1-MT
in blood was observed after 12 h [162], leading to a later injection time point (wt =
12 h). TRP (FoodSupply), 1-MT (drug application) and TRP (drug contamination)
administration were assigned four times between 0 h and 84 h (12 h, 36 h, 60 h, 84
h, 1-MT/LPS experiment, subset 1-MT-treated pigs, first data set). For models whose
parameters were fitted to data of 1-MT/LPS experiment, subset 1-MT-treated pigs, sec-
ond data set, 1-MT (drug application), and TRP (drug contamination) administration
were assigned to two time points. The first time point corresponds to the 1-MT admin-
istration at time point 72 h, which was chosen with 84 h. The second time point (108
h) corresponds to the 1-MT administration at time point 96 h. Thus, again a shift of
12 h was assumed.

2.3.7. Model Evaluation
The Log-Likelihood, AIC and BIC were calculated to compare simulations TRPmetabolism’s
dynamics. −2ln(L) values for each pig were summed up to get an overall LL value. To
compare simulations with different amounts of parameters, the Akaike information cri-
terion (AIC) was used. It is calculated by 2 · k − 2 · ln(L), with k as the number of
parameters and the likelihood L [197]. To compare simulations with different amounts
of parameters and data, the Bayesian information criterion (BIC) is used. The BIC is
calculated by k · ln(n) − 2 · ln(L), with k as the number of parameters and n as the
amount of data. For parameter validation, it was necessary to use the BIC since data
sets differ in the number of measurements. Generally, the model with the lowest AIC
value can be selected for inference [198]. In this study, all three chraracteristic num-
bers (LL, AIC, and BIC) were calculated in R statistics [164], by using the equations
introduced in section 1.3.3 and compared.

2.3.8. Validation of Results of Simulation of 1-Methyltryptophan
Hypotheses

To validate the results of the different hypotheses of 1-MT degradation, an experiment
was developed and performed (by Elisa Wirthgen). This experiment was based on cal-
culations performed on data of 1-MT/LPS experiment, subset 1-MT-treated pigs. 1-MT
or TRP was added to cell-free assays to investigate the ability of KAT to catalyze the
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degradation of 1-MT or TRP. On the one hand, 1-MT was added with and without
KAT. On the other hand, TRP was added with and without KAT. Measurements of
TRP, KYN, and KYNA were made in medium and PBS. As control, measurements of
TRP, KYN, and KYNA in the medium and PBS were made.
In more detail, the experiments were performed in cell-free assays. The assays were per-
formed to investigate the potential spontaneous and enzymatic degradation of 1-MT to
KYNA. Therefore, 1-MT (L-isomer, purity 95%; Sigma-Aldrich, Deisenhofen, Germany)
was dissolved in 1 N NaOH to a stock concentration of 1M, and further dilutions were
made in either PBS or RPMI 1640 medium (both PAN-Biotech, Aidenbach, Germany)
to a final concentration of 700 µM. In contrast to RPMI 1640, PBS contains no supple-
mented TRP or TRP metabolites. A NaOH solvent control was prepared by adding 1
N NaOH to PBS or cell culture medium to the same volume as used for L-1-MT. 1-MT
contains between 2 and 5% L-TRP [199, 200]. Therefore, the effect of 35 µM L-TRP
(Sigma-Aldrich, Deisenhofen, Germany) on KYNA production was investigated, corre-
sponding to 5% of the applied 1-MT concentration. In vivo, the enzymatical production
of KYNA is generated by kynurenine aminotransferases (KATs), which catalyze KYN to
KYNA. However, also TRP was described to be a potential substrate for KATs. 1-MT
and TRP were incubated for 60 min at 37◦C and 5% CO2 in the presence or absence of
Glutamic-Oxaloacetic Transaminase 1 in triplicates (GOT1 = KATIV, antibodies-online
GmbH, Aachen, Germany) at a final concentration of 1.25 µg/ml as recommended by
the manufacturer. After incubation, the assay supernatants were harvested and stored
at −80◦C. Triplicates of each group were pooled to analyze TRP and its metabolites
KYN and KYNA by mass spectrometry.
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3. Results
This study aims to propose a degradation process of 1-MT leading to increased levels of
TRP and KYNA while the intermediate metabolite KYN does not change. Therefore,
different degradation processes were developed and translated to systems of ODEs (see
section 2.1.4). Moreover, it was investigated whether those systems of ODEs can repro-
duce the inhibitory effects of 1-MT on IDO (see section 2.1.5). The parameters of the
different models were fitted to the data of experiments conducted in pigs (see section
2.2). At first, general findings are presented. Afterward, the exact results of the param-
eter fittings and the comparison of the different models are presented. More precisely,
the results of 1-MT’s degradation are shown, including the different approaches and the
validation experiment. The results of the models concerning 1-MT’s inhibitory effects
on IDO’s activity are shown to be separated by the three different approaches.

3.1. 1-Methyltryptophan is Directly Degraded to
Kynurenic Acid

Models of seven different degradation processes were developed to investigate the degra-
dation of 1-MT leading to increases of TRP and KYNA levels (see section 2.1.4). Those
models were applied in different settings to the data of 1-MT/LPS experiment, subset
1-MT-treated pigs on the first and the second data set. The LL, AIC, and BIC values
were compared. The parameters fitted to the data of LPS experiment I (approach 1) and
1-MT/LPS experiment, subset LPS-treated pigs (approach 2), were fixed. The models
of the different hypotheses with fixed parameters were used to investigate their ability to
reflect the dynamics of the TRP metabolism. Moreover, the parameters of the hypothe-
ses were fitted 100 times (approach 3). Here, LL, AIC, and BIC values were determined
for all 100 iterations, and mean and minimal values were calculated and compared. By
computing LL, AIC, and BIC values of models, which used different approaches for pa-
rameter fitting on two data sets (1-MT/LPS experiment, subset 1-MT-treated pigs, first
and second data set), 18 times, the most likely hypothesis was determined. The results
are shown in Table 3.1.
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Table 3.1.: Results of all three in silico experiments to find the most likely
degradation process of 1-MT

approach simulation LL AIC BIC
1 first data set Hyp 7 Hyp7 Hyp 7

second data set Hyp 2 Hyp 2 Hyp 2
2 first data set Hyp 6 Hyp 6 Hyp 2

second data set Hyp 4 Hyp 4 Hyp 2
3 first data set Hyp 7 Hyp 2 Hyp 2

second data set Hyp 2 Hyp 2 classic
To determine the most likely degradation process of 1-MT presented as models in
section 2.1.4, different parameter set-ups were used to fit parameters to the data of
1-MT/LPS experiment, subset 1-MT-treated pigs, first data set, and second data set.
For the first setting, parameters were fixed to values, which were fitted to the data of
LPS experiment I. In the second setting, parameters were fixed to values, which were
fitted to the data of 1-M/LPS experiment, subset LPS-treated pigs. In the third
setting, parameters were fitted to the data of the 1-MT/LPS experiment, subset
1-MT-treated pigs, first data set and second data set 100 times, and the mean LL,
AIC, and BIC values were calculated. The classical pathway includes no further
degradation of one metabolite or 1-MT to another. Hypothesis 2 includes the direct
degradation of 1-MT of KYNA. Hypothesis 4 includes the degradation of 1-MT to
TRP, and TRP to KYNA. Hypothesis 6 includes the degradation of 1-MT to KYNA,
of 1-MT to TRP, and TRP to KYNA. Hypothesis 7 includes the degradation of 1-MT
to KYNA and of TRP to KYNA. AIC - Akaike Information Criterion, BIC - Bayesian
information Criterion, Hyp - hypothesis, LL - Log-Likelihood

Hyp 2 was nine times the most likely one. Hyp 7 was four times the most likely one.
Hyp 4 and 6 were only two times the most likely, and the classical pathway was once
the most likely model. Concluding, the most likely degradation process is given by Hyp
2, assuming a direct degradation of 1-MT to KYNA. The increase in TRP degradation
is explainable by contamination of the drug 1-MT.
The following results of these parameter fits include LL, AIC, and BIC values, results
of indentifiability analysis and a comparison of all fitted parameters to their literature
values. The results of the sensitivity analysis for KYNA and the results of the experiment
validating the direct degradation of 1-MT to KYNA.

70



3.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

3.1.1. Calculation of Parameters by Using the Data of
Lipopolysaccharide-Treated Pigs

To determine parameters, which were fixed in the models of the different hypotheses, pa-
rameters of the LPS model were fitted to the data of LPS experiment I. Those parameters
were validated on LPS experiment II and 1-MT/LPS experiment, subset LPS-treated
pigs.

Parameter Fitting The parameters fitted to the LPS experiment I consisting of 756
data points, yielded a LL value of −2140.261, an AIC value of −2100.261, and a BIC
value of −2007.7. The simulations with those fitted parameters are shown in Figure 3.1.
The calculated parameters are presented in the appendix C in column I. All are identi-
fiable except V TPH

max , which is not identifiable for low parameter values (see Figure 3.2).
Since the degradation of TRP to SER is not in focus, the non-identifiability of this
parameter can be neglected. The lower and upper bound of parameters and parameter
values are represented in log10-scale and are shown in the appendix B in Table B.1.
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Figure 3.1.: Simulations with parameters fitted to data of LPS experiment I:
Parameters are based on the LPS model and on data of LPS experiment
I (see Figure A.2 in the appendix A). Simulations are shown in solid and
dashed lines. The data are shown in triangles and dots. Pigs were treated
at 0 h with LPS and starved in the time slot between 0 h and 6 h. Half of
the pigs were sacrificed at time point 6 h. The immolation of pigs decreased
the group size from twelve pigs to six pigs for LPS-treated pigs, and NaCl-
treated pigs. KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic
acid, SER - serotonin, TNF - tumor necrosis factor α, TRP - tryptophan
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Figure 3.2.: Identifiability analysis of parameters of the LPS model fitted to
data of LPS experiment I: An identifiability analysis was performed for
the parameters fitted to data of LPS experiment I presented in Table C.1.
The x-axis is depicted in log10 scale and species0 are the fitted initial val-
ues of the corresponding species. IDO - indoleamine 2,3-dioxygenase, k -
parameter of tumor necrosis factor α activation, KAT- kynurenine amino-
transferase, KQE- kynurenine to quinolinic acid degrading enzyme, KYN-
kynurenine, KYNA - kynurenic acid, LPS - lipopolysaccharides, QUIN -
quinolinic acid, SER - serotonin, TDO - tryptophan 2,3-dioxygenase, TPH
- tryptophan hydroxylase, TRP - tryptophan
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Parameter Validation on an Independent Data Set of Lipopolysaccharide-Treated
Pigs The fitted parameters were validated by fixing those parameters in the LPS model.
Initial values were excluded from fixing and were fitted to the data of LPS experiment
II because differences in the initial levels of the different species show a considerable
variability. The simulation of the LPS model with parameters fitted to the data of LPS
experiment II, including 648 data points, yielded a LL value of −1191.488, an AIC value
of −1169.488 and a BIC value of −1120.275 for parameter validation. The simulations
with the validated parameters are presented in Figure 3.3. Parameters fitted to the data
of LPS experiment I can represent the dynamics of data measured in LPS experiment
II. The simulations correspond to the data. Both simulations yielded LL, AIC, and BIC
values in the dimension of −103, which is comparable to the results of the simulations
on data of LPS experiment I.
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Figure 3.3.: Simulations with parameters fitted to data of LPS experiment
I, applied to LPS experiment II for validation: Based on the LPS
model and data of LPS experiment I(see Figure A.2 in the appendix A),
parameters were fitted. Those parameters were then fixed in the LPS model,
which was applied to the data measured in LPS experiment II (presented
in Figure A.3 in the the appendix A) for parameter validation. Pigs were
treated at 0 h with LPS and were starved between 0 h and 6 h. Half of
the pigs were sacrificed at 6 h. The immolation of pigs decreased the group
size from twelve to six pigs for LPS-treated pigs, and NaCl-treated pigs.
KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid, SER -
serotonin, TNF - tumor necrosis factor α, TRP - tryptophan
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Parameter Validation on Data of a Selection of Lipopolysaccharide-Treated Pigs
Validation of parameters of Table C.1 was also performed on data of 1-MT/LPS experi-
ment, subset LPS-treated pigs consisting of 236 data points, to check their applicability
on those data. Therefore, the fitted parameters were fixed in the LPS model, except
the initial values, because differences in the value levels of the different species show a
considerable variability. The parameter fitting yielded a LL value of 4704448893, an AIC
value of 4704448915, and a BIC value of 4704448953. These values are in the dimen-
sion of 109. Since comparing these results to the simulations based on data from LPS
experiment I and II, which are in a dimension of −103, a huge difference is given. This
difference shows, that the parameters fitted to the data of LPS experiment I cannot be
validated on the data of 1-MT/LPS experiment, subset LPS-treated pigs. This fact can
also be retraced by the simulations shown in Figure 3.4.
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Figure 3.4.: Simulations with parameters fitted to data of LPS experiment I,
applied to 1-MT/LPS experiment, subset LPS-treated: The pa-
rameters of the LPS model (see Figure 2.2) were fitted to the data of LPS
experiment I (see Figure A.2 in the appendix A). These parameters were
fixed in the LPS model and applied to the data measured in 1-MT/LPS ex-
periment, subset LPS-treated pigs (presented in Figure A.7 in the appendix
A) for parameter validation. Pigs were treated at 84 h with LPS and were
starved the whole time. Half of the pigs were sacrificed at 90 h. The immo-
lation of pigs decreased group size from four pigs to two pigs for LPS-treated
pigs and NaCl-treated pigs. KYN - kynurenine, KYNA - kynurenic acid,
QUIN - quinolinic acid, SER - serotonin, TNF - tumor necrosis factor α,
TRP - tryptophan
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3.1.2. Calculations of Parameters by Using a Selection of
Lipopolysaccharide-Treated Pigs

Additionally, parameters of the LPS model were fitted to the data of 1-MT/LPS exper-
iment, subset LPS-treated pigs, because a validation of parameters fitted to the data
of LPS experiment I failed. To determine parameters, which were fixed in the models
of the different hypotheses, parameters of the LPS model were fitted to the data of 1-
MT/LPS experiment, subset LPS-treated pigs. Those pigs were starved the whole time.
Thus a TRP increase due to FoodSupply was not included. The Km values presented
in Table 2.6 and µLPS = 1.145µM/h, estimated based on LPS experiment I data, were
fixed in the LPS model. The simulations yielded a LL value of 3167997327, an AIC
value of 3167997365, and a BIC value of 3167997431. These values are in the dimension
of 109. This numbers are comparable to the parameter validation in section 3.1.1. The
simulations with the fitted parameters are shown in Figure 3.5.
The calculated parameters are presented in the appendix C in column II. However, those
parameters do not fit the data, except the simulations of NaCl-treated pigs are compa-
rable for TRP, QUIN and TNF-α to the data.
This discrepancy is explainable by the results of the identifiability analysis of the pa-
rameters. The calculated parameters are not identifiable as shown in Figure 3.6.
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Figure 3.5.: Simulations with parameters fitted to data of 1-MT/LPS experi-
ment, LPS-treated pigs: The parameters of the LPS model were fitted
to the data of 1-MT/LPS experiment, LPS-treated pigs (see Figure A.7 in
the appendix A). The simulations are shown in solid and dashed lines. The
data are shown as triangles and dots. Pigs were treated at 84 h with LPS
and were starved the whole time. Half of the pigs were sacrificed at 90 h.
The immolation of pigs decreased the group size from four pigs to two pigs
for LPS-treated pigs, and NaCl-treated pigs. KYN - kynurenine, KYNA
- kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TNF - tumor
necrosis factor α, TRP - tryptophan
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Figure 3.6.: Identifiability analysis of parameters of the LPS model fitted to
data of 1-MT/LPS experiment, LPS-treated pigs: An identifiability
analysis was performed for the parameters fitted to data of LPS experiment
I presented in Table C.1. The x-axis is depicted in log10 scale, species0
are the fitted initial values of the corresponding species. IDO - indoleamine
2,3-dioxygenase, k - parameter of tumor necrosis factor α activation, KAT-
kynurenine aminotransferase, KQE- kynurenine to quinolinic acid degrading
enzyme, KYN- kynurenine, KYNA - kynurenic acid, LPS - lipopolysaccha-
rides, QUIN - quinolinic acid, SER - serotonin, TDO - tryptophan 2,3-
dioxygenase, TPH - tryptophan hydroxylase, TRP - tryptophan
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3.1.3. Estimation of Parameters fitted to Data of a Selection of
Lipopolysaccharide-treated Pigs by a Parameter Scan

Parameters of the LPS model were fitted 100 times to the data of 1-MT/LPS experiment,
subset LPS-treated pigs according to approach 3. 100 fits were performed because the
parameter fitting to data of 1-MT/LPS experiment, subset LPS-treated pigs failed (see
section 3.1.2). Pigs of the 1-MT/LPS experiment, subset LPS-treated pigs, were starved
the whole time. Thus a TRP increase due to FoodSupply was not included. The Km

values presented in Table 2.6 and µLPS = 1.145µM/h, estimated based on data from
LPS experiment I, were fixed in the LPS model. The simulations yielded LL values
with a mean of 3115415212, a mean AIC value of 3115415252, and a mean BIC value
of 3115415322, and all have the same standard deviation of 22893.09. These values
are in the dimension of 109. The simulations with the lowest LL value is presented in
Figure 3.7. Moreover, the mean values and standard deviation of the 100 calculated
parameters are shown in the appendix C. The mean values are shown in column IV, and
the standard deviation in column VI.
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Figure 3.7.: Simulations with parameters fitted to the data measured in 1-
MT/LPS experiment, LPS-treated pigs, 100 times: The parameters
of the LPS model were fitted to the data of 1-MT/LPS experiment, LPS-
treated pigs (see Figure A.7 in the appendix A). The simulations are shown
in blue and purple lines. The data are shown in blue and in purple triangles
and dots. Pigs were treated at 84 h with LPS and were starved the whole
time. Half of the pigs were sacrificed at 90 h. The immolation of pigs
decreased the group size from four pigs to two pigs for LPS-treated pigs,
and NaCl-treated pigs. KYN - kynurenine, KYNA - kynurenic acid, QUIN
- quinolinic acid, SER - serotonin, TRP - tryptophan
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3.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

3.1.4. Sensitivity Analysis of Kynurenic Acid
Because of KYNA’s importance in immunity and the effects of 1-MT on KYNA, a
sensitivity analysis of the LPS model was performed, and parameters with the most sig-
nificant impact on KYNA levels were determined. Here, the method „Morris Screening“
was used to calculate the impact of the degradation parameters and V enzyme

max parame-
ters. The LPS model and parameters fitted to the data of LPS experiment I was used to
perform the sensitivity analysis. µ was calculated for 24 h (0 h to 24 h). Those values
can also become negative if they have a negative impact on the KYNA level. A plot of
µ for KYNA is presented in Figure 3.8.

−0.5

0.0

0.5

0 5 10 15 20
time (h)

µ

KYNA
Sensitivity analysis

Figure 3.8.: Sensitivity Analysis of KYNA:Morris Screening was applied to the LPS
model and parameters fitted to data of LPS experiment I. Only V enzyme

max ,
degradation parameters µ, and k were investigated concerning their sensi-
tivity. The impact on the KYNA level is shown as µ for a period of 24
h. IDO - indoleamine 2,3-dioxygenase, k - parameter of tumor necrosis fac-
tor α activation, KAT- kynurenine aminotransferase, KQE- kynurenine to
quinolinic acid degrading enzyme, KYN- kynurenine, KYNA - kynurenic
acid, LPS - lipopolysaccharides, QUIN - quinolinic acid, SER - serotonin,
TDO - tryptophan 2,3-dioxygenase, TNF - tumor necrosis factor α, TPH -
tryptophan hydroxylase, TRP - tryptophan

With decreasing maximal, absolute µ values, the following order of the impact of the
parameters on KYNA’s cencentration was determined:
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1. µKYNA = 0.850572

2. V KAT
max = 0.6826279

3. V KQE
max = 0.5427479

4. V TDO
max = 0.5398745

5. V IDO
max = 0.1075437

6. k = 0.1074836

7. µTNF = 0.09409497

8. µLPS = 0.09247089

9. V TPH
max = 0.006611762

10. µQUIN = 1.366777 · 10−7

11. µSER = 0

The degradation rate of KYNA and the maximal velocity of KAT have the biggest
impact on KYNA levels followed by the maximal velocity of KQE. Whereas, the lowest
impact on KYNA levels was reported by the degradation of SER and QUIN and the
maximal velocity of TPH.

3.1.5. Fitting Hypotheses to the Data of
1-Methyltryptophan/Lipopolysaccharide Experiment, Subset
1-Methyltryptophan-Treated Pigs

1-MT leads to increased TRP and KYNA cocentrations, while the intermediate metabo-
lite KYN does not change [86]. There is no study explaining the degradation process
of this phenomenon. Here, ODEs are applied to describe the 1-MT induced dynamics
of TRP metabolites. Parameters calculated based on the data of LPS experiment I
(approach 1) and the 1-MT/LPS experiment, LPS-treated pigs (approach 2), were fixed
in the models of the different hypotheses (degradation parameters µ and Vmax param-
eters). Afterward, the parameters of the models of the different hypotheses were fitted
to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs, first and second data
set. Moreover, no parameters were fixed while the models of the hypotheses were fitted
to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs, first and second data
set 100 times (approach 3). The mean value for LL, AIC, and BIC for each hypothesis
was calculated and compared. The results of these three approaches are shown below.
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3.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

Parameters Fixed to the Parameter Values Fitted to the Data of Lipopolysaccharide-
Treated Pigs (Approach 1) Parameters were fixed to the parameter values fitted to
the data of LPS experiment I (see Table C.1, approach 1). The models of the different
hypotheses were fitted to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs,
to investigate their ability to reflect the dynamics of the TRP metabolism after 1-MT
administration in pigs.
Data of 1-MT/LPS experiment, subset 1-MT-treated pigs, first data set include mea-
surements for every 24 h. During this time, the pigs were fed, and FoodSupply was
included in the ODEs. By fitting the parameters of the LPS model to the data of
LPS experiment I, a value of 26.6µM for NaCl-treated pigs was determined. Since pigs
were fed in LPS experiment I only for 18 h, the TRP increase induced by FoodSupply
was adapted to 24 h. Thus, FoodSupply was set to a value of 35.467µM . Data of 1-
MT/LPS experiment, subset 1-MT-treated pigs, second data set includes measurements
in irregular, but more dense time intervals. During this time, the pigs were not fed and
FoodSupply was excluded from the ODEs. LL, AIC, and BIC values for simulations
based on the first and the second data set are given in Table 3.2.

Table 3.2.: LL, AIC, BIC values of different hypotheses fitted to data of LPS
experiment I (approach 1)

hypotheses LL AIC BIC LL AIC BIC
First Data Set Second Data Set

classic 1627.47 1653.47 1704.83 364.67 392.67 452.22
Hyp 1 1583.12 1613.12 1672.38 366.08 398.08 466.14
Hyp 2 1527.15 1557.15 1616.41 164.86 196.86 264.92
Hyp 3 1577.91 1611.91 1679.07 165.64 201.64 278.21
Hyp 4 1528.89 1562.89 1630.05 165.64 201.64 278.21
Hyp 5 1580.50 1614.50 1681.66 165.64 201.64 278.21
Hyp 6 1496.26 1534.26 1609.32 167.46 207.46 292.53
Hyp 7 1494.55 1528.55 1595.71 166.67 202.67 279.23

The parameters of the models of the hypotheses were fixed to the parameter values,
which were determined by fitting the LPS model to the data of LPS experiment I. The
parameters of the models of the hypotheses with the fixed parameters were then fitted
to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs, on the first and the
second data set. The lowest values are shown in bold numbers. AIC - Akaike
Information Criterion, BIC - Bayesian information Criterion, Hyp - hypothesis, LL -
Log-Likelihood.

For the first data set, the lowest LL, AIC, and BIC were calculated for Hyp 7. For
the second data set, the lowest LL, AIC and BIC values were calculated for Hyp 2. In
conclusion, Hyp 2 and 7 were three times the model, sufficiently representing the data.
Simulations of all hypotheses for the first data set are presented in Figure 3.9 and for
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the second data set in Figure 3.9.
LL, AIC, and BIC values are in the dimension of 103 for the first data set. For the second
data set, the values are in the range of 102. For both data sets these values are much
higher than the ones calculated for the parameters of the LPS model, which was fitted
to LPS experiment I. Based on this and the simulations in Figure 3.11 and 3.12, one
can conclude that the parameters fitted to the data of 1-MT/LPS experiment, subset
LPS-treated pigs are not able to represent the dynamics of the TRP metabolism after
1-MT administration.

86



3.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

1
−

M
T

K
Y

N
K

Y
N

A
Q

U
IN

S
E

R
T

R
P

0 24 48 72

0

200

400

0
1
2
3
4

5

10

0

2

4

6

1.0
1.5
2.0
2.5

0
100
200
300
400

time (h)

µ
M

Simulation vs. Data

Figure 3.9.: Simulations of all hypotheses with parameters fitted to data of
1-MT/LPS experiment, subset 1-MT-treated pigs, first data set
(approach 1) Parameters are fitted to the data of LPS experiment I in the
models of the different hypotheses with fixed parameter values fitted to data
of LPS experiment I. The models were then fitted to the data of 1-MT/LPS
experiment, subset 1-MT-treated pigs, first data set (see Figure A.9). Pigs
were treated at time points 0 h, 24 h, 48 h and 72 h with 1-MT and were
starved between 72 h and 84 h. The data are shown in blue dots. The
simulations are shown in lines. 1-methyltryptophan, KYN - kynurenine,
KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TRP -
tryptophan
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Figure 3.10.: Simulations of all hypotheses with parameters fitted to data of
1-MT/LPS experiment, subset 1-MT-treated pigs, second data
set (approach 1): Parameters fitted to the data of LPS experiment I
were fixed in the models of the hypotheses. Those were fitted to the data
of 1-MT/LPS experiment, subset 1-MT-treated pigs, second data set (see
Figure A.10 in the appendix A). Pigs were treated at 96 h with 1-MT
and were starved the whole time. The data are shown in blue dots. The
simulations are shown in lines. 1-methyltryptophan, KYN - kynurenine,
KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TRP -
tryptophan
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Parameters Fixed to the Parameter Values Fitted to the Data of a Selection of
Lipopolysaccharide-Treated Pigs (Approach 2) Parameters were fitted to the data
of 1-MT/LPS experiment, subset LPS-treated pigs. Those parameters were fixed in the
models of the different hypotheses (approach 2). Then the models were fitted to the
data of 1-MT/LPS experiment, subset 1-MT-treated pigs, first and second data sets
to investigate their ability to reflect the dynamics of the TRP metabolism after 1-MT
administration in pigs.
The procedure of this in silico experiment differs from the one described in section 3.1.5
only in the parameter values used to fix model parameters. Vmax and degradation param-
eters µ were fixed. The remaining parameters were fitted to the data of the 1-MT/LPS
experiment, subset 1-MT-treated pigs, first and second data set. LL, AIC, and BIC
values were determined and are shown in Table 3.3, including all hypotheses and the
classical pathway.

Table 3.3.: LL, AIC, BIC values of different hypotheses fitted to data of 1-
MT/LPS experiment, subset 1-MT-treated pigs (approach 2)

hypotheses LL AIC BIC LL AIC BIC
First Data Set Second Data Set

classic 1397.71 1425.71 1481.02 67.39 97.39 161.20
Hyp 1 1298.57 1330.57 1393.78 10.40 44.40 116.71
Hyp 2 1264.31 1296.31 1359.52 -13.91 20.09 92.41
Hyp 3 1356.08 1392.08 1463.19 -9.00 29.00 109.82
Hyp 4 1266.15 1302.15 1373.27 -24.59 13.41 94.23
Hyp 5 1358.07 1394.07 1465.18 -9.00 29.00 109.82
Hyp 6 1254.28 1294.28 1373.29 -22.77 19.23 108.56
Hyp 7 1265.13 1301.13 1372.25 -23.77 14.23 95.06

The parameters of the models of the hypotheses were fixed to the parameter values,
which were determined by fitting the LPS model to the data of 1-MT/LPS experiment,
subset LPS-treated pigs. The parameters of the models of the hypotheses with the
fixed parameters were then fitted to the data of 1-MT/LPS experiment, subset
1-MT-treated pigs, on the first and the second data set. The lowest values are shown
in bold numbers. AIC - Akaike Information Criterion, BIC - Bayesian information
Criterion, Hyp - hypothesis, LL - Log-Likelihood

For the first data set, the lowest LL and AIC were calculated for Hyp 6. The lowest
BIC value was calculated for Hyp 2. For the second data set, the lowest LL and AIC
values were calculated for Hyp 4. The lowest BIC values were calculated for Hyp 2. In
conclusion, Hyps 2, 4 and 7 were the most likely ODE model twice each. Simulations
of all hypotheses for the first data set are presented in Figure 3.11, and for the second
data set in Figure 3.12. LL, AIC, and BIC values are in the dimension of 103 for the
first data set. For the second data set, the values are in the range of 101. For both data
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sets, these values are much higher than the ones calculated for the parameters of the
LPS model, which was fitted to LPS experiment I. Based on this and the simulations
in Figure 3.11, and 3.12, one can conclude that the parameters fitted to the data of
1-MT/LPS experiment, subset LPS-treated pigs cannot represent the dynamics of the
TRP metabolism after 1-MT administration.
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Figure 3.11.: Simulations of all hypotheses with parameters fitted to data of 1-
MT/LPS experiment, subset 1-MT-treated pigs, second data set
(approach 2): Parameters were fitted to the data of 1-MT/LPS experi-
ment, subset LPS-treated pigs. The resulting parameters were fixed in the
hypotheses’ models and were fitted to the data of 1-MT/LPS experiment,
subset 1-MT-treated pigs, first data set. Pigs were treated at 0 h, 24 h, 48
h, and 72 h with 1-MT and were starved in the time frame between 72 h
and 84 h. The data are depicted in blue dots. The simulations are in lines.
1-methyltryptophan, KYN - kynurenine, KYNA - kynurenic acid, QUIN -
quinolinic acid, SER - serotonin, TRP - tryptophan
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Figure 3.12.: Simulations of all hypotheses with parameters fitted to data of
1-MT/LPS experiment, subset 1-MT-treated pigs, second data
set (approach 2): Parameters fitted to 1-MT/LPS experiment, subset 1-
MT-treated pigs were fixed in the models of the hypotheses. The remaining
parameters were fitted to the data of 1-MT/LPS experiment, subset 1-MT-
treated pigs, second data set (see Figure A.10). Pigs were treated at 96 h
with 1-MT and were starved the whole time. The data are depicted in blue
dots. The simulations are in lines. 1-methyltryptophan, KYN - kynurenine,
KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TRP -
tryptophan
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Parameters Fitted to the Data of a Selection of 1-Methyltryptophan-Treated Pigs
Using a Parameter Scan (Approach 3) If parameters were fixed to parameter val-
ues obtained from parameter fits of the LPS model to the data of LPS experiment I
or 1-MT/LPS experiment, subset LPS-treated pigs, the data of 1-MT/LPS experiment,
subset 1-MT-treated pigs, first and second data set did not fit the data. Thus, parame-
ters of the models of the different hypotheses have to be fitted to the data of 1-MT/LPS
experiment, subset 1-MT-treated pigs, first and second data set. It was already shown
that several parameters of the LPS model were not identifiable. Therefore, parameters
of the models of the different hypotheses were fitted 100 times.
Again, this procedure is very similar to the one presented in section 3.1.5, except the
parameter values of V enzyme

max and degradation parameters µ were not fixed. The param-
eter fitting led to 100 parameter sets, and 100 LL, AIC, and BIC values. To determine
which hypotheses is the most likely one, the AIC values of the 100 parameter fits were
compared. In the following, the results of this comparison are shown.

First Data Set: The 100 AIC values are summarized in a box plot in Figure 3.13. The
lowest values were calculated for Hyp 1, 2, and 3, at which the median AIC values were
calculated for Hyp 7.

125
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First Data Set

AIC

Figure 3.13.: Boxplot of AIC values of all hypotheses fitted 100 times to the
data of 1-MT/LPS experiment, subset 1-MT-treated pigs, first
data set (approach 3): The box plot depicts the results of the AIC
values. Those values were obtained by 100 parameter fits to models of the
hypothesis. The curve around the box plot shows the distribution of the
data and is mirrored at the whiskers. AIC - Akaike Information Criterion,
Hyp - hypothesis

A Kruskal-Wallis test was performed for AIC values for results based on data of 1-
MT/LPS experiment, subset 1-MT-treated pigs, first data set, to determine whether
there are significant differences between the AIC values of the seven hypotheses. A
significant difference was detected (p < 2.210−16). Subsequently, a pairwise comparison
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with the Mann-Whitney-Wilcoxon test was conducted to find the hypotheses which differ
from each other in their AIC value. P-values were corrected with Benjamini-Hochberg
and are presented in Table 3.5.
Significant differences of the AIC values were found for every pair of hypotheses, except
for the pairs of Hyp 3 with Hyp 1, Hyp 3 with Hyp 2, and Hyp 4 with the classical
pathway (classic). The test with Hyp 6 and Hyp 4 also reveals a non significant p-value.
The mean LL, AIC, and BIC values are shown in Table 3.4.

Table 3.4.: LL, AIC, BIC values of the classical pathway and all hypotheses
fitted to the data of 1-MT/LPS experiment, first data set (approach
3)

hypothesis mean min
LL AIC BIC LL AIC BIC

classic 189.45 189.45 189.45 171.18 171.18 171.18
1 170.31 174.31 182.21 145.95 149.95 157.85
2 165.81 169.81 177.71 142.83 146.83 154.74
3 167.70 171.70 179.60 143.03 147.03 154.93
4 178.77 186.77 202.58 170.10 178.10 193.91
5 154.51 162.51 178.32 141.89 149.89 165.69
6 151.32 163.32 187.02 139.48 151.48 175.19
7 151.26 159.26 175.07 139.48 147.48 163.29

Parameters of the models of the hypotheses were fitted to the data of 1-MT/LPS
experiment, subset 1-MT-treated pigs, first data set, with 100 iterations. The mean
and the minimum values were calculated. The lowest values are shown in bold
numbers. AIC - Akaike Information Criterion, BIC - Bayesian information Criterion,
Hyp - hypothesis, LL - Log-Likelihood

The mean and minimal LL, AIC, and BIC values of the models, whose parameters were
fitted to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs, first data set are
in a range of 102. These values are ten times lower than those obtained from the models
fitted with fixed parameter values. Thus the parameter scan approach reveals better
results for the parameter fit.
Hyp 7 is the most likely one because mean LL, AIC, BIC, and minimum LL values
revealed the lowest values. Hyp 6, has the same value for the minimum LL value.
Minimum AIC and BIC values revealed the lowest value for Hyp 2. Simulations of all
hypotheses of the model with the lowest LL value are shown in Figure 3.14.
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Table 3.5.: p-values of pairwise comparison of AIC values for each hypothesis fitted to the data of 1-MT/LPS
experiment, subset 1-MT-treated pigs, first data set, 100 times (approach 3)

classic Hyp 1 Hyp 2 Hyp 3 Hyp 4 Hyp 5 Hyp 6 Hyp7
classic - 8.93 · 10−11 5.14 · 10−15 3.02 · 10−12 9.41 · 10−01 3.42 · 10−22 3.42 · 10−22 1.35 · 10−27

Hyp 1 - - 1.1 · 10−02 1.04 · 10−01 7.4 · 10−09 2.46 · 10−06 1.26 · 10−06 3.62 · 10−11

Hyp 2 - - - 9.25 · 10−02 4.04 · 10−12 2.72 · 10−03 4.4 · 10−03 1.64 · 10−06

Hyp 3 - - - - 3.08 · 10−11 2.15 · 10−04 4.84 · 10−04 4.46 · 10−07

Hyp 4 - - - - - 4.83 · 10−29 1.16 · 10−25 5.95 · 10−32

Hyp 5 - - - - - - 1.04 · 10−01 1.03 · 10−03

Hyp 6 - - - - - - - 4.73 · 10−05

Hyp 7 - - - - - - - -
The parameters of the hypotheses were fitted 100 times to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs,
first data set (see Figure A.9 ). AIC values for each hypotheses were pairwise compared by the Mann-Whitnex-Wilcoxon
test. The results for the reversed test (e.g. Hyp 1 - Hyp 2, the reversed test is than Hyp 2 - Hyp 1) are equal and are
omitted here. Hyp - hypothesis
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Figure 3.14.: Simulations of all hypotheses fitted 100 times to the data of 1-
MT/LPS experiment, subset 1-MT-treated pigs, first data set
(approach 3): Based on the 1-MT model, parameters were fitted 100
times to the data of 1-MT/LPs experiment, first data set. The model with
the lowest AIC is shown. Pigs were treated at time points 0 h, 24 h, 48 h,
72 h with 1-MT and were starved in the time slot between 72 h and 84 h.
The data are depicted in blue. 1-methyltryptophan, KYN - kynurenine,
KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TRP -
tryptophan
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3.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

Second Data Set: The calculated characteristic numbers (mean and minimum LL,
AIC, and BIC) are shown in Table 3.6 for comparison. By comparing mean and mini-
mum LL and AIC values, Hyp 2 is the most probable. By comparing the minimum BIC
value, the classical pathway (classic) is the most probable. The values range from −100

to 101. Compared to the results yielded by parameter fitting on 1-MT/LPS experiment,
subset 1-MT-treated pigs, first data set, the characteristic numbers based on calculations
on data without a TRP increase due to FoodSupply are lower.

Table 3.6.: LL, AIC, BIC values of the classical pathway and all hypotheses fit-
ted to data of 1-MT/LPS experiment, Second Data Set (approach
3)
hypothesis mean min

LL AIC BIC LL AIC BIC
classic -4.71 -4.71 -4.71 -13.29 -13.29 -13.29

1 -12.12 -8.12 0.39 -19.32 -15.32 -6.81
2 -16.31 -12.31 -3.80 -20.36 -16.36 -7.85
3 -15.94 -11.94 -3.44 -20.13 -16.13 -7.63
4 -15.76 -7.76 9.25 -20.04 -12.04 4.98
5 -15.94 -7.94 9.08 -20.15 -12.15 4.87
6 -15.89 -3.89 21.63 -20.12 -8.12 17.41
7 -15.89 -8.30 8.71 -20.25 -12.25 4.77

Parameters of the models of the hypotheses were fitted to the data of 1-MT/LPS
experiment, subset 1-MT-treated pigs, second data set, with 100 iterations. The mean
and the minimum values were calculated. The lowest values are shown in bold
numbers. AIC - Akaike Information Criterion, BIC - Bayesian information Criterion,
LL - Log-Likelihood
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3. Results

A boxplot was created to determine whether there are significant differences between
the AIC values of the hypotheses (see Figure 3.15). By comparing the AIC values shown
in Figure 3.15, the most likely hypothesis is Hyp 2.
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20
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IC

Second Data Set

AIC

Figure 3.15.: Boxplot of AIC values of all hypotheses fitted 100 times to the
data of 1-MT/LPS experiment, subset 1-MT-treated pigs, second
data set (approach 3): The box plot shows the results of 100 iterations
of the different hypotheses. The curve around the box plot shows the
distribution of the data and is mirrored at the whiskers.

Moreover, a Kruskal-Wallis test was performed as it was done for the first data set.
Again a significant difference was detected with a p-value smaller than 2.210−16. To
check for significant differences between the hypotheses, a pairwise comparison with the
Mann-Whitney-Wilcoxon test was performed. The p-values, corrected with Benjamini-
Hochberg, are presented in Table 3.7. All p-values are significant except the comparison
of Hyp 4 with Hyp 1, Hyp 5 with Hyp 1, Hyp 6 with the classical pathway (classic), and
Hyp 7 with Hyp 1. Simulations of all hypotheses are shown in Figure 3.16.
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Table 3.7.: p-values of pairwise comparison of AIC values for each hypotheses fitted to the data of 1-MT/LPS
experiment, subset 1-MT-treated pigs, second data set, 100 times (approach 3)

classic Hyp 1 Hyp 2 Hyp 3 Hyp 4 Hyp 5 Hyp 6 Hyp7
classic - 3.02 · 10−06 2.12 · 10−21 1.19 · 10−20 1.58 · 10−04 1.53 · 10−04 5.96 · 10−01 1.38 · 10−04

Hyp 1 - - 5.04 · 10−10 1.41 · 10−06 7.91 · 10−01 5.79 · 10−01 3.83 · 10−12 2.12 · 10−01

Hyp 2 - - - 9.26 · 10−03 2.12 · 10−21 2.12 · 10−21 2.12 · 10−21 2.12 · 10−21

Hyp 3 - - - - 2.12 · 10−21 2.12 · 10−21 2.12 · 10−21 2.12 · 10−21

Hyp 4 - - - - - 2.8 · 10−02 2.12 · 10−21 1.18 · 10−03

Hyp 5 - - - - - - 2.12 · 10−21 1.41 · 10−02

Hyp 6 - - - - - - - 2.12 · 10−21

Hyp 7 - - - - - - - -
The parameters of the hypotheses were fitted 100 times to the data of 1-MT/LPS experiment, subset 1-MT-treated pigs,
first data set (see Figure A.9). AIC values for each hypothesis were pairwise compared by the Mann-Whitnex-Wilcoxon
test. The results for the reversed test (e.g. Hyp 1 - Hyp 2, the reversed test is than Hyp 2 - Hyp 1) are equal and are
omitted here. Hyp - hypothesis



3. Results

1
−

M
T

K
Y

N
K

Y
N

A
Q

U
IN

S
E

R
T

R
P

84 90 96 108

30
40
50
60
70

0.8
1.0
1.2

10
20
30
40

1.5
1.6
1.7
1.8
1.9
2.0
2.1

1.0
1.5
2.0
2.5
3.0

80
90

100

time (h)

µ
M

Simulation vs. Data

Figure 3.16.: Simulations of all hypotheses fitted 100 times to the data of
1-MT/LPS experiment, subset 1-MT-treated pigs, second data
set (approach 3): Based on the 1-MT model, parameters were fitted
100 times to the data of 1-MT/LPS experiment, second data set. The
model with the lowest AIC is shown. Pigs were treated at 96 h with 1-
MT and were starved the whole time. The data are depicted in blue.
1-methyltryptophan, KYN - kynurenine, KYNA - kynurenic acid, QUIN -
quinolinic acid, SER - serotonin, TRP - tryptophan
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3.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

3.1.6. Results of the Validation Experiment
To validate Hyp 2, a biological experiment was developed and conducted by Elisa Wirth-
gen. Here, the experimental set-up is described, which is solely the work of Elisa Wirth-
gen.
1-MT, TRP, and KATIV were added in different combinations (1-MT and KAT, 1-MT,
TRP and KAT, TRP, nothing) to PBS and medium. Medium contains TRP metabo-
lites in addition to the given reactants 1-MT and TRP. In simulations, the enzyme
KATIV is named KAT. TRP, KYN and KYNA were measured. The results are shown
in Figure 3.17. Adding 1-MT and KATIV (KAT4) increased KYNA in the medium and
PBS compared to the experiment without KATIV, indicating that 1-MT is degraded
to KYNA. Since KYN did not change by adding KATIV, a direct degradation of 1-MT
to KYNA can be assumed. Adding TRP, and KATIV increased KYN, while KYNA
changed only slightly, compared to the experiment without KATIV. Thus, KATIV can
catalyze the degradation of TRP to KYN. This degradation process was already re-
ported by Han et al. [201], who used the KAT variant KATII. With these results, a
direct degradation, as it is modeled in Hyp 2, is validated. TRP and KYN were mea-
sured in medium, without adding anything. Thus, both are included in the medium,
but KYNA was not detected.
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Figure 3.17.: Results of the experimental to validate the results of the hy-
potheses: Cell-free assays were performed in medium or PBS under dif-
ferent conditions. The results of the experiments with 1-MT are depicted
in blue colored bars, with TRP in red colored bars, without adding any-
thing in orange. The impact of KATIV (KAT4) was under investigation.
Therefore experiments were conducted by adding KATIV. As a control, the
same experiments were conducted without adding KATIV. The metabo-
lites of the TRP metabolism TRP, KYN, and KYNA were measured, n=1.
1-methyltryptophan, KAT - kynurenine aminotransferase, KYN - kynure-
nine, KYNA - kynurenic acid, TRP - tryptophan
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3. Results

3.2. Modeling 1-Methyltryptophan’s Ability to inhibit
Indoleamine 2,3-Dioxygenase

To investigate the inhibitory effects of 1-MT on IDO, two models were applied to data
of the 1-MT/LPS experiment, second data set. One model included a term of 1-MT
induced IDO inhibition, and the other does not include a term for inhibitory effects in
the system of ODEs. Parameter values fitted to the data of LPS experiment I (approach
1) and 1-MT/LPS experiment, subset LPS-treated pigs (approach 2), were fixed in both
models. The most likely model was determined by comparing LL, AIC, and BIC values
pointing to the model without inhibition for both parameter sets.
Moreover, degradation parameters and V enzyme

max parameters were fitted to the data 100
times (approach 3). Also, mean and minimal LL, AIC, and BIC values were determined
for all 100 fits and were compared. Results between mean and minimal values did
not differ statistically. The comparison of mean LL, AIC, and BIC values revealed no
inhibition. However, the model, including no inhibitory effects of 1-MT on IDO, does
not represent the dynamics due to the high characteristic numbers.

3.2.1. Parameters Fixed to the Parameter Values Fitted to the
Data of Lipopolysaccharide-Treated Pigs (Approach 1)

Parameters fitted to the data of LPS experiment I, were fixed in the model including
inhibitory effects of 1-MT on IDO’s activity, and in the model, without including in-
hibitory effects of 1-MT (approach 1). Then the parameters of the models were fitted
to the data of the 1-MT/LPS experiment, second data set (without FoodSupply). LL,
AIC, and BIC values were calculated, which are shown in Table 3.8.

Table 3.8.: LL, AIC, BIC values of simulations with and without inhibition
fitted to data of LPS experiment I

LL AIC BIC
with inhibition 9341367698 9341367742 9341367851

without inhibition 9323927462 9341367740 9341367844
The fitted parameters of the LPS model and the data of the LPS experiment were
fixed in the model of hypothesis 2. Two models were compared. One model includes
the inhibitory effects of 1-MT on IDO, the other does not. The lowest values are shown
in bold numbers. AIC - Akaike Information Criterion, BIC - Bayesian information
Criterion, LL - Log-Likelihood

Comparing the two model reveals the lowest values without inhibition. The values are in
a range of 109 with and without inhibition. The corresponding simulations are presented
in Figure 3.18.
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3.2. Modeling 1-Methyltryptophan’s Ability to inhibit Indoleamine 2,3-Dioxygenase
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Figure 3.18.: Simulations of the models with inhibition and without inhibition
(approach 1): Parameters fitted to data of LPS experiment I were fixed.
The remaining parameters of the models, including and not including in-
hibitory effects of 1-MT on IDO, were fitted to the data of the 1-MT/LPS
experiment, second data set. Pigs were treated at 96 h with 1-MT and were
starved during the whole experiment. Simulations are shown in lines. Data
are shown in blue dots. 1-methyltryptophan, KYN - kynurenine, KYNA
- kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TNF - tumor
necrosis factor α, TRP - tryptophan

103



3. Results

3.2.2. Parameters Fixed to the Parameter Values Fitted to the
Data of a Selection of Lipopolysaccharide-Treated Pigs
(Approach 2)

V enzyme
max and degradation parameters, which were fitted to the data of 1-MT/LPS exper-

iment, subset LPS treated pigs (approach 2), were fixed in two different models of 1-MT
administration during infection. The first model includes 1-MT’s inhibitory effects and
the second omits those effects. The remaining parameters of the models were fitted to
the data of the 1-MT/LPS experiment, second data set. The resulting LL, AIC, and
BIC values are shown in Table 3.8.

Table 3.9.: LL, AIC, BIC values of simulations with and without inhibition
fitted to data of 1-MT/LPS experiment

LL AIC BIC
with inhibition 6906367180 6906367224 6906367333

without inhibition 6893446416 6906367222 6906367326
Fitted parameters of the LPS model and the data of 1-MT/LPS experiment, subset
LPS-treated pigs were fixed in the model of hypothesis 2. Two models were compared.
One model includes the inhibitory effects of 1-MT on IDO and the other does not. The
lowest values are shown in bold numbers. AIC - Akaike Information Criterion, BIC -
Bayesian information Criterion, LL - Log-Likelihood

The model without concerning inhibition reveals the lowest values. The values are in a
range of 109 with and without inhibition. Compared with the models of 1-MT inhibition,
whose parameters were fixed to parameter values fitted to the data of LPS experiment
I, the LL, AIC, and BIC values, are higher. Simulations are presented in Figure 3.19.
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3.2. Modeling 1-Methyltryptophan’s Ability to inhibit Indoleamine 2,3-Dioxygenase
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Figure 3.19.: Simulations of the models with inhibition and without inhibi-
tion (approach 2): Based on parameters fitted to data of 1-MT/LPS
experiment, subset LPS-treated pigs, the parameters of the models with
and without including inhibitory effects of 1-MT on IDO were fitted to the
data of 1-MT/LPS experiment, second data set. Pigs were treated at 96
h with 1-MT and were starved during the whole experiment. Simulations
are shown in lines. Data are shown in blue dots. 1-methyltryptophan,
KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid, SER
- serotonin, TNF - tumor necrosis factor α, TRP - tryptophan
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3. Results

3.2.3. Parameters Fitted to the Data of a Selection of
1-Methyltryptophan-Treated Pigs by a Parameter Scan
(Approach 3)

In section 3.2.1 and section 3.2.2, parameters were fixed to parameter values obtained
from parameter fits of the LPS model to the data of LPS experiment I (approach 1)
or 1-MT/LPS experiment, subset LPS-treated pigs (approach 2). These set-ups led
to fits with high LL, AIC, and BIC values when the parameters of the models with
and without inhibitory effects were fitted to the data of 1-MT/LPS experiment, second
data set. Thus, parameters of the model, including 1-MT’s inhibitory effects and the
parameters of the model without these effects, have to be fitted to the data of the 1-
MT/LPS experiment, second data set. It was already shown that several parameters
of the LPS model were not identifiable. In the models of IDO inhibition, the amount
of parameters that were not fixed is higher compared to the models of the different
hypotheses. Concluding, the parameters for these models are also not identifiable. The
implementation of the identifiability analysis was abandoned. Consequently, a parameter
scan was made. Thus, the models with and without including inhibitory effects of 1-MT
were fitted 100 times to the data of the 1-MT/LPS experiment, second data set.
Parameter fitting led to 100 LL, AIC, and BIC values. Mean, median and minimal
values were calculated. All values are shown in Table 3.10.

Table 3.10.: LL, AIC, BIC, values of the LPS model extended by hypothesis
2 and with and without inhibition were fitted to data of the 1-
MT/LPS experiment, second data set

LL AIC BIC
mean 3.780471 · 1017 3.780471 · 1017 3.780471 · 1017

with inhibition median 3719450000 3719450006 37194500214
min 3719140000 3719140006 3719140021

mean 3.723710 · 109 3.723710 · 109 3.723710 · 109

without inhibition median 3719455000 3719455002 3719455007
min 3719140000 3719140002 3719140007

The parameters of the models with and without inhibitory effects of 1-MT were fitted
100 times to the data of the 1-MT/LPS experiment, second data set. The mean,
median and minimum values were calculated. The lowest minimal values are shown in
bold numbers. AIC - Akaike Information Criterion, BIC - Bayesian information
Criterion, LL - Log-Likelihood

The lowest values were obtained for median LL values with inhibition. Mean, and
minimum values do not differ. The lowest mean and minimum AIC and BIC values
were obtained by modeling the IDO activation during 1-MT administration without an
inhibition of IDO by 1-MT, at which the median AIC and BIC values are lower for the
model including an inhibition.
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3.2. Modeling 1-Methyltryptophan’s Ability to inhibit Indoleamine 2,3-Dioxygenase

To determine which model is the more likely one, the AIC values of the 100 parameter
fits were compared. This comparison was done by a Kruskal-Wallis test. The p-values
showed no significant difference between the two models (inhibition and no inhibition,
p = 0.2675, the Figure D.1 of a box plot of the AIC values is shown in the appendix D).
Median, and minimal LL, AIC, and BIC values are three times lower than the values
calculated in section 3.2.1 and two times lower than those calculated in section 3.2.1.
Simulations of the model with the lowest AIC are presented in Figure 3.20.
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Figure 3.20.: Simulations of the models with inhibition and without inhibition
(approach 3): The parameters of the models with and without inhibitory
effects were fitted 100 times to the data of the 1-MT/LPS experiment.
The model with the lowest AIC is shown. Pigs were treated at 84 h with
LPS, and at 96 h with 1-MT. Pigs were starved during the whole time.
Simulations are shown in lines. The data are shown in blue dots. 1-
methyltryptophan, KYN - kynurenine, KYNA - kynurenic acid, QUIN -
quinolinic acid, SER - serotonin, TNF-α - tumor necrosis factor α, TRP -
tryptophan
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4. Discussion
During 1-MT administration TRP and KYNA levels increase while the intermediate
metabolite KYN does not change [85]. The administration of 1-MT led to increased sur-
vival of mice suffering from sepsis, compared to mice that were not treated with 1-MT
[202]. Deciphering the mechanisms leading to those unexpected dynamics of the TRP
metabolism will help to understand 1-MT’s mode of action in the face of infection and
will provide new drug targets. The 1-MT dependent increase of KYNA levels affect the
parts of the immune system. KYNA’s mode of action depends on whether inflammatory
or homeostatic conditions prevail. In the face of infection, a dis-regulation of KYNA
levels can lead to immunoparalysis, which is correlated with a poor prognosis [1].
In most studies of the TRP metabolism, only the KYN/TRP ratio or IDO mRNA is
used to measure the IDO activity after 1-MT administration [203, 204]. Thus, measure-
ments of KYNA levels still need to be included. In a couple of experiments, the KYNA
increase after 1-MT administration was recognized [67, 86]. The processes mediating
the altered TRP metabolite levels during 1-MT administration gained no attention.
Thus, the aim of the thesis was to investigate possible degradation pathways of 1-MT as
well as its ability to inhibit IDO to improve the understanding of 1-MT’s mode of action.

4.1. 1-Methyltryptophan is Directly Degraded to
Kynurenic Acid

To investigate the degradation processes of 1-MT, an ODEmodel of the TRP metabolism
was developed and extended by an 1-MT administration. This ODE model was further
extended by seven different hypothetical degradation processes based on the fact that
KATII degrades KYN not only to KYNA [1], but also TRP to KYNA [201]. The results
of this study revealed that 1-MT is directly degraded to KYNA (hyp 2). An in vitro
cell-free assay experiment supported these findings. In this experiment, 1-MT or TRP
with or without KATIV was added. TRP, KYN, and KYNA levels were measured. The
experiment was only performed once; thus the results are only of low significance. In the
following, all hypotheses are discussed in detail regarding their in silico and experimental
results, and previous findings in the literature.

4.1.1. Classical Pathway
Hypotheses 1 to 7 are based on the ODE model of the classical pathway. These pathways
assume that the TRP contamination of the drug 1-MT provokes the TRP increase. The
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4. Discussion

producer reported that the drug is contaminated with 5 % TRP [86]. Therefore, no
additional degradation process was included in the system of ODEs. For this assumption,
the degradation rates from TRP to KYN and from KYN to KYNA have to be equal.
When parameters were fitted 100 times to the data of the 1-MT experiment (approach 3),
1-MT-treated pigs, second data set, the BIC of the classical pathway was the lowest one.
The results of the cell-free essay experiment contradict these assumptions. By adding
just TRP, TRP and KYN levels increased, but KYNA stayed at low levels. Therefore,
the solely degradation of TRP via KYN to KYNA is unlikely.

4.1.2. Hypothesis 1
The finding of Han et al. [201] that TRP can be degraded to KYNA by KATII, was
included in Hyp 1. This ODE model was never (LL, AIC, and BIC) the most likely
one. Also, in the experiment where the enzyme KATIV instead of KATII was used, the
findings of Han et al. [201] were not reproduced because adding TRP with and without
KATIV leads to increases in TRP and KYN but not in KYNA levels.

4.1.3. Hypothesis 2
A direct degradation of 1-MT to KYNA (Hyp 2) was the most likely hypothesis in 50 %
of the calculated LL, AIC, and BIC values. The validation experiment revealed that Hyp
2 is the most likely one since KYNA increase after 1-MT administration was high. After
adding TRP, only low levels of KYNA were measured compared to the addition of 1-MT.
There is no proof that 1-MT can be degraded to KYNA, and only assumptions can be
made, about how KAT degrades 1-MT to KYNA. KAT is a transaminase [1], meaning
that the α-amino nitrogen of an amino acid (here TRP respective 1-MT) is transferred
to an α-keto acid with the synthesis of a second amino acid and a second α-keto acid
[205]. An α amino nitrogen is a functional group of nitrogen (N) and hydrogen (H) [206].
1-MT has two α-amino nitrogen groups, and KYNA has just one. A transfer of one α-
amino nitrogen group seems plausible. A detailed description of this transamination is
beyond the scope of this thesis.

4.1.4. Hypothesis 3
The assumption for Hyp 3 is that 1-MT is demethylated and TRP is generated. For this
reaction, a demethylase is needed. To my knowledge, there are no reports of enzymes
demethylating 1-MT. Hyp 3 did not reveal the lowest LL, AIC or BIC in any in silico
experiment. In the validation experiment, TRP increased after 1-MT administration,
and KYN and KYNA increased without adding the enzyme KATIV. Wirthgen et al. also
proposed this[148]. The N-methyltryptophan (N ∈ N) oxidase is able to demethylate
its substrate, to which N-methyltryptophan is the best-known [207]. Thus, it is not
distinguishable in vivo whether 1-MT is contaminated or demethylated. In cell-free
experiments, it has to be clarified whether 1-MT can dissociate to TRP.
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4.1. 1-Methyltryptophan is Directly Degraded to Kynurenic Acid

4.1.5. Hypothesis 4

Hyp 4 includes the degradation of TRP to KYNA (Hyp 1) and 1-MT to TRP (Hyp 3).
It was the most likely hypothesis for LL and AIC values for approach 2. The validation
experiment showed increases in TRP and KYNA concentrations after 1-MT administra-
tion with and without the addition of KATIV. It is a combination of hypotheses 1 and
3. The first hypothesis is possible since the degradation of TRP to KYNA was already
reported [201]. Also, the demethylation of 1-MT to TRP is possible [207]. To prove this
hypothesis, it has to be proven whether 1-MT can be demethylated to TRP.

4.1.6. Hypothesis 5

The combination of demethylation of 1-MT to TRP (Hyp 3) and a degradation of 1-
MT to KYNA (Hyp 2) kept the lowest LL, AIC, and BIC value. The second part of
the hypothesis is the one which was the most likely one. A combination of both is
not reported in the literature. This result excludes the possibility of demethylation of
1-MT to TRP, since Hyp 5 was in no case the most likely one in the conducted in silico
experiments.

4.1.7. Hypothesis 6

Hyp 6 is based on Hyp 2. It is further extended by a direct degradation of TRP to
KYNA (Hyp 1) and 1-MT to TRP (Hyp 3). Hyp 6 revealed the lowest LL and AIC
values by fixing parameters to values fitted to the data of 1-MT/LPS experiment, LPS-
treated pigs while fitting the remaining values to data of 1-MT/LPS experiment first
data set (approach 2). The part of Hyp 6, including Hyp 1, was not reproduced by
the validation experiment. The remaining degradation processes, Hyp 2 and Hyp 3, are
equal to Hyp 5, which never was the most likely one. Thus, Hyp 6 can be excluded as
a possible degradation pathway of 1-MT.

4.1.8. Hypothesis 7

TRP and 1-MT are directly degraded to KYNA (Hyp 7). This degradation was the most
likely hypothesis for approach 1 for LL, AIC, and BIC values. The remaining parameters
were fitted to the data of the 1-MT/LPS experiment of 1-MT-treated pigs, first data
set. These degradation processes are a combination of Hyp 1 and 2. A degradation of
TRP to KYNA in Hyp 1 was reported by Han et al. [201]. Hyp 2 was the most likely
one, and is also explainable by the validation experiment, but further chemical analysis
for this degradation process still needs to be included.
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4. Discussion

4.2. Inhibition of Indoleamine 2,3-Dioxygenase by
1-Methyltryptophan

The second aim of this study was to investigate the model’s ability to represent 1-MT’s
inhibitory effects on IDO. Three different approaches investigated this. LL, AIC, and
BIC values of all approaches point to no inhibitory effects of 1-MT on IDO. For approach
3, where parameters were fitted 100 times, these findings remain true for mean and
minimal values but not for median values. These findings align with previous research,
where reduced inhibitory effects of 1-MT on IDO were determined in vivo. The authors
concluded that the saturation of 1-MT was too low in pigs [162]. These low saturation
levels were also reported in a phase I trial of tumor patients using 1-MT (D-isomer) as
an IDO1 inhibitor. It was shown that doses higher than 1200 mg 1-MT/patient do not
increase peak serum levels [82]. Thus IDO inhibition was not fully reached. In addition,
this was also shown for the steady-state 1-MT concentration reached after the second
1-MT injection of 1000 mg/animal/day [208].

4.3. Potential Therapeutic Targets
1-MT, and KYNA, activate the AhR [148, 209], which is known as a toxin clearance me-
diator [85]. Nevertheless, also in inflammation TRP metabolites, AhR contributed to im-
mune homeostasis during e.g., repeated LPS administration by activating immunomod-
ulatory signaling pathways [210]. The most potent activator of the AhR is KYNA. Thus
it is a promising therapeutic intervention in inflammatory disorders [62]. In the first
phase of sepsis, an overshooting immune response is prevented by appropriate KYNA
production [147] by activating Treg cells [211]. But, in the later phase of sepsis, this
can lead to immunoparalysis correlated with a poor outcome [147]. To counteract this,
inhibition of the AhR receptor by e.g., the antibiotic drug clofazimine [212] could be
an appropriate way. It was already successfully tested in immunocompromised patients
infected by parasites [213] or drug-resistant Mycobacterium tuberculosis [214].
Since the sensitivity analysis revealed V KAT

max as a parameter with one of the highest
impacts on the KYNA amount, manipulation of the enzyme KAT could also be a potent
drug target. Especially for KATII, inhibitors were invented. By sufficient inhibition,
significant effects can be expected since KATII catalyzes 70% of the KYNA amount in
the brain [215]. Nematollahi et al. presented several KAT inhibitors, but there are few
in vivo studies, even though there are serious claims of significant potency for them.
They claim that systematic in vivo examinations of these and related compounds are
desirable [215]. Most of them were invented to treat psychiatric disorders caused by the
NMDA agonistic properties of KYNA [216, 217]. However, research on the administra-
tion of KAT inhibitors during infection is outside the middle of current research.
Since one option is to decrease the production of KYNA by inhibition of KATs, another
option could be to increase the degradation of KYNA. KYNA is absorbed from the
digestive tract after its oral ingestion. Further, it is mainly excreted via urine [218].
Elevated blood levels of KYNA have normalized already after two hours [219]. Thus,
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the degradation of KYNA is already speedy.
The parameter V KQE

max has the biggest influence on KYNA levels after µKYNA and V KAT
max .

An increase in the enzyme activity of KQE would lead to increased QUIN levels and
a decrease on KYNA levels. An intervention of QUIN levels can have dramatic results
since QUIN is an NMDA-receptor agonist [21]. It is an endogenous excitotoxin and can
lead to acutely or chronic neuronal dysfunction or death by several mechanisms [21].

4.4. Modeling Food Intake
A TRP increase upon food intake was included to adjust the model to the experimental
set up. It was reported that treated rats ate less than non-treated rats [220]. This was
also reported for LPS-treated pigs [221]. Unfortunately, amount of food intake was not
noted during the experiments. Besides, comparing the amount of TRP increase would
not be possible because the increase of amino acids in the blood varies between experi-
ments due to different model organisms or altered food composition [222]. To investigate
a possible degradation of 1-MT to TRP in in vivo experiments, other sources of TRP,
like food intake, should be avoided. However, food deprivation is regulated, accounting
for animal welfare. For example, guidelines on animal fasting in Norway state that food
deprivation for more than 24 h should be avoided in small mammals like rabbits or rats.
In guinea pigs, ferrets, and shrews, fasting should be avoided at all [223].
Omitting the split up of data of the 1-MT/LPS experiment, 1-MT-treated pigs in the
first and second data set would enable detection of the differences between 1-MT ad-
ministration with and without food intake.

4.5. Parameter Calculation based on Data Measured in
Pigs

Mostly, the boundaries for parameter fitting are set to the lowest and highest values
reported in literature [14, 15]. Unfortunately, in literature, no values are reported for
pigs. These missing values occur because protein-based techniques in farm animals are
often limited compared to their use in humans and rodents due to the poor peptide mass
database [224]. Of course, there are many similarities between pigs and humans [224],
but also differences. Especially in the immune response [225] and metabolism [226], pigs
show a large heterogeneity. Moreover, there needs to be more detailed information on
similarities and differences between human and pig at the molecular level [227]. Thus,
no a priori knowledge can be used, and values of other species cannot be converted.
The boundaries for initial values were set tightly by mean−2 ·standard deviation. With
this, a normal distribution of the measured data was presumed but not tested. Identify-
ing the actual distribution was not possible for all treatment groups because some groups
only consisted of four pigs. Evidence for a different distribution is given due to a non-
symmetric distribution determined by negative values of mean− 2 · standard deviation.
Thus, estimating a mean and a standard deviation is not an appropriate tool. Another
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approach for determining the initial values of all species is to fix the values to the mea-
sured data for time point 0 h for each pig individually [228].
This individualisation leads to individual-based models, which describe the temporal
evolution of individual actions and events [229]. They introduce individual traits to
build the rules that determine the behavior of a general system [230]. In this thesis,
individual-based dynamics were not considered because this would result in a variation
of parameter values fitted to different data sets and reduced comparability of data and
simulations for all three approaches. The complexity of individual-based models might
make the models and validation procedures, and parameterization difficult to implement
or computationally prohibitive. Therefore, detailed and reliable observational data are
required for comparison [229].

4.6. Comparison of the Fitted Parameters to Literature
Values

Parameters were fitted to independent data sets, which differ in the levels of some species.
These differences can be justified by altered dynamics caused by a seasonal factor [231] or
by human error [232] conducting the measurements by a mass spectrometer [86, 149, 162],
which will be discussed later in section 4.8.3. Consequential, fitted parameter values
differ. For V KAT

max the fitted parameter values are in the range of literature values. In most
cases, the fitted value is in the dimension of 102. Only when the LPS model was fitted to
the data of 1-MT/LPS experiment, subset LPS-treated pigs, the parameter is decreased
(10−1). For the parameter V TPH

max all fitted parameter values are in the dimension of
10−2 to 10−1, at which literature values are much higher. The fitted values of parameter
V TDO
max range between values of the dimension 10−1 to 102, at which literature values are

again much higher. For the parameter V KQE
max the fitted parameter values are between

101 and 102, this can only be compared to the literature value of the enzyme KYNU.
KYNU is an enzyme catalyzing one of the three reactions degrading KYN to QUIN. This
parameter is 10 times higher compared to the highest fitted parameter. For V IDO

max the
fitted parameters range from 10−5 to 105, at which literature values only range between
101 and 103. For µKYNA parameter values were fitted in the range of 10−2 to 10−1, this
is in concordance with literature values coinciding with µQUIN , whose fitted parameters
are also in the range of parameters found in the literature. For the parameter µTNF−α,
values range between 10−4 and 10−1, parameters from literature are all higher. At which
the fitted parameters of µSER are ten times higher than the parameter reported in the
literature. No literature values were found for k and µLPS as well as FoodSupplyLPS
and FoodSupplyNaCl. For parameter k, only the parameter fitted on data of LPS
experiment I is tiny, values obtained from fits to data of 1-MT/LPS experiment, subset
LPS-treated parameters are in the range of 10−1.
In conclusion, calculated parameters vary from the parameters reported in the literature.
But those parameters are measured in other organisms than the fitted parameters. Based
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on the literature values, one can state that the metabolism of human, rodents, primates
and pigs differ. An overview of the fitted parameters and values found in literature are
given in the appendix C.

4.7. Parameter Scan

To get an estimate for the variability of optimized parameter values, parameter fitting
was performed 100 times. This was based on the approach of Stavrum et al. [15], where
each optimization was repeated 20 times to get an estimate for the variability of opti-
mized gene expression values. They set the boundaries of each parameter to the minimal
and maximal literature value. This fixing was done since the parameter search space for
expression values was huge, and there could be several optimal parameter combinations
that would result in similar simulations [15]. In this thesis, optimization was repeated
five times more often compared to Stavrum et al. [15], since literature values did not
limit the search space. In general, such parameter scans are a standard tool [167, 233],
but the number of runs differs between the studies from 20 [15] to 50 [167]. At which
not every parameter scan is described in detail, and information on the number of runs
is missing (e.g., in Cowan et al. [234]). The process can be very time-consuming since
parameter scanning usually involves running the same simulation many times [235]. A
rule of thumb to determine the number of runs has yet to be available in the current
literature. Thus, further methodical investigations have to be performed. One possible
approach is to differ the number of runs for a multiplicity of mathematical models. For
each model, a characteristic number (e.g., LL, AIC, BIC) has to be determined. The in
silico experiment revealing the lowest characteristic number is the best. This experiment
is repeated for each model, and those results must be interpreted. The number of fitted
parameters, the size of the parameter ranges, and the amount of data the parameters
are fitted to must be considered.

4.8. Limitations

In this study, data from pigs measured in different experiments were used to fit the
parameters of models of the TRP metabolism using MM kinetics. Unfortunately, those
parameters did not reproduce the dynamics of all data sets used in this thesis. Therefore,
a complex procedure accompanied with several limitations regarding parameters and
their reproducibility, and modeling approaches was used. Those different approaches
led to different results. It was already reported that different ODE models could deliver
similar results [236], demonstrating the limitations of ODE modeling. The limitations
of this thesis are discussed below.
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4.8.1. Using LL, AIC, and BIC for Model Selection
The AIC and the BIC are the most often used penalized model selection criteria [237].
In this thesis, LL, AIC, and BIC were compared to select the most likely model. The
LL can be used for non-nested models, but in this thesis, nested models were applied.
Models are nested because hyp 4 to 7 are combinations of hyp 1, 2, and 3. Thus the LL
should not be used as a characteristic number to compare the models.
Penalized criteria such as AIC and BIC allow comparisons of non-nested, and nested
models [237]. They can be used to select the best model out of a set of two or more models
[238]. Here the best model was determined by using the smallest value. A limitation of
this thesis is that the difference to the next likely value was not considered. To account
for this, weighted information criteria are generally used to make AIC and BIC values
more comparable [239, 240, 241] by reflecting the probability of each model given the
data and the candidate models [236]. It was also shown that the model chosen by AIC
and BIC differ and that the best ODE model selected by BIC has fewer parameters than
the best models selected by AIC [242]. This results from the BIC calculation rule since
a number of parameters higher than 7 penalized. If the BIC is used, the assumption was
made that the simpler the model is, the more likely it is. In this thesis, it was assumed
that instead one then two or three degradation processes lead to the increase of TRP
and KYNA after 1-MT administration, leading to Hyp 2.

4.8.2. Different Approaches Reveal Different Results
In this thesis three approaches to process biological problems with the 1-MT and 1-
MT/LPS ODE models were used. Each approach fits the parameters of 1-MT’s degra-
dation pathway and its inhibitory effects on IDO differently. For each approach, another
result was obtained, not expected but already reported by others [243, 244].
Polynikis et al. [243] worked on ODE modeling approaches for gene regulatory networks.
Also they recognized that while some qualitative behavior is preserved when making dif-
ferent assumptions, the quantitative predictions of different models can be surprisingly
different. This difference was also shown for different modeling methodologies in the face
of mRNA translation and protein synthesis. Those studies reveal that different models
give broadly similar trends, but also essential differences arise [244].
In this study, a simple ODE model was used. However, there are also other methods to
model dynamics, like multiple compartment ODE models [14] or agent-based models.
Comparing those methods revealed different results [112, 245].

4.8.3. Reduced Reproducibility of Parameters
Parameters fitted to the data of pigs cannot be transferred to a different data set due to
several aspects. The first aspect refers to the method of data collection. In the exper-
iments, data were measured with an MS2 mass spectrometer. In general, the accuracy
of an MS2 mass spectrometer is about one to five ppm [246], slightly less compared to
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other methods [247]. In addition, the precision and accuracy of this method have been
questioned [248, 249]. The accuracy of the measured data cannot be determined since
there were no technical replicates. Deviations, e.g., of KYNA and TRP levels between
LPS experiment I/II and 1-MT/LPS experiment vary between small and enormous. The
slight deviations may originate from a reduced accuracy. At which the deviations of TRP
levels are huge. They are more than four times higher than the TRP levels measured
in LPS experiments I and II. The source of errors is presumed to be human errors, the
greatest source of error [232]. Errors can be diverse [250] and are only sometimes name-
able.
Currently, an active research area is minimizing errors called „batch effects“[251]. A
batch is a set of samples processed and analyzed by the same experimental procedure
uninterruptedly[252]. Batch effects appear if the quantitative results of different batches
significantly differ due to irrelevant factors [253]. There is no standard for dealing with
batch effects in metabolomics [251], but there are multipe of methods to correct for
batch effects. The requirements on the measurements of the samples can group those
methods. There are methods with no requirements, methods for isotope-labeled inter-
nal standards, quality control samples, quality control metabolites, and chemical isotope
labeling [251]. Since the samples are already evaluated, only methods with no exper-
imental requirements could have been considered. However, some are not suitable for
dealing with the situation that metabolites vary in different patterns or the data must
have a balanced batch-group design [251]. Moreover, batch effect removal may lead to
unpredictable outcomes to the results since adjustments extensively modify the original
data [254].
Another reason for the variation in the measurements is the season when the experi-
ments were conducted. It was shown that the level of TRP metabolites differs between
seasons [231]. These differences are also valid for carbohydrate metabolism [255] or TRP
metabolism during allergy [256]. Altered enzyme activities can cause altered metabo-
lite levels. Therefore, MM parameters fitted to data measured in the summer season
(LPS experiment I/II) cannot be transferred to data measured in the winter season (1-
MT/LPS experiment).

4.8.4. Literature Values and Calculated Parameters
Several parameters of the model were fixed to literature values to reduce the complexity
of parameter fitting. Literature values are parameters determined by former experi-
ments, which do not necessarily underlie the same conditions as the present experiment.
For this study, no literature values were found that were determined based on experi-
ments conducted in pigs or cells of pigs. ForKm and degradation parameters µ, literature
values were mainly obtained from experiments conducted in cells of rodents or humans.
It was shown that e.g., proteins of mice differ from humans significantly higher than
the proteins of pigs differ from humans [226]. However, also pigs differ from humans in
several eintire immune system-related pathways [226].
The second limitation on parameter interpretability is based on different mediums of
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measurement. Literature values of Km-values or degradation rates were mostly calcu-
lated upon cell experiments. However, the data used in this study were obtained from
samples taken from blood. Cells and blood can differ in e.g., the pH-value, ionic compo-
sition, or substrate concentration leading to alterations of the enzyme kinetics between
compartments [257]. In addition, different variants of enzymes occur in different or-
gans/compartments. Thus, the concentration in blood is based on different turnover
rates. For example, there are four different variants of KAT occurring in different com-
partments of the body with different enzyme activities [186, 193, 258, 259, 260]. The
parameter KKAT was fixed to a literature value of KATI measured in human brain cells
[187]. In contrast, the validation experiment was performed with KATIV. A value for
KATIV was not found in the literature.

4.8.5. Mathematical Modeling of the Tryptophan Metabolism
A mathematical model has to be as simple as possible [90] but as detailed as needed to
answer particular questions [90, 99]. For modeling the TRP metabolism, MM kinetics
were used. Nevertheless, to apply MM kinetics, several assumptions were made. For
example, the substrate concentration saturates the enzyme. In this study, this was not
proved since enzyme concentrations were not measured. Also, the decomposition of
enzyme and substrate complex to enzyme and substrate [117] is neglected. To account
for this takes a lot of work. The measurements in the blood are mixtures of all enzyme
activities from different organs/compartments. To account for the constraints of MM-
kinetics, it is necessary to measure the substrate concentration for all enzymes in all
compartments. However, this is not feasible for an experimental set-up, where samples
were taken from each pig over a while in parallel with enzymes active in essential organs.
The here-developed model of the TRP metabolism was simplified in several aspects.
The reactions of TRP to SER, from TRP to KYN, and from KYN to QUIN were
condensed from two or three reactions to only one due to the lack of measurements of
the intermediate metabolites.

4.9. Future Directions
The direct degradation of 1-MT to KYNA was the most likely degradation process of
1-MT in the presented analysis. This hypothesis might be able to explain the increased
values of TRP and KYNA, while the intermediate metabolite KYN stayed unchanged.
Deciphering the detailed degradation process of 1-MT to KYNA needs experiments, in-
cluding measurements differentiated by time points for 1-MT, TRP, KYN, and KYNA
and all intermediate metabolites, as well as a precise determination of the degree of
1-MT’s contamination with TRP.
1-MT administration led to increased survival in mice in which sepsis was induced. Since
this 1-MT administration is associated with a substantial increase in KYNA, KYNA
could be used as a therapeutic agent [62]. Exclusively KYNA could be administered in
sepsis, animals to monitor their survival. KYNA is an immunomodulatory agent with
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anti-inflammatory and immunosuppressive functions [62]. It prevents an overshooting
immune response by activating Treg-cells via TGF-β and IL-6 in early-phase sepsis. A
prolonged synthesis of KYNA leads to immunoparalysis, often resulting in the dead [1].
Nevertheless, elevated KYNA levels in the brain are associated with psychotomimetic
effects like schizophrenia [261, 262] and also affect the gut motility [35]. Due to these
side effects of KYNA, treated patients need comprehensive monitoring [28, 32, 33] and
treatment strategies to counteract schizophrenia [263] or reduced motility of the intes-
tine [35].
Moreover, calibration on dynamics of single pigs would improve the fitting results.
Individual-based models account for individual effects, commonly used to model the
activation of the immune system [264]. Therefore, the most sensitive parameters are
individualized [265].
In this study, the „bottom-up“ approach was used. This approach uses quantitative and
dynamic information for calibrating mathematical models with high predictive power.
On the contrary, the „top down“ approach combines omics data, including qualitative
and static information, to analyze network topologies [115]. To enhance the knowledge
gain of the here presented models, the „bottom up“ and the „top down“ approach should
be combined to decipher regulatory mechanisms to predict dynamics or the impact of
pharmaceutical intervention [115].
In this study, three approaches were used to fit the model parameters to the model.
Fitting non-identifiable parameters to data revealed the same results for correlated data
sets. Whether this approach consistently returns the best result; has to be determined.

4.10. Conclusion
This thesis gives an explanation of the altered levels of TRP metabolites during 1-MT
administration in pigs. Moreover, KYNA and its catalyzing enzymes KATI-IV are pro-
posed to be potential drug targets. First hints to the 1-MT induced process of increasing
levels of TRP and KYNA were given, while the intermediate metabolite KYN did not
change. The best results of modeling IDO inhibition by 1-MT were yielded by approach
3. This approach applies a parameter scan. Thus, no parameters were fixed. The same
results were also obtained for the models of the different hypotheses. Many findings,
report positive effects of 1-MT [82, 266] in vivo. Even though 1-MT did not reach satu-
ration, experiments led to partial inhibition of IDO by 1-MT [86].
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Gram-negative bacteria secrete lipopolysaccharides (LPS), leading to a host immune
response of proinflammatory cytokine secretion. Those proinflammatory cytokines are
TNF-α and IFN-γ, which induce the production of indoleamine 2,3-dioxygenase (IDO)
[2, 53, 54]. IDO production is increased during severe sepsis, and septic shock. High IDO
levels are associated with increased mortality [59]. This enzyme catalyzes the degrada-
tion of tryptophan (TRP) to kynurenine (KYN) along the kynurenine pathway (KP).
KYN is further degraded to kynurenic acid (KYNA). Increased IDO levels accompany
with increased levels of KYNA [61, 62], which is associated with immunoparalysis [1].
Due to its central role, the KP is a potential target of therapeutic intervention [62].
The degradation of TRP to KYN by IDO was intervened by 1-Methyltryptophan (1-
MT), which is assumed to inhibit IDO [81]. By administering 1-MT, the survival of
1-MT-treated mice suffering from sepsis increased compared to mice not treated with
1-MT [82, 83, 84]. The levels of downstream metabolites such as KYN and KYNA were
expected to be decreased. Surprisingly, in healthy mice and pigs, an increase in KYNA
after 1-MT administration was reported [85, 86]. Those unexpected metabolite alter-
ations after 1-MT administration, and the mode of action, were not the focus of recent
research. Hence, there is no explanation for KYNA increase, while KYN did not change.
This thesis aims to postulate a possible degradation pathway of 1-MT along the KP
with the help of ordinary differential equation (ODE) systems.
Moreover, the developed ODE models were used to determine the ability of 1-MT to
inhibit IDO in vivo. Therefore, a multiplicity of ODE models were developed, including
a model of the KP, an extension by lipopolysaccharide (LPS) administration, and 1-MT
administration.
Moreover, seven ODE models were developed, all considering possible degradation path-
ways of 1-MT. The most likely degradation pathway was combined with the ODE model
of LPS administration, including the inhibitory effects of 1-MT.
Those models consist of several dependent equations describing the dynamics of the KP.
For each component of the KP, one equation describes the alterations over time. Equa-
tions for TRP, KYN, KYNA, and quinolinic acid (QUIN) were developed.
Moreover, the alterations of serotonin (SER) were also included. All together belong
to the TRP metabolism. They include the degradation of TRP to SER and to KYN,
which is further degraded to KYNA and QUIN. Every degradation is catalyzed by an en-
zyme. Therefore, Michaelis-Menten (MM) equations were used employing the substrate
constant Km and the maximal degradation velocity Vmax. To reduce the complexity of
parameter calculation, Km values of the different enzymes were fixed to literature values.
The remaining parameters of the equations were determined so that the trajectories of
the calculated metabolite levels correspond to data. The parameters of different mod-
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els were determined. To propose a degradation pathway of 1-MT leading to increased
KYNA levels, seven models were developed and compared. The most likely model was
extended to test whether the inhibitory effects of 1-MT on IDO can be determined.
Three different approaches determined the ODE model parameters of the different hy-
pothesis of 1-MT degradation. In the first approach, ODE model parameters were fixed
to values fitted to an independent data set. In the second approach, parameters were
fitted to a subset of the data set, which was used for simulations of the different hy-
potheses. The third approach calculated ODE model parameters 100 times without
fixed parameters. The parameter set ending up in trajectories of the TRP metabolites,
which have the smallest distance to the data, was assumed to be the most likely. The
ODE model parameters were fitted to data measured in pigs [86, 149]. Two different
experimental models delivered data used in this thesis. The first experimental model
activates IDO by LPS administration in pigs [149]. The second one combines the IDO
activation by LPS with the administration of 1-MT in pigs.
The most likely hypothesis, according to approach 1 was the degradation of 1-MT to
KYNA and TRP. For the second data set the most likely one was the direct degrada-
tion of 1-MT to KYNA. With approach 2 the most likely degradation pathways were
the combination of all degradation pathways and the degradation of 1-MT to TRP and
TRP to KYNA. With approach 3 the most likely way of KYNA increase was given by
the direct degradation of 1-MT to KYNA. In summary, the three approaches revealed
hypothesis 2, the direct degradation of 1-MT to KYNA most frequently. A cell-free
assay validated this result. This experiment combined 1-MT or TRP with or without
the enzyme kynurenine aminotransferase (KAT). KAT was already shown to degrade
TRP directly to KYNA [160]. The levels of TRP, KYN and KYNA were measured. The
highest KYNA levels were yielded with an assay adding KAT to 1-MT, corresponding
to hypothesis 2. The models describing the inhibitory effects of 1-MT revealed that
the model without inhibitory effects of 1-MT on IDO was more likely for all three ap-
proaches.
The correctness of hypothesis 2 has to be confirmed by further in vitro experiments. It
also has to be investigated which reactions promote the degradation of 1-MT to KYNA.
The missing inhibitory properties of 1-MT on IDO, determined by the in silico ODE
models, align with previous research. It was shown that the saturation of 1-MT was too
low, e.g. in pigs [162], to inhibit IDO efficiently.
In this study, the first possible degradation pathway of 1-MT along the KP is proposed.
The reliability of the results depends on the quality of the experimental data, and the
season, when data were measured. Moreover, the results vary between the different
approaches of parameter fitting. Different approaches of parameter fitting have to be
included in the analysis to get more evidence for the correctness of the results.
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A. Data Description
To estimate parameters representing the dynamics of the TRP metabolism, published
data from experiments conducted in pigs were used [149, 162, 86]. Those experiments
include LPS administration, 1-MT administration and a combination of 1-MT, and LPS
administration. They have been performed to establish a pig model of IDO activation
and to investigate the protective and immunomodulatory effects of 1-MT. Therefore,
the TRP metabolites TRP, SER, KYN, KYNA, QUIN, and 1-MT were measured by
MS2 mass spectrometry. Due to analytical issues with internal standards, the scale of
TRP metabolites was different between different experiments. Moreover, TNF-α was
measured after stimulation by LPS with an ELISA kit to measure the immune system-
activating properties of LPS. As the basis for further investigations, control animals
data were used for parameter fitting of a standard model of the TRP metabolism. This
model was extended by IDO activating LPS administration. Parameters of this model
were fitted to data from LPS-treated pigs [149]. The estimated parameters of this model
were validated on a similar data set. To investigate the 1-MT induced increase of TRP
and KYNA, parameters were fitted to data from 1-MT-treated pigs [162, 86]. Moreover,
to test whether the developed model can represent the dynamics of TRP metabolism,
including 1-MT’s inhibitory effects, data from 1-MT and LPS-treated pigs were used.
All blood samples were taken from the anterior vena cava. The TRP metabolites (TRP,
KYN, KYNA, QUIN, SER) and, depending on the experiment, 1-MT, TNF-α or both
were measured. A detailed explanation of the experimental set-up can be found in the
corresponding publications [149, 162, 86]. The experimental set-up is summarized below.

A.1. LPS - Treated Pigs
To fix parameters in the models of 1-MT degradation, parameters were fitted to data
representing the dynamics of the TRP metabolism in LPS-treated pigs. Those data were
published by Wirthgen et al. [147]. The here presented experiment is called the „LPS
experiment I“ below. In Figure A.1 a schematic presentation of the experimental set-up
is shown.
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A. Data Description

Figure A.1.: LPS Experiment I and II: In LPS experiment I, 24 pigs, and in LPS
experiment II, 16 pigs were treated at 0 h with either LPS or NaCl as
control. At 0 h, 1 h, 3 h, 6 h, and 24 h blood samples were taken and
metabolites of the TRP metabolism (TRP, SER, KYN, KYNA, QUIN),
and TNF-α were measured (see Figure A.2 and Figure A.3). Before 0 h,
food was subducted. 6 h later, food was supplied. At 6 h, twelve pigs of
LPS experiment I and eight pigs of LPS experiment II were sacrificed.

Twelve pigs received 100 000 endotoxin units (EU) LPS per kg body weight. The control
group consisted of twelve NaCl-treated pigs. 1 h before LPS or NaCl administration,
food was removed, but feeding started again 6 h after LPS/NaCl administration. After
6 h, twelve pigs were sacrificed for further studies. Hence, the group size of twelve pigs
was reduced to six pigs for LPS and to six pigs for NaCl-treated pigs. TRP, KYN,
KYNA, QUIN and SER (TRP metabolites) and TNF-α were measured in blood shortly
before LPS administration (0 h), 1 h, 3 h, 6 h and 24 h after LPS/NaCl administration
[149]. All metabolites were measured with an MS2 mass spectrometer. The metabolites
were indicated in µM , except TNF-α, which was indicated in pg/ml, because it was
measured by an ELISA kit. To full fill the requirement of the law of mass action, TNF-
α was converted in µM by multiplying with 10−9 and by division of the specific molecular
weight of TNF-α for pigs (25.26 kD) [267, 268]. Data of LPS experiment I are presented
in Figure A.2 and were used to fit parameters representing the dynamics of the TRP
metabolism and the activation of IDO by LPS.
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Figure A.2.: Data measured in LPS experiment IMeasurements of LPS experiment
I (compare Figure A.1), twelve LPS and twelve NaCl (as control)-treated
pigs have received LPS at 0 h and were starved between 0 h and 6 h. Six LPS
and six NaCl-treated pigs were sacrificed at 6 h. This data set is used to fit
parameters. Control - NaCl-treated. TRP - tryptophan, KYN - kynurenine,
KYNA - kynurenic acid, QUIN - quinolinic acid, SER - serotonin, TNF -
tumor necrosis factor α

A second data set, called the „LPS experiment II“, was used to validate those parameters.
Measurements are presented in Figure A.3. The data of this data set is also not normally
distributed. Again, the medians are decentered and the whiskers are of different length
of each box in Figure A.3.
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Figure A.3.: Data measured in LPS experiment II Measurements of LPS experi-
ment I (compare Figure A.1), eight LPS and eight NaCl (as control)-treated
pigs have received LPS at 0 h and were starved between 0 h and 6 h. Four
LPS and four NaCl-treated pigs were sacrificed at 6 h. This data set is
used to validate parameters fitted to data of LPS experiment I. Control -
NaCl-treated. TRP - tryptophan, KYN - kynurenine, KYNA - kynurenic
acid, QUIN - quinolinic acid, SER - serotonin, TNF - tumor necrosis factor
α

This experiment was conducted the same way as LPS experiment I, except the number
of pigs varied. In LPS experiment II, 16 pigs were included, eight LPS-treated and
eight NaCl-treated pigs. At 6 h, four pigs of the LPS-treated pigs, and four pigs of the
NaCl-treated pigs were sacrificed. Thus, four LPS and four NaCl-treated pigs remained.
Due to the differing numbers of pigs, LPS experiment I was used for parameter fitting
and LPS experiment II for parameter validation.
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A.2. 1-MT and LPS-treated Pigs
Additionally to parameters fitted to data of LPS experiment I (see Figure A.2), param-
eters were fitted to a subset of the data set presented in this section. Moreover, this
data set was used to fit the parameters of models explaining the degradation of 1-MT,
and its inhibitory effects on IDO. Those data were already published by Wirthgen et al.
[162, 86] and are called the „1-MT/LPS experiment“ below. 16 pigs were included in
this experiment. Eight pigs received five times every 24 h 1 g 1-MT (see Figure A.4).

Figure A.4.: 1-MT/LPS experiment: At 0 h, 24 h, 48 h, 72 h, and 96 h (arrows with
square arrowheads) 16 pigs were treated with 1-MT or Myritol as control.
At 84 h, pigs received either LPS or NaCl as control. At 90 h, half of
the pigs were sacrificed (eight of 16 remained, each treatment group was
of equal group size). Pigs were starved from 72 h on till the end of the
experiment. At each indicated (0 h, 24 h, 48 h, 72 h, 84 h, 85 h, 86 h, 87
h, 90 h, 96 h, and 108 h) samples from blood were taken, measurements of
TRP metabolites and 1-MT are shown in Figure A.5

The control group, consisting of eight pigs, received Myritol (carrier solution for 1-MT).
Blood samples were taken at 0 h, 24 h, 48 h, 72 h, and 96 h. Hence, after each 1-
MT/Myritol administration. 12 h after the fourth application (at 84 h) of 1-MT, eight
pigs received 150 000 EU/kg LPS. Four of them were treated with 1-MT, and four pigs
were treated with Myritol. The control group received NaCl consisting of four 1-MT-
treated pigs and four Myritol-treated pigs. Thus, this leads to four treatment groups
(each with four pigs):

• 1-MT & LPS - pigs that were treated with 1-MT and LPS
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• 1-MT, Control - pigs that were treated with 1-MT and NaCl

• Control, LPS - pigs that were treated with Myritol and LPS

• Control & Control- that which were treated with Myritol and NaCl

At 85 h, 87 h, 90 h, 96 h (before the fifth 1-MT application), and at 108 h after LPS/NaCl
administration blood samples were taken, too. Half of the treated animals were sacri-
ficed distributed in the four treatment groups after 90 h (see Figure A.1). Thus in each
group, two pigs remained. The pigs were starved after the 1-MT administration at 72
h. Feeding was not restarted. All measurements were indicated in µM . TNF-α was
indicated in pg/ml. TNF-α measurements were converted to µM as described section
A.1 to get uniform units. Measurements of 1-MT, TNF-α, and TRP metabolites are
presented in Figure A.5. For parameter fitting, the data set was split up into different
subsets according to their purposes.
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Figure A.5.: Data measured in 1-MT/LPS experiment: At 0 h, 24 h, 48 h, 72 h,
and 96 h pigs were treated with 1-MT or Myritol (Control) as control, at
84 h pigs received either LPS or NaCl (Control) as control. Four treatment
groups resulted (1-MT and LPS - 1-MT & LPS-treated; 1-MT and NaCl
- 1-MT-treated, Control; Myritol, and NaCl - Control & Control, Myritol
and LPS - Control, LPS-treated). At 90 h, half of the pigs were sacrificed
from 16 pigs to eight pigs(equally distributed in the treatment groups).
The pigs were starved from 72 h on till the end of the experiment. At
each indicated (0 h, 24 h, 48 h, 72 h, 84 h, 85 h, 86 h, 87 h, 90 h, 96
h, and 108 h) samples from blood were taken, TRP metabolites (TRP,
SER, KYN, KYNA, QUIN), and 1-MT and TNF-α concentration (only
after LPS administration at 84 h) were measured. TRP - tryptophan,
KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid, SER
- serotonin, TNF-α - tumor necrosis factor α
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1-MT/LPS experiment, subset LPS-treated pigs To model the dynamics of the
LPS induced enzyme IDO concerning the TRP metabolism, the data of the 1-MT/LPS
experiment were reduced to pigs only treated with Myritol and afterward with LPS or
NaCl. A summary of the experiment with a subset of the pigs is shown in Figure A.6.

Figure A.6.: 1-MT/LPS experiment, subset LPS-treated Only a subset of pigs of
1-MT/LPS experiment (see Figure A.4) is considered, Myritol-treated pigs
received LPS or NaCl at 84 h, at each indicated (84 h, 85 h, 86 h, 87 h, 90 h,
96 h, and 108 h). At 90 h half of the pigs were sacrificed (four of eight pigs
remained). The samples from blood were taken at every indicated . The
pigs had no access to food during the whole experiment. The measurements
of TRP metabolites and 1-MT are shown in Figure A.7

Only data after 84 h were used for parameter fitting (see Figure A.7). This subset is
named „1-MT/LPS experiment, subset LPS-treated pigs“. Pigs were starved for the
whole time of this period. Moreover, the number of included pigs is lower than the one
in LPS experiment I and II (only eight pigs instead of 24 respective 16 pigs). Moreover,
the LPS experiments I and II were conducted during the summer season (August and
September) whereas this experiment was conducted in the winter (January). The compa-
rability of results from experiments conducted in different seasons is reduced [255, 256].
In addition, TRP levels are increased by a factor of 5. Experimentalists speculate about
human errors. With this subset, results based on the data measured in LPS experi-
ments I and II were validated and parameters only based on 1-MT/LPS experiment,
subset LPS-treated pigs, were estimated. Those parameters were also applied to data,
to explain the degradation process of 1-MT and its inhibitory effects on IDO.
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Figure A.7.: Data measured in 1-MT/LPS experiment, subset LPS-treated:
Only a subset of pigs of the 1-MT/LPS experiment (see Figure A.4) is
considered. Myritol-treated pigs received LPS or NaCl at 84 h. At each
indicated (84 h, 85 h, 86 h, 87 h, 90 h, 96 h, and 108 h), samples from blood
were taken. At 84 h, LPS was administered. The TRP metabolites (TRP,
SER, KYN, KYNA, QUIN), and TNF-α concentration were measured. Pigs
had no access to food during the whole time. Control & Control - Myritol
and NaCl-treated. Control, LPS-treated - Myritol and LPS-treated. TRP -
tryptophan, KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic
acid, SER - serotonin, TNF-α - tumor necrosis factor α

1-MT/LPS experiment, subset 1-MT-treated pigs The following subset of data
measured in the 1-MT/LPS experiment was used to simulate different degradation pro-
cesses of 1-MT leading to an increase of TRP and KYNA levels at the same time the
intermediate metabolite KYN did not change. Thus, only the subset of 1-MT-treated
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A. Data Description

pigs is needed. Therefore the subset consists of pigs, which were not treated with LPS.
Only 1-MT and Myritol-treated pigs were included (see Figure A.8).

Figure A.8.: 1-MT/LPS experiment, subset 1-MT-treated: At 0 h, 24 h, 48 h,
72 h, and 96 h (arrows with square arrow heads), pigs were treated with
1-MT or Myritol as control, at 90 h half of the pigs were sacrificed (four
of eight pigs remained, equally distributed in the treatment groups), pigs
had access to food during s 0 h and 72 h, from 72 h till the end of the
experiment pigs straved, at each indicated (0 h, 24 h, 48 h, 72 h, 84 h, 85 h,
86 h, 87 h, 90 h, 96 h, and 108 h) samples from blood were taken, data set
was divided in pigs, which received food (first data set) and pigs which did
not receive food (second data set), measurements of the TRP metabolites
and 1-MT with FoodSupply (first data set) are shown in Figure A.9 and
without FoodSupply (second data set) are shown in Figure A.10

This subset is named 1-MT/LPS experiment, subset 1-MT-treated pigs, and was split
up in two periods by the food supply. Since food contains TRP, the increase of TRP due
to food intake has to be considered in the models. During the first period, which consists
of eight 1-MT and eight Myritol-treated pigs, pigs were fed (see Figure A.8, first data
set). Corresponding data are not normally distributed since whiskers are of different
lengths and mean values are not centered. The data are presented in Figure A.9.
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A.2. 1-MT and LPS-treated Pigs
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Figure A.9.: Data measured in 1-MT/LPS experiment, subset 1-MT-treated
pigs (first data set): 16 pigs were treated with 1-MT or Myritol as
control, every 24 h (0 h, 24 h, 48 h, 72 h). 1-MT was administered at
the indicated time points. Blood samples were taken, and levels of TRP
metabolites (TRP, SER, KYN, KYNA, QUIN), and 1-MT concentration
were measured. Pigs had access to food for the whole time. 1-MT-treated,
Control - 1-MT and NaCl-treated, Control & Control - Myritol and NaCl-
treated. TRP - tryptophan, KYN - kynurenine, KYNA - kynurenic acid,
QUIN - quinolinic acid, SER - serotonin, 1-MT - 1-methyltryptophan

The second period includes eight pigs, which were starved and were reduced due to
immolation at 90 h (see Figure A.8, second data set). Corresponding data are pre-
sented in Figure A.10. Again, parameters are not normally distributed, since median
values are not centered, and the whiskers are of different lengths. With this subset,
parameters estimated on data measured in LPS experiment I and II, and 1-MT/LPS
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A. Data Description

experiment, subset LPS-treated pigs, were applied on different models, which describe
possible degradation processes of 1-MT.
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Figure A.10.: Data measured in 1-MT/LPS experiment, subset 1-MT-treated
pigs (second data set): 16 pigs have been treated with 1-MT or Myritol
as control. Every 24 h (0 h, 24 h, 48 h, 72 h, and 96 h), 1-MT was
administered. Blood samples were taken at the indicated time points (84
h, 85 h, 87 h, 90 h, 96 h, 108 h). TRP metabolites (TRP, SER, KYN,
KYNA, QUIN), and the concentration of 1-MT, were measured. Pigs were
starved during the whole time. 1-MT-treated, Control - 1-MT and NaCl-
treated, Control & Control - Myritol and NaCl-treated. TRP - tryptophan,
KYN - kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid, SER
- serotonin, 1-MT - 1-methyltryptophan
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A.2. 1-MT and LPS-treated Pigs

1-MT/LPS experiment, second data set The following subset of data measured in
the 1-MT/LPS experiment was used to investigate the ability of the model to reflect
1-MT’s inhibitory effects on IDO. Therefore, measurements of pigs treated with 1-MT
or Myritol and LPS or NaCl, had to be included. Since LPS was administered at 84 h,
only measurements of samples taken at or after 84 h were included. Consequently, this
subset consists of pigs treated with LPS or NaCl and 1-MT or Myritol (see Figure A.8,
second data set). This subset is called the „1-MT/LPS experiment“, second data set.
The data are presented in Figure A.11 and are again not normally distributed. This
subset was used to fit the parameters of different models. The first one includes the
inhibitory effects of 1-MT, and the other does not include inhibitory interactions.

159



A. Data Description
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Figure A.11.: Data measured in 1-MT/LPS experiment (second data set): 16
pigs were treated with 1-MT or Myritol as control. Four times before the
LPS administration at 84 h, 1-MT was administered ( 0 h, 24 h, 48 h,
72 h, which were omitted), and at 96 h, 1-MT was administered. Blood
samples were taken, at the indicated time points (84 h, 85 h, 87 h, 90
h, 96 h, 108 h). TRP metabolites (TRP, SER, KYN, KYNA, QUIN)
1-MT, and TNF − α concentrations, were measured. Pigs were starved
during the whole time. 1-MT-treated, Control - 1-MT and NaCl-treated,
Control & Control - Myritol and NaCl-treated. TRP - tryptophan, KYN
- kynurenine, KYNA - kynurenic acid, QUIN - quinolinic acid, SER -
serotonin, TNF-α - tumor necrosis factor α
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B. Identifiability Analysis

Table B.1.: Upper and lower boundary of Identifiability analysis for the LPS
model

parameter lb ub parameter value
V max
KQE 1.64 1.7949 1.719
V max
IDO 5.3829 5.7898 5.6231

V max
KAT 2.5986 2.704 2.6487
V max
TDO 0.4452 0.51586 0.48079
V max
TPH -Inf -0.70297 -1.2354

FoodSupplyLPS 1.2594 1.3845 1.3259
FoodSupplyNaCl 1.3703 1.4751 1.4249

KYN0 -0.011572 0.1524 0.077056
KYNA0 -0.31736 -0.27847 -0.29752
QUIN0 0.18013 0.27547 0.22995
SER0 0.17225 0.22564 0.19997
TRP0 1.1446 1.1805 1.1627

k -10.398 -10.132 -10.287
µLPS -0.091135 0.25617 0.058797

An identifiability analysis was performed for the parameters fitted to data of LPS
experiment I, which are shown in Table C.1 of the LPS model. Parameter
identifications are given in the column „parameter“, lower boundary (lb), and upper
boundary (ub), and parameter values are given in log10scale in the corresponding
column, species0 are the fitted initial values of the corresponding species.
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C. Comparison of literature and fitted
parameters
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Table C.1.: Overview of fitted parameters of the LPS model on different data sets and literature values
parameter I II III IV V VI
V KAT
max 445.35 0.45145 154.73 149.0269 192.9756 0.271286− 2820.3
V TPH
max 0.058159 0.10778 0.1531 0.2828675 0.9691421 78.88− 81, 6 · 1012

V TDO
max 3.0254 0.10778 0.67461 19.0957 129.031 3934.072− 94.112 · 106

V KQE
max 52.36 208.22 107.78 79.06573 25.8605 1.69218 · 103

V IDO
max 419880 119.04 · 10−5 5.2925 · 10−5 21.14442 140.2408 50− 14.851 · 103

k 5.165110−11 0.16596 0.14364 0.1436183 5.62472 · 10−05 -
FoodSupplyLPS 21.179 - - - - -
FoodSupplyNaCl 26.6 - - - - -
µLPS 1.145 - - - - -
µKYNA - 0.052257 0.028857 0.5520143 4.001432 0.6931472
µTNF−α - 0.39988 0.63733 0.6372277 0.0002088248 0.6931472− 1.386294
µQUIN - 0.20665 0.52348 0.365035 0.130786 0.165035− 1.890401
µSER - 0.076614 0.20665 0.1665 0.030668 0.01444057

The Parameters of the LPS model were fitted multiple times on different data sets. Parameters were fitted to the data of
LPS experiment I (I) and 1-MT/LPS experiment, subset LPS-treated pigs (II). Additionally, parameters were fitted 100
times on the 1-MT/LPS experiment, subset LPS-treated pigs. The parameters of the simulations with the lowest LL are
shown in column III. The mean values and standard deviation of the parameters of 100 simulations based on data from the
1-MT/LPS experiment, LPS-treated pigs, were calculated. The mean values are shown in column IV, and the standard
deviation in column V. To compare the fitted values to literature values, the minimal and maximal values of literature
values according to Table 5 are shown in column (VI). For KQE, the value corresponds to the literature value of the
enzyme KYNU. For µKYNA, µSER, and V KQE

max only one literature value was found. All values are indicated in µM/h.



D. Parameters Fitted to the Data of
1-MT/LPS Experiment, Second
Data Set with a Parameter Scan,
AIC values

0e+00

1e+19

2e+19

3e+19

A
IC

AIC

Figure D.1.: Boxplot of AIC values of hypotheses based on the data of 1-
MT/LPS experiment (second data set): The box plot shows the re-
sults of 100 iterations of the model, including inhibition and the model not
including inhibition. The curve around the box plot shows the distribution
of the data and is mirrored at the whiskers.
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